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Theory and practice of singlet nuclear magnetic resonance

by Michael Charles Douglas Tayler

Sensitivity is a signature problem of NMR. In its most basic description, an NMR experi-

ment involves encoding information into an ensemble of nuclear spins followed by readout

at a later time. The sensitivity is the extent to which the information content is distin-

guishable from system noise.

Principal factors that determine sensitivity are ensemble initialisation or polarisation,

detection e�ciency and relaxation e�ects that occur in between. This thesis addresses

the last of these by examining opportunities of nuclear singlet states. Singlet states are

exchange-antisymmetric quantum states of spin-1/2 pairs that, under favourable condi-

tions, are the slowest-relaxing spin states of the NMR ensemble. In certain cases, singlet

states may also exceed the relaxation times of isolated spins-1/2.

The goal of the work is to explore `singlet NMR' as concept. The fundamentals of

coherent control in a spin-1/2 pair are studied in depth, from which pulse sequences to

generate and take advantage of singlet states are discussed. Several new methods for

singlet excitation and detection are introduced. Existing methods are discussed within an

overview context. Basic principles of singlet relaxation are also presented. Singlet lifetimes

depend strongly on the correlation between magnetic �elds at the nuclear spin pair sites

and are sensitive most to the local magnetic environment. This can be used to retrieve

information on local molecular structure and motion. Study of the relaxation relax rates

may also help one determine the dominant singlet relaxation mechanisms for a given spin

pair environment. This information may help one design molecules for maximum longevity

of nuclear spin order.
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A short direction to avoid dejection

By variations in occupations

And prolongation of relaxation

And combinations of recreations

And disputation on the state of the nation

In adaptation to your station

By invitations to friends and relations

By evitation of amputation

By permutation in conversation

And deep re�ection

You'll avoid dejection

Lewis Carroll, Rules and Regulations
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Introduction

1.1 Memory

Rather like the human mind, many systems in nature keep only a limited memory of their

history. In statistical physics, in the same way that one visualises the `drunkard' forgetting

his route during a random walk from the pub, macroscopic or ensemble properties can be-

come `forgotten' as their microscopic constituents lose synchrony with one another through

time.[1] Such processes of information loss are irreversible; for instance, the disappearance

of temperature or concentration gradients in a solution (the loss of positional order, due to

Brownian translational di�usion), or the melting of a liquid crystal (loss of orientational

order). Time-dependent changes in macroscopic nonequilibria such as these are called

ensemble relaxation phenomena, for they return the bulk system to an equilibrium state.

Ensemble relaxation (or simply `relaxation') is a major issue in nuclear magnetic reso-

nance (NMR) techniques.[2, 3, 4, 5, 6] An NMR system comprises a macroscopic collection

of atomic nuclei, the spin ensemble, whose microscopic property is the nuclear spin angu-

lar momentum. This angular momentum gives an incredible power to the scientist. If we

think as physicists, we view the resulting bulk property, nuclear magnetisation, as a `stor-

age device' on which wealths of physical data may be recorded (see �g. 1.1). With NMR

in the clinic, one may obtain images inside the human body more safely, more sensitively,

and with greater detail than surgical or ionisation routes.[7] One can record maps show-

ing blood velocity through the circulatory system with striking clarity. In the laboratory,

1



2 Introduction

NMR spectroscopy is the premier tool for gathering information about molecular geome-

try, three-dimensional structure, functionality of biomolecules inside cells and microscopic

motion. If we really think of NMR systems as a `memory', we may indeed use them to

execute algorithms and perform computation![8]

Relaxation is crucial aspect in almost all NMR experiments; it can act as both a help

and as a hindrance. To encode information into the spin ensemble, creating a nonequilib-

rium state, it is usual to start from a known and consistent equilibrium. Rapid relaxation

is in this context bene�cial, in the sense that the spin memory is `wiped clean' quickly so

there are no long waiting periods before an experiment can start. This speeds up the more

laborious `multi-scan' NMR experiments where repeated readouts of the spin memory are

combined to improve overall signal-to-noise, or shorten the time needed to collect higher-

dimensional or arrayed datasets, for example in spin-spin correlation (COSY) experiments

used for molecular structure elucidation.[4, 11] On the other hand, fast relaxation gener-

ally implies a shorter spin memory timescale during the experiment itself. In that case the

complexity and maximum duration of encoding can be rather limited.

This view implies there is a trade-o� to be made between sensitivity and time. How-

ever, it is not the spectroscopist who decides the speed of relaxation. Spin memory loss

is governed by the microscopic motion processes that cause decoherence of the ensemble,

principally molecular reorientation, exchange and collisions.[14] Most of these processes

are inherent to the system under study, and not possible to change, in general, except by

signi�cantly altering the physical state or chemical composition. Furthermore, while relax-

ation may be arti�cially accelerated, for instance by doping the system with paramagnetic

substances,[14] on which I will say more later, it is much more di�cult to do the opposite

to the ensemble, i.e. to `remove' relaxation mechanisms that are intrinsic.

Having said this, opportunities to prolong the spin memory do exist in some circum-

stances. A familiar example to those in the NMR �eld is how spin relaxation rates depend

on the relative orientation between nuclear magnetisation and its external magnetic en-

vironment. For magnetisation of isolated spins, the component parallel to an uniform

external �eld (called longitudinal magnetisation) relaxes with a time constant we call T1.

Magnetisation perpendicular to the applied �eld (called transverse magnetisation) often

decays with a faster time constant T2 ≤ T1.[3, 4] The relation T2 ≤ T1 implies spin memory

may be preserved for longer times by con�nement in the guise of longitudinal magnetisa-
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Figure 1.1: Information provided by nuclear magnetic resonance, from the simple to the intricate.
Clockwise from top-left: Compelling proof for the fullerene structures of C60 and C70 obtained by
13C NMR spectroscopy;[9, 10] Ernst's Fourier-transform spectroscopy,[11] an instrumental advance
in sensitivity, which also opened up the �eld of multidimensional spectroscopy. The o�-diagonal
peaks in the above spectrum give information on the chemical exchange between cis- and trans-
decalin isomers; NMR determination of intramolecular rate processes and mechanism of action
in the basic pancreatic trypsin inhibitor protein (BPTI, MW ≈ 6500 g/mol). Structural studies
by NMR are now viable and routine on proteins in excess of MW = 105 g/mol;[12] noninvasive
single-scan `echo-planar' imaging of water or fat content in living matter.[13]



4 Introduction

tion, where possible. This is now common practice in NMR experiments where long waiting

periods between initial memory encoding and readout are required, where a delay may be

required for self-di�usion, bulk �ow, or a chemical reaction to occur. The earliest example

of this was Hahn's stimulated echo sequence, developed as far back as the 1950s.[15]

Longer-lived states

The work in this thesis pursues how memory times longer than T1 are possible by exploiting

singlet states between pairs of nuclei. The singlet is a `non-magnetic' or `spin-zero' con�gu-

ration shared between two nuclei with individual angular momenta ±~/2. These states may

exhibit, in certain circumstances, lifetimes exceeding T1 by an order of magnitude.[16, 17]

The correlation between the angular momenta of the pair allows the composite state to

escape many relaxation mechanisms, so that it decays more slowly than each nucleus in

isolation.

As just two spin-1/2 nuclei are required, singlet states are common to �nd in a wide

variety of molecules, from small polyatomics to proteins. The �rst experimental demonstra-

tion of long-lived singlet states in a polyatomic molecule was made in 2004 by Carravetta

and Levitt for the pair of protons in 2,3-dibromothiophene.[18, 19] To brief summarise the

development of the �eld since, (to mid 2012), there have been over 100 peer-reviewed publi-

cations on singlet NMR, concerning in roughly equal proportion methodology for exciting

singlet states, theory and rationale of the relaxation properties and applied technology.

Several reviews are available.[16, 17, 20, 21] Some achievements speak for themselves:

• The world record singlet lifetime of a polyatomic molecule is 26 minutes, for 15N2O

(15N-nitrous oxide).[22, 23] The 15N T1 in the same system is less than 3 minutes.

• The largest extension in spin lifetime via singlet states is 37 times T1, as has been

observed for a proton pair in a partially deuterated saccharide molecule.[24, 25]

• Proton singlet lifetimes have been measured for Ubiquitin,[26, 27] the most-commonly

studied protein.

• Singlet NMR opens the study of self-di�usion of large molecules to timescales an

order of magnitude slower than those conventionally probed by NMR.[25, 28, 29]
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• Several experimental demonstrations made for preserving hyperpolarised (very strongly

magnetised) samples for potential use in vivo.[30, 31, 32]

Thesis outline and structure

The remainder of this chapter introduces singlet NMR more formally to the reader within

the context of its main challenge: to overcome, without change to the system's composition

or bulk conditions, the frustrations of low signal strength in NMR caused by undesirably

short relaxation times. One may regard `singlet NMR' as achieving for NMR what we

might wish for an improved memory performance of our brains and computers: to keep

track of information over longer periods of time, accomplish goals more e�ciently and solve

more challenging problems.

My chosen starting point is the perspective of the NMR ensemble as an information

storage device, where I summarise (in brief) the important quantum mechanical formalisms

used to understand NMR spectroscopy, namely the state space concept, the density operator

and how nuclear spin order is manipulated during an experiment. This is followed by a

discussion about sensitivity in NMR, its enhancement using singlet states and the interface

of singlet NMR with other existing or competing practices. An idea of the current state of

singlet NMR will be outlined through a summary of existing work done by others.

After this introductory chapter the thesis contains two technical chapters in which new

material is presented. The �rst of these (chapter 2) is a roundup of methodology to excite

the potentially long-lived nuclear singlet states, dealing with how to convert between `or-

dinary' nuclear magnetisation and singlet spin order, and vice versa. As well as discussing

new methods, I will indicate where improvements are available to existing ones. The sec-

ond chapter (chapter 3) is focused on understanding the factors that contribute to long

singlet lifetimes. At present, the mechanisms of singlet relaxation are not well understood

and there is limited experimental data to analyse. Can one predict systems where singlet

states will be longest-lived? May one establish how a given functional group may extend

or reduce spin relaxation times? The �ndings are rounded o� with a short chapter sum-

marising the prospects of singlet NMR and suggesting the likely future direction of the

topic.
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1.2 What is spin memory?

In its most basic description, NMR exploits atomic nuclei that have spin angular momenta

quantum number I greater than zero.[4] A spin with I > 0 has (2I + 1) > 1 distinct

orientations, according to quantum mechanics, and as many distinct energy states.[33]

These degrees of freedom provide a capacity for data storage. NMR relies on a practical

ability to manipulate the statistical occupation of these states to encode and retrieve

information.

1.2.1 The foundations: spin states

While some of earth's abundant isotopes, most notably 12C and 16O, have nonmagnetic or

spin-zero nuclei, (i.e. with total angular momentum quantum number I = 0), most have

�nite spin. Isotopes 1H, 13C, 15N, 19F and 31P are `spin-half' (I = 1/2). Spin I = 1/2

nuclei have very simple structure. For a single isolated nucleus, quantisation de�nes two

distinguishable angular momentum states |l, m〉,

|1/2,+1/2〉 ≡ |α〉 and |1/2,−1/2〉 ≡ |β〉 , (1.1)

where l ≡ I and m denotes the angular momentum projection onto a global, space-�xed

quantisation axis. Distinguishable in this context means the states are orthogonal. The

nuclear wavefunction is free to inhabit any superposition of the states, provided that su-

perposition is normalised. This vector space of |ψ〉 is known as a Hilbert space:

|ψ〉 = cα |α〉+ cβ |β〉 ⇔

 cα

cβ

 with |cα|2 + |cβ|2 = 1. (1.2)

In more physical terms the complex number coe�cients cα and cβ give the orientation

of a polarisation vector in three-dimensional space: P = (Px, Py, Pz). Components of P

are the expectation values of the Pauli matrices,[34] given by

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σz =

 1 0

0 −1

 . (1.3)



7

Figure 1.2: The `Bloch sphere' gives a simultaneous geometric representation of wavefunction |ψ〉
and the polarisation vector P .[35] To within a global phase factor, all normalised states lie on the
sphere's surface, where the spin state is denoted by the arrow head.

The components of the polarisation vector are given by

Pi = 〈σi〉 = 〈ψ|σi|ψ〉 , (1.4)

and range between −1 and 1. Proportional to P is the nuclear magnetic moment, denoted

by

µ = (µx, µy, µz) =
1

2
γ~P , (1.5)

where the constant of proportionality, γ, is the gyromagnetic ratio of the isotope.[4]

This basic example highlights the �rst crux of NMR: how there exist quantised, orthog-

onal states of a memory, (a vector space), that are connected to a physical observable (the

classical nuclear polarisation, or magnetic moment). For the spin-1/2 this correspondence

is explicit if one writes |ψ〉 using the spherical coordinates of P , i.e. P = (sin θ cosϕ,

sin θ sinϕ, cos θ). This gives the so-called Bloch sphere projection between the wavefunc-

tion

|ψ〉 = cos(θ/2) |α〉+ eiϕ sin(θ/2) |β〉 ⇔

 cos(θ/2)

eiϕ sin(θ/2)

 (1.6)
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and P (see �g. 1.2). Applying Eq. (1.6) to eq. (1.4), it is clear that

Px =
(

cos(θ/2) e−iϕ sin(θ/2)
) 0 1

1 0

 cos(θ/2)

eiϕ sin(θ/2)

 = sin θ cosϕ (1.7a)

Py =
(

cos(θ/2) e−iϕ sin(θ/2)
) 0 −i

i 0

 cos(θ/2)

eiϕ sin(θ/2)

 = sin θ sinϕ (1.7b)

Pz =
(

cos(θ/2) e−iϕ sin(θ/2)
) 1 0

0 −1

 cos(θ/2)

eiϕ sin(θ/2)

 = cos θ. (1.7c)

In general a collection of N spins (such as the nuclei residing in a molecule), whose

momenta are I1, I2 . . . IN , span (2I1 + 1)(2I2 + 1) . . . (2IN + 1) orthogonal states:

|ψ〉 ⇔


c

(1)
1

...

c
(1)
2I1+1

⊗


c
(2)
1

...

c
(2)
2I2+1

⊗ . . .⊗


c
(N)
1

...

c
(N)
2IN+1

 . (1.8)

Labels `1', `2' . . . `N ' distinguish each nucleus. For example, two coupled spins-1/2 share

2×2 = 4 states, therefore the spin wavefunction occupies a four-dimensional Hilbert space,

these being |α1〉⊗ |α2〉, |α1〉⊗ |β2〉, |β1〉⊗ |α2〉 and |β1〉⊗ |β2〉. We return to these product

states and their representations in due course.

1.2.2 Spin dynamics

The above vector-space picture, despite its seeming `abstract' perspective, is fundamental

and it is essential to keep in mind. The dynamics in Hilbert space obey Schrödinger's

time-dependent equation

d |ψ(t)〉 /dt = −iH(t) |ψ(t)〉 , (1.9)

which says that under a known Hamiltonian, H, the nuclear environment's energy charac-

teristic, an initially-known ket state evolves in a deterministic way:

|ψ(tb)〉 = U(tb; ta) |ψ(ta)〉 = exp
[
−i

∫ tb

ta

dt′H(t′)
]

︸ ︷︷ ︸
`the propagator'

|ψ(ta)〉 . (1.10)

By knowing the determinism of |ψ〉, according to quantum mechanics, all physical
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observables can be known, or predicted. By corollary, if all physical observables are pre-

dictable they must also be controllable, at least as far asH(t) is controllable by the spectro-

scopist. This is NMR's second crux. Eq. (1.9) says the problem of manipulating the spin

states equates to choosing an appropriate time-dependence for the Hamiltonian. While

that task might seem complex, the vector space is `closed' (�nite-dimensional) meaning

exact solutions are quite often and easily obtained.

1.2.3 Spin order

The questions of what information can be stored in `spin memory', and how, require some

further explanation. In NMR one is usually dealing with a macroscopic ensemble of nuclei,

not a handful. In ensemble dynamics, one deals with the statistical evolution of the bulk.

In general, at any given time the states of individual nuclei are not known.

A complete statistical description of the NMR ensemble is achieved by the wavefunction

outer product ρ = |ψ〉 〈ψ|, often called the `density operator', where overbar (` ') denotes

an average over all particles.[3, 4, 34, 36] Properties of ρ are apparent upon expansion in

the Hilbert ket basis:

ρ(t) = |ψ(t)〉 〈ψ(t)| =
∑
i,j

c∗j (t)ci(t) |j〉 〈i|. (1.11)

The right-hand side of eq. (1.11) shows ρ expressed as a linear superposition of orthogonal

projection operators between states, the number of which equals the square of the Hilbert

space dimension. The meaning of the operators is indicated by their respective coe�cients:

• Ket-bra products with a common index are the population operators of the basis.

Their expectation is equal to the probability of �nding a randomly chosen particle

in a pure state |i〉; 〈|i〉 〈i|〉 ≡ 〈|i〉 〈i|〉 = |ci|2.

• The projection operators between orthogonal states are transition operators, other-

wise called coherences. Coherence |i〉 〈j| between states |i〉 and |j〉 (where 〈i|j〉 = 0)

is said to exist if there is a nonzero expectation value of (c∗jci) = (|ci|e−iϕi |cj |eiϕj ),

which implies there is statistical correlation in the phases of states |i〉 and |j〉. `Co-

herence' is to say |i〉 and |j〉 are in a coherent superposition.

Populations and coherences are collectively known as `spin order'. If n is the dimension
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of the Hilbert space, these must constitute (n2−1) degrees of freedom for information stor-

age in the ensemble. The `minus 1' originates from the constraint on the total population

as unity:
∑

i |ci|2 = 1.

1.2.4 Observables

Spin order quanti�es the bulk ensemble state and therefore determines the expectation

value of bulk physical observables. For any quantum mechanical operator, Q, the ensemble

expectation value Q is found by projection onto ρ, using the formula

Q =
〈ψ|Q|ψ〉
〈ψ|ψ〉

≡ Tr(|ψ〉 〈ψ|Q)

Tr(ρ)
=

Tr(ρQ)

Tr(ρ)
. (1.12)

This states that Q is obtainable via the inner product between ρ and Q. We have already

used this formula (on the previous page) to explain the meaning of coherence; the inner

product in this case picks the relevant matrix element of ρ between the states.

In NMR a very important observable is the bulk magnetisation, or net magnetic mo-

ment of the ensemble. This is the detectable quantity in the NMR experiment.[4] From eq.

(1.5) the Cartesian components magnetisation are de�ned by Mx = NAµx ≡ γ~NA〈σx〉/2,

My = γ~NA〈σy〉/2, Mz = γ~NA〈σz〉/2, per mole (NA is the Avogadro constant). For

a single spin-1/2 nucleus, it may be shown that coherence between |α〉 and |β〉 gener-

ates the bulk transverse magnetisations Mx and My, and that a net population di�erence

(|α〉 〈α| − |β〉 〈β|) corresponds to longitudinal magnetisation Mz.

1.2.5 Evolution of observables

To keep track of time evolution in the density operator, and thereby predict the future

of observables, several analytical approaches are available. The most common are listed

below:

• The pure state wavefunctions |ψ〉 are propagated in Hilbert space using eq. (1.10).

Then the outer product |ψ〉 〈ψ| is made, then the ensemble average.

• The above is done using the matrix representation of a pure-state density operator

|ψ〉 〈ψ|. ρ is represented as a square matrix ρ where the populations (ρ)ii appear on
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the diagonal and the coherences o�-diagonal: [36]

ρ(t))ij = 〈j|ρ(t)|i〉 = c∗j (t)ci(t) ≡ (ρ(t))∗ji Tr(ρ) = 1; (1.13)

ρ(tb) = U(tb; ta) · ρ(ta) ·U †(tb; ta). (1.14)

Observables may be evolved directly (Heisenberg mechanics), seeing that all observ-

able operators relate to ρ by projection:

Qi(tb) = U(tb; ta) ·Qi(ta) ·U †(tb; ta). (1.15)

• The density operator is propagated in Liouville space. Liouville space di�ers from

Hilbert space by its representation of operators by vectors. A prede�ned operator

basis is chosen, usually the ket-bra basis {|j〉 〈i|}. In this formulation the (n × n)

matrix representation of ρ is �attened to a (1× n2)-dimensional vector. For n = 2,

ρ =

 ρ11 ρ12

ρ21 ρ22


︸ ︷︷ ︸

matrix

�atten−−−−−→


ρ11

ρ12

ρ21

ρ22




vector. (1.16)

Time evolution in Liouville space is represented via a super-propagator matrix Û

(super-operator) acting on the vector representation: [37]

ρ(tb) = Û(tb; ta) · ρ(ta) (1.17)

Û(tb; ta) = exp
[
−i
∫ tb
ta

dt′Ĥ(t′)
]
, (1.18)

where `hat' denotes the super-operator. The dimension of Û is the square of the size

of the operator basis, c.f. :

ρ =


U11 U12 U11 U12

U11 U12 U11 U12

U11 U12 U11 U12

U11 U12 U11 U12

 ·


ρ11

ρ12

ρ21

ρ22

 . (1.19)
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Observables are propagated directly by

Q(tb) = Û(tb; ta) ·Q(ta), (1.20)

or alternatively by the scalar product between the vector representations of Q and

ρ(t), for this product equates to the inner product given in eq. (1.12).[3, 37, 38]

I will use all of these methods in the following chapters. In essence they are the same,

though Liouville space is usually preferred as this o�ers the most elegant and notation-

ally compact route to solving the spin dynamics, and is the more intuitive of Heisenberg

mechanics. Although the matrix representations of superoperators are relatively large,

their size scaling as the number of pure states to the fourth power, they can have many

computational rewards. First the superoperator matrix elements are usually related to

commutators of the angular momentum operators and are fast to compute. The matrices

are also often sparse. In some situations, the superoperator matrices may also be block-

diagonal, and only a reduced part need to be exponentiated and propagated. Evolutions

restricted to a subspace of the total dimension require less computational e�ort than full

density matrix propagation.[39, 40] Liouville space is also most adept when one needs to

account for relaxation, exchange and other bulk phenomena.[14]

Note whilst both Q and ρ have representations that depend on the basis chosen, the

scalar Tr(ρQ) is independent of basis, so any orthonormal operator basis is valid. This

emphasises that Liouville space regards an operator basis simply as a `list' of all possible

observables for the spin system. Whether these operators are chosen to correspond to

de�nite or sharp observables is of lesser importance.

1.2.6 Coherent control versus decoherence

Generally speaking each member of the ensemble evolves under its own individual Hamil-

tonian, as a result of local perturbations in the magnetic surroundings. In solution, micro-

scopically �uctuating �elds may arise from the fact that the spins are not static in their

environment, but reorient themselves during random molecular tumbling. The result of

this is decoherence between the spins, where spins in each molecule evolve asynchronously

from the rest and spin order is gradually lost.

Relaxation is the irreversible form of decoherence that drives spin order towards to a
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stationary, equilibrium state. A formal introduction to the subject is deferred until chapter

3 of this thesis, but in general is treatable in two ways. The more sophisticated and

thorough method, suitable for the ensemble endpoint view, is the Liouvillian treatment

of relaxation by Wangsness, Bloch and Red�eld (WBR) [41, 42] and Abragam.[2, 14]

The Hamiltonian H experienced by each molecule is separable into a uniform, coherent

part, H0 ≡ H and a perturbative stochastic part H1 = (H − H0) that encompasses

incoherent time-dependent �uctuations. WBR theory formalises an evolution according to

the Liouvillian di�erential equation

d

dt
ρ(t) = (L̂0 + Γ̂)ρ(t) (1.21)

where the coherent Liouvillian L̂0 de�nes the in-phase evolution and depends only upon

the uniform Hamiltonian H0:

L̂0(t) = −i ˆ̃H0(t). (1.22)

The hat `ˆ' signi�es a commutation superoperator such that Ĥρ(t) = Hρ(t)− ρ(t)H and

tilde `˜' the Larmor frame (see �3.1.1).[3, 14] The other part is the so-called relaxation or

incoherent Liouvillian that depends only on H1:

Γ̂(t) = −
∫ 0

−∞
dτ ˆ̃H1(t+ τ) ˆ̃H1(t). (1.23)

One may alternatively deal with relaxation in the fashion of Hilbert space by formu-

lating a matrix containing transition probabilities between spin states via Fermi's golden

rule.[34] Fermi's rule (though the rule was in fact derived by Dirac [43]) states a perturba-

tive Hamiltonian H1 induces transitions between a pair of states |p〉 and |q〉 at a rate

Rqp = 2π
∣∣〈q|H1|p〉

∣∣2 j(ωpq) (1.24)

(in angular units) where j(ωpq) is the power spectral density of �uctuation at the transi-

tion frequency ωpq = 〈p|H0|p〉 − 〈q|H0|q〉. Although both formalisms are equivalent in a

theoretical sense, the WBR formalism is overall more convenient to handle.

Note that spin relaxation is distinct from time-reversible decoherence that frequently
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occurs in NMR, particularly in the solid state. In solids, where molecular motion is frozen

out, anisotropic spin evolution is reversible using techniques such as the spin echo, for

example.[15] Only time-irreversible decoherence characterises spin relaxation and, notably,

requires �uctuations at the transition frequency between spin states. The spectral density

is explicit in the Fermi treatment, while the Liouvillian formalism obtains this through the

time correlation integral.
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1.3 Structure of the NMR experiment

The view in �1.2 boils down to the NMR system as a closed quantum ensemble where

evolutions of spin order and observables behave as a problem in linear algebra. A graphical

summary of the formalism is given in �g. 1.3 (for more depth, see ref. [3]). The ensemble

state, or density operator, is controllable in its evolution because it can be steered in a

predictable way by applying a carefully chosen time-dependent Hamiltonian. Despite the

seemingly reduced information content ρ maintains a `complete' statistical de�nition of the

system, for according to eq. (1.12) it contains all physically signi�cant information about

the ensemble.

A general experimental scheme for NMR is given in �g. 1.4 outlining three basic stages:

initialisation (a preparatory stage), encodement (the information storage part) and detec-

tion (the readout of observables), following in chronological order from left to right. These

are brie�y described as follows:

• Initialisation

Initialisation prepares spin order for the `encoding' stage. If the spin populations are

initially all the same, coherent encoding is not possible since ρ remains stationary

under unitary propagation, as the density matrix ρ is proportional to a unit matrix,

E. The goal of initialisation is to create a population asymmetry between spin states.

Population asymmetry in the form of longitudinal magnetisation can be obtained by

placing the sample can be within a static magnetic �eld denoted B0 = (0, 0, B0),

where B0 usually exceeds the magnitude of all other spin interactions by several

order of magnitude, and waiting until thermal equilibrium is reached. The spin

order relaxes to a net magnetisation parallel to the �eld, where populations are given

by the Boltzmann distribution:

ρeq = exp(−H/kBT ) /Tr(exp(−H/kBT )). (1.25)

Here T is the temperature, and kB is Boltzmann's constant. The approximate Hamil-

tonian in this case is H = −~γB0σz/2, which corresponds to the Zeeman energy

E = −µ ·B0 of a magnetic moment in the �eld.

Consider, as an example, protons in a room temperature (300 K) sample placed in a
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Figure 1.3: From the spin system to observables: a quick-reference guide to linear algebra in NMR.
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Figure 1.4: General structure of an NMR experiment, summarised in three basic stages.

typical magnetic �eld B0 = 5 T. The density operator approximates to

ρeq ≈ E − 1

kBT
H (for kBT � |~γB0|) (1.26a)

= E +
~γB0

2kBT
σz (1.26b)

=
(1

2
+

~γB0

2kBT

)(
|α〉 〈α|

)
+
(1

2
− ~γB0

2kBT

)(
|β〉 〈β|

)
. (1.26c)

where E is the unity operator de�ned by E |ψ〉 = |ψ〉.

Protons have nearly the largest |γ| of all nuclei but the di�erence |~γB0/kBT | is

still very small, only of order 10−5. While this di�erence is small, it usually su�ces

because it is compensated by very large number of spins (typically 1020−1023 spins).

• Encoding

During this stage information is written into spin memory. The form of the encoding

is a time-dependent Hamiltonian, in general expressed by

H({ω1, ω2 . . .}, t) = ω1(t)Q1 + ω2(t)Q2 + . . . , (1.27)

where the coe�cients ωi(t) of each operator are related by the strengths of the inter-

actions between spins and their environment. These interactions may be `external'

to the spins in the form of applied magnetic �elds, such as the `z '-�eld of the polar-

ising magnet, or �eld pulses,[2, 3, 4, 5, 6] which are short periods of irradiation by

oscillating electromagnetic �elds at the frequency of transitions between spin angular

momentum states. Spin interactions `internal' to the spin system include couplings

between nearby nuclei, shielding, and e�ects of molecular motion � including relax-

ation mechanisms.
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The encoded density operator, after the evolution under H({ω1, ω2 . . .}, t), may be

denoted ρ({ω1, ω2 . . .}, t) regarding it as a function of the history in ωi(t):

ρeq
H({ω1,ω2...},t)−−−−−−−−−→ ρ({ω1, ω2 . . .}, t) = Û({ω1, ω2 . . .}, (t; 0))ρeq. (1.28)

The determinism of the spin evolution (seen in �1.2) is very powerful as it allows

one to design any encoding in mind, for instance the encoding of nuclear positions

in a sample, so as to later obtain an image of the spin density, or the transfer of

magnetisation between di�erent nuclei in the system. An excellent review is provided

by Sørensen et al.[44] Control of spin dynamics also extends to compensating artifacts

invariably present in experiment, such as pulse imperfections, undesired spin-spin

couplings, quadrature images and magnetic �eld inhomogeneities.[3, 4, 5, 6]

• Observation

The encoded density operator is conventionally detected through Faraday induction

within a radiofrequency coil adjacent to the sample. Induction in the coil is propor-

tional to the transverse magnetisations Mx(t) and My(t), giving a time-dependent

signal that is recorded digitally and stored on a computer. The signal is recorded

until the spins have fallen out of coherence or relaxed and the induction has decayed

below a detectable level.

The signals are then processed to unravel selected parts of the encoded information

{ω1, ω2 . . .}. This is done by Fourier transforming the time-oscillations to a frequency

spectrum,[3, 4, 44] or by more elaborate methods into a two- or three-dimensional

information scheme, such as an image, depending on the acquisition scheme.

1.4 NMR Sensitivity

1.4.1 Signal versus noise

The main challenge of NMR is regularly not how to retrieve desired information by en-

coding / decoding the spin ensemble, but how to �ght the inherent low sensitivity of the

experiment. The weakness of the observed signals, due to the weak nuclear magnetism,

is a major issue. In a real experiment, the NMR signal will be accompanied by a certain
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amount of random `noise', the nature of which is usually assumed to be independent of the

NMR pulse sequence and uncorrelated throughout time. Noise is usually caused within the

experimental hardware; in the electronic circuitry, for example. Noise makes observation

of the NMR signals more di�cult and in extreme cases obscures the signal information

content altogether.

One ultimately wishes to distinguish the signal from the noise as far as possible, ob-

taining maximum sensitivity. Better sensitivity opens the way to new NMR experiments

and new regimes of study. Improved sensitivity in one area of the experiment may, for

example, o�set a reduction in signal strength upon using smaller samples (one may recall

the NMR signal is proportional to the number of spins present), to the bene�t of structural

characterisation of precious or expensive samples by NMR. In MRI, where the spin density

is measured from pixelised regions of a sample, this may enable higher spatial resolution.

1.4.2 Sensitivity improvement

NMR's unique role in science drives a large e�ort to improve sensitivity across all areas of

the experiment:

• Average several scans

If an experiment is repeated N times and the spectra summed together, the total

signal is proportional to N . In contrast, the noise builds proportional to
√
N . Ran-

dom noise is characterised by a root-mean-square amplitude, in this case denoted `z'.

The root-mean-square noise after a superposition of N repeated readouts is

√√√√ N∑
j=1

z2 ≡ z
√
N . (1.29)

This means when the experiment is repeated several times and the signals added

together, the signal-to-noise improves as
√
N .

Scan averaging is not always possible or desirable. Many NMR experiments may be

`single shot', particularly those that may monitor irreversible changes in a system

through time, such as during an ongoing chemical reaction.

• Detection advances

Signal-to-noise improvements can be made by better probe design for signal detection.
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The Faraday induction can be improved by increasing the fraction of the coil volume

�lled with sample (coil �lling factor). Cryogenically cooled probes are the most

current advance,[45] which typically deliver 5- to 10-fold signal-to-noise improvements

over standard probes. The receiver coils are cooled to 20 K using helium gas, which

enormously reduces the thermal noise in the electronic circuitry.

• Increase initial spin order

The polarisation of the nuclei can be improved vastly. Even at the largest available

�eld strengths (≈20 T), the ensemble is very hot and the thermal equilibrium po-

larisation is very small. Larger initial polarisations are possible by thermalising at

higher magnetic �elds, or lower sample temperatures, though this comes at the ex-

pense of technical di�culty, and conditions may not be compatible with the system

of interest.

Some specialised techniques obtain large non-Boltzmann nuclear polarisations, po-

tentially up to the order of unity (almost 100% nuclear alignment). These operate

by transferring the much stronger polarisation of unpaired electron spins onto the

nuclear spins. In the dynamic nuclear polarisation approach (DNP), the NMR sam-

ple is doped with a stable paramagnetic species to provide an electron source. It

is cooled to a few Kelvin in a strong magnetic �eld where the electrons become

polarised to unity order. Electron-nucleus polarisation transfer is then driven by

microwave irradiation.[46] The recent dissolution-DNP method allows rapid melting

of the cold sample by dissolving it with jet of hot liquid. This achieves hyperpo-

larised nuclear spins in a room temperature solution that can be used for liquid-

state NMR.[47, 48, 49] An alternative route to polarised nuclear spins at ambient

temperatures is to produce photoexcited electron states in a molecule or atom by

LASER irradiation, whose emissive return back to the ground state drives spin-

selective electron-nucleus transitions.[50, 51, 52] Similar e�ects can be produced by

chemical reactions in which the intermediates contain unpaired electrons.[53]

An unique route, without radicals, to hyperpolarised molecules is parahydrogen. The

hydrogen diatomic (H2) exists as two nuclear spin isomers: orthohydrogen (o-H2),

corresponding to a triplet state in which the two nuclear spins are parallel (total

spin I = 1), and parahydrogen (p-H2), a singlet state, where the two nuclear spins
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are antiparallel (total spin I = 0). It is possible to enrich the lower-energy singlet

spin-isomer by exposing H2 to a paramagnetic catalyst at low temperatures.[54] Para

enrichment persists after removing the catalyst and warming the hydrogen to room

temperature, due to the relatively large energy di�erence between ortho and para

forms. Spin order of enriched H2 is thereafter transferred to other molecules through

hydrogenation reactions, resulting in large nonequilibrium proton spin order in the

product molecules.[55, 56, 57, 58, 59]

• E�cient encoding

The period between the initialisation and detection steps is also important, as sig-

nal strength depends both on how e�ciently the initial spin order is encoded and

transferred into detectable magnetisation.

E�ciency of the encoding step is generally constrained by a �xed information required

of the spins in a given experiment. This does not mean sensitivity improvement is

improbable, but may change one's focus somewhat: to recover sensitivity losses,

rather than look for gains.

A major if not the main source of signal loss is relaxation. Attempts to prolong

spin order go back as far as Hahn's stimulated echo in the 1950s. To give a di�erent

example from biomolecular NMR, Wüthrich and co workers have shown that for

selected observable coherences between 1H�15N spin pairs in proteins the dipolar

(DD) and chemical shift anisotropy- (CSA-) induced relaxation rates can be arranged

to partly cancel. The resulting extended coherence-lifetime gives enhanced intensity

and resolution in the observed 1H�15N spectra compared to ordinary T2 relaxation.

This method, known under the acronym TROSY (Transverse Relaxation Optimised

SpectroscopY), roughly triples the upper limit of molecular weight for which NMR

can viably determine protein structure.[4, 12]

Apart from relaxation, deviations from ideal spin evolution may arise from imperfec-

tions in applied pulses and static �eld inhomogeneity. These can be minimised using

error-compensation strategies, by designing an evolution scheme with error terms

taken into account. One of the best-known examples of this is composite pulses,[60]

which are used to achieve near-ideal rotations of the spins despite �ip angle miscali-

bration and o�-resonance e�ects.
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Ideally, one would like to combine all these methods together and generate ultimate NMR

sensitivity, using the maximum feasible sample concentration at maximum initial polari-

sation, then with maximum carriage of spin order through the encoding sequence (e�cient

coherent spin dynamics, with minimal loss through relaxation) followed by detection on

the most sensitive hardware available.

1.5 Boosting sensitivity using singlet states

Singlet NMR falls into the `e�cient encoding' category by prolonging spin lifetimes. This

section introduces singlet states, their relaxation properties and gives an overview of their

use in NMR.

