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THEORY AND PRACTICE OF SINGLET NUCLEAR MAGNETIC RESONANCE

by Michael Charles Douglas Tayler

Sensitivity is a signature problem of NMR. In its most basic description, an NMR experi-
ment involves encoding information into an ensemble of nuclear spins followed by readout
at a later time. The sensitivity is the extent to which the information content is distin-
guishable from system noise.

Principal factors that determine sensitivity are ensemble initialisation or polarisation,
detection efficiency and relaxation effects that occur in between. This thesis addresses
the last of these by examining opportunities of nuclear singlet states. Singlet states are
exchange-antisymmetric quantum states of spin-1/2 pairs that, under favourable condi-
tions, are the slowest-relaxing spin states of the NMR ensemble. In certain cases, singlet
states may also exceed the relaxation times of isolated spins-1/2.

The goal of the work is to explore ‘singlet NMR’ as concept. The fundamentals of
coherent control in a spin-1/2 pair are studied in depth, from which pulse sequences to
generate and take advantage of singlet states are discussed. Several new methods for
singlet excitation and detection are introduced. Existing methods are discussed within an
overview context. Basic principles of singlet relaxation are also presented. Singlet lifetimes
depend strongly on the correlation between magnetic fields at the nuclear spin pair sites
and are sensitive most to the local magnetic environment. This can be used to retrieve
information on local molecular structure and motion. Study of the relaxation relax rates
may also help one determine the dominant singlet relaxation mechanisms for a given spin
pair environment. This information may help one design molecules for maximum longevity

of nuclear spin order.
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Lewis Carroll, Rules and Regulations

A short direction to avoid dejection
By variations in occupations

And prolongation of relazation
And combinations of recreations

And disputation on the state of the nation

In adaptation to your station

By nwitations to friends and relations
By evitation of amputation

By permutation in conversation

And deep reflection

You’ll avoid dejection






Introduction

1.1 Memory

Rather like the human mind, many systems in nature keep only a limited memory of their
history. In statistical physics, in the same way that one visualises the ‘drunkard’ forgetting
his route during a random walk from the pub, macroscopic or ensemble properties can be-
come ‘forgotten’ as their microscopic constituents lose synchrony with one another through
time.[1] Such processes of information loss are irreversible; for instance, the disappearance
of temperature or concentration gradients in a solution (the loss of positional order, due to
Brownian translational diffusion), or the melting of a liquid crystal (loss of orientational
order). Time-dependent changes in macroscopic nonequilibria such as these are called
ensemble relazation phenomena, for they return the bulk system to an equilibrium state.

Ensemble relaxation (or simply ‘relaxation’) is a major issue in nuclear magnetic reso-
nance (NMR) techniques.[2, 3, 4, 5, 6] An NMR system comprises a macroscopic collection
of atomic nuclei, the spin ensemble, whose microscopic property is the nuclear spin angu-
lar momentum. This angular momentum gives an incredible power to the scientist. If we
think as physicists, we view the resulting bulk property, nuclear magnetisation, as a ‘stor-
age device’ on which wealths of physical data may be recorded (see fig. 1.1). With NMR
in the clinic, one may obtain images inside the human body more safely, more sensitively,
and with greater detail than surgical or ionisation routes.|7] One can record maps show-

ing blood velocity through the circulatory system with striking clarity. In the laboratory,
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NMR spectroscopy is the premier tool for gathering information about molecular geome-
try, three-dimensional structure, functionality of biomolecules inside cells and microscopic
motion. If we really think of NMR systems as a ‘memory’, we may indeed use them to
execute algorithms and perform computation![§]

Relaxation is crucial aspect in almost all NMR experiments; it can act as both a help
and as a hindrance. To encode information into the spin ensemble, creating a nonequilib-
rium state, it is usual to start from a known and consistent equilibrium. Rapid relaxation
is in this context beneficial, in the sense that the spin memory is ‘wiped clean’ quickly so
there are no long waiting periods before an experiment can start. This speeds up the more
laborious ‘multi-scan’ NMR experiments where repeated readouts of the spin memory are
combined to improve overall signal-to-noise, or shorten the time needed to collect higher-
dimensional or arrayed datasets, for example in spin-spin correlation (COSY) experiments
used for molecular structure elucidation.[4, 11| On the other hand, fast relaxation gener-
ally implies a shorter spin memory timescale during the experiment itself. In that case the
complexity and maximum duration of encoding can be rather limited.

This view implies there is a trade-off to be made between sensitivity and time. How-
ever, it is not the spectroscopist who decides the speed of relaxation. Spin memory loss
is governed by the microscopic motion processes that cause decoherence of the ensemble,
principally molecular reorientation, exchange and collisions.[14] Most of these processes
are inherent to the system under study, and not possible to change, in general, except by
significantly altering the physical state or chemical composition. Furthermore, while relax-
ation may be artificially accelerated, for instance by doping the system with paramagnetic
substances,[14| on which I will say more later, it is much more difficult to do the opposite
to the ensemble, i.e. to ‘remove’ relaxation mechanisms that are intrinsic.

Having said this, opportunities to prolong the spin memory do exist in some circum-
stances. A familiar example to those in the NMR field is how spin relaxation rates depend
on the relative orientation between nuclear magnetisation and its external magnetic en-
vironment. For magnetisation of isolated spins, the component parallel to an uniform
external field (called longitudinal magnetisation) relaxes with a time constant we call T7.
Magnetisation perpendicular to the applied field (called transverse magnetisation) often
decays with a faster time constant T < T7.[3, 4] The relation T, < T} implies spin memory

may be preserved for longer times by confinement in the guise of longitudinal magnetisa-
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Figure 1.1: Information provided by nuclear magnetic resonance, from the simple to the intricate.
Clockwise from top-left: Compelling proof for the fullerene structures of Cgg and Cry obtained by
13C NMR spectroscopy;|9, 10] Ernst’s Fourier-transform spectroscopy,|11] an instrumental advance
in sensitivity, which also opened up the field of multidimensional spectroscopy. The off-diagonal
peaks in the above spectrum give information on the chemical exchange between cis- and trans-
decalin isomers; NMR determination of intramolecular rate processes and mechanism of action
in the basic pancreatic trypsin inhibitor protein (BPTI, MW = 6500 g/mol). Structural studies
by NMR are now viable and routine on proteins in excess of MW = 105 g/mol;[12] noninvasive
single-scan ‘echo-planar’ imaging of water or fat content in living matter.[13]
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tion, where possible. This is now common practice in NMR experiments where long waiting
periods between initial memory encoding and readout are required, where a delay may be
required for self-diffusion, bulk flow, or a chemical reaction to occur. The earliest example

of this was Hahn’s stimulated echo sequence, developed as far back as the 1950s.[15]

Longer-lived states

The work in this thesis pursues how memory times longer than 77 are possible by exploiting
singlet states between pairs of nuclei. The singlet is a ‘non-magnetic’ or ‘spin-zero’ configu-
ration shared between two nuclei with individual angular momenta +#/2. These states may
exhibit, in certain circumstances, lifetimes exceeding 77 by an order of magnitude.[16, 17|
The correlation between the angular momenta of the pair allows the composite state to
escape many relaxation mechanisms, so that it decays more slowly than each nucleus in
isolation.

As just two spin-1/2 nuclei are required, singlet states are common to find in a wide
variety of molecules, from small polyatomics to proteins. The first experimental demonstra-
tion of long-lived singlet states in a polyatomic molecule was made in 2004 by Carravetta
and Levitt for the pair of protons in 2,3-dibromothiophene.[18, 19] To brief summarise the
development of the field since, (to mid 2012), there have been over 100 peer-reviewed publi-
cations on singlet NMR, concerning in roughly equal proportion methodology for exciting
singlet states, theory and rationale of the relaxation properties and applied technology.

Several reviews are available.[16, 17, 20, 21] Some achievements speak for themselves:

e The world record singlet lifetime of a polyatomic molecule is 26 minutes, for >NoO

(!N-nitrous oxide).[22, 23] The N T} in the same system is less than 3 minutes.

e The largest extension in spin lifetime via singlet states is 37 times 77, as has been

observed for a proton pair in a partially deuterated saccharide molecule.[24, 25]

e Proton singlet lifetimes have been measured for Ubiquitin,[26, 27| the most-commonly

studied protein.

e Singlet NMR opens the study of self-diffusion of large molecules to timescales an

order of magnitude slower than those conventionally probed by NMR.[25, 28, 29]



e Several experimental demonstrations made for preserving hyperpolarised (very strongly

magnetised) samples for potential use in vivo.[30, 31, 32]

Thesis outline and structure

The remainder of this chapter introduces singlet NMR more formally to the reader within
the context of its main challenge: to overcome, without change to the system’s composition
or bulk conditions, the frustrations of low signal strength in NMR caused by undesirably
short relaxation times. One may regard ‘singlet NMR’ as achieving for NMR what we
might wish for an improved memory performance of our brains and computers: to keep
track of information over longer periods of time, accomplish goals more efficiently and solve
more challenging problems.

My chosen starting point is the perspective of the NMR ensemble as an information
storage device, where I summarise (in brief) the important quantum mechanical formalisms
used to understand NMR spectroscopy, namely the state space concept, the density operator
and how nuclear spin order is manipulated during an experiment. This is followed by a
discussion about sensitivity in NMR, its enhancement using singlet states and the interface
of singlet NMR with other existing or competing practices. An idea of the current state of
singlet NMR will be outlined through a summary of existing work done by others.

After this introductory chapter the thesis contains two technical chapters in which new
material is presented. The first of these (chapter 2) is a roundup of methodology to excite
the potentially long-lived nuclear singlet states, dealing with how to convert between ‘or-
dinary’ nuclear magnetisation and singlet spin order, and vice versa. As well as discussing
new methods, I will indicate where improvements are available to existing ones. The sec-
ond chapter (chapter 3) is focused on understanding the factors that contribute to long
singlet lifetimes. At present, the mechanisms of singlet relaxation are not well understood
and there is limited experimental data to analyse. Can one predict systems where singlet
states will be longest-lived? May one establish how a given functional group may extend
or reduce spin relaxation times? The findings are rounded off with a short chapter sum-
marising the prospects of singlet NMR and suggesting the likely future direction of the
topic.
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1.2 What is spin memory?

In its most basic description, NMR exploits atomic nuclei that have spin angular momenta
quantum number I greater than zero.[4] A spin with I > 0 has (27 + 1) > 1 distinct
orientations, according to quantum mechanics, and as many distinct energy states.|33|
These degrees of freedom provide a capacity for data storage. NMR relies on a practical
ability to manipulate the statistical occupation of these states to encode and retrieve

information.

1.2.1 The foundations: spin states

While some of earth’s abundant isotopes, most notably '2C and 90, have nonmagnetic or
spin-zero nuclei, (i.e. with total angular momentum quantum number I = 0), most have
finite spin. Isotopes 'H, 13C, 1°N, 19F and 3!P are ‘spin-half’ (I = 1/2). Spin I = 1/2
nuclei have very simple structure. For a single isolated nucleus, quantisation defines two

distinguishable angular momentum states |I, m),
1/2,41/2) = ey and  [1/2,-1/2) = |B), (1.1)

where [ = I and m denotes the angular momentum projection onto a global, space-fixed
quantisation axis. Distinguishable in this context means the states are orthogonal. The
nuclear wavefunction is free to inhabit any superposition of the states, provided that su-

perposition is normalised. This vector space of |¢) is known as a Hilbert space:

Ca

¥) = cala) +esB) < with  |eal® +Jep* = 1. (1.2)
cs

In more physical terms the complex number coefficients ¢, and cg give the orientation
of a polarisation vector in three-dimensional space: P = (P, P,, P,). Components of P

are the expectation values of the Pauli matrices,[34] given by



|18) 15)

P = {sinf cos ¢,sinfsin ¢, cos 0} P ={0,0,1} P ={0,1,0}
cos(6/2) 1 1/v2

Figure 1.2: The ‘Bloch sphere’ gives a simultaneous geometric representation of wavefunction |1¢)
and the polarisation vector P.[35] To within a global phase factor, all normalised states lie on the
sphere’s surface, where the spin state is denoted by the arrow head.

The components of the polarisation vector are given by

Py = (0i) = (o), (1.4)

and range between —1 and 1. Proportional to P is the nuclear magnetic moment, denoted

by

1
uzmmwwAZQ%P, (1.5)

where the constant of proportionality, v, is the gyromagnetic ratio of the isotope.[4]

This basic example highlights the first crux of NMR: how there exist quantised, orthog-
onal states of a memory, (a vector space), that are connected to a physical observable (the
classical nuclear polarisation, or magnetic moment). For the spin-1/2 this correspondence
is explicit if one writes |¢) using the spherical coordinates of P, i.e. P = (sinf cosy,
sin f sin ¢, cosf). This gives the so-called Bloch sphere projection between the wavefunc-
tion

cos(0/2)

[) = cos(6/2) |a) + €' sin(0/2) |B) < o (1.6)
e'¥ sin(6/2)
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and P (see fig. 1.2). Applying Eq. (1.6) to eq. (1.4), it is clear that

0 1 cos(0/2)

Py, = ( cos(0/2) e ¥ sin(6/2) ) Lo ¥ sin(6/2) = sinfcose  (1.7a)
0 —i cos(0/2

P, = ( cos(0/2) e ¥sin(0/2) ) . i 512(/9/)2) = sinfsiny (1.7b)
. 1 0 cos(0/2

P, = ( cos(0/2) e ¥sin(0/2) ) 0 1 i sin(9/>2) = cosf. (1.7¢c)

In general a collection of N spins (such as the nuclei residing in a molecule), whose

momenta are I1,Iy...In, span (217 + 1)(2I2 + 1) ... (215 + 1) orthogonal states:

Cgl) ng) CgN)
) < : ® : ®...® : : (1.8)
(1) (2) (N)
Cor+1 Caly+1 Corn+1
Labels ‘1’, ‘2’ ... ‘N’ distinguish each nucleus. For example, two coupled spins-1/2 share

2 x 2 = 4 states, therefore the spin wavefunction occupies a four-dimensional Hilbert space,
these being |a1) @ |ag), |a1) ®|B2), |1) @ |ae) and |B1) ®|B2). We return to these product

states and their representations in due course.

1.2.2 Spin dynamics

The above vector-space picture, despite its seeming ‘abstract’ perspective, is fundamental
and it is essential to keep in mind. The dynamics in Hilbert space obey Schrédinger’s

time-dependent equation

dlp(t)) /dt = —iH (t) [(1)) (1.9)

which says that under a known Hamiltonian, H, the nuclear environment’s energy charac-

teristic, an initially-known ket state evolves in a deterministic way:

tp
(1)) = Ultrita) [6(t2)) = exp i | A HE)] [0(ta) (1.10)

la

‘the propagator’

By knowing the determinism of |¢), according to quantum mechanics, all physical



observables can be known, or predicted. By corollary, if all physical observables are pre-
dictable they must also be controllable, at least as far as H(t) is controllable by the spectro-
scopist. This is NMR’s second crux. Eq. (1.9) says the problem of manipulating the spin
states equates to choosing an appropriate time-dependence for the Hamiltonian. While
that task might seem complex, the vector space is ‘closed’ (finite-dimensional) meaning

exact solutions are quite often and easily obtained.

1.2.3 Spin order

The questions of what information can be stored in ‘spin memory’, and how, require some
further explanation. In NMR one is usually dealing with a macroscopic ensemble of nuclei,
not a handful. In ensemble dynamics, one deals with the statistical evolution of the bulk.
In general, at any given time the states of individual nuclei are not known.

A complete statistical description of the NMR ensemble is achieved by the wavefunction
outer product 7 = [¢) (1], often called the ‘density operator’, where overbar (‘) denotes

an average over all particles.|3, 4, 34, 36] Properties of p are apparent upon expansion in

the Hilbert ket basis:
p(t) = [¥@) (@) = ZC}f(t)cz-(t) |7) (il (1.11)

The right-hand side of eq. (1.11) shows 7 expressed as a linear superposition of orthogonal
projection operators between states, the number of which equals the square of the Hilbert

space dimension. The meaning of the operators is indicated by their respective coefficients:

e Ket-bra products with a common index are the population operators of the basis.

Their expectation is equal to the probability of finding a randomly chosen particle

in a pure state [i); ([8) (i) = () (1) = leil?.

e The projection operators between orthogonal states are transition operators, other-
wise called coherences. Coherence |i) (j| between states |i) and |j) (where (i|j) = 0)
is said to exist if there is a nonzero expectation value of (cjc¢;) = (|cile™i|c;lel?d),
which implies there is statistical correlation in the phases of states |i) and |j). ‘Co-

herence’ is to say |¢) and |j) are in a coherent superposition.

Populations and coherences are collectively known as ‘spin order’. If n is the dimension
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of the Hilbert space, these must constitute (n? —1) degrees of freedom for information stor-
age in the ensemble. The ‘minus 1’ originates from the constraint on the total population

as unity: >, |c|* = 1.

1.2.4 Observables

Spin order quantifies the bulk ensemble state and therefore determines the expectation
value of bulk physical observables. For any quantum mechanical operator, Q, the ensemble

expectation value @ is found by projection onto p, using the formula

_ W _ T Te)
C=m T T mp) (112)

This states that @) is obtainable via the inner product between p and . We have already
used this formula (on the previous page) to explain the meaning of coherence; the inner
product in this case picks the relevant matrix element of p between the states.

In NMR a very important observable is the bulk magnetisation, or net magnetic mo-
ment of the ensemble. This is the detectable quantity in the NMR experiment.[4] From eq.
(1.5) the Cartesian components magnetisation are defined by M, = Najfi; = fthA@/Z
M, = YhN4(o,)/2, M, = vhNa(0,)/2, per mole (N, is the Avogadro constant). For
a single spin-1/2 nucleus, it may be shown that coherence between |a) and |3) gener-

ates the bulk transverse magnetisations M, and My, and that a net population difference

(le) (| — |8) {B]) corresponds to longitudinal magnetisation M,.

1.2.5 Evolution of observables

To keep track of time evolution in the density operator, and thereby predict the future
of observables, several analytical approaches are available. The most common are listed

below:

e The pure state wavefunctions [¢)) are propagated in Hilbert space using eq. (1.10).

Then the outer product |¢) (| is made, then the ensemble average.

e The above is done using the matrix representation of a pure-state density operator

|1) (]. b is represented as a square matrix p where the populations (p);; appear on
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the diagonal and the coherences off-diagonal: [36]

()i = (ilp(t)]i) = & Bl = (A1)} Tr(7) = 1; (1.13)

p(ty) = Uty ta) - plta) - U (ty; ta). (1.14)

Observables may be evolved directly (Heisenberg mechanics), seeing that all observ-

able operators relate to p by projection:

Qits) = Ulty; ta) - Qilta) - U (t; ta)- (1.15)

The density operator is propagated in Liouwville space. Liouville space differs from
Hilbert space by its representation of operators by vectors. A predefined operator
basis is chosen, usually the ket-bra basis {|j) (¢|}. In this formulation the (n x n)

matrix representation of p is flattened to a (1 x n?)-dimensional vector. For n = 2,

P11
11 12 12
p= piep m P vector. (1.16)
P21 P22 P21
| ——
matrix P22

Time evolution in Liouville space is represented via a super-propagator matrix U

(super-operator) acting on the vector representation: [37]

p(ty) = Ulty; ta) - p(ta) (1.17)

ﬁ(tb;ta):exp[ [t H(t } (1.18)

where ‘hat’ denotes the super-operator. The dimension of U is the square of the size

of the operator basis, c.f. :

Unn Ui U Uiz P11
oo Ui Ui U Uiz | P2 . (1.19)
Ui Uip U Uis P21

Ui Ui Unn Uiz P22
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Observables are propagated directly by

Q(tb) = ﬁ(tbS ta) : Q(ta)7 (1'20)

or alternatively by the scalar product between the vector representations of ) and

p(t), for this product equates to the inner product given in eq. (1.12).[3, 37, 38|

I will use all of these methods in the following chapters. In essence they are the same,
though Liouville space is usually preferred as this offers the most elegant and notation-
ally compact route to solving the spin dynamics, and is the more intuitive of Heisenberg
mechanics. Although the matrix representations of superoperators are relatively large,
their size scaling as the number of pure states to the fourth power, they can have many
computational rewards. First the superoperator matrix elements are usually related to
commutators of the angular momentum operators and are fast to compute. The matrices
are also often sparse. In some situations, the superoperator matrices may also be block-
diagonal, and only a reduced part need to be exponentiated and propagated. Evolutions
restricted to a subspace of the total dimension require less computational effort than full
density matrix propagation.[39, 40] Liouville space is also most adept when one needs to
account for relaxation, exchange and other bulk phenomena.|14]

Note whilst both @ and p have representations that depend on the basis chosen, the
scalar Tr(p@) is independent of basis, so any orthonormal operator basis is valid. This
emphasises that Liouville space regards an operator basis simply as a ‘list’ of all possible
observables for the spin system. Whether these operators are chosen to correspond to

definite or sharp observables is of lesser importance.

1.2.6 Coherent control versus decoherence

Generally speaking each member of the ensemble evolves under its own individual Hamil-
tonian, as a result of local perturbations in the magnetic surroundings. In solution, micro-
scopically fluctuating fields may arise from the fact that the spins are not static in their
environment, but reorient themselves during random molecular tumbling. The result of
this is decoherence between the spins, where spins in each molecule evolve asynchronously
from the rest and spin order is gradually lost.

Relaxation is the irreversible form of decoherence that drives spin order towards to a
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stationary, equilibrium state. A formal introduction to the subject is deferred until chapter
3 of this thesis, but in general is treatable in two ways. The more sophisticated and
thorough method, suitable for the ensemble endpoint view, is the Liouvillian treatment
of relaxation by Wangsness, Bloch and Redfield (WBR) [41, 42] and Abragam.|2, 14]
The Hamiltonian H experienced by each molecule is separable into a uniform, coherent
part, Hy = H and a perturbative stochastic part H; = (H — Hp) that encompasses
incoherent time-dependent fluctuations. WBR theory formalises an evolution according to

the Liouvillian differential equation

o) = (Lo+1)p(0) (1.21)

where the coherent Liouvillian Lo defines the in-phase evolution and depends only upon

the uniform Hamiltonian Hy:

Lo(t) = —iHy(t). (1.22)

The hat *’ signifies a commutation superoperator such that Hp(t) = Hp(t) — p(t)H and
tilde ‘7 the Larmor frame (see §3.1.1).[3, 14] The other part is the so-called relaxation or

incoherent Liouvillian that depends only on Hj:

0 . -

It = —/ dr Hy(t + 7)Hi (). (1.23)
—0o

One may alternatively deal with relaxation in the fashion of Hilbert space by formu-

lating a matrix containing transition probabilities between spin states via Fermi’s golden

rule.[34] Fermi’s rule (though the rule was in fact derived by Dirac [43]) states a perturba-

tive Hamiltonian H; induces transitions between a pair of states |p) and |¢) at a rate

Ry = 21 [(glH1lp)|? j(wpe) (1.24)

(in angular units) where j(wpq) is the power spectral density of fluctuation at the transi-
tion frequency wpy = (p|Ho|p) — (q|Holg). Although both formalisms are equivalent in a

theoretical sense, the WBR formalism is overall more convenient to handle.

Note that spin relaxation is distinct from time-reversible decoherence that frequently
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occurs in NMR, particularly in the solid state. In solids, where molecular motion is frozen
out, anisotropic spin evolution is reversible using techniques such as the spin echo, for
example.[15] Only time-irreversible decoherence characterises spin relaxation and, notably,
requires fluctuations at the transition frequency between spin states. The spectral density
is explicit in the Fermi treatment, while the Liouvillian formalism obtains this through the

time correlation integral.
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1.3 Structure of the NMR experiment

The view in §1.2 boils down to the NMR system as a closed quantum ensemble where
evolutions of spin order and observables behave as a problem in linear algebra. A graphical
summary of the formalism is given in fig. 1.3 (for more depth, see ref. [3]). The ensemble
state, or density operator, is controllable in its evolution because it can be steered in a
predictable way by applying a carefully chosen time-dependent Hamiltonian. Despite the
seemingly reduced information content p maintains a ‘complete’ statistical definition of the
system, for according to eq. (1.12) it contains all physically significant information about
the ensemble.

A general experimental scheme for NMR is given in fig. 1.4 outlining three basic stages:
initialisation (a preparatory stage), encodement (the information storage part) and detec-
tion (the readout of observables), following in chronological order from left to right. These

are briefly described as follows:

o Initialisation
Initialisation prepares spin order for the ‘encoding’ stage. If the spin populations are
initially all the same, coherent encoding is not possible since p remains stationary
under unitary propagation, as the density matrix p is proportional to a unit matrix,

E. The goal of initialisation is to create a population asymmetry between spin states.

Population asymmetry in the form of longitudinal magnetisation can be obtained by
placing the sample can be within a static magnetic field denoted B® = (0, 0, B?),
where B? usually exceeds the magnitude of all other spin interactions by several
order of magnitude, and waiting until thermal equilibrium is reached. The spin
order relaxes to a net magnetisation parallel to the field, where populations are given

by the Boltzmann distribution:
Peq = exp(—H/kpT) / Tr(exp(—H/kpT)). (1.25)

Here T is the temperature, and kp is Boltzmann’s constant. The approximate Hamil-
tonian in this case is H = —hyB% /2, which corresponds to the Zeeman energy

E = —p - B° of a magnetic moment in the field.

Consider, as an example, protons in a room temperature (300 K) sample placed in a
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Figure 1.3: From the spin system to observables:

Hilbert space

Elements
e n=(2[; +1)(2I2 +1)...(2Ix + 1) orthogonal kets |z)

e norm: (ilj) = d;;

Representation

e pure state wavefunction |¢) as n-dimensional vector
W) =Y, 601 & c=(eres ... o)t
e 1n? linearly-independent operators each as n x n matrices
. X . k . )
QN lw() =3, ; Qi) & (Q%)y = (ilQ¥5)
® density operator as matrix

2= Y., 60a0 )il & @y =cOal

Equation of Motion:
o d|yY(t)) /dt = —iH(t) [ (t)) & ¢= —iHc
o dp(t)/dt = —i(Hp - pH) & p=—i(Hp— pH)

Propagation:

o Ulty; ta) |t0) = exp|—i [}* H(t')dt'] [v))

o p(ty) = Ulty; ta)p(ta)UT (th; ta) & p(ty) = Up(ta)UT

® Q(ty) =Ul(ty; ta)Q(ta)UT (ty; ta) & Qty) =UQ(ta)UT
Multiple propagation:

L] Uju...UzUlp(f/)U?Ug.ng} = U]\,[H.UQUlp(f,)UTUQT.“UIE
.

J

-
Liouville space

Elements:
e 1?2 basis operators: Q% = |j) (i
e norm: Tr(QY Q) = 0ik0j1
Representation:
e operators as n?-dimensional vector

p=30Te(@QYp)Q" = p=(p1p2...pu2)"

e n? linearly-independent superoperators each as n? x n? matrices

Equation of Motion:
o dp(t)/dt = —iH (t)p(t)

Propagation by superoperator:
o Ulty; ta) = exp[f,” —iH(t') dt'] U=UcU
o p(te) = U(tb? ta)p(ta) & plty) = Up(ta)

L4 Q(tb) =U(ty; ta)Q(ta) = Q(ty) = UQ(ta)

Multiple propagation:
o Uy ... Uslhp(t) < Un...UUip(t)

.

\

J

a quick-reference guide to linear algebra in NMR.
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Initialisation Encodement Detection

time

Figure 1.4: General structure of an NMR experiment, summarised in three basic stages.

typical magnetic field B = 5 T. The density operator approximates to

1

pea = E——=H (for kpT > |hyBY)) (1.26a)
B
hiry BY
1 hyB° 1 hyB°
- S . 1.2
(2 + 2kBT> (’O‘> <O"> + (2 2k3T> (\5) <5|) (1.26c)

where E' is the unity operator defined by E [¢)) = |¢).

Protons have nearly the largest || of all nuclei but the difference |hyBY/kpT| is
still very small, only of order 107°. While this difference is small, it usually suffices

because it is compensated by very large number of spins (typically 102° —10%? spins).

e Fncoding
During this stage information is written into spin memory. The form of the encoding

is a time-dependent Hamiltonian, in general expressed by

H({wl,wg...},t) =w(t)Q1 + w2 (t)Q2 + ..., (1.27)

where the coefficients w;(t) of each operator are related by the strengths of the inter-
actions between spins and their environment. These interactions may be ‘external’
to the spins in the form of applied magnetic fields, such as the ‘z’-field of the polar-
ising magnet, or field pulses,|2, 3, 4, 5, 6] which are short periods of irradiation by
oscillating electromagnetic fields at the frequency of transitions between spin angular
momentum states. Spin interactions ‘internal’ to the spin system include couplings
between nearby nuclei, shielding, and effects of molecular motion — including relax-

ation mechanisms.
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The encoded density operator, after the evolution under H ({w1,ws...},t), may be

denoted p({w1,ws ...}, t) regarding it as a function of the history in w;(t):

H({wi,wa...},t _ 2 -
Boq ez b, Sty wy . $t) = U({wn,wa ..}, (0))pug. (1.28)

The determinism of the spin evolution (seen in §1.2) is very powerful as it allows
one to design any encoding in mind, for instance the encoding of nuclear positions
in a sample, so as to later obtain an image of the spin density, or the transfer of
magnetisation between different nuclei in the system. An excellent review is provided
by Sgrensen et al.[44] Control of spin dynamics also extends to compensating artifacts
invariably present in experiment, such as pulse imperfections, undesired spin-spin

couplings, quadrature images and magnetic field inhomogeneities.[3, 4, 5, 6]

o (Observation
The encoded density operator is conventionally detected through Faraday induction
within a radiofrequency coil adjacent to the sample. Induction in the coil is propor-
tional to the transverse magnetisations M,(t) and M,(t), giving a time-dependent
signal that is recorded digitally and stored on a computer. The signal is recorded
until the spins have fallen out of coherence or relaxed and the induction has decayed

below a detectable level.

The signals are then processed to unravel selected parts of the encoded information
{w1,ws...}. This is done by Fourier transforming the time-oscillations to a frequency
spectrum, |3, 4, 44] or by more elaborate methods into a two- or three-dimensional

information scheme, such as an image, depending on the acquisition scheme.

1.4 NMR Sensitivity

1.4.1 Signal versus noise

The main challenge of NMR . is regularly not how to retrieve desired information by en-
coding / decoding the spin ensemble, but how to fight the inherent low sensitivity of the
experiment. The weakness of the observed signals, due to the weak nuclear magnetism,

is a major issue. In a real experiment, the NMR signal will be accompanied by a certain
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amount of random ‘noise’, the nature of which is usually assumed to be independent of the
NMR pulse sequence and uncorrelated throughout time. Noise is usually caused within the
experimental hardware; in the electronic circuitry, for example. Noise makes observation
of the NMR signals more difficult and in extreme cases obscures the signal information
content altogether.

One ultimately wishes to distinguish the signal from the noise as far as possible, ob-
taining maximum sensitivity. Better sensitivity opens the way to new NMR experiments
and new regimes of study. Improved sensitivity in one area of the experiment may, for
example, offset a reduction in signal strength upon using smaller samples (one may recall
the NMR signal is proportional to the number of spins present), to the benefit of structural
characterisation of precious or expensive samples by NMR. In MRI, where the spin density

is measured from pixelised regions of a sample, this may enable higher spatial resolution.

1.4.2 Sensitivity improvement

NMR’s unique role in science drives a large effort to improve sensitivity across all areas of

the experiment:

e Average several scans
If an experiment is repeated N times and the spectra summed together, the total
signal is proportional to N. In contrast, the noise builds proportional to V/N'. Ran-
dom noise is characterised by a root-mean-square amplitude, in this case denoted ‘z’.

The root-mean-square noise after a superposition of NV repeated readouts is

(1.29)

This means when the experiment is repeated several times and the signals added

together, the signal-to-noise improves as VN .

Scan averaging is not always possible or desirable. Many NMR experiments may be
‘single shot’, particularly those that may monitor irreversible changes in a system

through time, such as during an ongoing chemical reaction.

o Detection advances

Signal-to-noise improvements can be made by better probe design for signal detection.
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The Faraday induction can be improved by increasing the fraction of the coil volume
filled with sample (coil filling factor). Cryogenically cooled probes are the most
current advance,[45] which typically deliver 5- to 10-fold signal-to-noise improvements
over standard probes. The receiver coils are cooled to 20 K using helium gas, which

enormously reduces the thermal noise in the electronic circuitry.

e Increase initial spin order
The polarisation of the nuclei can be improved vastly. Even at the largest available
field strengths (=20 T), the ensemble is very hot and the thermal equilibrium po-
larisation is very small. Larger initial polarisations are possible by thermalising at
higher magnetic fields, or lower sample temperatures, though this comes at the ex-
pense of technical difficulty, and conditions may not be compatible with the system

of interest.