1.5.1 De�nition of singlet and triplet states

Singlet and triplet states are names given to the four eigenstates of the total angular

momentum for two spins-1/2. Explicit form of the states is obtained using the angular

momentum coupling series

|l, m〉jk =
∑
mjmk

C lmljmj lkmk |lj , mj〉 ⊗ |lk, mk〉, (1.30)

where each C lmljmj lkmk is a Clebsch-Gordan coe�cient,[33, 34, 35] the quantum numbers

{l,m} are the eigenvalues of the total angular momentum and projection angular momen-

tum operators of the composite system, respectively given by opertors (I2 = (Ix+Iy+Iz)
2)

and Iz, and the quantum numbers {lj ,mj} refer to the uncoupled nuclei, henceforth la-

belled `j' and `k'. The unique spin-zero (l = 0) con�guration from destructive addition of

the angular momenta is the singlet state. The singlet wavefunction is denoted

|Sjk0 〉 = |0, 0〉jk = 2−1/2(|αj〉 ⊗ |βk〉 − |βj〉 ⊗ |αk〉) (1.31)

≡ 2−1/2(|αjβk〉 − |βjαk〉). (1.32)

The triplet is the name given to the three states formed by constructive addition. These

have total spin quantum number l = 1 and projections m = −1, 0 or +1. Notation |T jkm 〉
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is assigned to the states |1,m〉jk as follows

|T jk+1〉 = |1,+1〉jk ≡ |αjαk〉 (1.33)

|T jk0 〉 = |1, 0〉jk ≡ 2−1/2(|αjβk〉+ |βjαk〉)

|T jk−1〉 = |1,−1〉jk ≡ |βjβk〉 .

1.5.2 Singlet relaxation basics

Relaxation and symmetry

Symmetry properties of singlet and triplet states favour long singlet relaxation times. As

can be seen from the sign change under exchange of the nuclei, the singlet wavefunction is

antisymmetric, while the triplet wavefunctions are all symmetric:

P (j, k) |Sjk0 〉 = − |Sjk0 〉 (1.34)

P (j, k) |T jkm 〉 = + |T jkm 〉 . (1.35)

The exchange operator P (j, k) denotes swapping of the pair labels.

Fermi's golden rule (see eq. (1.24)) says that the relaxation rate between a pair of

quantum states under a �uctuating Hamiltonian is proportional to the square of their

transition dipole integral.[3, 41, 43] Exchange symmetry imposes a strong selection rule on

the transition dipole between singlet and triplet states. For singlet-triplet transitions, a

permutation-symmetric Hamiltonian gives a zero dipole, since the connected states have

opposite symmetry:

〈Sjk0 |H|T
jk
m 〉 = 0 if P̂ (j, k)H = +H. (1.36)

Symmetric, correlated �uctuating �elds at the nuclear sites therefore do not induce singlet-

triplet transitions, and do not induce singlet relaxation. Singlet relaxation is only brought

about by �uctuations that are uncorrelated (or anticorrelated) across the spin pair.

A similar selection rule exists for triplet-triplet transitions. A triplet-triplet transition

dipole is zero if the �uctuating Hamiltonian is exchange-antisymmetric, for the triplet
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states all have the same symmetry:

〈T jkm′ |H|T
jk
m 〉 = 0 if P̂ (j, k)H = −H. (1.37)

Slow decoherence of the singlet state occurs when the relaxation involves a predominantly

permutation-symmetric mechanism, so that the selection rule eq. (1.36) wins out over eq.

(1.37). In the extreme case, when the relaxation mechanism is perfectly symmetric with

respect to nuclear exchange the singlet is expected to be in�nitely long-lived, and not decay

at all.

Relaxation insensitivity of singlet states may be qualitatively interpreted from the total

spin quantum number, which implies the singlet overall behaves as a nonmagnetic particle

(l = 0), while the triplet exhibits nuclear paramagnetism (l = 1). A relaxation mechanism

whose Hamiltonian is perfectly correlated across the nuclei will regard the spin-pair as

nonmagnetic, and therefore leave the singlet state unperturbed.

Intra-pair dipole coupling

Many relaxation mechanisms in solution NMR are exchange-symmetric or near exchange-

symmetric. A very important one for an isolated spin pair is the internuclear dipole cou-

pling. This is the magnetic analogue of the coupling between two electric dipole moments.

The magnetic dipole interaction between two nuclei with labels `j' and `k' in the principal

axis frame of the internuclear vector is given by

HDD
jk = bjk(2IjzIkz − IjxIkx − IjyIky), (1.38)

where the coe�cient bjk is the dipole-dipole coupling constant between the spins. This

is proportional to the inverse-cube of the internuclear distance, djk and the gyromagnetic

ratios of the two nuclei:

bjk = −µ0~γjγk
4πd3

jk

. (1.39)

It is clear that HDD
jk ≡ P̂ (j, k)HDD

jk = +HDD
jk . This means singlet-triplet transitions cannot

be induced.

Dipole-dipole induced relaxation is often the strongest decay-causing mechanism in
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solution NMR of coupled spins, especially protons; for two protons at a separation of 1.8

Å, the typical separation between two methylene (CH2) protons, the coupling strength

|bjk/2π| is approximately 20 kHz. Dipole-immune states were the subject of the very �rst

demonstrations of singlet order with lifetimes longer than T1.[18, 19]

Thermal stability of orthohydrogen and parahydrogen

Dipolar-forbidden transitions are the culprit of the very slow interconversion between ortho

(triplet) and para (singlet) spin isomers of hydrogen gas.[54] To convert between the two

forms, a paramagnetic catalyst must be added (e.g. ferric oxide, chromic oxide) because

the ortho-para nuclear spin transitions are permitted only by pair-antisymmetric �elds.

The catalyst causes strong, unsymmetrical hyper�ne shifts at the two hydrogen atoms.

Without the catalyst the ortho and isomers persist as metastable species with lifetimes the

order of several weeks.

1.5.3 Nomenclature of long-lived and singlet states

The term `long-lived state' (LLS) has been used in the literature as a general term for spin

order that relaxes slower than T1, in the same system; in symbolic terms, decays with a

time constant TLLS > T1.

This comparison originates partly for historical reasons. Before the realisation that

singlet states exhibit very slow relaxation � at some times altogether forbidden relaxation

� it was thought that T1 of a system presented a strict upper limit of spin lifetime. Initially

this was because T1 was found to be the upper lifetime predicted in observable spin order,

namely the Cartesian components of bulk magnetisation, which relax with time constants

T1 and T2. NMR-silent spin-0 states were ignored. It is true that T1 provides the up-

per limit of spin lifetime in systems of isolated (uncoupled) nuclei, regardless of the spin

quantum number I. A classical random-�eld model shows that in high magnetic �eld,

longitudinal magnetisation can only be relaxed by �uctuating transverse �elds, oscillating

at the energy di�erence between the angular momentum states, not by �elds along the

symmetry axis. The transverse magnetisation does not lie along a symmetry axis in gen-

eral, so is susceptible to �eld �uctuations along all three orthogonal axis, and therefore is

faster relaxing.[14] In the absence of a symmetry axis, for example at zero �eld, then T1
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and T2 are identical.

The slow singlet relaxation character was also `missed' in the Liouvillian treatments

of multinuclear systems by Bloch, Wangsness and Red�eld.[14, 41] In that case, hasty

approximations were made in deriving the relaxation superoperator, which obscured the

existence of long-lived states.

As the term `long-lived state' is relative, care in its use is advised. In most practical

cases, one may want to know if such states provide the longest-available lifetimes. For

instance: two carbon sites in a molecule may be isotopically enriched with 13C (I = 1/2)

giving a 13C2 spin pair on which singlet order can be excited. The singlet decay constant,

TS , may well exceed T1 in the same system, but does it exceed T1 of either 13C nucleus in

the singly 13C-labelled isotopologues? This possibility must be considered too.

Having said the above, comparison between TS and T1 of the same molecule is useful

regardless of whether the singlet is long lived or not, since it gives information about the

symmetry and likely nature of the dominant relaxation pathway in a molecule.[61, 62]

1.5.4 Symmetry switching concept in singlet NMR

A typical singlet NMR experiment involves `switching' the spin-exchange symmetry of the

nuclear spin Hamiltonian between exchange-symmetric and -unsymmetric forms. Prepa-

ration of singlet order from conventional magnetisation, (always a property of the triplet),

such as equilibrium longitudinal order, requires nuclear inequivalence to facilitate coher-

ent singlet-triplet transitions. Singlet storage, on the other hand, requires suppression

of symmetry-breaking terms to enforce singlet-triplet isolation. Reconversion to observ-

able magnetisation, as singlet order is nonmagnetic and cannot itself be observed directly,

requires broken symmetry again.

A scheme for symmetry-switching is seen in �g. 1.5. In the case where parahydrogen

is the initial source of spin order, singlet order may be released using asymmetry-inducing

chemical reactions, where, for example, the protons in the products may end up in sites

with di�erent chemical shifts.[59, 63, 64]

For polyatomic molecules, where magnetisation is the initial spin order, it is necessary

to start with inequivalent nuclei. Temporary magnetic equivalence may be brought about

for periods of singlet storage in several ways: (i) by applying resonant rf irradiation to

the sample,[18, 65] (ii) by removing the sample from the magnetic �eld[19] or applying
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Figure 1.5: Symmetry switching sequence for a singlet NMR experiment

chemical reactions that render the two nuclear sites equivalent.[31] The resonant �eld

brings the angular precession frequencies of the two spins into parallel, while transport of

the sample into low magnetic �eld removes the symmetry-breaking interaction altogether

as the chemical shift frequencies become vanishingly small.[17]

1.5.5 Singlet NMR at present

Singlet states open a new dimension in NMR by providing access to relaxation times far

in excess of T1. This has attracted growing attention over the last half-decade.

Applications of the long lifetime

On the application front, the most widespread use of long-lived singlet states has been

to extend the detectable window of slow molecular dynamics phenomena. The typi-

cal scheme in these experiments involves encoding the spins with information on their

state at some initial time point, then encoding again after a waiting time. Readout

and post-processing separates these informations to capture what happens during the

wait, on that condition that the wait is long enough to capture the process of interest.

Slower timescales are made accessible by transforming the nonequilibrium spin order into

a singlet-triplet population di�erence for the waiting time, so as to better preserve the

ordered state against relaxation loss. Singlet-EXchange SpectroscopY (singlet-EXSY) has

been demonstrated,[25, 66] which encodes the chemical environment of the nuclear spins

for monitoring of slow chemical exchange, protein folding and other molecular dynamics.

Slow translational di�usion in various contexts has been monitored by combining singlet
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states with Di�usion Ordered SpectroscopY (singlet-DOSY), where molecular position is

the encoded information.[24, 28, 29, 67]

A promising candidate for very long term polarisation storage is 15N-labelled nitrous

oxide, 15N2O. The fast rotational correlation time of the triatomic molecule, in addition

to the low gyromagnetic ratio of 15N results in a singlet lifetime that may exceed tens of

minutes.[22, 68, 69] Such long lifetimes exist for 15N2O dissolved in a wide range of solvents,

including whole blood.[23] As N2O is non-toxic and soluble in blood it has been suggested

as a tracer in clinical MRI. Before this, however, a remaining challenge is to successfully

hyperpolarise 15N in 15N2O, in order to overcome its intrinsically low magnetism.[22]

Understanding relaxation

The demonstrations of dipole-immune states made by Carravetta and co-workers initially

drew curiosity not to the general relaxation properties of singlet states, but to long-lived

states in general, with theoretical analyses made to determine whether such immune

states can exist within systems containing more than two spins-1/2. In the early stud-

ies, exhaustive brute-force searches of the relaxation superoperator were made for its null

(decoherence-free) space.[70, 71, 72, 73, 74, 75] More careful symmetry-based analyses for

three- and four-spins-1/2 have since been made. In these, rules for exact dipole-immune

states have been identi�ed. For instance, such states may only exist if the geometry of

nuclear spins possesses inversion symmetry.

Current opinion is that exact dipole-immune states are an overkill, and not widely

useful since invariable presence other relaxation mechanisms causes their decay. A potential

application, however, is NMR quantum computing, where generalised long-lived states in

large spin systems may help one prepare entangled states.

Recently, e�orts have taken the approach of rationalising TS and T1 lifetimes measured

in real systems, to get a feel of the most signi�cant relaxation mechanisms in practice.

Theory has been developed to treat singlet relaxation in isolated spin-1/2 pair systems,[20]

as well in presence of intra-[62, 76, 77, 78] and inter-molecular [79] neighbour spins.

In some cases it is possible to perform a `reverse' analysis of singlet lifetimes. The

relaxation of nuclear singlet states is very sensitive to the local magnetic environment

of the spin pair. Studies have been made to determine the relative orientations between

chemical shielding tensors from observed singlet relaxation constants,[61] Out-of-pair dipole
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couplings have similarly been studied to give constraints on molecular geometry, including

bond torsion angles.[62]

Methodology development

Storage of singlet order requires `symmetry-switching' to bring the spin-1/2 pair into mag-

netic equivalence. Schemes for this must typically be tailored to the nature of magnetic

symmetry-breaking interactions. As mentioned in the previous section, switching may be

achieved by applying a resonant spin locking �eld,[65, 80, 81] by transporting the sam-

ple into a region of low �eld, where the chemical shift frequency di�erence is vanishingly

small,[82] or by performing symmetry-switching chemical reactions.[31]

In the radio-frequency spin-lock type methods, the frequency and amplitude of the

locking �eld is critical to enforcing magnetic equivalence. This has driven investigation

of amplitude or phase-modulated decoupling schemes to �nd broadest bandwidths be-

tween the average chemical shift of the spins and the carrier that maintains singlet state

isolation.[81] Shaped-pulse decoupling may sustain singlet order at resonance o�sets that

exceed both the di�erence in the chemical shifts and mean rf irradiation power.[25, 65, 81]

For potential in-vivo singlet NMR, this may allow use of lower rf power, to avoid excessive

SAR (Speci�c power Absorption Rate) in living tissues.

Another major area of methodology development is pulse sequences to make the con-

versions between magnetisation and singlet order. The magnitudes of the magnetic-

equivalence-breaking interactions, which are also linked to the singlet storage requirements,

are important for which sequence to use but in general these are not prohibitive to the

e�ciency of singlet-triplet conversion. Error-resistant preparation sequences have been

developed that are broad-band with respect to variation in the chemical shifts and J

couplings.[25] These also allow simultaneous singlet excitation on two or more spin pairs

in a molecule. A more detailed discussion is reserved until chapter 2 of this thesis, where

the current state of available methodology is reviewed.

Long-lived singlet-triplet coherences

The phenomenon of populations |S0〉 〈S0| with lifetimes TS > T1 has led to the realisation

of long-lived coherences (abbreviated LLCs) of the type |S0〉 〈T0|. The vanishing transition

dipole between singlet and triplet states under a symmetric relaxation mechanism results
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in enhanced lifetimes TLLC > T2.[25] LLCs are not fully immune to the intra-pair dipo-

lar relaxation, due to the nonequilibrium triplet component, though in theory may still

relax up to 3 times slower than T2 in small molecules, and up to 9 times more slowly in

macromolecules.[83]

An application of LLCs is the precise determination of spin-spin couplings. The LLC

of an homonuclear spin-1/2 pair oscillates at the singlet-triplet energy splitting, which

equals the J coupling in isotropic solution phase, and the sum of J and the orientationally

averaged `residual' dipolar coupling in oriented media. The oscillatory dependence can be

measured in either one-dimensional or two-dimensional fashion and Fourier transformed to

an high-resolution spectrum yielding natural linewidths (∝ 1/TLLC) much narrower than

the ordinary homogeneous resolution (∝ 1/T2).[84, 85, 86] The LLC spectra also escape

inhomogeneous line broadening. Linewidths as low as 10 millihertz have been observed.

For an excellent review, see ref [87].

1.6 Scope of the present work

This thesis aims to communicate new methodology and theory for singlet NMR, while

maintaining accessibility in the subject to a newcomer in the �eld. To achieve this I adopt

a focus on broad concepts supplemented by speci�c experimental demonstrations. The

following two chapters each start by introducing a general theoretical framework. This is

used to explain existing features or techniques, present new methods and compare.

In chapter 2, (`Singlet nuclear magnetic resonance'), the introductory detail sketches

out a Hilbert space evolution formalism for the singlet and triplet states of a spin-1/2

pair. Four ket states with well-de�ned exchange symmetries are easier to keep track of

and appreciate than the sixteen spin operators of the Liouville space. This evolution for-

malism is applied to analyse pulse sequences that generate singlet spin order starting from

longitudinal magnetisation, (and in reverse, vice versa, for singlet observation). `Singlet

polarisation' is used as an instrument to quantify how much singlet order is excited in any

given experiment, how much is reconverted into observable signal, whether the excitation

yielded is `maximal' and make a comparison across the di�erent sequences.

The most novel and extensively discussed sequence in chapter 2 is one that permits
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access to singlet order in `nearly equivalent' spin-1/2 pairs. These are systems where the

singlet and triplet states are near-exact eigenstates of the free evolution and do not necessi-

tate symmetry switching to redeem the long lifetime. Near-equivalence at a spin pair may

be induced chemically, as demonstrated (i) by using symmetry-breaking function groups

at remote sites in the molecule and (ii) by weak chemical shift perturbations caused by

isotopic mass di�erences between neighbouring nuclei. A downside of near-equivalence is

how the pulse sequence is rather sensitive to variation in the J coupling and chemical shift

di�erence in the intramolecular Hamiltonian plus external magnetic �eld and rf pulse inho-

mogeneities. Error-compensating pulses and phase cycles are devised to in-part overcome

these.

Access to singlet order is also examined in hetero-nuclear spin systems, where the

homonuclear spin-1/2-pair may be coupled to nuclei of other magnetic isotopes. Het-

eronuclear J couplings provide a mechanism for symmetry switching that may facilitate

excitation of singlet states in chemically equivalent pair systems. I give experimental

demonstrations where the symmetry of a chemically equivalent 1H pair is broken by dif-

ferences in scalar couplings to a nearby 13C nucleus. Spin locking on either the 13C or

1H nuclei, but not both, suppresses the heteronuclear 13C-1H couplings and the pair of

protons `switch' into magnetic equivalence, where the singlet is isolated.

Lastly in chapter 2 I discuss signal selection in singlet NMR. Singlet spin order is

uniquely invariant to rotations of the spins quantisation axes, and therefore separable from

other spin order under rotation quadrature. E�cient single-scan �ltration of singlet-derived

signals is the ultimate goal. Several approached are discussed in depth.

The focus of chapter 3, (`Nuclear singlet relaxation'), is the singlet's slow relaxation

phenomenon. General tools for relaxation analysis are outlined starting with Red�eld's

relaxation formalism leading on to how rotation symmetries in the Liouvillian may impose

strong selection rules on singlet relaxation pathways.

Some experimental case-studies are presented. These concentrate upon singlet relax-

ation caused by out-of-pair mechanisms (mechanisms involving spins other than just the

spin pair). The dipolar contribution towards 1/TS from individual passive spins within a

molecule is shown to be determinable, within reasonable approximations, as the di�erence

relaxation rates 1/TS upon replacing the passive spin with a nonmagnetic, or e�ective
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nonmagnetic isotope. This is examined using 13C/12C and 2D/1H isotopic replacement.

Singlet lifetimes are more-sensitive to the out-of-pair dipole-dipole couplings than T1, due

to their immunity from the dominating intra-pair dipole-dipole mechanism. One may use

this concept to determine reliable constraints on local molecular geometry, for example

bond torsion angles.

Paramagnetic relaxation of singlet states is also studied, where the decay mechanism

involves modulation of nucleus-electron hyper�ne couplings. Singlet relaxation rates are

measured versus concentration of paramagnetic transition metal ions in solution, and the

data examined using an e�ective random-�eld relaxation model. Singlet lifetimes are found

to be less-sensitive to paramagnet-induced relaxation than longitudinal polarisation life-

time, though the extent depends on the nature of the paramagnetic agent.

The conclusions section (4, `Perspectives') highlights the new areas of study opened up

by this work, as well as de�ciencies that may be addressed in future.
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Singlet nuclear magnetic resonance

This chapter focuses upon the methodology for excitation and readout of singlet population

order. It addresses how to convert equilibrium longitudinal magnetisation into singlet

order, and transfer singlet order back to detectable magnetisation. The maximum e�ciency

of these transformations is discussed, and the likely experimental achievement of this where

invariable imperfections are present. Some extra considerations for hyperpolarised samples

are also discussed.

Generally speaking, conversions between singlet and triplet spin order is only allowed

if the participating spin-1/2 pair are magnetically inequivalent, due to the selection rule

for crossing between the symmetric and antisymmetric spin states. Magnetic inequivalence

is a frequent situation in polyatomic molecules, occurring where the nuclear pair sites are

unrelated by molecular symmetry operations. In high symmetry molecules, the spin pair

may be chemically equivalent but possess spin-spin couplings to other nuclei, which break

magnetic symmetry.

The magnitude of the magnetic-equivalence-breaking interactions |Hasym| in the spin

Hamiltonian is important for which method to use, but is not prohibitive to the e�ciency

of singlet-triplet conversion. All of the methods described here excite maximum avail-

able singlet order, so long as the conversion rate is fast compared to relaxation: that

|Hasym|/2π � 1/T1 or 1/T2.

Also discussed are some techniques that produce singlet-`edited' NMR spectra, in which

the observed signals derive exclusively from singlet order.

33
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2.1 Dynamics of nuclear singlet and triplet states

This section introduces the basic concepts that will be required for understanding coherent

interconversion between singlet and triplet states and how pulse sequences (plus certain

other procedures) may in practice achieve this.

2.1.1 Angular momentum and magnetic equivalence symmetry

To recap on the introductory chapter, the nuclear spin wavefunction describing a spin-

1/2 pair is a superposition of four orthogonal basis states. The singlet-triplet basis is the

orthogonal set of states |l,m〉 possessing de�nite total (l ≡ I) and projection (m) angular

momentum quantum numbers. These states are eigenfunctions of both the total I2 and Iz

spin angular momentum operators satisfying

I2
jk |l,m〉

jk ≡ (Ij + Ik)
2 |l,m〉jk = l(l + 1) |l,m〉jk (2.1)

Iz |l,m〉jk ≡ (Ijz + Ikz) |l,m〉jk = m |l,m〉jk (2.2)

for explicit spin-1/2 nuclear labels `j' and `k', where Ij = (Ijx, Ijy, Ijz) denotes the spin

angular momentum vector. The overall nonmagnetic state |0, 0〉jk is the singlet, otherwise

symbolised |Sjk0 〉. The three total spin-1 states are the triplet, |1,m〉jk ≡ |T jkm 〉, where m

can be −1, 0 or 1. In the Zeeman product basis the states appear as follows:

|S0〉jk = (|αjβk〉 − |βjαk〉)/
√

2 |T+1〉jk = |αjαk〉 (2.3)

|T0〉jk = (|αjβk〉+ |βjαk〉)/
√

2 |T−1〉jk = |βjβk〉 .

The angular momentum property is key to the problem of singlet-triplet conversion. An

Hamiltonian that commutes with the total angular momentum operator I2
jk must preserve

singlet and triplet eigenfunctions, since commuting operators have simultaneous eigenfunc-

tions. Under such conditions, |0, 0〉jk and |1,m〉jk are isolated from one another and do

not interconvert. This is to say |0, 0〉jk and |1,m〉jk states only interconvert only when the

Hamiltonian does not commute with I2
jk.

More often this commutation rule is referred by the concept of magnetic equivalence

symmetry. Spins j and k are `magnetically equivalent' when H is invariant to swapping
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the pair indices. This is to say the relation P (jk)H = HP (jk) holds, where P (jk) is the

permutation operator that swaps labels j and k. Connotations for the angular momentum

states follow because P (jk) commutes with I2
jk. If H does not commute with P (jk), the

two spins are said to be `magnetically inequivalent'.

Equivalence symmetry is a powerful concept for relaxation, not only coherent evolution.

In �1.5.2 this has been applied to explain in basic terms the singlet's invariance to the intra-

pair dipole-dipole Hamiltonian. Further details may be found later in �3.1.

2.1.2 Singlet-triplet inconversion during free evolution

Block-diagonal Hamiltonian in the singlet triplet basis

In the so-called `high-�eld limit' where the Zeeman interaction dominates the spin Hamilto-

nian (for most practical purposes, when B0 > O(µT)) and when time-dependent magnetic

�elds (in particular, �elds resonant with the Larmor frequency) are absent, the secular

part of the coherent Hamiltonian commutes with Iz. Under such conditions, states with

di�erentm quantum number do not mix. This means one can partition the quantum states

into sets with di�erent m and deal with their evolution separately.

For a spin-1/2 pair the secular Hamiltonian splits into two unit-dimensional subspaces,

one for each of the m = ±1 states, plus one two-dimensional subspace for m = 0. This is

to say the coherent Hamiltonian appears in the block-diagonal form

H =


〈T+1|H|T+1〉 0 0 0

0 〈T0|H|T0〉 〈T0|H|S0〉 0

0 〈S0|H|T0〉 〈S0|H|S0〉 0

0 0 0 〈T−1|H|T−1〉


|T+1〉

|T0〉

|S0〉

|T−1〉

(2.4)

or in the operator language, occupies the six-dimensional subspace of zero-quantum oper-

ators |l,m〉 〈l′,m′| δmm′ , given by the sum

H =
∑
l,l′,m

〈l′,m|H|l,m〉 |l′,m〉 〈l,m| . (2.5)

In this case, the operators |l,m〉 〈l′,m′| δmm′ comprise the population operators |T+1〉 〈T+1|,

|T−1〉 〈T−1| of the four basis states, |T0〉 〈T0| and |S0〉 〈S0| plus two zero-quantum coherences
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|T0〉 〈S0| and |S0〉 〈T0| between the m = 0 states.

Evolution of m = ±1 states

Evolution of the one-dimensional m-subspaces is quite simple. The triplet states |T+1〉 ≡

|αjαk〉 and |T−1〉 ≡ |βjβk〉 evolve by acquiring a phase proportional to their energy:

|T+1〉
Ht−−→ |T+1〉 exp

(
−iωT (+1)t

)
(2.6)

|T−1〉
Ht−−→ |T−1〉 exp

(
−iωT (−1)t

)
, (2.7)

for which frequencies are de�ned

ωT (±1) ≡ 〈T±1|H|T±1〉 = Tr(|T±1〉 〈T±1|H). (2.8)

Bloch sphere projection for |S0〉 and |T0〉

The 2×2 problem ofm = 0 subspace evolution may be dealt within the `�ctitious spin-1/2'

formalism by taking advantage of the properties of a Cartesian representation de�ned by

the projection operator operators

I(S0T0)
x =

(
|T0〉 〈S0|+ |S0〉 〈T0|

)
/2 (2.9)

I(S0T0)
y =

(
|T0〉 〈S0| − |S0〉 〈T0|

)
/(2i) (2.10)

I(S0T0)
z =

(
|T0〉 〈T0| − |S0〉 〈S0|

)
/2 (2.11)

E(S0T0) =
(
|T0〉 〈T0|+ |S0〉 〈S0|

)
, (2.12)

which obey positive cyclic commutation of the form [I
(S0T0)
x , I

(S0T0)
y ] = −iI

(S0T0)
z etc. and

unity [E(S0T0), I
(S0T0)
x ] = [E(S0T0), I

(S0T0)
y ] = [E(S0T0), I

(S0T0)
z ] = 0. In this basis, the total

Hamiltonian is represented

H = ωT (+1)IjαIkα︸ ︷︷ ︸
m = +1

+ωT (−1)IjβIkβ︸ ︷︷ ︸
m = −1

(2.13)

ω(S0T0)
x I(S0T0)

x + ω(S0T0)
y I(S0T0)

y + ω(S0T0)
z I(S0T0)

z + ω
(S0T0)
E E(S0T0)︸ ︷︷ ︸

m = 0 subspace

,
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Figure 2.1: Bloch vector representation showing generalised m = 0 subspace evolution. The free-
evolution trajectory is a rotation about the sum of the Cartesian x, y, z �eld axes.

where the zero-quantum frequencies of the Cartesian operators are determined through the

projections

ω
(S0T0)
ξ =

Tr(I
(S0T0)†
ξ H)

Tr(I
(S0T0)†
ξ I

(S0T0)
ξ )

. ξ = x, y, z. (2.14)

The Cartesian representation allows instructive geometric visualisation of the two-level

subspace evolution using a Bloch sphere.[34, 88] To within a global phase factor, the m = 0

state vector, or qubit vector in this representation

|ψ0〉 = cos (ϑ/2) |T0〉+ eiϕ sin (ϑ/2) |S0〉 (2.15)

maps to points (ϑ, ϕ) on the surface of a unit sphere. Fig. 2.1 illustrates that the free-

evolution of this qubit vector corresponds to rotation in the Bloch sphere about the com-

bined �eld axis I(S0T0)
x , I(S0T0)

y and I(S0T0)
z . The angular frequency of the rotation equals

Ω(S0T0) =

√(
ω

(S0T0)
x

)2
+
(
ω

(S0T0)
y

)2
+
(
ω

(S0T0)
z

)2 (2.16)

and the rotation is oriented with polar angles determined by

θ = arctan
(√(ω(S0T0)

x

)2
+
(
ω

(S0T0)
y

)2
ω

(S0T0)
z

)
(2.17)

φ = arctan
(
ω(S0T0)
x /ω(S0T0)

y

)
. (2.18)

This geometric representation may be veri�ed by exponentiating the m = 0 part of eq.
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(2.13), as follows:

U (S0T0)(t) = exp(−iH(S0T0)t) (2.19)

= exp(−iω
(S0T0)
E t) exp

(
−i(ω(S0T0)

x I(S0T0)
x + ω(S0T0)

y I(S0T0)
y + ω(S0T0)

z I(S0T0)
z )t

)
≡ exp(−iω

(S0T0)
E t)R(sin θ cosφ, sin θ sinφ, cos θ)(Ω

(S0T0)t).

It is important to be aware of the phase (ω
(S0T0)
E t) that accompanies the rotation of

the Bloch vector. This term is not physically signi�cant when dealing with spin order

residing exclusively within the subspace m = 0, since the phase cancels when taking

the outer product: for example, [exp(−iω
(S0T0)
E t) |S0〉] ⊗ [〈T0| exp(+iω

(S0T0)
E t)] is equal

simply to |S0〉 ⊗ 〈T0|, and as such ω(S0T0)
E may be neglected. However, it is essential for

observables concerning transitions between the m = 0 subspace and the external states

|T±1〉. Transverse magnetisation is an important example, the spin order involving triplet-

triplet single-quantum coherences |T±1〉 〈T0| and |T0〉 〈T±1 |.

The above formalism has outlined analytical behaviour of the Hilbert space during

coherent evolution. For propagation in the Liouville space, one may simply take the ket-

bra outer products of the states when required.[4]

2.1.3 Mechanisms for isolated spin-1/2 pair

If the spin pair has no neighbours through coupling, the free-evolution Hamiltonian com-

prises the Zeeman interaction of each nucleus and intra-pair spin-spin couplings. One may

examine how each of these in�uence the singlet and triplet evolution:

• Chemical shielding interaction

The Zeeman interaction is the splitting of states under the large B0 static magnetic

�eld, which dominates the total Hamiltonian of the spins. The interaction is written

Hδ = −γIB0(1 + δj)Ijz − γIB0(1 + δk)Ikz (2.20)

where δj and δk denote the isotropic chemical shielding for spins j and k. By pro-

jecting the above into the form of eq. (2.5), one can see that a di�erence in shieldings

is required for singlet-triplet mixing. The di�erence induces a rotation about the

I
(S0T0)
x -axis in the m = 0 Bloch sphere, since the part (Ijz − Ikz) does not commute
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with I2
jk. The sum Zeeman interaction, in contrast, evolves them = ±1 triplet states:

eq. (2.20) ≡ −γIB
0

2
(2 + δj + δk)( IjαIkα︸ ︷︷ ︸

m = +1

− IjβIkβ︸ ︷︷ ︸
m = −1

) (2.21)

− γIB0(δj − δk)I(S0T0)
x︸ ︷︷ ︸

mixes m = 0 states

.

• Intra-pair scalar coupling

The scalar coupling, or so-called `indirect dipole-dipole coupling' is the interaction

between nuclear spins mediated via electrons in chemical bonds. The Hamiltonian

for the scalar coupling is

HJ = 2πJjkIj · Ik, (2.22)

where Jjk is the coupling constant. By convention this is quoted in Hz.

Following the same treatment as above, one can see that HJ preserves |l,m〉 spin

eigenfunctions since it is diagonal in both l and m:

eq. (2.22) =
πJjk

2
( IjαIkα︸ ︷︷ ︸
m = +1

+ IjβIkβ︸ ︷︷ ︸
m = −1

) + 2πJjkI
(S0T0)
z −

πJjk
2

E(S0T0)︸ ︷︷ ︸
m = 0

. (2.23)

This is consistent with the fact Ij · Ik commutes with the total angular momentum

operator, and is invariant to nuclear permutation P̂ (jk).

• Residual dipolar coupling (RDC)

In liquid crystal solution or solutions within an external electric �eld there may exist

a net orientational alignment of molecules, resulting in incomplete averaging of the

anisotropic internuclear dipolar interaction (see eq. (1.38)):

HRDC = HDD
jk = Djk(IjxIkx + IjyIky − 2IjzIkz) (2.24)

in which Djk is known as the residual dipolar coupling constant. Like the J coupling,
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RDC is permutation-symmetric and therefore preserves singlet-triplet eigenstates:

eq. (2.24) ≡ −
Djk

2
( IjαIkα︸ ︷︷ ︸
m = +1

+ IjβIkβ︸ ︷︷ ︸
m = −1

) +DjkI
(S0T0)
z +

Djk

2
E(S0T0)︸ ︷︷ ︸

m = 0

. (2.25)

2.1.4 Strongly and weakly coupled eigenstates

States |T±1〉 are always eigenstates of free evolution in the high �eld approximation. The

m = 0 eigenstates on the other hand depend on the interactions present. These, however,

are still straightforward to �nd. The eigenstates are invariant under unitary evolution (to

within a phase factor) and therefore must be identi�ed with the points in the Bloch sphere

that are invariant to rotation about the �eld axis. These are clearly the points where the

Bloch vector and �eld axis lie parallel to one another:

|ψ0〉 = sin (θ/2) |T0〉+ cos (θ/2) |S0〉 (2.26)

and |ψ0〉 = cos (θ/2) |T0〉 − sin (θ/2) |S0〉 . (2.27)

with θ that de�ned in eq. (2.17).

The spin pair is said to be `weakly coupled' in the regime |θ| � π/2, where |ω(S0T0)
x | �

|ω(S0T0)
z |. For chemically inequivalent nuclear sites in isotropic solution, the term refers

to a spin-spin coupling Jjk that is weak compared to the chemical shielding di�erence

|γB0(δj − δk)|. In this limit the spin eigenstates are the Zeeman product states. In the

regime where |ω(S0T0)
x | tends in magnitude to |ω(S0T0)

z | we say the pair is `strongly coupled'.

This may occur when Jjk and γB0(δj − δk) have similar magnitude: |J | ≈ |γB0(δj − δk)|.

In the extreme of perfect equivalence θ = 0, (Ω(S0T0) = ω
(S0T0)
z ) and the singlet and triplet

states are exact eigenstates.

2.1.5 Singlet-triplet conversion under applied rf �elds

While in the spectrometer high �eld, transitions between spin states can be stimulated by

passing a radio-frequency (rf) oscillating electrical current through an antenna coil next to

the NMR sample, generating an oscillating magnetic �eld. The induced magnetic �eld may

be expressed B1(t) = B1(cos(ωrft+ φrf), 0, 0), where ωrf is the alternation frequency, φrf

the phase and B1 the peak �eld amplitude perpendicular to the B0 axis. The corresponding
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spin Hamiltonian, in the laboratory frame, is

Hrf(t) = ω1 cos(ωrft+ φrf)Ix. (2.28)

The prefactor ω1 ≡ −γB1/2 is called the nutation frequency, and relates the �eld strength

to angular frequency units of the spins.

When Hrf is viewed from the reference frame of the coil, the combined Hamiltonian

([HZeeman]j + Hrf) = (−γB0(1 + δj)Iz + Hrf) for spin j may be seen to approximate a

time-independent superposition of Ix, Iy and Iz:

[H̃Zeeman]j + H̃rf(t) = exp(−iωrft Iz)(−γB0(1 + δj)Iz +Hrf) exp(+iωrft Iz)

≈ Iz(ωrf − γB0(1 + δj))︸ ︷︷ ︸
longitudinal �eld

+ω1(Ix cos(φrf) + Iy sin(φrf))︸ ︷︷ ︸
transverse �eld

(2.29)

where tilde `˜' denotes the new reference frame. The above is derived as detailed in ref.

[4], in brief using the cyclic commutation [A, B] = iC of operators Ix, Iy and Iz,

exp[−iωtC]A exp[+iωtĈ] = A cos(ωt) +B sin(ωt), (2.30)

followed by ignoring `nonresonant' or rapid time-oscillating terms.

Nonselective rf pulses

In the majority of cases |ω1| (usually 100 − 102 kHz order) greatly exceeds the mag-

nitude of all spin-spin J couplings in the system (usually less than 100 Hz) and the

spins evolution may be treated individually, i.e. by propagation under eq. (2.29) directly

and ignoring J couplings. The exponential of eq. (2.29) in the tilde frame is a rota-

tion of the spins polarisation within each {|αj〉 , |βj〉} Bloch sphere at an angular velocity

ω̃j = (ω1 cos(φrf), ω1 sin(φrf), (ωrf − γB0(1 + δj))).

The rf �eld is said to be `on-resonance' if the frequency o�set magnitude |ωrf−γB0(1+

δj)| is much smaller than |ω1|. In this case the rf �eld induces transverse rotations in the

Bloch sphere through angle ω1τrf about the unit axis (cos(φrf), sin(φrf), 0), where τrf is the

duration the rf �eld is applied. Note this is a signi�cant perturbation in view that the �eld
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|B1| = |ω1/γ| is several orders of magnitude weaker than |B0|:

U(τrf) = exp(−i
[
eq. (2.29)

]
τrf) (2.31)

= R(cos(φrf), sin(φrf), 0)(ω1τrf) for |ωrf − γB0| � |ω1|. (2.32)

For instance, φrf = 0 signi�es the rotation operation is Rx(ωrfτrf). For φrf = 90◦, the

rotation is Ry(ωrfτrf).

The above is one way to solve evolution under rf pulses. Alternatively, the rf-induced

transformations may be evaluated directly in the singlet-triplet basis using rules of angular

momentum. An on-resonance, nonselective pulse equates to applying a uniform rotation

to all spins. The singlet state is rotationally isotropic under these conditions, because the

rotation commutes with the spin permutation operator for the pair. Nonselective rf pulses

therefore only interchange the triplet states.

In formal terms the angular momentum eigenstates |l, m〉 are the de�ned irreducible

representations of uniform rotations, and interconvert according to

R |l,m〉 =
l∑

m′=−I
|l,m′〉Dl

m′m(R) (2.33)

where Dl
m′m(R) are elements of the so-called Wigner `D' matrix.[33, 89] For a rotation

R(αβγ) = Rz(α)Ry(β)Rz(γ), in the Euler zyz convention,[89] the elements are expressed

Dl
m′m(αβγ) = 〈l,m′|Rz(α)Ry(β)Rz(γ)|l,m〉

= exp(−i(m′α−m′γ))dlm′m(β) (2.34)

dlm′m(β) = 〈l,m′|Ry(β)|l,m〉 . (2.35)

The reduced elements dlm′m(β) on the lower line are in general rather complicated ex-

pressions, but may be derived from angular momentum commutation relations and the

de�nition of the eigenfunctions in eqs. (2.1) and (2.2) and are easily computed. The ma-

trix elements are block diagonal in the l quantum number, con�rming the isolation between
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the singlet and triplet. The triplet indices m interconvert according to

Rx(ξ) ≡


1 0 0 0

0 cos2
(
ξ
2

)
− ie−iφrf sin(ξ)√

2
−e−2iφrf sin2

(
ξ
2

)
0 − ieiφrf sin(ξ)√

2
cos(ξ) − ie−iφrf sin(ξ)√

2

0 −e2iφrf sin2
(
ξ
2

)
− ieiφrf sin(ξ)√

2
cos2

(
ξ
2

)


|S0〉

|T+1〉

|T0〉

|T−1〉

(2.36)

where ξ = ω1τrf abbreviates the rotation angle induced by the rf �eld.

Note that the resonant, nonselective rf spin Hamiltonian quenches coherent singlet-

triplet transitions and acts as a means of symmetry switching to isolate and sustain long-

lived order. Continuous rf irraditation of this type is called a `spin lock', or sometimes a

`decoupling' �eld. In this thesis, little will be assumed about the details of spin locking other

than this may be used to isolate singlet and triplet states from coherent interconversion.

An extensive discussion has already been made in Sarkar's thesis [25] and papers by others.

[18, 81, 65]

Transition-selective rf �elds

If |ω1| is small compared to both the magnitude of J and the Larmor frequency di�erence

|γB0(δj − δk)|, the radiofrequency �eld may induce di�erent rotations on the nuclei. Such

`spin-selective' rotation is precisely what is needed to induce singlet-triplet interconversion.

The subject is considered in more detail in �2.2.4. Note that weak rf �elds are unsuitable

for singlet spin locking.

2.1.6 Singlet spin order

So far I have mentioned only singlet and triplet states. A formal de�nition of the corre-

sponding spin order has not yet been made, in particular the potentially long-lived singlet

spin order. Singlet order is now identi�ed with the singlet-triplet population di�erence,

given by the operator

|S0〉 〈S0| −
1

3

(
|T+1〉 〈T+1|+ |T0〉 〈T0|+ |T−1〉 〈T−1|

)
. (2.37)

This operator may be identi�ed because its relaxation involves transitions across the

singlet-triplet states. There can be no relaxation between the triplet states, since these



44 Singlet nuclear magnetic resonance

have equal population.

The singlet order is sometimes called isotropic spin order due to its invariance un-

der arbitrary global rotations of the spins. In analogy to eq. (1.30) one may use the

Clebsch-Gordan series to determine the operators that have distinct rotational transfor-

mation properties, via the outer product

TΛM =
∑

l,l′,m,m′

|l,m〉 〈l′,m′|C00
lml′m′ (2.38)

such that they transform by

RTΛMR
† =

Λ∑
M ′=−Λ

TΛM ′D
Λ
M ′M (R). (2.39)

One can show the set of operators TΛM , where M = −Λ . . .Λ and 0 ≤ Λ ≤ l + l′, form

an orthogonal operator basis. This basis is referred to as the spherical tensor operator

basis, each basis operator TΛM transforming as an irreducible representation of SO(3).

The spherical tensor basis is very useful in NMR, especially in the coxtext of singlet NMR,

though here is not the place to continue discussing its properties. Signi�cance of TΛM will

be considered later in �2.5 for signal �ltration, and in �3.1 for a more in-depth treatment

of relaxation theory.

By evaluating the Clebsch-Gordan series for Λ = M = 0 one may show that the

operator in eq. (2.37) equates to the totally-symmetric representation T00 as

T00 =
∑

l,l′,m,m′

|l,m〉 〈l′,m′|C00
lml′m′

= |0, 0〉 〈0, 0| − 1

3

(
|1,−1〉 〈1,−1|+ |1, 0〉 〈1, 0|+ |1, 1〉 〈1, 1|

)
(2.40)

≡ |S0〉 〈S0| −
1

3

(
|T−1〉 〈T−1|+ |T0〉 〈T0|+ |T+1〉 〈T+1|

)
(2.41)

As a �nal comment, note the rotation isotropy is consistent with invariance of singlet order

under a nonselective rf �eld.[65]
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2.1.7 Singlet polarisation

For quantifying the level of singlet order in ρeq it is useful to introduce the concept of `singlet

polarisation'. This is analogous to the more familiar concept of Zeeman polarisation,

which quanti�es the level of longitudinal spin order. The Zeeman polarisation (or just

`polarisation', more colloquially) of an ensemble of noninteracting spin-1/2 nuclei is de�ned

by the population di�erence

p = n(α)− n(β) (2.42)

where n(α) and n(β) are the normalised populations of the spin states with angular mo-

mentum parallel and antiparallel to the magnetic �eld: n(α) = 〈α|ψ〉/ 〈α|α〉 = (1 + p)/2

and n(β) = 〈β|ψ〉/ 〈β|β〉 = (1−p)/2. The polarisation has extrema p = ±1, corresponding

to which all molecules in the ensemble occupy |α〉 or |β〉, respectively.

For an ensemble of coupled spin-1/2 pairs (of spins j and k) the populations of the

Zeeman product basis are given by the products of the populations pj and pk on each spin:

n(αjαk) = (1 + pj)(1 + pk)/4 (2.43)

n(αjβk) = (1 + pj)(1− pk)/4

n(βjαk) = (1− pj)(1 + pk)/4

n(βjβk) = (1− pj)(1− pk)/4.

Longitudinal polarisation is in this case de�ned as the di�erence n(α1α2) − n(β1β2) ≡ p,

or more prosaically, the population di�erence between the states |T+1〉 ≡ |αα〉 and |T−1〉 ≡

|ββ〉. In terms of operators, p is the projection of the density operator onto the sum

Iz = Ijz + Ikz: p = Tr(Iz|ρ)/Tr(Iz|Iz). Extrema p = ±1 correspond in this case to all

ensemble members in states |T±1〉, respectively.

Singlet polarisation pS is de�ned as the mean singlet-triplet population di�erence

pS = n(S0)− 1

3

(
n(T+1) + n(T0) + n(T−1)

)
, (2.44)

such that pS = Tr(T00|ρ)/Tr(T00|T00). The normalisation with T00 is purely coincidental;

the above convention is chosen so that the maximum singlet-triplet population di�erence
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is pS = +1. In this limit the density operator corresponds to unity population of |S0〉, and

zero population of |Tm〉. Note that in contrast to p, the singlet polarisation ranges between

pS = −1/3 and pS = +1 and is unsymmetrical about zero polarisation. This comes into

signi�cance when working with hyperpolarised ensembles, which are discussed later in �2.4.

For the rest of the material in thesis, only ordinary thermal polarisation levels (of order

10−4 or 10−5) will be considered.

2.1.8 Magnetisation-singlet conversion e�ciency

While the limits of p and pS are determined by maximum population asymmetry in the

density operator a more careful analysis remains to see the allowed limits to the transfer of

spin order between the two forms. The maximum transfer amplitude between two operators

can be worked out without di�culty, and is done using a general formula derived for this

problem by Sørensen,[90] and further discussed by Levitt.[16, 91] If an initial operator QA

is assumed, the maximum allowed transformation onto an operator QB under a unitary

tranformation Û is given by∣∣∣∣∣Tr(Q†BÛQA)

Tr(Q†BQB)

∣∣∣∣∣
max

=
ΛB ·ΛA

ΛB ·ΛB
, (2.45)

in which ΛA and ΛB are ordered lists of the eigenvalues of the operators QA and QB.

In the current case, the two operators correspond to Iz = (Ijz + Ikz) and T jk00 for

magnetisation-to-singlet conversion. The eigenvalue spectra are already known because

both operators are diagonal in the |l,m〉 basis. For the longitudinal polarisation one has:

(Ijz + Ikz) ≡


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1


|T+1〉

|T0〉

|S0〉

|T−1〉

⇒ Λ =


−1

0

0

1

 , (2.46)
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and for the singlet order,

T jk00 ≡


−1/3 0 0 0

0 −1/3 0 0

0 0 1 0

0 0 0 −1/3


|T jk+1〉

|T jk0 〉

|Sjk0 〉

|T jk−1〉

⇒ Λ =


−1/3

−1/3

−1/3

1

 . (2.47)

Using eq. (2.45) with QA = Iz and QB = T jk00 one obtains a maximum conversion

amplitude of 1 between starting longitudinal polarisation and singlet order. This means

the maximum singlet polarisation starting from pIz is equal to pS = p.

Now consider the reverse transformation (singlet order into magnetisation Iz), with

QA = T jk00 and QB = Iz. Eq. (2.45) evaluates to 2/3 in this case, meaning that the

maximum longitudinal polarisation obtained from pST00 is equal to p = 2pS/3.

These limits highlight an important fact in considering the use of singlet spin order.

The conversion of longitudinal polarisation into singlet order, and back again, generates at

most 2/3 of the starting polarisation. So while one may exploit the sensitivity gain from

long lifetimes, there is a cost of 33% against the initial magnetisation. For singlet order to

provide a net sensitivity gain, the lifetime ratio TS/T1 must compensate this loss.
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2.2 Singlet NMR of two isolated spins-1/2

This section covers singlet preparation and readout methods for both high and low magnetic

�elds for a spin-1/2 pair with no coupled neighbours, i.e. an isolated system of chemically

inequivalent spins-1/2. The choice of method depends upon whether the spin pair is weakly

or strongly coupled.

2.2.1 Adiabatic �eld cycling

This method operates by transferring a population di�erence between the nuclear Zeeman

eigenstates of the pair in high magnetic �eld into a population di�erence between singlet-

triplet eigenstates at a low magnetic �eld. Recall from �2.1.4 the pair eigenstates are


|φ1〉

|φ2〉

|φ3〉

|φ4〉

 =


1 0 0 0

0 cos (θ/2) sin (θ/2) 0

0 − sin (θ/2) cos (θ/2) 0

0 0 0 1




|T+1〉

|T0〉

|S0〉

|T−1〉

 (2.48)

where θ = arctan (−γB0(δj − δk)/2πJ). On reducing the B0 �eld strength the mixing

angle θ tends to zero, such that at low magnetic �elds the spins become more strongly

coupled and closer to equivalence. In the limit we have singlet and triplet eigenstates

lim|θ|→0 |φ2〉 = |T0〉 (2.49)

lim|θ|→0 |φ3〉 = |S0〉 (2.50)

At higher �elds where |B0| � |J/γ(δj− δk)| the angle θ tends to ±π/2 and the eigenstates

are the Zeeman product states. For an homonuclear pair with positive scalar coupling

constant J , gyromagnetic ratio γ, and isotropic chemical shielding di�erence (δj − δk), the

angle θ tends to −π/2 into a static �eld B0 > 0, resulting in eigenstates

lim|θ|→0 |φ2〉 = |βjαk〉 (2.51)

lim|θ|→0 |φ3〉 = |αjβk〉 (2.52)

The low-�eld and high-�eld eigenstates correlate in this case as [19]
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Figure 2.2: Illustration of state correlation on the m = 0 Bloch sphere during adiabatic �eld
cycling. The arrows in (a) mark the rotation axes about which the quantum state evolves. The
m = 0 eigenstates occur at the two points where the net �eld axis intersects the sphere's surface.
During adiabatic transfer, the eigenstates follow the movement of the rotation axis, such that their
populations are `dragged across' the sphere. The trajectory in (b) shows the trajectory taken
between weakly coupled spin eigenstates in high magnetic �eld and strongly coupled eigenstates in
low �eld for sign(γB0(δj − δk)) = sign(J) = +1. If the relative sign changes, states must correlate
the other way around; in (c), the trajectory is that for negative γB0(δj − δk), with J positive.
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|αjβk〉 ↔ |S0〉 |βjαk〉 ↔ |T0〉 (2.53)

|αjαk〉 ↔ |T+1〉 |βjβk〉 ↔ |T−1〉 .

For opposite sign in (γB0(δj − δk)/J), the states |T0〉 and |S0〉 will correlate the other way

around. These rotations are summarised graphically in �g. 2.2.

The above transformations permit populations of the high-�eld Zeeman states to be

smoothly transferred into the low-�eld singlet and triplet by adiabatic transport of the

sample between di�erent �eld strengths. Transport is adiabatic so long as the change in

the spin Hamiltonian remain slower than the smallest di�erence in energy eigenvalues of the

system. The velocity of the Hamiltonian during �eld cycling is the time derivative of the

Larmor frequency: (2π)−1γdB0/dt. The smallest eigenvalue di�erence is the zero-quantum

frequency, given by | 〈φ2|H|φ2〉 − 〈φ3|H|φ3〉 | =
√

(γB0(δj − δk))2 + (2πJ)2 , which tends

to J in the low-�eld limit. The adiabatic condition is therefore satis�ed if the transport

time is slow compared to |1/J |.

Invariable presence of relaxation means �eld cycling must also take place fast compared

to the nuclear T1. This may not be so easily achieved for protons, where T1 is often the

order of seconds and comparable to 1/|J |. Field cycling best favours lower-gamma nuclei,

(e.g. 13C and 15N), since at moderate �eld strengths the T1s are usually much longer than

1/|J |. Also, in general, the relaxation mechanisms for low-gamma nuclei are less potent

than those for protons, meaning TS is also longer.

Magnetisation-singlet conversion

Conversion of longitudinal magnetisation into singlet order was demonstrated using the

�eld cycling method by Carravetta and co workers in 2004.[19] A DMSO solution containing

2,3-dibromothiophene (a system containing two isolated and weakly coupled protons) was

pre-polarised to thermal magnetisation at B0 ≈ 9.4 T. A spin-selective 180◦ pulse was

applied, followed by adiabatic sample transport into low magnetic �eld.

To run through the sequence of transformations analytically, a selective 180◦ rotation

exchanges the populations of outer and inner Zeeman states:

invert spin j: |αjαk〉 ↔ |βjαk〉 ; |αjβk〉 ↔ |βjβk〉 (2.54)

invert spin k: |αjαk〉 ↔ |αjβk〉 ; |βjαk〉 ↔ |βjβk〉 . (2.55)
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This converts longitudinal polarisation

pIz = p
(
|T+1〉 〈T+1| − |T−1〉 〈T−1|

)
(2.56)

≡ p
(
|αjαk〉 〈αjαk| − |βjβk〉 〈βjβk|

)
(2.57)

into a `precursor' [19] to singlet order that contains a population di�erence across the

m = 0 Zeeman states, namely the I(S0T0)
x spin operator:

eq. (2.57)
invert j−−−−−−→ p

(
|βjαk〉 〈βjαk| − |αjβk〉 〈αjβk|

)
(2.58)

= −2pI(S0T0)
x

eq. (2.57) invert k−−−−−−→ p
(
|αjβk〉 〈αjβk| − |βjαk〉 〈βjαk|

)
(2.59)

= +2pI(S0T0)
x .

Selective inversion may be executed as illustrated in �g. 2.3(a)i by applying a pair of

nonselective 90◦ pulses resonant with the mean Larmor frequency of the spin pair, which

are separated by a free evolution delay τ∆ = π/|γB0(δj − δk)|. The relative phase between

the two pulses governs the spin selectivity. For γB0(δj − δk) > 0,

p(Ijz + Ikz)
900−τ∆−90±90−−−−−−−−−→ ±p(Ijz − Ikz). (2.60)

Alternatively, a weak rf �eld on-resonance may be applied on resonance with either nucleus,

as illustrated in �g. 2.3(a)ii.

Adiabatic transport of the precursor I(S0T0)
x into low �eld |B0| � |2πJ/γ(δj − δk)|

generates a population di�erence across |S0〉 and |T0〉:

pI(S0T0)
x

|θ| → 0
−−−−−→ ±2pI(S0T0)

z ≡ ±p(|T0〉 〈T0| − |S0〉 〈S0|). (2.61)

This transformation can be veri�ed with the aid of �g. 2.2. The resulting singlet polarisa-

tion is

pS = 2p
Tr(T †00I

(S0T0)
z )

Tr(T †00T00)
= p. (2.62)

This polarisation equals the value predicted by Sørensen for the maximum conversion
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between Iz and T00, as discussed in �2.1.8.

Once in low �eld |B0| � |2πJ/γ(δj − δk)| the singlet order is an eigenoperator and

relaxes monoexponentially with time constant TS (�g. 2.3(b)).

Detection of singlet order after adiabatic reinsertion

The singlet order is overall nonmagnetic (total spin I = 0) and in the absence of symmetry-

breaking spin interactions at low magnetic �eld remains undetectable. Conversion of singlet

order to detectable magnetisation is done by adiabatically transporting the sample back

to high �eld, for observation. The state immediately after reinsertion is referred to as the

adiabatic `postcursor' to T00.[19] The nature of spin populations in the postcursor depends

on the �nal sign of θ:

pST00
θ → −π/2
−−−−−−−−→ pS |αjβk〉 〈αjβk| (2.63)

−pS
3

(
|βjαk〉 〈βjαk|+ |αjαk〉 〈αjαk|+ |βjβk〉 〈βjβk|

)
pST00

θ → +π/2
−−−−−−−−→ pS |βjαk〉 〈βjαk| (2.64)

−pS
3

(
|αjβk〉 〈αjβk|+ |αjαk〉 〈αjαk|+ |βjβk〉 〈βjβk|

)
.

The postcursor may be converted into observable magnetisation in a multitude of ways.

The most common ones are summarised graphically in �g. 2.3(c)i-iv. The simplest method,

to start with, is a single rf pulse (�g. 2.3(c)i). Assuming weakly coupled spins in high �eld,

a strong, nonselective radiofrequency pulse with �ip angle ξ generates an NMR signal that

comprises the outer J-doublet peaks with opposite amplitudes

± pS × cos2(ξ/2) sin(ξ)/2, (2.65)

and inner doublet peaks with opposite amplitudes

± pS × sin2(ξ/2) sin(ξ)/2. (2.66)

Fig. 2.3(d)i illustrates spectra in the case of a 90◦ read pulse (ξ = π/2) and a small

�ip angle pulse (|ξ| � π/2). The small �ip angle gives peak intensities proportional to

the population di�erences across the states. In this case, the two outer peaks occur with
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opposite amplitudes ∝ pS . The inner transitions are absent, since the adiabatic postcursor

contains equal populations in the connected states. The 90◦ pulse generates a characteristic

`up-down' spectrum pattern.

These intensities are similar to those obtained applying a nonselective pulse to pure

longitudinal order pIz in a weakly coupled pair. A pulse of �ip angle ξ excites all four

transitions with equal amplitude

p× sin(ξ)/4. (2.67)

Comparing with the sum of eqs. (2.65) and (2.66), one may con�rm that for the same

pulse �ip angle, the area under each J-doublet is (pS/p) times that from the longitudinal

polarisation. The maximum singlet-derived NMR signal is therefore 2/3 the intensity

obtainable from the same starting angle pulse on the same initial longitudinal order.

Alternatively one may apply a spin-selective 90◦ pulse to the singlet postcursor (�g.

2.3(c)ii).[22] A selective 90◦ rotation of spin j results in a double-intensity peak for the

outermost transition of spin j (twice the intensity of that from a nonselective 90◦ read

pulse) and no signal at all for site k (�g. 2.3(d)ii). Fig. 2.3(c)iii shows a sequence that

mimics selective 90◦ rotation while using nonselective pulses. The rf carrier frequency

is positioned at the mean chemical shift frequency, whereat the chemical shift di�erence

induces opposite 45◦ rotations on the spins. Spin selectivity depends on the relative pulse

phase:[22]

(
90◦+45

)
−
(
τ∆/2

)
−
(

90◦90

)
≡

(
90
◦(j)
0 180◦(k)

)
; (2.68)(

90◦+45

)
−
(
τ∆/2

)
−
(

90◦0

)
≡

(
180◦(j)90

◦(k)
90

)
, (2.69)

where, as before, τ∆ = π/|γB0(δj − δk)|.

In �g. 2.3(c)iv a fourth readout sequence is illustrated. This is the same as �g. 2.3(c)iii,

but into which a spin echo element

( 1

|4J |

)
−
(

180◦−45

)
−
( 1

|4J |

)
(2.70)

is absorbed. The spin echo preserves the transformation of the adiabatic postcursor, whilst

suppressing signals from longitudinal magnetisation that may build up during cycling back
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to high �eld. In brief, un-coupled single-quantum coherences are converted into antiphase

coherences through evolution under the J coupling.

Ijz
90◦45−−→ 1√

2
(Ijx − Ijy)

eq. (2.70)
−−−−−−−−→

√
2 (Ijx + Ijy)Ikz. (2.71)

The �nal 90◦ pulse converts these to non-observable double- and zero-quantum coherence:

eq. (2.71)
π/|2γB0(δj−δk)|
−−−−−−−−−−→ 2IjyIkz

90◦90−−→
√

2 IjyIkx.︸ ︷︷ ︸
unobservable

(2.72)

The coupled spin order of the adiabatic postcursor commutes with (Ij · Ik), and therefore

passes unperturbed through the spin echo.

ALTADENA

Adiabatic population transfer between singlet-triplet and Zeeman eigenstates is well known

in the �eld of parahydrogen-enhanced NMR. In the experiment known as ALTADENA

(Adiabatic Longitudinal Transport After Dissociation Engenders Nuclear Alignment),[56]

an unsaturated substrate is hydrogenated with parahydrogen in `low' magnetic �eld |B0| �

|2πJ/γB0∆δ|, e.g. at the laboratory magnetic �eld. The singlet spin order of parahydro-

gen correlates directly into singlet-hydrogenated product as indicated in �g. 2.4(a). For

readout, the high-�eld adiabatic postcursor corresponds to a population excess in |αjβk〉

and zero population in the other states (assuming θ → −π/2, see �g. 2.4(b)).

`Direct' singlet hyperpolarisation

Singlet order is available immediately from an hyperpolarised spin-1/2-pair ensemble, with-

out need for pulse sequences.[32] This phenomenon is demonstrated for the 13C spin-pair

in [1,2-13C2]-labelled pyruvic acid, (CH3
13CO13COOH, or [1,2-13C2] 2-oxopropanoic acid)

in a solution of D2O using the dissolution-DNP hyperpolarisation procedure.[47, 49]

The experiments were made as part of a collaboration with Kevin Brindle's laboratory

(Cambridge University Biochemistry Department) as an initial step to explore hyperpo-

larised singlet NMR in vivo. Hyperpolarised NMR of [13C]-pyruvate sits in a prominent

position in metabolism and oncology studies due to the slow T1 relaxation relative to

uptake and metabolism in cells, and the relative ease of 13C polarisation.[92, 93, 94] Simul-
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Figure 2.4: Examples of adiabatic �eld cycling in singlet NMR: (a) one of the many possible reac-
tion schemes for parahydrogen-induced hyperpolarisation (PHIP); (b) low to high-�eld correlation
between hyperpolarised singlet order of a parahydrogenated substance and the adiabatic postcursor
state on which NMR readout is performed. This is the ALTADENA experiment. For simplicity
a polarisation pS = +1 is assumed in the adduct; (c) the analogue of ALTADENA for singlet
depletion order in an hyperpolarised sample, for simplicity assuming a pure singlet polarisation
pS = −1/3. Labels apply to the case 2πJ/γB0(δj − δk) > 0.
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taneous real-time monitoring of pyruvate dehydrogenase and Krebs cycle metabolism in

heart has been demonstrated using hyperpolarised [1,2-13C2]-pyruvate.[95] Metabolic �ux

between hyperpolarised [1-13C]-pyruvate and lactate has been used to grade tumours and

their response to treatment.[92, 96]

Labelled pyruvic acid was polarised in an alpha-prototype hyperpolariser (GE Health-

care, Amersham, UK) working at 3.35 T according to the procedure given in ref. [96]. A

mixture containing 35 mg [1,2-13C2] pyruvic acid (95% purum, Sigma-Aldrich UK), 0.7

mg of the trityl radical OX063 (GE Healthcare, Little Chalfont, UK) and 1.2 mg of 0.1

µM gadolinium chelate solution (Gadoteric acid, Dotarem R©; Guerbet, Roissy, France) was

cooled to 1.2 K in liquid He and irradiated close to the electron Larmor frequency at ≈ 94

GHz, using a 100 mW microwave source. The build-up of 13C polarisation was monitored

via the solid-state NMR signal.

DNP of [1,2-13C2]-pyruvate creates a signi�cant population imbalance between m = 0

states (nα1β2 + nβ1α2) and m = ±1 states (nα1α2 + nβ1β2) of the 13C spin pair. Assuming

both spins are equally polarised during the process (pj = pk = p), these populations are

given using eq. (2.43) as

n(αjαk) = (1 + p)(1 + p)/4 = (1 + 2p+ p2)/4 (2.73)

n(αjβk) = (1 + p)(1− p)/4 = (1− p2)/4 (2.74)

n(βjαk) = (1− p)(1 + p)/4 = (1− p2)/4 (2.75)

n(βjβk) = (1− p)(1− p)/4 = (1− 2p+ p2)/4. (2.76)

After approximately 1 hour of microwave irradiation the frozen material was dissolved

with a jet of hot bu�er solution (6 ml, heated to 180 ◦C, containing 100 mg/L EDTA, 30

mM NaCl, 94 mM NaOH and 40 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES)) and the solution collected in a vial located in a region of low magnetic �eld

(≈ 0.5 mT) outside the polariser magnet. During transport, the high-�eld eigenstates

are transformed adiabatically into the nuclear singlet and triplet eigenstates. Ignoring
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relaxation losses during sample melting and transport, the low-�eld populations are

n(T+1) = (1 + 2p+ p2)/4 (2.77)

n(T0) = (1− p2)/4 (2.78)

n(S0) = (1− p2)/4 (2.79)

n(T−1) = (1− 2p+ p2)/4. (2.80)

The mean singlet-triplet population di�erence in the low �eld is therefore

pS = n(S0)− 1

3
(n(T+1) + n(T0) + n(T−1)) = −p2/3. (2.81)

Note the negative sign of pS , which arises since strong nuclear polarisation depletes

the m = 0 states, leading to population de�cit in the singlet. Although this singlet polar-

isation is signi�cantly lower than the longitudinal order, it may nevertheless be substan-

tial compared to pthermal = tanh(γC~B0/2kBT ), which is the order of 8 ppm for 13C in

[13C]-pyruvate at 9.4 T and room temperature. A 30%-polarised ensemble, (p = 0.3), for

instance, yields 3% negative singlet order (pS = −0.03). This is still 3 orders of magnitude

larger than thermal polarisation.

Amplitudes of p and pS were estimated by sharing the hyperpolarised solution between

two identical 10 mm o.d. NMR sample tubes, each already containing 2.0 ml D2O, resulting

in a �nal pyruvate concentration ≈ 10 mM. The �rst tube was inserted immediately into

a 9.4 T, Varian Inova NMR spectrometer and the 13C NMR spectrum recorded after a

≈ 6◦ �ip angle pulse. The spectrum is shown in �g. 2.5(a) and is characteristic of the

predominant longitudinal spin order, with all peaks having the same sign.

In the intervening time, the second tube was inserted into a mu-metal cylinder (15 mm

tube diameter, 0.5 mm wall thickness) and shaken for ≈ 5 seconds. This sample was then

removed from the cylinder, inserted in the NMR spectrometer in place of the �rst tube,

and the spectrum recorded after applying the same ≈ 6◦ �ip angle pulse.

As explained in �2.5.7, shaking of the sample in the weak and sharply inhomogeneous

magnetic �eld of the cylinder's edge induces spatially random rotations on the spins. This

has the e�ect of rapidly equalising the nuclear triplet populations and erasing triplet-triplet



59

Figure 2.5: 13C NMR spectra at 9.4 T using a 6◦ �ip angle for detection recorded (a) on hy-
perpolarised [1,2-13C2] pyruvate (single scan); (b) after erasing magnetisation by shaking inside a
mu-metal chamber, followed by transfer into high �eld (single scan); (c) later on the same sample
in (a), thermally polarised (16 scans).

order. Singlet order survives intact, on the other hand, since it is rotation-invariant. After

shaking in the mu-shield the sample therefore contains only a population asymmetry pST00,

in the laboratory magnetic �eld (≈ 0.5 mT). As shown in �g. 2.4(c) this situation is similar

to low-�eld singlet order in ALTADENA (see �g. 2.4(b)), albeit with opposite sign in the

polarisation.

Fig. 2.5(b) shows the 6◦ �ip angle spectrum recorded after adiabatic transport into the

9.4 T magnet. This displays the same pattern predicted by �g. 2.3d(i), thereby proving

the presence of singlet order in low magnetic �eld. The singlet order is also indicated

through the asymmetry in the doublet peak components in �g. 2.5(a). The absolute signs

of the peaks in the singlet-derived spectrum �g. 2.5(b) are consistent with the sign of θ on

adiabatic transformation into high �eld, bearing in mind the negative singlet polarisation.

The integral across the 13COO doublet at 173 ppm in both tubes are consistent with

the hyperpolarised singlet order being |pS/p| = |p|/3 times the amplitude of longitudinal

magnetisation. A longitudinal polarisation p = (0.26 ± 0.01) = (26 ± 1)% was estimated

by comparing the integrals between �g. 2.5(a) and the spectrum of the same sample at

thermal equilibrium (see �g. 2.5(c)). This value of p corresponds to the sample polarisation

at the time of arrival in the detection magnet (≈ 15 s after dissolution). The expected

value of pS from this polarisation, neglecting sample relaxation, is pS = 0.023 = 2.3% such
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Figure 2.6: Decay of hyperpolarised singlet order on [1,2-13C2]-pyruvic acid in the laboratory
magnetic �eld. The �tted singlet lifetime is TS = (70± 2) seconds.

that the ratio p : pS is approximately 12:1. The experimental ratio between the integrals of

�g. 2.5(a) and (b), which ignoring relaxation equals the ratio p : pS , is approximately 20:1.

These ratios agree to within a factor of 2. The discrepancy may be attributed to sample

relaxation during the additional low-�eld manipulations involved in the singlet experiment.

A separate experiment was performed to estimate the singlet decay constant TS for the

[1,2-13C2] pyruvate in the low �eld. This time upon exiting the hyperpolariser, the entire

solution was shaken in the mu-metal cylinder. The solution was then added into a vial

containing 15 ml D2O. The dilute solution was pipetted equally into six 10 mm o.d. NMR

tubes.

The tubes were inserted at 30 second intervals from low �eld into the 9.4 T spectrom-

eter magnet, where a ≈ 6◦ �ip angle spectrum was recorded. Spectra for the di�erent

waiting times in the low �eld are displayed in �g. 2.6. The peak integrals were �t to a mo-

noexponential decay exp(−t/TS) yielding a singlet decay constant TS of (70± 2) seconds.

This observed singlet decay constant is approximately twice the T1 of the 13C pair.

The longitudinal relaxation time was later measured using a �eld-cycled experiment on

the thermally polarised sample. The sample was polarised in the high �eld spectrometer

magnet to p = pthermal, then shuttled outside the magnet to rest for a time in low �eld,

for relaxation. After reinsertion into the magnet a 90◦ pulse was applied, and the NMR

spectrum recorded. Peak integrals for di�erent low-�eld waiting times were �t by the

monoexponential decay exp(−t/T1), yielding a time constant T1 for both carbons of (36±1)
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seconds.

The ratio TS/T1 of only ≈ 2 for [1,2-13C2]-pyruvate in D2O is slightly disappoint-

ing. The relatively short singlet lifetime suggests the presence of strong singlet relaxation

mechanisms. Spin rotation is a possible candidate. The nature of the mechanism currently

remains under investigation.

As a �nal point, the `direct' preparation method is independent of spin-spin couplings

and chemical shifts, allowing access to hyperpolarised singlet order even in magnetically

equivalent spins-1/2 pairs. This cannot be done by pulse sequence methods. Singlet order

in these systems may later be released via spin-symmetry-breaking chemical reactions, akin

to ALTADENA.
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Figure 2.7: Sarkar's sequences for singlet preparation in the regime |ω(S0T0)
x | � |ω(S0T0)

z |: (a) prepa-
ration of anti-phase triplet-triplet coherences; (b) zero quantum evolution period; (c) compensatory
sequence for broad-band excitation with respect to |ω(S0T0)

z |; (d) Zero-quantum equalisation by the
Thrippleton-Keeler technique gives broad-band excitation with respect to chemical shifts.

2.2.2 Sarkar's sequence for weakly coupled spins

Singlet excitation at �xed magnetic �eld (without �eld cycling) has been extensively dis-

cussed for the regime |(δj − δk)γB0| � |J | in thesis work by Sarkar.[25]

The basic pulse sequence used by Sarkar (al. et) is shown in �g. 2.7(a)+(b). The �rst

part of the sequence involves a 90◦ rf pulse followed by a spin echo (τa − 180◦ − τa). The

�rst pulse generates in-phase single-quantum coherence between the triplet states. Spin

echo evolution under a half-echo duration τa = 1/|4J | converts these into anti-phase:

p(Ijz + Ikz) = p
(
|T+1〉 〈T+1| − |T−1〉 〈T−1|

)
(2.82)

90◦90−−→ p√
2

(
(|T+1〉+ |T−1〉) 〈T0|+ |T0〉 (〈T+1|+ 〈T−1|)

)
(2.83)

τa−180◦0−τa−−−−−−−−→ p√
2

(
e−iπJτa(|T+1〉+ |T−1〉) 〈T0|+ e+iπJτa |T0〉 (〈T+1|+ 〈T−1|)

)
=

p√
2

(
−i(|T+1〉+ |T−1〉) 〈T0|+ i |T0〉 (〈T+1|+ 〈T−1|)

)
. (2.84)

On applying a 45◦ rf pulse, phase shifted by 90◦ from the starting pulse, these become

converted into double-quantum coherence and a triplet population imbalance

eq. (2.84)
45◦0−−→ p

2

(
(|T+1〉+ |T−1〉)(〈T+1|+ 〈T−1|)− 2 |T0〉 〈T0|

)
(2.85)

≡ p

2

(
(|T+1〉 〈T+1|+ |T−1〉 〈T−1| − 2 |T0〉 〈T0|) (2.86)

+(|T−1〉 〈T+1|+ |T+1〉 〈T−1|)
)
.
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At this point there is no net singlet-triplet population imbalance. However, this is now

simple to arrange. The excited triplet population |T0〉 〈T0| may be transferred into |S0〉 〈S0|

by a free evolution period τb = π/2ω
(S0T0)
x (see �g. 2.7(b)). This executes a 180◦ rotation

about the x-axis of the m = 0 Bloch sphere. In the case of inequivalent spins-1/2 a delay

τb = |π/γB0(δj − δk)| swaps the identities of |S0〉 and |T0〉 generating the density operator

eq. (2.85)
ZQ only−−−−−−→ p

2

(
|T+1〉 〈T+1|+ |T−1〉 〈T−1| − 2 |T0〉 〈T0|

)
; (2.87)

eq. (2.87)
τb−→ p

2

(
|T+1〉 〈T+1|+ |T−1〉 〈T−1| − 2 |S0〉 〈S0|

)
. (2.88)

Signals from the double-quantum coherence in eq. (2.85) are unimportant and may be

suppressed by a magnetic �eld gradient pulse during τb.