Some specialised techniques obtain large non-Boltzmann nuclear polarisations, po-
tentially up to the order of unity (almost 100% nuclear alignment). These operate
by transferring the much stronger polarisation of unpaired electron spins onto the
nuclear spins. In the dynamic nuclear polarisation approach (DNP), the NMR sam-
ple is doped with a stable paramagnetic species to provide an electron source. It
is cooled to a few Kelvin in a strong magnetic field where the electrons become
polarised to unity order. Electron-nucleus polarisation transfer is then driven by
microwave irradiation.[46] The recent dissolution-DNP method allows rapid melting
of the cold sample by dissolving it with jet of hot liquid. This achieves hyperpo-
larised nuclear spins in a room temperature solution that can be used for liquid-
state NMR.[47, 48, 49] An alternative route to polarised nuclear spins at ambient
temperatures is to produce photoexcited electron states in a molecule or atom by
LASER irradiation, whose emissive return back to the ground state drives spin-
selective electron-nucleus transitions.[50, 51, 52| Similar effects can be produced by

chemical reactions in which the intermediates contain unpaired electrons.[53|

An unique route, without radicals, to hyperpolarised molecules is parahydrogen. The
hydrogen diatomic (Hg) exists as two nuclear spin isomers: orthohydrogen (o-Hs),
corresponding to a triplet state in which the two nuclear spins are parallel (total

spin I = 1), and parahydrogen (p-Hs), a singlet state, where the two nuclear spins
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are antiparallel (total spin I = 0). It is possible to enrich the lower-energy singlet
spin-isomer by exposing Hy to a paramagnetic catalyst at low temperatures.|54] Para
enrichment persists after removing the catalyst and warming the hydrogen to room
temperature, due to the relatively large energy difference between ortho and para
forms. Spin order of enriched I is thereafter transferred to other molecules through
hydrogenation reactions, resulting in large nonequilibrium proton spin order in the

product molecules.[55, 56, 57, 58, 59|

Efficient encoding
The period between the initialisation and detection steps is also important, as sig-
nal strength depends both on how efficiently the initial spin order is encoded and

transferred into detectable magnetisation.

Efficiency of the encoding step is generally constrained by a fixed information required
of the spins in a given experiment. This does not mean sensitivity improvement is
improbable, but may change one’s focus somewhat: to recover sensitivity losses,

rather than look for gains.

A major if not the main source of signal loss is relaxation. Attempts to prolong
spin order go back as far as Hahn’s stimulated echo in the 1950s. To give a different
example from biomolecular NMR, Wiithrich and co workers have shown that for
selected observable coherences between 'H-'°N spin pairs in proteins the dipolar
(DD) and chemical shift anisotropy- (CSA-) induced relaxation rates can be arranged
to partly cancel. The resulting extended coherence-lifetime gives enhanced intensity
and resolution in the observed "H-!'°N spectra compared to ordinary T5 relaxation.
This method, known under the acronym TROSY (Transverse Relaxation Optimised
SpectroscopY ), roughly triples the upper limit of molecular weight for which NMR

can viably determine protein structure.[4, 12]

Apart from relaxation, deviations from ideal spin evolution may arise from imperfec-
tions in applied pulses and static field inhomogeneity. These can be minimised using
error-compensation strategies, by designing an evolution scheme with error terms
taken into account. One of the best-known examples of this is composite pulses,|60|
which are used to achieve near-ideal rotations of the spins despite flip angle miscali-

bration and off-resonance effects.
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Ideally, one would like to combine all these methods together and generate ultimate NMR
sensitivity, using the maximum feasible sample concentration at maximum initial polari-
sation, then with maximum carriage of spin order through the encoding sequence (efficient
coherent spin dynamics, with minimal loss through relaxation) followed by detection on

the most sensitive hardware available.

1.5 Boosting sensitivity using singlet states

Singlet NMR falls into the ‘efficient encoding’ category by prolonging spin lifetimes. This
section introduces singlet states, their relaxation properties and gives an overview of their

use in NMR.

1.5.1 Definition of singlet and triplet states

Singlet and triplet states are names given to the four eigenstates of the total angular
momentum for two spins-1/2. Explicit form of the states is obtained using the angular

momentum coupling series

1, m)y* = Z c;%jlkmk L, mj) @ |lg, M), (1.30)
mjmy
where each C’ll]%jlkmk is a Clebsch-Gordan coefficient,[33, 34, 35| the quantum numbers

{l,m} are the eigenvalues of the total angular momentum and projection angular momen-
tum operators of the composite system, respectively given by opertors (12 = (I, +1,+1,)?)
and I, and the quantum numbers {l;,m;} refer to the uncoupled nuclei, henceforth la-
belled ‘5" and ‘k’. The unique spin-zero (I = 0) configuration from destructive addition of

the angular momenta is the singlet state. The singlet wavefunction is denoted

1555) = 10,0)" = 27%(ja;) ® |8k} — 18;) @ |ow)) (1.31)

= 27'2(|a;B) — |Bjon))- (1.32)

The triplet is the name given to the three states formed by constructive addition. These

have total spin quantum number [ = 1 and projections m = —1,0 or 4+1. Notation \Tﬂﬂ
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is assigned to the states |1, m)?* as follows

Th) = 1L+17F = oja) (1.33)
T35 = 1,00% = 27Y%(|a;B) + |Bjau)

%) = 11,-1F = |88

1.5.2 Singlet relaxation basics
Relaxation and symmetry
Symmetry properties of singlet and triplet states favour long singlet relaxation times. As

can be seen from the sign change under exchange of the nuclei, the singlet wavefunction is

antisymmetric, while the triplet wavefunctions are all symmetric:

P(,k)|ISTY = —183h) (1.34)
P, k)|T3F) = +[T4F). (1.35)

The exchange operator P(j, k) denotes swapping of the pair labels.

Fermi’s golden rule (see eq. (1.24)) says that the relaxation rate between a pair of
quantum states under a fluctuating Hamiltonian is proportional to the square of their
transition dipole integral.[3, 41, 43] Exchange symmetry imposes a strong selection rule on
the transition dipole between singlet and triplet states. For singlet-triplet transitions, a
permutation-symmetric Hamiltonian gives a zero dipole, since the connected states have

opposite symmetry:
(SSFIH|TIFy =0 if  P(j,k)H = +H. (1.36)

Symmetric, correlated fluctuating fields at the nuclear sites therefore do not induce singlet-
triplet transitions, and do not induce singlet relaxation. Singlet relaxation is only brought

about by fluctuations that are uncorrelated (or anticorrelated) across the spin pair.

A similar selection rule exists for triplet-triplet transitions. A triplet-triplet transition

dipole is zero if the fluctuating Hamiltonian is exchange-antisymmetric, for the triplet
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states all have the same symmetry:

(T H|T*y =0 it  P(j,k)H = —H. (1.37)

Slow decoherence of the singlet state occurs when the relaxation involves a predominantly
permutation-symmetric mechanism, so that the selection rule eq. (1.36) wins out over eq.
(1.37). In the extreme case, when the relaxation mechanism is perfectly symmetric with
respect to nuclear exchange the singlet is expected to be infinitely long-lived, and not decay
at all.

Relaxation insensitivity of singlet states may be qualitatively interpreted from the total
spin quantum number, which implies the singlet overall behaves as a nonmagnetic particle
(I = 0), while the triplet exhibits nuclear paramagnetism (I = 1). A relaxation mechanism
whose Hamiltonian is perfectly correlated across the nuclei will regard the spin-pair as

nonmagnetic, and therefore leave the singlet state unperturbed.

Intra-pair dipole coupling

Many relaxation mechanisms in solution NMR are exchange-symmetric or near exchange-
symmetric. A very important one for an isolated spin pair is the internuclear dipole cou-
pling. This is the magnetic analogue of the coupling between two electric dipole moments.
The magnetic dipole interaction between two nuclei with labels ‘5’ and ‘6’ in the principal

axis frame of the internuclear vector is given by
HRP = bji(20: 1. — LinIie — Liylky), (1.38)

where the coefficient b is the dipole-dipole coupling constant between the spins. This
is proportional to the inverse-cube of the internuclear distance, d;, and the gyromagnetic

ratios of the two nuclei:

Hohyi vk
bip = — LTk (1.39)
47rdfk
It is clear that H]]%D = P(j, k)HJ]%D = —i—H]DkD. This means singlet-triplet transitions cannot
be induced.

Dipole-dipole induced relaxation is often the strongest decay-causing mechanism in
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solution NMR of coupled spins, especially protons; for two protons at a separation of 1.8
A, the typical separation between two methylene (CHy) protons, the coupling strength
|bji. /27| is approximately 20 kHz. Dipole-immune states were the subject of the very first

demonstrations of singlet order with lifetimes longer than 77.[18, 19|

Thermal stability of orthohydrogen and parahydrogen

Dipolar-forbidden transitions are the culprit of the very slow interconversion between ortho
(triplet) and para (singlet) spin isomers of hydrogen gas.[54] To convert between the two
forms, a paramagnetic catalyst must be added (e.g. ferric oxide, chromic oxide) because
the ortho-para nuclear spin transitions are permitted only by pair-antisymmetric fields.
The catalyst causes strong, unsymmetrical hyperfine shifts at the two hydrogen atoms.
Without the catalyst the ortho and isomers persist as metastable species with lifetimes the

order of several weeks.

1.5.3 Nomenclature of long-lived and singlet states

The term ‘long-lived state’ (LLS) has been used in the literature as a general term for spin
order that relaxes slower than 17, in the same system; in symbolic terms, decays with a
time constant 1115 > 1.

This comparison originates partly for historical reasons. Before the realisation that
singlet states exhibit very slow relaxation — at some times altogether forbidden relaxation
— it was thought that 77 of a system presented a strict upper limit of spin lifetime. Initially
this was because T7 was found to be the upper lifetime predicted in observable spin order,
namely the Cartesian components of bulk magnetisation, which relax with time constants
T1 and T5. NMR-silent spin-0 states were ignored. It is true that 77 provides the up-
per limit of spin lifetime in systems of isolated (uncoupled) nuclei, regardless of the spin
quantum number I. A classical random-field model shows that in high magnetic field,
longitudinal magnetisation can only be relaxed by fluctuating transverse fields, oscillating
at the energy difference between the angular momentum states, not by fields along the
symmetry axis. The transverse magnetisation does not lie along a symmetry axis in gen-
eral, so is susceptible to field fluctuations along all three orthogonal axis, and therefore is

faster relaxing.[14] In the absence of a symmetry axis, for example at zero field, then T}
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and T5 are identical.

The slow singlet relaxation character was also ‘missed’ in the Liouvillian treatments
of multinuclear systems by Bloch, Wangsness and Redfield.[14, 41] In that case, hasty
approximations were made in deriving the relaxation superoperator, which obscured the
existence of long-lived states.

As the term ‘long-lived state’ is relative, care in its use is advised. In most practical
cases, one may want to know if such states provide the longest-available lifetimes. For
instance: two carbon sites in a molecule may be isotopically enriched with 3C (I = 1/2)
giving a 13Cy spin pair on which singlet order can be excited. The singlet decay constant,
Ts, may well exceed T} in the same system, but does it exceed T} of either '3C nucleus in
the singly '3C-labelled isotopologues? This possibility must be considered too.

Having said the above, comparison between Ts and 7 of the same molecule is useful
regardless of whether the singlet is long lived or not, since it gives information about the

symmetry and likely nature of the dominant relaxation pathway in a molecule.[61, 62]

1.5.4 Symmetry switching concept in singlet NMR

A typical singlet NMR experiment involves ‘switching’ the spin-exchange symmetry of the
nuclear spin Hamiltonian between exchange-symmetric and -unsymmetric forms. Prepa-
ration of singlet order from conventional magnetisation, (always a property of the triplet),
such as equilibrium longitudinal order, requires nuclear inequivalence to facilitate coher-
ent singlet-triplet transitions. Singlet storage, on the other hand, requires suppression
of symmetry-breaking terms to enforce singlet-triplet isolation. Reconversion to observ-
able magnetisation, as singlet order is nonmagnetic and cannot itself be observed directly,
requires broken symmetry again.

A scheme for symmetry-switching is seen in fig. 1.5. In the case where parahydrogen
is the initial source of spin order, singlet order may be released using asymmetry-inducing
chemical reactions, where, for example, the protons in the products may end up in sites
with different chemical shifts.[59, 63, 64]

For polyatomic molecules, where magnetisation is the initial spin order, it is necessary
to start with inequivalent nuclei. Temporary magnetic equivalence may be brought about
for periods of singlet storage in several ways: (i) by applying resonant rf irradiation to

the sample,[18, 65| (ii) by removing the sample from the magnetic field[19] or applying
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Figure 1.5: Symmetry switching sequence for a singlet NMR experiment

chemical reactions that render the two nuclear sites equivalent.[31] The resonant field
brings the angular precession frequencies of the two spins into parallel, while transport of
the sample into low magnetic field removes the symmetry-breaking interaction altogether

as the chemical shift frequencies become vanishingly small.[17]

1.5.5 Singlet NMR at present

Singlet states open a new dimension in NMR by providing access to relaxation times far

in excess of T1. This has attracted growing attention over the last half-decade.

Applications of the long lifetime

On the application front, the most widespread use of long-lived singlet states has been
to extend the detectable window of slow molecular dynamics phenomena. The typi-
cal scheme in these experiments involves encoding the spins with information on their
state at some initial time point, then encoding again after a waiting time. Readout
and post-processing separates these informations to capture what happens during the
wait, on that condition that the wait is long enough to capture the process of interest.
Slower timescales are made accessible by transforming the nonequilibrium spin order into
a singlet-triplet population difference for the waiting time, so as to better preserve the
ordered state against relaxation loss. Singlet-EXchange SpectroscopY (singlet-EXSY) has
been demonstrated,[25, 66] which encodes the chemical environment of the nuclear spins
for monitoring of slow chemical exchange, protein folding and other molecular dynamics.

Slow translational diffusion in various contexts has been monitored by combining singlet
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states with Diffusion Ordered SpectroscopY (singlet-DOSY), where molecular position is
the encoded information.[24, 28, 29, 67|

A promising candidate for very long term polarisation storage is '®N-labelled nitrous
oxide, 15NyO. The fast rotational correlation time of the triatomic molecule, in addition
to the low gyromagnetic ratio of 1°N results in a singlet lifetime that may exceed tens of
minutes.[22, 68, 69] Such long lifetimes exist for >Ny O dissolved in a wide range of solvents,
including whole blood.[23] As N3O is non-toxic and soluble in blood it has been suggested
as a tracer in clinical MRI. Before this, however, a remaining challenge is to successfully

hyperpolarise >N in 1NyO, in order to overcome its intrinsically low magnetism.[22]

Understanding relaxation

The demonstrations of dipole-immune states made by Carravetta and co-workers initially
drew curiosity not to the general relaxation properties of singlet states, but to long-lived
states in general, with theoretical analyses made to determine whether such immune
states can exist within systems containing more than two spins-1/2. In the early stud-
ies, exhaustive brute-force searches of the relaxation superoperator were made for its null
(decoherence-free) space.[70, 71, 72, 73, 74, 75] More careful symmetry-based analyses for
three- and four-spins-1/2 have since been made. In these, rules for exact dipole-immune
states have been identified. For instance, such states may only exist if the geometry of
nuclear spins possesses inversion symmetry.

Current opinion is that exact dipole-immune states are an overkill, and not widely
useful since invariable presence other relaxation mechanisms causes their decay. A potential
application, however, is NMR quantum computing, where generalised long-lived states in
large spin systems may help one prepare entangled states.

Recently, efforts have taken the approach of rationalising Ts and 7T} lifetimes measured
in real systems, to get a feel of the most significant relaxation mechanisms in practice.
Theory has been developed to treat singlet relaxation in isolated spin-1/2 pair systems,|20)]
as well in presence of intra-[62, 76, 77, 78] and inter-molecular [79] neighbour spins.

In some cases it is possible to perform a ‘reverse’ analysis of singlet lifetimes. The
relaxation of nuclear singlet states is very sensitive to the local magnetic environment
of the spin pair. Studies have been made to determine the relative orientations between

chemical shielding tensors from observed singlet relaxation constants,[61] Out-of-pair dipole
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couplings have similarly been studied to give constraints on molecular geometry, including

bond torsion angles.[62]

Methodology development

Storage of singlet order requires ‘symmetry-switching’ to bring the spin-1/2 pair into mag-
netic equivalence. Schemes for this must typically be tailored to the nature of magnetic
symmetry-breaking interactions. As mentioned in the previous section, switching may be
achieved by applying a resonant spin locking field,[65, 80, 81| by transporting the sam-
ple into a region of low field, where the chemical shift frequency difference is vanishingly
small,[82] or by performing symmetry-switching chemical reactions.|[31]

In the radio-frequency spin-lock type methods, the frequency and amplitude of the
locking field is critical to enforcing magnetic equivalence. This has driven investigation
of amplitude or phase-modulated decoupling schemes to find broadest bandwidths be-
tween the average chemical shift of the spins and the carrier that maintains singlet state
isolation.[81] Shaped-pulse decoupling may sustain singlet order at resonance offsets that
exceed both the difference in the chemical shifts and mean rf irradiation power.[25, 65, 81]
For potential in-vivo singlet NMR, this may allow use of lower rf power, to avoid excessive
SAR (Specific power Absorption Rate) in living tissues.

Another major area of methodology development is pulse sequences to make the con-
versions between magnetisation and singlet order. The magnitudes of the magnetic-
equivalence-breaking interactions, which are also linked to the singlet storage requirements,
are important for which sequence to use but in general these are not prohibitive to the
efficiency of singlet-triplet conversion. Error-resistant preparation sequences have been
developed that are broad-band with respect to variation in the chemical shifts and J
couplings.|25] These also allow simultaneous singlet excitation on two or more spin pairs
in a molecule. A more detailed discussion is reserved until chapter 2 of this thesis, where

the current state of available methodology is reviewed.

Long-lived singlet-triplet coherences

The phenomenon of populations |Sp) (So| with lifetimes Ts > T} has led to the realisation
of long-lived coherences (abbreviated LLCs) of the type |Sp) (Tp|. The vanishing transition

dipole between singlet and triplet states under a symmetric relaxation mechanism results
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in enhanced lifetimes Ti,c > T%.[25] LLCs are not fully immune to the intra-pair dipo-
lar relaxation, due to the nonequilibrium triplet component, though in theory may still
relax up to 3 times slower than 75 in small molecules, and up to 9 times more slowly in
macromolecules.[83]

An application of LLCs is the precise determination of spin-spin couplings. The LLC
of an homonuclear spin-1/2 pair oscillates at the singlet-triplet energy splitting, which
equals the J coupling in isotropic solution phase, and the sum of J and the orientationally
averaged ‘residual’ dipolar coupling in oriented media. The oscillatory dependence can be
measured in either one-dimensional or two-dimensional fashion and Fourier transformed to
an high-resolution spectrum yielding natural linewidths (o< 1/71rc) much narrower than
the ordinary homogeneous resolution (o 1/7%).[84, 85, 86] The LLC spectra also escape
inhomogeneous line broadening. Linewidths as low as 10 millihertz have been observed.

For an excellent review, see ref [87].

1.6 Scope of the present work

This thesis aims to communicate new methodology and theory for singlet NMR, while
maintaining accessibility in the subject to a newcomer in the field. To achieve this I adopt
a focus on broad concepts supplemented by specific experimental demonstrations. The
following two chapters each start by introducing a general theoretical framework. This is

used to explain existing features or techniques, present new methods and compare.

In chapter 2, (‘Singlet nuclear magnetic resonance’), the introductory detail sketches
out a Hilbert space evolution formalism for the singlet and triplet states of a spin-1/2
pair. Four ket states with well-defined exchange symmetries are easier to keep track of
and appreciate than the sixteen spin operators of the Liouville space. This evolution for-
malism is applied to analyse pulse sequences that generate singlet spin order starting from
longitudinal magnetisation, (and in reverse, vice versa, for singlet observation). ‘Singlet
polarisation’ is used as an instrument to quantify how much singlet order is excited in any
given experiment, how much is reconverted into observable signal, whether the excitation
vielded is ‘maximal’ and make a comparison across the different sequences.

The most novel and extensively discussed sequence in chapter 2 is one that permits
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access to singlet order in ‘nearly equivalent’ spin-1/2 pairs. These are systems where the
singlet and triplet states are near-exact eigenstates of the free evolution and do not necessi-
tate symmetry switching to redeem the long lifetime. Near-equivalence at a spin pair may
be induced chemically, as demonstrated (i) by using symmetry-breaking function groups
at remote sites in the molecule and (ii) by weak chemical shift perturbations caused by
isotopic mass differences between neighbouring nuclei. A downside of near-equivalence is
how the pulse sequence is rather sensitive to variation in the J coupling and chemical shift
difference in the intramolecular Hamiltonian plus external magnetic field and rf pulse inho-
mogeneities. Error-compensating pulses and phase cycles are devised to in-part overcome

these.

Access to singlet order is also examined in hetero-nuclear spin systems, where the
homonuclear spin-1/2-pair may be coupled to nuclei of other magnetic isotopes. Het-
eronuclear J couplings provide a mechanism for symmetry switching that may facilitate
excitation of singlet states in chemically equivalent pair systems. I give experimental
demonstrations where the symmetry of a chemically equivalent 'H pair is broken by dif-
ferences in scalar couplings to a nearby '3C nucleus. Spin locking on either the 3C or
'H nuclei, but not both, suppresses the heteronuclear *C-'H couplings and the pair of
protons ‘switch’ into magnetic equivalence, where the singlet is isolated.

Lastly in chapter 2 I discuss signal selection in singlet NMR. Singlet spin order is
uniquely invariant to rotations of the spins quantisation axes, and therefore separable from
other spin order under rotation quadrature. Efficient single-scan filtration of singlet-derived

signals is the ultimate goal. Several approached are discussed in depth.

The focus of chapter 3, (‘Nuclear singlet relaxation’), is the singlet’s slow relaxation
phenomenon. General tools for relaxation analysis are outlined starting with Redfield’s
relaxation formalism leading on to how rotation symmetries in the Liouvillian may impose
strong selection rules on singlet relaxation pathways.

Some experimental case-studies are presented. These concentrate upon singlet relax-
ation caused by out-of-pair mechanisms (mechanisms involving spins other than just the
spin pair). The dipolar contribution towards 1/Tg from individual passive spins within a
molecule is shown to be determinable, within reasonable approximations, as the difference

relaxation rates 1/Ts upon replacing the passive spin with a nonmagnetic, or effective
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nonmagnetic isotope. This is examined using '3C/'2C and 2D/'H isotopic replacement.
Singlet lifetimes are more-sensitive to the out-of-pair dipole-dipole couplings than 77, due
to their immunity from the dominating intra-pair dipole-dipole mechanism. One may use
this concept to determine reliable constraints on local molecular geometry, for example
bond torsion angles.

Paramagnetic relaxation of singlet states is also studied, where the decay mechanism
involves modulation of nucleus-electron hyperfine couplings. Singlet relaxation rates are
measured versus concentration of paramagnetic transition metal ions in solution, and the
data examined using an effective random-field relaxation model. Singlet lifetimes are found
to be less-sensitive to paramagnet-induced relaxation than longitudinal polarisation life-

time, though the extent depends on the nature of the paramagnetic agent.

The conclusions section (4, ‘Perspectives’) highlights the new areas of study opened up

by this work, as well as deficiencies that may be addressed in future.
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Singlet nuclear magnetic resonance

This chapter focuses upon the methodology for excitation and readout of singlet population
order. It addresses how to convert equilibrium longitudinal magnetisation into singlet
order, and transfer singlet order back to detectable magnetisation. The maximum efficiency
of these transformations is discussed, and the likely experimental achievement of this where
invariable imperfections are present. Some extra considerations for hyperpolarised samples
are also discussed.

Generally speaking, conversions between singlet and triplet spin order is only allowed
if the participating spin-1/2 pair are magnetically inequivalent, due to the selection rule
for crossing between the symmetric and antisymmetric spin states. Magnetic inequivalence
is a frequent situation in polyatomic molecules, occurring where the nuclear pair sites are
unrelated by molecular symmetry operations. In high symmetry molecules, the spin pair
may be chemically equivalent but possess spin-spin couplings to other nuclei, which break
magnetic symmetry.

The magnitude of the magnetic-equivalence-breaking interactions |Hasym| in the spin
Hamiltonian is important for which method to use, but is not prohibitive to the efficiency
of singlet-triplet conversion. All of the methods described here excite maximum avail-
able singlet order, so long as the conversion rate is fast compared to relaxation: that
|Hasym|/2m > 1/T7 or 1/T5.

Also discussed are some techniques that produce singlet-‘edited’ NMR spectra, in which

the observed signals derive exclusively from singlet order.

33
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2.1 Dynamics of nuclear singlet and triplet states

This section introduces the basic concepts that will be required for understanding coherent
interconversion between singlet and triplet states and how pulse sequences (plus certain

other procedures) may in practice achieve this.

2.1.1 Angular momentum and magnetic equivalence symmetry

To recap on the introductory chapter, the nuclear spin wavefunction describing a spin-
1/2 pair is a superposition of four orthogonal basis states. The singlet-triplet basis is the
orthogonal set of states |/, m) possessing definite total (I = I) and projection (m) angular
momentum quantum numbers. These states are eigenfunctions of both the total I? and I,

spin angular momentum operators satisfying

Zlmy* = (I + L) [1l,m)™* = 11+ 1) |1, m)* (2.1)

LLmY* = (I, + L) [Lm)* = m|l,m)?* (2.2)

for explicit spin-1/2 nuclear labels ‘5’ and ‘k’, where I; = (Ijz, Iy, Ij.) denotes the spin
angular momentum vector. The overall nonmagnetic state |0, O)j ¥ is the singlet, otherwise
symbolised ]Sgk>. The three total spin-1 states are the triplet, |1, m)?* = |T%F), where m

can be —1, 0 or 1. In the Zeeman product basis the states appear as follows:

1S0)" = (JjB) = Bjam)) V2 |T0)* = Jejeur) (2.3)
IT0)"* = (I Br) + |Bjan)) /2 To0)™* = 188) -

The angular momentum property is key to the problem of singlet-triplet conversion. An
Hamiltonian that commutes with the total angular momentum operator Ijzk, must preserve
singlet and triplet eigenfunctions, since commuting operators have simultaneous eigenfunc-
tions. Under such conditions, |0,0)?* and |1,m)?* are isolated from one another and do
)"

not interconvert. This is to say |0,0)?* and |1, m)’* states only interconvert only when the

Hamiltonian does not commute with Ijzk.
More often this commutation rule is referred by the concept of magnetic equivalence

symmetry. Spins j and k are ‘magnetically equivalent’ when H is invariant to swapping
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the pair indices. This is to say the relation P(jk)H = HP(jk) holds, where P(jk) is the
permutation operator that swaps labels j and k. Connotations for the angular momentum
states follow because P(jk) commutes with Ijzk. If H does not commute with P(jk), the
two spins are said to be ‘magnetically inequivalent’.

Equivalence symmetry is a powerful concept for relaxation, not only coherent evolution.
In §1.5.2 this has been applied to explain in basic terms the singlet’s invariance to the intra-

pair dipole-dipole Hamiltonian. Further details may be found later in §3.1.

2.1.2 Singlet-triplet inconversion during free evolution
Block-diagonal Hamiltonian in the singlet triplet basis

In the so-called ‘high-field limit’ where the Zeeman interaction dominates the spin Hamilto-
nian (for most practical purposes, when B® > O(uT)) and when time-dependent magnetic
fields (in particular, fields resonant with the Larmor frequency) are absent, the secular
part of the coherent Hamiltonian commutes with 7,. Under such conditions, states with
different m quantum number do not mix. This means one can partition the quantum states
into sets with different m and deal with their evolution separately.

For a spin-1/2 pair the secular Hamiltonian splits into two unit-dimensional subspaces,
one for each of the m = +1 states, plus one two-dimensional subspace for m = 0. This is

to say the coherent Hamiltonian appears in the block-diagonal form

(T4 |H|T4a) 0 0 0 T1)
0 To|H|T To|H|S 0 T
H— (To|H|To)  (To|H|So) To) (2.4)
0 (SolH|To) (SolH|So) 0 1S0)
0 0 0 (T 1|H|T-4) T 1)

or in the operator language, occupies the six-dimensional subspace of zero-quantum oper-

ators |I,m) (I, m'| 0, given by the sum

H="Y " (',mlH|l,m)l',m){,m]. (2.5)

LU'm

In this case, the operators |I,m) (I', m/| §ms comprise the population operators |T'1) (Ty1],

|T_1) (T_1] of the four basis states, |To) (Tp| and |Sp) (So| plus two zero-quantum coherences
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|To) (So| and [Sp) (To| between the m = 0 states.

Evolution of m = +1 states

Evolution of the one-dimensional m-subspaces is quite simple. The triplet states |T1) =

lajou) and |T-1) = |B;Bk) evolve by acquiring a phase proportional to their energy:

T 2 \T+1>exp(—in<+1>t) (2.6)
) \T,1>exp(—in<—1>t), (2.7)

for which frequencies are defined

WIED = (T |H|Tyy) = Te(|Tw) (Teq| H). (2.8)

Bloch sphere projection for |Sy) and |T)

The 2 x 2 problem of m = 0 subspace evolution may be dealt within the ‘fictitious spin-1/2’
formalism by taking advantage of the properties of a Cartesian representation defined by

the projection operator operators

T (176} {Sol + |S0) {Tol) /2 (2.9)
L) = (|To) (Sol — |0} (Tol) /(21) (2.10)
15070 = (o) (To| — |So) (Sol) /2 (2.11)
ES0T) = (|Tp) (To| +1So) (Sol), (2.12)
which obey positive cyclic commutation of the form [L,ESOTO), I?SSOTO)] — i) epe and

SOTO)]

unity [EST0), [(50T0)] — [p(SoTo) 1S = [B(SoTo) 1070} — 0. In this basis, the total

Hamiltonian is represented

H = "0 +0T Va0, (2.13)

m=+1 m=—1
W (SoTo) [(SoTo) _i_wz(JSoTO)IZSSOTO) + (STo) 7(SoTo) _i_w(ESoTo)E(SOTO)’

m = (0 subspace
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e

So)

So)

Figure 2.1: Bloch vector representation showing generalised m = 0 subspace evolution. The free-
evolution trajectory is a rotation about the sum of the Cartesian z, y, z field axes.

where the zero-quantum frequencies of the Cartesian operators are determined through the

projections

SoTo)t
W(SOTO) _ T‘I‘(Ié( 0 0) H)
3 Tr(IéSOTO)TIéSOTO))

£ =1y 2 (2.14)

The Cartesian representation allows instructive geometric visualisation of the two-level
subspace evolution using a Bloch sphere.|34, 88| To within a global phase factor, the m = 0

state vector, or qubit vector in this representation
|[10) = cos (9/2) |To) + €' sin (9/2) |Sp) (2.15)

maps to points (9, ¢) on the surface of a unit sphere. Fig. 2.1 illustrates that the free-
evolution of this qubit vector corresponds to rotation in the Bloch sphere about the com-

bined field axis IJS;SOTO), IlsSOTO) and 1157 The angular frequency of the rotation equals

Q(SOTO) _ \/(w:(cSOTO))Q‘i‘ (wg(/SoTO))2+ (wgsoTO))f (216)

and the rotation is oriented with polar angles determined by

(\/((/‘19(650:’10))2 + (wl(JSoTo))?

0 = arctan o) (2.17)
o = arctan(wg(CSOTO)/wz(/SOTO)). (2.18)

This geometric representation may be verified by exponentiating the m = 0 part of eq.
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(2.13), as follows:

U(SoTo)(t) - exp(—iH(SOTO)t) (2.19)
_ eXp(—iw%SOTO)t) exp(—i(wéSOTo)IésoTo) + szSOTO)IZSSOTO) + wgsoTo)[gsoTO))Q

(SoTb)

. S
= exp(—l ) t)R(Sin 0 cos ¢, sin 0 sin ¢, cos 0) (Q( OTO)t)'

QESOTO)t) that accompanies the rotation of

It is important to be aware of the phase (w
the Bloch vector. This term is not physically significant when dealing with spin order

residing exclusively within the subspace m = 0, since the phase cancels when taking
(SoTo

the outer product: for example, [exp(—iw, )t) |S0)] ® [(To\exp(—kingTO)t)] is equal
simply to |Sp) ® (To|, and as such wJ(ESOTO) may be neglected. However, it is essential for

observables concerning transitions between the m = 0 subspace and the external states
|T41). Transverse magnetisation is an important example, the spin order involving triplet-
triplet single-quantum coherences |Ty1) (Tp| and |Tp) (T4, |.

The above formalism has outlined analytical behaviour of the Hilbert space during
coherent evolution. For propagation in the Liouville space, one may simply take the ket-

bra outer products of the states when required.|4|

2.1.3 Mechanisms for isolated spin-1/2 pair

If the spin pair has no neighbours through coupling, the free-evolution Hamiltonian com-
prises the Zeeman interaction of each nucleus and intra-pair spin-spin couplings. One may

examine how each of these influence the singlet and triplet evolution:

o Chemical shielding interaction
The Zeeman interaction is the splitting of states under the large B static magnetic

field, which dominates the total Hamiltonian of the spins. The interaction is written
Hs = —’y[BO(l + 5]')[]'2 — "}/]Bo(l + 5k)Ikz (220)

where ¢; and d;, denote the isotropic chemical shielding for spins j and k. By pro-
jecting the above into the form of eq. (2.5), one can see that a difference in shieldings
is required for singlet-triplet mixing. The difference induces a rotation about the

IJ(ESOTO)—aXis in the m = 0 Bloch sphere, since the part (I;, — Ij,) does not commute
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with Ijzk. The sum Zeeman interaction, in contrast, evolves the m = +1 triplet states:

BO
eq. (220) = —1

2+ 6; + 08)( Lialka — Liples ) (2.21)
—— ~——
m=+1 m=-1

— 1 B°(6; — ) IS

mixes m = 0 states

o Intra-pair scalar coupling
The scalar coupling, or so-called ‘indirect dipole-dipole coupling’ is the interaction
between nuclear spins mediated via electrons in chemical bonds. The Hamiltonian

for the scalar coupling is

H;y = 2nJyld;- I, (2.22)
where Jj, is the coupling constant. By convention this is quoted in Hz.
Following the same treatment as above, one can see that H; preserves |l,m) spin

eigenfunctions since it is diagonal in both [ and m:

wJ; wJ;
eq. (2.22) = TJ’“( Lok + Liglks ) + 2mJ; 1050T0) — 28 B(SoTo) (2 23)
—— ——

This is consistent with the fact I; - I, commutes with the total angular momentum

operator, and is invariant to nuclear permutation P( jk).

e Residual dipolar coupling (RDC)
In liquid crystal solution or solutions within an external electric field there may exist
a net orientational alignment of molecules, resulting in incomplete averaging of the

anisotropic internuclear dipolar interaction (see eq. (1.38)):
Hrpe = HLP = Dy(Liols + Liyliy — 215112 (2.24)

in which Dy, is known as the residual dipolar coupling constant. Like the J coupling,
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RDC is permutation-symmetric and therefore preserves singlet-triplet eigenstates:

D, D;
eq. (2.24) = _TJ’“(IjaIka + Liglys ) + Dy I15T0) 4 TJ’CE“OT@. (2.25)
m=4+1 m=-1 m—=0

2.1.4 Strongly and weakly coupled eigenstates

States |T'+1) are always eigenstates of free evolution in the high field approximation. The
m = 0 eigenstates on the other hand depend on the interactions present. These, however,
are still straightforward to find. The eigenstates are invariant under unitary evolution (to
within a phase factor) and therefore must be identified with the points in the Bloch sphere
that are invariant to rotation about the field axis. These are clearly the points where the

Bloch vector and field axis lie parallel to one another:

o) = sin(0/2)[To) + cos (0/2) | So) (2.26)
and [h) = cos(6/2)|Tp) — sin (6/2) |So) . (2.27)

with 6 that defined in eq. (2.17).