The �nal density operator corresponds to the maximum singlet polarisation pS = p,

neglecting relaxation e�ects. Note the delay τb depends only on the di�erence in chemical

shifts and therefore imposes no constraint on the rf carrier frequency. The pulse sequence

therefore maintains good performance even in inhomogeneous magnetic �eld.

Sarkar has demonstrated some options for improving singlet excitation if nominal values

of τa and τb cannot be used (see �g. 2.7(c) and �g. 2.7(d)):

• J-compensation

The e�ciency of singlet excitation with respect to J , pS ∝ sin(2πJτa), (�g. 2.7(a))

can be broadened to pS ∝ sin(2πJτa)[1 + cos2(2πJτa)/2] by replacing the spin echo

with the composite-pulse-inspired [60] preparation illustrated in �g. 2.7(c).[97] This

method gives improved singlet excitation over a wider range of J couplings to help

generate singlet order simultaneously in systems containing more than one distinct

pair of spins-1/2. The price of this method is the tripling of the single-quantum

evolution time. This may be unfeasible, however, if the transverse relaxation rate

1/T2 is fast relative to J , which may be the case in large molecules such as proteins.

• True chemical-shift-broadbandness

Dependence of pS on ω(S0T0)
x is eliminated completely using Thrippleton and Keeler's

zero-quantum dephasing technique in stead of the evolution delay τb.[66, 24, 97] The

Thrippleton-Keeler �lter, (or T-K �lter), as the event is known, is a swept-frequency

inversion pulse applied in the presence of a static �eld gradient.[98, 99] The T-K �lter
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saturates sets of quantum states with the same m projection quantum number. In

this case, the T-K �lter equalises the population imbalance of |S0〉 and |T0〉 resulting

in net spin order between |S0〉 and |T±1〉. The `saturation time' of the �lter is

proportional to the zero-quantum evolution period 1/|ω(S0T0)
x |. After this time the

density operator is

eq. (2.85)
ZQ only−−−−−−→ p

2

(
|T+1〉 〈T+1|+ |T−1〉 〈T−1| − 2 |T0〉 〈T0|

)
(2.89)

T-K �lter−−−−−−−→ p

2

(
|T+1〉 〈T+1|+ |T−1〉 〈T−1| (2.90)

− |T0〉 〈T0| − |S0〉 〈S0|
)
.

This �nal state corresponds to a singlet polarisation pS = p/2. True broadband

excitation therefore comes at a cost of 50% in the obtainable singlet polarisation,

or 25% combined across excitation and reconversion steps of the experiment. While

rather severe, this expense may be worthwhile in some contexts. One application is

EXchange SpectroscopY (EXSY), where the chemical shift asymmetry of a spin pair

is time-dependent as a result of ongoing chemical reactions.[24]
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2.2.3 Multiple-echo pulse sequence for strongly coupled spin pairs

Sarkar's sequence excites singlet order e�ciently in the regime |ω(S0T0)
x | � |ω(S0T0)

z |, where

the spins are weakly coupled. However, outside this limit the sequence performs increas-

ingly ine�ciently because the states m = 0 do not mix to any great extent under free

evolution (apply small θ to �g. 2.1). In the following a di�erent method for conversion

Iz ↔ I
(S0T0)
z is evaluated, which works e�ciently even when the spins are strongly cou-

pled. The protocol involves `trains' of spin echoes that accumulate |T0〉 ↔ |S0〉 mixing

when applied in synchrony with the zero-quantum frequency Ω(S0T0).[69, 68, 88]

J-synchronised spin echo trains

In discussing this sequence an emphasis is placed on magnetisation-singlet conversion in the

limit |ω(S0T0)
x | � |ω(S0T0)

z |, where the spins are `extremely strongly coupled'. Here |T0〉 and

|S0〉 are very close to the m = 0 eigenstates and as a result do not appreciably mix during

free evolution. Near-equivalence is a favourable target of singlet NMR since no symmetry-

switching interventions, such as �eld cycling,[19] spin locking,[18, 65] or chemical reactions

[31] are required to sustain a singlet-triplet population di�erence. The price, however, is

the more di�cult excitation of singlet order.

Singlet-triplet transitions may be stimulated in nearly equivalent pairs over the course

of a spin echo (τ − 180◦ − τ). After one echo, the m = 0 Bloch vector is determined

by the product U (S0T0)(τ)Rz(π)U (S0T0)(τ), where U (S0T0) is the propagator given in eq.

(2.19) and Rz(π) signi�es a 180◦ rotation about the z axis of the m = 0 Bloch sphere that

corresponds to the 180◦ rf pulse inverting the sign of |T0〉 while leaving |S0〉 unchanged. It

is found that the half-period τ = π/|2Ω(S0T0)| ≈ 1/|4J | gives maximum polar displacement

of the Bloch vector at the end of the spin echo. The overall propagator is in this case

U (S0T0)(τ)

 −1 0

0 1


︸ ︷︷ ︸
≡Rz(π)

U (S0T0)(τ) = e−2iω
(S0T0)
E 2τR(cos θ, 0,− sin θ)(2θ), (2.91)

which in the limit |θ| � 1 approximates a rotation about the x-axis, through angle 2θ.

It follows that after N successive back-to-back echoes the propagator approximates an

x-rotation 2Nθ, giving a mixing amplitude | sin (2Nθ)|. This allows one to overcome the
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Figure 2.8: Singlet and triplet mixing in the extreme strong coupling regime |ω(S0T0)
z | � |ω(S0T0)

x |
in the m = 0 Bloch sphere. The example trajectory in (a) shows the two states do not signi�cantly
interconvert under free evolution. The low-amplitude of mixing may be arranged to accumulate,
however, over the course of several spin echoes. The example trajectory in (b) indicates cumulative
conversion between |T0〉 and |S0〉 through a mixing angle of 8θ, as the result of four spin echoes
with half-period τ = π/|2Ω(S0T0)|.

rather limited maximum singlet-triplet conversion amplitude | sin (2θ)| � 1 under normal

free evolution. Fig. 2.8 provides a visualisation of these two trajectories.

Complete interchange |T0〉 ↔ |S0〉 requires a train of N180 echoes, where N180 is the

integer that best satis�es |2N180θ| ≈ π. Note that the total conversion time, in the near-

equivalence limit, depends only on the value of ω(S0T0)
x . For a 180◦ rotation about the x

axis, the time taken is approximately:

2τ ×N180 =
π

Ω(S0T0)
× round

( π
2θ

)
. (2.92)

For |θ| � π/2, this expression reduces to

eq. (2.92) ≈ ω(S0T0)
z

πω
(S0T0)
z

2ω
(S0T0)
x

= π2/|2ω(S0T0)
x |. (2.93)

`M2S' pulse sequence

Synchronised spin echo trains combine together with rf pulses to give the magnetisation-

to-singlet pulse sequence illustrated in �g. 2.9, which is abbreviated `M2S'.[69, 88] The

sequence proceeds as follows. First, a 90◦ rf pulse is applied, to generate in-phase triplet-

triplet single quantum coherences. These are converted into singlet-triplet single-quantum
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Figure 2.9: The magnetisation-to-singlet conversion sequence for strongly coupled spins, using
J-synchronised spin echo trains.

coherence via a synchronised echo train, which swaps the m = 0 states:

p(Ijz + Ikz) = p
(
|T+1〉 〈T+1| − |T−1〉 〈T−1|

)
(2.94)

90◦90−−→ p√
2

(
|T+1〉+ |T−1〉) 〈T0|+ |T0〉 (〈T+1|+ 〈T−1|)

)
(2.95)

180
◦(S0T0)
0−−−−−−→ p√

2

(
e+iξ(|T+1〉+ |T−1〉) 〈S0|+ e−iξ |S0〉 (〈T+1|+ 〈T−1|)

)
.(2.96)

A 90◦ rf pulse is then applied, phase-shifted 90◦ from the starting pulse. This converts the

single-quantum coherence into singlet-triplet zero-quantum coherences:

eq. (2.96)
90◦0−−→ −i × p

(
e+iξ |T0〉 〈S0|+ e−iξ |S0〉 〈T0|

)
(2.97)

≡ −i × 2p
(
I(S0T0)
x cos(ξ) + I(S0T0)

y sin(ξ)
)
. (2.98)

The phase ξ in these equations is equal to ξ = 4ω
(S0T0)
E N180τ from the singlet-triplet

energy di�erence. For extremely strongly coupled spin pairs ξ is a multiple of π and may

be ignored, such that the density operator after the second 90◦ pulse is proportional to

I
(S0T0)
x . In less strongly coupled pairs, or where a large number of echoes is performed (see

`J-broadband spin echo trains', page 82), this phase may be need to be taken into careful

consideration.

The transverse (S0T0) coherence is rotated �nally into the singlet-triplet population

di�erence I(S0T0)
z using a second synchronised spin-echo train. A train of N90 = round( π4θ )
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spin echoes induces a 90◦ rotation about the axis I(S0T0)
x . This requires that the spin order

from eq. (2.98) must �rst be transferred onto I(S0T0)
y , which may be achieved by leaving

a short evolution delay which I call τshift, to rotate approximately about the z axis under

the strong J coupling:

eq. (2.98)
τshift−−−→ p

(
i |T0〉 〈S0| − i |S0〉 〈T0|

)
≡ 2pI(S0T0)

y . (2.99)

The delay τshift must be chosen to ensure (2πJτshift + ξ) is an odd multiple of π/2. In the

limit of extremely strongly coupled spins, this reduces to τshift = 1/|4J |.[69, 88]

From eq. (2.99) the �nal transformation is

eq. (2.99)
90
◦(S0T0)
0−−−−−−→ p

(
|T0〉 〈T0| − |S0〉 〈S0|

)
≡ 2pI(S0T0)

z . (2.100)

The resulting singlet polarisation pS equals (T00|2pI(S0T0)
z )/(T00|T00) = p. The total time

for Iz → 2I
(S0T0)
z conversion by M2S is 3π2/|4ω(S0T0)

x |, in the near-equivalence limit.

Reconversion and observation

When applied in reverse chronological order the M2S sequence converts the population

di�erence I(S0T0)
z into observable single-quantum coherences. Ignoring relaxation, the in-

tensity of the resulting signal is again two-thirds that which may be obtained from the

starting polarisation. This is determined from the following operator transformations:

pIz
M2S−−−→ 2pI(S0T0)

z

project T00−−−−−−−−−→ pT00
project I(S0T0)

z−−−−−−−−−−−→ 4p

3
I(S0T0)
z

S2M−−−→ 2p

3
Ix. (2.101)

The recoverable signal is therefore the same as that following both Sarkar's sequences and

the �eld cycling methods and, once again, the maximum obtainable overall.

Sequence performance, robustness and resistance to errors

The J-synchronous echo method may appear to operate e�ectively in inhomogeneous B0

�elds since the ideal evolution is insensitive the to rf o�set. In practice, however, the

o�-resonance e�ciency is limited by a deteriorating performance of the inversion pulses.

For 180◦ pulses that are not su�ciently accurate, states m = 0 and m = ±1 come into
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contact with one another and the interconversion |T0〉 ↔ |S0〉 is interrupted. Rf pulses

may deliver a di�erent rotation from nominal 180◦ in two ways: (i) when rf irradiation

is applied o�-resonance from the nuclear Larmor frequency; (ii) when rf amplitude is not

calibrated properly. Situation (ii) may apply to rf �elds that are not homogeneous across

the sample volume.

Composite rf pulses, such as (90◦0)(180◦90)(90◦0), o�er improved inversion with respect to

rf inhomogeneity and o�set.[60] Another method is compensation of errors by phase cycling

the 180◦ pulses throughout the train. By analysing the average Hamiltonian (AH)[100] for

the pulse train we have determined that the phase cycle [0◦, 0◦, 180◦, 180◦, . . .] compensates

both rf amplitude and frequency errors. Below is a summary of the AH outcome with

supporting numerical simulations performed using SpinDynamica.[101] The details of the

AH analysis are rather complicated so shall be skipped for now and published elsewhere.

• Model

The plots in �g. 2.10 and �g. 2.11 show the variation in the singlet-triplet mixing

amplitude 〈S0|Utrain|T0〉 for a pair of very strongly coupled spins with |γB0∆δ/2π| =

10 Hz and |J | = 100 Hz (θ ≈ 5.7◦). The propagator Utrain is evolution across a train

of 16 J-synchronised spin echoes, which corresponds to a nominal 180◦x rotation in

the m = 0 Bloch sphere. Under nominal conditions the integral is equal to 1, which

corresponds to a complete swapping of the states.

• Rf amplitude error

The upper plot in �g. 2.10 shows variation in 〈S0|Utrain|T0〉 against the dimensionless

rf amplitude ωrf/ω
0
rf , where ω

0
rf is the nominal rf amplitude for the pulse length,

chosen arbitrarily as ω0
rf/2π = 500 Hz. All pulses are on resonance.

The black curve show the conversion e�ciency in the absence of error correction, using

basic 180◦ pulses and no phase cycling. Singlet-triplet conversion is narrowband and

only e�cient within 1 − 2% of the nominal rf amplitude. This behaviour occurs

because the amplitude error disrupts the AH at �rst order perturbation level.

Blue and red curves show that cycling the 180◦ pulses phases through [0◦, 180◦, . . .]

or [0◦, 0◦, 180◦, 180◦, . . .] the excitation pro�le becomes much wider. These cycles

average out rf amplitude errors for all perturbation orders of the AH and give the

best possible error compensation. For example, at a ±40% error in rf amplitude the
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Figure 2.10: Phases of the 180◦ pulses may compensate for rf amplitude and frequency o�set errors
during the spin echo trains. The plots show conversion amplitude of |T0〉 into |S0〉 following a spin
echo train where: in (a), 180◦ pulses are applied on resonance, but rf amplitude ωrf is mis-set by a
percentage of the nominal value ω0

rf ; in (b), 180◦ pulses are applied with nominal rf amplitude ω0
rf ,

but o�-resonance from the nuclei by frequency ωoff . The phase cycle [0◦, 0◦, 180◦, 180◦] compensates
well against both types of error, as seen from the widened excitation pro�les. The transformation
amplitudes were calculated numerically using the SpinDynamica software for Mathematica 8.[101]
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Figure 2.11: Broadband excitation is improved with respect to amplitude and frequency o�set
errors if composite-pulses and phase-cycling are applied together within the spin echo train. The
pro�les were calculated using the SpinDynamica software for Mathematica 8.[101]
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cycle [0◦, 180◦] results in a 70% conversion e�ciency between |S0〉 and |T0〉. Without

the phase cycling, there is almost no conversion.

• O�set rf frequency

The lower part of Fig. 2.10 shows 〈S0|Utrain|T0〉 versus a dimensionless rf o�set

ωoff/ω
0
rf . Pulse amplitudes are kept nominal.

The curves show that while the phase cycle [0◦, 180◦, . . .] gives excellent compensation

of rf amplitude errors it exacerbates the ine�ciency due to resonance o�set. The

width of the band 〈S0|Utrain|T0〉 > 99% is much wider when constant-phase pulses are

used. In terms of the AH, �rst-order error terms vanish across pairs of echoes [0◦, 0◦],

but are compounded across pairs [0◦, 180◦]. Improved compensation is provided by

the four-step cycle [0◦, 0◦, 180◦, 180◦] as shown in red. This phase cycle averages the

o�set dependence in both the �rst- and second-order levels of the AH.

It is clear that the phase cycle [0◦, 0◦, 180◦, 180◦, . . .] is the shortest one that compensates

both types of error. We have not investigated the average Hamiltonian in detail beyond

second order, since the higher orders are quickly diminishing in strength.

Additional compensation may be arranged by combining the phase cycle with inversion

through composite pulses, as shown in �g. 2.11. The most e�ective method is the one using

[(90◦0)(180◦90)(90◦0)]φrf
for inversion, applied with the cycle φrf = [0◦, 0◦, 180◦, 180◦], still this

strictly only provides an error-compensated sequence, not a completely broadband one.

Near-equivalence induced by a remote stereocenter

Near equivalence may occur as a result of remote molecular asymmetry. In ref. [88] we

studied the persistent singlet order of geminal protons in the tripeptide L-alanyl-glycyl-

glycine (AGG), both in presence and absence of rf locking.

Fig. 2.12 shows the locations of two isolated CH2 units in AGG. Each proton pair is

diastereotopic, by virtue of the alanine chiral centre that destroys global mirror symme-

try across the plane of the peptide chain. The terminal pair has only a small chemical

asymmetry, however, due to its remoteness and local symmetry. The terminal protons

reside six sigma bonds from the chiral centre and are hence `nearly equivalent'. While the

one-dimensional NMR spectrum shows the `central' glycine protons as a strongly roofed

pair, only three atom centres from the chiral centre with |2JHH| = 18 Hz and |∆δ| = 0.035
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Figure 2.12: Proton NMR spectrum of AGG (20mM in D2O), 9.4 T.

Figure 2.13: Singlet relaxation of the nearly equivalent terminal glycine protons in AGG: (a) when
no rf locking is applied; (b) during forced magnetic equivalence under an rf �eld. The delay 4T1 ≈ 3
seconds is provided in (b) to allow equilibration of the triplet populations before applying 3.0 kHz
resonant WALTZ decoupling. Blocks `M2S' and `S2M' each abbreviate the forward and reverse
Ix ↔ I

(S0T0)
z transformations.

ppm (|γHB0∆δ/2π| = 14 Hz at 9.4 T), the terminal pair appears as just a single peak

with the chemical shifts of the nuclei unresolved.

Singlet order on the terminal glycine protons was excited using the pulse sequences

shown in �g. 2.13(a) and �g. 2.13(b). At a �eld of 9.4 T, thermal longitudinal polarisation

was converted using M2S. Following excitation, the state was left for a time for relaxation,

after which remanent T00 singlet order was converted to in-phase magnetisation (S2M) and

estimated through the spectral intensity. A two-step phase cycle [0◦, 180◦] on both the

starting 90◦ pulse and on the receiver was used to eliminate signals arising from longitudinal

recovery prior to the S2M step.

The �tted exponential time constants was TS = (11.5 ± 0.2) seconds for the terminal

glycine protons, which is approximately 15 times T1 (�g. 2.13(b)). The decay constant

TS in the presence of rf locking was measured as TS = (17.0 ± 0.5) seconds (23 times T1,

see �g. 2.13(b)). We used a WALTZ-16 modulation of the applied irradiation at a nuta-

tion frequency of 2.0 kHz, which is su�ciently strong to isolate the coherent singlet-triplet
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Figure 2.14: E�ciency of Magnetisation-to-Singlet transfer. Shown are the amplitudes of the NMR
signal from the sequence in �g. 2.13(a) following variation of: (a) the echo delay τ = π/|2Ω|; (b)
the number of echoes N180 performed in the �rst train of M2S and (c) the number of echoes N90

performed in the second train of M2S. Each displayed spectral region has width 100 Hz.

conversion.[65] A delay of 4T1 ≈ 3.0 seconds was left before applying the spin lock to allow

the equilibration of triplet populations. These results con�rm it is not necessary, in the

nearly-equivalent case, to force coherent isolation of the singlet state using rf locking. Co-

herent evolution between singlet and triplet states is already suppressed by the internuclear

J coupling, as predicted by the theory of ref. [65]

The spin echo train parameters used in these experiments were τ = π/|2Ω| = 13.9 ms

and N180 ≈ π/|2θ| = 6, N90 ≈ π/|4θ| = 3, which were found empirically to maximise M2S

and S2M transfer. Variation of excitation through adjusting each parameter about the

maximum is shown in �g. 2.14. The adjustments are made for both the M2S and S2M

parts of the experimental sequence. The optimum values allow precise determination of

the previously unresolved chemical shift separation of the pair, |γHB0∆δ/2π| = (5.0±0.1)

Hz (∆δ ≈ 12 ppb), at 9.4 T and the coupling constant 2JHH = (18.0± 0.05) Hz.

Isotope symmetry breaking via 18O enrichment

Nearly equivalent spin pairs may be induced by substituting close atoms with a di�erent

spin-zero isotope of the same element.[102] The change in the atomic mass modi�es the

vibronic motion of the molecular environment, and causes small isotope shifts which are

usually of the order of parts-per-billion (ppb).[103] These small shifts are su�cient to

provide access to singlet order through the M2S and S2M pulse sequences.

Here we demonstrate that isotope-shift-induced symmetry breaking allows access to

singlet order in the oxalate anion, [(COO)2]2−. Oxalate contains two carbon atoms,

each bonded to two oxygen atoms. In the absence of isotope e�ects the two carbons
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are chemically identical due to inversion symmetry of the whole molecule. Symmetry may

be lost, however, in unsymmetrical isotopologues[104] with the spin-0 isotopes 16O and

18O.[105, 106]

Isotope shifts induced at 13C by 18O are illustrated in �g. 2.15(a). This shows 13C

NMR spectra of natural-abundance oxalic acid dissolved in 1:1 D2
18O:D2

16O at room

temperature. Initially a single 13C NMR line is observed in the spectrum at chemical shift

δC ≈ 162 ppm. The natural isotopic abundance of oxygen is c. 99.8% 16O, 0.2% 18O, and

therefore all oxalate starts as the 16O4 isotopologue. At later times in 18O-enriched water,

peaks at lower chemical shift appear, as acid-catalysed 18O / 16O exchange populates the

other isotopologues.[107]

The NMR spectrum at equilibrium (after 12 hours) contains nine peaks. These are

consistent with the nine distinct permutations of 16O and 18O around [13C1]-oxalate, each

isotopologue being resolved through the isotope shift between 16O and 18O,[105, 108, 106]

and that isotope shifts induced at 13C are di�erent depending on whether 18O is substituted

one or two chemical bonds away.

The `triplet of triplets' intensity pattern indicates the shifts are additive,[103, 106] to

within measurement error. As demonstrated by �g. 2.16(a), 18O isotopic substitution over

the 13C�O single bond at a 1:1 ratio between 16O and 18O, generates isotopologues [1,1-

16O2]-, [1,1-16O18O]- and [1,1-18O2]-oxalate in the ratio 1:2:1. The 13C chemical shifts

of these are respectively 0, 1 and 2 times the one-bond-induced isotope shift from δC in

[16O4]-oxalic acid, giving a triplet multiplet pattern. The possibility of 16O2, 16O18O and

18O2 substitution at the second carbon site splits this `triplet' pattern a second time, this

time by the two-bond isotope shift.

Isotope shifts �tted to the spectrum in �g. 2.15(a) are 1∆C(18O) = −32 ppb across

the 13C�O bond and 2∆C(18O)= −7 ppb across the 13C�C�O bond. The isotope shift

follows the convention as the chemical shift change upon substituting the heavier nucleus:

n∆C(18O) = δC(18O)− δC(16O), where n denotes the number of chemical bonds between

18O and 13C.[103]

Fig. 2.15(b) shows the similar isotopic equilibration of [13C2]-oxalic acid in 50% 18O-

water. In this case the equilibrium spectrum displays �ve peaks with intensity ratio

1:4:6:4:1, separated by the mean isotope shift across one and two bonds (1∆C(18O) +

2∆C(18O))/2. This pattern con�rms the 13C2 spin pairs remain nearly equivalent, despite
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Figure 2.15: 13C NMR spectra recorded following dissolution of [16O4]-oxalic acid in 1:1
D2

18O:D2
16O at 30◦C, 9.4 T (13C Larmor frequency 100 MHz). The 18O isotopologues formed

during acid-catalysed 18O / 16O exchange resolve as separate peaks, due to 18O isotope shifts. The
width of each region shown is 0.15 ppm (15 Hz) and centred at 162.02 ppm.

Figure 2.16: Isotope splitting patterns in the 13C NMR spectra of [13C1]- and [13C2]-oxalic acid.
The dotted lines show the correlation of 18O isotopomers between the singly and doubly 13C-
labelled forms.
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the isotope-induced chemical inequivalence, and that di�erences in chemical shift between

the nuclear sites are always smaller than 1JCC. The NMR spectrum of each isotopologue

contains a single line at the average chemical shift of the spin pair. For instance in [1-

18O13C2]-oxalic acid one of the carbons is shifted by 1∆C(18O) relative to [16O4,13C2]-oxalic

acid, while the other is shifted by 2∆C(18O). The average chemical shift is (1∆C(18O) +

2∆C(18O))/2. The peaks in �g. 2.15(b) and �g. 2.16(b) thereby correspond to isotopomers

with 0, 1, 2, 3 and 4 atoms of 18O, reading from left to right.

Fig. 2.16(b) indicates three of the six 18O isotopologues of 13C2-oxalate exhibit asym-

metric substitution patterns, and therefore are suitable for singlet NMR. These are [16O3,

18O1; 13C2]-oxalate and [16O1
18O3; 13C2]-oxalate, both of which have a 13C chemical shift

di�erence |∆δC| = |1∆C(18O) −2 ∆C(18O)| = 25 ppb, plus the [1,1-16O2;2,2-18O2;13C2]-

oxalate, which has |∆δC| = 2|1∆C(18O)−2 ∆C(18O)| = 50 ppb. As shown by �g. 2.16(b),

however, the 13C peak of the latter isotopologue coincides with that of the symmetric

[1,2-16O2;1,2-18O2;13C2] isotopologue, which makes it more di�cult to observe cleanly.

In order to apply the M2S sequence both τ ≈ 1/|41JCC| and ∆δC must be accurately

known. Above, we have determined the chemical shift di�erences. The value of 1JCC,

however, is unavailable from the 90◦-acquire spectrum due to the extreme strong coupling.

To �nd 1JCC, experiment was performed consisting of a 90◦ radiofrequency pulse followed

by a train of spin echoes, as shown in �g. 2.17(a).

The number of echoes was chosen so as to approximate a 360◦ rotation in the zero-

quantum singlet-triplet subspace for a `guess' value of 1JCC = 100 Hz, which is the mea-

sured value of the scalar coupling in the chemically similar, but weakly coupled molecule

of methyl-ethyl-[1,2,13C2]-oxalic acid diester. At 9.4 T, this number of echoes corresponds

to N360 = round(|2π/2θ|) = 100 echoes.

The data in �gure �g. 2.17(b) show the signals obtained forNecho = 100 against di�erent

values of τ . The initial 90◦ pulse in this experiment creates transverse coherences |T±1〉 〈T0|

and |T0〉 〈T±1| from starting longitudinal polarisation. For nominal τecho, the train of echoes

is expected to invert the sign of both coherences, resulting in an inverted amplitude during

signal acquisition. The peak intensities of [16O3,18O1,13C2]- and [16O1,18O3,13C2]-oxalate,

highlighted in red, are most negative for τ = (2.85± 0.005) ms (composite pulse duration

τp = 44 µs). From this resonant value of τ , the magnitude of 1JCC is determined through

the back-calculation as (87.7± 0.2) Hz. Note that the resonance is extremely narrow, due
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to the large number of echoes performed.

The spectra in �g. 2.17(c) were recorded using τ = 2.85 ms (and τp = 44 µs) and

incrementing the number of echoes performed. This stack shows the resonant mixing

induced in the zero-quantum subspaces of [16O3,18O1,13C2]- and [16O1,18O3,13C2]-oxalate.

The inverted spectrum at N = 110 echoes corresponds 360◦ rotation in the subspace,

where observable triplet-triplet coherence is restored with negative sign. Zero intensity at

Necho ≈ 55 echoes and N ≈ 170 echoes corresponds respectively to 180◦ and 540◦ rotations

in the subspace. At these points all of the starting triplet-triplet coherence is converted

into non-observable singlet-triplet coherence.

With 1JCC and ∆δ both known the M2S-S2M pulse sequence as shown in �g. 2.18(a)i�

iv was attempted. Immediately before the experiment, dissolved paramagnetic oxygen (O2

gas) was removed from the sample by bubbling oxygen-free nitrogen through the solution

for 15 minutes, followed by degassing under vacuum with the solution in a Young valved

glass tube.

Singlet order I(S0T0)
z was excited using N180 = 55 and N90 = 27 spin echoes and

spin echo delay τ = 2.85 ms corresponding to nominal 180◦ and 90◦ rotations in m = 0

subspace of the singly asymmetric isotopomers [16O3
18O1]- and [16O1

18O3]-oxalate, taking

an overall time of 0.42 seconds (�g. 2.18(a)i). Singlet order was left undisturbed in high

�eld for a time THF, for relaxation (�g. 2.18(a)ii). At the end of this waiting time a sequence

(G1)− (9054.7◦)− (G2)− (9054.7◦)− (90180◦)− (G3) was applied, (�g. 2.18(a)iii), where G1,

G2 and G3 are sine-bell pulsed-�eld z gradients with respective strengths +0.8 G cm−1,

−0.8 G cm−1 and −0.8 G cm−1 and durations 4.4 ms, 2.4 ms and 2.0 ms. As explained

later, in �2.5.5, the gradients induce a z rotation of the nuclear spin polarisation through

an angle that depends on position within the sample volume. The radiofrequency pulses

sample the rotation angle so as to cause destructive interference of rank-1 and rank-2 spin

order,[109] while leaving singlet nuclear spin order undisturbed, since it has rank zero.

This procedure is a more general version of the Only Parahydrogen SpectroscopY (OPSY)

technique used frequently in parahydrogen NMR (see �2.5.5).[110] After this `�ltration',

the `pure' singlet-triplet population di�erence order was reconverted into observable triplet-

triplet single quantum coherences, applying the M2S sequence in reverse (�g. 2.18(a)iv).

The experiment was performed for several values of THF as shown in �g. 2.18(a)v and the

resulting spectrum integrals were �t by a monoexponential decay curve exp(−THF/TS) to
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yield the singlet decay constant TS = (55± 5) seconds.

The singlet lifetime is approximately three times T1, measured later as (21 ± 0.2)

seconds on the same sample at 9.4 T by inversion recovery. The ratio of only 2-3 times T1

is slightly disappointing, however, in view of the degassing precautions taken to eliminate

dissolved paramagnetic oxygen.[111] This may suggest that oxalate relaxes under a strong

spin-rotation mechanism, due to the molecule's low moment of inertia. Intramolecular

dipole-dipole or scalar relaxation may also be possible, since oxalic acid dissolved in water

exists mainly as the monoanion [C2DO4]− owing to high acidic strength; pKa = 1.5 for

the diprotic species, 4.5 for the dianion. CSA-CSA correlations may also be signi�cant. A

study of decay rates versus B0 may help determine the likely singlet relaxation mechanism.

The spectra in �g. 2.18(a)v do not show any evidence of singlet order from the un-

symmetrical [1,1-16O2;2,2-18O2;13C2]-oxalate. This is because the chemical shift di�erence

is twice that for [16O3
18O] and [16O18O3]-oxalate, therefore the rotation angles θ in the

zero-quantum subspace are doubled also. During the �rst spin echo train this results in

360◦ refocusing of the triplet-triplet coherence. As a result, no singlet order is produced.

To summarise: asymmetric induction is possible in 13C2 oxalate by exploiting 18O/18O

isotope shifts. Despite the induced asymmetry being ≈ 30 times weaker than the carbon-

carbon J coupling, it still permits e�cient coherent access to the nuclear singlet order.

Isotope-induced symmetry breaking is expected to be useful in singlet NMR of other

molecules, plus multiple-quantum spectroscopy of strongly coupled spin pairs in general.

Apart from 16O and 18O, useful shifts may be generated by other isotopic pairs, for instance

32S and 34S (both spin-0), plus 35Cl and 37Cl (both spin 3/2, but with rapid self-decoupling

due to quadrupolar relaxation).

Strongly coupled pairs in low magnetic �eld

Conversion between |T0〉 and |S0〉 may be accomplished completely outside the spectrom-

eter �eld via synchronised echo trains with pulses applied at audio frequency. This has

been demonstrated by Pileio and co-workers by pre-polarisation of 15N2O at 7 T, followed

by transfer to the 2.2 mT fringe �eld, at which: the Larmor frequency |γNB0| is of order

10 kHz; the chemical shift frequency di�erence (82 ppm)×|γNB0| ≈ 0.8 Hz is an order of

magnitude smaller than the 1JNN = 8 Hz scalar coupling.[69]

In a separate work on 15N2O, the authors demonstrated the conversion between |S0〉
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Figure 2.19: Bloch spheres for: (a) a single spin-1/2, showing �elds present when an rf �eld
ωrf(Ix cos(φrf) + Iy sin(φrf)) is applied in the presence of a carrier frequency o�set ωoffIz; (b) the
m = 0 singlet-triplet subspace of a nearly equivalent spin-1/2 pair, showing the e�ective �eld of a
J-synchronous spin echo train and an error ∆J in the spin-spin scalar coupling.

and |T0〉 is also possible by applying a z magnetic �eld at the |T0〉 ↔ |S0〉 transition

frequency.[68] Storage and retrieval of longitudinal magnetisation using these techniques

paves a way for singlet NMR entirely outside high-resolution magnets. This gives a promis-

ing outlook for low-�eld (e.g. SQUID [112]) detection, imaging and remote sensing using

singlet NMR.

J-broadband spin echo trains

In its current form, the synchronised-echo pulse sequence is extremely narrowband with

respect to variation in Ω, (J , in the extreme strong coupling limit c.f. �g. 2.14(a) and �g.

2.17(a)). One may ask whether more broadband excitation is possible. Both the J coupling

and chemical shift di�erence, hence Ω, may change subtly, for instance on changing the

temperature or solvent environment around the spins.

Inspiration for a `J-broadband' magnetisation-singlet conversion procedure in near-

equivalence pairs is sought from Shaka, who has addressed the problem of ultrawideband

spin-1/2 inversion.[113, 114] For an isolated spin-1/2, an rf �eld induces the following

rotation in the {|α〉 , |β〉} Bloch sphere:

• a transverse rotation with angular velocity ωrf(cos(φrf), sin(φrf), 0), induced by the

nominal rf �eld ωrf(Ix cos(φrf) + Iy sin(φrf));

• a longitudinal rotation with angular velocity ωoff(0, 0, 1) due to the o�set ωoffIz.

As illustrated in �g. 2.19(a), the transverse rotation mediates the point-to-point transfor-

mation Iz into −Iz, while rotation about the longitudinal axis acts as a suppressant.
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Using a nonlinear-optimisation algorithm on a computer, Shaka developed `phase-

alternating' composite pulses to counteract the longitudinal component and obtain uni-

form, broadband inversion of the spin-1/2. `Phase-alternating' refers to the con�nement

of radiofrequency phase to a single axis φrf = ±180◦, which was done both for simplicity

of computation and for ease of implementation on the spectrometer. The shortest phase-

alternating pulse found was (34.20)(123180)(197.60)(288.8180), which gave > 99% longitu-

dinal inversion Iz → −Iz up to dimensionless rf o�set ωoff/|ωrf | = ±1.0. In contrast, the

constant-phase rf pulse only inverts e�ciently at exact resonance.

Shaka's phase-alternating pulses are amenable to the point-to-point inversion I(S0T0)
z →

−I(S0T0)
z , in view that J-asynchronous spin-echo trains induce similar rotations in the

{|T0〉 , |S0〉} subspace.

• a transverse rotation with angular velocity ∆ω0(1, 0, 0) from nominal J-synchronised

spin echo trains (∆ω0 = γB0∆δ);

• a longitudinal rotation with angular velocity 2π∆J(0, 0, 1), due to an error ∆J in

the J coupling.

These rotations are indicated in �g. 2.19(b).

A J-broadband sequence analogous to (34.20)(123180)(197.60)(288.8180) is shown in

�g. 2.20. Approximate transverse rotations β◦0 in the m = 0 Bloch sphere are obtainable

via Nβ = round(π(β◦/360◦)/θ) spin echoes. Phase alternation of these rotations can be

applied by inserting 180◦ rf pulses between trains of spin echoes. The latter can be veri�ed

using the identity Rz(180◦)β0Rz(180◦) ≡ β◦180.

Computer simulations show that the J-broadband echo sequence performs roughly

as expected. By analogy with Shaka's single spin inversion, the 99% inversion band-

width of I(S0T0)
z for (34.20)(123180)(197.60)(288.8180) is a dimensionless error in J equal

to |2π∆J/(∆ω0/2)| < 1. The plot in �g. 2.21 shows the calculated amplitude of I(S0T0)
z

against 2π∆J/(∆ω0) after applying (black curve) the non-compensated and (red curve)

J-compensated spin echo sequences. Calculations were performed in SpinDynamica [101]

using J = 100 Hz and ∆ω0/2π = 25 Hz for the nominal interaction parameters of the

spin pair. One can con�rm the much-widened inversion pro�le. Explicit |T0〉 and |S0〉

trajectories during the two pulse sequences are compared in �g. 2.22(a) to (d) for instances

of ∆J = 0 and ∆J = +∆ω0/2.
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Figure 2.20: Pulse sequences for point-to-point inversion I
(S0T0)
z → −I(S0T0)

z : (a) the nominal
`constant rotation' spin echo train, where the sum of spin echo delays τ and the 180◦ pulse length is
equal to (2τ+τp) = π/

√
(2πJ)2 + (∆ω/2)2 ; (b) phase-alternate sequence, which involves spin echo

trains interleaved with 180◦ rf pulses. The length of each train is determined by the discretisation
formula Nβ = round(π(β◦/360◦)/θ).

Phase-alternating rotations are also available for point-to-point 90◦ rotations. The

shortest available sequences are (590)(149180) and (580)(140180)(1720).[115] These may be

useful for transforming I(S0T0)
y ↔ I

(S0T0)
z during the second spin echo train of the `M2S'

sequence.
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Figure 2.21: Calculated performance I(S0T0)
z /I

(S0T0)
z (0) versus an error ∆J in the nominal spin-spin

J coupling during the sequences shown in �g. 2.20(a) and (b): (black curve) a nominal (1800) ro-
tation in the Bloch sphere; (red curve) phase-alternate rotations (34.20)(123180)(197.60)(288.8180).
J = 100 Hz and ∆ω0/2π = 25 Hz are the nominal interactions between the spin pair.

Figure 2.22: Simulated trajectories of (blue) |S0〉 and (black) |T0〉 states starting from an initial
wavefunction |ψ〉 (0) = |T0〉. Interaction parameters were J = 100 Hz and ∆ω0/2π = 25 Hz. The
plots show: (a) complete interchange of the states during the sequence �g. 2.20(a) with ∆J = 0;
(a) incomplete conversion for the same sequence using ∆J = +∆ω0/2; (c) trajectory under the
phase-alternating echo sequence (34.20)(123180)(197.60)(288.8180) in �g. 2.20(b) at ∆J = 0 and
(d) trajectory for the same sequence at ∆J = +∆ω0/2. In (d) there is full inversion even under
the large J o�set, albeit at the cost of trebling the length of the pulse sequence.
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2.2.4 Singlet excitation using transition-selective rf �elds

Selective rotation in the single-quantum subspaces {|T jk±1〉 , |S
jk
0 〉} can be induced on ap-

plying narrowband rf �elds. This was demonstrated almost 20 years ago by Chandrakumar

and Velan for production of two-spin longitudinal order (product order IjzIkz).[116] Here a

more detailed theoretical treatment is provided for the speci�c conversion between Iz and

T00, in particular in the near-equivalence regime.

Consider, for simplicity, two isolated and chemically inequivalent spins-1/2. Under

free evolution the �eld experienced by the m = 0 states is given by the magnitude

Ω(S0T0) =
√

(2πJ)2 + (γB0(δj − δk))2 and orientation θ = arctan(−γB0(δj − δk)/2πJ).

The eigenstates of the Hamiltonian are de�ned

|φ1〉

|φ2〉

|φ3〉

|φ4〉

=


1 0 0 0

0 1 0 0

0 0 cos (θ/2) sin (θ/2)

0 0 − sin (θ/2) cos (θ/2)


|αjαk〉

|βjβk〉

(|αjβk〉+ |βjαk〉)2−1/2

(|αjβk〉 − |βjαk〉)2−1/2

. (2.102)

In this bases, the diagonal matrix representation of the Hamiltonian appears as

H =
1

2


πJ + ω0

j + ω0
k 0 0 0

0 πJ − ω0
j − ω0

k 0 0

0 0 Ω− πJ 0

0 0 0 −Ω− πJ

 , (2.103)

where ω0
j = −γjB0(1 + δj) are the Larmor frequencies of the nuclei.

Single-quantum transitions between eigenstates occur at frequencies equal to the di�er-

ence in energy eigenvalues. The list below orders the transitions from low to high frequency,

assuming positive J :

(φ4 ← φ2) : (ω0
j + ω0

k − 2πJ − Ω)/2 (2.104)

(φ1 ← φ3) : (ω0
j + ω0

k + 2πJ − Ω)/2 (2.105)

(φ3 ← φ2) : (ω0
j + ω0

k − 2πJ + Ω)/2 (2.106)

(φ1 ← φ4) : (ω0
j + ω0

k + 2πJ + Ω)/2. (2.107)
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The main feature of this treatment is that the `outermost' transitions denoted in eqs.

(2.104) and (2.107) connect |T±1〉 with the eigenstate |φ4〉 that has largest singlet com-

ponent. The transitions eqs. (2.105) and (2.106) connect |T±1〉 with the minimum singlet

component. Selective exciting of these manifolds may therefore allow net transfer of triplet

population into singlet population, and vice versa.

Subspace restriction

Consider shifting the carrier frequency to +(2πJ + Ω) above the mean single-quantum

frequency. This places the transition φ1 ← φ4 on resonance. The Hamiltonian in this new

frame (denoted by prime) is represented by the matrix

H ′ =
1

2


−Ω− πJ 0 0 0

0 Ω + 3πJ 0 0

0 0 Ω− πJ 0

0 0 0 −Ω− πJ

 . (2.108)

The spectrum shift is con�rmed by consulting the eigenvalue di�erences:

(φ4 ← φ2)′ : −2πJ − Ω (2.109)

(φ1 ← φ3)′ : −Ω (2.110)

(φ3 ← φ2)′ : −2πJ (2.111)

(φ1 ← φ4)′ : 0. (2.112)

A constant-amplitude rf �eld is applied at the frequency of this new frame. The Hamil-

tonian for the rf �eld H ′rf = ωrfIx is represented by

H ′rf =
ωrf√

2


0 0 cos (θ/2) sin (θ/2)

0 0 cos (θ/2) sin (θ/2)

cos (θ/2) cos (θ/2) 0 0

sin (θ/2) sin (θ/2) 0 0

 . (2.113)

The sine and cosine factors in eq. (2.113) can be interpreted by the fact that the rf �eld

does not bridge the homonuclear spin symmetry, as 〈TM |H ′rf |S0〉 = 0. The e�ective rf
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�eld experienced by each transition is thus proportional to the triplet amplitude of the

connected states. Outer transitions φ4 ← φ2 and φ1 ← φ4 experience an rf amplitude

scaled by sin(θ/2) whilst the inner ones φ1 ← φ3 and φ3 ← φ2 scale by cos(θ/2). This

is the familiar `roo�ng' phenomenon,[4] where inner J-doublet transitions of a strongly

coupled spin-1/2 pair are more intense in the 90◦-acquire spectrum than the outer ones.

For single-transition selectivity the rf �eld strength must be weak to satisfy |ωrf/2π| �

|J |. Under this condition the o�-diagonal elements of H ′rf leave nonresonant transitions

unperturbed. The Hamiltonian is secular and perturbs only the resonant two-level system:

H ′rf +H ′ =
1

2


−Ω− πJ � � ωrf sin(θ/2)

√
2

� � � �

� � � �

ωrf sin(θ/2)
√

2 � � −Ω− πJ

 . (2.114)

On exponentiation of eq. (2.114) one may see the propagator corresponds to a rotation in

the {|φ1〉 , |φ4〉} subspace:

exp[−i(H ′rf +H ′)t] = eiAt


cos (Bt) � � −i sin (Bt)

� � � �

� � � �

−i sin (Bt) � � cos (Bt)

 . (2.115)

where A = (Ω + πJ)/2 and B = ωrf sin (θ/2)/
√

2 . This result is exact, provided the rf

�eld is weak compared to J .

Magnetisation-singlet conversion

The o�-diagonal elements in eq. (2.115) is maximised for rf duration τrf = |π/2B|. This

swaps identities of the connected states, meaning that if one starts with a longitudinal

polarisation

p(Ijz + Ikz) = p(|T+1〉 〈T+1| − |T−1〉 〈T−1|), (2.116)
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the application of the weak rf �eld leads to a singlet-excess given by

eq. (2.116)
Hrf×τrf−−−−−→ p(|φ4〉 〈φ4| − |T−1〉 〈T−1|) (2.117)

= p
[
cos2(θ/2) |S0〉 〈S0|+ sin2(θ/2) |T0〉 〈T0|

− sin(θ/2) cos(θ/2)
(
|T0〉 〈S0|+ |S0〉 〈T0|

)
− |T−1〉 〈T−1|

]
. (2.118)

The singlet polarisation is determined by projection onto T00 which gives

pS = p× (T00 | |φ4〉 〈φ4| − |φ2〉 〈φ2| )
(T00|T00)

=
p

2
× (1 + cos(θ)). (2.119)

It is clear that pS increases as the spins become more strongly coupled for the target

eigenket |φ4〉 becomes richer in |S0〉. Yet while there is potentially twice the singlet po-

larisation available for near-equivalent spins than those weakly coupled, this polarisation

builds up much more slowly. In the weakly coupled limit |θ| → π/2, the duration τrf tends

to π/|ωrf |, (N.B. equivalent to a spin-selective 180◦ rf pulse). For near-equivalence spin

pairs, (small |θ|), τrf tends to

τrf ≈
π
√

2

ωrfθ
+O(θ3). (2.120)

The conversion time is inversely proportional to θ, so approaches in�nity as θ → 0.

Simulations

Trajectories for Iz and T00 during weak rf irradiation are demonstrated in �g. 2.23 for two

very strongly coupled spin-1/2 pairs (see �g. 2.23(a) and �g. 2.23(b)) and a weakly coupled

pair (see �g. 2.23(c)). Trajectories are plotted from time t = 0, where starting spin order

is de�ned as Iz, until time t = 2τrf = π
√

2 /|ωrf sin (θ/2)|, such that in each case the width

of the plot corresponds to a 360◦ rotation of the resonant transition. Midway time points

therefore correspond to where maximum singlet excitation is expected. These maxima

occur as predicted, and the singlet amplitude agrees with the values of pS predicted by

eq. (2.119) (grey lines). The plots (a) and (b) con�rm half the starting Iz remains at this

time, in accordance with eq. (2.117).
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Figure 2.23: Simulated magnetisation-singlet order interconversion during irradiation under a weak
rf �eld. The �eld is centred upon the rightmost transition in the multiplets of spin pairs with: (a)
J = 100 Hz, γB0∆δ/2π = 25 Hz (θ = 14◦); (b) J = 100 Hz, |γB0∆δ/2π| = 50 Hz (θ = 26.5◦);
(c) J = 25 Hz, |γB0∆δ/2π| = 200 Hz (θ = 83◦). The trajectories on each right-hand side show
amplitudes of Iz (black) and T00 (blue) through a 360◦ excitation of the selected transition, in
each case using an rf amplitude |ωrf/2π| = 10 Hz. The dashed grey lines indicate the theoretical
maximum conversion amplitude predicted by eq. (2.119).
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Comparison with spin echo method

In the limit of small |θ|, singlet excitation by the transition-selective rf method is compet-

itive with the spin echo method described in �2.2.3. Both methods excite singlet order to

the same e�ciency pS = p, and do so within similar timescales.

The duration of each method is proportional to 1/|∆δ|. For the spin echo method,

echoes (τ − 180◦ − τ) are arranged with τ = π/Ω with approximately |3π/4θ| echoes

required for optimum Iz → T00 conversion. For small |θ|, the total conversion time is

τechoes ≈
3π2

4

1

|γB0∆δ|
. (2.121)

A weak rf pulse excites maximum T00 over the timescale τrf from eq. (2.120). Assuming the

rf amplitude as multiple |K| � 1 of the J coupling, i.e. ωrf = 2πJ ×K, this is expressible

in the form

τrf ≈
π
√

2

K

1

|γB0∆δ|
. (2.122)

Typically, one would expect to use a value K ≈ 0.1 to 0.2, to ensure narrowband exci-

tation about the Larmor frequency. Eqs. (2.121) and (2.122) are therefore comparable in

magnitude, though the former (eq. (2.121)) is usually shorter

In regards to errors, the synchronised echo train method is superior. Phase cycling of

successive spin echoes guards exceptionally well against both frequency o�sets and ampli-

tude inhomogeneity in the rf pulses, as seen in �2.2.3. In the weak-rf method, rf compen-

sation is more of a problem since the subspace-speci�c rotation is induced only near exact

resonance. As an illustration, consider �g. 2.24(a) where the conversion amplitude pS/p

of Iz into T00 is plotted versus a dimensionless rf frequency o�set ωoff/ω
0
rf and amplitude

ωrf/ω
0
rf . The spin system assumed is an isolated spin-1/2 pair with parameters J = 100

Hz, |γB0∆δ| = 25 Hz (θ = 14◦), and the nominal rf �eld strength chosen as ω0
rf = 10 Hz.

It is clear that the excitation performance diminishes rapidly versus rf o�set. The singlet

excitation becomes extremely ine�cient at o�sets |ωoff/ω
0
rf | as low as 10% (±2 Hz in this

example).

The secularity of weak nonresonant rf �elds suggests that shaped pulses and other engi-

neered pulses,[117] including composite pulses,[60] are unable to compensate for frequency
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Figure 2.24: Singlet excitation via weak rf-irradiation is narrowband with respect to rf pa-
rameters. The plot in (a) shows calculated values of pS/p after irradiation for nominal time
τrf = π/2|

√
2 ωrf0 sin(θ/2)| under conditions of a dimensionless o�set ωoff/ω

0
rf (horizontal scale)

and dimensionless rf amplitude ωrf/ω
0
rf (vertical scale). Parameters for the system are J = 100

Hz, |γB0∆δ| = 25 Hz, and the nominal rf �eld strength is chosen arbitrarily as ω0
rf = 10 Hz. In

(b) the excitation sequence comprises a sandwich of pulses (τrf/2)(τrf)(τrf/2), where the central
pulse is phase-shifted by 90◦; this can be thought as a (90◦0)(180◦90)(90◦0) composite rotation. In (c)
the analogous rotation (90◦0)(240◦90)(90◦0) is applied. Colours of the shaded regions denote singlet
excitation pS/p > 0.5 (yellow), pS/p > 0.8 (orange), pS/p > 0.9 (red) and pS/p < 0.2 (blue region).

o�sets. Fig. 2.24(b) and �g. 2.24(c) show singlet amplitudes after weak rf (90◦0)(180◦90)(90◦0)

and (90◦0)(240◦90)(90◦0) composite weak-rf pulses. The `�ip angle' in each of these pulse is

understood as that induced the Bloch sphere of the resonant single-transition subspace

(e.g. 180◦0 ≡ τrfIx, 90◦90 ≡ 0.5τrfIy). Comparison with �g. 2.24(a) shows that excitation

may be protected to a small extent using composite pulses, although not beyond o�sets

ωoff/ω
0
rf ≈ 1. According to these results, the J-sychronised-echo sequence (2.2.3) per-

forms better against unstable and inhomogeneous rf at low power. Note that the multiple

spin-echo sequence has its resonance condition on the zero-quantum frequency, not the

single-quantum frequency. This falls to setting the spin echo timing accurately, which is

vastly less prone to error.
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2.3 Heteronuclear-mediated singlet NMR

The transfer of singlet spin order to neighbouring heteronuclei has extensive history within

parahydrogen-enhanced NMR (PHIP). It is a natural wish in PHIP to hyperpolarise nuclei

other than just the protons and extend the scope for signal enhancement.[118] Cross-

polarisation of this kind is useful not only for NMR observation at other chemical sites,

but also because low-gamma nuclei may relax more slowly than the protons and can provide

a storage haven for the hyperpolarised spin order.[119]

First experiments to excite 13C spin order from antisymmetric parahydrogen order used

pulse sequences based upon INEPT.[120] Later, midway through the 2000's, Goldman and

Jóhanesson demonstrated a range of other methods including diabatic �eld cycling and

pulse sequences for both low and high B0 magnetic �elds.[121, 122, 123] These methods

sparked parahydrogen-induced hyperpolarisation an immediate prominence in biomedical

MRI, in particular of 13C in metabolites in vivo, including succinic acid,[124] a participant

in the Krebs cycle. More elaborate pulse sequences have since been developed,[58, 63]

including some designed for time-optimal polarisation transfer.[125]

In general, successful heteronuclear transfer of spin order from parahydrogen requires

magnetic inequivalence at the two proton sites, either or both that: (i) the two proton sites

occupy chemically inequivalent sites, and have di�erent chemical shifts;[30] (ii) the proton

pair has unequal J couplings to a heteronucleus contained within the molecule. Recently,

a demonstration was made showing that (ii) su�ces for PHIP-NMR in a zero magnetic

�eld environment.[126]

The present section applies the idea of heteronuclear-induced symmetry-breaking to

the problem of homonuclear magnetisation-to-singlet conversion. Chemically and magnet-

ically equivalent spin pairs in high-symmetry molecules may become unsymmetrical on

substitution with a magnetic heteronucleus, for instance a nearby 13C or 15N. We have

used this approach to obtain singlet relaxation data in otherwise-equivalent spin pairs.

This provides useful information to help understand the singlet relaxation phenomenon.

2.3.1 Heteronucleus-induced symmetry breaking

The following analysis takes the same approach as �2.1, where heteronuclear spin interac-

tions are decomposed into a singlet-triplet operator basis. The spin system is assumed to
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contain two homonuclear spins-1/2, denoted `I', plus heteronuclei `S', where γS 6= γI .

The basis for decomposing the Hamiltonian is chosen as the ket-bra product operator

basis (|lI ,mI〉 ⊗ |lS ,mS〉)(〈l′I ,mI | ⊗ 〈l′S ,mS |). For all practical �eld strengths |B0| > µT,

the secular approximation partitions the free-evolution Hamiltonian into block-diagonals

in the mI and mS quantum numbers. For simplicity, and in consideration of the likely

heteronuclear abundance, the `S' nuclei are chosen to be spin-1/2 (includes 13H, 13C, 15N,

19F and 31P), but in general the approach applies to heteronuclei with spin quantum

number greater than 1/2.

For a single `S'-spin, singlet-triplet transitions are allowed under a di�erence in JIjS

and JIkS . The Hamiltonian may be written

HJ = 2πJIjSIjzSz + 2πJIkSIkzSz (2.123)

= π(JIjS + JIkS)(IjαIkα − IjβIkβ) + π(JIjS − JIkS)I(S0T0)
x (Sα − Sβ)︸ ︷︷ ︸

mI = 0, mS = 0

.(2.124)

The nondiagonal part is proportional to I(S0T0)
x and indicates zero-quantum singlet-triplet

transitions of the `I' spins at the rate π∆JIS . Geometrical representation of this o�-

diagonal �eld is shown in �g. 2.25(b) along with the homonuclear II coupling, which as

seen previously (�2.1) behaves as a z rotation in the Bloch sphere. Comparing with �2.1,

it can be seen that as far as the homonuclei are concerned, IS couplings behave in an

identical way to chemical shifts. This con�rms singlet order is accessible in chemically

equivalent homonuclear pairs (AA′X systems), provided ∆JIS 6= 0.

If there is more than one heteronucleus the situation is more complicated, but in general

homonuclear singlet-triplet conversion still requires unsymmetrical J couplings. A case

worth considering in detail is that of two chemically equivalent I spins plus two chemically

equivalent S spins where JIS = JI′S′ and JI′S ≡ JIS′ (AA′XX ′ system, see �g. 2.25(c)

inset). This `rectangular' topology exists in quite a few high-symmetry molecules including

[1,2-13C2] ethyne and [1,4-13C2] or [2,3-13C2] fumaric and maleic acids. The heteronuclear
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Figure 2.25: Illustration of �elds induced in the non-diagonal subspaces of the J Hamiltonian: (a)
for two chemically equivalent homonuclei, plus one heteronucleus; (b) for two homo and heteronu-
clear pairs, both chemically equivalent.

J Hamiltonian decomposes in the four-spin operator basis decomposes into

HJ = 2π
(
JAXIAzSXz + JAX′IAzSX′z + JA′XIA′zSXz + JA′X′IA′zSX′z

)
(2.125)

≡ π(IAz + IA′z)(JAX + JA′X)(SXz + SX′z)

+π(IAz − IA′z)(JAX − JA′X)(SXz − SX′z)

= π(JAX − JA′X)I(S0T0)
x S(S0T0)

x︸ ︷︷ ︸
mI = 0, |mS | = 1

+π(JAX + JA′X)IzSz, (2.126)

where JAX = JIS ≡ JI′S′ = JA′X′ and JA′X = JI′S ≡ JIS′ = JAX′ .

This example stresses the magnetic equivalence symmetry refers completely to the

symmetry of the spin Hamiltonian, not the molecular symmetry. Singlet-triplet conversion

is mediated by the scalar coupling di�erence (JAX−JA′X). The di�erence in heteronuclear

couplings induces rotations in the triplet-triplet and singlet-triplet product spaces of the

two spin pairs, as is represented in �g. 2.25(c). For completeness, the Bloch spheres in �g.

2.25(c) show also the �eld axes of the homonuclear J couplings, whose sum JAA′ + JXX′

acts to preserve singlet-singlet and triplet-triplet product states.
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2.3.2 Experimental demonstrations

The analysis of heteronucleus-induced symmetry-breaking suggests that existing pulse se-

quences for magnetisation-singlet conversion, for instance Sarkar's sequence, may be used

simply by replacing all dependences of the chemical shift di�erential with the relevant het-

eronuclear J di�erence. A scheme for heteronuclear singlet NMR is thereby summarised in

�g. 2.26. These sequences are explained through the experimental demonstrations below.

Sarkar's sequence for `strong' heteronuclear couplings

Sarkar's sequence (see �2.2.2 and �g. 2.26(a)i) was used unmodi�ed to excite singlet order

on the protons in the molecule 2,5-dibromothiophene, hereafter abbreviated 2,5-DBT. Fig.

2.27(a) shows the proton sites in 2,5-DBT are interchangeable by a C2v mirror symmetry

operation on the molecule and therefore chemically equivalent. Ordinarily the molecular

symmetry precludes excitation of singlet order on the protons. Heteronuclear symmetry-

breaking, however, is possible where the ring sites C2(≡ C5) or C3(≡ C4) are occupied by

13C. Both carbon sites are situated outside the mirror plane bisecting the two protons and

may therefore generate a J-coupling di�erential.

Values of 3JHH and the JCH couplings for [13C1]2,5-dibromothiophene are displayed in

�g. 2.27(b) and �g. 2.27(c). These were determined by �tting the multiplets of the 90◦-

acquire 13C NMR spectra for a sample containing 0.2 M 2,5-dibromothiophene dissolved

in d6-DMSO, recording at 9.4 T and room temperature. Naturally abundant [2-13C] and

[3-13C] isotopologues were each present at 4.4 mM concentration, due to the approximate

1.1% 13C abundance.

The couplings in 2,5-DBT satisfy |ω(S0T0)
x | � |ω(S0T0)

z |, i.e. that |π∆JCH| � |πJHH|,

which is the regime that Sarkar's sequence is applicable (�g. 2.26(a)i). An initial 90◦ pulse

on the I spins rotates the equilibrium longitudinal polarisation into transverse coherences.

The ensuing spin echo, denoted (τa − 180◦ − τa) where τa = 1/|4JHH|, transforms these

into antiphase coherences, where the 180◦ 1H pulse refocuses the proton chemical shifts
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Figure 2.27: Scalar couplings and isotropic chemical shifts obtained from 13C NMR spectra of the
13C1-containing isotopologues of 2,5-dibromothiophene, measured at 9.4 T on a 0.2 M solution in
degassed d6-DMSO. The black dot in (b) and (c) denotes the position of 13C.

and the heteronuclear couplings:

pIIz ≡ pI

(
|T+1〉I 〈T+1|I − |T−1〉I 〈T−1|I

)(
|α〉S 〈α|S + |β〉S 〈β|S

)
(2.127)

90◦90−−→ echo−−→ pI√
2

(
−i(|T+1〉I + |T−1〉I) 〈T0|I +

i |T0〉I (〈T+1|I + 〈T−1|I)
)(
|α〉S 〈α|S + |β〉S 〈β|S

)
.(2.128)

The antiphase coherences are then converted into zero-quantum triplet-triplet coherences

by the 45◦ pulse:

eq. (2.128)
45◦0−−→ pI

2

(
(|T+1〉I + |T−1〉I)(〈T+1|I + 〈T−1|I)

−2 |T0〉I 〈T0|I
)(
|α〉S 〈α|S + |β〉S 〈β|S

)
(2.129)

ZQ only−−−−−−→ pI
2

(
Iα + Iβ − 2(|T0〉I |α〉S)(〈T0|I 〈α|S)

−2(|T0〉I |β〉S)(〈T0|I 〈β|S)
)
. (2.130)

Free evolution for time τb = 1/|∆JIS | converts the products of the form |T0〉I |α〉S into

|S0〉I |α〉S via a 180◦ rotation about I(S0T0)
x , as indicated by �g. 2.25(a). The experimental

values of τb found to give optimum singlet excitation agree with this formula. These were

found to be τb = 60 ms for [2-13C]-2,5-DBT and τb = 6.0 ms for [3-13C]-2,5-DBT.

The zero-quantum density operator after time τb is given �nally by

eq. (2.130)
τb−→ pI

2

(
Iα + Iβ − 2(|S0〉I |α〉S)(〈S0|I 〈α|S)

−2(|S0〉I |β〉S)(〈S0|I 〈β|S)
)

(2.131)

≡ pI
2

(
Iα + Iβ − 2 |S0〉I 〈S0|I

)
, (2.132)
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The last line indicates a singlet polarisation pS (on the `I' spins) equal to pI . As only

the I spin states are transformed in this sequence, Sarkar's zero-quantum dephasing and

J-broadband techniques may be used if desired (2.2.2).

Singlet order on 2,5-DBT was isolated (with the sample residing in high �eld) by apply-

ing a 3 kHz WALTZ-16 modulated rf �eld at the proton Larmor frequency. The resonant

�eld has the e�ect of `switching' the AA'X spin con�guration into A2X by suppressing all

CH couplings. The locking is applied for the entire duration of the storage time.

For detection, singlet order was converted into to antiphase carbon magnetisation IzSx

by removing the spin decoupling �eld, executing Sarkar's sequence in reverse chronological

order back to in-phase coherence on the I spins, Ix, (�g. 2.26(b)i) and performing INEPT

(�g. 2.26(c)ii). Observation on the carbon channel, as opposed to the proton channel (�g.

2.26(c)i) guarantees 13C site resolution, plus avoids the large proton background resulting

from the all-12C isotopologues, which contain magnetically equivalent proton pairs. An

INEPT half-echo delay τIN = 16 ms was used to give optimal cross-polarisation under the

15 Hz JCH coupling in [2-13C]2,5-dibromothiphene. For [3-13C]2,5-dibromothiphene the

delay used was τIN = 50 ms, optimal for the 5 Hz 2JCH coupling. To distinguish signals

coming from the starting spin order a phase cycle {0◦, 180◦} was used on both the initial

90◦ pulse and receiver phases.

Experimental decay pro�les for the proton singlet order are displayed in �g. 2.28. These

show the singlet-derived spectra against incremented spin locking times. A �tted decay

constant TS ≈ 2.2 seconds is obtained for the near 13C-containing isotopologue [3-13C]-

DBT. This is similar in magnitude to the experimental proton T1 = 2.2 seconds of the same

molecule, which we measured by proton inversion-recovery followed by INEPT. Singlet

order in the more remote isotopologue exhibits a much longer decay time TS = (68 ± 5)

seconds. This is an order of magnitude longer than the proton T1 of the same molecule,

which was measured to be (5.4 ± 0.1) seconds. To within �tting error, the values of TS

were the same when measured under carbon decoupling (3 kHz WALTZ, on-resonance).

These results prove that the ratio of lifetimes TS/T1 is strongly dependent on the

geometry between the spins. The fast singlet decay when 13C at short distances conforms

to a relaxation mechanism involving the 1H-13C dipole interaction. Further discussion of

this is made in �3.2.2.
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Figure 2.28: Singlet relaxation measurements in 2,5-DBT. The spectra show antiphase 13C coher-
ences obtained after di�erent values of the singlet locking time. Singlet order was stored at 9.4 T
under a 3 kHz WALTZ rf �eld resonant with the proton Larmor frequency (δH = 7.1 ppm, relative
to TMS). The displayed regions show: (a) fast singlet decay in [3-13C]-DBT, spectrum centred at
δC = 112 ppm, width of displayed region = 400 Hz; (b) decay of singlet order in [2-13C]-DBT,
spectrum centred at δC = 132.4 ppm, width of displayed region = 400 Hz. Fitted monoexponential
time constants TS are given above.

Strongly coupled heteronuclear systems

Heteronuclear-mediated singlet NMR is now demonstrated using synchronised spin-echo

trains (2.2.3). This is the method appropriate to low values of the singlet-triplet mixing

angle θ, in this case θ = arctan(∆JIS/2JII), i.e. for |∆JIS | � |2JII |. The study is

made upon the [1-13C1] and [2-13C1] isotopologues of 1,2,3,4-tetrachlorobenzene, hereafter

abbreviated as 1,2,3,4-TCB. Like 2,5-TCB, the molecule contains two chemically equivalent

protons and an unsymmetrically placed 13C.

A 90◦-acquire 13C spectrum was recorded at 9.4 T for a sample containing 35 mM

natural-abundance 1,2,3,4-TCB dissolved in d4-methanol. The region between 133 and

134 ppm is displayed in �g. 2.29(a), where the resonances for [1-13C]-1,2,3,4-TCB and [2-

13C]-1,2,3,4-TCB can both be seen. It was possible to �t the J-couplings to the resolved

multiplet frequencies, despite the accidental overlap of the carbon resonances. The follow-

ing values were obtained by �tting single-quantum eigenfrequencies of the J Hamiltonian

to each multiplet. The small values of θ confer that both [1-13C]- and [2-13C]-1,2,3,4-TCB

contain strongly coupled protons:
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Figure 2.29: 13C NMR spectra of [1-13C]- and [2-13C]-1,2,3,4-tetrachlorobenzene (1,2,3,4-TCB) at
9.4 T on a degassed, room-temperature solution of d4-methanol containing 35 mM 1,2,3,4-TCB.
The displayed region is between 133.0 and 134.0 ppm, referenced to tetramethylsilane. Experiments
as follows: (a) 13C 90◦-acquire, sum of 100 transients; (b) 1H-13C INEPT to antiphase single-
quantum coherences on 13C, with INEPT delay τin = 50 ms; (c) and (d) the 13C spectrum acquired
after M2S-(τlock)-S2M applied on the proton channel followed by HC-INEPT, where the element
(τlock) indicates 3.0 kHz WALTZ irradiation on the protons for a duration τlock. M2S and S2M
parameters used in (c) were N180 = 2, N90 = 1 spin echoes, synchronised-echo half-delay τ = 41.6
ms, which gives optimum singlet excitation in the [1-13C] isotopologue. Parameters used in (d)
are N180 = 4, N90 = 2 spin echoes, synchronised-echo half-delay τ = 48.0 ms, optimum for [2-13C]-
1,2,3,4-TCB.
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• [1-13C]-1,2,3,4-TCB: JHH′ = 8.9 Hz; JCH = 12.6 Hz; JCH′ = −3.5 Hz; (θ ≈ 42◦)

• [2-13C]-1,2,3,4-TCB: JHH′ = 8.9 Hz; JCH = 8.9 Hz; JCH′ = −1.7 Hz; (θ = 22◦).

While the one-dimensional spectra of [1-13C]- and [2-13C]-1,2,3,4-TCB partially overlap,

as shown by �g. 2.29(a), there is no signi�cant overlap in the antiphase lineshapes, as seen

from the HC-INEPT-acquire spectra in �g. 2.29(b). Singlet-derived NMR signals, detected

through carbon antiphase coherences, are therefore resolved unambiguously.

Singlet order was generated by applying synchronised echo trains of the form displayed

in �g. 2.26(a)ii, locked for a short period of time (4-5 seconds) by applying a 3.0 kHz

WALTZ decoupling �eld at the proton Larmor frequency and then converted into observ-

able 13C magnetisation by the S2M-INEPT combination of sequences shown in �g. 2.26(b)ii

and �g. 2.26(c)ii. Spin locking was necessary in this case to successfully isolate the singlet

order, for while the protons in 1,2,3,4-TCB are strongly coupled, they are not su�ciently

near to magnetic equivalence to avoid rf irradiation.

The maximum signal intensity after excitation by M2S-S2M-INEPT was found to be

using the parameters N180 = 2, N90 = 1, echo timing τ = 41.6 ms for [1-13C]-1,2,3,4-TCB

and N180 = 4, N90 = 2 echoes, τ = 48.0 ms for [1-13C]-1,2,3,4-TCB. These values agree

very closely with those predicted from theory of rotations in the |T0〉I and |S0〉I subspaces.

The expected spin echo half-delays are

τ =
π

2Ω
=

1

(2
√

4J2
II + ∆J2

IS )
. (2.133)

The length of each spin echo trains is determined by

Nβ◦ = round
( β◦

360
×
∣∣∣π
θ

∣∣∣) = round
( β◦

360
×
∣∣∣ π

arctan(∆JIS/2JII)

∣∣∣), (2.134)

where β is the nominal rotation angle required between themI = 0 states. Spectra recorded

using the optimal τ and N parameters are displayed in �g. 2.29(c) and (d). Singlet order

can be excited independently on the two isotopologues, it can be seen, due to the narrow

synchronisation on τ . Again this helps distinguish the signals and avoid ambiguities.

The singlet decay constants were determined by measuring the spectral intensity for a

series of di�erent singlet storage times τstorage and �tting to the monoexponential decay
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Figure 2.30: Proton singlet decay pro�les for [1-13C]- and [2-13C]-1,2,3,4-TCB. For maximum
detail, the stacked regions display only the regions of the spectrum where the signals are observed,
as expansions of the regions in �g. 2.29.

exp(−τstorage/TS). Decay pro�les are displayed in �g. 2.30(a) and (b).

The yielded decays constants were TS = (72± 5) seconds for [1-13C]-1,2,3,4-TCB and

TS = (140 ± 10) seconds for [2-13C]-1,2,3,4-TCB. These values are 8 and 15 times larger

than the respective longitudinal relaxation constants of the protons: in [1-13C]-1,2,3,4-TCB

the measured value of T1 was (8.7±0.1) seconds; for [2-13C]-1,2,3,4-TCB T1 was (9.0±0.1)

seconds. Singlet order is long-lived for both isotopologues, but like 2,5-DBT, the decay

constant TS of the protons depends on location of the 13C. The large disparity in TS

between [1-13C]-1,2,3,4-TCB and [2-13C]-1,2,3,4-TCB is consistent again with a dominant

relaxation mechanism in [1-13C]-1,2,3,4-TCB involving modulation of heteronuclear dipolar

interactions. A quantitative discussion of these lifetimes is given in �3.2.2.

Extensions in future

Singlet order in 2,5-DBT and 1,2,3,4-TCB may be read out using the pulse sequences that

were originally developed for parahydrogen, such as the 45-INEPT sequence displayed in

�g. 2.26(c)iii.[58, 120, 125] These methods are likely to be very useful in singlet NMR of

heteronuclear systems and the exploration of their relaxation properties, and their use is
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encouraged.

2.4 Excitation of hyperpolarised singlet order

In outlining procedures for magnetisation-singlet conversion I have so far dealt exclusively

with conversion between pure longitudinal magnetisation of coupled spins (or pure trans-

verse magnetisation) and singlet order. At high polarisation levels, however, the initial

density operator tends not to be dominant longitudinal polarisation, but contains other

forms of spin order too.

Conversion of hyperpolarised longitudinal order into singlet order requires some care

due to the nature of the singlet-triplet population di�erence. To illustrate this, consider

an ensemble of two spins-1/2 in the extreme of unity population in |αα〉, corresponding

to maximum longitudinal polarisation p = +1. Suppose a pulse sequence is applied that

transfers population of |αα〉 into |S0〉. The �nal state comprises unity singlet population,

therefore corresponds to a singlet polarisation pS = +1.

Now suppose the same pulse sequence is applied to the opposite extreme of negative

unit polarisation, p = −1, corresponding to zero population in |αα〉. The resulting density

operator must have zero population in |S0〉. The singlet-triplet population asymmetry is

at most pS = −1/3, which is only a third of the polarisation above. This illustrates that

pS changes according to the sign of the starting hyperpolarisation. It suggests that to

ensure the greater singlet polarisation is obtained, the pulse sequence must be carefully

considered in relation to the initial ensemble state.

Fig. 2.31(a) illustrates the above for the adiabatic �eld cycling method. In order to

obtain the maximum singlet polarisation in an hyperpolarised sample, one must apply

selective inversion so as to transfer maximum |T±1〉 population into the singlet precursor

state. This will depend on the relative signs of p, γB0∆δ and J .