The spin pair is said to be ‘weakly coupled’ in the regime |0| < 7/2, where ]wg(csoT“)\ >

SOTO)|. For chemically inequivalent nuclear sites in isotropic solution, the term refers

f
to a spin-spin coupling Jj, that is weak compared to the chemical shielding difference
|yB°(8; — 0x)|. In this limit the spin eigenstates are the Zeeman product states. In the

SoTo

regime where |w§cSOTO)\ tends in magnitude to \wg T )| we say the pair is ‘strongly coupled’.

This may occur when Jj;, and vB%(8; — &) have similar magnitude: |J| ~ |yB%(d; — &x)|-

SoTo) — ,,(S0T0)

In the extreme of perfect equivalence 6 = 0, (9 Wy ) and the singlet and triplet

states are exact eigenstates.

2.1.5 Singlet-triplet conversion under applied rf fields

While in the spectrometer high field, transitions between spin states can be stimulated by
passing a radio-frequency (rf) oscillating electrical current through an antenna coil next to
the NMR sample, generating an oscillating magnetic field. The induced magnetic field may
be expressed Bj(t) = By(cos(wift + ¢rf), 0, 0), where wyt is the alternation frequency, ¢t
the phase and By the peak field amplitude perpendicular to the BY axis. The corresponding
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spin Hamiltonian, in the laboratory frame, is
Hy(t) = wy cos(wyet + Ppp) L. (2.28)

The prefactor w; = —yBy/2 is called the nutation frequency, and relates the field strength

to angular frequency units of the spins.

When H,¢ is viewed from the reference frame of the coil, the combined Hamiltonian
([Hzeeman)? + Hyg) = (—yB°(1 + 0;)1. + Hy¢) for spin j may be seen to approximate a

time-independent superposition of I, I, and I:

[I:’Zeeman]j + Errf@) = GXP(—iwrft Iz)(_'yBO(l + 5]‘)[2 + Hrf) eXP(—erft Iz)

~ L — BY(1+ 8)) +wi (L cos(dur) + I, sin(6nr)) (2:20)

longitudinal field transverse field

where tilde 77 denotes the new reference frame. The above is derived as detailed in ref.

[4], in brief using the cyclic commutation [A, B] = iC of operators I, I, and I,
exp[—iwtC] A exp[+iwtC] = A cos(wt) + Bsin(wt), (2.30)

followed by ignoring ‘nonresonant’ or rapid time-oscillating terms.

Nonselective rf pulses

In the majority of cases |wi| (usually 10° — 10? kHz order) greatly exceeds the mag-
nitude of all spin-spin J couplings in the system (usually less than 100 Hz) and the
spins evolution may be treated individually, i.e. by propagation under eq. (2.29) directly
and ignoring J couplings. The exponential of eq. (2.29) in the tilde frame is a rota-
tion of the spins polarisation within each {|a;), |3;)} Bloch sphere at an angular velocity
G = (w1 cos(e), w1 sin(¢ur), (wyt — yBO(1 +6;))).

The rf field is said to be ‘on-resonance’ if the frequency offset magnitude |w,s —yB%(1+
d;)| is much smaller than |wy|. In this case the rf field induces transverse rotations in the
Bloch sphere through angle wi ¢ about the unit axis (cos(¢yt), sin(¢yt),0), where 7y is the

duration the rf field is applied. Note this is a significant perturbation in view that the field
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|B1| = |w1/7]| is several orders of magnitude weaker than |BO|:
U(rg) = exp(—i] eq. (2.29) |7y) (2.31)
= R(cos(¢rf),sin(¢rf),0) (wl’rrf) for ’wrf — ’)/BO‘ < \wl\. (2.32)

For instance, ¢, = 0 signifies the rotation operation is Ry (wy7e). For ¢ = 90°, the

rotation is Ry (wysTyf)-

The above is one way to solve evolution under rf pulses. Alternatively, the rf-induced
transformations may be evaluated directly in the singlet-triplet basis using rules of angular
momentum. An on-resonance, nonselective pulse equates to applying a uniform rotation
to all spins. The singlet state is rotationally isotropic under these conditions, because the
rotation commutes with the spin permutation operator for the pair. Nonselective rf pulses

therefore only interchange the triplet states.

In formal terms the angular momentum eigenstates |l, m) are the defined irreducible

representations of uniform rotations, and interconvert according to

l
Ril,m)= > |l,m) Dby, (R) (2.33)

m/'=—1

where D!, (R) are elements of the so-called Wigner ‘D’ matrix.[33, 89] For a rotation

R(afpy) = R.(a)Ry(B)R.(7), in the Euler zyz convention,[89] the elements are expressed

Dlym(aBy) = {Lm/|Ra(@)Ry(8)Ro (1)l m)
—  exp(—i(m'a — m'7))d.,, (8) (2.34)

l . . .
The reduced elements d, , (f) on the lower line are in general rather complicated ex-
pressions, but may be derived from angular momentum commutation relations and the
definition of the eigenfunctions in egs. (2.1) and (2.2) and are easily computed. The ma-

trix elements are block diagonal in the [ quantum number, confirming the isolation between
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the singlet and triplet. The triplet indices m interconvert according to

1 0 0 0 |S0)
2 (¢ _ie*mrf sin(§)  —2igys w2 [ €
Ro(6) = 0 co§ (2) —0n = ' sin (2) |T41) (2.36)
0 o ie‘d’r\f/s%n(é) COS(€> N ie*@j;in(ﬁ) ’TO>
0 —e2idr gin? (g) _iei%%(g) cos? (%) T-1)

where £ = wyTy¢ abbreviates the rotation angle induced by the rf field.

Note that the resonant, nonselective rf spin Hamiltonian quenches coherent singlet-
triplet transitions and acts as a means of symmetry switching to isolate and sustain long-
lived order. Continuous rf irraditation of this type is called a ‘spin lock’, or sometimes a
‘decoupling’ field. In this thesis, little will be assumed about the details of spin locking other
than this may be used to isolate singlet and triplet states from coherent interconversion.
An extensive discussion has already been made in Sarkar’s thesis [25] and papers by others.

[18, 81, 65|

Transition-selective rf fields

If |wi| is small compared to both the magnitude of J and the Larmor frequency difference
|vB°(8; — k)|, the radiofrequency field may induce different rotations on the nuclei. Such
‘spin-selective’ rotation is precisely what is needed to induce singlet-triplet interconversion.
The subject is considered in more detail in §2.2.4. Note that weak rf fields are unsuitable

for singlet spin locking.

2.1.6 Singlet spin order

So far I have mentioned only singlet and triplet states. A formal definition of the corre-
sponding spin order has not yet been made, in particular the potentially long-lived singlet
spin order. Singlet order is now identified with the singlet-triplet population difference,

given by the operator

150) (S0l = 5 (IT) (Tia] + 1T0) {To] + ) (T4 ). (2:37)

This operator may be identified because its relaxation involves transitions across the

singlet-triplet states. There can be no relaxation between the triplet states, since these
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have equal population.

The singlet order is sometimes called isotropic spin order due to its invariance un-
der arbitrary global rotations of the spins. In analogy to eq. (1.30) one may use the
Clebsch-Gordan series to determine the operators that have distinct rotational transfor-

mation properties, via the outer product

Tane =Y [lLm) (I',m/| Chop (2.38)

LI, mm’
such that they transform by

A
RTAMR' = > TanDapy(R). (2.39)

M'=—A
One can show the set of operators Thps, where M = —A...Aand 0 < A <[+ ', form
an orthogonal operator basis. This basis is referred to as the spherical tensor operator
basis, each basis operator Thps transforming as an irreducible representation of SO(3).
The spherical tensor basis is very useful in NMR, especially in the coxtext of singlet NMR,
though here is not the place to continue discussing its properties. Significance of T s will
be considered later in §2.5 for signal filtration, and in §3.1 for a more in-depth treatment

of relaxation theory.

By evaluating the Clebsch-Gordan series for A = M = 0 one may show that the

operator in eq. (2.37) equates to the totally-symmetric representation Tpg as

Too = Z [,m) (1, m!| Cho
Ll m,m’
1
= 10,0) (0,0 = 3 (11, =) (L. =1+ [1,0) (1,0 + L. 1) (1,1])  (2.40)
1
= 150) (S0l = 5 (17-0) (T1] + 1T} (To] + [ T21) (T (2:41)

As a final comment, note the rotation isotropy is consistent with invariance of singlet order

under a nonselective rf field.[65]
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2.1.7 Singlet polarisation

For quantifying the level of singlet order in p,, it is useful to introduce the concept of ‘singlet
polarisation’. This is analogous to the more familiar concept of Zeeman polarisation,
which quantifies the level of longitudinal spin order. The Zeeman polarisation (or just
‘polarisation’, more colloquially) of an ensemble of noninteracting spin-1/2 nuclei is defined

by the population difference

p=n(a) —n(f) (2.42)

where n(a) and n(f) are the normalised populations of the spin states with angular mo-

mentum parallel and antiparallel to the magnetic field: n(a) = (a|¢)/ (a|a) = (1 + p)/2

and n(8) = (B|v)/ (B|B) = (1—p)/2. The polarisation has extrema p = +1, corresponding
to which all molecules in the ensemble occupy |a) or |5), respectively.

For an ensemble of coupled spin-1/2 pairs (of spins j and k) the populations of the

Zeeman product basis are given by the products of the populations p; and p; on each spin:

n(ajor) = (14p;)(1+pe)/4 (2.43)
n(efr) = (1+p;)(1—pi)/4
n(Bjor) = (1—pj)(1+pr)/4
n(Bibe) = (1—p;)(1—pk)/4

Longitudinal polarisation is in this case defined as the difference n(ajaz) — n(B182) = p,
or more prosaically, the population difference between the states |T1) = |aa) and |T-1) =
|85). In terms of operators, p is the projection of the density operator onto the sum
I, =1, + Iy,: p=Tr(l|p)/Tr(I;|I,). Extrema p = %1 correspond in this case to all

ensemble members in states |T41), respectively.

Singlet polarisation pg is defined as the mean singlet-triplet population difference

ps = n(So) — %(n(TH) +(To) +n(T1)), (2.44)

such that pg = Tr(Too|p)/Tr(Too|Too). The normalisation with Ty is purely coincidental;

the above convention is chosen so that the maximum singlet-triplet population difference
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is ps = +1. In this limit the density operator corresponds to unity population of |Sp), and
zero population of |T,,). Note that in contrast to p, the singlet polarisation ranges between
ps = —1/3 and pg = +1 and is unsymmetrical about zero polarisation. This comes into
significance when working with hyperpolarised ensembles, which are discussed later in §2.4.
For the rest of the material in thesis, only ordinary thermal polarisation levels (of order

10~ or 1075) will be considered.

2.1.8 DMagnetisation-singlet conversion efficiency

While the limits of p and pg are determined by maximum population asymmetry in the
density operator a more careful analysis remains to see the allowed limits to the transfer of
spin order between the two forms. The maximum transfer amplitude between two operators
can be worked out without difficulty, and is done using a general formula derived for this
problem by Sgrensen,[90] and further discussed by Levitt.[16, 91] If an initial operator @4
is assumed, the maximum allowed transformation onto an operator (g under a unitary

tranformation U is given by

Tr(QLUQA)
T (QLQ5)

_ Ap-Ay
T Ap-Ap’

max

(2.45)

in which A4 and Ap are ordered lists of the eigenvalues of the operators Q4 and @ p.

In the current case, the two operators correspond to I, = ([j; + Ii.) and ng for
magnetisation-to-singlet conversion. The eigenvalue spectra are already known because

both operators are diagonal in the |I,m) basis. For the longitudinal polarisation one has:

100 0\ [Th) 1
looo o ITo) 0
(Ijz + Ikz) = = A= , (246)
000 0 1S0) 0
000 —1/ |Ty) 1
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and for the singlet order,

-1/3 0 0 0 7% ~1/3
. 0 -1/3 0 0 TI* ~1/3
Tk = / | 0,k> = A= A (2.47)
0 0 1 0 |5y ~1/3
ik
0 0o 0 -1/3 777) 1

Using eq. (2.45) with Q4 = I, and Qp = ng one obtains a maximum conversion
amplitude of 1 between starting longitudinal polarisation and singlet order. This means
the maximum singlet polarisation starting from pl, is equal to pg = p.

Now consider the reverse transformation (singlet order into magnetisation I,), with
Qs = Tg(]; and Qp = I,. Eq. (2.45) evaluates to 2/3 in this case, meaning that the
maximum longitudinal polarisation obtained from pgsTyo is equal to p = 2pg/3.

These limits highlight an important fact in considering the use of singlet spin order.
The conversion of longitudinal polarisation into singlet order, and back again, generates at
most 2/3 of the starting polarisation. So while one may exploit the sensitivity gain from
long lifetimes, there is a cost of 33% against the initial magnetisation. For singlet order to

provide a net sensitivity gain, the lifetime ratio Ts/T} must compensate this loss.
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2.2 Singlet NMR of two isolated spins-1/2

This section covers singlet preparation and readout methods for both high and low magnetic
fields for a spin-1/2 pair with no coupled neighbours, i.e. an isolated system of chemically
inequivalent spins-1/2. The choice of method depends upon whether the spin pair is weakly

or strongly coupled.

2.2.1 Adiabatic field cycling

This method operates by transferring a population difference between the nuclear Zeeman
eigenstates of the pair in high magnetic field into a population difference between singlet-

triplet eigenstates at a low magnetic field. Recall from §2.1.4 the pair eigenstates are

|$1) 1 0 0 0 1T, 1)
[d2) | _ | O cos(6/2) sin(6/2) O |To) (2.48)
|b3) 0 —sin(6/2) cos(0/2) 0 |So)
|64) 0 0 0 1 IT1)

where 6 = arctan (—yB%(d; — 0x)/2nJ). On reducing the B field strength the mixing
angle 6 tends to zero, such that at low magnetic fields the spins become more strongly

coupled and closer to equivalence. In the limit we have singlet and triplet eigenstates

limjg o [¢2) = [To) (2.49)

limjg o [¢3) = [50) (2.50)

At higher fields where |B°| > |.J/~(8; — 6i)| the angle 6 tends to £ /2 and the eigenstates
are the Zeeman product states. For an homonuclear pair with positive scalar coupling
constant J, gyromagnetic ratio -y, and isotropic chemical shielding difference (§; — dj), the

angle # tends to —7/2 into a static field B > 0, resulting in eigenstates

limg 4o |p2) = |Bjau) (2.51)

limjg o |p3) = |a;Bk) (2.52)

The low-field and high-field eigenstates correlate in this case as [19]
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So)

‘Low field'
S-T eigenstates

High field'

Zeeman eigenstates

0)
‘High field' ‘Low field'

Zeeman eigenstates S-T eigenstates

Figure 2.2: Illustration of state correlation on the m = 0 Bloch sphere during adiabatic field
cycling. The arrows in (a) mark the rotation axes about which the quantum state evolves. The
m = ( eigenstates occur at the two points where the net field axis intersects the sphere’s surface.
During adiabatic transfer, the eigenstates follow the movement of the rotation axis, such that their
populations are ‘dragged across’ the sphere. The trajectory in (b) shows the trajectory taken
between weakly coupled spin eigenstates in high magnetic field and strongly coupled eigenstates in
low field for sign(yB°(d; — &;)) = sign(J) = +1. If the relative sign changes, states must correlate
the other way around; in (c), the trajectory is that for negative yB%(d; — d,), with J positive.
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i Br) < |So) |Bjak) < |To) (2.53)

ljaw) < [ Tra)  [BiBr) < [T-1) -

For opposite sign in (yBY(8; — dx)/J), the states |Tp) and |Sp) will correlate the other way
around. These rotations are summarised graphically in fig. 2.2.

The above transformations permit populations of the high-field Zeeman states to be
smoothly transferred into the low-field singlet and triplet by adiabatic transport of the
sample between different field strengths. Transport is adiabatic so long as the change in
the spin Hamiltonian remain slower than the smallest difference in energy eigenvalues of the
system. The velocity of the Hamiltonian during field cycling is the time derivative of the
Larmor frequency: (27)~!ydB°/dt. The smallest eigenvalue difference is the zero-quantum

frequency, given by | (¢2|H|¢2) — (¢3|H|¢3) | = /(¥B°(d; — dx))? + (2mJ)?, which tends

to J in the low-field limit. The adiabatic condition is therefore satisfied if the transport
time is slow compared to |1/J].

Invariable presence of relaxation means field cycling must also take place fast compared
to the nuclear T7. This may not be so easily achieved for protons, where T} is often the
order of seconds and comparable to 1/|J|. Field cycling best favours lower-gamma nuclei,
(e.g. 13C and 'N), since at moderate field strengths the T;s are usually much longer than
1/|J]. Also, in general, the relaxation mechanisms for low-gamma nuclei are less potent

than those for protons, meaning T is also longer.

Magnetisation-singlet conversion

Conversion of longitudinal magnetisation into singlet order was demonstrated using the
field cycling method by Carravetta and co workers in 2004.[19] A DMSO solution containing
2,3-dibromothiophene (a system containing two isolated and weakly coupled protons) was
pre-polarised to thermal magnetisation at BY ~ 9.4 T. A spin-selective 180° pulse was
applied, followed by adiabatic sample transport into low magnetic field.

To run through the sequence of transformations analytically, a selective 180° rotation

exchanges the populations of outer and inner Zeeman states:

invert spin j: lajag) < |Bjoun); lo; Br) < 1B Bk) (2.54)

invert spin k: lajag) < |a;Brk); |Bijow) < |BiBr) - (2.55)
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This converts longitudinal polarisation

pl. = p(\TH) (Ta| = |T-1) <T—1’> (2.56)

= p(Joyan) (azanl = 18;68) (B (2.57)

into a ‘precursor’ [19] to singlet order that contains a population difference across the

m = 0 Zeeman states, namely the 18570) hin operator:

ea (257) Ty p (1500 (Bl — o) (o) (2.58)
_ _zpfésoTo)

eq. (257) YKy (Jas8) (s8] — B0 (Beu) (259)
_ IS,

Selective inversion may be executed as illustrated in fig. 2.3(a)i by applying a pair of
nonselective 90° pulses resonant with the mean Larmor frequency of the spin pair, which
are separated by a free evolution delay 7a = 7/|yB%(8§; — di)|. The relative phase between

the two pulses governs the spin selectivity. For vB%(5; — ;) > 0,

900—7A—90+90
_—

p(Ijz + Ik:z) ip(Ijz - Ikz) (260)

Alternatively, a weak rf field on-resonance may be applied on resonance with either nucleus,

as illustrated in fig. 2.3(a)ii.

Adiabatic transport of the precursor I8°°7) into low field |BY < |2mJ/v(8; — &%)

generates a population difference across |Sp) and |Tp):

6 — 0
pI(%0T0) =0 +2pI50T0) = Lp(|To) (To| — |So) (Sol)- (2.61)
This transformation can be verified with the aid of fig. 2.2. The resulting singlet polarisa-
tion is

Te (T3, 1£°07))

ps = 2p—————— =p. (2.62)
Tr(Ti, Too)

This polarisation equals the value predicted by Sgrensen for the maximum conversion
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between I, and Ty, as discussed in §2.1.8.
Once in low field |BY| < |2mJ/v(8; — &i)| the singlet order is an eigenoperator and

relaxes monoexponentially with time constant Tg (fig. 2.3(b)).

Detection of singlet order after adiabatic reinsertion

The singlet order is overall nonmagnetic (total spin I = 0) and in the absence of symmetry-
breaking spin interactions at low magnetic field remains undetectable. Conversion of singlet
order to detectable magnetisation is done by adiabatically transporting the sample back
to high field, for observation. The state immediately after reinsertion is referred to as the
adiabatic ‘postcursor’ to Tpo.[19] The nature of spin populations in the postcursor depends

on the final sign of 6:

0 — —m/2
psToo 92 -nf2, ps |ajBk) (Bl (2.63)
5 (18j0n) (Bjoue] + o) g + 8;50) (8, )
6 2
psTio S22 o 10 (Ban (2.6)

_% <‘O‘jﬁk> {0 Bl + lejeuk) evjeuk] + 1 6;6k) wﬂﬂk‘)'

The postcursor may be converted into observable magnetisation in a multitude of ways.
The most common ones are summarised graphically in fig. 2.3(c)i-iv. The simplest method,
to start with, is a single rf pulse (fig. 2.3(c)i). Assuming weakly coupled spins in high field,
a strong, nonselective radiofrequency pulse with flip angle ¢ generates an NMR signal that

comprises the outer J-doublet peaks with opposite amplitudes

+ pg x cos?(£/2) sin(€) /2, (2.65)
and inner doublet peaks with opposite amplitudes

+ pg x sin?(£/2) sin(€) /2. (2.66)

Fig. 2.3(d)i illustrates spectra in the case of a 90° read pulse (¢ = 7/2) and a small
flip angle pulse (|¢| < 7/2). The small flip angle gives peak intensities proportional to

the population differences across the states. In this case, the two outer peaks occur with
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opposite amplitudes o< pg. The inner transitions are absent, since the adiabatic postcursor
contains equal populations in the connected states. The 90° pulse generates a characteristic
‘up-down’ spectrum pattern.

These intensities are similar to those obtained applying a nonselective pulse to pure
longitudinal order pl, in a weakly coupled pair. A pulse of flip angle & excites all four

transitions with equal amplitude

p x sin(€)/4. (2.67)

Comparing with the sum of egs. (2.65) and (2.66), one may confirm that for the same
pulse flip angle, the area under each J-doublet is (pg/p) times that from the longitudinal
polarisation. The maximum singlet-derived NMR signal is therefore 2/3 the intensity
obtainable from the same starting angle pulse on the same initial longitudinal order.
Alternatively one may apply a spin-selective 90° pulse to the singlet postcursor (fig.
2.3(c)ii).[22] A selective 90° rotation of spin j results in a double-intensity peak for the
outermost transition of spin j (twice the intensity of that from a nonselective 90° read
pulse) and no signal at all for site k& (fig. 2.3(d)ii). Fig. 2.3(c)iii shows a sequence that
mimics selective 90° rotation while using nonselective pulses. The rf carrier frequency
is positioned at the mean chemical shift frequency, whereat the chemical shift difference

induces opposite 45° rotations on the spins. Spin selectivity depends on the relative pulse

phase:[22]
(90145) - (m /2) - (9030) = <908(j)180°(k)); (2.68)
(90145> . (TA/z) - (903) = (180°(j)9038k)), (2.69)

where, as before, Ta = 7/|vB%(5; — 0k)|.
In fig. 2.3(c)iv a fourth readout sequence is illustrated. This is the same as fig. 2.3(c)iii,

but into which a spin echo element

(|41J|) - (180345) - (|41J|) (2.70)

is absorbed. The spin echo preserves the transformation of the adiabatic postcursor, whilst

suppressing signals from longitudinal magnetisation that may build up during cycling back



%)

to high field. In brief, un-coupled single-quantum coherences are converted into antiphase

coherences through evolution under the J coupling.

903, 1 eq. (2.70)

I, —2 ﬁ(ljx —Iy) V2 (Ljg + Iy I, (2.71)

The final 90° pulse converts these to non-observable double- and zero-quantum coherence:

BY(§,—0y, 903
eq. (2.71) PO o p g 2 2L L (2.72)
unobservable

The coupled spin order of the adiabatic postcursor commutes with (I; - I;;), and therefore

passes unperturbed through the spin echo.

ALTADENA

Adiabatic population transfer between singlet-triplet and Zeeman eigenstates is well known
in the field of parahydrogen-enhanced NMR. In the experiment known as ALTADENA
(Adiabatic Longitudinal Transport After Dissociation Engenders Nuclear Alignment),[56]
an unsaturated substrate is hydrogenated with parahydrogen in ‘low’” magnetic field | B®| <
|27J/yBYAd|, e.g. at the laboratory magnetic field. The singlet spin order of parahydro-
gen correlates directly into singlet-hydrogenated product as indicated in fig. 2.4(a). For
readout, the high-field adiabatic postcursor corresponds to a population excess in |a;B)

and zero population in the other states (assuming 6 — —m/2, see fig. 2.4(b)).

‘Direct’ singlet hyperpolarisation

Singlet order is available immediately from an hyperpolarised spin-1/2-pair ensemble, with-
out need for pulse sequences.[32] This phenomenon is demonstrated for the '3C spin-pair
in [1,2-13Cy]-labelled pyruvic acid, (CH3!3CO¥COOH, or [1,2-13C5] 2-oxopropanoic acid)
in a solution of D2O using the dissolution-DNP hyperpolarisation procedure.[47, 49|

The experiments were made as part of a collaboration with Kevin Brindle’s laboratory
(Cambridge University Biochemistry Department) as an initial step to explore hyperpo-
larised singlet NMR in vivo. Hyperpolarised NMR, of [13C]-pyruvate sits in a prominent
position in metabolism and oncology studies due to the slow 77 relaxation relative to

uptake and metabolism in cells, and the relative ease of 13C polarisation.[92, 93, 94] Simul-
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Figure 2.4: Examples of adiabatic field cycling in singlet NMR: (a) one of the many possible reac-
tion schemes for parahydrogen-induced hyperpolarisation (PHIP); (b) low to high-field correlation
between hyperpolarised singlet order of a parahydrogenated substance and the adiabatic postcursor
state on which NMR readout is performed. This is the ALTADENA experiment. For simplicity
a polarisation pg = +1 is assumed in the adduct; (c) the analogue of ALTADENA for singlet
depletion order in an hyperpolarised sample, for simplicity assuming a pure singlet polarisation
ps = —1/3. Labels apply to the case 2w.J/yB°(§; — &) > 0.
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taneous real-time monitoring of pyruvate dehydrogenase and Krebs cycle metabolism in
heart has been demonstrated using hyperpolarised [1,2-13Ca]-pyruvate.[95] Metabolic flux
between hyperpolarised [1-13C]-pyruvate and lactate has been used to grade tumours and

their response to treatment.[92, 96]

Labelled pyruvic acid was polarised in an alpha-prototype hyperpolariser (GE Health-
care, Amersham, UK) working at 3.35 T according to the procedure given in ref. [96]. A
mixture containing 35 mg [1,2-13Cy| pyruvic acid (95% purum, Sigma-Aldrich UK), 0.7
mg of the trityl radical OX063 (GE Healthcare, Little Chalfont, UK) and 1.2 mg of 0.1
pM gadolinium chelate solution (Gadoteric acid, Dotarem®; Guerbet, Roissy, France) was
cooled to 1.2 K in liquid He and irradiated close to the electron Larmor frequency at ~ 94
GHz, using a 100 mW microwave source. The build-up of C polarisation was monitored

via the solid-state NMR signal.

DNP of [1,2-13Cs]-pyruvate creates a significant population imbalance between m = 0
states (Nay gy + Npras) and m = £1 states (Rayay + Ny p,) of the 12C spin pair. Assuming
both spins are equally polarised during the process (p; = pr = p), these populations are

given using eq. (2.43) as

n(ajar) = (L+p)(L+p)/4 = (1+2p+p*)/4 (2.73)
n(a;fr) = (L+p)(l-p)/4 = (1-p°)/4 (2.74)
n(Bjar) = (L-p)(l+p)/t = (1-p*)/4 (2.75)
n(BiBr) = (1-p)(1-p)/4 = (1-2p+p°)/4 (2.76)

After approximately 1 hour of microwave irradiation the frozen material was dissolved
with a jet of hot buffer solution (6 ml, heated to 180 °C, containing 100 mg/L EDTA, 30
mM NaCl, 94 mM NaOH and 40 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES)) and the solution collected in a vial located in a region of low magnetic field
(~ 0.5 mT) outside the polariser magnet. During transport, the high-field eigenstates

are transformed adiabatically into the nuclear singlet and triplet eigenstates. Ignoring
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relaxation losses during sample melting and transport, the low-field populations are

= (1+2p+p?)/4

)

n(Ty) = (1-p°)/4
)
)

[
=
o0

©
=
©

= (1-p°)/4

= (1-2p+p?)/4
The mean singlet-triplet population difference in the low field is therefore

ps = n(So)—%(n(T+1)+n(To)+n(T—1)) = /3. (2.81)

Note the negative sign of pg, which arises since strong nuclear polarisation depletes
the m = 0 states, leading to population deficit in the singlet. Although this singlet polar-
isation is significantly lower than the longitudinal order, it may nevertheless be substan-
tial compared t0 Pihermal = tanh(ychBY/2kpT), which is the order of 8 ppm for 13C in
[3C]-pyruvate at 9.4 T and room temperature. A 30%-polarised ensemble, (p = 0.3), for
instance, yields 3% negative singlet order (pg = —0.03). This is still 3 orders of magnitude

larger than thermal polarisation.

Amplitudes of p and pg were estimated by sharing the hyperpolarised solution between
two identical 10 mm o.d. NMR sample tubes, each already containing 2.0 ml DO, resulting
in a final pyruvate concentration ~ 10 mM. The first tube was inserted immediately into
a 9.4 T, Varian Inova NMR spectrometer and the '3C NMR spectrum recorded after a
~ 6° flip angle pulse. The spectrum is shown in fig. 2.5(a) and is characteristic of the
predominant longitudinal spin order, with all peaks having the same sign.

In the intervening time, the second tube was inserted into a mu-metal cylinder (15 mm
tube diameter, 0.5 mm wall thickness) and shaken for ~ 5 seconds. This sample was then
removed from the cylinder, inserted in the NMR spectrometer in place of the first tube,
and the spectrum recorded after applying the same & 6° flip angle pulse.

As explained in §2.5.7, shaking of the sample in the weak and sharply inhomogeneous
magnetic field of the cylinder’s edge induces spatially random rotations on the spins. This

has the effect of rapidly equalising the nuclear triplet populations and erasing triplet-triplet
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Figure 2.5: '3C NMR spectra at 9.4 T using a 6° flip angle for detection recorded (a) on hy-
perpolarised [1,2-13Cy] pyruvate (single scan); (b) after erasing magnetisation by shaking inside a
mu-metal chamber, followed by transfer into high field (single scan); (c) later on the same sample
in (a), thermally polarised (16 scans).

order. Singlet order survives intact, on the other hand, since it is rotation-invariant. After
shaking in the mu-shield the sample therefore contains only a population asymmetry pgToo,
in the laboratory magnetic field (= 0.5 mT). As shown in fig. 2.4(c) this situation is similar
to low-field singlet order in ALTADENA (see fig. 2.4(b)), albeit with opposite sign in the

polarisation.

Fig. 2.5(b) shows the 6° flip angle spectrum recorded after adiabatic transport into the
9.4 T magnet. This displays the same pattern predicted by fig. 2.3d(i), thereby proving
the presence of singlet order in low magnetic field. The singlet order is also indicated
through the asymmetry in the doublet peak components in fig. 2.5(a). The absolute signs
of the peaks in the singlet-derived spectrum fig. 2.5(b) are consistent with the sign of 6 on
adiabatic transformation into high field, bearing in mind the negative singlet polarisation.

The integral across the 3COO doublet at 173 ppm in both tubes are consistent with
the hyperpolarised singlet order being |ps/p| = |p|/3 times the amplitude of longitudinal
magnetisation. A longitudinal polarisation p = (0.26 £ 0.01) = (26 &+ 1)% was estimated
by comparing the integrals between fig. 2.5(a) and the spectrum of the same sample at
thermal equilibrium (see fig. 2.5(c)). This value of p corresponds to the sample polarisation
at the time of arrival in the detection magnet (=~ 15 s after dissolution). The expected

value of pg from this polarisation, neglecting sample relaxation, is pg = 0.023 = 2.3% such
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Figure 2.6: Decay of hyperpolarised singlet order on [1,2-'3Cy|-pyruvic acid in the laboratory
magnetic field. The fitted singlet lifetime is Ts = (70 £ 2) seconds.

that the ratio p : pg is approximately 12:1. The experimental ratio between the integrals of
fig. 2.5(a) and (b), which ignoring relaxation equals the ratio p : pg, is approximately 20:1.
These ratios agree to within a factor of 2. The discrepancy may be attributed to sample

relaxation during the additional low-field manipulations involved in the singlet experiment.

A separate experiment was performed to estimate the singlet decay constant Tg for the
[1,2-13C5] pyruvate in the low field. This time upon exiting the hyperpolariser, the entire
solution was shaken in the mu-metal cylinder. The solution was then added into a vial
containing 15 ml D2O. The dilute solution was pipetted equally into six 10 mm o.d. NMR
tubes.

The tubes were inserted at 30 second intervals from low field into the 9.4 T spectrom-
eter magnet, where a ~ 6° flip angle spectrum was recorded. Spectra for the different
waiting times in the low field are displayed in fig. 2.6. The peak integrals were fit to a mo-

noexponential decay exp(—t/Ts) yielding a singlet decay constant Ts of (70 £ 2) seconds.

This observed singlet decay constant is approximately twice the T} of the 3C pair.
The longitudinal relaxation time was later measured using a field-cycled experiment on
the thermally polarised sample. The sample was polarised in the high field spectrometer
magnet t0 P = Pihermal, then shuttled outside the magnet to rest for a time in low field,
for relaxation. After reinsertion into the magnet a 90° pulse was applied, and the NMR
spectrum recorded. Peak integrals for different low-field waiting times were fit by the

monoexponential decay exp(—t/T7), yielding a time constant 77 for both carbons of (36+1)
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seconds.

The ratio Ts/T; of only ~ 2 for [1,2-'3Cy]-pyruvate in D5O is slightly disappoint-
ing. The relatively short singlet lifetime suggests the presence of strong singlet relaxation
mechanisms. Spin rotation is a possible candidate. The nature of the mechanism currently
remains under investigation.

As a final point, the ‘direct’ preparation method is independent of spin-spin couplings
and chemical shifts, allowing access to hyperpolarised singlet order even in magnetically
equivalent spins-1/2 pairs. This cannot be done by pulse sequence methods. Singlet order

in these systems may later be released via spin-symmetry-breaking chemical reactions, akin

to ALTADENA.



62 Singlet nuclear magnetic resonance

90,, 180 45,

— d

J-compensated broadband-ZQ frequency

Figure 2.7: Sarkar’s sequences for singlet preparation in the regime \w;S°T°)| > |w§S°T°) |: (a) prepa-
ration of anti-phase triplet-triplet coherences; (b) zero quantum evolution period; (¢) compensatory

sequence for broad-band excitation with respect to \wiSOTO) |; (d) Zero-quantum equalisation by the

Thrippleton-Keeler technique gives broad-band excitation with respect to chemical shifts.

2.2.2 Sarkar’s sequence for weakly coupled spins

Singlet excitation at fixed magnetic field (without field cycling) has been extensively dis-

cussed for the regime |(6; — & )yB°| > |J| in thesis work by Sarkar.[25]

The basic pulse sequence used by Sarkar (al. et) is shown in fig. 2.7(a)+(b). The first
part of the sequence involves a 90° rf pulse followed by a spin echo (7, — 180° — 7). The
first pulse generates in-phase single-quantum coherence between the triplet states. Spin

echo evolution under a half-echo duration 7, = 1/|4J| converts these into anti-phase:

p(Lz + Iiz) = <|T+1 (Tya| = T-1) <T—1|) (2.82)

= (T + 1) (T + (T0) (T + (7)) (2:83)
Ta—1805—Tq

T (€7 (L) + [To0) (Do + €777 [To) (T 4 (7))

o (—HT0) + [T20)) (o] +5170) (T +{T)). (2:89)

%\ ﬁ\ ﬁ\

On applying a 45° rf pulse, phase shifted by 90° from the starting pulse, these become

converted into double-quantum coherence and a triplet population imbalance

45
eq. (2.84) =%

oo

((T2) + T (Tl +(Toa]) = 2 To) (To] ) (2:85)
((T2) (T + T2 (T | = 21T0) (o)) (2.36)

H(ITo1) (T + [T (T ).

NID NS
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At this point there is no net singlet-triplet population imbalance. However, this is now
simple to arrange. The excited triplet population |Tp) (Tp| may be transferred into |Sp) (So
by a free evolution period 7, = W/ng(cs[’%) (see fig. 2.7(b)). This executes a 180° rotation
about the z-axis of the m = 0 Bloch sphere. In the case of inequivalent spins-1/2 a delay

m, = |7 /yB°(8; — 8k)| swaps the identities of |Sp) and |Tp) generating the density operator

s ]
Q only

eq. (2.85) (T} (T | + |Toa) (Toa| = 2|T0) (Tol ) (2.87)

(1742} (Tt + IT-0) (Ta] = 210) (Sol). (2:88)

b

N B NS

eq. (2.87)

Signals from the double-quantum coherence in eq. (2.85) are unimportant and may be
suppressed by a magnetic field gradient pulse during 7.

The final density operator corresponds to the maximum singlet polarisation ps = p,
neglecting relaxation effects. Note the delay 7, depends only on the difference in chemical
shifts and therefore imposes no constraint on the rf carrier frequency. The pulse sequence
therefore maintains good performance even in inhomogeneous magnetic field.

Sarkar has demonstrated some options for improving singlet excitation if nominal values

of 7, and 7, cannot be used (see fig. 2.7(c¢) and fig. 2.7(d)):

e J-compensation
The efficiency of singlet excitation with respect to J, pg o sin(2nJ7,), (fig. 2.7(a))
can be broadened to pg oc sin(27J7,)[1 + cos?(27J7,)/2] by replacing the spin echo
with the composite-pulse-inspired [60] preparation illustrated in fig. 2.7(c).[97] This
method gives improved singlet excitation over a wider range of J couplings to help
generate singlet order simultaneously in systems containing more than one distinct
pair of spins-1/2. The price of this method is the tripling of the single-quantum
evolution time. This may be unfeasible, however, if the transverse relaxation rate

1/T5 is fast relative to J, which may be the case in large molecules such as proteins.

o True chemical-shift-broadbandness
Dependence of pg on w;SOTO) is eliminated completely using Thrippleton and Keeler’s
zero-quantum dephasing technique in stead of the evolution delay 7,.|66, 24, 97] The
Thrippleton-Keeler filter, (or T-K filter), as the event is known, is a swept-frequency

inversion pulse applied in the presence of a static field gradient.[98, 99] The T-K filter
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saturates sets of quantum states with the same m projection quantum number. In
this case, the T-K filter equalises the population imbalance of |Sp) and |Tp) resulting
in net spin order between |Sp) and |Tx1). The ‘saturation time’ of the filter is
proportional to the zero-quantum evolution period 1/|wg(cS°T°)|. After this time the

density operator is

cq 285) TN, (g (4 T (T - 2 () (289
T-K filter, §(|T+1><T+1|+|T_1><T_1| (2.90)

— |To) (To] = 0} (Sol)-

This final state corresponds to a singlet polarisation pg = p/2. True broadband
excitation therefore comes at a cost of 50% in the obtainable singlet polarisation,
or 25% combined across excitation and reconversion steps of the experiment. While
rather severe, this expense may be worthwhile in some contexts. One application is
EXchange SpectroscopY (EXSY), where the chemical shift asymmetry of a spin pair

is time-dependent as a result of ongoing chemical reactions.[24]
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2.2.3 Multiple-echo pulse sequence for strongly coupled spin pairs

(SoTo

Sarkar’s sequence excites singlet order efficiently in the regime |wy )| > ]w,(ZSOTO

)|, where
the spins are weakly coupled. However, outside this limit the sequence performs increas-
ingly inefficiently because the states m = 0 do not mix to any great extent under free
evolution (apply small 6 to fig. 2.1). In the following a different method for conversion

I, < 1570

is evaluated, which works efficiently even when the spins are strongly cou-
pled. The protocol involves ‘trains’ of spin echoes that accumulate |Tp) > |Sp) mixing

when applied in synchrony with the zero-quantum frequency Q(%70) [69, 68, 88

J-synchronised spin echo trains

In discussing this sequence an emphasis is placed on magnetisation-singlet conversion in the

limit [w{%70) | < Jw!%T0

)\, where the spins are ‘extremely strongly coupled’. Here |Tp) and
|So) are very close to the m = 0 eigenstates and as a result do not appreciably mix during
free evolution. Near-equivalence is a favourable target of singlet NMR since no symmetry-
switching interventions, such as field cycling,[19] spin locking,[18, 65| or chemical reactions
[31] are required to sustain a singlet-triplet population difference. The price, however, is
the more difficult excitation of singlet order.

Singlet-triplet transitions may be stimulated in nearly equivalent pairs over the course
of a spin echo (7 — 180° — 7). After one echo, the m = 0 Bloch vector is determined
by the product US0T)(7)R, (m)US0T0) (1), where U%T0) is the propagator given in eq.
(2.19) and R, () signifies a 180° rotation about the z axis of the m = 0 Bloch sphere that
corresponds to the 180° rf pulse inverting the sign of |Tp) while leaving |Sp) unchanged. It
is found that the half-period 7 = 7 /[2Q(570)| ~ 1/|4.J| gives maximum polar displacement

of the Bloch vector at the end of the spin echo. The overall propagator is in this case

-1 0

0 1

—————
=R.(w)

- ( )
U(SoTO)(T) U(SOTO)(T) — e_zleSOTO ZTR(Cose,O,—Sin9)<29>7 (291)

which in the limit |#| < 1 approximates a rotation about the z-axis, through angle 26.
It follows that after N successive back-to-back echoes the propagator approximates an

x-rotation 2N@, giving a mixing amplitude |sin (2N6)|. This allows one to overcome the
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SoTo)| > |W§ZSOTU)|

Figure 2.8: Singlet and triplet mixing in the extreme strong coupling regime \wi
in the m = 0 Bloch sphere. The example trajectory in (a) shows the two states do not significantly
interconvert under free evolution. The low-amplitude of mixing may be arranged to accumulate,
however, over the course of several spin echoes. The example trajectory in (b) indicates cumulative
conversion between |Tp) and |Sp) through a mixing angle of 86, as the result of four spin echoes
with half-period 7 = 7/|2Q(5070)|,

rather limited maximum singlet-triplet conversion amplitude |sin (20)| < 1 under normal

free evolution. Fig. 2.8 provides a visualisation of these two trajectories.

Complete interchange |Tp) <+ |So) requires a train of Nigg echoes, where Nigp is the
integer that best satisfies |2N1500| ~ 7. Note that the total conversion time, in the near-
equivalence limit, depends only on the value of wg(ESOTO). For a 180° rotation about the x

axis, the time taken is approximately:

™ ™
2T X NlBO = m X round<%). (292)

For || < m/2, this expression reduces to

(SoTo)
eq. (2.92) ~ wgSOTM% = 72 /|2w(SoT0)|. (2.93)
Wy

‘M2S’ pulse sequence

Synchronised spin echo trains combine together with rf pulses to give the magnetisation-
to-singlet pulse sequence illustrated in fig. 2.9, which is abbreviated ‘M2S’.[69, 88] The
sequence proceeds as follows. First, a 90° rf pulse is applied, to generate in-phase triplet-

triplet single quantum coherences. These are converted into singlet-triplet single-quantum
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Figure 2.9: The magnetisation-to-singlet conversion sequence for strongly coupled spins, using
J-synchronised spin echo trains.

coherence via a synchronised echo train, which swaps the m = 0 states:

P+ li) = p(1Th) (L] = [T0) (T2 (2:94)
P () 1) T+ 1T0) (T (7)) (295)
1o0g 0, T (AT ) 4 1)) (S0l 47 S0) (Tl + (T2 ])R96)

A 90° rf pulse is then applied, phase-shifted 90° from the starting pulse. This converts the

single-quantum coherence into singlet-triplet zero-quantum coherences:

o

90 . i —i
eq. (2.96) —2% —IXp(e+€\To> (So| + € | Sp) <T0\) (2.97)

= —ix 2p<I£S°TO) cos(§) + I;SOTO) sin(f)). (2.98)

The phase & in these equations is equal to & = 4waSOTO)N1807‘ from the singlet-triplet

energy difference. For extremely strongly coupled spin pairs £ is a multiple of 7 and may
be ignored, such that the density operator after the second 90° pulse is proportional to
IQ(ESOTO). In less strongly coupled pairs, or where a large number of echoes is performed (see
‘J-broadband spin echo trains’, page 82), this phase may be need to be taken into careful
consideration.

The transverse (SyTp) coherence is rotated finally into the singlet-triplet population

difference 135070 using a second synchronised spin-echo train. A train of Ngg = round( )
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spin echoes induces a 90° rotation about the axis Ig(CSOTO). This requires that the spin order

IZ(,SOTO), which may be achieved by leaving

from eq. (2.98) must first be transferred onto
a short evolution delay which I call 7gpis, to rotate approximately about the z axis under

the strong J coupling:
eq. (2.98) ity p<i\T0> (So| — 1[0 (Toy> = 2pI(S0T0), (2.99)

The delay Tghir, must be chosen to ensure (27J7gnire + £) is an odd multiple of /2. In the
limit of extremely strongly coupled spins, this reduces to 7ge = 1/]4.J].[69, 88]

From eq. (2.99) the final transformation is

902 (S0T0)

eq. (2.99) —° p<|T0> (To| — |So) <so|) = op[(SoTo), (2.100)

The resulting singlet polarisation pg equals (Tyo|2p1 Z(SOTO)) /(Too|Too) = p. The total time

for I, — 2157 conversion by M2S is 372 / ]4w§;SOT°)|, in the near-equivalence limit.

Reconversion and observation

When applied in reverse chronological order the M2S sequence converts the population
difference I éSOTO) into observable single-quantum coherences. Ignoring relaxation, the in-
tensity of the resulting signal is again two-thirds that which may be obtained from the

starting polarisation. This is determined from the following operator transformations:

. . (SoTo)
M2S [(S0Th) project Too oTho project I 4§pI§SOTO) S2M 27]?[3? (2.101)

pl, —— 2p

The recoverable signal is therefore the same as that following both Sarkar’s sequences and

the field cycling methods and, once again, the maximum obtainable overall.

Sequence performance, robustness and resistance to errors

The J-synchronous echo method may appear to operate effectively in inhomogeneous B°
fields since the ideal evolution is insensitive the to rf offset. In practice, however, the
off-resonance efficiency is limited by a deteriorating performance of the inversion pulses.

For 180° pulses that are not sufficiently accurate, states m = 0 and m = +1 come into
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contact with one another and the interconversion |Tp) <> |Sp) is interrupted. Rf pulses
may deliver a different rotation from nominal 180° in two ways: (i) when rf irradiation
is applied off-resonance from the nuclear Larmor frequency; (ii) when rf amplitude is not
calibrated properly. Situation (ii) may apply to rf fields that are not homogeneous across
the sample volume.

Composite rf pulses, such as (905)(1805,)(905), offer improved inversion with respect to
rf inhomogeneity and offset.[60] Another method is compensation of errors by phase cycling
the 180° pulses throughout the train. By analysing the average Hamiltonian (AH)[100] for
the pulse train we have determined that the phase cycle [0°,0°,180°,180°, .. .] compensates
both rf amplitude and frequency errors. Below is a summary of the AH outcome with
supporting numerical simulations performed using SpinDynamica.[101] The details of the

AH analysis are rather complicated so shall be skipped for now and published elsewhere.

o Model
The plots in fig. 2.10 and fig. 2.11 show the variation in the singlet-triplet mixing
amplitude (So|Usrain|To) for a pair of very strongly coupled spins with |[yBAd /27| =
10 Hz and |J| = 100 Hz (0 ~ 5.7°). The propagator Uy,iy is evolution across a train
of 16 J-synchronised spin echoes, which corresponds to a nominal 1803 rotation in
the m = 0 Bloch sphere. Under nominal conditions the integral is equal to 1, which

corresponds to a complete swapping of the states.

o Rf amplitude error
The upper plot in fig. 2.10 shows variation in (So|Utrain|T0) against the dimensionless
rf amplitude wy¢ /w]?f, where w?f is the nominal rf amplitude for the pulse length,

chosen arbitrarily as wff /2m = 500 Hz. All pulses are on resonance.

The black curve show the conversion efficiency in the absence of error correction, using
basic 180° pulses and no phase cycling. Singlet-triplet conversion is narrowband and
only efficient within 1 — 2% of the nominal rf amplitude. This behaviour occurs

because the amplitude error disrupts the AH at first order perturbation level.

Blue and red curves show that cycling the 180° pulses phases through [0°,180°, .. ]
or [0°,0°,180°,180°, ...] the excitation profile becomes much wider. These cycles
average out rf amplitude errors for all perturbation orders of the AH and give the

best possible error compensation. For example, at a +40% error in rf amplitude the
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Figure 2.10: Phases of the 180° pulses may compensate for rf amplitude and frequency offset errors
during the spin echo trains. The plots show conversion amplitude of |Tp) into |Sp) following a spin
echo train where: in (a), 180° pulses are applied on resonance, but rf amplitude w,f is mis-set by a
percentage of the nominal value w%; in (b), 180° pulses are applied with nominal rf amplitude w%,
but off-resonance from the nuclei by frequency wog. The phase cycle [0°,0°,180°, 180°] compensates
well against both types of error, as seen from the widened excitation profiles. The transformation
amplitudes were calculated numerically using the SpinDynamica software for Mathematica 8.[101]
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Figure 2.11: Broadband excitation is improved with respect to amplitude and frequency offset
errors if composite-pulses and phase-cycling are applied together within the spin echo train. The
profiles were calculated using the SpinDynamica software for Mathematica 8.[101]
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cycle [0°,180°] results in a 70% conversion efficiency between |Sp) and |Tp). Without

the phase cycling, there is almost no conversion.

o Offset rf frequency
The lower part of Fig. 2.10 shows (So|Utrain|T0) versus a dimensionless rf offset

Woff /wff. Pulse amplitudes are kept nominal.

The curves show that while the phase cycle [0°, 180°, .. .| gives excellent compensation
of rf amplitude errors it exacerbates the inefficiency due to resonance offset. The
width of the band (So|Utrain|T0) > 99% is much wider when constant-phase pulses are
used. In terms of the AH, first-order error terms vanish across pairs of echoes [0°, 0°],
but are compounded across pairs [0°,180°]. Improved compensation is provided by
the four-step cycle [0°,0°,180°, 180°] as shown in red. This phase cycle averages the

offset dependence in both the first- and second-order levels of the AH.

It is clear that the phase cycle [0°,0°,180°,180°, ...] is the shortest one that compensates
both types of error. We have not investigated the average Hamiltonian in detail beyond
second order, since the higher orders are quickly diminishing in strength.

Additional compensation may be arranged by combining the phase cycle with inversion
through composite pulses, as shown in fig. 2.11. The most effective method is the one using
[(903)(18054)(905)]¢,, for inversion, applied with the cycle ¢,y = [0°,0°,180°, 180°], still this

strictly only provides an error-compensated sequence, not a completely broadband one.

Near-equivalence induced by a remote stereocenter

Near equivalence may occur as a result of remote molecular asymmetry. In ref. [88] we
studied the persistent singlet order of geminal protons in the tripeptide L-alanyl-glycyl-
glycine (AGQG), both in presence and absence of rf locking.

Fig. 2.12 shows the locations of two isolated CHs units in AGG. Each proton pair is
diastereotopic, by virtue of the alanine chiral centre that destroys global mirror symme-
try across the plane of the peptide chain. The terminal pair has only a small chemical
asymmetry, however, due to its remoteness and local symmetry. The terminal protons
reside six sigma bonds from the chiral centre and are hence ‘nearly equivalent’. While the
one-dimensional NMR, spectrum shows the ‘central’ glycine protons as a strongly roofed

pair, only three atom centres from the chiral centre with |>Jgy| = 18 Hz and |Ad| = 0.035
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Figure 2.12: Proton NMR spectrum of AGG (20mM in D20), 9.4 T.

a 904 Trelax 9044 30s Twartz
jivzs sauj— b
4
1151023 TS_170+055
relax ( ) Twarrz (8)

Figure 2.13: Singlet relaxation of the nearly equivalent terminal glycine protons in AGG: (a) when
no rf locking is applied; (b) during forced magnetic equivalence under an rf field. The delay 47} =~ 3
seconds is provided in (b) to allow equilibration of the triplet populations before applying 3.0 kHz
resonant WALTZ decoupling. Blocks ‘M2S’ and ‘S2M’ each abbreviate the forward and reverse
I, & I,ESOTO) transformations.

ppm (|ygB°AS/27| = 14 Hz at 9.4 T), the terminal pair appears as just a single peak
with the chemical shifts of the nuclei unresolved.

Singlet order on the terminal glycine protons was excited using the pulse sequences
shown in fig. 2.13(a) and fig. 2.13(b). At a field of 9.4 T, thermal longitudinal polarisation
was converted using M2S. Following excitation, the state was left for a time for relaxation,
after which remanent Tp singlet order was converted to in-phase magnetisation (S2M) and
estimated through the spectral intensity. A two-step phase cycle [0°, 180°] on both the
starting 90° pulse and on the receiver was used to eliminate signals arising from longitudinal
recovery prior to the S2M step.

The fitted exponential time constants was Tg = (11.5 & 0.2) seconds for the terminal
glycine protons, which is approximately 15 times T} (fig. 2.13(b)). The decay constant
Ts in the presence of rf locking was measured as Tg = (17.0 & 0.5) seconds (23 times T},
see fig. 2.13(b)). We used a WALTZ-16 modulation of the applied irradiation at a nuta-

tion frequency of 2.0 kHz, which is sufficiently strong to isolate the coherent singlet-triplet
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Figure 2.14: Efficiency of Magnetisation-to-Singlet transfer. Shown are the amplitudes of the NMR
signal from the sequence in fig. 2.13(a) following variation of: (a) the echo delay 7 = 7/|2Q]; (b)
the number of echoes Nigg performed in the first train of M2S and (c) the number of echoes Ny
performed in the second train of M2S. Each displayed spectral region has width 100 Hz.

conversion.[65] A delay of 477 ~ 3.0 seconds was left before applying the spin lock to allow
the equilibration of triplet populations. These results confirm it is not necessary, in the
nearly-equivalent case, to force coherent isolation of the singlet state using rf locking. Co-
herent evolution between singlet and triplet states is already suppressed by the internuclear
J coupling, as predicted by the theory of ref. [65]

The spin echo train parameters used in these experiments were 7 = 7/|2Q)| = 13.9 ms
and Nigo ~ 7/|260| = 6, Ngg ~ m/|40| = 3, which were found empirically to maximise M2S
and S2M transfer. Variation of excitation through adjusting each parameter about the
maximum is shown in fig. 2.14. The adjustments are made for both the M2S and S2M
parts of the experimental sequence. The optimum values allow precise determination of
the previously unresolved chemical shift separation of the pair, |y B°Aé/27| = (5.04£0.1)
Hz (A6 ~ 12 ppb), at 9.4 T and the coupling constant 2Jgy = (18.0 4 0.05) Hz.

Isotope symmetry breaking via '*0 enrichment

Nearly equivalent spin pairs may be induced by substituting close atoms with a different
spin-zero isotope of the same element.[102] The change in the atomic mass modifies the
vibronic motion of the molecular environment, and causes small isotope shifts which are
usually of the order of parts-per-billion (ppb).[103] These small shifts are sufficient to
provide access to singlet order through the M2S and S2M pulse sequences.

Here we demonstrate that isotope-shift-induced symmetry breaking allows access to
singlet order in the oxalate anion, [(COO)2|>~. Oxalate contains two carbon atoms,

each bonded to two oxygen atoms. In the absence of isotope effects the two carbons
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are chemically identical due to inversion symmetry of the whole molecule. Symmetry may
be lost, however, in unsymmetrical isotopologues[104] with the spin-0 isotopes 0 and
180.[105, 106]

Isotope shifts induced at '3C by 80 are illustrated in fig. 2.15(a). This shows '3C
NMR spectra of natural-abundance oxalic acid dissolved in 1:1 Dy'80:D5'%0 at room
temperature. Initially a single '3C NMR line is observed in the spectrum at chemical shift
dc ~ 162 ppm. The natural isotopic abundance of oxygen is ¢. 99.8% 160, 0.2% 80, and
therefore all oxalate starts as the 1604 isotopologue. At later times in '8O-enriched water,
peaks at lower chemical shift appear, as acid-catalysed ¥0 / 10 exchange populates the
other isotopologues.[107]

The NMR spectrum at equilibrium (after 12 hours) contains nine peaks. These are
consistent with the nine distinct permutations of °0 and 80 around [!3C;]-oxalate, each
isotopologue being resolved through the isotope shift between 190 and '80,[105, 108, 106]
and that isotope shifts induced at '3C are different depending on whether 80 is substituted
one or two chemical bonds away.

The ‘triplet of triplets’ intensity pattern indicates the shifts are additive,[103, 106] to
within measurement error. As demonstrated by fig. 2.16(a), 180 isotopic substitution over
the 13C-O single bond at a 1:1 ratio between 90 and '80, generates isotopologues [1,1-
160,)-, [1,1-160180]- and [1,1-'¥0s]-oxalate in the ratio 1:2:1. The 3C chemical shifts
of these are respectively 0, 1 and 2 times the one-bond-induced isotope shift from ¢ in
[1604]-oxalic acid, giving a triplet multiplet pattern. The possibility of 605, 6080 and
1804 substitution at the second carbon site splits this ‘triplet’ pattern a second time, this
time by the two-bond isotope shift.

Isotope shifts fitted to the spectrum in fig. 2.15(a) are 'AC(80) = —32 ppb across
the ¥C-O bond and 2AC(*80)= —7 ppb across the *C-C-O bond. The isotope shift
follows the convention as the chemical shift change upon substituting the heavier nucleus:
"AC(1B0) = §¢(*B0) — 6c(10), where n denotes the number of chemical bonds between
180 and 3C.[103]

Fig. 2.15(b) shows the similar isotopic equilibration of ['3Cs]-oxalic acid in 50% 8O-
water. In this case the equilibrium spectrum displays five peaks with intensity ratio
1:4:6:4:1, separated by the mean isotope shift across one and two bonds ('AC(!80) +

2AC(180)) /2. This pattern confirms the 3Cy spin pairs remain nearly equivalent, despite
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Figure 2.15: 3C NMR spectra recorded following dissolution of [Q4]-oxalic acid in 1:1
D2180:D,1%0 at 30°C, 9.4 T (*3*C Larmor frequency 100 MHz). The ¥0 isotopologues formed
during acid-catalysed *0 / 10 exchange resolve as separate peaks, due to 0 isotope shifts. The
width of each region shown is 0.15 ppm (15 Hz) and centred at 162.02 ppm.

Legend: @ =oxygen-16 & = oxygen-18 @ = carbon-13
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Figure 2.16: Isotope splitting patterns in the *C NMR spectra of [!3C;]- and [3Cz]-oxalic acid.
The dotted lines show the correlation of 80 isotopomers between the singly and doubly '3C-
labelled forms.
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the isotope-induced chemical inequivalence, and that differences in chemical shift between
the nuclear sites are always smaller than 'Joc. The NMR spectrum of each isotopologue
contains a single line at the average chemical shift of the spin pair. For instance in [1-
180 13(Cy]-oxalic acid one of the carbons is shifted by !AC(180) relative to [*604,'3Cy]-oxalic
acid, while the other is shifted by 2AC(180). The average chemical shift is (tAC('80) +
2AC(180))/2. The peaks in fig. 2.15(b) and fig. 2.16(b) thereby correspond to isotopomers
with 0, 1, 2, 3 and 4 atoms of 80, reading from left to right.

Fig. 2.16(b) indicates three of the six %0 isotopologues of 13C5-oxalate exhibit asym-
metric substitution patterns, and therefore are suitable for singlet NMR. These are ['°O3,
1801; 13Cs]-oxalate and [*00; 803; 13Csl-oxalate, both of which have a 3C chemical shift
difference |Adc| = ['AC(10) —2 AC(*80)| = 25 ppb, plus the [1,1-1604;2,2-18045;13C5]-
oxalate, which has |Adc| = 2|'AC(*0) —2 AC(*¥0)| = 50 ppb. As shown by fig. 2.16(b),
however, the 13C peak of the latter isotopologue coincides with that of the symmetric
[1,2-1609;1,2-1804;13Cy] isotopologue, which makes it more difficult to observe cleanly.

In order to apply the M2S sequence both 7 ~ 1/]4'.Jcc| and Adc must be accurately
known. Above, we have determined the chemical shift differences. The value of 'Jcc,
however, is unavailable from the 90°-acquire spectrum due to the extreme strong coupling.
To find 'Jcc, experiment was performed consisting of a 90° radiofrequency pulse followed
by a train of spin echoes, as shown in fig. 2.17(a).

The number of echoes was chosen so as to approximate a 360° rotation in the zero-
quantum singlet-triplet subspace for a ‘guess’ value of 'Joc = 100 Hz, which is the mea-
sured value of the scalar coupling in the chemically similar, but weakly coupled molecule
of methyl-ethyl-[1,2,'3Cs]-oxalic acid diester. At 9.4 T, this number of echoes corresponds
to N3gp = round(|27/26|) = 100 echoes.

The data in figure fig. 2.17(b) show the signals obtained for N, = 100 against different
values of 7. The initial 90° pulse in this experiment creates transverse coherences |T41) (1|
and |Tp) (T4 from starting longitudinal polarisation. For nominal Tecp,, the train of echoes
is expected to invert the sign of both coherences, resulting in an inverted amplitude during
signal acquisition. The peak intensities of [1603,1801,13C5]- and [*¢01,'¥03,'3Cs]-oxalate,
highlighted in red, are most negative for 7 = (2.85 £ 0.005) ms (composite pulse duration
7p = 44 ps). From this resonant value of 7, the magnitude of !.Joc is determined through

the back-calculation as (87.7 +0.2) Hz. Note that the resonance is extremely narrow, due
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to the large number of echoes performed.

The spectra in fig. 2.17(c) were recorded using 7 = 2.85 ms (and 7, = 44 pus) and
incrementing the number of echoes performed. This stack shows the resonant mixing
induced in the zero-quantum subspaces of [1603,'¥01,13Cy|- and [1601,'803,'3Cy-oxalate.
The inverted spectrum at N = 110 echoes corresponds 360° rotation in the subspace,
where observable triplet-triplet coherence is restored with negative sign. Zero intensity at
Necho = 55 echoes and N = 170 echoes corresponds respectively to 180° and 540° rotations
in the subspace. At these points all of the starting triplet-triplet coherence is converted
into non-observable singlet-triplet coherence.

With !Jcc and A both known the M2S-S2M pulse sequence as shown in fig. 2.18(a)i-
iv was attempted. Immediately before the experiment, dissolved paramagnetic oxygen (O2
gas) was removed from the sample by bubbling oxygen-free nitrogen through the solution
for 15 minutes, followed by degassing under vacuum with the solution in a Young valved
glass tube.

Singlet order I§S°T0) was excited using Niggp = 55 and Ngg = 27 spin echoes and
spin echo delay 7 = 2.85 ms corresponding to nominal 180° and 90° rotations in m = 0
subspace of the singly asymmetric isotopomers [1°031804]- and [16041803]-oxalate, taking
an overall time of 0.42 seconds (fig. 2.18(a)i). Singlet order was left undisturbed in high
field for a time T, for relaxation (fig. 2.18(a)ii). At the end of this waiting time a sequence
(G1) — (9054.70) — (G2) — (9054.70) — (901800 ) — (G'3) was applied, (fig. 2.18(a)iii), where G1,
G and (3 are sine-bell pulsed-field z gradients with respective strengths +0.8 G cm™!,
—0.8 G cm™! and —0.8 G cm ™! and durations 4.4 ms, 2.4 ms and 2.0 ms. As explained
later, in §2.5.5, the gradients induce a z rotation of the nuclear spin polarisation through
an angle that depends on position within the sample volume. The radiofrequency pulses
sample the rotation angle so as to cause destructive interference of rank-1 and rank-2 spin
order,[109] while leaving singlet nuclear spin order undisturbed, since it has rank zero.
This procedure is a more general version of the Only Parahydrogen SpectroscopY (OPSY)
technique used frequently in parahydrogen NMR (see §2.5.5).[110] After this ‘filtration’,
the ‘pure’ singlet-triplet population difference order was reconverted into observable triplet-
triplet single quantum coherences, applying the M2S sequence in reverse (fig. 2.18(a)iv).
The experiment was performed for several values of Tyr as shown in fig. 2.18(a)v and the

resulting spectrum integrals were fit by a monoexponential decay curve exp(—Tur/Ts) to
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d [ Singlet excitation (M2S) : _ Storage iii Filtration IV NMR readout (S2Mm)
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Figure 2.18: Experimental singlet decay in [1°03,801,13Cy]-oxalate and [1601,'803,'3Cy]-oxalate at 30°, 9.4 T. Parts (a)i-iv show detail of the
M2S-S2M pulse sequence used; (a)iii shows the details of the filter used to rid of non-singlet spin order. The stack of spectra in (a)v show the signals
obtained at different singlet storage times in the high field. In (b) the regular 90°-acquire 3C spectrum is given for comparison. All radiofrequency
pulses are applied on-resonance. For all the spectra, the regions displayed are centred at 162.02 ppm relative to tetramethylsilane, and are the
processed result of a single scan.
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yield the singlet decay constant Tg = (55 £ 5) seconds.

The singlet lifetime is approximately three times T, measured later as (21 + 0.2)
seconds on the same sample at 9.4 T by inversion recovery. The ratio of only 2-3 times 7T
is slightly disappointing, however, in view of the degassing precautions taken to eliminate
dissolved paramagnetic oxygen.[111] This may suggest that oxalate relaxes under a strong
spin-rotation mechanism, due to the molecule’s low moment of inertia. Intramolecular
dipole-dipole or scalar relaxation may also be possible, since oxalic acid dissolved in water
exists mainly as the monoanion [C2DOy4|™ owing to high acidic strength; pK, — 1.5 for
the diprotic species, 4.5 for the dianion. CSA-CSA correlations may also be significant. A
study of decay rates versus BY may help determine the likely singlet relaxation mechanism.

The spectra in fig. 2.18(a)v do not show any evidence of singlet order from the un-
symmetrical [1,1-1609;2,2-1805;'3Cy]-oxalate. This is because the chemical shift difference
is twice that for [1603'80] and [1°0'®0j3]-oxalate, therefore the rotation angles @ in the
zero-quantum subspace are doubled also. During the first spin echo train this results in
360° refocusing of the triplet-triplet coherence. As a result, no singlet order is produced.