A similar rule applies to selective irradiation of the weak singlet-triplet transitions in

a strongly coupled spin pair (2.2.4), where the population of states |T±1〉 and |S0〉 can

be interchanged while leaving states |T∓1〉 and |T0〉 unperturbed. To generate maximum

singlet polarisation, one must irradiate the transition with the largest singlet-triplet pop-

ulation di�erence, as shown in �g. 2.31(b). Similar considerations apply also to Sarkar's

pulse sequence and the J-sychronised spin echo sequences.
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Figure 2.31: Preparation of singlet order in hyperpolarised ensembles. The centre of the above
diagrams represent a spin-1/2 pair ensemble that is 100% polarised (p = 1), for the case γB0(δj −
δk)/J > 0. Diagram (a) indicates the singlet order that results after (left) inverting spin j and
(right) nucleus k, followed by adiabatic transfer to low �eld. Inversion of spin k transfers the
population of |αjαk〉 into |S0〉, creating maximal singlet polarisation pS → 1. Inversion of j results
in a lesser singlet polarisation pS = −1/3. The diagram in (b) indicates similar transformations
for the selective outer-peak irradiation method (see 2.2.4).
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To illustrate more generally, consider an initial hyperpolarised ensemble state compris-

ing populations n(αα) = (1 + p)2/4 for the m = +1 state, n(ββ) = (1 − p)2/4 for the

m = −1 state and n(αβ) = n(βα) = (1 − p)(1 + p)/4 for both states m = 0, where p

is the nuclear polarisation. The singlet polarisation obtainable from this state, neglecting

relaxation e�ects, can be shown equal to

pS =
(2p± p2)

3
(2.135)

where the positive sign applies to when the magnetisation-singlet converting pulse sequence

transfers the larger of the T±1 populations into the singlet state, and the negative sign to

when the minimum is transferred. The square term indicated there is only a signi�cant

di�erence in pS at polarisations p > O(10−1), though this is nevertheless worth taking

into account. If the initial polarisation p is 0.5 = 50% then the expected singlet order

is either pS = 41.7% if the pulse sequence is correctly `matched' to the initial state, but

only pS = 25% if `mismatched'. At p = 0.2 = 20% the di�erence is less pronounced; the

values are pS = 0.15 (matched) and pS = 0.12 (mismatched). At much lower starting

polarisations, such as thermal polarisation, the square term is negligible and pS is equal

to 2p/3 regardless of the spin selectivity and initial sign of p, as determined earlier.
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2.5 Signal selection and �ltering

This section reviews some techniques that `�lter' or `pick out' the singlet order component

of the density operator during an NMR experiment. Their purpose is to eliminate non-

singlet spin order, leaving only singlet-derived NMR signals surviving to the acquisition.

Removal of non-singlet order results in NMR spectra that are quantitative of the singlet-

triplet population di�erence at the given time point. This allows accurate measurement of

singlet lifetimes despite the presence of non-singlet order within the system. As seen ear-

lier in this work, magnetisation-to-singlet pulse sequences invariably produce other forms

of spin order as a by-product to singlet order. Filtration removes these potentially con-

taminating terms, which may be helpful in situations where the TS , T1 and T2 relaxation

constants are all of similar magnitude.

On a more qualitative level, �ltering allows diagnosis of whether singlet order has been

excited between two spins-1/2, or has not. This helps avoid misidenti�cation of signals by

distinguishing singlet-derived signal from other spin order and artefacts.

2.5.1 Basic theory and concept

Erasure of non-singlet spin order is readily achieved by exploiting the behaviour of nuclear

spin under rotations. This lies in the fundamental interplay between nuclear spin angular

momentum and the rotation group.

We recall from earlier that the irreducible basis of the Liouville space under global

rotations of the spins (the rotation group SO(3)), and hence the irreducible basis of spin

order, is the spherical tensor operator basis.[33] Each tensor operator TΛ is an entity with

(2Λ + 1) components, TΛM (Λ ≥ 0 and M = −Λ . . .Λ) whose indices Λ and M distinguish

the unique way each behaves under a rotation. On applying a rotation R ∈ SO(3), the

`rank' Λ of the tensor is preserved. The components of each tensor interconvert according

to the Wigner matrix:

RTΛMR
† =

Λ∑
M ′=−Λ

TΛM ′ D
Λ
M ′M (R)︸ ︷︷ ︸
(Wigner)

. (2.136)

The Wigner matrix is the rotation operator represented in the eigenket basis, such that
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the block Dl(Ω) connects the (2l + 1) eigenstates |lm〉 as

R |l,m〉 =

l∑
m′=−l

|l,m′〉Dl
m′m(R). (2.137)

The irreducible tensor indices Λ andM are each related to the total angular momentum

quantum and coherence order quantum numbers of the spin states involved. The Clebsch-

Gordan series de�nes a ket-bra operator basis of the |l,m〉 that states obeys eq. (2.136):

TΛM =
∑
l,m

∑
l′,m′

[
|lm〉 〈l′m′|

]
CΛM
lml′m′ (2.138)

where from the Clebsch-Gordan indices it is clear that spin operators with de�nite `an-

gular momenta' are arranged. The coe�cients CΛM
λmλ′m′ are zero, unless (m −m′) = M ,

con�rming in eq. (2.138) that M represents the coherence order. One may also evaluate

the commutators

[I±, TΛM ] =
√

Λ(Λ + 1)−M(M ± 1) TΛ(M±1), (2.139)

[Iz, TΛM ] = (m−m′) TΛM . (2.140)

The second equation states that an in�nitesimal rotation about the z axis yields the char-

acter (m−m′) ≡M . This again validates M as the coherence order.

Singlet order of a spin-1/2 pair is distinguishable because the singlet-triplet population

di�erence operator is identi�ed uniquely with the invariant spherical tensor operator T 0.

T00 is the only nontrivial rank-zero tensor in a system of two spins-1/2. From the four

angular momentum states, the resulting sixteen (= (2(1
2) + 1)2 × (2(1

2) + 1)2) ket-bra

product operators reduce into �ve rank-2, nine rank-1, and two rank-0 spherical tensor

operators (5 + 9 + 2 = 16). One of the invariant tensors must the unity operator,

E ∝ |S0〉 〈S0|+ |T−1〉 〈T−1|+ |T0〉 〈T0|+ |T+1〉 〈T+1| . (2.141)

which represents the sum of all populations. There is hence one nontrivial invariant.

To summarise this section, singlet order corresponds to the rank-zero spherical tensor

T 0 ≡ T00. The signature of T 0, like all spin-0 objects, is invariance to arbitrary rotation of
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the system's quantisation axes. In the current context this translates to distinguishability

from other types of spin order, which is required for the separation of resulting NMR

signals.

2.5.2 Isotropic �ltration superoperator

Mathematically speaking, the problem of singlet �ltering is to �nd a projection superoper-

ator, which we call P̂ (T00), that sieves all rank-0 operators from the density operator

P̂ (T00)TΛM =

 TΛM for Λ = 0

0 otherwise.
(2.142)

By expressing ρ in the spherical tensor operator basis,

ρ(t) =
∑
i

∑
Λ,M

ciΛM (t)T iΛM (2.143)

it is clear P̂ (T00) acts to preserve isotropic tensors, and eliminate all the others:

P̂ (T00) ρ(t) =
∑
i

ci00(t)T i00. (2.144)

The exact projection superoperator is unique, and is given by the isotropic projector of

the SO(3) rotation group, which is the integral over all orientational space:

P̂ (T00) ≡ 1

8π2

∫
SO(3)

R̂ dR. (2.145)

Solutions in practice to attempt to approximate this integral by quadrature, the premise

of approximation by a �nite sum of rotations.

Rotation quadrature is the same approach used in coherence-pathway selection in NMR.

Coherence pathways are the chronologies of coherence order in an NMR signal.[127] These

pathways are discriminated in how spin operators with di�erent coherence order (the quan-

tum number M) rotate about the z quantisation axis at di�erent rates. Filtration of T00

falls into a more general classi�cation called Spherical Tensor Analysis (STA),[109, 128]

where the chronologies of both Λ andM are selected. The speci�c situation of T00 is called

isotropic �ltration, as the goal is to select the rotation-invariant spin order.
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Below is a description of isotropic �ltration in practice. This leads to some new meth-

ods, which are demonstrated in the later sections.

2.5.3 Quadrature method for isotropic �ltration

The `traditional' approach to P̂ (T00) is to select a �nite set of rotations. This is called

the sampling set, which is denoted by S = {RS1 , RS2 , . . . , RSNS}. One of these rotations

is inserted into the NMR pulse sequence at the point where isotropic selection is desired,

and the signal acquired. The sequence is then repeated for the other rotations in turn, so

there are NS signals recorded in total. The rotations are chosen such that upon summing

the NMR signals together the singlet-derived components add constructively, while the

undesired components interfere destructively and cancel.[129]

As shown in �g. 2.32a, there are three main events in the pulse sequence as far as

signal selection is concerned. These are (i) a common initial propagation from equilibrium

spin order, which is denoted by the superoperator Ûa; (ii) a rotation of the spins, by one

of the rotation elements RSi ∈ S; (iii) a common propagation until acquisition, under a

superoperator denoted Ûb.

A rotation RSi may be applied through a pair of strong 90◦ radiofrequency pulses with

carefully chosen phases. To determine the phases one may use the fact that an arbitrary

rotation, in the Euler zyz convention,

R̂Si = R̂(αSi β
S
i γ
S
i ) ≡ R̂z(αSi )R̂y(β

S
i )R̂z(γ

S
i ), (2.146)

may be e�ected through: (i) a 90◦ pulse with phase (αS + βS), followed by (ii) a 90◦

pulse with phase (αS + 180◦), then (iii) phase shifting all preceding elements of the pulse

sequence by (αS + βS + γS).[109] This sequence is illustrated in �g. 2.32b, and veri�ed
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Figure 2.32: Implementation of a general Euler rotation on the spins using two 90◦ rf pulses.[109]

below using rotation identities about the Cartesian xyz axes:

(π/2)α+π rf pulse︷ ︸︸ ︷
R̂z(α+ π)R̂x(π/2)R̂z(−α− π)

(π/2)α+β rf pulse︷ ︸︸ ︷
R̂z(α+ β)R̂x(π/2)R̂z(−α− β) Û (α+β+γ)

a ρeq

= R̂z(α) R̂x(−π/2)R̂z(β)R̂x(π/2)︸ ︷︷ ︸
rotation R̂y(β)

R̂z(−α− β)Û (α+β+γ)
a ρeq (2.147)

=
[
R̂z(α)R̂y(β)R̂z(γ)

]
ÛaR̂z(−α− β − γ)ρeq (2.148)

≡
[
R̂z(α)R̂y(β)R̂z(γ)

]
Ûaρeq. (2.149)

To reach the penultimate line, one applies the fact ρeq is invariant under with R̂z.

The NMR signals are summed together afterwards on a computer. To maintain gener-

ality, a weighted average is assumed, where each signal is multiplied by a weighting factor

wSi before superposition. As the algebra of Liouville space is linear, the average NMR

signal after superposition is equivalent to the signal after a single experiment using the

weighted-average rotation superoperator:

1

NS

NS∑
i=1

wSi

[
ÛbR̂

S
i Ûaρeq

]
≡
[
Ûb

( 1

NS

NS∑
i=1

wSi R̂
S
i

)
Ûaρeq

]
. (2.150)

The goal is to approximate the term in round brackets to P̂ (T00).
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Finite sampling constraint

Isotropic �ltration requires RSi and wSi to satisfy

( 1

NS

NS∑
i=1

wSi R̂
S
i

)
TΛM =

1

NS

NS∑
i=1

wSi D
Λ
M ′M (RSi ) =

 1 for Λ = 0,

0 for 0 < Λ ≤ Λmax

(2.151)

where Λmax is the maximum rank of spin order of the spin system. The maximum rank

equals the sum of (2I+1) over all nuclei in the spin system. Spin order between two coupled

spins-1/2, for instance, cannot exceed past rank two: Λmax = [(21
2 + 1) + (21

2 + 1)] = 2.

A preferred sampling scheme has one with minimal possible dimension while retaining

the ability to average accessible ranks 0 < Λ ≤ Λmax, or at least ranks Λ that are likely to

be excited.

2.5.4 Polyhedral sampling schemes

Pileio and Levitt have demonstrated that low ranks are suppressed by sampling the three

poly-axial rotation subgroups of SO(3), G ∈ SO(3). These are the groups of the regular

polyhedra, [129]

• T , the tetrahedral group, (12 rotation elements),

• O, the octahedral group (24 rotation elements),

• I, the icosahedral group, (60 rotation elements).

Low rank spin order has high orientational symmetry, so may be averaged successfully by

relatively small sampling sets. The isotropic projector of these sub-groups maintains the

same averaging properties as SO(3) for selected low spin ranks.

1

|G|
∑
R∈G

R̂ ≈ 1

8π2

∫
SO(3)

R̂ dR ≡ P̂ (T00). (2.152)

The above equation, amounts to eq. (2.151) with unit weights wSi = 1.

Isotropic �ltration under T , O and I is determined by reducing the Wigner matrix

blocks DΛ in each subgroup. In any group of operations, in this case rotations, there is

always one irreducible representation preserved by all operations i.e. is `totally symmetric'.

All other irreducible representations are anisotropic, and averaged by the subgroup G.
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Rank-Λ spin order is therefore successfully averaged if DΛ does not reduce into the totally

symmetric irreducible representation in the subgroup.

The multiplicity of the rank-zero tensor D0 in each block DΛ under the rotation sub-

group is denoted a0,Λ, and is given by the character of DΛ averaged over all rotations in

the group:

a0,Λ =
1

|G|
∑
R∈G

χΛ(RG). (2.153)

The character under rotation, χΛ(R), equals the trace of DΛ and is involved since tracing

is independent of operator basis. The trace of the Wigner matrix evaluates as follows,

where ζ is the angular displacement around the rotation axis of R: [89]

χΛ(R) =

Λ∑
M=−Λ

DΛ
MM (R) =

sin ((2Λ + 1)ζ/2)

sin (ζ/2)
, (2.154)

The angle ζ relates to the Euler angles of R = R(α, β, γ) through

cos(ζ/2) ≡ cos(β/2) cos((α+ γ)/2). (2.155)

Eq. (2.153) is brie�y derived by considering irreducible representations of the subgroup,

denoted Dk
G , where k is an index, so that the reducible representation DΛ is expressed by

a sum

DΛ(RG) =
∑
k

Dk
G(RG)ak,Λ, (2.156)

where coe�cients ak,Λ are the multiplicities of Dk
G in DΛ. Tracing both sides and then

averaging over all rotations in G leads immediately to

1

|G|
∑
G
χΛ(RG) =

∑
k

[ 1

|G|
∑
G
χkG(RG)

]
ak,Λ = a0,Λ, (2.157)

The second equality follows because
∑
G χ

k
G(RG) is zero except for the totally symmetric

representation (k = 0), where it is equal to the group order |G|.
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T E 4C3 4C2
3 3C2

ζ = 0 120◦ 240◦ 180◦

Λ a0,Λ

0 1 1 1 1 1

1 3 0 0 −1 0
2 5 −1 −1 1 0
3 7 1 1 −1 1

4 9 0 0 1 1

5 11 −1 −1 −1 0
6 13 1 1 1 2
...

...
...

...
...

...

O E 8C3 3C2
4 6C4 6C2

ζ = 0 120◦ 180◦ 90◦ 180◦

Λ a0,Λ

0 1 1 1 1 1 1

1 3 0 −1 1 −1 0
2 5 −1 1 −1 1 0
3 7 1 −1 −1 −1 0
4 9 0 1 1 1 1

5 11 −1 −1 1 −1 0
6 13 1 1 −1 1 1
...

...
...

...
...

...
...

I E 12C5 12C2
5 20C3 15C2

ζ = 0 72◦ 144◦ 120◦ 180◦

Λ a0,Λ

0 1 1 1 1 1 1

1 3 s s' 0 −1 0
2 5 0 0 −1 1 0
3 7 −s −s' 1 −1 0
4 9 −1 −1 0 1 0
5 11 1 1 −1 −1 0
6 13 s s' 1 1 1
...

...
...

...
...

...
...

Figure 2.33: Character tables for the `polyhedron' rotation groups. The rightmost column a0,Λ

gives the isotropic projections (see text for detail). Representations DΛ are averaged more e�ec-
tively by the large, high symmetry rotation groups. Under the tetrahedral group, for instance,
only ranks Λ = 1, 2 and 5 are averaged, while under the icosahedral group, out of the �rst 6 ranks,
all but Λ = 6 are averaged.
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Figure 2.34: Isotropic �ltration was performed on a sample containing 50 mM phenylalanine in
D2O at 9.4 T. The spectra show (a) proton 1D spectrum, single-scan; (b) proton singlet NMR
spectrum, using Sarkar's sequence with delays τa = 17.1 ms and taub = 14.9 ms, single scan; (c)
as (b), but projecting out T00 by applying tetrahedral sampling (12 scans) at the end of the spin
locking period.[129] The spectrum in (c) is scaled down by a factor of 12 to allow comparison
of intensities with (a) and (b) spectra. The chemical shift at the spectrum centre is +3.60 ppm
relative to tetramethylsilane.

Multiplicities a0,Λ between Λ = 0 and Λ = 6 and the characters for T , O and I are

tabulated in �g. 2.33. The multiplicities show the T subgroup averages spin ranks up to a

maximum of Λmax = 2; the O subgroup averages ranks up to and including Λmax = 3 and

the I subgroup averages up to and including Λmax = 5.

For most high-�eld applications of singlet NMR, tetrahedral sampling tends to be

su�cient. Spin order with rank Λ > 2 is usually not strongly excited during magnetisation-

to-singlet pulse sequences, plus higher ranks are in general much faster relaxing and may

itself decay to zero long before acquisition.

As an experimental example, �g. 2.34 shows the aliphatic region of 1H-NMR spectra

recorded at 9.4 T for a solution of 50 mM L-phenylalanine dissolved in D2O. Fig. 2.34(a) is

the 90◦-acquire spectrum, showing an ABX peak pattern corresponding to the α- and two

β-proton resonances. The two β-protons are a target for singlet NMR because they are

diastereotopic, due to the adjacent chiral centre, and because their intra-pair J coupling

exceeds the di�erence in J couplings to the α-proton.[77] Fig. 2.34(b) is the single-scan
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spectrum recorded after using Sarkar's basic sequence to prepare, store and retrieve singlet

order (see �g. 2.7). Delays τa = 17.1 ms and taub = 14.9 ms were determined to generate

maximum singlet order on the β-protons. The singlet order was locked for 0.5 seconds under

a 3 kHz WALTZ-16 modulated rf �eld applied at the average chemical shift frequency of

the β-protons, before reconversion to antiphase coherences, and acquisition. Due to the

short spin locking time, which is about half the T1 lifetime of the β-protons, the peaks are

contaminated with a large contamination of unwanted terms, which obscure the expected

antiphase pattern.

The spectrum in �g. 2.34(c) is the result after the same experiment in �g. 2.34(b),

but applying the tetrahedral quadrature (12 scans) at the end of the decoupling period.

The sum spectrum is normalised to the amplitude of the single scan in �g. 2.34(a). The

antiphase spectrum is much clearer and easier to integrate than that in �g. 2.34(b) due to

the removal of spin ranks 1 and 2. There is no evidence of third-rank spin order potentially

carried through by T .

2.5.5 `Targeted' sampling sets

A problem with using the polyhedral groups is their great time-expense, because the angle

sets are very large. In this section a di�erent approach is considered: freedom to choose

both orientations and weights in a sampling set suggests a minimal set is available whose

number of angles equals the number of constraints imposed by eq. (2.151). This idea is

attractive when a small subset of spin ranks must be averaged, to which the polyhedral

sampling sets may be overkill. Polyhedral orientation sets, as well as other rotation group

angle sets, have a capacity to project out all irreducible components TΛM for which the

quadrature is exact.[109] This indicates a large redundancy present if one simply wants

suppression of ranks Λ 6= 0.

Below I consider some approaches that target the quadrature constraint directly and

use the smallest-possible number of angles.

Pulse �eld gradients

Most modern NMR spectrometers are capable of producing �eld-gradient pulses (PFGs) �

pulses of a purposely inhomogeneous magnetic �eld parallel to the direction of the static
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B0 �eld. PFGs induce a z-axis rotation on the spins through an angle that depends on

molecular position in the sample.[4]

Using gradients it is possible to sample rotations

R̂zyz(αβγ) ≡ R̂z(α)R̂y(β)R̂z(γ) (2.158)

in parallel using the sequence (PFG1)-(β90◦)-(PFG2), (see �g. 2.35(a)), which comprises

two pulsed gradients and an rf y-pulse. The gradients induce the Euler angles α and

γ (not to be confused with the gyromagnetic ratio) that are functions of spatial dis-

placement r = (x, y, z) from the gradient origin. The rotation angles are determined

by α(r) = (
∫ τ

0 dt′G(PFG2)(t′) · r) and γ(r) = (
∫ τ

0 dt′G(PFG1)(t′) · r) where the gradients

varies along the axis G(PFG1) = (G
(PFG1)
x , G

(PFG1)
y , G

(PFG1)
z ), the PFG durations are τPFG1

and τPFG2 and where t′ is the local time variable of each pulse. From the theory of com-

posite rotations,[109] the central (β90◦) rotation may in practice be replaced by a pair of

90◦ pulses (90◦β)-(90◦180◦), for greater accuracy in the β angle (�g. 2.35(b)).

Strong gradients produce an uniformly distributed set of rotations over the α and γ

orientational space via the relation

1

V

∫
V
R̂(r) dr ≈ 1

4π2

∫
αγ
R̂zyz(αβγ)dαdγ, (2.159)

which holds provided the gradients vary linearly along orthogonal spatial axes and the

density of excited spins is uniform across the sample volume. Modern NMR and MRI

hardware can produce linearly varying z gradients independently along each of the x, y

and z axes (`triple gradients'). A single z-gradient Gz is more common on older hardware

in which case the integrals over α and γ are coupled, though with suitable choice of the

gradient strengths G(1)
z and G

(2)
z , such that M ′α =6= Mγ, improper averaging may be

avoided. Depending on the gradient strengths, i.e. the spatial resolution of the gradients,

(ii) may preclude in-vivo spectroscopy.

If the gradients satisfy eq. (2.159), the sampling constraint reduces to

1

NS

NS∑
i=1

wSi d
Λ
00(Ry(β

S
i )) =

 1 for Λ = 0

0 for 0 < Λ ≤ Λmax

. (2.160)
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Figure 2.35: Schematic pulse sequence for uniform sampling over α and γ Euler angles.

This shows a rather striking decrease from (2Λ + 1)2 constraints per rank to one per rank.

Gauss-Legendre quadrature

There are several ways to proceed from the above. For a maximum rank Λmax there are

((
∑Λmax

Λ=1 )− 1) equations to satisfy:


d1

00(Ry(β1)) . . . d1
00(Ry(βN ))

d2
00(Ry(β1)) . . . d2

00(Ry(βN ))
...

...

dΛmax
00 (Ry(β1)) . . . dΛmax

00 (Ry(βN ))




w1

w2

...

wN

 =


1

0
...

0

 (2.161)

and therefore at most (Λmax−1) orientations are needed for quadrature (the �rst equation

always holds, provided
∑

iwi = 1). By comparison, the eq. (2.151) requires at least∑Λmax
Λ=1 (2Λ + 1)2 ≈ O(Λ3

max) orientations.

One may solve eq. (2.161) numerically for a prede�ned set of angles or weights. More ex-

pediently, one may recognise these matrix equations as the Gauss-Legendre quadrature.[130,

131] By recognising equality of the Wigner matrix elements dΛ
00 with Legendre polynomials,

PΛ(cos(βSi )) = dΛ
00(Ry(β

S
i )), eq. (2.161) reads

eq. (2.160) → 1

NS

NS∑
i=1

wSi PΛ(cos(βSi )). (2.162)
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Hence the solution of
P0(cos(β1)) . . . P0(cos(βN ))

P1(cos(β1)) . . . P1(cos(βN ))
...

...

PΛmax(cos(β1)) . . . PΛmax(cos(βN ))




w1

w2

...

wN

 =


1

0
...

0

 . (2.163)

An analytical solution of this equation is known. The derivation is beyond the scope of this

work, but involves using the recurrence relations between Pn(cos(β)) and Pn±2(cos(β)).

Abscissas βi are given by the zeroes of PN (cos(β)), [131]

PN (cos(βi)) = 0, (2.164)

and the corresponding weights by the formula

wNi =
sinβi∑
j sin(βj)

. (2.165)

The value Λmax up to which the zeroes of N average is not (N − 1) in this case,

but in fact (2N − 1). The Legendre zeroes come in pairs β and (180◦ − β), or singly at

cos(βi) = 0. Due to the symmetry PΛ(cos(βi)) = (−)ΛPΛ(cos(180◦ − βi)) this means all

odd ranks vanish automatically. This leaves only half the number of original constraints �

namely those left on the even ranks � to satisfy by the absolute angles and weights.

Angles βi and weights wi are given in �g. 2.36 for sets N = 1 to N = 5. These achieve

isotropic selection up to maximum ranks Λmax = 1 to Λmax = 9. As an example of the gains

achievable, spin order up to and including rank Λmax = 3 can be eliminated by averaging

just two equal-weighted scans (N = 2). This sampling scheme is 24 times smaller than the

octahedral set, which requires 48 scans to average third-rank spin order.

2.5.6 Single-shot �ltration

The sequences shown in �g. 2.35(a) and (b) eliminate rank-Λ spin order in entirety if the

angle β is a zero of dΛ
00. Furthermore, note that if the angle β is 90◦, spin order of all odd

ranks is eliminated.

The latter case is the well-known Only Parahydrogen SpectroscopY (OPSY) method,
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i βi/
◦ wi

1 90.00 1.000

i βi/
◦ wi

1 54.74 0.500
2 125.26 0.500

i βi/
◦ wi

1 39.23 0.277̇

2 90.00 0.444̇

3 140.77 0.277̇

i βi/
◦ wi

1 30.56 0.174
2 70.12 0.326
3 109.88 0.326
4 149.44 0.174

i βi/
◦ wi

1 25.02 0.118
2 57.42 0.239
3 90.00 0.284
4 122.58 0.239
5 154.98 0.118

Figure 2.36: Orientational sampling sets for the Gauss-Legendre quadrature.[131] (Left), graphical
representation of the angle sets on a polar plot. The polar angle of each `node' is equal to βi
and the corresponding ordinate is proportional to the wi; (Right), tabular representation of the
sampling schemes.
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Figure 2.37: Schematic pulse sequence for suppression of non-isotropic spin order up to and in-
cluding rank 3 (Λmax = 3).

used for signal �ltering in parahydrogen-enhanced NMR.[110, 59] The purpose of OPSY is

to remove rank-1 components of the density operator, which includes the strong magnetisa-

tion of the solvent and the magnetisation of orthohydrogen, so that only the parahydrogen

addition products are observed in the NMR spectrum.

One may generalise OPSY by chaining several �lters together. The sequence shown

in �g. 2.37(a) and (b) consists of an odd-rank �lter followed by a rank-2 �lter. This

achieves suppression of spin order up to and including rank-3, providing there is no mix-

ing between ranks between the �lters, i.e. during the PFG2 gradient pulse duration. In

practice, this limits application to strongly coupled spin pairs, though the suppression of

rank-interconversion is not ruled out by other means, for example by refocusing.

Single-shot �ltration may be useful in hyperpolarised NMR, where initial polarisation

levels cannot be guaranteed the same (at odds with quadrature that rely on averaging

several scans) and other single-scan NMR experiments, such as reaction monitoring, where

signal averaging is not feasible.

Experimental demonstration of single-shot selection

The single-shot �lter in �g. 2.37(b) was tested upon the singlet NMR of perdeuterated

[1,2-13C2]-isopropyl-cyclohexyl oxalate diester, whose molecular structure is shown in �g.

2.38(a). This molecule was synthesised by Lynda Brown (Southampton University) and

investigated in collaboration with Chris Laustsen (Aarhus University, Denmark) and Jan-

Henrik Ardenkjær Larsen as an early candidate for long-lived hyperpolarised singlet order

in a nearly equivalent spin pair.[132] Dissolved in d4-methanol at room temperature the

two 13C nuclei in the molecule have close chemical shifts in the region of 158.6 ppm, where

the chemical shift di�erence is a small 0.13 ppm due to the weak four-bond asymmetric
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induction by the ester groups. The chemical shift di�erence translates at the 5 T of a

small-animal MRI magnet to a frequency of 6.6 Hz, which is much less than the and one-

bond coupling 1JCC measured as 100.1 Hz. Singlet order survives in high magnetic �eld

without resort to spin locking interventions.[132]

The �lter in �g. 2.38(b) was applied to the singlet NMR of a methanol-d4 solution of

the oxalate diester on a 9.4 T NMR spectrometer (100 MHz 13C Larmor frequency) in

Southampton. To determine the parameters required to suppress non-singlet order, the

isotropic �lter was applied to the sample at thermal equilibrium polarisation, followed

immediately by a 90◦ rf pulse and spectrum acquisition. Sine-bell shaped pulsed-�eld z-

gradients (PFG1), (PFG2), (PFG3) were applied with respective durations 4.4 ms, 2.4

ms and 2.0 ms and relative strengths +g, −g and −g. The area under these gradients

sums to zero to avoid eddy currents that may otherwise disturb the spectrum acquisition.

The gradient strength g was incremented until the 90◦-acquire spectrum showed negligible

signal, at which point that the �lter successfully suppresses rank-1 spin order. Fig. 2.38(c)

shows the 13C NMR spectrum (left) in the absence of the �lter and (right) using the �lter

with z-gradient amplitude g = 0.8 G cm−1, which is approximately 8% of the maximum

available on the hardware.

Having calibrated the �ltering element, measurements of the singlet decay constant

TS were performed using the J-synchronised echo pulse sequence displayed in �g. 2.38(d).

The optimum parameters for the oxalate ester were N180 = 12 and N90 = 6 spin echoes

and spin echo delay τ = 2.48 ms for nominal 180◦ and 90◦ x-rotations in m = 0 subspace

of the carbon pair. The singlet order was left undisturbed in high �eld for a time THF,

then the �lter applied, and �nally singlet order was reconverted to in-phase transverse

magnetisation for detection, by performing the J-synchronised echo sequence in reverse.

The experiment was repeated for several di�erent values of the initial pulse �ip angle

ξ = 90◦, 45◦ and 30◦ to mimic a varying degree of ine�ciency in exciting the singlet order.

The longitudinal order remaining after the �rst pulse is proportional to p cos(ξ) while

the singlet order is proportional to p sin(ξ). In the absence of the �lter, the longitudinal

component carries through until the �nal signal. As shown in �g. 2.38(d), in the presence

of the �lter the spectrum integral against the high-�eld waiting time THF were �tted to

monoexponential decay curves exp(−THF/TS). Singlet decay constants TS for all three

initial �ip angles ξ = 90◦, 45◦ and 30◦ were �t to the same value of TS = (55± 5) seconds.
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Figure 2.39: External magnetic �eld distortion by a mu-metal cylinder.

This proves reliable elimination of signals from non-singlet spin order contaminants.

2.5.7 Filtration in low magnetic �eld

The above methods all involve rotations induced by applying radio-frequency pulses while

the sample sits in the spectrometer magnetic �eld. In principle, similar manipulations are

possible outside the magnet, for example by applying audio-frequency pulses in earth's

�eld.

A more crude, yet equally e�ective means of isotropic �ltration at low �eld is simply

to place the sample in a very inhomogeneous, rapidly �uctuating magnetic �eld. Field

�uctuations occurring near the Larmor frequency appear as randomly sampled rotations,

when seen from the rotating frame, thereby realising a good approximation to eq. (2.145).

In ref. [32] we used a mu-metal cylinder to �lter hyperpolarised singlet order after

dissolution DNP of sodium pyruvate (�2.2.1). Mu-metal is a material with extremely high

magnetic permeability, typically µ/µ0 = 105 (in comparison, µ/µ0 for steel is less than 103).

It is primarily used for shielding objects from a background magnetic �eld by distorting

�ux into the surface of the metal, leaving a near-zero magnetic �eld in enclosed regions (see

�g. 2.39). At the edges of the mu-metal, however, the background �eld is distorted very

sharply. Shaking the sample in this inhomogeneous magnetic �eld rapidly equilibrates the

nuclear triplet populations while leaving the rotation-invariant singlet order intact.[32]
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2.5.8 Filtration by spin decoupling in high �eld

Random rotations may be induced with the sample residing at high �eld due to inhomo-

geneity in applied rf �elds. This may be useful in �ltering the singlet order of weakly

coupled spin pairs under spin locking, where singlet-triplet transitions must forcibly be

suppressed by resonant rf irradiation.[65]

Singha Roy and Mahesh have identi�ed that WALTZ-16 and similar phase-modulated

irradiation schemes that sustain nuclear singlet order in high �eld, while simultaneously

ensuring the rapidly destruction of other spin order by rf inhomogeneity.[133, 134] They

have used the resulting long-lived, high-�delity entangled state of the �ltered singlet order

for NMR quantum computation.

2.5.9 Summary of signal �ltration methods

Isotropic �ltration relies on ability to apply a uniform sampling the rotation group onto the

nuclear spin ensemble, under which non-singlet spin order averages to zero. A summary of

the techniques reviewed in the section is displayed graphically in �g. 2.40. The chart shows

which methods are appropriate to high and low instances of singlet NMR where one may

wish to �lter singlet order. In all of these instances, there is a method to achieve selection

in a single scan.
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3
Nuclear singlet relaxation

Whereas the previous chapter has dealt with coherent evolution between singlet and triplet

states, the following chapter concerns incoherent evolution phenomena, or relaxation.

First in this chapter I overview the Liouvillian formalism for relaxation, the foundation

of which is the very successful theory derived by Wangsness, Bloch, and Red�eld, abbrevi-

ated `WBR' theory, or sometimes referred as just `Red�eld' relaxation theory. The WBR

theory approaches relaxation through second-order time-dependent perturbation theory of

the density operator.

Spherical tensors operators are the natural language of relaxation in solution NMR

due to rotational modulation of the intramolecular Hamiltonian by random molecular

tumbling. This leads to pointing out several useful concepts for singlet relaxation analysis.

If molecular rotation is much faster than the Larmor frequency, the relaxation of nuclear

spin states is invariant to their orientation with respect to the B0 magnetic �eld. In this

case relaxation superoperator behaves as a scalar, where it is shown that there can be no

relaxation between spin order of di�erent rank. This allows simple, well justi�ed analytical

formulae to be derived for singlet relaxation rates.

Several experimental studies are then reported. These are focused towards the goal

of `relaxometry', which is to obtaining information on the singlet relaxation mechanisms

by analysing experimental relaxation rates. Examples covered include both homonuclear

and heteronuclear intramolecular dipole-dipole relaxation and the in�uence of dissolved

paramagnetic species.

127
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3.1 Tools for singlet relaxation analysis

3.1.1 Introduction to WBR theory

WBR theory considers the relaxation phenomenon for an ensemble of the spin system of

interest diluted within a classical `lattice' surrounding, the latter being of no particular

interest in general. Spin decoherence is treated by dividing the Hamiltonian H for each

ensemble member into two parts, an uniform, coherent part, H0 ≡ H, responsible for bulk

evolution, plus a stochastic counter-part H1 = (H −H0) that �uctuates through time due

to interactions with the lattice. Intermolecular interactions are usually ignored at a basic

level, due to their often short-range, random nature and the relatively dilute concentration

of spins within the bulk.

In this microscopic view the Liouvillian equation of motion for pure states reads

d

dt
ρ(t) = −iĤ0(t)ρ(t)− iĤ1(t)ρ(t) (3.1)

where the hat, (`ˆ'), in this case denotes commutation superoperator.[37] This equation is

to be solved in the interaction representation of the static magnetic �eld (Larmor repre-

sentation, denoted by `tilde') i.e. as

d

dt
ρ̃(t) = −i ˆ̃H0(t)ρ̃(t)− i ˆ̃H1(t)ρ̃(t) (3.2)

where H̃(t) = exp(−i
∫ t

0 ω
0Izdt

′)H(0) exp(+i
∫ t

0 ω
0Izdt

′) ≡ R̂z(ω
0t)H(0). Integration of

eq. (3.2) from a starting time point t0, up to a future time t gives

ρ(t) = ρ(t0)− i

∫ t

t0

dt′ Ĥ(t′)ρ(t′). (3.3)

Recursive substitution to second-order in the Dyson series in H leads to

ρ̃(t) = ρ̃(0)− i

∫ t

t0

dt′ ˆ̃H(t′)ρ̃(t0)−
∫ t

t0

dt′
∫ t′

t0

dt′′ ˆ̃H(t′) ˆ̃H(t′′)ρ(t′′) + . . . (3.4)

where it is acceptable to truncate the iteration after only the second term. The interaction

frame transformation justi�es truncation as it ensures successive iterative terms rapidly

diminish in size.
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Following the integral truncation the view reverts immediately to a time-derivative

formulation. One may di�erentiate with respect to t using the well-known formula

d

dt

[∫ b(t)

a(t)
dt′ f [t, t′]

]
= f [t, b(t)]− f [t, a(t)] +

∫ b(t)

a(t)
dt′

d

dt
f [t, t′] (3.5)

where a(t), b(t) and f(t) denote explicit functions of time. The equation of motion after

the di�erentiation is

eq. (3.4) ⇒ d

dt
ρ(t) = −iĤ(t)ρ(t)−

∫ t

t0

dt′′ Ĥ(t)Ĥ(t′′)ρ(t′′). (3.6)

In the next step the density operators ρ(t′′) and ρ(t0) are replaced by ρ(t) under as-

sumption that the perturbations in ρ are weak compared to the Larmor frequency and

smoothly �uctuating across the interval t0 to t. Finally, an ensemble average is taken to

reach

d

dt
ρ(t) = −i ˆ̃H0(t)ρ(t)−

∫ t

t0

dt′′ ˆ̃H1(t) ˆ̃H1(t′′)ρ(t), (3.7)

where independent averaging is allowed between uncorrelated quantitiesH1 and ρ(t). From

this form one may identify the commutation superoperators of the right-hand side as the

pure coherent Liouvillian evolution superoperator that contains only coherent terms H0

L̂0(t) = −i ˆ̃H0(t), (3.8)

and the relaxation superoperator, which contains only H1:

Γ̂(t) = −
∫ t

t0

dt′′ ˆ̃H1(t) ˆ̃H1(t′′). (3.9)

Last steps in WBR theory modify the integral to a form that is more ready for compu-

tation. One assumes the anisotropic Hamiltonian H1 is Markovian, meaning it averages to

zero over long periods of time. This justi�es extending the upper time limit to in�nity in

the future: (t− t′′)→∞. Doing this, and changing the integration variable to τ = (t′− t),
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the relaxation superoperator is transformed into the form

Γ̂(t) = −
∫ 0

−∞
dτ ˆ̃H1(t+ τ) ˆ̃H1(t). (3.10)

3.1.2 Spherical tensor formalism

Incoherent Hamiltonian

The explicit calculation of relaxation superoperators requires a knowledge of (i) the relax-

ation causing interactions in H1 and (ii) the nature of the spin-lattice interaction (relative

time-dependence in eq. (3.10)). For solution NMR the model adopted is to assume the �eld

�uctuations are due to molecular rotations, and that the incoherent spin interactions com-

prise those which are anisotropic with respect to molecular orientation. It is convenient to

formulate Γ̂ by expanding H1 in a set of rotational symmetry-adapted basis functions. H1

is generally expressible as products between (i) time-dependent spherical tensor functions

in orientational space, here denoted Aplm, and (ii) spherical tensor spin operators, T plm,

where labels p indicate the identity of the speci�c relaxation mechanism. These functions

are de�ned through

R̂(Ω)Aplm = Aplm′D
l
m′m(Ω) (3.11)

R̂(Ω)T plm = T plm′D
l
m′m(Ω), (3.12)

wher R and R are used here to denote space and spin rotations, respectively. The Hamil-

tonian is expressible as a scalar product between A and T as follows:

HL
1 (t) =

∑
p

[Hp
1 ]L(t); (3.13)

[Hp
1 ]
L

(t) =
∑
l

l∑
m=−l

(−)m[Aplm]L(t)[T pl−m]L, (3.14)

which conforms to invariance upon simultaneous spin-space rotations:

R̂(Ω)R̂(Ω)[Hp
1 ]
L

(t) = [Hp
1 ]
L

(t). (3.15)
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The superscript `L' in this equation denotes that the Hamiltonian is written in the labo-

ratory frame, which is the reference frame in which we observers reside.