To summarise: asymmetric induction is possible in '3Cy oxalate by exploiting 180 /'¥0
isotope shifts. Despite the induced asymmetry being = 30 times weaker than the carbon-
carbon J coupling, it still permits efficient coherent access to the nuclear singlet order.
Isotope-induced symmetry breaking is expected to be useful in singlet NMR of other
molecules, plus multiple-quantum spectroscopy of strongly coupled spin pairs in general.
Apart from 90 and 180, useful shifts may be generated by other isotopic pairs, for instance
328 and 34S (both spin-0), plus 33Cl and 3"Cl (both spin 3/2, but with rapid self-decoupling

due to quadrupolar relaxation).

Strongly coupled pairs in low magnetic field

Conversion between |T) and |Sp) may be accomplished completely outside the spectrom-
eter field via synchronised echo trains with pulses applied at audio frequency. This has
been demonstrated by Pileio and co-workers by pre-polarisation of 1?N,O at 7 T, followed
by transfer to the 2.2 mT fringe field, at which: the Larmor frequency |yyB°| is of order
10 kHz; the chemical shift frequency difference (82 ppm)x|ynyB°| =~ 0.8 Hz is an order of
magnitude smaller than the !Jyn = 8 Hz scalar coupling.[69]

In a separate work on N3O, the authors demonstrated the conversion between |Sp)
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Figure 2.19: Bloch spheres for: (a) a single spin-1/2, showing fields present when an rf field
wit (I cos(¢re) + I, sin(¢yg)) is applied in the presence of a carrier frequency offset wogl.; (b) the
m = 0 singlet-triplet subspace of a nearly equivalent spin-1/2 pair, showing the effective field of a
J-synchronous spin echo train and an error AJ in the spin-spin scalar coupling.

and |Tp) is also possible by applying a z magnetic field at the |Tp) < |Sp) transition
frequency.|68] Storage and retrieval of longitudinal magnetisation using these techniques
paves a way for singlet NMR entirely outside high-resolution magnets. This gives a promis-
ing outlook for low-field (e.g. SQUID [112]) detection, imaging and remote sensing using
singlet NMR.

J-broadband spin echo trains

In its current form, the synchronised-echo pulse sequence is extremely narrowband with
respect to variation in €, (J, in the extreme strong coupling limit c.f. fig. 2.14(a) and fig.
2.17(a)). One may ask whether more broadband excitation is possible. Both the J coupling
and chemical shift difference, hence 2, may change subtly, for instance on changing the
temperature or solvent environment around the spins.

Inspiration for a ‘J-broadband’ magnetisation-singlet conversion procedure in near-
equivalence pairs is sought from Shaka, who has addressed the problem of ultrawideband
spin-1/2 inversion.[113, 114| For an isolated spin-1/2, an rf field induces the following
rotation in the {|a),|B)} Bloch sphere:

e a transverse rotation with angular velocity wye(cos(¢y), sin(¢y),0), induced by the

nominal 1f field wyt (I, cos(éye) + Iy sin(dut));

e a longitudinal rotation with angular velocity wog(0,0,1) due to the offset wogl,.

As illustrated in fig. 2.19(a), the transverse rotation mediates the point-to-point transfor-

mation I, into —I,, while rotation about the longitudinal axis acts as a suppressant.
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Using a nonlinear-optimisation algorithm on a computer, Shaka developed ‘phase-
alternating’ composite pulses to counteract the longitudinal component and obtain uni-
form, broadband inversion of the spin-1/2. ‘Phase-alternating’ refers to the confinement
of radiofrequency phase to a single axis ¢, = £180°, which was done both for simplicity
of computation and for ease of implementation on the spectrometer. The shortest phase-
alternating pulse found was (34.20)(123150)(197.6¢)(288.8150), which gave > 99% longitu-
dinal inversion I, — —I, up to dimensionless rf offset wog/|wrf| = +1.0. In contrast, the
constant-phase rf pulse only inverts efficiently at exact resonance.

IZ(.SOTO)

Shaka’s phase-alternating pulses are amenable to the point-to-point inversion —

SoT . . . . . .. . .
—I,g 0 0), in view that J-asynchronous spin-echo trains induce similar rotations in the

{I76) , S0)} subspace.

e a transverse rotation with angular velocity Aw®(1,0,0) from nominal .J-synchronised

spin echo trains (Aw® = vBYAJ);

e a longitudinal rotation with angular velocity 2rAJ(0,0,1), due to an error AJ in

the J coupling.

These rotations are indicated in fig. 2.19(b).

A J-broadband sequence analogous to (34.20)(123150)(197.6¢)(288.8150) is shown in
fig. 2.20. Approximate transverse rotations f; in the m = 0 Bloch sphere are obtainable
via Ng = round(n(3°/360°)/6) spin echoes. Phase alternation of these rotations can be
applied by inserting 180° rf pulses between trains of spin echoes. The latter can be verified
using the identity R,(180°)8yR.(180°) = Bigo-

Computer simulations show that the J-broadband echo sequence performs roughly
as expected. By analogy with Shaka’s single spin inversion, the 99% inversion band-
width of 785070 for (34.20)(123150)(197.60)(288.8150) is a dimensionless error in J equal
to |27AJ/(Aw/2)| < 1. The plot in fig. 2.21 shows the calculated amplitude of I£°°7)
against 2rAJ/(Aw?) after applying (black curve) the non-compensated and (red curve)
J-compensated spin echo sequences. Calculations were performed in SpinDynamica [101]
using J = 100 Hz and Aw"/2m = 25 Hz for the nominal interaction parameters of the
spin pair. One can confirm the much-widened inversion profile. Explicit |Tp) and [Sp)
trajectories during the two pulse sequences are compared in fig. 2.22(a) to (d) for instances

of AJ =0 and AJ = +Aw’/2.



84 Singlet nuclear magnetic resonance

180
a / M \
{7 U7
N180
180 180 180 180 180 180 180 180

nn\nf n A\l \H_
/U\TUT/U\TUTINU\TUTIN

N34.2 N123 197.6 288.8

\]
 —
\]

Figure 2.20: Pulse sequences for point-to-point inversion 15T —Iz(SOTO): (a) the nominal
‘constant rotation’ spin echo train, where the sum of spin echo delays 7 and the 180° pulse length is
equal to (27+7,) = 7/+/(27J)2 + (Aw/2)?’; (b) phase-alternate sequence, which involves spin echo
trains interleaved with 180° rf pulses. The length of each train is determined by the discretisation
formula Nz = round(w(5°/360°)/6).

Phase-alternating rotations are also available for point-to-point 90° rotations. The

shortest available sequences are (599)(149150) and (580)(140180)(172¢).[115] These may be

IZSSOTO) (SoTo)

useful for transforming I during the second spin echo train of the ‘M2S’

sequerce.
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Figure 2.21: Calculated performance Iz(:SOT")/IéS"T”) (0) versus an error AJ in the nominal spin-spin
J coupling during the sequences shown in fig. 2.20(a) and (b): (black curve) a nominal (180¢) ro-
tation in the Bloch sphere; (red curve) phase-alternate rotations (34.2¢)(1231s0)(197.6¢)(288.81s0)-
J =100 Hz and Aw®/27 = 25 Hz are the nominal interactions between the spin pair.
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Figure 2.22: Simulated trajectories of (blue) |Sp) and (black) |Ty) states starting from an initial
wavefunction [¢) (0) = |Tp). Interaction parameters were J = 100 Hz and Aw®/27 = 25 Hz. The
plots show: (a) complete interchange of the states during the sequence fig. 2.20(a) with AJ = 0;
(a) incomplete conversion for the same sequence using AJ = +Aw’/2; (c) trajectory under the
phase-alternating echo sequence (34.2¢)(123150)(197.6¢)(288.8150) in fig. 2.20(b) at AJ = 0 and
(d) trajectory for the same sequence at AJ = +Aw’/2. In (d) there is full inversion even under
the large J offset, albeit at the cost of trebling the length of the pulse sequence.
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2.2.4 Singlet excitation using transition-selective rf fields

Selective rotation in the single-quantum subspaces {\Tﬁ}, ]Sék>} can be induced on ap-
plying narrowband rf fields. This was demonstrated almost 20 years ago by Chandrakumar
and Velan for production of two-spin longitudinal order (product order I;,1;.).[116] Here a
more detailed theoretical treatment is provided for the specific conversion between I, and

Too, in particular in the near-equivalence regime.

Consider, for simplicity, two isolated and chemically inequivalent spins-1/2. Under
free evolution the field experienced by the m = 0 states is given by the magnitude

QT =\ /(27J)2 + (vBO(8; — 0x))?" and orientation 6 = arctan(—yB°(5; — &) /2mJ).

The eigenstates of the Hamiltonian are defined

|p1) 10 0 0 |ajau)
0 1 0 0 ;
620 _ |85 Bk) . (2.102)
|¢3) 0 0 cos(0/2) sin(6/2) (lovjBr) + 1Bjon))2~ /2
|¢4) 0 0 —sin(0/2) cos(0/2) ) (loyBe) — [Bjon))27/?
In this bases, the diagonal matrix representation of the Hamiltonian appears as
mJ + W + W) 0 0 0
0 7 —w? —wf 0 0
gl ik , (2.103)
2 0 0 Q-7 0
0 0 0 —Q—nJ
where w = —v;B%(1 + §;) are the Larmor frequencies of the nuclei.

Single-quantum transitions between eigenstates occur at frequencies equal to the differ-
ence in energy eigenvalues. The list below orders the transitions from low to high frequency,

assuming positive J:

$a 4 d2) s (W) )
¢14 d3): (o) )
¢34 d2) 1 (W) +wk—27TJ+Q)/2
$1 4 ¢a): (W) )

w; +w) —21J —Q)/2

w; +w) +21J —Q)/2

—~~ o~ o~
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The main feature of this treatment is that the ‘outermost’ transitions denoted in egs.
(2.104) and (2.107) connect |T%1) with the eigenstate |¢4) that has largest singlet com-
ponent. The transitions egs. (2.105) and (2.106) connect |T41) with the minimum singlet
component. Selective exciting of these manifolds may therefore allow net transfer of triplet

population into singlet population, and vice versa.

Subspace restriction

Consider shifting the carrier frequency to +(27J + ) above the mean single-quantum
frequency. This places the transition ¢; <— ¢4 on resonance. The Hamiltonian in this new

frame (denoted by prime) is represented by the matrix

—Q—nJ 0 0 0
0 Q+37J 0 0
=1 T . (2.108)
2 0 0 Q-—7J 0
0 0 0 —-Q-nJ

The spectrum shift is confirmed by consulting the eigenvalue differences:

(s o) :  —2mJ —Q
(¢1¢3):  —Q
(63« ¢2) = —2mJ

( )

1+ ¢4) 2 0.

A constant-amplitude rf field is applied at the frequency of this new frame. The Hamil-

tonian for the rf field H/; = wytl, is represented by

0 0 cos (0/2) sin(0/2)
. wif 0 0 cos (0/2) sin(0/2)
= . 2.113
" V2' | cos (0/2) cos(6/2) 0 0 ( )
sin (#/2) sin (6/2) 0 0

The sine and cosine factors in eq. (2.113) can be interpreted by the fact that the rf field

does not bridge the homonuclear spin symmetry, as (Tas|H)|So) = 0. The effective rf
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field experienced by each transition is thus proportional to the triplet amplitude of the
connected states. Outer transitions ¢4 < ¢2 and ¢1 < ¢4 experience an rf amplitude
scaled by sin(f/2) whilst the inner ones ¢ < ¢3 and ¢3 « ¢ scale by cos(6/2). This
is the familiar ‘roofing’ phenomenon,[4| where inner J-doublet transitions of a strongly

coupled spin-1/2 pair are more intense in the 90°-acquire spectrum than the outer ones.

For single-transition selectivity the rf field strength must be weak to satisfy |w,s/27| <
|7|. Under this condition the off-diagonal elements of H]; leave nonresonant transitions

unperturbed. The Hamiltonian is secular and perturbs only the resonant two-level system:

-Q—7J O O wyesin(6/2)v2'
1 O 0O O O
Hi+H == : (2.114)
2 0 O O 0
wiesin(/2)v2 O O —Q—nJ

On exponentiation of eq. (2.114) one may see the propagator corresponds to a rotation in

the {|¢1),[¢4)} subspace:

cos(Bt) O O —isin(Bt)
. g 0o o ]
exp|—i(H; + H')t] = 4 ) (2.115)
U 0o o ]
—isin(Bt) O O cos(Bt)

where A = (Q + 7J)/2 and B = wysin (6/2)/y/2. This result is exact, provided the rf

field is weak compared to J.

Magnetisation-singlet conversion

The off-diagonal elements in eq. (2.115) is maximised for rf duration 7y = |7/2B|. This
swaps identities of the connected states, meaning that if one starts with a longitudinal

polarisation

p(Lz + Iiz) = p(|Ty1) (Tya| = |T-1) (T-1]), (2.116)
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the application of the weak rf field leads to a singlet-excess given by

Hyg X1yos
S SakliEY

eq. (2.116) P64} (6l = [T21) (1)) (2.117)
= p|cos”(9/2)]S0) (Sol +sin(6/2) |Tv) (To|
—sin(0/2) cos(9/2)(]To> (So| + |S0) <T0’>

Ty <T_1\] (2.118)

The singlet polarisation is determined by projection onto Typg which gives

L @ollen (sl - le ) b
bs=pX (Too|Too) 9 (1+ (9)). (2.119)

It is clear that pg increases as the spins become more strongly coupled for the target
eigenket |¢4) becomes richer in [Sp). Yet while there is potentially twice the singlet po-
larisation available for near-equivalent spins than those weakly coupled, this polarisation
builds up much more slowly. In the weakly coupled limit |#| — 7/2, the duration 7y tends
to m/|wie|, (N.B. equivalent to a spin-selective 180° rf pulse). For near-equivalence spin

pairs, (small |6]), 73+ tends to

+0(6%). (2.120)

The conversion time is inversely proportional to 8, so approaches infinity as 6 — 0.

Simulations

Trajectories for I, and Ty during weak rf irradiation are demonstrated in fig. 2.23 for two
very strongly coupled spin-1/2 pairs (see fig. 2.23(a) and fig. 2.23(b)) and a weakly coupled
pair (see fig. 2.23(c)). Trajectories are plotted from time ¢t = 0, where starting spin order
is defined as I, until time ¢t = 27, = 7v/2'/|wy sin (§/2)], such that in each case the width
of the plot corresponds to a 360° rotation of the resonant transition. Midway time points
therefore correspond to where maximum singlet excitation is expected. These maxima
occur as predicted, and the singlet amplitude agrees with the values of pg predicted by
eq. (2.119) (grey lines). The plots (a) and (b) confirm half the starting I, remains at this

time, in accordance with eq. (2.117).
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Figure 2.23: Simulated magnetisation-singlet order interconversion during irradiation under a weak
rf field. The field is centred upon the rightmost transition in the multiplets of spin pairs with: (a)
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J =100 Hz, yBYAd /27 = 25 Hz (0 = 14°); (b) J = 100 Hz, |yBYAd/27| = 50 Hz (6 = 26.5°);
(c) J = 25 Hz, |yB°A§/27| = 200 Hz (# = 83°). The trajectories on each right-hand side show

amplitudes of I, (black) and Tpo (blue) through a 360° excitation of the selected transition, in
each case using an rf amplitude |w,s/27| = 10 Hz. The dashed grey lines indicate the theoretical

maximum conversion amplitude predicted by eq. (2.119).
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Comparison with spin echo method

In the limit of small |0], singlet excitation by the transition-selective rf method is compet-
itive with the spin echo method described in §2.2.3. Both methods excite singlet order to

the same efficiency ps = p, and do so within similar timescales.

The duration of each method is proportional to 1/|Ad|. For the spin echo method,
echoes (7 — 180° — 7) are arranged with 7 = 7/Q with approximately |37/46| echoes
required for optimum I, — Ty conversion. For small |f|, the total conversion time is

32 1

Techoes =~ T |’)’BOA57| . (2.121)

A weak rf pulse excites maximum Tpg over the timescale 7 from eq. (2.120). Assuming the
rf amplitude as multiple |K| < 1 of the J coupling, i.e. wy = 2mJ x K, this is expressible

in the form

W\/T 1

K BRI (2.122)

Trf =

Typically, one would expect to use a value K =~ 0.1 to 0.2, to ensure narrowband exci-
tation about the Larmor frequency. Eqgs. (2.121) and (2.122) are therefore comparable in
magnitude, though the former (eq. (2.121)) is usually shorter

In regards to errors, the synchronised echo train method is superior. Phase cycling of
successive spin echoes guards exceptionally well against both frequency offsets and ampli-
tude inhomogeneity in the rf pulses, as seen in §2.2.3. In the weak-rf method, rf compen-
sation is more of a problem since the subspace-specific rotation is induced only near exact
resonance. As an illustration, consider fig. 2.24(a) where the conversion amplitude pg/p
of I, into Ty is plotted versus a dimensionless rf frequency offset wog /wff and amplitude
Wt /w?f. The spin system assumed is an isolated spin-1/2 pair with parameters J = 100
Hz, |yB°Ad| = 25 Hz (0 = 14°), and the nominal 1f field strength chosen as w’ = 10 Hz.
It is clear that the excitation performance diminishes rapidly versus rf offset. The singlet
excitation becomes extremely inefficient at offsets |wof/w%| as low as 10% (£2 Hz in this
example).

The secularity of weak nonresonant rf fields suggests that shaped pulses and other engi-

neered pulses,[117] including composite pulses,[60] are unable to compensate for frequency



92 Singlet nuclear magnetic resonance

14 |a ‘.II
<12 l = =
= [ .' = ¥
<08 [ | - N .
0.6 \\ | £/ AWAJ 06f | || /I |
04 -02 00 02 04 0402 00 02 04 04 -02 00 02 04
Wi/ w° rf Worrf w” rf Worrf w° rf

Figure 2.24: Singlet excitation via weak rf-irradiation is narrowband with respect to rf pa-
rameters. The plot in (a) shows calculated values of pg/p after irradiation for nominal time
Tt = 7/2|v/2 w0 sin(0/2)| under conditions of a dimensionless offset wog/w’% (horizontal scale)
and dimensionless rf amplitude w,¢/wS% (vertical scale). Parameters for the system are J = 100
Hz, |yBYA$| = 25 Hz, and the nominal rf field strength is chosen arbitrarily as w% = 10 Hz. In
(b) the excitation sequence comprises a sandwich of pulses (7y¢/2)(7y¢)(7:¢/2), where the central
pulse is phase-shifted by 90°; this can be thought as a (905)(1808,)(905) composite rotation. In (c)
the analogous rotation (90g)(2403,)(905) is applied. Colours of the shaded regions denote singlet
excitation pg/p > 0.5 (yellow), ps/p > 0.8 (orange), ps/p > 0.9 (red) and pg/p < 0.2 (blue region).

offsets. Fig. 2.24(b) and fig. 2.24(c) show singlet amplitudes after weak rf (905)(1805,)(905)
and (90g)(2405,)(905) composite weak-rf pulses. The ‘flip angle’ in each of these pulse is
understood as that induced the Bloch sphere of the resonant single-transition subspace
(e.g. 1805 = m¢ly, 905, = 0.57y¢ly). Comparison with fig. 2.24(a) shows that excitation
may be protected to a small extent using composite pulses, although not beyond offsets
woff/w]?f ~ 1. According to these results, the J-sychronised-echo sequence (2.2.3) per-
forms better against unstable and inhomogeneous rf at low power. Note that the multiple
spin-echo sequence has its resonance condition on the zero-quantum frequency, not the
single-quantum frequency. This falls to setting the spin echo timing accurately, which is

vastly less prone to error.
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2.3 Heteronuclear-mediated singlet NMR

The transfer of singlet spin order to neighbouring heteronuclei has extensive history within
parahydrogen-enhanced NMR, (PHIP). It is a natural wish in PHIP to hyperpolarise nuclei
other than just the protons and extend the scope for signal enhancement.[118] Cross-
polarisation of this kind is useful not only for NMR observation at other chemical sites,
but also because low-gamma nuclei may relax more slowly than the protons and can provide
a storage haven for the hyperpolarised spin order.[119)]

First experiments to excite 13C spin order from antisymmetric parahydrogen order used
pulse sequences based upon INEPT.[120] Later, midway through the 2000’s, Goldman and
Johanesson demonstrated a range of other methods including diabatic field cycling and
pulse sequences for both low and high B® magnetic fields.[121, 122, 123] These methods
sparked parahydrogen-induced hyperpolarisation an immediate prominence in biomedical
MRI, in particular of !3C in metabolites in vivo, including succinic acid,[124] a participant
in the Krebs cycle. More elaborate pulse sequences have since been developed,|58, 63|
including some designed for time-optimal polarisation transfer.[125]

In general, successful heteronuclear transfer of spin order from parahydrogen requires
magnetic inequivalence at the two proton sites, either or both that: (i) the two proton sites
occupy chemically inequivalent sites, and have different chemical shifts;[30] (ii) the proton
pair has unequal J couplings to a heteronucleus contained within the molecule. Recently,
a demonstration was made showing that (ii) suffices for PHIP-NMR in a zero magnetic
field environment.[126]

The present section applies the idea of heteronuclear-induced symmetry-breaking to
the problem of homonuclear magnetisation-to-singlet conversion. Chemically and magnet-
ically equivalent spin pairs in high-symmetry molecules may become unsymmetrical on
substitution with a magnetic heteronucleus, for instance a nearby 2C or '®>N. We have
used this approach to obtain singlet relaxation data in otherwise-equivalent spin pairs.

This provides useful information to help understand the singlet relaxation phenomenon.

2.3.1 Heteronucleus-induced symmetry breaking

The following analysis takes the same approach as §2.1, where heteronuclear spin interac-

tions are decomposed into a singlet-triplet operator basis. The spin system is assumed to
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contain two homonuclear spins-1/2, denoted ‘I’, plus heteronuclei ‘S’ where vg # 7.

The basis for decomposing the Hamiltonian is chosen as the ket-bra product operator
basis (|lr, mr) ® |ls,ms))({l}, mr| ® (', ms]). For all practical field strengths |B°| > uT,
the secular approximation partitions the free-evolution Hamiltonian into block-diagonals
in the m; and mg quantum numbers. For simplicity, and in consideration of the likely
heteronuclear abundance, the ‘S’ nuclei are chosen to be spin-1/2 (includes *H, 13C, 1°N,
F and 3'P), but in general the approach applies to heteronuclei with spin quantum

number greater than 1/2.

For a single ‘S’-spin, singlet-triplet transitions are allowed under a difference in Jy, 5

and Jr,s. The Hamiltonian may be written

H; = 27TJI]-SIszz+27TJIkSIk:zSz (2.123)

= 7(Ji;s + I1.8) Ljalka — Liplkg) + 7(J1,s — J15) 10T (S, — Sp) .(2.124)

mI:O,mS:()

155070) and indicates zero-quantum singlet-triplet

The nondiagonal part is proportional to
transitions of the ‘I’ spins at the rate 7AJrg. Geometrical representation of this off-
diagonal field is shown in fig. 2.25(b) along with the homonuclear IT coupling, which as
seen previously (§2.1) behaves as a z rotation in the Bloch sphere. Comparing with §2.1,
it can be seen that as far as the homonuclei are concerned, IS couplings behave in an

identical way to chemical shifts. This confirms singlet order is accessible in chemically

equivalent homonuclear pairs (AA’X systems), provided AJrg # 0.

If there is more than one heteronucleus the situation is more complicated, but in general
homonuclear singlet-triplet conversion still requires unsymmetrical J couplings. A case
worth considering in detail is that of two chemically equivalent I spins plus two chemically
equivalent S spins where Jrs = Jpg and Jpg = Jrgr (AA' X X' system, see fig. 2.25(c)
inset). This ‘rectangular’ topology exists in quite a few high-symmetry molecules including

[1,2-13C5] ethyne and [1,4-13C5] or [2,3-13C5] fumaric and maleic acids. The heteronuclear
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Figure 2.25: Tllustration of fields induced in the non-diagonal subspaces of the J Hamiltonian: (a)
for two chemically equivalent homonuclei, plus one heteronucleus; (b) for two homo and heteronu-
clear pairs, both chemically equivalent.

J Hamiltonian decomposes in the four-spin operator basis decomposes into

H; = 27T<JAXIA7;SXZ + JaxTaSxr + JarxIaSx. + JA’X’IA’ZSX’Z> (2125)

7(Laz +Ta2)(Jax + Jarx)(Sxz + Sxz)
+1(Laz —Tarz)(Jax — Jarx)(Sxz — Sxr2)

= w(Jax — Jarx) 5T S0T0) Lr(Jas + Jux)I.S., (2.126)

my =0, |mg| =1

where Jax = Jis = Jpg = Jaxr and Jayx = Jpg = Jigr = Jaxr.

This example stresses the magnetic equivalence symmetry refers completely to the
symmetry of the spin Hamiltonian, not the molecular symmetry. Singlet-triplet conversion
is mediated by the scalar coupling difference (Jax — Jarx). The difference in heteronuclear
couplings induces rotations in the triplet-triplet and singlet-triplet product spaces of the
two spin pairs, as is represented in fig. 2.25(c). For completeness, the Bloch spheres in fig.
2.25(c) show also the field axes of the homonuclear J couplings, whose sum Ja4: + Jx x

acts to preserve singlet-singlet and triplet-triplet product states.
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2.3.2 Experimental demonstrations

The analysis of heteronucleus-induced symmetry-breaking suggests that existing pulse se-
quences for magnetisation-singlet conversion, for instance Sarkar’s sequence, may be used
simply by replacing all dependences of the chemical shift differential with the relevant het-
eronuclear J difference. A scheme for heteronuclear singlet NMR is thereby summarised in

fig. 2.26. These sequences are explained through the experimental demonstrations below.

Sarkar’s sequence for ‘strong’ heteronuclear couplings

Sarkar’s sequence (see §2.2.2 and fig. 2.26(a)i) was used unmodified to excite singlet order
on the protons in the molecule 2,5-dibromothiophene, hereafter abbreviated 2,5-DBT. Fig.
2.27(a) shows the proton sites in 2,5-DBT are interchangeable by a Cs, mirror symmetry
operation on the molecule and therefore chemically equivalent. Ordinarily the molecular
symmetry precludes excitation of singlet order on the protons. Heteronuclear symmetry-
breaking, however, is possible where the ring sites C2(= C5) or C3(= C4) are occupied by
13C. Both carbon sites are situated outside the mirror plane bisecting the two protons and

may therefore generate a J-coupling differential.

Values of 3.Jyy and the Jop couplings for [3C12,5-dibromothiophene are displayed in
fig. 2.27(b) and fig. 2.27(c). These were determined by fitting the multiplets of the 90°-
acquire '3C NMR spectra for a sample containing 0.2 M 2,5-dibromothiophene dissolved
in dg-DMSO, recording at 9.4 T and room temperature. Naturally abundant [2-13C| and
[3-13C] isotopologues were each present at 4.4 mM concentration, due to the approximate

1.1% 13C abundance.

SoTo

The couplings in 2,5-DBT satisfy |w9(3 )’ > |W§SOT0)|

, t.e. that |[TAJeu| > |7 Junl.
which is the regime that Sarkar’s sequence is applicable (fig. 2.26(a)i). An initial 90° pulse
on the I spins rotates the equilibrium longitudinal polarisation into transverse coherences.
The ensuing spin echo, denoted (7, — 180° — 7,) where 7, = 1/|4Jun|, transforms these

into antiphase coherences, where the 180° 'H pulse refocuses the proton chemical shifts
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5 Hz <1 Hz
a H H b 4 H C H
/Z/_\X\ 175 Hz /Z_\S\ 15.0 Hz /M
Br S Br Br S Br Br S Br

0 =112 ppm 0 =132.4 ppm
Figure 2.27: Scalar couplings and isotropic chemical shifts obtained from 3*C NMR spectra of the

13(C-containing isotopologues of 2,5-dibromothiophene, measured at 9.4 T on a 0.2 M solution in
degassed dg-DMSO. The black dot in (b) and (c) denotes the position of 3C.

and the heteronuclear couplings:

pl = o (1T (Tal = 1) (1) (J0) ol + 18)° (81°) (2.127)
9039 echo  PI
HH P

V2

(0T + 1)) (Tl +
7o) (Tl + (71 (10)° (0l + 18)° (8 (2.128)

The antiphase coherences are then converted into zero-quantum triplet-triplet coherences

by the 45° pulse:

ea (2128) 5 E((T) 4+ T (Tl + (Tl

—2(0)" (Tol") (10" (f® +18)° (8% )(2.129)
P (1o + 15 = 20T)" 1)) (Tl (o)

~2(T)" 18)) (ol (1)) (2.130)

7 ]
Q only

Free evolution for time 7, = 1/|AJ;g| converts the products of the form |Tp)” |a)® into

150)" |a)® via a 180° rotation about 18%70) | as indicated by fig. 2.25(a). The experimental
values of 7, found to give optimum singlet excitation agree with this formula. These were
found to be 7, = 60 ms for [2-13C]-2,5-DBT and 7, = 6.0 ms for [3-13C]-2,5-DBT.

The zero-quantum density operator after time 7, is given finally by

Tb

eq. (2.130) % (Ia + 15— 2(10)" ) ((Sol" (e]®)
~2(150)" 18)) (Sl (81%)) (2.131)
%(IQJJB —2|SO)I<SO\]), (2.132)
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The last line indicates a singlet polarisation pg (on the ‘I’ spins) equal to p;. As only
the I spin states are transformed in this sequence, Sarkar’s zero-quantum dephasing and

J-broadband techniques may be used if desired (2.2.2).

Singlet order on 2,5-DBT was isolated (with the sample residing in high field) by apply-
ing a 3 kHz WALTZ-16 modulated rf field at the proton Larmor frequency. The resonant
field has the effect of ‘switching’ the AA’X spin configuration into A3X by suppressing all

CH couplings. The locking is applied for the entire duration of the storage time.

For detection, singlet order was converted into to antiphase carbon magnetisation 1,5,
by removing the spin decoupling field, executing Sarkar’s sequence in reverse chronological
order back to in-phase coherence on the I spins, I,, (fig. 2.26(b)i) and performing INEPT
(fig. 2.26(c)ii). Observation on the carbon channel, as opposed to the proton channel (fig.
2.26(c)i) guarantees '3C site resolution, plus avoids the large proton background resulting
from the all-'2C isotopologues, which contain magnetically equivalent proton pairs. An
INEPT half-echo delay v = 16 ms was used to give optimal cross-polarisation under the
15 Hz Jcon coupling in [2-13C]2,5-dibromothiphene. For [3-13C]2,5-dibromothiphene the
delay used was Ty = 50 ms, optimal for the 5 Hz 2Jcp coupling. To distinguish signals
coming from the starting spin order a phase cycle {0°, 180°} was used on both the initial

90° pulse and receiver phases.

Experimental decay profiles for the proton singlet order are displayed in fig. 2.28. These
show the singlet-derived spectra against incremented spin locking times. A fitted decay
constant Ts ~ 2.2 seconds is obtained for the near '3C-containing isotopologue [3-13C]-
DBT. This is similar in magnitude to the experimental proton 77 = 2.2 seconds of the same
molecule, which we measured by proton inversion-recovery followed by INEPT. Singlet
order in the more remote isotopologue exhibits a much longer decay time Tg = (68 £+ 5)
seconds. This is an order of magnitude longer than the proton 77 of the same molecule,
which was measured to be (5.4 £ 0.1) seconds. To within fitting error, the values of Tg

were the same when measured under carbon decoupling (3 kHz WALTZ, on-resonance).

These results prove that the ratio of lifetimes Ts/T} is strongly dependent on the
geometry between the spins. The fast singlet decay when '3C at short distances conforms
to a relaxation mechanism involving the 'H-'3C dipole interaction. Further discussion of

this is made in §3.2.2.
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Figure 2.28: Singlet relaxation measurements in 2,5-DBT. The spectra show antiphase 3C coher-
ences obtained after different values of the singlet locking time. Singlet order was stored at 9.4 T
under a 3 kHz WALTZ rf field resonant with the proton Larmor frequency (dg = 7.1 ppm, relative
to TMS). The displayed regions show: (a) fast singlet decay in [3-!3C|-DBT, spectrum centred at
dc = 112 ppm, width of displayed region = 400 Hz; (b) decay of singlet order in [2-'3C]-DBT,
spectrum centred at ¢ = 132.4 ppm, width of displayed region = 400 Hz. Fitted monoexponential
time constants Ts are given above.

Strongly coupled heteronuclear systems

Heteronuclear-mediated singlet NMR is now demonstrated using synchronised spin-echo
trains (2.2.3). This is the method appropriate to low values of the singlet-triplet mixing
angle 0, in this case § = arctan(AJig/2Jr1), i.e. for |[AJrs| < |2J77]. The study is
made upon the [1-13C;] and [2-13C4] isotopologues of 1,2,3,4-tetrachlorobenzene, hereafter
abbreviated as 1,2,3,4-TCB. Like 2,5-TCB, the molecule contains two chemically equivalent

protons and an unsymmetrically placed 3C.