The laboratory-frame spatial components [Aplm]L are determined by rotating the prin-

cipal axis components [Aplm]P of each spin interaction into the L frame. This is done in two

stages. The axes systems of each interaction tensors within each molecule is synchronised

to a molecule-�xed frame, M ,

[Aplm]M (t) = R̂(Ω(P→M)(t))[Aplm]P =
l∑

m′=−l
[Aplm′ ]

PDl
m′m(Ω(P→M)(t)), (3.16)

where (P → M) indicates the direction of the frame transformation and Ω(P→M) the

relevant Euler angle. The molecular frame is then rotated into the laboratory frame:

[Aplm]L(t) = R̂(Ω(M→L)(t))[Aplm]M =
l∑

m′=−l
[Aplm′ ]

MDl
m′m(Ω(M→L)(t)). (3.17)

This form is very convenient since it separates intramolecular motion from overall molecular

rotation, which will be discussed shortly. Together with the transformation of the spin

tensors into the Larmor frame, one can now write H̃1
L
in a form ready for substituting

into eq. (3.10):

H̃1
L

(t) =
∑
p

∑
l

l∑
m,m′,m′′=−l

(−)m[Aplm′′ ]
P [T pl−m]L (3.18)

×Dl
m′′m′(Ω

(P→M)(t))Dl
m′m(Ω(M→L)(t))eimω0t.

The relaxation Hamiltonian invariably involves second-rank space tensors (l = 2) due

to the pairwise, symmetric nature of the interactions. This includes dipole-dipole couplings

between nuclear pairs, the anisotropic chemical shielding (CSA) interaction between nu-

clei and the B0 �eld, and spin- rotational-angular-momentum coupling.[14] Principal axis

components for the dipole-dipole and the CSA tensors are listed in 3.1.
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Mechanism

Dipole-dipole coupling Chemical shielding anisotropy
(p = DD, l = 2) (p = CSA, l = 2)

Space tensor (in principal-axes frame, P )

[Ap20]P
√

6 bjk
√

3/2 ∆δ
(j)
zz

[Ap2±1]P 0 0

[Ap2±2]P 0 −1
2∆δ

(j)
zz η(j)

Spin-�eld tensor (in laboratory frame, L)

[T p20]L 1√
6

(2IjzIkz − IjxIkx − IjyIky)
√

2/3 γjB
0Ijz

[T p2±1]L ∓1
2(Ij±Ikz + IjzIk±) ∓1

2γjB
0Ij±

[T p2±2]L ∓1
2Ij±Ik± 0

Table 3.1: Principal axis components of the dipole-dipole (`DD') Hamiltonian between two spins
`jk' (where bjk = −~µ0γjγk/(4πd

3
jk)) and anisotropic chemical shielding (`CSA') Hamiltonian of

a spin-1/2 `j'. (∆δ(j)
zz = (δ

(j)
zz − δ(j)

iso ); δ
(j)
iso = (δ

(j)
xx + δ

(j)
yy + δ

(j)
zz )/3; η(j) = (δ

(j)
xx − δ(j)

yy )/∆δ
(j)
zz for spin

j are given in terms of the principal components δ(j)
xx , δ

(j)
yy , δ

(j)
zz of the chemical shielding tensor).

Both interactions are second-rank (l = 2) with respect to spatial rotations.
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Relaxation superoperator

The spherical tensor formulation generates a rather monstrous looking expression for Γ̂,

particularly if there is more than one relaxation mechanism in operation where it involves a

superposition of self or auto time-correlated (Γ̂pp(t)) and cross time-correlated (Γ̂pq(t), p 6=

q) products:

Γ̂(t) =
∑
p,q

Γ̂pq(t), (3.19)

where the general correlation is given by

Γ̂pq(t) = −
∑
l

l∑
m,m′,m′′=−l

∑
λ

λ∑
µ,µ′,µ′′=−λ

(−)m+µ[T̂ pl−m]L[T̂ qλ−µ]L (3.20)

×[Aplm′′ ]
P [Aqλµ′′ ]

PDl
m′′m′(Ω

(P→M))Dλ
µ′′µ′(Ω

(P→M))ei(m+µ)ω0t

×
∫ 0

−∞
dτ Dl

m′m(Ω(M→L)(t+ τ))Dλ
µ′µ(Ω(M→L)(t))eimω0τ .

However, by bringing out detail of the molecular motion in solution this can be compacted

into the form

Γ̂pq(t) = −
∑
l

1

2l + 1

∑
m′,m′′,µ′′

[Aplm′′ ]
P [Aqlµ′′ ]

P (3.21)

×Dl
m′′m′(Ω

(P→M))Dl
µ′′−m′(Ω

(P→M))

×
∑
m

(−)mj(mω0)[T̂ pl−m]L[T̂ qλm]L.

Eq. (3.20) connects to eq. (3.21) on two reasonable assumptions for small molecules in

isotropic solution. Firstly, that the frame transformations (P →M) and (M → L) are un-

correlated, so can be averaged separately. Such assumption holds when the intramolecular

motions are either much faster or much slower than overall molecular reorientation. This

includes rigid molecules where intramolecular motion is absent altogether. The second

assumption is that molecular reorientations across the interval t to (t+ τ) are quanti�able



134 Nuclear singlet relaxation

by a probability function, G(τ) (usually called the `correlation function'), de�ned

Dl
m′m(Ω(M→L)(t+ τ))Dλ

µ′µ(Ω(M→L)(t)) = (3.22)

Dl
m′m(Ω(M→L)(t))Dλ

µ′µ(Ω(M→L)(t))G(τ),

where G(0) = 1 and limτ→∞G(τ) = 0. In isotropic solution G(τ) is independent of both

Ω and t so one can further identify

eq. (3.22) =
(−)m−m

′

2l + 1
δlλδµ−mδµ′−m′G(τ). (3.23)

Ranks (l, λ) and the projection indices are not explicitly involved in G since they are

taken care of by ensemble averaging. Working in this regime, the relaxation superoperator

appears

Γ̂pq(t) = −
∑
l

1

2l + 1

∑
m′,m′′,µ′′

[Aplm′′ ]
P [Aqlµ′′ ]

P (3.24)

×Dl
m′′m′(Ω

(P→M))Dl
µ′′−m′(Ω

(P→M))

×
∑
m

(−)m[T̂ pl−m]L[T̂ qλm]L
∫ 0

−∞
dτ G(τ)eimω0τ .

For �nal relation to eq. (3.21), integration over τ translates the time-correlation function

G(τ) into a spectral density function j(ω), which is sampled at integer multiples of the

Larmor frequency:

∫ 0

−∞
dτ G(τ)eimω0τ = j(mω0). (3.25)

Note that by virtue of the Fourier transform that the spectral density essentially `pick out'

the amplitude of molecular tumbling at frequencies resonant with nuclear spin transitions

(the latter separated by multiples of ω0, under the earlier-assumed B0 �eld dominance).

This is consistent with the idea that in order to have transitions between spin states, one

requires a �uctuating Hamiltonian at the corresponding energy di�erence.

In this work, like many others have done previously,[14] I assume an exponentially

decaying correlation function G(τ) = exp(−τ/τc) quanti�ed by the memory time con-

stant of random molecular tumbling, or `correlation time', τc. This function satis�es
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limτ→∞G(τ) = 0 and G(0) = 1, and independence to the global time coordinate. The

corresponding spectral density is

j(mω0) =
τc

1 + (mω0τc)2
. (3.26)

Quick-reference to relaxation superoperators

We are �nished with outlining the assumptions and considerations involved in setting

up the Red�eld relaxation problem and are ready to solve it. To consolidate the material

presented so far, and give a reference point for later, I list explicit relaxation superoperators

for the most common mechanisms expected in solution:

• Dipole-dipole relaxation superoperator

Using the notation given in table 3.1, the explicit cross-correlation between two

nucleus-nucleus dipole-dipole couplings is

Γ̂(DDjk,uv) = −
6bjkbuv

5

2∑
m′=−2

D2
m′0(Ω(Pjk→M))D2

0−m′(Ω
(Puv→M)) (3.27)

×
∑
m

(−)mj(mω0)[T̂
DDjk
2−m ]L[T̂DDuv

2m ]L.

Indices jk and uv denote the nuclear labels of homonuclear spins-1/2, each of which

may be di�erent (but this is only the case if four or more spins-1/2 are present).

Note the above may be simpli�ed by compounding Wigner matrices into

Γ̂(DDjk,uv) = −
6bjkbuv

5
d2

00(β(Pjk→Puv))
∑
m

(−)mj(mω0)[T̂
DDjk
2−m ]L[T̂DDuv

2m ]L.(3.28)

where β(Pjk→Puv) is angle formed between the internuclear vectors of spin pairs jk

and uv. This leads to a very simple expression for auto-correlated dipolar relaxation

superoperator where β(Pjk→Pjk) = 0 within the constant principal axes frame:

Γ̂(DDjk,jk) = −
6b2jk

5

∑
m

(−)mj(mω0)[T̂
DDjk
2−m ]L[T̂

DDjk
2m ]L. (3.29)

• CSA-dipole relaxation superoperator

The cross-correlation between a dipole coupling involving nuclei jk and the anisotropic
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chemical shielding on nucleus u is derived from the quantities in table 3.1 as

Γ̂(DDjkCSAu) = −
√

6 bjk
5

2∑
m′=−2

[ACSAu
2m′ ]PD2

m′0(Ω(Pjk→Pu)) (3.30)

×
∑
m

(−)mj(mω0)[T̂
DDjk
2−m ]L[T̂CSAu

2m ]L.

• Pure CSA relaxation superoperator

The general form of the superoperator describing correlated anisotropic chemical

shieldings between a nucleus j and nucleus k is

Γ̂(CSAj,k) = −1

5

2∑
m′,m′′=−2

[A
CSAj
2m′ ]P [ACSAk

2m′′ ]PD2
m′m′′(Ω

(Pj→Pk)) (3.31)

×
∑
m

(−)mj(mω0)[T̂
CSAj
2−m ]L[T̂CSAk

2m ]L.

3.1.3 Liouvillian eigenvalue analysis

A complete view over the progress of spin order under simultaneous coherent and inco-

herent evolutions is obtainable by tackling eq. (3.7) as an eigenvector-eigenvalue problem.

By diagonalising the matrix representation of the total Liouvillian (L̂0 + Γ̂), one obtains

eigenvectors as stationary combinations of spin order. Eigenoperators Qi evolve as

dQi/dt = (L̂0 + Γ̂)Qi = +λiQi, (3.32)

where the eigenvalues λi describe the oscillatory behaviour and relaxation. The eigenvalues

may be split as λi = (−iωi−ki), where ω and k are real, such that the parts Re(λi) = ki ≥ 0

correspond to monoexponential decay rates in eigenoperator amplitudes and Im(λi) = ωi

corresponds to a single-frequency phase modulation. This becomes more apparent on

integrating the eigenvalue di�erential equation with respect to time:

eq. (3.32)
integrate−−−−−−−→ Qi(t0 + τ) = exp (+λiτ)Qi(t0) (3.33)

= exp (−iωiτ) exp (−kiτ)Qi(t0).

One cannot understate the power of eigenvalue analysis. Firstly it allows one to deter-



137

mine multiexponential relaxation of arbitrary spin order:

ρ(t0 + τ) =
∑
i

(Qi|ρ(t0)) exp (−iωiτ) exp (−kiτ)Qi. (3.34)

In a more speci�c context to this work, the eigenspectrum answers many important ques-

tions about long-lived spin order. The longest-lived order in the system corresponds to the

eigenoperators with eigenvalues ki nearest to zero. Under a given coherent environment

and set of relaxation mechanisms, is singlet order close to a long-lived eigenoperator? The

answer is a matter of diagonalising the relaxation matrix.

3.1.4 Thermalisation

Although it makes for a simple derivation, the classical lattice surrounding in WBR theory

is perhaps an oversimpli�cation, and a potentially serious caveat. As WBR theory stands

Γ̂ describes equalisation of spin populations, rather than a tendence of the ensemble to

a Boltzmann equilibrium state (see e.g. eq. (1.25)). Formally, eq. (3.10), and hence eq.

(3.21), holds valid only for in�nite spin temperature.

The thermal defect in Γ̂ can be �xed `ad hoc' by acting Γ̂ on the deviation from thermal

equilibrium ρ− ρeq. This ensures a steady state dρ/dt = 0 for ρ = ρeq:

dρ/dt = L̂0ρ+ Γ̂(ρ− ρeq). (3.35)

The correction can be absorbed into a `thermalised' relaxation superoperator Γ̂thermalised =

Γ̂Θ̂, where the superoperator Θ̂ is de�ned through [101]

Θ̂−1 = Ê −
( E

|E|2
− ρeq

)
⊗ E, (3.36)

such that the correct equilibrium is restored at long evolution times by

dρ/dt = (L̂0 + Γ̂thermalised)ρ. (3.37)
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One can show Θ̂ satis�es the required properties in Γ̂Θ̂ via

Θ̂−1E = |E|2ρeq ⇒ Γ̂Θ̂ρeq ∝ Γ̂E = 0, (3.38)

Θ̂−1
(
ρ− (E|ρ)

(E|E)
E
)

=
(
ρ− (E|ρ)

(E|E)
E
)

⇒ Γ̂Θ̂ρ ≡ Γ̂(ρ− ρeq). (3.39)

It is important to state that while alone Γ̂ is thermally de�cient, it still predicts the

relaxation rates correct for tendence to thermal equilibrium. Relaxation eigenvalues are

preserved between Γ̂Θ̂ and Γ̂, seeing that the eigenvectors are mixed with only the null

(zero-eigenvalue) space. Eigenvalue analysis is therefore valid without explicit thermalisa-

tion in Γ̂. This shortcut is used heavily in the remaining part of this chapter.

3.1.5 Scalar superoperators in relaxation analyses

A superoperator that is una�ected by arbitrary rotations of the spins is called a scalar

superoperator, Ξ̂, where

R̂(Ω)Ξ̂R̂−1(Ω) = Ξ̂. (3.40)

A scalar superoperator imposes strict selection rules on the evolution of spin order within

the spherical tensor operator basis, rather similar to the restricted evolution of the angular

momentum functions |l,m〉 under a scalar spin operator (spin tensor rank-0). Consider the

superoperator matrix element (Tpq|Ξ̂Trs) of Ξ̂ between two spherical tensor spin operators

Tpq and Trs. The scalar property dictates

(Tpq|Ξ̂Trs) ≡ Tr(T †pqR̂
−1(Ω)R̂(Ω)Ξ̂R̂−1(Ω)R̂(Ω)Trs) (3.41)

= Tr(T †pqR̂
−1(Ω)Ξ̂R̂(Ω)Trs) (3.42)

=
∑
q′,s′

Dp
qq′(Ω)∗Dr

ss′(Ω)× Tr(T †pq′Ξ̂Trs′). (3.43)
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The relation holds for all orientations, so one may average over orientations Ω. This gives

1

8π2

∫
Ω

dΩ[ eq. (3.43) ] =
1

8π2

∑
q′,s′

[∫
Ω

dΩDp
qq′(Ω)∗Dr

ss′(Ω)
]
Tr(T †pq′Ξ̂Trs′) (3.44)

=
δprδqs
2p+ 1

∑
q′,s′

δq′s′Tr(T †pq′Ξ̂Trs′) (3.45)

= δprδqs(Tpq|Ξ̂Trs). (3.46)

The last line reveals that the matrix element is zero unless both rank and coherence order

indices are the same in the connected operators, or in other words that Ξ̂ is block-diagonal

in the spherical tensor operator basis.

Scalar superoperator allow one to calculate analytical 1/TS and 1/T1 relaxation rates,

as spin order for TS and T1 is each described by a single spherical tensor operator. For

a spin-1/2 pair jk the determination of TS is simple; The Liouville space comprises only

two rank-0 operators. One is the singlet order T jk00 = Ij · Ik = |S0〉 〈S0| − 1
3 [|T−1〉 〈T−1| +

|T0〉 〈T0|+ |T+1〉 〈T+1|] and the other the trivial unit operator E ∝ |S0〉 〈S0|+ |T−1〉 〈T−1|+

|T0〉 〈T0|+|T+1〉 〈T+1| that commutes with all operators. If Γ̂ is a scalar superoperator, then

T00 must be an eigenoperator with relaxation rate given by the diagonal matrix element

1

T
(jk)
S

≈ −(T
(jk)
00 |Γ̂T

(jk)
00 )/(T

(jk)
00 |T

(jk)
00 ). (3.47)

For T1 the situation is more complex but analytical solutions remain accessible. For a

spin-1/2 pair jk there are a total of three rank-1 projection-0 tensor operators, these

being longitudinal order on each nucleus, T j10 = Ijz and T k10 = Ikz, (where T k10 + T k10 ≡

(|T+1〉 〈T+1| − |T−1〉 〈T−1|)) and multispin rank-1 order T jk10 = −(Ij+Ik− − Ij−Ik+)/
√

2 ≡

(|S0〉 〈T0|−|T0〉 〈S0|)/
√

2 . It turns out that the coupled order T jk10 is disconnected from the

single-spin longitudinal operators and may be neglected, leaving the following biexponential

matrix problem for T1:

d

dt

 Ijz

Ikz .

 =

 (T
(j)
10 |Γ̂T

(j)
10 ) (T

(j)
10 |Γ̂T

(k)
10 )

(T
(k)
10 |Γ̂T

(j)
10 ) (T

(k)
10 |Γ̂T

(k)
10 )

  Ijz

Ikz

 . (3.48)

This 2×2 problem for T1 is simpli�ed when Γ̂ is approximately symmetric with respect

to exchange of the nuclei, which incidentally is the regime most of interest to singlet NMR,
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where longest singlet lifetimes are predicted. Approximate permutation symmetry in the

relaxation problem dictates eigenoperators approximately equal to the sum and di�erence

order (Ijz ± Ikz), giving a monoexponential decay rate for longitudinal relaxation

1

T
(jk)
1

≈ −((T
(j)
10 + T

(k)
10 )|Γ̂(T

(j)
10 + T

(k)
10 ))

((T
(j)
10 + T

(k)
10 )|(T (j)

10 + T
(k)
10 ))

. (3.49)

Dipole-dipole scalar relaxation superoperator

Scalar relaxation superoperators Γ̂ = R̂(Ω)Γ̂R̂−1(Ω) (not to be confused with superoper-

ators for scalar relaxation) arise commonly in so-called `extreme-narrowing' motion limit

where molecular tumbling is fast compared to the Larmor frequency, at which |ω0τc| � 1,

and the spectral density across all transitions thereby uniformly sampled; j(mω0) ⇒ τc.

The most frequent example is the general dipole-dipole cross-correlation superoperator

derived earlier in eq. (3.27). In extreme narrowing

eq. (3.27)
|ω0τc|�1−−−−−−→ −

6bjkbuvτc
5

d2
00(β(Pjk→Puv))

∑
m

(−)m[T̂
DDjk
2−m ]L[T̂DDuv

2m ]L. (3.50)

The double commutator part

∑
m

(−)m[T̂
DDjk
2−m ]L[T̂DDuv

2m ]L (3.51)

is a scalar product between two rank-2 spin tensors, and therefore invariant under arbitrary

global rotation of spins. For small molecules, the `extreme-narrowing' limit usually holds

very well in �elds up to several tesla since τc is of order 10 to 100 picoseconds (1 ps = 10−12

s). For larger molecules (MW > 500) this may not always be the case but is always more

likely at lower B0 �eld.

Anisotropic relaxation superoperators

Outside extreme narrowing the relaxation superoperator is generally not diagonal in spin

operator rank l and therefore a full Liouvillian diagonalisation may be needed.

For an example consider the dipolar relaxation superoperator within the very high �eld

or macromolecular limit |ω0τc| � 1. This is the opposite regime to extreme narrowing in

which molecular tumbling is too slow to cause transitions at the Larmor frequency. In this
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situation the relaxation superoperator is limited to the zero-frequency �uctuation

eq. (3.27)
|ω0τc|�1−−−−−−→ −

6bjkbuvτc
5

d2
00(β(Pjk→Puv))[T̂

DDjk
20 ]L[T̂DDuv

20 ]L. (3.52)

It can be shown via the Clebsch-Gordan series that Γ̂ connects spin operators Tpq and

T(p+∆p)q up to a change in spin rank 0 ≤ |∆p| ≤ 4. This rule follows because [T̂
DDjk
20 ]L[T̂DDuv

20 ]L

spans a tensor superoperator space between spin ranks |2− 2| = 0 and (2 + 2) = 4.

3.1.6 Spherical tensor commutation

Basic shortcuts must not be overlooked. While the latter sections have discussed spherical

symmetry properties of the Liouvillian superoperator as a whole, some answers are available

by examination of commutations between operators.

As an example, it can easily be shown that the commutator

[T uv2m, T
jk
00 ] ≡ T̂ uv2mT

jk
00 (3.53)

between a rank-2 spin tensor T uv2m and a rank-0 spin tensor T jk00 is zero when spin pair

indices jk and uv: (i) are the same; (ii) have no common label. This fact alone establishes

singlet order is a null eigenoperator of (i) the auto-correlation intra-pair dipolar relaxation

superoperator eq. (3.29), and (ii) dipole-dipole relaxation between external spins, regardless

of whether extreme narrowing holds.

3.1.7 Liouvillian perturbation theory

In cases where the Liouvillian the superoperator is not scalar it may be di�cult to obtain

analytical formulae for singlet relaxation rates. If the Liouvillian is `nearly scalar', however,

approximate analytical formulae for T1 and TS may be derived using perturbation theory.

The starting point of perturbation theory is centered around the `localised-singlet'

hypothesis introduced in refs. [76] and [80]. An isolated spin pair is initially assumed,

which is characterised by a reference Liouvillian superoperator

L̂(0) = L̂
(0)
0 + Γ̂(0). (3.54)

The reference Liouvillian is scalar, obeying R̂(Ω)L̂(0)R̂−1(Ω) = L̂(0). The matrix represen-
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tation of L̂(0) is rank-diagonal in the spherical tensor operator basis. The singlet relaxation

rate 1/TS is given therefore by the diagonal matrix element eq. (3.47). Speaking in general,

the reference eigensystem is known completely:

L̂(0)Q
(0)
i = λ

(0)
i Q

(0)
i (3.55)

where Q(0)
i is equal to a spherical tensor operator and λ(0)

i its eigenvalue counterpart.

This reference system is related to the true Liouvillian superoperator by a term L̂(1),

which may or may not be scalar. The true eigensystem is de�ned such that

(L̂(0) + L̂(1))Qi = λiQi, (3.56)

where λi and Qi are the exact eigenvalues and eigenoperators of the problem. Through

the recipe of perturbation theory for normal matrices,[34] these are expressible from Q
(0)
i

and λ(0)
i by power series in L̂(1):

λi =
∑
n=0

λ
(n)
i , (3.57)

Qi =
∑
n=0

Q
(n)
i , (3.58)

where the lowest-order corrections are given by

λ
(0)
i = (Q

(0)
i |L̂

(0)Q
(0)
i ) (3.59)

λ
(1)
i = (Q

(0)
i |L̂

(1)Q
(0)
i ) (3.60)

λ
(2)
i = −

∑
j 6=i

|(Q(0)
i |L̂(1)Q

(0)
j )|2

λ
(0)
j − λ

(0)
i

. (3.61)

The perturbation theory method allows one to determine approximate analytical for-

mulae for T1 and TS under a rotationally anisotropic Liouvillian. The series expansion

rapidly converges when the perturbation induced by L̂(1) on an eigenoperator Q(0)
i is much

less than the di�erence in eigenvalues between Q(0)
i and other reference states; namely that

|λi − λ(0)
i | � |λ

(0)
i − λ

(0)
j | for any j.

To date, eigenvalue perturbation theory has been used in several analyses of singlet

relaxation. Dipole-induced relaxation for inequivalent spin pairs at low �eld has been
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examined with reference to the zero-�eld relaxation rates, by treating the Zeeman inter-

action as a perturbation.[82] This approach applies also to evaluating the singlet leakage

due to chemical shift frequency di�erences |γB0∆δ/2π| � |J | of nearly equivalent spin-

1/2 pairs in high �eld.[88] Gopalakrishnan and Bodenhausen used Liouvillian perturbation

theory to derive a formula for TS during o�-resonance spin locking.[80] As described in the

next section, perturbation analysis has also been used to examine TS under weak relax-

ation mechanisms external to the spin pair, which may include out-of-pair dipole-dipole

couplings.[62]
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3.2 Singlet relaxometry

This section presents some case studies where experimental measurements of singlet re-

laxation rates are compared with predictions made using Red�eld theory. Such a process

is termed singlet relaxometry, where the aim is to back-calculate various information on

singlet relaxation mechanisms from measured relaxation rates. This can take two forms,

either (i) to quantify parameters in some pre-assumed relaxation-causing Hamiltonian such

as the strengths of dipole-dipole couplings,[62] CSA,[61] or other parameters, or (ii) the

reverse, to determine whether or not a given singlet relaxation mechanism is consistent

with experimental data. Both of these are useful towards rationalising singlet relaxation

times from a perspective of molecular functional groups, the knowledge of which may help

in predicting molecules that have extremely long lifetimes.

In total three illustrative studies are reported. In the �rst I discuss singlet relaxation a of

CH2 proton pair caused by neighbouring protons in the molecule, entertaining a possibility

of conformational analysis from the geometry-dependence of TS predicted by Red�eld

theory. This is followed by analysis of the singlet lifetimes in heteronuclear systems, as

prepared in earlier in �2.3. Finally, I analyse singlet relaxation in solutions doped with

paramagnetic agents.[111]

3.2.1 Singlet relaxation of methylene protons

Introduction

The proton spin pair of an inequivalent CH2 group (a methylene group) is both an in-

teresting system for quantitative study of singlet relaxation. The internuclear magnetic

dipole-dipole coupling |b12|, assuming indices `1' and `2' to indicate the nuclei of the pair,

is approximately ~µ0γ
2
H/4πd

3
12 ≈ 21 kHz in strength for the typical proton-proton dis-

tance d12 ≈ 1.8 Åand by far exceeds dipolar couplings to nearby nuclei, and th CSA

of the protons due to their low nuclear shielding. The T1 relaxation mechanism is con-

sequently well-determined, and the rate 1/T1 therefore provides an e�ective calibration

of the molecular rotational correlation time in Red�eld theory. For small molecules in

extreme-narrowing

eq. (3.49) ⇒ 1

T1
=

3τc
2
|b12|2. (3.62)
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The singlet state between the protons does not relax under the strong dipole-dipole auto-

correlation. This means the relaxation rate 1/TS relative to 1/T1, or in other words the

ratio of rates TS/T1, depends to good approximation only on the variables of out-of-pair

spin interactions, and can be used as a probe of molecular environment local to CH2.

Determination of molecular conformations using singlet relaxation

Nuclei in the vicinity of the methylene protons may induce relaxation through the dipole-

dipole mechanism, the rate at which depends on the relative geometry between the CH2

protons and neighbouring spins according to the superoperator eq. (3.27). This opens a

possibility of determining molecular conformation from the ratio TS/T1. Relaxation ratios

for all accessible molecular conformations can be calculated via Red�eld theory, compared

against the actual TS/T1 of the system measured by experiment, and the most likely

conformations thereby determined.[62]

In the case where there is one proton external to the CH2 (a system of three protons

overall) the overall dipole-dipole relaxation superoperator contains 3 × 3 = 9 correlation

terms:

Γ̂(DDtotal) = Γ̂(DD12,12) + Γ̂(DD13,13) + Γ̂(DD23,23)︸ ︷︷ ︸
auto-correlation

+ (3.63)

(Γ̂(DD12,13) + Γ̂(DD13,12)) + (Γ̂(DD12,23) + Γ̂(DD23,12)) + (Γ̂(DD13,23) + Γ̂(DD23,13))︸ ︷︷ ︸
cross-correlation

,

where label 3 denotes the passive spin. If the CH2 protons have no signi�cant J-couplings

to the nucleus 3,[77] the relaxation constant TS evaluates to a good approximation the

�rst-order perturbation estimate

1

TS
≈ (T 12

00 |Γ̂(DDtotal)T 12
00 ) = (b213 + b223 − 2b13b23d

2
00(β132))τc. (3.64)

Here β1j2 symbolises the angle between the two vectors joining spins 1 and 2 with spin 3.

Within the �rst-order perturbation approximation the contributions from additional spins

are additive, so for more than three spins

T1

TS
≈ 2

3b212

∑
i>2

(
b21i + b22i − 2b1ib2id

2
00(β1i2)

)
. (3.65)
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These above formulae are valid for distances d1i, d2i and dii′(i > 2) all greater than

d12, to justify the perturbation approximation. In this limit, the rate constant decays with

the inverse eighth power of the distance between each spin j and the centre of the spin

pair `12'.[72] Magnetic nuclei at longer range therefore have a negligible e�ect even if they

are present in large numbers, for instance the solvent bulk. The comparison of TS and

T1 may hence be used to set con�dent geometric restraints on the immediate molecular

environment of the CH2 group.

Measurements on phenylalanine-derived compounds

To test this concept and eq. (3.65) a series of isotopically substituted phenylalanine ana-

logues were prepared in which some of the hydrogens of the molecule were replaced

with deuterium. Deuteration `quenches' the selected proton-proton dipole couplings ow-

ing to (i) the e�ective downscaling of the dipole-dipole coupling constant by a factor of

(γD/γH) ≈ 1/6, and (ii) rapid self-decoupling of deuterium from the proton spin system due

to its fast quadrupolar relaxation. The di�erence in rate constants between isotopologues

is to a good approximation the rate induced by the proton di�erence.

Four isotopomers were studied as indicated in �g. 3.1 with proton/deuterium substitu-

tions made synthetically (i) at the alpha-proton (referred as d1-Phe), (ii) on only the proton

sites of the phenyl ring (d5), and (iii) both of these environments (d6-Phe). Methyl ester and

N-phthalimido groups, both non-deuterated, were also added with the aim of eliminating

solvent-induced relaxation at the carboxyl and amino groups. Detail of the preparations

can be found in the supporting information of ref. [62]. Each sample was dissolved to

approximately 60 mmol concentration in 0.5 mL 99.99 % d4-methanol. The solutions were

gently warmed to assist dissolution, then transferred into 5 mm outer-diameter NMR tubes

equipped with Young values and thoroughly degassed to remove dissolved paramagnetic

molecular oxygen, O2 (freeze-pump-thaw), and �nally sealed.

Singlet order was excited on the diastereotopic methylene protons by applying Sarkar's

sequence (�2.2.2, �g. 2.7) at an external B0 �eld of 9.4 T. Optimum delays were τa =

1/4|2JHH| = 17.2 ms ( 2JHH = 14.5 Hz between the CH2 pair) and τb = π/|2γB0∆δ| =

14.9 ms. An on-resonance CW decoupling �eld of strength 3.0 kHz was applied for time

τlock, before reconversion to antiphase signals and detection. Non-singlet spin order was

suppressed by applying a 12-step tetrahedral phase cycle (see �2.5.4) at the end of the
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Figure 3.1: Series of isotopically substituted phenylalanines, denoted dn-Phe where n is the number
of deuterium nuclei present. Methyl ester and N-phthalimido blocking groups were added to
suppress solvent-induced relaxation at the carboxyl and amino groups, respectively.

spin locking time.[129] The sequence was repeated for several values of τlock and the signal

intensity on the β-protons �tted to a monoexponential decay exp (−τlock/TS) yielding the

singlet lifetimes. These lifetimes are displayed in table 3.2 alongside which are given the

conventional T1 lifetimes for the methylene protons, measured by inversion recovery on the

same samples.

TS (s) T1 (s) TS/T1 [T−1
S − T−1

S (d6)] (s)−1

d0 7.4 1.15 6.4 0.13
d1 8.0 1.17 6.8 0.12
d5 16.0 1.33 16 0.04
d6 51 1.38 37 0

Table 3.2: Experimental TS and T1 relaxation times for the doubly protected phenylalanine ana-
logues (see �g. 3.1) an external �eld B0 of 9.4 T in degassed d4-methanol. The singlet lifetimes were
measured using Sarkar's sequence under 3.0 kHz WALTZ-16 proton decoupling. The T1 lifetimes
were measured by inversion recovery.
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Static conformational analysis

The CH2 singlet lifetimes are longest in the d5 and d6 ring-deuterated isotopologues. For

d6-Phe, the lifetime was TS = (51±2) seconds, which is approximately 37 times longer than

T1 = (1.38±0.05) seconds. The decay time of d1-Phe was TS = (8.0±0.1) seconds or only

6.8 times longer than T1 = (1.17 ± 0.04) seconds. The rate constants (1/TS − 1/TS(d6))

in the far-right column of 3.2 show that the alpha-proton contributes (16−1− 51−1) s−1 =

0.04 s−1 to the singlet relaxation rate, while the phenyl protons contribute (8.0−1 − 51)

s−1 = 0.12 s−1, i.e. about 3 times more. The rate for d0-Phe looks consistent with these

two contributions being additive.

Why do the phenyl protons contribute 0.12 s−1 and what constraints does this put on

the orientation of the aromatic ring? To determine the answers, eq. (3.65) was used to

analyse the dependence of the singlet relaxation rate constant upon the torsional angle ϕβγ

around the Cβ�Cγ sigma bond. Eq. (3.65) is assumed to be valid for the phenyl protons,

since: (i) CH2 protons do not have signi�cant J-couplings with the ring protons; (ii)

molecular rotation is within the extreme narrowing limit, as veri�ed from the T1 value of

(1.38±0.05) seconds, which corresponds to a rotational correlation time of τc = 24 ps; (iii)

the 51 second singlet lifetime in the d6 compound indicates that CSA and the contributions

of the protonated blocking groups make a negligible contribution to the singlet relaxation.

It was assumed the ortho protons make the dominant contribution the relaxation, so that

the meta and para ring protons can be omitted from the calculation.

Internuclear vectors between the two ortho protons of the ring and the methylene

protons were calculated as a function of the coordinate ϕβγ using standard bond lengths

and bond angles. The derived dipole-dipole couplings ∝ |rjk|−3 and angles cos(β1j2) =

(r1j · rj2)/(|r1j ||rj2) are then used with Eq. (3.65) to determine TS/T1 versus ϕβγ . The

calculation was performed using SpinDynamica.[101] The dependence is shown by the solid

line plotted in �g. 3.2, de�ning the convention ϕβγ = 0 where the midpoint of the vector

joining the two CH2-protons lies in the plane of the aromatic ring (see also �g. 3.2).

The calculated values of TS/T1 show a variation between ≈ 14 near ϕβγ = 0◦ and ≈ 6

in the vicinity of ϕβγ = 90◦. Experimentally, the ratio for d1-Phe is TS/T1 = (6.8 ± 0.2),

indicating an angle between ϕβγ = 45◦ and 135◦. This range of orientations is consistent

with the known crystal structure of L-phenylalanine.[135]
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Figure 3.2: Variation of TS/T1 in d1-Phe against the CβCγ torsional angle of the aromatic ring
ϕβγ . The ratio plotted is that predicted by eq. (3.65) assuming pure dipole-dipole relaxation in the
system containing the two ortho ring protons and the methylene protons: (solid line) for a single,
static ring orientation; (dashed line) for rapid 180◦ rotational jumps between ring orientations ϕβγ
and (ϕβγ + 180◦). The horizontal grey band indicates the experimental value of TS/T1 for d1-Phe,
the height indicating the error margin.