A 90°-acquire 3C spectrum was recorded at 9.4 T for a sample containing 35 mM
natural-abundance 1,2,3,4-TCB dissolved in d4-methanol. The region between 133 and
134 ppm is displayed in fig. 2.29(a), where the resonances for [1-!3C]-1,2,3,4-TCB and [2-
13C]-1,2,3,4-TCB can both be seen. It was possible to fit the J-couplings to the resolved
multiplet frequencies, despite the accidental overlap of the carbon resonances. The follow-
ing values were obtained by fitting single-quantum eigenfrequencies of the J Hamiltonian
to each multiplet. The small values of 6 confer that both [1-'3C]- and [2-13C]-1,2,3,4-TCB

contain strongly coupled protons:



101
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Figure 2.29: ¥C NMR spectra of [1-'3C]- and [2-'3C]-1,2,3,4-tetrachlorobenzene (1,2,3,4-TCB) at
9.4 T on a degassed, room-temperature solution of ds-methanol containing 35 mM 1,2,3,4-TCB.
The displayed region is between 133.0 and 134.0 ppm, referenced to tetramethylsilane. Experiments
as follows: (a) '3C 90°-acquire, sum of 100 transients; (b) 'H-13C INEPT to antiphase single-
quantum coherences on 3C, with INEPT delay 7, = 50 ms; (c) and (d) the '3*C spectrum acquired
after M2S-(71ock)-S2M applied on the proton channel followed by HC-INEPT, where the element
(Tloek) indicates 3.0 kHz WALTZ irradiation on the protons for a duration 7,ex. M2S and S2M
parameters used in (c) were Nigg = 2, Ngg = 1 spin echoes, synchronised-echo half-delay 7 = 41.6
ms, which gives optimum singlet excitation in the [1-!3C] isotopologue. Parameters used in (d)
are Nigg = 4, Ngg = 2 spin echoes, synchronised-echo half-delay 7 = 48.0 ms, optimum for [2-13C]-
1,2,3,4-TCB.
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o [1-13C]-1,2,3,4-TCB: Juw = 8.9 Hz; Jog = 12.6 Hz; Jow = —3.5 Hz; (0 ~ 42°)
e [2-13C]-1,2,3,4-TCB: Juyw = 8.9 Hz; Joy = 8.9 Hz; Jow = —1.7 Hz; (6 = 22°).

While the one-dimensional spectra of [1-13C]- and [2-13C]-1,2,3,4-TCB partially overlap,
as shown by fig. 2.29(a), there is no significant overlap in the antiphase lineshapes, as seen
from the HC-INEPT-acquire spectra in fig. 2.29(b). Singlet-derived NMR signals, detected
through carbon antiphase coherences, are therefore resolved unambiguously.

Singlet order was generated by applying synchronised echo trains of the form displayed
in fig. 2.26(a)ii, locked for a short period of time (4-5 seconds) by applying a 3.0 kHz
WALTZ decoupling field at the proton Larmor frequency and then converted into observ-
able 13C magnetisation by the S2M-INEPT combination of sequences shown in fig. 2.26(b)ii
and fig. 2.26(c)ii. Spin locking was necessary in this case to successfully isolate the singlet
order, for while the protons in 1,2,3,4-TCB are strongly coupled, they are not sufficiently
near to magnetic equivalence to avoid rf irradiation.

The maximum signal intensity after excitation by M2S-S2M-INEPT was found to be
using the parameters Nigg = 2, Ngg = 1, echo timing 7 = 41.6 ms for [1-!3C]-1,2,3,4-TCB
and Nigo = 4, Ngg = 2 echoes, 7 = 48.0 ms for [1-13C|-1,2,3,4-TCB. These values agree
very closely with those predicted from theory of rotations in the |Tp)’ and |So)! subspaces.

The expected spin echo half-delays are

1
Fo= = (2.133)

20 (9, /102 + AT

The length of each spin echo trains is determined by

o o T

™ = d ‘
360 ‘9‘) roun (360 " Larctan(AJis /2711)

Ngo = round(

), (2.134)

where [ is the nominal rotation angle required between the my; = 0 states. Spectra recorded
using the optimal 7 and N parameters are displayed in fig. 2.29(c) and (d). Singlet order
can be excited independently on the two isotopologues, it can be seen, due to the narrow
synchronisation on 7. Again this helps distinguish the signals and avoid ambiguities.

The singlet decay constants were determined by measuring the spectral intensity for a

series of different singlet storage times 7Tgiorage and fitting to the monoexponential decay
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Figure 2.30: Proton singlet decay profiles for [1-13C]- and [2-!3C]-1,2,3,4-TCB. For maximum
detail, the stacked regions display only the regions of the spectrum where the signals are observed,
as expansions of the regions in fig. 2.29.

exp(—Tstorage/T's). Decay profiles are displayed in fig. 2.30(a) and (b).

The yielded decays constants were T = (72 &+ 5) seconds for [1-13C]-1,2,3,4-TCB and
Ts = (140 + 10) seconds for [2-13C]-1,2,3,4-TCB. These values are 8 and 15 times larger
than the respective longitudinal relaxation constants of the protons: in [1-!3C]-1,2,3,4-TCB
the measured value of T} was (8.740.1) seconds; for [2-13C]-1,2,3,4-TCB T} was (9.040.1)
seconds. Singlet order is long-lived for both isotopologues, but like 2,5-DBT, the decay
constant T of the protons depends on location of the C. The large disparity in Tg
between [1-13C]-1,2,3,4-TCB and [2-'3C]-1,2,3,4-TCB is consistent again with a dominant
relaxation mechanism in [1-'3C]-1,2,3,4-TCB involving modulation of heteronuclear dipolar

interactions. A quantitative discussion of these lifetimes is given in §3.2.2.

Extensions in future

Singlet order in 2,5-DBT and 1,2,3,4-TCB may be read out using the pulse sequences that
were originally developed for parahydrogen, such as the 45-INEPT sequence displayed in
fig. 2.26(c)iii.[58, 120, 125] These methods are likely to be very useful in singlet NMR of

heteronuclear systems and the exploration of their relaxation properties, and their use is
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encouraged.

2.4 Excitation of hyperpolarised singlet order

In outlining procedures for magnetisation-singlet conversion I have so far dealt exclusively
with conversion between pure longitudinal magnetisation of coupled spins (or pure trans-
verse magnetisation) and singlet order. At high polarisation levels, however, the initial
density operator tends not to be dominant longitudinal polarisation, but contains other
forms of spin order too.

Conversion of hyperpolarised longitudinal order into singlet order requires some care
due to the nature of the singlet-triplet population difference. To illustrate this, consider
an ensemble of two spins-1/2 in the extreme of unity population in |aa), corresponding
to maximum longitudinal polarisation p = 4+1. Suppose a pulse sequence is applied that
transfers population of |a) into |Sp). The final state comprises unity singlet population,
therefore corresponds to a singlet polarisation pg = +1.

Now suppose the same pulse sequence is applied to the opposite extreme of negative
unit polarisation, p = —1, corresponding to zero population in |aa). The resulting density
operator must have zero population in |Sp). The singlet-triplet population asymmetry is
at most pg = —1/3, which is only a third of the polarisation above. This illustrates that
ps changes according to the sign of the starting hyperpolarisation. It suggests that to
ensure the greater singlet polarisation is obtained, the pulse sequence must be carefully
considered in relation to the initial ensemble state.

Fig. 2.31(a) illustrates the above for the adiabatic field cycling method. In order to
obtain the maximum singlet polarisation in an hyperpolarised sample, one must apply
selective inversion so as to transfer maximum |7%;) population into the singlet precursor
state. This will depend on the relative signs of p, yB°Ad and J.

A similar rule applies to selective irradiation of the weak singlet-triplet transitions in
a strongly coupled spin pair (2.2.4), where the population of states |7%1) and |Sp) can
be interchanged while leaving states |T%1) and |Tp) unperturbed. To generate maximum
singlet polarisation, one must irradiate the transition with the largest singlet-triplet pop-
ulation difference, as shown in fig. 2.31(b). Similar considerations apply also to Sarkar’s

pulse sequence and the J-sychronised spin echo sequences.
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Figure 2.31: Preparation of singlet order in hyperpolarised ensembles. The centre of the above
diagrams represent a spin-1/2 pair ensemble that is 100% polarised (p = 1), for the case yBY(5; —
dr)/J > 0. Diagram (a) indicates the singlet order that results after (left) inverting spin j and
(right) nucleus k, followed by adiabatic transfer to low field. Inversion of spin k transfers the
population of o) into |Sp), creating maximal singlet polarisation pg — 1. Inversion of j results
in a lesser singlet polarisation ps = —1/3. The diagram in (b) indicates similar transformations
for the selective outer-peak irradiation method (see 2.2.4).
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To illustrate more generally, consider an initial hyperpolarised ensemble state compris-
ing populations n(aa) = (1 + p)?/4 for the m = +1 state, n(B38) = (1 — p)?/4 for the
m = —1 state and n(af) = n(fa) = (1 — p)(1 + p)/4 for both states m = 0, where p
is the nuclear polarisation. The singlet polarisation obtainable from this state, neglecting
relaxation effects, can be shown equal to

(2p + p?)

. (2.135)

ps =

where the positive sign applies to when the magnetisation-singlet converting pulse sequence
transfers the larger of the T populations into the singlet state, and the negative sign to
when the minimum is transferred. The square term indicated there is only a significant
difference in pg at polarisations p > O(107!), though this is nevertheless worth taking
into account. If the initial polarisation p is 0.5 = 50% then the expected singlet order
is either pg = 41.7% if the pulse sequence is correctly ‘matched’ to the initial state, but
only ps = 25% if ‘mismatched’. At p = 0.2 = 20% the difference is less pronounced; the
values are pg = 0.15 (matched) and pg = 0.12 (mismatched). At much lower starting
polarisations, such as thermal polarisation, the square term is negligible and pg is equal

to 2p/3 regardless of the spin selectivity and initial sign of p, as determined earlier.
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2.5 Signal selection and filtering

This section reviews some techniques that ‘filter’ or ‘pick out’ the singlet order component
of the density operator during an NMR experiment. Their purpose is to eliminate non-
singlet spin order, leaving only singlet-derived NMR signals surviving to the acquisition.
Removal of non-singlet order results in NMR spectra that are quantitative of the singlet-
triplet population difference at the given time point. This allows accurate measurement of
singlet lifetimes despite the presence of non-singlet order within the system. As seen ear-
lier in this work, magnetisation-to-singlet pulse sequences invariably produce other forms
of spin order as a by-product to singlet order. Filtration removes these potentially con-
taminating terms, which may be helpful in situations where the Ts, T7 and T5 relaxation

constants are all of similar magnitude.

On a more qualitative level, filtering allows diagnosis of whether singlet order has been
excited between two spins-1/2; or has not. This helps avoid misidentification of signals by

distinguishing singlet-derived signal from other spin order and artefacts.

2.5.1 Basic theory and concept

Erasure of non-singlet spin order is readily achieved by exploiting the behaviour of nuclear
spin under rotations. This lies in the fundamental interplay between nuclear spin angular
momentum and the rotation group.

We recall from earlier that the irreducible basis of the Liouville space under global
rotations of the spins (the rotation group SO(3)), and hence the irreducible basis of spin
order, is the spherical tensor operator basis.[33] Each tensor operator T is an entity with
(2A + 1) components, Taps (A > 0and M = —A ... A) whose indices A and M distinguish
the unique way each behaves under a rotation. On applying a rotation R € SO(3), the
‘rank’ A of the tensor is preserved. The components of each tensor interconvert according

to the Wigner matrix:

A
RTzpyR'= Y Tanr Dyppy(R). (2.136)
M'=—A .
(Wigner)

The Wigner matrix is the rotation operator represented in the eigenket basis, such that
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the block D!(Q) connects the (21 + 1) eigenstates [lm) as

!
Ril,m)= Y [l,m/) Db, (R). (2.137)

m/=—I

The irreducible tensor indices A and M are each related to the total angular momentum
quantum and coherence order quantum numbers of the spin states involved. The Clebsch-

Gordan series defines a ket-bra operator basis of the |I,m) that states obeys eq. (2.136):

Tar =3 [\lm) <l'm’]} cAM (2.138)

Lym U'm/
where from the Clebsch-Gordan indices it is clear that spin operators with definite ‘an-
gular momenta’ are arranged. The coefficients CAM,  are zero, unless (m — m’) = M,
confirming in eq. (2.138) that M represents the coherence order. One may also evaluate

the commutators

[Is, Tan] = VAN +1)— M(M £1) Trarsen), (2.139)

[, Tam] = (m—m') Tan. (2.140)

The second equation states that an infinitesimal rotation about the z axis yields the char-

acter (m —m’) = M. This again validates M as the coherence order.

Singlet order of a spin-1/2 pair is distinguishable because the singlet-triplet population
difference operator is identified uniquely with the invariant spherical tensor operator T.
Too is the only nontrivial rank-zero tensor in a system of two spins-1/2. From the four
angular momentum states, the resulting sixteen (= (2(3) + 1)® x (2(3) 4+ 1)?) ket-bra

product operators reduce into five rank-2, nine rank-1, and fwo rank-0 spherical tensor

operators (5 + 9 + 2 = 16). One of the invariant tensors must the unity operator,
E o [So) (Sol + [T-1) (T—1| + [To) (To| + [T41) (T4a] - (2.141)

which represents the sum of all populations. There is hence one nontrivial invariant.

To summarise this section, singlet order corresponds to the rank-zero spherical tensor

T = Tyo. The signature of TV, like all spin-0 objects, is invariance to arbitrary rotation of
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the system’s quantisation axes. In the current context this translates to distinguishability
from other types of spin order, which is required for the separation of resulting NMR

signals.

2.5.2 Isotropic filtration superoperator

Mathematically speaking, the problem of singlet filtering is to find a projection superoper-

ator, which we call P(T 00), that sieves all rank-0 operators from the density operator

A Tapy for A=0
P(Too)Tan = (2.142)
0 otherwise.

By expressing p in the spherical tensor operator basis,

p(t) = Z Z cnr(OThn (2.143)

i AM

it is clear p(T 00) acts to preserve isotropic tensors, and eliminate all the others:
P(Too) p(t) = Zcéo(t)Téo (2.144)
i

The exact projection superoperator is unique, and is given by the isotropic projector of

the SO(3) rotation group, which is the integral over all orientational space:

- 1

P(Ty) = RdR. (2.145)

872 Jsos)

Solutions in practice to attempt to approximate this integral by quadrature, the premise
of approximation by a finite sum of rotations.

Rotation quadrature is the same approach used in coherence-pathway selection in NMR.
Coherence pathways are the chronologies of coherence order in an NMR signal.[127] These
pathways are discriminated in how spin operators with different coherence order (the quan-
tum number M) rotate about the z quantisation axis at different rates. Filtration of Ty
falls into a more general classification called Spherical Tensor Analysis (STA),[109, 128]
where the chronologies of both A and M are selected. The specific situation of Ty is called

isotropic filtration, as the goal is to select the rotation-invariant spin order.
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Below is a description of isotropic filtration in practice. This leads to some new meth-

ods, which are demonstrated in the later sections.

2.5.3 Quadrature method for isotropic filtration

The ‘traditional’ approach to p(TOQ) is to select a finite set of rotations. This is called
the sampling set, which is denoted by S = {R$, RS, ..., Rﬁs}. One of these rotations
is inserted into the NMR pulse sequence at the point where isotropic selection is desired,
and the signal acquired. The sequence is then repeated for the other rotations in turn, so
there are Ng signals recorded in total. The rotations are chosen such that upon summing
the NMR signals together the singlet-derived components add constructively, while the

undesired components interfere destructively and cancel.[129]

As shown in fig. 2.32a, there are three main events in the pulse sequence as far as
signal selection is concerned. These are (i) a common initial propagation from equilibrium
spin order, which is denoted by the superoperator Uy; (ii) a rotation of the spins, by one
of the rotation elements Rf € §; (iii) a common propagation until acquisition, under a

superoperator denoted Ub.

A rotation Rf may be applied through a pair of strong 90° radiofrequency pulses with
carefully chosen phases. To determine the phases one may use the fact that an arbitrary
rotation, in the Euler zyz convention,

RS = R(0f B57) = R.(09) Ry (B7)R. (%), (2.146)

i =

may be effected through: (i) a 90° pulse with phase (a°® + °), followed by (ii) a 90°
pulse with phase (o + 180°), then (iii) phase shifting all preceding elements of the pulse
sequence by (a® 4 £ 4 ~%).[109] This sequence is illustrated in fig. 2.32b, and verified
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Figure 2.32: Implementation of a general Euler rotation on the spins using two 90° rf pulses.[109]

below using rotation identities about the Cartesian zyz axes:

(7/2)a+r tf pulse (7/2) a4 rf pulse

R.(a+m)Ry(n/2)R.(—a — ) Ra(a + B)Ry(n/2) Ra(—a — B) U5,

= Rz(a) Rx(_ﬂ-/2)Rz (B)Rx(ﬂ'/2> R/";(_a - B)Uc(LaJrﬁJr’Y)ﬁeq (2'147)
rotation Ry (8)

= [R() Ry (B) R | UuBe(—a = B = )peq (2.148)

= [Ro(0) By (B)R- (1) | Vg (2.149)

To reach the penultimate line, one applies the fact p, is invariant under with R..

The NMR signals are summed together afterwards on a computer. To maintain gener-
ality, a weighted average is assumed, where each signal is multiplied by a weighting factor
wf before superposition. As the algebra of Liouville space is linear, the average NMR
signal after superposition is equivalent to the signal after a single experiment using the

weighted-average rotation superoperator:

1 Ns o R 1 Ns Ao\ A
st;wf {UbeUapeq} = [Ub (st;wfRf> Uaﬁeq}' (2.150)

The goal is to approximate the term in round brackets to P(ng).
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Finite sampling constraint

Isotropic filtration requires R‘Z-S and wf to satisfy

Ns Ns _

(le ;wfﬁfﬁw = ]\13 ;wajl\\I’M(Rf) - (1) Zi 2;2; . (2.151)
where Apax is the maximum rank of spin order of the spin system. The maximum rank
equals the sum of (2741) over all nuclei in the spin system. Spin order between two coupled
spins-1/2, for instance, cannot exceed past rank two: Apax = [(2% +1)+ (2% +1)] =2.

A preferred sampling scheme has one with minimal possible dimension while retaining
the ability to average accessible ranks 0 < A < Apax, or at least ranks A that are likely to

be excited.

2.5.4 Polyhedral sampling schemes

Pileio and Levitt have demonstrated that low ranks are suppressed by sampling the three
poly-axial rotation subgroups of SO(3), G € SO(3). These are the groups of the regular
polyhedra, [129]

e T, the tetrahedral group, (12 rotation elements),
e O, the octahedral group (24 rotation elements),
e 7, the icosahedral group, (60 rotation elements).

Low rank spin order has high orientational symmetry, so may be averaged successfully by
relatively small sampling sets. The isotropic projector of these sub-groups maintains the

same averaging properties as SO(3) for selected low spin ranks.

~

1 - 1 .
=Y R =~ / RAR = P(Ty). (2.152)
2

91 £ 87 Jso@)
The above equation, amounts to eq. (2.151) with unit weights w$ = 1.

Isotropic filtration under 7, O and 7 is determined by reducing the Wigner matrix
blocks D in each subgroup. In any group of operations, in this case rotations, there is
always one irreducible representation preserved by all operations i.e. is ‘totally symmetric’.

All other irreducible representations are anisotropic, and averaged by the subgroup G.
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Rank-A spin order is therefore successfully averaged if D* does not reduce into the totally

symmetric irreducible representation in the subgroup.

The multiplicity of the rank-zero tensor D° in each block D* under the rotation sub-
group is denoted ag s, and is given by the character of DA averaged over all rotations in

the group:

1
ag,A = @ Z XA(RQ)- (2.153)
Reg
The character under rotation, x*(R), equals the trace of D* and is involved since tracing
is independent of operator basis. The trace of the Wigner matrix evaluates as follows,

where ( is the angular displacement around the rotation axis of R: [89]

A .
A B A _sin((2A +1)¢/2)
The angle ( relates to the Euler angles of R = R(«, 3,7) through
cos(¢/2) = cos(5/2) cos((a+7)/2). (2.155)

Eq. (2.153) is briefly derived by considering irreducible representations of the subgroup,
denoted Dg, where k is an index, so that the reducible representation D? is expressed by

a sum

DY(Rg) = ) Dg(Rg)akx, (2.156)
k

where coefficients aj o are the multiplicities of Dé in DA, Tracing both sides and then

averaging over all rotations in G leads immediately to

,;ZXA(RQ) = Z[éZXé(RQ)}ak,A = aoa, (2.157)
g k G

The second equality follows because ) g Xé(Rg) is zero except for the totally symmetric

representation (k = 0), where it is equal to the group order |G|.
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T E 4C3 4C%  3C,
¢=0 120° 240° 180°
A QoA
0 1 1 1 1 1
1 3 0 0 - 0
2 5 -1 -1 1 0
3 7 1 1 - 1
4 9 0 0 1 1
tetrahedral group 5 1m -1 -1 -1 0
6 13 1 1 1 2
0] E 8C3 3C? 60y 6Cy
¢=0 120° 180° 90° 180°
A ao,A
0 1 1 1 1 1 1
1 3 0 -1 1 -1 0
2 5 - 1 -1 0
3 7 -1 -1 -1 0
4 9 1 1 1
octahedral group 5 1 -1 -1 1 -1 0
6 13 1 1 -1 1 1
z E 12C; 120% 20C; 15C,
(=0 72° 144° 120° 180°
A ao,A
0 1 1 1 1 1 1
1 3 S s’ 0 — 0
2 5 0 0 -1 0
3 7 —S —s’ 1 -1 0
4 9 -1 -1 0 0
icosahedral group 5 11 1 1 -1 - 0
6 13 S s’ 1 1

Figure 2.33: Character tables for the ‘polyhedron’ rotation groups. The rightmost column ag s
gives the isotropic projections (see text for detail). Representations D? are averaged more effec-
tively by the large, high symmetry rotation groups. Under the tetrahedral group, for instance,
only ranks A = 1, 2 and 5 are averaged, while under the icosahedral group, out of the first 6 ranks,
all but A = 6 are averaged.
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Figure 2.34: Isotropic filtration was performed on a sample containing 50 mM phenylalanine in
D50 at 9.4 T. The spectra show (a) proton 1D spectrum, single-scan; (b) proton singlet NMR
spectrum, using Sarkar’s sequence with delays 7, = 17.1 ms and tau, = 14.9 ms, single scan; (c)
as (b), but projecting out Tpo by applying tetrahedral sampling (12 scans) at the end of the spin
locking period.[129] The spectrum in (c) is scaled down by a factor of 12 to allow comparison
of intensities with (a) and (b) spectra. The chemical shift at the spectrum centre is +3.60 ppm
relative to tetramethylsilane.

Multiplicities ag a between A = 0 and A = 6 and the characters for 7, O and 7 are
tabulated in fig. 2.33. The multiplicities show the T subgroup averages spin ranks up to a
maximum of Ay = 2; the O subgroup averages ranks up to and including Apax = 3 and
the Z subgroup averages up to and including Apax = 5.

For most high-field applications of singlet NMR, tetrahedral sampling tends to be
sufficient. Spin order with rank A > 2 is usually not strongly excited during magnetisation-
to-singlet pulse sequences, plus higher ranks are in general much faster relaxing and may
itself decay to zero long before acquisition.

As an experimental example, fig. 2.34 shows the aliphatic region of 'H-NMR spectra
recorded at 9.4 T for a solution of 50 mM L-phenylalanine dissolved in D2O. Fig. 2.34(a) is
the 90°-acquire spectrum, showing an ABX peak pattern corresponding to the a- and two
B-proton resonances. The two S-protons are a target for singlet NMR because they are
diastereotopic, due to the adjacent chiral centre, and because their intra-pair J coupling

exceeds the difference in J couplings to the a-proton.[77] Fig. 2.34(b) is the single-scan
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spectrum recorded after using Sarkar’s basic sequence to prepare, store and retrieve singlet
order (see fig. 2.7). Delays 7, = 17.1 ms and tau, = 14.9 ms were determined to generate
maximum singlet order on the g-protons. The singlet order was locked for 0.5 seconds under
a 3 kHz WALTZ-16 modulated rf field applied at the average chemical shift frequency of
the S-protons, before reconversion to antiphase coherences, and acquisition. Due to the
short spin locking time, which is about half the 77 lifetime of the S-protons, the peaks are
contaminated with a large contamination of unwanted terms, which obscure the expected
antiphase pattern.

The spectrum in fig. 2.34(c) is the result after the same experiment in fig. 2.34(b),
but applying the tetrahedral quadrature (12 scans) at the end of the decoupling period.
The sum spectrum is normalised to the amplitude of the single scan in fig. 2.34(a). The
antiphase spectrum is much clearer and easier to integrate than that in fig. 2.34(b) due to
the removal of spin ranks 1 and 2. There is no evidence of third-rank spin order potentially

carried through by 7.

2.5.5 ‘Targeted’ sampling sets

A problem with using the polyhedral groups is their great time-expense, because the angle
sets are very large. In this section a different approach is considered: freedom to choose
both orientations and weights in a sampling set suggests a minimal set is available whose
number of angles equals the number of constraints imposed by eq. (2.151). This idea is
attractive when a small subset of spin ranks must be averaged, to which the polyhedral
sampling sets may be overkill. Polyhedral orientation sets, as well as other rotation group
angle sets, have a capacity to project out all irreducible components T ,s for which the
quadrature is exact.[109] This indicates a large redundancy present if one simply wants
suppression of ranks A # 0.

Below I consider some approaches that target the quadrature constraint directly and

use the smallest-possible number of angles.

Pulse field gradients

Most modern NMR spectrometers are capable of producing field-gradient pulses (PFGs) —

pulses of a purposely inhomogeneous magnetic field parallel to the direction of the static
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BO field. PFGs induce a z-axis rotation on the spins through an angle that depends on

molecular position in the sample.[4]

Using gradients it is possible to sample rotations

Rey-(aBy) = Ra(o) Ry(B)R=(7) (2.158)

in parallel using the sequence (PFG1)-(Bgg0)-(PFG2), (see fig. 2.35(a)), which comprises
two pulsed gradients and an rf y-pulse. The gradients induce the Euler angles a and
v (not to be confused with the gyromagnetic ratio) that are functions of spatial dis-

placement r = (z,y,z) from the gradient origin. The rotation angles are determined

by a(r) = (f d' GFF(#') - r) and y(r) = (f; d' GFFED(¢') . r) where the gradients
varies along the axis GPFGD = (G;(BPFGI), G?(JPFGI), GEPFGI)), the PFG durations are mppg1
and Tprgo and where t’ is the local time variable of each pulse. From the theory of com-

posite rotations,[109] the central (f8gpo) rotation may in practice be replaced by a pair of

90° pulses (903)-(907g00 ), for greater accuracy in the 3 angle (fig. 2.35(b)).

Strong gradients produce an uniformly distributed set of rotations over the a and ~
orientational space via the relation
1/ R(r)dr ~ 1/ ]?izyz(aﬁ’y)dad*y, (2.159)
Vv 412 oy
which holds provided the gradients vary linearly along orthogonal spatial axes and the
density of excited spins is uniform across the sample volume. Modern NMR, and MRI
hardware can produce linearly varying z gradients independently along each of the z, y
and z axes (‘triple gradients’). A single z-gradient G, is more common on older hardware
in which case the integrals over a and  are coupled, though with suitable choice of the
gradient strengths Gg) and G,(ZQ), such that M'a =# M-~, improper averaging may be
avoided. Depending on the gradient strengths, i.e. the spatial resolution of the gradients,

(ii) may preclude in-vivo spectroscopy.

If the gradients satisfy eq. (2.159), the sampling constraint reduces to

Ns B
1 1 forA=0

Ao D Wi doo(Ry(87)) = . (2.160)
Sim1 0 for 0 < A < Apax
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a b
Ry|(7 B) 90, 90,4,
]
AN ANENA

PFG1  PFG2 PFG1  PFG2

Figure 2.35: Schematic pulse sequence for uniform sampling over « and  Euler angles.

This shows a rather striking decrease from (2A + 1)? constraints per rank to one per rank.

Gauss-Legendre quadrature

There are several ways to proceed from the above. For a maximum rank Ap.x there are

(( 2*:1") — 1) equations to satisfy:

dio(Ry(B1)) ...  dly(Ry(BN)) wi 1
d(Q)o(R.y(ﬁl)) ng(Rz.;(ﬁN» U.Jz _ 0 (2.161)
Ao (Ry(B)) ... dog™ (Ry(Bn)) wy 0

and therefore at most (Apax — 1) orientations are needed for quadrature (the first equation
always holds, provided ) ,w; = 1). By comparison, the eq. (2.151) requires at least
YA A+ 1) ~ O(A]

o lax) orientations.

One may solve eq. (2.161) numerically for a predefined set of angles or weights. More ex-
pediently, one may recognise these matrix equations as the Gauss-Legendre quadrature.[130,
131] By recognising equality of the Wigner matrix elements dé\o with Legendre polynomials,

Pa(cos(85)) = diy(R, (55)), eq. (2.161) reads

Ns
eq. (2.160) — ]\Z;wfﬂ\(cos(ﬂf)). (2.162)
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Hence the solution of

Py(cos(B1)) ...  Po(cos(Bn)) w1 1
Py (co.s(ﬁl)) A (cos.(ﬁN)) UTQ _ 0 . (2.163)
Pape(c05(81)) - Papuclcos()) ) \ ww 0

An analytical solution of this equation is known. The derivation is beyond the scope of this
work, but involves using the recurrence relations between P, (cos(8)) and P,+2(cos(f)).

Abscissas f3; are given by the zeroes of Py(cos(5)), [131]
Pn(cos(B;)) = 0, (2.164)

and the corresponding weights by the formula

sin 53;

w = Zjbmﬁ(ﬁj) (2.165)
The value Apax up to which the zeroes of N average is not (N — 1) in this case,
but in fact (2V — 1). The Legendre zeroes come in pairs  and (180° — f3), or singly at
cos(B;) = 0. Due to the symmetry Py(cos(53;)) = (—)*Px(cos(180° — f3;)) this means all
odd ranks vanish automatically. This leaves only half the number of original constraints —

namely those left on the even ranks — to satisfy by the absolute angles and weights.
Angles f3; and weights w; are given in fig. 2.36 for sets N = 1 to N = 5. These achieve
isotropic selection up to maximum ranks Apax = 1 t0 Apax = 9. As an example of the gains
achievable, spin order up to and including rank Ay .x = 3 can be eliminated by averaging
just two equal-weighted scans (N = 2). This sampling scheme is 24 times smaller than the

octahedral set, which requires 48 scans to average third-rank spin order.

2.5.6 Single-shot filtration

The sequences shown in fig. 2.35(a) and (b) eliminate rank-A spin order in entirety if the
angle 3 is a zero of dé\o. Furthermore, note that if the angle 5 is 90°, spin order of all odd
ranks is eliminated.

The latter case is the well-known Only Parahydrogen SpectroscopY (OPSY) method,
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[ ]
i B0 wi
Amax= 1 1 90.00 1.000
o Y i Bi/° w;
p 1 5474 0.500
Moo= 3 2 12526 0.500
* i Bi/°  wi
o Y 1 3923 0.277
2 90.00 0.444
Amax_ -
5 3 140.77 0.277
i Bi/° w;
P 1 3056 0.174
p " 2 70.12 0.326
Ao=7 3 109.88 0.326
4 14944 0.174
) /81/0 w;
@ 1 25.02 0.118
X . 9 5742 0.239
[ ° B 3 90.00 0.284
A= 9 4 12258 0.239
5 154.98 0.118

Figure 2.36: Orientational sampling sets for the Gauss-Legendre quadrature.[131] (Left), graphical
representation of the angle sets on a polar plot. The polar angle of each ‘node’ is equal to f;
and the corresponding ordinate is proportional to the w;; (Right), tabular representation of the
sampling schemes.
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Figure 2.37: Schematic pulse sequence for suppression of non-isotropic spin order up to and in-
cluding rank 3 (Apax = 3).

used for signal filtering in parahydrogen-enhanced NMR.[110, 59] The purpose of OPSY is
to remove rank-1 components of the density operator, which includes the strong magnetisa-
tion of the solvent and the magnetisation of orthohydrogen, so that only the parahydrogen
addition products are observed in the NMR spectrum.

One may generalise OPSY by chaining several filters together. The sequence shown
in fig. 2.37(a) and (b) consists of an odd-rank filter followed by a rank-2 filter. This
achieves suppression of spin order up to and including rank-3, providing there is no mix-
ing between ranks between the filters, ¢.e. during the PFG2 gradient pulse duration. In
practice, this limits application to strongly coupled spin pairs, though the suppression of
rank-interconversion is not ruled out by other means, for example by refocusing.

Single-shot filtration may be useful in hyperpolarised NMR, where initial polarisation
levels cannot be guaranteed the same (at odds with quadrature that rely on averaging
several scans) and other single-scan NMR experiments, such as reaction monitoring, where

signal averaging is not feasible.

Experimental demonstration of single-shot selection

The single-shot filter in fig. 2.37(b) was tested upon the singlet NMR of perdeuterated
[1,2-13C5]-isopropyl-cyclohexyl oxalate diester, whose molecular structure is shown in fig.
2.38(a). This molecule was synthesised by Lynda Brown (Southampton University) and
investigated in collaboration with Chris Laustsen (Aarhus University, Denmark) and Jan-
Henrik Ardenkjeer Larsen as an early candidate for long-lived hyperpolarised singlet order
in a nearly equivalent spin pair.[132] Dissolved in d4-methanol at room temperature the
two 13C nuclei in the molecule have close chemical shifts in the region of 158.6 ppm, where

the chemical shift difference is a small 0.13 ppm due to the weak four-bond asymmetric
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induction by the ester groups. The chemical shift difference translates at the 5 T of a
small-animal MRI magnet to a frequency of 6.6 Hz, which is much less than the and one-
bond coupling '.Joc measured as 100.1 Hz. Singlet order survives in high magnetic field
without resort to spin locking interventions.[132]

The filter in fig. 2.38(b) was applied to the singlet NMR of a methanol-d4 solution of
the oxalate diester on a 9.4 T NMR spectrometer (100 MHz '3C Larmor frequency) in
Southampton. To determine the parameters required to suppress non-singlet order, the
isotropic filter was applied to the sample at thermal equilibrium polarisation, followed
immediately by a 90° rf pulse and spectrum acquisition. Sine-bell shaped pulsed-field z-
gradients (PFG1), (PFG2), (PFG3) were applied with respective durations 4.4 ms, 2.4
ms and 2.0 ms and relative strengths +¢g, —g and —g. The area under these gradients
sums to zero to avoid eddy currents that may otherwise disturb the spectrum acquisition.
The gradient strength g was incremented until the 90°-acquire spectrum showed negligible
signal, at which point that the filter successfully suppresses rank-1 spin order. Fig. 2.38(c)
shows the '3C NMR spectrum (left) in the absence of the filter and (right) using the filter
with z-gradient amplitude ¢ = 0.8 G cm™!, which is approximately 8% of the maximum
available on the hardware.