Molecular dynamics

The aromatic ring in phenylalanine, as well as in other aromatic amino acids, is known to

execute 180◦ `hops' between conformations with torsion angles ϕβγ and (ϕβγ + 180◦).[136]

This may have strong consequences on the CH2 singlet relaxation. For ring �ips that

are slow relative to the rotational correlation time, but fast compared to the Larmor

frequency, Red�eld theory says the rate constants 1/T1 and 1/TS are each given by the

conformationally averaged rate.

Fig. 3.2 (dashed curve) shows the predicted ϕβγ-dependence of the resulting TS/T1

ratio for rapid jumps of the ring. The model predicts much longer singlet relaxation times

due to averaging of dipolar couplings between the two geometries of the CH2 and each

ortho ring proton, with TS/T1 varying between ≈ 13 and ≈ 26. The experimental value of

TS/T1 = 6.8, however, does not at all agree with this range. This proves either ring �ips

are slow compared to the Larmor frequency, or nonexistent altogether.

This apparent immobility of the phenyl ring is con�rmed by singlet and longitudinal

relaxation measurements made on samples of α-deuterated tyrosines (9.4 T, D2O, see

�g. 3.3). Lifetimes TS = (3.1 ± 0.2) seconds and T1 = 0.5 seconds were measured for the

methylene group of α-deuterated tyrosine. These remained unchanged upon adding a nitro

group (NO2) meta on the ring, the large mass and bulk of which quenches ring-hopping.

The ratio TS/T1 ≈ 6 further suggests a near-90◦ equilibrium torsion angle ϕβγ of the ring.
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Figure 3.3: Experimental relaxation time constants for α-deuterated tyrosine at 9.4 T in D2O: (left)
free amino acid; (right) hindered meta nitro analogue. The similar lifetimes suggest a non-rotating
phenyl group in ordinary tyrosine.

Presence of J-couplings

Due to the relaxation induced by the α proton, TS/T1 in the d5-Phe isotopologue is depen-

dent on the torsion angle between Cβ and Cα, ϕαβ . In this case, however, eq. (3.65) cannot

determine conformation restraints since the relaxation is accompanied by evolution under

the vicinal 3Jαβ couplings. In this case, TS/T1 was determined by resorting to full Liou-

villian eigenvalue analysis of the zero quantum subspace, using the Karplus relationship to

treat the conformationally dependent 3Jαβ couplings, 3J13 and 3J23. Parameterisations for

3Jαβ were chosen according to the CβH2CαH vicinal couplings expected for amino acids

in a random-coil peptide chain.[137] In units of Hz, these are

3J13 = 9.4 cos(ϕαβ + 60◦)− 1.6 cos2(ϕαβ + 60◦) + 1.8, (3.66)

3J23 = 9.4 cos(ϕαβ − 60◦)− 1.6 cos2(ϕαβ − 60◦) + 1.8. (3.67)

These relationships have been plotted in �g. 3.4(b).

The TS(ϕαβ)/T1 curve resulting from eigenvalue analysis is shown in �g. 3.4(a). Minima

in TS/T1 occur in the vicinity of the eclipsed syn conformations where the α-proton lies

nearest to one of the methylene protons (ϕαβ ≈ 60◦). The maximum lifetime occurs at

the anti con�guration (ϕαβ = 140◦ to 180◦). The experimental ratio TS/T1 supports a

torsion angle ϕαβ ≈ 100◦ for a static conformation of the amino acid, which according

to �g. 3.4(b) agrees approximately with the angle inferred from the two experimental J-

couplings 3Jαβ = 4.9 Hz and 12.0 Hz.
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Figure 3.4: Dependence of TS/T1 for relaxation caused by the α-proton in d5-Phe. The solid line
in (a) shows the variation in TS/T1 against the torsion angle ϕαβ as calculated by Liouvillian
eigenvalue analysis, taking into account the vicinal 3Jαβ couplings that are themselves dependent
on ϕαβ according to the Karplus relations, which are plotted in (b).[137] The dotted line in (a)
shows the variation in TS/T1 against the �rst-order matrix element (T 12

00 |Γ̂(DDtotal)T 12
00 ). The solid

curve is the more correct approach; note, however, the dotted and solid lines coincide at the torsion
angles where |3J13 −3 J23| �2 J12. This behaviour is in accordance with ref. [77].
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This analysis shows that TS/T1 provides information that di�cult to obtain using the

Karplus relationships alone. The ratio TS/T1 shows a large contrast between the ϕαβ = 0◦

and ϕαβ = 180◦ conformations of the molecule, while the J-couplings according to �g.

3.4(b) are roughly similar. In this particular demonstration it is unlikely that nuclear

Overhauser e�ect (nOe) measurements can resolve the ambiguity, since these are dominated

by the strong intra-pair coupling b12 and relatively insensitive to the position of the vicinal

proton.

To summarise, the ratio TS/T1 of a CH2 group, within the stated approximations, is

insensitive to overall molecular rotation and depends only on spatial positions and dynamics

of neighbouring nuclei. Singlet relaxometry of methylene groups may complement other

NMR methods, such as J-coupling analysis and the nOe, both as a support of structure-

determination outcomes obtained from the existing methods, or resolving answers that are

otherwise di�cult to obtain.

3.2.2 Heteronuclear singlet relaxation

In �2.3 a demonstration was made of singlet excitation on a pair of chemically equivalent

protons by exploiting J-couplings to a nearby 13C nucleus. As well as being another means

to excite singlet order, and access lifetimes extended beyond T1, heteronuclear singlet NMR

provides interesting opportunities for singlet relaxometry.

To illustrate this, the molecule 1,2,3,4-tetrachlorobenzene (1,2,3,4-TCB) is returned to,

which contains two equivalent aromatic protons and three distinguishable aromatic carbon

sites. Singlet relaxation times TS and longitudinal relaxation times T1 were recorded for

all of the natural-abundance 13C1 isotopomers. These experimental data are summarised

in table 3.3, which confer the longest singlet lifetimes are when the 13C nucleus is furthest

from the proton pair. Qualitatively, this agrees with the reduction in the strength of 1H-13C

dipole couplings, which are proportional to 1/d3
CH.

To estimate quantitative relaxation times for the heteronuclear system one must use

a Red�eld's formalism in a slightly more complicated form than that outlined in 3.1.1.

Second-order truncation in eq. (3.4) dictates a need to transform the Hamiltonian into

a double interaction frame; one frame rotating at the proton Larmor frequency via the

propagator exp(−iω0
I Izt) and the other at the Larmor frequency of 13C, via exp(−iω0

SSzt),

where I denotes proton and S carbon. Solution of the relaxation problem, however, has
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Isotopomer

Experimental relaxation times (MeOD, 9.4 T)
TS (s) 2.2 (72± 5) (140± 10) �
T1 (s) 2.8 8.7 9.0 9.2
TS/T1 0.8 (8.3± 0.4) (15.5± 1) �

Predicted lifetime ratio, pure DD mechanism + short τc
TS/T1 0.7 11-12 > 170 �

Table 3.3: Experimental decay constants, TS , measured under resonant proton spin locking at
9.4 T, and T1, by inversion-recovery/INEPT in d4-methanol for the protons in 1,2,3,4-TCB. For
detail on the measurements, see �2.3. The black dots indicate the position of the 13C nucleus,
if present, in each isotopologue. The quoted error in TS is the uncertainty in exponential �tting
of experimental decays. Below are listed the theoretical lifetime ratios TS/T1 for each geometry
predicted by the Red�eld theory.

some simpli�cations: (i) that under resonant spin locking of either the I or S nuclei, (but

not both), the heteronuclear couplings are averaged, and may be neglected from calculation;

(ii) that due to the secular approximation γI 6= γS , the operator basis is diagonal in the

coherence orders (mI , mS) of the I and S spins. Together these validate use of Liouvillian

perturbation theory for TS . Assuming a pure dipole-dipole relaxation mechanism, for sake

of simplicity, the rate formula obtained is

1

TS
≈ (T 12

00 |Γ̂(DDtotal)T 12
00 ) (3.68)

=
1

15
(b213 + b223 − 2b13b23d

2
00(β132)) (3.69)

×(2j(0) + 3j(ω0
I ) + 3j(ω0

S) + j(|ω0
I − ω0

S |) + 6j(|ω0
I + ω0

S |)).

where the subscript `3' is used to denote the 13C spin and `1' and `2' the protons. In

extreme narrowing for the small molecule, this condenses to

eq. (3.69) ⇒ (b213 + b223 − 2b13b23d
2
00(β132))τc. (3.70)
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Figure 3.5: Contour plot showing τc-independent intramolecular dipole-dipole relaxation ratio
TS/T1 against position of a 13C nucleus for the two protons in 1,2,3,4-TCB, d12 = (dCH+dCC) ≈ 2.5
Å. The yellow region indicates space that is physically inaccessible to the nucleus of a non-bonded
carbon atom, assuming standard van der Waals radii for non-bonded carbon (rVdW(C) ≈ 1.7 Å)
and hydrogen atoms (rVdW(H) ≈ 1.2 Å).

This is the same formula derived for homonuclear out-of-pair dipolar interactions (compare

eq. (3.64)). The formula for the proton T1, in the case of 1,2,3,4-TCB, is likewise identical

to eq. (3.62).

The above formula is evaluated for the 1H relaxation of 1,2,3,4-TCB and plotted in

�g. 3.5. The contour lines indicate the theoretical TS/T1 at arbitrary position of the 13C

nucleus relative to the two protons whose separation is d12 = (dCH + dCC) ≈ 2.50 Å,

assuming standard bond lengths dCC = 1.40 Å and dCH = 1.10 Åand 120◦ bond angles.

Superimposed upon the contour plot is a diagram showing the location of carbon sites in

the 1,2,3,4-TCB, within this model. Precise ratios TS/T1 at these positions are listed at

the bottom of table 3.3.

The calculated estimates of TS/T1 are very close to the experimental results for iso-

topomers where the 13C nucleus is within one or two sigma bonds from the proton pair,

suggesting in these geometries that the dipole-dipole mechanism is the dominant singlet

relaxation source. The experimental TS/T1 for the more-remote three-bond isotopomer,

however, is much shorter than the predicted ratio. The likely situation is that other re-
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laxation mechanisms, such as CSA, limit the singlet lifetime from being longer, and are

more in�uential than the 1H-13C dipolar coupling over the three-bond distance. A study

of TS/T1 versus B0 �eld may resolve this hypothesis.

The yellow region in �g. 3.5 marks the area around the proton pair that is inaccessible

to the nuclei of non-bonded carbon atoms. This indicates that out-of-pair spins in�uence

singlet relaxation only at very short range, and that intermolecular dipole-dipole contri-

butions make a negligible contribution to TS .

3.2.3 Singlet relaxation in paramagnetic-containing solutions

The �nal part of this thesis reports the in�uence of paramagnetic agents on singlet lifetimes.

These are substances that contain one or more unpaired electrons, arising usually as either

transition metal complexes or free radicals.

Introduction

Paramagnetism-induced relaxation is a complicated phenomenon.[14] The unpaired electron-

spin momentum of paramagnetic species interacts with nuclear spins in quite a di�erent

way to inter-nuclear dipole couplings. The gyromagnetic ratio of the electron is much larger

than of atomic nuclei, approximately 650 times the gyromagnetic ratio of a 1H nucleus.

Firstly this means that even lone-unpaired electrons may induce rather strong relaxation

on the nuclear spins. The large electron magnetism is also strong enough to couple to

other components of the system, including external magnetic �elds (Curie e�ect) and the

molecular orbital angular momenta. Spatial delocalisation of the electron wavefunction

adds some further complication. Charged radical ions may additionally distort the nuclear

chemical shieldings (chemical shifts), causing additional relaxation through a mechanism

similar to intermolecular chemical exchange.

In the present section this mechanical detail of paramagnetic relaxation is for the most

part ignored. I focus more on a basic questions of interest: is paramagnetic relaxation of

the singlet order slower or faster than the T1 of longitudinal magnetisation? By how much?

The above questions may be asked in view of the possible in vivo applications of nuclear

singlet states where in blood there is the invariable large presence of metallo-proteins, such

as haemoglobin, dissolved metal complexes and free radicals e.g. •NO and O••2 . As an
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example, the T1 of 129Xe is more than 12 times faster dissolved in blood than dissolved in

a saline solution.[138] Long singlet lifetimes in proximity to these paramagnetic substances

may help preserve nuclear spin order during transport through a living animal's or human

being's circulatory system. This may apply to spin order that is hyperpolarised outside

the body, for instance by DNP[47] or PHIP[57], then injected, which must then survive

transport until the point of interest in the body where it is imaged by MRI, or otherwise

detected.

A well known example of paramagnet-induced singlet relaxation is the ortho-para con-

version in dihydrogen. Conversion between spin isomers of H2 may be catalysed through

non-bonding near-approach to paramagnetic surfaces and complexes,[139, 64] where in-

stantaneous di�erences in the local magnetic �eld are experienced by the hydrogen nuclei,

inducing instantaneous magnetic inequivalence and singlet-to-triplet transitions. Ortho-

para conversion in free H2 has been studied extensively in solution, both experimentally

and theoretically.[54, 140, 141] More recently ortho-para conversion has been studied for

H2 encapsulated in C60.[142, 143, 144]

Relaxivity measurements

The relaxation in�uence of paramagnetic agents was studied in aqueous solution for the

diastereotopic glycine protons of the dipeptide alanylglycine (AG), whose structure and

basic NMR spectrum is displayed in �g. 3.6. This small and simple molecule has been the

subject of several previous singlet NMR studies.[30, 145, 66, 83] The decay constant TS in

water, in the absence of dissolved paramagnetic substances, is almost 40 times T1, which is

due to the dominant dipole-dipole relaxation mechanism of the relatively isolated proton

pair and fast correlation time τc.

The glycyl relaxation in AG was veri�ed as a starting point for the present study.

Singlet TS and longitudinal T1 decay times at a �eld of 9.4 T were measured in a solution

containing 40 mM AG dissolved in 500 µL D2O. Before the NMR measurements, the

solutions were thoroughly degassed using the freeze-pump-thaw technique to eliminate

dissolved paramagnetic oxygen. Singlet order was excited using Sarkar's pulse sequence

(see �2.2.2 and ref. [24]) with optimal durations τa = 14.5 ms and τb = 10.0 ms. The singlet

order was sustained during a relaxation period τrelax by applying a WALTZ-16 modulated

rf �eld at an amplitude of 2.5 kHz. Signal amplitudes were �tted to a monoexponential
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Figure 3.6: Molecular structural diagram and 1H NMR spectrum (9.4 T, D2O, room temperature)
of the Ala-Gly peptide. The proton chemical shift is referenced to tetramethylsilane.

curve exp(−τrelax/TS) giving TS = (32±2) seconds. A spin-lattice constant T1 = (1.4±0.1)

seconds was then measured by inversion-recovery. These data con�rm relaxation is caused

predominantly by the dipole-dipole coupling in the glycyl proton pair.

The paramagnetic relaxation in�uence was determined for a small selection of transition

metal ions, CuII (electron spin = 1/2), MnII (spin 5/2), the lanthanide ion GdIII (spin 7/2)

and the organic radical TEMPO ( = 2,2,6,6-tetramethyl piperidine N-oxide, electron spin

1/2). A stock solution for each of these agents was prepared by dissolving each species, or

its corresponding chloride salt, in D2O to a suitable concentration.

Proton lifetimes TS and T1 were measured versus each paramagnetic substance over

a concentration range 0 to 0.4 mM by adding aliquots of the paramagnetic stock to the

starting AG solution (= 40 mM AG in 500 µL degassed D2O). In all experiments the

signal was �tted successfully by monoexponential relaxation curves. No noticeable line

broadening or paramagnetic shifts were observed.

As shown by Fig. 3.7, the rate constants 1/TS and 1/T1 were observed to increase

linearly with paramagnet concentration [X] according to the law

1

Ti([X])
= ki[X] +

1

Ti(0)
(3.71)

where the coe�cient of proportionality is called the `relaxivity'.[14] The relaxivities k1 and

kS , for the longitudinal and singlet relaxation, were �tted from the slopes of the 1/T1 and

TS data and are tabulated in table 3.4.

The table shows the T1 relaxivity occupies a wide range of values and it can be seen that

k1 increases approximately in proportion to the square of the electron magnetic moment
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Figure 3.7: Longitudinal (•T−1
1 ) and singlet (◦T−1

S ) relaxation rate constants in D2O for the
glycine protons in AG as a function of metal ion concentration as measured for paramagnetic
species: (a) CuIICl2; (b) MnIICl2; (c) GdIIICl3. Time constants at zero concentration are TS(0) =
32 seconds and T1(0) = 1.4 seconds. Relaxivities are equal to the respective slopes of each line.

X k1 (mM−1s−1) kS (mM−1s−1) kS/k1

Cu2+
(aq) 3.0± 0.1 1.6± 0.08 0.51± 0.04

Mn2+
(aq) 17.4± 1.0 6.7± 0.3 0.38± 0.02

Gd3+
(aq) 115± 5 40± 2 0.35± 0.02

TEMPO 2.0± 0.1 0.6± 0.05 0.28± 0.02

Table 3.4: Experimental singlet and longitudinal relaxivities for the methylene protons in AG (9.4
T, D2O, 293 K), and the ratio between.
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for each species. This pattern agrees with the relaxation mechanism involving the proton-

paramagnet hyper�ne coupling.[2, 141] The singlet relaxivities kS also follow this trend,

but are typically a factor of 2 to 3 smaller. This states the nuclear singlet order is much

less susceptible to paramagnet-induced relaxation than ordinary nuclear magnetisation.

The singlet relaxivities kS for metal ions are more than 105 times those for the anal-

ogous ortho-para conversion in dihydrogen,[140] and ortho-para conversion in endohedral-

hydrogen fullerenes.[142, 144] This probably arises because the interaction between AG and

the metal ions can involve partial coordination with the carboxyl groups of the peptide,

which results in a much stronger relaxation on AG through a much longer correlation time

compared to H2. Spin isomer interconversion in H2 is slow due to the very large ortho-

para energy splitting, which is the order 120 cm−1 (= 3500 GHz), or twice the rotational

constant of the diatomic.[54] Ortho-para relaxation requires �uctuations at this frequency

while �uctuation at the much slower Larmor frequency (400 MHz) is required by AG.

Oxygen

Oxygen gas was bubbled from a cylinder through an initially degassed solution of AG,

again 40 mM in 500 µL D2O, and the relaxation constants measured at 9.4 T. Additions

of O2 were made until no changes were observed in T1 and TS . At this point the solution

was assumed to be saturated with O2.

It was not possible to measure the levels of dissolved oxygen explicitly in this setup,

and values for kS and k1 were not obtained. However, the data still allow one to calculate

the concentration-independent ratio kS/k1 = 0.55 ± 0.03 by plotting the slope of 1/T1

against 1/TS . From eq. (3.71):

( 1

TS([X])
− 1

TS(0)

)
/
( 1

T1([X])
− 1

T1(0)

)
=

kS
k1
. (3.72)

This experimental ratio shows the singlet relaxation is also about two-times less sensitive

to dissolved O2 than ordinary magnetisation.

Note, while it was not possible to determine explicit relaxivities, an estimate is possible

from the relaxation constants at saturation using eq. (3.71). The shortest singlet relaxation

constant recorded was TS = 1.4 seconds, which on assuming a saturation of 40 mg/L (1.2

mM) O2 in D2O at 293 K[146] gives a value of kS = O(1) mM−1s−1. This is a similar
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order of magnitude to the relaxivity of dissolved TEMPO radicals.

Interpretation

The ratio kS/k1 can be loosely interpreted within a random-�eld relaxation model.[82,

2] This ignores the physical detail of the intermolecular nucleus-electron interaction and

assumes the dissolved paramagnetic species induce randomly �uctuating magnetic �elds

at each of the glycyl protons. The relaxation-causing Hamiltonian is thus assumed to be

HERF(t) =
2∑
j=1

γHB
ERF
j (t) · Ij (3.73)

= γH

2∑
j=1

(
BERF
jx (t)Ijx +BERF

jy (t)Ijy +BERF
jz (t)Ijz

)
(3.74)

where BERF
j (t), BERF

k (t) are the random time-�uctuating �elds at the proton sites `j' and

`k' and can be thought to be proportional in magnitude to the concentration of the dissolved

paramagnet; ERF stands for `external random �eld'. This Hamiltonian corresponds to a

scalar product between rank-1 spherical tensors

eq. (3.74) =

2∑
j=1

1∑
m,m′=−1

(−)m[AERF,j
1m′ ]M (t)D1

m′m(Ω(M→L)(t))[TERF,j
1−m ]L (3.75)

whose space-�eld components are de�ned [82]

[AERF,j
1±1 ]M (t) = ∓γH(BERF

jx (t)±BERF
jy (t))/

√
2 (3.76)

[AERF,j
10 ]M (t) = γHB

ERF
jz (t) (3.77)

and the spin components are

[TERF,j
1±1 ]L = ∓(Ijx ± Ijy)/

√
2 (3.78)

[TERF,j
10 ]L = Ijz. (3.79)

To obtain the ERF relaxation superoperator the above Hamiltonian is plugged through

the Red�eld theory. In the ensemble average step, one assumes that the ERF amplitude,

which is most likely due to the intermolecular motion, can be separately averaged from the
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molecular motion, such that

[AERF,j
1m′ ]M (t)[AERF,j

1µ′ ]M (t+ τ)D1
m′m(Ω(M→L)(t))D1

µ′µ(Ω(M→L)(t+ τ))

≡ 1

3
δm−µδm′−µ′G(τ)[AERF,j

1µ′ ]M (t)[AERF,j
1m′ ]M (t+ τ). (3.80)

The above may simplify on assuming the �elds at sites `j' and `k' are orientation-

ally isotropic with root-mean-square (rms) amplitude given by (BERF
jx )2 = (BERF

jy )2 =

(BERF
jz )2 = BERF

j, rms, and de�ning a correlation parameter Cjk = BERF
j BERF

k /(BERF
j, rmsB

ERF
k, rms):

eq. (3.80) = δm−µG(τ)BERF
j, rmsB

ERF
k, rmsCjk. (3.81)

A value of Cjk = 0 on the two sites indicates that the �elds BERF
j BERF

k are completely

uncorrelated at each molecule, whilst Cjk = ±1 indicates that the two �elds are always

parallel, or antiparallel to one another respectively.

After making all of these assumptions the relaxation superoperator is given by

Γ̂ERF = −γ2
H

∑
j,k

BERF
j, rmsB

ERF
k, rmsCjk

1∑
m=−1

(−)mj(mω0)[TERF,j
1m ]L[TERF,k

1−m ]L. (3.82)

The diagonal matrix elements for Iz and T00 give a �rst-order approximation to the relax-

ivities k1 and kS , respectively. These give the equations

kS ∝ 1/TERF
S = (T00|Γ̂ERF|T00)

= 2γ2
H

(
(BERF

j, rms)
2 + (BERF

k, rms)
2 − 2CjkB

ERF
j, rmsB

ERF
k, rms

)
(j(0) + 2j(ω0))/3(3.83)

k1 ∝ 1/TERF
1 = (Iz|Γ̂ERF|Iz)

= γ2
H((BERF

k, rms)
2 + (BERF

k, rms)
2)j(ω0). (3.84)

One may see that in the extreme narrowing approximation j(ω0) = j(0) = τc of this

model the ratio kS/k1 depends only upon the �eld correlation, Cjk. If the �elds are com-

pletely uncorrelated (Cjk = 0), then kS = 2k1, meaning that the paramagnet accelerates

relaxation of singlet order (coupled spin order) twice as strongly as the longitudinal mag-

netisation (single-spin order). At the opposite extreme Cjk = +1, the relaxivity ratio kS/k1

tends to zero. This outcome arises since the ERF Hamiltonian is always symmetric under
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permutation, meaning singlet-triplet transitions are forbidden. The �ndings kS � k1 in

table 3.4 thus confer a strong correlation in the induced �elds. Consistent values of Cjk are

≈ 0.8 to 0.9 for the ratio kS/k1 ≈ 0.3 to 0.5, under the assumption of extreme narrowing.

Similar random-�eld correlation parameters have been obtained by Wokaun and Ernst

[147] for paramagnetic relaxation by comparing zero-quantum, single-quantum and double-

quantum linewidths of a proton pair. Their observations, similar to the experimental data

presented here, have suggested that a lower correlation parameter Cjk indicates a closer

mean-approach distance of the paramagnet to the nuclear spins. In table 3.4, for example,

the value of kS/k1 is lower for molecular oxygen in solution than for TEMPO, which is

consistent the relatively small molecular radius of oxygen. The mean approach distance,

however, also depends on how strongly the dissolved paramagnet binds or associates with

AG, which may well be signi�cant in the case of the solvated transition metal ions. With

a su�ciently elaborate relaxation analysis, one may eventually be able to quantify the

proton-paramagnet distances, if desired.[14]

Counteraction of paramagnetic relaxation

Relaxation induced by paramagnetic metal ions may be suppressed by addition of suitable

chelating agents to the solution. As shown in �g. 3.8a, the singlet lifetime of AG in the

presence of 0.1 mM MnCl2 is TS = (1.5 ± 0.1) seconds. This improves to TS = (37 ± 2)

seconds on adding a tenfold molar excess (=1 mM) of ethylenediamine tetra-acetic acid

(EDTA). A similar e�ect is observed for CuII ions.

Suppression of the paramagnetic relaxation in this way supports a hypothesis that

the relaxation mechanism involves transient complexation between the ions and AG. A

cartoon representation is shown in �g. 3.9(a). On addition of EDTA, the metal ions remain

physically present in solution but form strong hexadentate chelates with the complexing

agent. This prevents their association with AG (�g. 3.9(b)), resulting in relaxation times

that are comparable to those in a paramagnet-free solution.

Alternatively one may add a chemical agent that transforms the paramagnetic relaxing

agent into a diamagnetic form. Fig. 3.8 also shows that ascorbate[145] in molar excess

signi�cantly reduces the relaxation e�ect of dissolved O2. Ascorbate is well-known to reduce

superoxide (O•−2 ), hydroperoxide (HOO•) and O••2 radicals in aqueous solution.[83, 145]



163

Figure 3.8: Quenching of paramagnetic relaxation agents. Curves show the nuclear singlet decay
∝ exp(−τ/TS) at 9.4 T for solutions of 40 mM AG plus (a) 0.1 mM MnCl2 only (open circles,
TS = 1.5± 0.1 s), with sodium ascorbate (grey circles, TS = 2.3± 0.1 s), with 1 mM EDTA (black
circles, TS = 37±2 s); (b) dissolved oxygen (open circles, TS = 3.9±0.1 s), then following addition
of ascorbate[83, 145] (black circles, TS = 40± 3 s)

Figure 3.9: Suggested transient-binding interaction between AG and transition metal ions. Close
approach of the two species in (a) results in strong relaxivities k1 and kS . On addition of EDTA,
as shown in (b), the species no longer bind, resulting in much weaker relaxivity.
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4
Perspectives

Magnetic resonance imaging (MRI) and spectroscopy (NMR) are unique tools in the study

of chemical substances in that they provide an interactive form of `molecular tagging'.

Unlike radioactive labelling, or �uorescence methods, which may be regarded as scalar-like

labels, magnetic resonance exploits the phenomenon of nuclear spin, which as a vector

property can behave more like a memory. Magnetic resonance relies upon manipulation of

spin order, which is the net alignment of nuclear spin across the bulk sample. Information

may be encoded upon the spin order, then be read out by spectroscopy at a later time. For

instance in MRI, information of the molecular position is encoded at one time point, then

at a later time imaged, allowing rich information about molecular self-di�usion, �ow, and

other motion to be determined. Since magnetic resonance detects the chemical environment

of nuclei, one may also follow the chemical changes occurring during reactions, such as

metabolic outcomes in vivo.

This thesis seeks to deal with an Achilles heel of these techniques: the �nite lifetime of

spin order. Small �uctuations in the magnetic environment of the nuclei eventually cause

decoherence of the spins, returning ordered states to thermal equilibrium. In a practical

context the maximum storage time of spin order is time until which NMR readout falls

below thermal noise of the system. To some extent, this may be lengthened by using very

highly ordered (or `hyperpolarised') initial states, such as provided by dynamic nuclear

polarisation, or more sensitive hardware, but the intrinsic decay rate of spin order remains

unchanged.
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4.1 Summary of concepts

Long relaxation times are possible by exploiting nuclear singlet states between pairs of

spin-1/2 nuclei.[16, 17] For isolated spins, the slowest decay process is the relaxation of

longitudinal polarisation, (time constant T1), namely the population asymmetry across the

Zeeman states |α〉 and |β〉. In systems containing two spin-1/2 nuclei, singlet spin order

may outlast T1. The singlet has the non-magnetic con�guration (|αjβk〉−|βjαk〉)
√

2 , where

spins are polarised in opposite directions with respect to the quantisation axis. Singlet order

is invariant under conditions that preserve magnetic equivalence of the pair and is therefore

slow provided: (i) the nuclei inhabit magnetically similar environments; and (ii) the decay

mechanisms involve strong correlation across the pair. This is true of most relaxation in

solution, including for intramolecular-[19, 62, 82] and intermolecular- [79] dipole-dipole

coupling, paramagnetic [111] and spin-rotation relaxation mechanisms.[20] Nuclei with low

gyromagnetic ratio (e.g. 13C and 15N) are encouraging, where TS may approach several

tens of minutes, under favourable conditions.[22, 23]

4.2 Summary of outcomes

To set up a foundation for future applied work, the main goals of this work were to (i)

consolidate and (ii) extend the NMR methodology and concepts for exploiting nuclear

singlet states. The main outcomes are summarised as below:

Resume of chapter 2

• An in-depth study was made on singlet preparation and readout. Singlet order

can be prepared on a spin-1/2 pair starting from a state of longitudinal polari-

sation provided the nuclei are magnetically inequivalent. The coherent evolution

can be broken down into chains of transformations within the singlet-triplet Hilbert

space. Spin-symmetry-breaking interactions usually induce transformations within

two-dimensional (two-level quantum state) ket subspace, which can be visualised as

rotations on a Bloch sphere.

• The most appropriate `magnetisation-to-singlet'-converting pulse sequence for a given

molecule depends whether the spin pair is strongly or weakly coupled (how close or
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far from equivalence). However, all sequences excite singlet order with the same e�-

ciency, and obtain the maximum singlet order accessible through unitary evolution.

• For all the sequences examined that excite singlet order from a thermally polarised

sample, the �nal detectable signal is two-thirds the intensity of that obtainable from

the initial magnetisation. This is the theoretical maximum ignoring all relaxation

e�ects. The recovered magnetisation may be slightly higher in samples with unity-

order polarisation, but requires some careful consideration about the direction of the

subspace-speci�c rotations.

• Long-lived singlet order is accessible in the `near-equivalence' regime, where symmetry-

breaking interactions are weak compared to the intra-pair spin-spin coupling. This

avoids use of spin-locking and the associated complications. Demonstrations have

been made for weak asymmetric induction on an otherwise equivalent spin pair by a

remote chiral centre,[88] and 18O/16O isotopic substitution.[102]

• Singlet NMR of chemically equivalent nuclear spin pairs is facilitated also by het-

eronuclear symmetry-breaking.

• Hyperpolarised singlet order is shown to be available immediately after dissolution

DNP, avoiding altogether the need for pulse sequence preparations. While this `brute-

force' method generates a relatively small singlet polarisation scaling as pS = −p2/3,

it may save against the resources, time and delicate control involved in hardware and

pulse sequences for magnetisation-singlet conversion.[32]

• Singlet-triplet rotations may be induced by weak, transition-selective rf �eld pulses.

This method, however is inferior to the synchronised spin echo method, as its per-

formance is extremely sensitive to homogeneity of the static B0 �eld.

• Singlet order of an ensemble of two spin-1/2 nuclei behaves as the unique rotation-

invariant (rank-zero) operator, which allows one to obtain NMR spectra containing

only singlet-derived signals.

Resume of chapter 3

• Relaxation in solution NMR proceeds by rotational modulation of anisotropic spin

interactions, for example dipole-dipole couplings. Spherical tensor operators trans-
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form as irreducible representations of the rotation group SO(3) and are therefore a

natural language of the density operator when analysing relaxation.

• In the extreme-narrowing regime, most relaxation mechanisms behave as scalar su-

peroperators and cannot induce cross relaxation between tensor operators of di�erent

ranks, i.e. cannot change the total angular momentum of spin order. This allows nu-

merous shortcuts to be taken in Red�eld's formalism and leads to concise analytical

formulae for both singlet and longitudinal relaxation rates.

• An experimental study is made for dipolar-dipole relaxation in�uence on singlet

relaxation in systems of three and four nuclei. Relaxation rate contributions from a

given nucleus in a molecule are obtainable, within reasonable approximation, by rate

di�erence with a spin-zero isotopologue. Singlet relaxation rates depends strongly on

the relative geometry between the spin pair and other magnetic particles, in general

decreasing with the inverse eighth power with distance from the centre of the spin

pair.

Red�eld theory says the ratio TS/T1 for protons in the extreme-narrowing limit is

purely a function of geometry between the spins. For rigid molecules, the measured

value of TS/T1 therefore allows a basic form of conformational analysis. The ra-

tio TS/T1 in general provides structural restraints that are complementary to other

structure determination methods in solution NMR, including vicinal J-couplings and

the nOe. Singlet relaxation may also be less-susceptible to spin di�usion than the

nOe.

• Experimental relaxation rates 1/T1 and 1/TS are found to be proportional to the

concentration of paramagnetic transition metal ion or radical dopants in solution,

but the slope with respect to concentration, or `relaxivity', is lower for the singlet.

This means that singlet order is less-sensitive to paramagnetic relaxation than the T1

of the pair. In general, the ratio depends on the nature of the interaction between the

paramagnetic species and the nuclear spin pair. Singlet relaxivity of the methylene

protons in Ala-Gly in a solution containing dissolved transition metal ions is found

to be two to three lower than the T1 relaxivity.

• The e�ect of accelerated relaxation due to paramagnetic metal ions by can be re-
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moved by addition of EDTA or similar multi-dentate complexing agents. In the case

of radicals the same outcome is achieved by adding a mild reducing agent, such as

ascorbate.[111] The magnetism of transition metal ions may also be altered by suit-

able reducing or oxidising agents, where the number of unpaired electrons depends

on oxidation state.

4.3 An outlook for singlet NMR

The most interesting area for future study is singlet relaxometry. While in this thesis

the singlet lifetimes have been analysed for several mechanisms, many variables remain

unexplored.

Perhaps the most obvious is the B0 �eld dependence. Spin relaxation via the chem-

ical shielding anisotropy mechanism (CSA) increases in importance at higher B0 �eld as

CSA-CSA auto-correlation terms scale quadratically in γB0. Cross-correlated CSA-dipole

relaxation scales linearly with γB0. Both mechanisms are signi�cant for essentially all

spin-1/2 isotopes except protons, which have large shielding anisotropies (e.g. 13C, 31P;

CSA of order 10 to 200 ppm). A separate issue at high B0 �elds is the exit from extreme-

narrowing, where molecular tumbling appears slow on the Larmor frequency timescale and

may not sample the spectral density uniformly for all coherence orders. In the Red�eld

treatment, nonuniform spectral density adds complication in the form of cross-relaxation

between spin ranks, so that concise rate formulae may not be obtainable analytically. In

general, both 1/TS and 1/T1 rates are expected to decrease outside extreme narrowing, in-

creasing lifetimes as a result. The overall ratio TS/T1, however is likely to fall, since singlet

relaxation may be mediated through transitions at the zero-quantum frequency (spectral

density j(0) = τc is always �nite), while longitudinal relaxation is not.

There is also a lot to care about besides �uctuating interactions on the molecular

rotation timescale. At low enough B0 �eld the Larmor frequency may fall within frequency

of slow motions that include intermolecular processes, for instance chemical exchange,

which may be explored through pH, temperature and solvent-dependence studies. In non-

rigid molecules there may be conformational exchange and �uxionality such as ring �ips,

inversion and other functional group jumps. These may cause sizeable relaxation and result

in problems for storing singlet order in low or zero magnetic �eld, or transporting through
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low-�eld regions.

A better knowledge of singlet relaxation through such studies may help one design

molecules with the longest possible lifetimes, by minimising relaxation sources under a

given set of conditions. This may help assess potential for singlet NMR applications in

vivo, for instance in tracking the progress of metabolites across longer timescales, or as

a tool in transporting exogenous hyperpolarised substances through the body to a site of

interest, whereupon MRI is performed.

In contrast one may ask which systems exhibit strong singlet relaxation, and may be

used to yield useful information. For instance, is paramagnetic singlet relaxation a viable

tool for molecular geometry and dynamics determination in metallo-proteins, or a tool for

measuring that oxidation state of a dissolved complex?
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