Having calibrated the filtering element, measurements of the singlet decay constant
Ts were performed using the J-synchronised echo pulse sequence displayed in fig. 2.38(d).
The optimum parameters for the oxalate ester were Nigp = 12 and Ngg = 6 spin echoes
and spin echo delay 7 = 2.48 ms for nominal 180° and 90° z-rotations in m = 0 subspace
of the carbon pair. The singlet order was left undisturbed in high field for a time Ty,
then the filter applied, and finally singlet order was reconverted to in-phase transverse
magnetisation for detection, by performing the J-synchronised echo sequence in reverse.

The experiment was repeated for several different values of the initial pulse flip angle
& =90°, 45° and 30° to mimic a varying degree of inefficiency in exciting the singlet order.
The longitudinal order remaining after the first pulse is proportional to pcos(§) while
the singlet order is proportional to psin(§). In the absence of the filter, the longitudinal
component carries through until the final signal. As shown in fig. 2.38(d), in the presence
of the filter the spectrum integral against the high-field waiting time Thr were fitted to
monoexponential decay curves exp(—Tur/Ts). Singlet decay constants Ts for all three

initial flip angles £ = 90°, 45° and 30° were fit to the same value of T's = (55 £ 5) seconds.
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magnetic field magnetic field

_______ 1114

shielding by shield absent
mu metal cylinder

Figure 2.39: External magnetic field distortion by a mu-metal cylinder.

This proves reliable elimination of signals from non-singlet spin order contaminants.

2.5.7 Filtration in low magnetic field

The above methods all involve rotations induced by applying radio-frequency pulses while
the sample sits in the spectrometer magnetic field. In principle, similar manipulations are
possible outside the magnet, for example by applying audio-frequency pulses in earth’s

field.

A more crude, yet equally effective means of isotropic filtration at low field is simply
to place the sample in a very inhomogeneous, rapidly fluctuating magnetic field. Field
fluctuations occurring near the Larmor frequency appear as randomly sampled rotations,

when seen from the rotating frame, thereby realising a good approximation to eq. (2.145).

In ref. [32] we used a mu-metal cylinder to filter hyperpolarised singlet order after
dissolution DNP of sodium pyruvate (§2.2.1). Mu-metal is a material with extremely high
magnetic permeability, typically /o = 10° (in comparison, ju/ g for steel is less than 103).
It is primarily used for shielding objects from a background magnetic field by distorting
flux into the surface of the metal, leaving a near-zero magnetic field in enclosed regions (see
fig. 2.39). At the edges of the mu-metal, however, the background field is distorted very
sharply. Shaking the sample in this inhomogeneous magnetic field rapidly equilibrates the

nuclear triplet populations while leaving the rotation-invariant singlet order intact.[32]
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2.5.8 Filtration by spin decoupling in high field

Random rotations may be induced with the sample residing at high field due to inhomo-
geneity in applied rf fields. This may be useful in filtering the singlet order of weakly
coupled spin pairs under spin locking, where singlet-triplet transitions must forcibly be
suppressed by resonant rf irradiation.[65]

Singha Roy and Mahesh have identified that WALTZ-16 and similar phase-modulated
irradiation schemes that sustain nuclear singlet order in high field, while simultaneously
ensuring the rapidly destruction of other spin order by rf inhomogeneity.[133, 134] They
have used the resulting long-lived, high-fidelity entangled state of the filtered singlet order

for NMR quantum computation.

2.5.9 Summary of signal filtration methods

Isotropic filtration relies on ability to apply a uniform sampling the rotation group onto the
nuclear spin ensemble, under which non-singlet spin order averages to zero. A summary of
the techniques reviewed in the section is displayed graphically in fig. 2.40. The chart shows
which methods are appropriate to high and low instances of singlet NMR where one may
wish to filter singlet order. In all of these instances, there is a method to achieve selection

in a single scan.
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Figure 2.40: Isotropic filtration applied in singlet NMR, a summary.




Nuclear singlet relaxation

Whereas the previous chapter has dealt with coherent evolution between singlet and triplet
states, the following chapter concerns incoherent evolution phenomena, or relaxation.

First in this chapter I overview the Liouvillian formalism for relaxation, the foundation
of which is the very successful theory derived by Wangsness, Bloch, and Redfield, abbrevi-
ated ‘WBR’ theory, or sometimes referred as just ‘Redfield’ relaxation theory. The WBR
theory approaches relaxation through second-order time-dependent perturbation theory of
the density operator.

Spherical tensors operators are the natural language of relaxation in solution NMR
due to rotational modulation of the intramolecular Hamiltonian by random molecular
tumbling. This leads to pointing out several useful concepts for singlet relaxation analysis.
If molecular rotation is much faster than the Larmor frequency, the relaxation of nuclear
spin states is invariant to their orientation with respect to the B® magnetic field. In this
case relaxation superoperator behaves as a scalar, where it is shown that there can be no
relaxation between spin order of different rank. This allows simple, well justified analytical
formulae to be derived for singlet relaxation rates.

Several experimental studies are then reported. These are focused towards the goal
of ‘relaxometry’, which is to obtaining information on the singlet relaxation mechanisms
by analysing experimental relaxation rates. Examples covered include both homonuclear
and heteronuclear intramolecular dipole-dipole relaxation and the influence of dissolved

paramagnetic species.
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3.1 Tools for singlet relaxation analysis

3.1.1 Introduction to WBR theory

WBR theory considers the relaxation phenomenon for an ensemble of the spin system of
interest diluted within a classical ‘lattice’ surrounding, the latter being of no particular
interest in general. Spin decoherence is treated by dividing the Hamiltonian H for each
ensemble member into two parts, an uniform, coherent part, Hy = H, responsible for bulk
evolution, plus a stochastic counter-part Hy; = (H — Hy) that fluctuates through time due
to interactions with the lattice. Intermolecular interactions are usually ignored at a basic
level, due to their often short-range, random nature and the relatively dilute concentration

of spins within the bulk.

In this microscopic view the Liouvillian equation of motion for pure states reads

Solt) = —iHy(0p(t) — iHi()p(t) (3.1)

where the hat, (‘*’), in this case denotes commutation superoperator.[37] This equation is
to be solved in the interaction representation of the static magnetic field (Larmor repre-

sentation, denoted by ‘tilde’) i.e. as

%ﬁ(t) = iH(0)A(t) — i (D)) (3.2)

where H(t) = exp(—i [j w’Ldt')H(0) exp(+i [ w'Ldt')) = R.(w t)H(0). Integration of

eq. (3.2) from a starting time point to, up to a future time ¢ gives

plt) = plta) ~1 [t F&)o(). (3.3)

to

Recursive substitution to second-order in the Dyson series in H leads to

() = 5(0) — /dtH Alto) — /dt/t At H()H(")p(t") + ... (3.4)

where it is acceptable to truncate the iteration after only the second term. The interaction
frame transformation justifies truncation as it ensures successive iterative terms rapidly

diminish in size.
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Following the integral truncation the view reverts immediately to a time-derivative

formulation. One may differentiate with respect to ¢ using the well-known formula

b(t)

b(t)
Gl o s ] = st vw) = s a4 [ Car Gt o (35)

where a(t), b(t) and f(t) denote explicit functions of time. The equation of motion after

the differentiation is

A~

eq. (34) = %p(t) = —iH(t)p(t) — /to‘dt”ﬁ(t)ﬁ(t”)p(t”). (3.6)

In the next step the density operators p(t”) and p(ty) are replaced by p(t) under as-
sumption that the perturbations in p are weak compared to the Larmor frequency and
smoothly fluctuating across the interval ¢g to t. Finally, an ensemble average is taken to

reach

d t

S0 = —ifhp) - |

to

" Hy (£ Hy (#")5(t), (3.7)

where independent averaging is allowed between uncorrelated quantities H; and p(t). From
this form one may identify the commutation superoperators of the right-hand side as the

pure coherent Liouvillian evolution superoperator that contains only coherent terms Hy
Lo(t) = —iHo(t), (3.8)

and the relaxation superoperator, which contains only Hj:

m):—fwﬁﬁﬁmq (3.9)

0

Last steps in WBR theory modify the integral to a form that is more ready for compu-
tation. One assumes the anisotropic Hamiltonian H; is Markovian, meaning it averages to
zero over long periods of time. This justifies extending the upper time limit to infinity in

the future: (¢t —¢") — oco. Doing this, and changing the integration variable to 7 = (¢ —t),
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the relaxation superoperator is transformed into the form

0 2 2
It = —/ dr Hy(t + 7)Hq(t). (3.10)
3.1.2 Spherical tensor formalism
Incoherent Hamiltonian

The explicit calculation of relaxation superoperators requires a knowledge of (i) the relax-
ation causing interactions in H; and (ii) the nature of the spin-lattice interaction (relative
time-dependence in eq. (3.10)). For solution NMR the model adopted is to assume the field
fluctuations are due to molecular rotations, and that the incoherent spin interactions com-
prise those which are anisotropic with respect to molecular orientation. It is convenient to
formulate T by expanding H; in a set of rotational symmetry-adapted basis functions. H;
is generally expressible as products between (i) time-dependent spherical tensor functions
in orientational space, here denoted Afm, and (ii) spherical tensor spin operators, T;:w

where labels p indicate the identity of the specific relaxation mechanism. These functions

are defined through

R(DAL, = AL, Dhyn(9) (3.11)
RO, = Th, D), (3.12)

wher R and R are used here to denote space and spin rotations, respectively. The Hamil-

tonian is expressible as a scalar product between A and T as follows:

HE () = Y [H(#); (3.13)

p

[
HE) = Y ()AL TR (3.14)
l

m=—1

which conforms to invariance upon simultaneous spin-space rotations:

RQRQ)HL (1) = [HY (). (3.15)
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The superscript ‘L’ in this equation denotes that the Hamiltonian is written in the labo-
ratory frame, which is the reference frame in which we observers reside.

The laboratory-frame spatial components [Afm]L are determined by rotating the prin-
cipal axis components [Afm]P of each spin interaction into the L frame. This is done in two
stages. The axes systems of each interaction tensors within each molecule is synchronised

to a molecule-fixed frame, M,

l
(ALY () = REQEZID@)IALTT = ) [4],17 Dy (70 (1)), (3.16)
m/=—I
where (P — M) indicates the direction of the frame transformation and Q"=M) the

relevant FEuler angle. The molecular frame is then rotated into the laboratory frame:

!
(A7, 15(t) = REOQMZD )[4 1M = > [A], 1M Dy QM (1)), (3.17)
m/'=—1
This form is very convenient since it separates intramolecular motion from overall molecular
rotation, which will be discussed shortly. Together with the transformation of the spin
tensors into the Larmor frame, one can now write ﬁlL in a form ready for substituting
into eq. (3.10):

l

mh = YN S (At (3.18)
P l

m,m’ m'"=—I

<DL, (QEZM ()DL (ML) (1))l

The relaxation Hamiltonian invariably involves second-rank space tensors (I = 2) due
to the pairwise, symmetric nature of the interactions. This includes dipole-dipole couplings
between nuclear pairs, the anisotropic chemical shielding (CSA) interaction between nu-
clei and the B field, and spin- rotational-angular-momentum coupling.[14] Principal axis

components for the dipole-dipole and the CSA tensors are listed in 3.1.
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Mechanism

Dipole-dipole coupling Chemical shielding anisotropy
(p =DD, [ =2) (p=CSA, [ =2)

Space tensor (in principal-axes frame, P)

[AD]P V6bji V3/2A8Y)
0 0

AL -

(A8 )? 0 1Ay
Spin-field tensor (in laboratory frame, L)

[T5]E %(QIjZIkZ — Ljplpe — Iyl V2737 B°I;.

(T3] Fo (Ll + L2 Ixa) F37 B+

(T3 5)" Filit e 0

Table 3.1: Principal axis components of the dipole-dipole (‘DD’) Hamiltonian between two spins
‘jk’ (where bj;, = —hu(wj%/(élﬁd?k)) and anisotropic chemical shielding (‘CSA’) Hamiltonian of

a spin-1/2 7. (A = (62 — 69)); 69 = (69) + 6§) + 69)/3; @ = (6Y) — 6)) /A2 for spin
j are given in terms of the principal components 5391) , 575]7}, d(zjz) of the chemical shielding tensor).
Both interactions are second-rank (I = 2) with respect to spatial rotations.
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Relaxation superoperator

The spherical tensor formulation generates a rather monstrous looking expression for f,
particularly if there is more than one relaxation mechanism in operation where it involves a
superposition of self or auto time-correlated (IPP(t)) and cross time-correlated (IP4(t), p #

q) products:
D) = Y Tr), (3.19)
P,q
where the general correlation is given by

o = -3 S OY S e, (3.20)

m,m/ m'’'=—1 A ==X

i(m wo
X[ Ay ¥ [A% ”]PDfn"m/(Q(P_)M))D;);,W(Q(P_)M))e( +p)wOt

0
x / dr DL, (QVD(L 4 7)) DA, (QID) (1)) eimaor,

—0o0

However, by bringing out detail of the molecular motion in solution this can be compacted

into the form

§ : § : P P
qu — - 2l + 1 [A%?m//] [A?U”] (321)
m!,m N7NN
X Dl (UM DL, (P ID))

XY (MmO TE T,

Eq. (3.20) connects to eq. (3.21) on two reasonable assumptions for small molecules in
isotropic solution. Firstly, that the frame transformations (P — M) and (M — L) are un-
correlated, so can be averaged separately. Such assumption holds when the intramolecular
motions are either much faster or much slower than overall molecular reorientation. This
includes rigid molecules where intramolecular motion is absent altogether. The second

assumption is that molecular reorientations across the interval ¢ to (¢ 4+ 7) are quantifiable
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by a probability function, G(7) (usually called the ‘correlation function’), defined

DL, (QUM=D)(t 4 7)) Dy, (QM=D)(1)) = (3.22)

Dy Q=B () D7 QM= E) (1)) G (),

m

where G(0) = 1 and lim; o, G(7) = 0. In isotropic solution G(7) is independent of both

Q and t so one can further identify

eq. (322) = (_2?_i_15l/\6u—m5,u’—m’G<T)- (323)

Ranks (I,\) and the projection indices are not explicitly involved in G since they are
taken care of by ensemble averaging. Working in this regime, the relaxation superoperator

appears

() = —El:%il > AAT1AL" (3.24)

m/7m”,/.14”
X D (QEZMNDL, (M)

0

A A 0 .
X Z(—)m[ﬂpm]L[T/‘{m]L/_ dr G(1)e™“ .

For final relation to eq. (3.21), integration over 7 translates the time-correlation function
G(7) into a spectral density function j(w), which is sampled at integer multiples of the

Larmor frequency:

0
/ dr G(T)eim”OT = j(mw?). (3.25)

—00

Note that by virtue of the Fourier transform that the spectral density essentially ‘pick out’
the amplitude of molecular tumbling at frequencies resonant with nuclear spin transitions
(the latter separated by multiples of w®, under the earlier-assumed B field dominance).
This is consistent with the idea that in order to have transitions between spin states, one

requires a fluctuating Hamiltonian at the corresponding energy difference.

In this work, like many others have done previously,[14] I assume an exponentially
decaying correlation function G(7) = exp(—7/7.) quantified by the memory time con-

stant of random molecular tumbling, or ‘correlation time’, 7.. This function satisfies
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lim; oo G(7) = 0 and G(0) = 1, and independence to the global time coordinate. The

corresponding spectral density is

j(mw®) = W (3.26)

Quick-reference to relaxation superoperators

We are finished with outlining the assumptions and considerations involved in setting

up the Redfield relaxation problem and are ready to solve it. To consolidate the material

presented so far, and give a reference point for later, I list explicit relaxation superoperators

for the most common mechanisms expected in solution:

e Dipole-dipole relazation superoperator

Using the notation given in table 3.1, the explicit cross-correlation between two

nucleus-nucleus dipole-dipole couplings is

2
[(PDjkuw)  — _%ﬂ;bw Z D%,O(Q(ijeM))Dg_m,(Q(PMHM)) (3.27)
I=—2

X 3 (=) me) [Ty

2—m

Indices jk and wv denote the nuclear labels of homonuclear spins-1/2; each of which

may be different (but this is only the case if four or more spins-1/2 are present).

Note the above may be simplified by compounding Wigner matrices into

(DD 6b.buo | . DD
R i doo (B Pu)) S ™ (=)™ i (maw®) [Ty 2R [T ] 13.28)

m

where BFir—=Puw) ig angle formed between the internuclear vectors of spin pairs jk

and uwv. This leads to a very simple expression for auto-correlated dipolar relaxation

superoperator where S(Fi*Fik) = () within the constant principal axes frame:

6%,
5

POPskat) = I8Ny () [Ty 0 T D (3.29)

2m
m

CSA-dipole relazation superoperator

The cross-correlation between a dipole coupling involving nuclei jk and the anisotropic
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chemical shielding on nucleus u is derived from the quantities in table 3.1 as

2
[(PD;kCSAw) _\/6}‘1’“ Z [Agnsléu]PDg@,o(Q(Pm%Pu)) (3.30)
m/=—2
\Nms 0y [7:PPsk L [:CSAu L
x> (=)™ (me) [l

2—m

e Pure CSA relazation superoperator
The general form of the superoperator describing correlated anisotropic chemical

shieldings between a nucleus j and nucleus k is

2
. 1 .
P(CSA; K — - § [ASZJI%]P[ASSﬁk]PD?n,mN(Q(Pj—>Pk)> (3.31)
m/7m//:72
m - ~CSAj [ ~CSA
XY (=) (ma®) [Ty, 1 H T ] .

3.1.3 Liouvillian eigenvalue analysis

A complete view over the progress of spin order under simultaneous coherent and inco-
herent evolutions is obtainable by tackling eq. (3.7) as an eigenvector-eigenvalue problem.
By diagonalising the matrix representation of the total Liouvillian (I:O + f), one obtains

eigenvectors as stationary combinations of spin order. Eigenoperators @); evolve as
dQi/dt = (Lo +T)Qi = +X:Q:, (3.32)

where the eigenvalues \; describe the oscillatory behaviour and relaxation. The eigenvalues
may be split as \; = (—iw; —k;), where w and k are real, such that the parts Re(\;) = k; > 0
correspond to monoexponential decay rates in eigenoperator amplitudes and Im()\;) = w;
corresponds to a single-frequency phase modulation. This becomes more apparent on

integrating the eigenvalue differential equation with respect to time:

integrate

eq. (3.32) Qi(to+7) = exp(+N7)Qi(to) (3.33)

= exp (—iw;T)exp (—k;7)Qi(to).

One cannot understate the power of eigenvalue analysis. Firstly it allows one to deter-
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mine multiexponential relaxation of arbitrary spin order:

Plto+7) = (Qilp(to)) exp (—iw;T) exp (—kiT) Q. (3.34)

1

In a more specific context to this work, the eigenspectrum answers many important ques-
tions about long-lived spin order. The longest-lived order in the system corresponds to the
eigenoperators with eigenvalues k; nearest to zero. Under a given coherent environment
and set of relaxation mechanisms, is singlet order close to a long-lived eigenoperator? The

answer is a matter of diagonalising the relaxation matrix.

3.1.4 Thermalisation

Although it makes for a simple derivation, the classical lattice surrounding in WBR theory
is perhaps an oversimplification, and a potentially serious caveat. As WBR theory stands
' describes equalisation of spin populations, rather than a tendence of the ensemble to
a Boltzmann equilibrium state (see e.g. eq. (1.25)). Formally, eq. (3.10), and hence eq.
(3.21), holds valid only for infinite spin temperature.

The thermal defect in T can be fixed ‘ad hoc’ by acting I" on the deviation from thermal
equilibrium p — p.,. This ensures a steady state dp/dt = 0 for p = p,:

dp/dt = Lop+T(p— Peg)- (3.35)

The correction can be absorbed into a ‘thermalised’ relaxation superoperator I'thormalised =

'O, where the superoperator © is defined through [101]

- E
61— F_ <W - peq> ® E, (3.36)
such that the correct equilibrium is restored at long evolution times by

dﬁ/dt = (-Z/O + f\thermalised)p- (337)
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One can show O satisfies the required properties in I'O via

O 'E =B’ = 10p, x TE =0, (338

A-1(=_ (Elp) __ (Elp) cA _ me
o 1<p— (E‘E)E) — (p— (E|E)E> = TOp = P(—pe)  (3:39)

It is important to state that while alone is thermally deficient, it still predicts the
relaxation rates correct for tendence to thermal equilibrium. Relaxation eigenvalues are
preserved between I'6 and f, seeing that the eigenvectors are mixed with only the null
(zero-eigenvalue) space. Eigenvalue analysis is therefore valid without explicit thermalisa-

tion in I'. This shortcut is used heavily in the remaining part of this chapter.

3.1.5 Scalar superoperators in relaxation analyses

A superoperator that is unaffected by arbitrary rotations of the spins is called a scalar

~
—_

superoperator, =, where

[

RQ)ERY Q) = (3.40)

A scalar superoperator imposes strict selection rules on the evolution of spin order within
the spherical tensor operator basis, rather similar to the restricted evolution of the angular
momentum functions |/, m) under a scalar spin operator (spin tensor rank-0). Consider the
superoperator matrix element (qu\éTm) of = between two spherical tensor spin operators

Tyq and T).s. The scalar property dictates

A~

(Tp|ETrs) = Te(Tl,RQROQZRH(QR(Q)Ts) (3.41)
= T(T},R Y (Q)ER(Q)T,s) (3.42)

= > DV () DL(Q) x Te(T) ET,y). (3.43)
ql S/
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The relation holds for all orientations, so one may average over orientations (). This gives

# [ d9[eq (3.43)] = L , /[/QdQDp/(Q)*DTf(Q)]“(T;q'é re)  (349)

I ET.) (3.45)

= 0prys(Tpg|ZT0s). (3.46)

The last line reveals that the matrix element is zero unless both rank and coherence order

indices are the same in the connected operators, or in other words that = is block-diagonal

in the spherical tensor operator basis.

Scalar superoperator allow one to calculate analytical 1/Ts and 1/77 relaxation rates,
as spin order for Tg and 7T} is each described by a single spherical tensor operator. For
a spin-1/2 pair jk the determination of T's is simple; The Liouville space comprises only
two rank-0 operators. One is the singlet order ng =I; - I = |So) (So| — L[|T-1) (T1| +
|To) (To| + |T+1) (T'+1]] and the other the trivial unit operator F o< |So) (So| +|T-1) (T—1|+
|To) (To|+|T41) (T'1] that commutes with all operators. If I' is a scalar superoperator, then

Too must be an eigenoperator with relaxation rate given by the diagonal matrix element

B,
~ (TP T /(T T, (3.47)

For Ty the situation is more complex but analytical solutions remain accessible. For a
spin-1/2 pair jk there are a total of three rank-1 projection-0 tensor operators, these
being longitudinal order on each nucleus, leo = I;, and TF = I, (where TF + TF =
(|T41) (T41| — |T-1) (T-1])) and multispin rank-1 order leok = —(Ij I — -1} )/V2 =
(|So) (To| — |To) (So|)/v/2". Tt turns out that the coupled order le(l;g is disconnected from the
single-spin longitudinal operators and may be neglected, leaving the following biexponential
matrix problem for 7T7:
d [ 1 (@R 1)) (TR TG\ [ 1
dt - B )y () k) ‘ (3.48)
I (Tho' [TT1y")  (Tho'ITThg") Iy
This 2 x 2 problem for T3 is simplified when is approximately symmetric with respect

to exchange of the nuclei, which incidentally is the regime most of interest to singlet NMR,
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where longest singlet lifetimes are predicted. Approximate permutation symmetry in the
relaxation problem dictates eigenoperators approximately equal to the sum and difference

order (I;, £ Iy.), giving a monoexponential decay rate for longitudinal relaxation

~ k
1 <<T1%+Tm>|r< Ty + T4))
Y (T + TR + Tip)))

(3.49)

Dipole-dipole scalar relaxation superoperator

Scalar relaxation superoperators I' = R(Q)TR~(€2) (not to be confused with superoper-
ators for scalar relaxation) arise commonly in so-called ‘extreme-narrowing’ motion limit
where molecular tumbling is fast compared to the Larmor frequency, at which ', < 1,
and the spectral density across all transitions thereby uniformly sampled; j(mw?) = 7.
The most frequent example is the general dipole-dipole cross-correlation superoperator

derived earlier in eq. (3.27). In extreme narrowing

lwOre |1 6b; buvTc m DD ~
eq. (3.27) — gy (B ) Y () Ly [y (3.50)

m

The double commutator part

PPy e ey (3.51)
m
is a scalar product between two rank-2 spin tensors, and therefore invariant under arbitrary
global rotation of spins. For small molecules, the ‘extreme-narrowing’ limit usually holds
very well in fields up to several tesla since 7. is of order 10 to 100 picoseconds (1 ps = 10712
s). For larger molecules (MW > 500) this may not always be the case but is always more

likely at lower B? field.

Anisotropic relaxation superoperators

Outside extreme narrowing the relaxation superoperator is generally not diagonal in spin
operator rank [ and therefore a full Liouvillian diagonalisation may be needed.

For an example consider the dipolar relaxation superoperator within the very high field
or macromolecular limit |w’7.| > 1. This is the opposite regime to extreme narrowing in

which molecular tumbling is too slow to cause transitions at the Larmor frequency. In this
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situation the relaxation superoperator is limited to the zero-frequency fluctuation

|wOre|>1 _6bjkbuvTc

. DD i1 I, 1
5 d(Q)O(B(Pm_)P“”))[TQo ]k]L[T%Dw]L- (3.52)

eq. (3.27)

It can be shown via the Clebsch-Gordan series that I’ connects spin operators T,q and

T(p+Ap)q UP to achange in spin rank 0 < [Ap| < 4. This rule follows because [T%Djk}L[TQ%D““}L

spans a tensor superoperator space between spin ranks |2 — 2| = 0 and (2 + 2) = 4.

3.1.6 Spherical tensor commutation

Basic shortcuts must not be overlooked. While the latter sections have discussed spherical
symmetry properties of the Liouvillian superoperator as a whole, some answers are available
by examination of commutations between operators.
As an example, it can eagily be shown that the commutator

(T3 T80) = T3 Tio (3.53)
between a rank-2 spin tensor 75, and a rank-0 spin tensor 7; gok is zero when spin pair
indices jk and uwv: (i) are the same; (ii) have no common label. This fact alone establishes
singlet order is a null eigenoperator of (i) the auto-correlation intra-pair dipolar relaxation
superoperator eq. (3.29), and (ii) dipole-dipole relaxation between external spins, regardless

of whether extreme narrowing holds.

3.1.7 Liouvillian perturbation theory

In cases where the Liouvillian the superoperator is not scalar it may be difficult to obtain
analytical formulae for singlet relaxation rates. If the Liouvillian is ‘nearly scalar’, however,
approximate analytical formulae for 77 and Ts may be derived using perturbation theory.

The starting point of perturbation theory is centered around the ‘localised-singlet’
hypothesis introduced in refs. [76] and [80]. An isolated spin pair is initially assumed,

which is characterised by a reference Liouvillian superoperator
LO =10 4 1O, (3.54)

The reference Liouvillian is scalar, obeying R(Q)LOR1(Q) = L. The matrix represen-
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tation of L% is rank-diagonal in the spherical tensor operator basis. The singlet relaxation
rate 1 /Ty is given therefore by the diagonal matrix element eq. (3.47). Speaking in general,

the reference eigensystem is known completely:

LOQP = 2" Q” (3.55)

(0)

where ng) is equal to a spherical tensor operator and \; " its eigenvalue counterpart.

This reference system is related to the true Liouvillian superoperator by a term ﬁ(l),

which may or may not be scalar. The true eigensystem is defined such that
(LO + LM)Q: = M@, (3.56)

where \; and @); are the exact eigenvalues and eigenoperators of the problem. Through
the recipe of perturbation theory for normal matrices,[34] these are expressible from QEO)

and )\EU) by power series in L.

o= S, (3.57)
n=0

Q = > Q" (3.58)
n=0
where the lowest-order corrections are given by

Vo= @) (3:59)
A= (QVILOQY) (3.60)
0)7 (1) H(0)y2
(@ 121Q5)|

2 _
AP = _Z RO (3.61)
j#i i TN

The perturbation theory method allows one to determine approximate analytical for-
mulae for T} and Tg under a rotationally anisotropic Liouvillian. The series expansion
rapidly converges when the perturbation induced by LM on an eigenoperator QZ(O) is much
less than the difference in eigenvalues between QZ(»O) and other reference states; namely that
|Ai — )\EO)] < \)\go) - )\5-0)] for any j.

To date, eigenvalue perturbation theory has been used in several analyses of singlet

relaxation. Dipole-induced relaxation for inequivalent spin pairs at low field has been
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examined with reference to the zero-field relaxation rates, by treating the Zeeman inter-
action as a perturbation.[82] This approach applies also to evaluating the singlet leakage
due to chemical shift frequency differences |yBYAd/2n| < |J| of nearly equivalent spin-
1/2 pairs in high field.[88] Gopalakrishnan and Bodenhausen used Liouvillian perturbation
theory to derive a formula for T's during off-resonance spin locking.[80] As described in the
next section, perturbation analysis has also been used to examine Tg under weak relax-
ation mechanisms external to the spin pair, which may include out-of-pair dipole-dipole

couplings.|62]
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3.2 Singlet relaxometry

This section presents some case studies where experimental measurements of singlet re-
laxation rates are compared with predictions made using Redfield theory. Such a process
is termed singlet relazometry, where the aim is to back-calculate various information on
singlet relaxation mechanisms from measured relaxation rates. This can take two forms,
either (i) to quantify parameters in some pre-assumed relaxation-causing Hamiltonian such
as the strengths of dipole-dipole couplings,[62] CSA,[61] or other parameters, or (ii) the
reverse, to determine whether or not a given singlet relaxation mechanism is consistent
with experimental data. Both of these are useful towards rationalising singlet relaxation
times from a perspective of molecular functional groups, the knowledge of which may help
in predicting molecules that have extremely long lifetimes.

In total three illustrative studies are reported. In the first I discuss singlet relaxation a of
CHs proton pair caused by neighbouring protons in the molecule, entertaining a possibility
of conformational analysis from the geometry-dependence of Tg predicted by Redfield
theory. This is followed by analysis of the singlet lifetimes in heteronuclear systems, as
prepared in earlier in §2.3. Finally, I analyse singlet relaxation in solutions doped with

paramagnetic agents.[111]

3.2.1 Singlet relaxation of methylene protons
Introduction

The proton spin pair of an inequivalent CHy group (a methylene group) is both an in-
teresting system for quantitative study of singlet relaxation. The internuclear magnetic
dipole-dipole coupling |b12|, assuming indices ‘1’ and ‘2’ to indicate the nuclei of the pair,
is approximately huofy% /4rd3, ~ 21 kHz in strength for the typical proton-proton dis-
tance dja ~ 1.8 Aand by far exceeds dipolar couplings to nearby nuclei, and th CSA
of the protons due to their low nuclear shielding. The 77 relaxation mechanism is con-
sequently well-determined, and the rate 1/77 therefore provides an effective calibration
of the molecular rotational correlation time in Redfield theory. For small molecules in

extreme-narrowing

1 3T,
. (3.49 — = Cpl% 3.62
eq. (3.49) = T, 5 |b12| (3.62)
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The singlet state between the protons does not relax under the strong dipole-dipole auto-
correlation. This means the relaxation rate 1/Tg relative to 1/77, or in other words the
ratio of rates T's/Ty, depends to good approximation only on the variables of out-of-pair

spin interactions, and can be used as a probe of molecular environment local to CHo.

Determination of molecular conformations using singlet relaxation

Nuclei in the vicinity of the methylene protons may induce relaxation through the dipole-
dipole mechanism, the rate at which depends on the relative geometry between the CHs
protons and neighbouring spins according to the superoperator eq. (3.27). This opens a
possibility of determining molecular conformation from the ratio T's/T}. Relaxation ratios
for all accessible molecular conformations can be calculated via Redfield theory, compared
against the actual Ts/T) of the system measured by experiment, and the most likely
conformations thereby determined.[62]

In the case where there is one proton external to the CHy (a system of three protons
overall) the overall dipole-dipole relaxation superoperator contains 3 x 3 = 9 correlation

terms:

f‘(DDtotal) _ f‘(DDIQA,lQ)+f(DD13,13)+f(DD23,23)+ (3.63)

auto—co?relation
(f‘(DDIQ,IS)+f‘(DD13,12))+(f‘(DD12,23)+f‘(DD23,12))+(f(DD13,23)+f‘(DD23,13))7

cross-correlation

where label 3 denotes the passive spin. If the CHs protons have no significant J-couplings
to the nucleus 3,[77] the relaxation constant Ts evaluates to a good approximation the

first-order perturbation estimate

1 ~
7o & (@EPPe ) = (bly + by — 2bisbasdfy (Broa)) e (3.64)

Here B1j2 symbolises the angle between the two vectors joining spins 1 and 2 with spin 3.
Within the first-order perturbation approximation the contributions from additional spins

are additive, so for more than three spins

R g E i i — 20112 i2) |- :
Ts 307, (bh + 0% — 2b1ib2idgo (Bi2) (3.65)
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These above formulae are valid for distances dy;, do; and dy (i > 2) all greater than
di2, to justify the perturbation approximation. In this limit, the rate constant decays with
the inverse eighth power of the distance between each spin j and the centre of the spin
pair ‘12’.[72] Magnetic nuclei at longer range therefore have a negligible effect even if they
are present in large numbers, for instance the solvent bulk. The comparison of Ts and
T1 may hence be used to set confident geometric restraints on the immediate molecular

environment of the CHy group.

Measurements on phenylalanine-derived compounds

To test this concept and eq. (3.65) a series of isotopically substituted phenylalanine ana-
logues were prepared in which some of the hydrogens of the molecule were replaced
with deuterium. Deuteration ‘quenches’ the selected proton-proton dipole couplings ow-
ing to (i) the effective downscaling of the dipole-dipole coupling constant by a factor of
(vp/~m) ~ 1/6, and (ii) rapid self-decoupling of deuterium from the proton spin system due
to its fast quadrupolar relaxation. The difference in rate constants between isotopologues
is to a good approximation the rate induced by the proton difference.

Four isotopomers were studied as indicated in fig. 3.1 with proton/deuterium substitu-
tions made synthetically (i) at the alpha-proton (referred as d-Phe), (ii) on only the proton
sites of the phenyl ring (d5), and (iii) both of these environments (dg-Phe). Methyl ester and
N-phthalimido groups, both non-deuterated, were also added with the aim of eliminating
solvent-induced relaxation at the carboxyl and amino groups. Detail of the preparations
can be found in the supporting information of ref. [62]. Each sample was dissolved to
approximately 60 mmol concentration in 0.5 mL 99.99 % d4-methanol. The solutions were
gently warmed to assist dissolution, then transferred into 5 mm outer-diameter NMR tubes
equipped with Young values and thoroughly degassed to remove dissolved paramagnetic
molecular oxygen, Og (freeze-pump-thaw), and finally sealed.

Singlet order was excited on the diastereotopic methylene protons by applying Sarkar’s
sequence (§2.2.2, fig. 2.7) at an external B field of 9.4 T. Optimum delays were 7, =
1/412Jun| = 17.2 ms (2Jgg = 14.5 Hz between the CHy pair) and 7, = 7/|2yBCA§| =
14.9 ms. An on-resonance CW decoupling field of strength 3.0 kHz was applied for time
Tlock, before reconversion to antiphase signals and detection. Non-singlet spin order was

suppressed by applying a 12-step tetrahedral phase cycle (see §2.5.4) at the end of the
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deuterate alpha position

deuterate aromatic ring

MeOOC

ds'Phe de'Phe

Figure 3.1: Series of isotopically substituted phenylalanines, denoted d,,-Phe where n is the number
of deuterium nuclei present. Methyl ester and N-phthalimido blocking groups were added to
suppress solvent-induced relaxation at the carboxyl and amino groups, respectively.

spin locking time.[129] The sequence was repeated for several values of 7, and the signal
intensity on the S-protons fitted to a monoexponential decay exp (—Tock/Ts) yielding the
singlet lifetimes. These lifetimes are displayed in table 3.2 alongside which are given the
conventional 77 lifetimes for the methylene protons, measured by inversion recovery on the

same samples.

Ts(s) Ti(s) Ts/Ti [Tg' —Tg'(de)] (5)”"

do 7.4 1.15 6.4 0.13
dy 8.0 1.17 6.8 0.12
ds 16.0 1.33 16 0.04
dg 51 1.38 37 0

Table 3.2: Experimental Ts and 7T; relaxation times for the doubly protected phenylalanine ana-
logues (see fig. 3.1) an external field B of 9.4 T in degassed d4-methanol. The singlet lifetimes were
measured using Sarkar’s sequence under 3.0 kHz WALTZ-16 proton decoupling. The T; lifetimes
were measured by inversion recovery.
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Static conformational analysis

The CHs singlet lifetimes are longest in the ds and dg ring-deuterated isotopologues. For
dg-Phe, the lifetime was T's = (51+2) seconds, which is approximately 37 times longer than
T = (1.38£0.05) seconds. The decay time of d;-Phe was Ts = (8.0 £0.1) seconds or only
6.8 times longer than 77 = (1.17 £ 0.04) seconds. The rate constants (1/Ts — 1/Ts(ds))
in the far-right column of 3.2 show that the alpha-proton contributes (167! —5171) s7! =
0.04 s~! to the singlet relaxation rate, while the phenyl protons contribute (8.0~ — 51)
s7! = 0.12 571, i.e. about 3 times more. The rate for dy-Phe looks consistent with these

two contributions being additive.

Why do the phenyl protons contribute 0.12 s~! and what constraints does this put on
the orientation of the aromatic ring? To determine the answers, eq. (3.65) was used to
analyse the dependence of the singlet relaxation rate constant upon the torsional angle g,
around the C#-C7 sigma bond. Eq. (3.65) is assumed to be valid for the phenyl protons,
since: (i) CHy protons do not have significant J-couplings with the ring protons; (ii)
molecular rotation is within the extreme narrowing limit, as verified from the 77 value of
(1.38+0.05) seconds, which corresponds to a rotational correlation time of 7. = 24 ps; (iii)
the 51 second singlet lifetime in the dg compound indicates that CSA and the contributions
of the protonated blocking groups make a negligible contribution to the singlet relaxation.
It was assumed the ortho protons make the dominant contribution the relaxation, so that

the meta and para ring protons can be omitted from the calculation.

Internuclear vectors between the two ortho protons of the ring and the methylene
protons were calculated as a function of the coordinate g, using standard bond lengths
and bond angles. The derived dipole-dipole couplings o |r;x| ™ and angles cos(B1;2) =
(r1j - rj2)/(|715||7j2) are then used with Eq. (3.65) to determine T /T versus ¢g,. The
calculation was performed using SpinDynamica.[101] The dependence is shown by the solid
line plotted in fig. 3.2, defining the convention ¢g, = 0 where the midpoint of the vector
joining the two CHa-protons lies in the plane of the aromatic ring (see also fig. 3.2).

The calculated values of Ts/T; show a variation between ~ 14 near g, = 0° and ~ 6
in the vicinity of ¢, = 90°. Experimentally, the ratio for d;-Phe is Ts/T7 = (6.8 £0.2),
indicating an angle between ¢g, = 45° and 135°. This range of orientations is consistent

with the known crystal structure of L-phenylalanine.[135]
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Figure 3.2: Variation of Ts/7} in d;-Phe against the C#C? torsional angle of the aromatic ring
©p~- The ratio plotted is that predicted by eq. (3.65) assuming pure dipole-dipole relaxation in the
system containing the two ortho ring protons and the methylene protons: (solid line) for a single,
static ring orientation; (dashed line) for rapid 180° rotational jumps between ring orientations gs.,
and (¢gy +180°). The horizontal grey band indicates the experimental value of T's/T} for d;-Phe,
the height indicating the error margin.

Molecular dynamics

The aromatic ring in phenylalanine, as well as in other aromatic amino acids, is known to
execute 180° ‘hops’ between conformations with torsion angles @3, and (g, + 180°).[136]
This may have strong consequences on the CHs singlet relaxation. For ring flips that
are slow relative to the rotational correlation time, but fast compared to the Larmor
frequency, Redfield theory says the rate constants 1/7) and 1/Tg are each given by the
conformationally averaged rate.

Fig. 3.2 (dashed curve) shows the predicted ¢g.-dependence of the resulting T's/T}
ratio for rapid jumps of the ring. The model predicts much longer singlet relaxation times
due to averaging of dipolar couplings between the two geometries of the Cls and each
ortho ring proton, with T's/T} varying between ~ 13 and ~ 26. The experimental value of
Ts/T) = 6.8, however, does not at all agree with this range. This proves either ring flips
are slow compared to the Larmor frequency, or nonexistent altogether.

This apparent immobility of the phenyl ring is confirmed by singlet and longitudinal
relaxation measurements made on samples of a-deuterated tyrosines (9.4 T, D2O, see
fig. 3.3). Lifetimes Ts = (3.1 £ 0.2) seconds and T; = 0.5 seconds were measured for the
methylene group of a-deuterated tyrosine. These remained unchanged upon adding a nitro
group (NOg) meta on the ring, the large mass and bulk of which quenches ring-hopping.

The ratio T's/T; ~ 6 further suggests a near-90° equilibrium torsion angle (g, of the ring.
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a O 0
OH OH
NH NH
HO ? HO ?
NO,
Ts = (831+£02) s Ts = (31+0.2) s
T, = 050 s T, = 050 s

Figure 3.3: Experimental relaxation time constants for a-deuterated tyrosine at 9.4 T in D5 O: (left)
free amino acid; (right) hindered meta nitro analogue. The similar lifetimes suggest a non-rotating
phenyl group in ordinary tyrosine.

Presence of J-couplings

Due to the relaxation induced by the a proton, Ts/Tj in the ds-Phe isotopologue is depen-
dent on the torsion angle between C? and C, ©ap- In this case, however, eq. (3.65) cannot
determine conformation restraints since the relaxation is accompanied by evolution under
the vicinal 3Ja5 couplings. In this case, T's/T; was determined by resorting to full Liou-
villian eigenvalue analysis of the zero quantum subspace, using the Karplus relationship to
treat the conformationally dependent 3 Jap couplings, 3.J13 and 3.Jo3. Parameterisations for
3Ja5 were chosen according to the CPHyC*H vicinal couplings expected for amino acids

in a random-coil peptide chain.[137]| In units of Hz, these are

SJi3 = 9.4c08(paps + 60°) — 1.6 cos?(pap + 60°) + 1.8, (3.66)

3Ja3 = 9.4c08(pap — 60°) — 1.6 cos?(pap — 60°) 4 1.8. (3.67)

These relationships have been plotted in fig. 3.4(b).

The Ts(pap)/T1 curve resulting from eigenvalue analysis is shown in fig. 3.4(a). Minima
in Ts/T; occur in the vicinity of the eclipsed syn conformations where the a-proton lies
nearest to one of the methylene protons (.3 ~ 60°). The maximum lifetime occurs at
the anti configuration (¢, = 140° to 180°). The experimental ratio Ts/T} supports a
torsion angle @, ~ 100° for a static conformation of the amino acid, which according
to fig. 3.4(b) agrees approximately with the angle inferred from the two experimental J-
couplings 3J,5 = 4.9 Hz and 12.0 Hz.



151

=~ |5

-180° 0° @ 180°

-180° 0° @, 180°

Figure 3.4: Dependence of Ts/T) for relaxation caused by the a-proton in ds-Phe. The solid line
in (a) shows the variation in Ts/7) against the torsion angle ¢, as calculated by Liouvillian
eigenvalue analysis, taking into account the vicinal 3.J,5 couplings that are themselves dependent
on p.p according to the Karplus relations, which are plotted in (b).[137] The dotted line in (a)
shows the variation in Ts /T against the first-order matrix element (T3Z|T'(PProta) T12) . The solid
curve is the more correct approach; note, however, the dotted and solid lines coincide at the torsion
angles where |3J13 —3 Jaz| <2 Jy2. This behaviour is in accordance with ref. [77].
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This analysis shows that Ts/T} provides information that difficult to obtain using the
Karplus relationships alone. The ratio T's /17 shows a large contrast between the ¢,5 = 0°
and .3 = 180° conformations of the molecule, while the J-couplings according to fig.
3.4(b) are roughly similar. In this particular demonstration it is unlikely that nuclear
Overhauser effect (nOe) measurements can resolve the ambiguity, since these are dominated
by the strong intra-pair coupling b2 and relatively insensitive to the position of the vicinal
proton.

To summarise, the ratio Tg/7T7 of a CHy group, within the stated approximations, is
insensitive to overall molecular rotation and depends only on spatial positions and dynamics
of neighbouring nuclei. Singlet relaxometry of methylene groups may complement other
NMR. methods, such as J-coupling analysis and the nOe, both as a support of structure-
determination outcomes obtained from the existing methods, or resolving answers that are

otherwise difficult to obtain.

3.2.2 Heteronuclear singlet relaxation

In §2.3 a demonstration was made of singlet excitation on a pair of chemically equivalent
protons by exploiting J-couplings to a nearby 3C nucleus. As well as being another means
to excite singlet order, and access lifetimes extended beyond 717, heteronuclear singlet NMR
provides interesting opportunities for singlet relaxometry.

To illustrate this, the molecule 1,2,3,4-tetrachlorobenzene (1,2,3,4-TCB) is returned to,
which contains two equivalent aromatic protons and three distinguishable aromatic carbon
sites. Singlet relaxation times T and longitudinal relaxation times 77 were recorded for
all of the natural-abundance 3C; isotopomers. These experimental data are summarised
in table 3.3, which confer the longest singlet lifetimes are when the C nucleus is furthest
from the proton pair. Qualitatively, this agrees with the reduction in the strength of 'H-13C
dipole couplings, which are proportional to 1/ d%H.

To estimate quantitative relaxation times for the heteronuclear system one must use
a Redfield’s formalism in a slightly more complicated form than that outlined in 3.1.1.
Second-order truncation in eq. (3.4) dictates a need to transform the Hamiltonian into
a double interaction frame; one frame rotating at the proton Larmor frequency via the
propagator exp(—iw?l,t) and the other at the Larmor frequency of '3C, via exp(—iw2S.t),

where I denotes proton and S carbon. Solution of the relaxation problem, however, has
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Cl Cl Cl Cl
H cl H Ccl H Ccl H Cl

H Cl H Cl H Cl H Cl
Isotopomer Cl Cl Cl Cl

Experimental relaxation times (MeOD, 9.4 T)

Ts (s) 2.2 (72 +5) (140 + 10) -
Ty (s) 2.8 8.7 9.0 9.2
Ts /T 0.8 (8.3 +0.4) (15.5 + 1) -

Predicted lifetime ratio, pure DD mechanism + short 7,
Ts/Th 0.7 11-12 > 170 -

Table 3.3: Experimental decay constants, T, measured under resonant proton spin locking at
9.4 T, and Ty, by inversion-recovery /INEPT in d4-methanol for the protons in 1,2,3,4-TCB. For
detail on the measurements, see §2.3. The black dots indicate the position of the '3C nucleus,
if present, in each isotopologue. The quoted error in Tg is the uncertainty in exponential fitting
of experimental decays. Below are listed the theoretical lifetime ratios T's/T; for each geometry
predicted by the Redfield theory.

some simplifications: (i) that under resonant spin locking of either the I or S nuclei, (but
not both), the heteronuclear couplings are averaged, and may be neglected from calculation;
(ii) that due to the secular approximation v; # g, the operator basis is diagonal in the
coherence orders (my, mg) of the I and S spins. Together these validate use of Liouvillian
perturbation theory for Ts. Assuming a pure dipole-dipole relaxation mechanism, for sake

of simplicity, the rate formula obtained is

1

7o & (TREPPeTg) (3.68)
1 2 2 2
= TS(b13 + b33 — 2b13b23d(Bis2)) (3.69)

x(25(0) 4+ 35 (w)) + 3j(w2) + j(Jwf) — W) + 65(Jw] + wi])).

where the subscript ‘3’ is used to denote the '3C spin and ‘1’ and ‘2’ the protons. In

extreme narrowing for the small molecule, this condenses to

eq. (3.69) = (b%g + bgg — 2bl3bggd(2)0(5132))7'c. (3.70)
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Figure 3.5: Contour plot showing 7.-independent intramolecular dipole-dipole relaxation ratio
Ts /T against position of a *C nucleus for the two protons in 1,2,3,4-TCB, d13 = (dcu+dcc) ~ 2.5
A. The yellow region indicates space that is physically inaccessible to the nucleus of a non-bonded
carbon atom, assuming standard van der Waals radii for non-bonded carbon (ryqw(C) ~ 1.7 A)
and hydrogen atoms (rvaw (H) ~ 1.2 A).

This is the same formula derived for homonuclear out-of-pair dipolar interactions (compare
eq. (3.64)). The formula for the proton 77, in the case of 1,2,3,4-TCB, is likewise identical
to eq. (3.62).

The above formula is evaluated for the 'H relaxation of 1,2,3,4-TCB and plotted in
fig. 3.5. The contour lines indicate the theoretical Tis/T} at arbitrary position of the 3C
nucleus relative to the two protons whose separation is dis = (dcy + dcc) ~ 2.50 A,
assuming standard bond lengths doc = 1.40 A and dey = 1.10 Aand 120° bond angles.
Superimposed upon the contour plot is a diagram showing the location of carbon sites in
the 1,2,3,4-TCB, within this model. Precise ratios T's/T; at these positions are listed at
the bottom of table 3.3.

The calculated estimates of Tg/T7 are very close to the experimental results for iso-
topomers where the '3C nucleus is within one or two sigma bonds from the proton pair,
suggesting in these geometries that the dipole-dipole mechanism is the dominant singlet
relaxation source. The experimental Ts/T; for the more-remote three-bond isotopomer,

however, is much shorter than the predicted ratio. The likely situation is that other re-
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laxation mechanisms, such as CSA, limit the singlet lifetime from being longer, and are
more influential than the 'H-'3C dipolar coupling over the three-bond distance. A study
of Ts /Ty versus B field may resolve this hypothesis.

The yellow region in fig. 3.5 marks the area around the proton pair that is inaccessible
to the nuclei of non-bonded carbon atoms. This indicates that out-of-pair spins influence
singlet relaxation only at very short range, and that intermolecular dipole-dipole contri-

butions make a negligible contribution to T&s.

3.2.3 Singlet relaxation in paramagnetic-containing solutions

The final part of this thesis reports the influence of paramagnetic agents on singlet lifetimes.
These are substances that contain one or more unpaired electrons, arising usually as either

transition metal complexes or free radicals.

Introduction

Paramagnetism-induced relaxation is a complicated phenomenon.[14] The unpaired electron-
spin momentum of paramagnetic species interacts with nuclear spins in quite a different
way to inter-nuclear dipole couplings. The gyromagnetic ratio of the electron is much larger
than of atomic nuclei, approximately 650 times the gyromagnetic ratio of a 'H nucleus.
Firstly this means that even lone-unpaired electrons may induce rather strong relaxation
on the nuclear spins. The large electron magnetism is also strong enough to couple to
other components of the system, including external magnetic fields (Curie effect) and the
molecular orbital angular momenta. Spatial delocalisation of the electron wavefunction
adds some further complication. Charged radical ions may additionally distort the nuclear
chemical shieldings (chemical shifts), causing additional relaxation through a mechanism
similar to intermolecular chemical exchange.

In the present section this mechanical detail of paramagnetic relaxation is for the most
part ignored. I focus more on a basic questions of interest: is paramagnetic relaxation of
the singlet order slower or faster than the 77 of longitudinal magnetisation? By how much?

The above questions may be asked in view of the possible in vivo applications of nuclear
singlet states where in blood there is the invariable large presence of metallo-proteins, such

as haemoglobin, dissolved metal complexes and free radicals e.g. *NO and O3°. As an
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example, the Ty of 12°Xe is more than 12 times faster dissolved in blood than dissolved in
a saline solution.[138]| Long singlet lifetimes in proximity to these paramagnetic substances
may help preserve nuclear spin order during transport through a living animal’s or human
being’s circulatory system. This may apply to spin order that is hyperpolarised outside
the body, for instance by DNP[47] or PHIP[57], then injected, which must then survive
transport until the point of interest in the body where it is imaged by MRI, or otherwise
detected.

A well known example of paramagnet-induced singlet relaxation is the ortho-para con-
version in dihydrogen. Conversion between spin isomers of Ho may be catalysed through
non-bonding near-approach to paramagnetic surfaces and complexes,[139, 64] where in-
stantaneous differences in the local magnetic field are experienced by the hydrogen nuclei,
inducing instantaneous magnetic inequivalence and singlet-to-triplet transitions. Ortho-
para conversion in free Hy has been studied extensively in solution, both experimentally
and theoretically.[54, 140, 141] More recently ortho-para conversion has been studied for
Hs encapsulated in Cgo.[142, 143, 144]

Relaxivity measurements

The relaxation influence of paramagnetic agents was studied in aqueous solution for the
diastereotopic glycine protons of the dipeptide alanylglycine (AG), whose structure and
basic NMR spectrum is displayed in fig. 3.6. This small and simple molecule has been the
subject of several previous singlet NMR studies.[30, 145, 66, 83| The decay constant Ts in
water, in the absence of dissolved paramagnetic substances, is almost 40 times 77, which is
due to the dominant dipole-dipole relaxation mechanism of the relatively isolated proton
pair and fast correlation time 7.

The glycyl relaxation in AG was verified as a starting point for the present study.
Singlet T's and longitudinal 77 decay times at a field of 9.4 T were measured in a solution
containing 40 mM AG dissolved in 500 puL. D2O. Before the NMR measurements, the
solutions were thoroughly degassed using the freeze-pump-thaw technique to eliminate
dissolved paramagnetic oxygen. Singlet order was excited using Sarkar’s pulse sequence
(see §2.2.2 and ref. [24]) with optimal durations 7, = 14.5 ms and 7, = 10.0 ms. The singlet
order was sustained during a relaxation period Tyelax by applying a WALTZ-16 modulated

rf field at an amplitude of 2.5 kHz. Signal amplitudes were fitted to a monoexponential
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Figure 3.6: Molecular structural diagram and 'H NMR spectrum (9.4 T, D20, room temperature)
of the Ala-Gly peptide. The proton chemical shift is referenced to tetramethylsilane.

curve exp(—Tyelax/ 1) giving Ts = (3242) seconds. A spin-lattice constant 7} = (1.440.1)
seconds was then measured by inversion-recovery. These data confirm relaxation is caused
predominantly by the dipole-dipole coupling in the glycyl proton pair.

The paramagnetic relaxation influence was determined for a small selection of transition
metal ions, Cul! (electron spin = 1/2), Mn!! (spin 5/2), the lanthanide ion Gd™! (spin 7/2)
and the organic radical TEMPO ( = 2,2,6,6-tetramethyl piperidine N-oxide, electron spin
1/2). A stock solution for each of these agents was prepared by dissolving each species, or

its corresponding chloride salt, in D3O to a suitable concentration.

Proton lifetimes Tg and 77 were measured versus each paramagnetic substance over
a concentration range 0 to 0.4 mM by adding aliquots of the paramagnetic stock to the
starting AG solution (= 40 mM AG in 500 pL degassed D2Q). In all experiments the
signal was fitted successfully by monoexponential relaxation curves. No noticeable line

broadening or paramagnetic shifts were observed.

As shown by Fig. 3.7, the rate constants 1/Ts and 1/7; were observed to increase

linearly with paramagnet concentration [X] according to the law

(3.71)

where the coefficient of proportionality is called the ‘relaxivity’.[14] The relaxivities k; and
kg, for the longitudinal and singlet relaxation, were fitted from the slopes of the 1/77 and

Ts data and are tabulated in table 3.4.

The table shows the T} relaxivity occupies a wide range of values and it can be seen that

k1 increases approximately in proportion to the square of the electron magnetic moment
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Figure 3.7: Longitudinal (e 7, ') and singlet (o Tg') relaxation rate constants in DyO for the
glycine protons in AG as a function of metal ion concentration as measured for paramagnetic
species: (a) Cu''Cly; (b) Mn'Cly; (¢) GA'™Clz. Time constants at zero concentration are Ts(0) =
32 seconds and T3 (0) = 1.4 seconds. Relaxivities are equal to the respective slopes of each line.

X ky (mM~'s™Y) kg (mM~'s71) ks/k1

Cu?;l) 3.0+0.1 1.6 +0.08 0.51 + 0.04
Mn?,;D 174+ 1.0 6.7+ 0.3 0.38 £+ 0.02
Gdf’;q) 115+5 40 + 2 0.35 4 0.02
TEMPO 2.0+0.1 0.6 £0.05 0.28 & 0.02

Table 3.4: Experimental singlet and longitudinal relaxivities for the methylene protons in AG (9.4
T, D,0, 293 K), and the ratio between.
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for each species. This pattern agrees with the relaxation mechanism involving the proton-
paramagnet hyperfine coupling.|2, 141] The singlet relaxivities kg also follow this trend,
but are typically a factor of 2 to 3 smaller. This states the nuclear singlet order is much
less susceptible to paramagnet-induced relaxation than ordinary nuclear magnetisation.
The singlet relaxivities kg for metal ions are more than 10° times those for the anal-
ogous ortho-para conversion in dihydrogen,[140] and ortho-para conversion in endohedral-
hydrogen fullerenes.[142, 144] This probably arises because the interaction between AG and
the metal ions can involve partial coordination with the carboxyl groups of the peptide,
which results in a much stronger relaxation on AG through a much longer correlation time
compared to Ha. Spin isomer interconversion in Hs is slow due to the very large ortho-
para energy splitting, which is the order 120 cm~! (= 3500 GHz), or twice the rotational
constant of the diatomic.[54] Ortho-para relaxation requires fluctuations at this frequency

while fluctuation at the much slower Larmor frequency (400 MHz) is required by AG.

Oxygen

Oxygen gas was bubbled from a cylinder through an initially degassed solution of AG,
again 40 mM in 500 ul. D20, and the relaxation constants measured at 9.4 T. Additions
of O were made until no changes were observed in T7 and Ts. At this point the solution
was assumed to be saturated with Os.

It was not possible to measure the levels of dissolved oxygen explicitly in this setup,
and values for kg and k1 were not obtained. However, the data still allow one to calculate
the concentration-independent ratio kg/k; = 0.55 £ 0.03 by plotting the slope of 1/T;
against 1/7Ts. From eq. (3.71):

1 1 1 1 B ]is‘
<Ts([X}) _Ts(0)>/<T1([X]) ‘Tl(o)) = ke (3.72)

This experimental ratio shows the singlet relaxation is also about two-times less sensitive
to dissolved Og than ordinary magnetisation.

Note, while it was not possible to determine explicit relaxivities, an estimate is possible
from the relaxation constants at saturation using eq. (3.71). The shortest singlet relaxation
constant recorded was T's = 1.4 seconds, which on assuming a saturation of 40 mg/L (1.2

mM) Oy in D20 at 293 K[146] gives a value of ks = O(1) mM~1s™!. This is a similar
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order of magnitude to the relaxivity of dissolved TEMPO radicals.

Interpretation

The ratio kg/k1 can be loosely interpreted within a random-field relaxation model.[82,
2] This ignores the physical detail of the intermolecular nucleus-electron interaction and
assumes the dissolved paramagnetic species induce randomly fluctuating magnetic fields

at each of the glycyl protons. The relaxation-causing Hamiltonian is thus assumed to be

2
HRE (@) = Y B (1) I (3.73)
j=1

2
_ Z (BERR () Lo + BEFT (01, + BET (1)) (3.74)

where B;:RF (t), BERE(t) are the random time-fluctuating fields at the proton sites ‘5’ and
‘k’ and can be thought to be proportional in magnitude to the concentration of the dissolved
paramagnet; ERF stands for ‘external random field’. This Hamiltonian corresponds to a
scalar product between rank-1 spherical tensors

2 1
BT = > > (A ODL, QYT LE (3.75)

1-m
j=lmm'=-1

whose space-field components are defined [82]

[ATETM () = Fom(BERF (1) £ BERY (1)) /v/2 (3.76)
(AWM (1) = AuBERF (1) (3.77)

and the spin components are

TP = F (L £ 1y) V2 (3.78)
e =g, (3.79)

To obtain the ERF relaxation superoperator the above Hamiltonian is plugged through
the Redfield theory. In the ensemble average step, one assumes that the ERF amplitude,

which is most likely due to the intermolecular motion, can be separately averaged from the
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molecular motion, such that

(AT IM ([ ATEFIM (¢4 1) DL, (QM=D) (1) DY, (QMD) (¢ + 7))

m/
1

= gém_“ém/_ulG(T)[A]if?F’j]M(t)[A?zf’j]ﬂf(t—|—T). (3.80)

The above may simplify on assuming the fields at sites ‘j’ and ‘k’ are orientation-

ally isotropic with root-mean-square (rms) amplitude given by (BJ}EQL,RF)2 = (B%RF )2 =

(B;-“:ZRF)2 = BERE and defining a correlation parameter Cjj, = BJERFBERF/(BERF BERF ).

j,rms? J,rms*~ k, rms

eq. (3.80) = 8, ,G(r)BERE BERE ). (3.81)

7, rms—k, rms

A value of Cj; = 0 on the two sites indicates that the fields B}-ERF BERF are completely
uncorrelated at each molecule, whilst Cj, = £1 indicates that the two fields are always

parallel, or antiparallel to one another respectively.

After making all of these assumptions the relaxation superoperator is given by

7, rms 2k, rms 1-m

1
DERE = 93N " BIRE BERE Cor D (=)™ i(ma) [T T MR (3.82)
gk

m=-—1

The diagonal matrix elements for I, and Ty give a first-order approximation to the relax-

ivities k1 and kg, respectively. These give the equations

ks o< 1/TERY = (Tpo|TPRF | Ty

= 25 ((BIRE)? + (BERE)? — 20 BERE BERE ) (5(0) + 2;(w°)[#333)
ki o< 1/TERY = (I |TERF|L,)

= TR((BE ) + (Biins) )i (). (3.84)

One may see that in the extreme narrowing approximation j(w") = j(0) = 7. of this
model the ratio kg/k1 depends only upon the field correlation, Cjj. If the fields are com-
pletely uncorrelated (Cj, = 0), then kg = 2k;, meaning that the paramagnet accelerates
relaxation of singlet order (coupled spin order) twice as strongly as the longitudinal mag-
netisation (single-spin order). At the opposite extreme Cj, = +1, the relaxivity ratio kg/k1

tends to zero. This outcome arises since the ERF Hamiltonian is always symmetric under
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permutation, meaning singlet-triplet transitions are forbidden. The findings kg < kp in
table 3.4 thus confer a strong correlation in the induced fields. Consistent values of C}, are
~ 0.8 to 0.9 for the ratio kg/k; ~ 0.3 to 0.5, under the assumption of extreme narrowing.

Similar random-field correlation parameters have been obtained by Wokaun and Ernst
[147] for paramagnetic relaxation by comparing zero-quantum, single-quantum and double-
quantum linewidths of a proton pair. Their observations, similar to the experimental data
presented here, have suggested that a lower correlation parameter Cj; indicates a closer
mean-approach distance of the paramagnet to the nuclear spins. In table 3.4, for example,
the value of kg/k; is lower for molecular oxygen in solution than for TEMPO, which is
consistent the relatively small molecular radius of oxygen. The mean approach distance,
however, also depends on how strongly the dissolved paramagnet binds or associates with
AG, which may well be significant in the case of the solvated transition metal ions. With
a sufficiently elaborate relaxation analysis, one may eventually be able to quantify the

proton-paramagnet distances, if desired.|[14]

Counteraction of paramagnetic relaxation

Relaxation induced by paramagnetic metal ions may be suppressed by addition of suitable
chelating agents to the solution. As shown in fig. 3.8a, the singlet lifetime of AG in the
presence of 0.1 mM MnCly is Ts = (1.5 £ 0.1) seconds. This improves to T's = (37 + 2)
seconds on adding a tenfold molar excess (=1 mM) of ethylenediamine tetra-acetic acid
(EDTA). A similar effect is observed for Cu'l ions.

Suppression of the paramagnetic relaxation in this way supports a hypothesis that
the relaxation mechanism involves transient complexation between the ions and AG. A
cartoon representation is shown in fig. 3.9(a). On addition of EDTA, the metal ions remain
physically present in solution but form strong hexadentate chelates with the complexing
agent. This prevents their association with AG (fig. 3.9(b)), resulting in relaxation times
that are comparable to those in a paramagnet-free solution.

Alternatively one may add a chemical agent that transforms the paramagnetic relaxing
agent into a diamagnetic form. Fig. 3.8 also shows that ascorbate[145] in molar excess
significantly reduces the relaxation effect of dissolved Oq. Ascorbate is well-known to reduce

superoxide (O3 ), hydroperoxide (HOO®) and O3° radicals in aqueous solution.[83, 145]
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Figure 3.8: Quenching of paramagnetic relaxation agents. Curves show the nuclear singlet decay
x exp(—7/Ts) at 9.4 T for solutions of 40 mM AG plus (a) 0.1 mM MnCl; only (open circles,
Ts =1.5+0.1 s), with sodium ascorbate (grey circles, Ts = 2.3+0.1 s), with 1 mM EDTA (black

circles, Ts = 3742 s); (b) dissolved oxygen (open circles, Ts = 3.9+0.1 s), then following addition
of ascorbate[83, 145] (black circles, Ts = 40 £ 3 s)
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Figure 3.9: Suggested transient-binding interaction between AG and transition metal ions. Close
approach of the two species in (a) results in strong relaxivities k; and kg. On addition of EDTA,
as shown in (b), the species no longer bind, resulting in much weaker relaxivity.
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Perspectives

Magnetic resonance imaging (MRI) and spectroscopy (NMR) are unique tools in the study
of chemical substances in that they provide an interactive form of ‘molecular tagging’
Unlike radioactive labelling, or fluorescence methods, which may be regarded as scalar-like
labels, magnetic resonance exploits the phenomenon of nuclear spin, which as a vector
property can behave more like a memory. Magnetic resonance relies upon manipulation of
spin order, which is the net alignment of nuclear spin across the bulk sample. Information
may be encoded upon the spin order, then be read out by spectroscopy at a later time. For
instance in MRI, information of the molecular position is encoded at one time point, then
at a later time imaged, allowing rich information about molecular self-diffusion, flow, and
other motion to be determined. Since magnetic resonance detects the chemical environment
of nuclei, one may also follow the chemical changes occurring during reactions, such as
metabolic outcomes in vivo.

This thesis seeks to deal with an Achilles heel of these techniques: the finite lifetime of
spin order. Small fluctuations in the magnetic environment of the nuclei eventually cause
decoherence of the spins, returning ordered states to thermal equilibrium. In a practical
context the maximum storage time of spin order is time until which NMR readout falls
below thermal noise of the system. To some extent, this may be lengthened by using very
highly ordered (or ‘hyperpolarised’) initial states, such as provided by dynamic nuclear
polarisation, or more sensitive hardware, but the intrinsic decay rate of spin order remains

unchanged.

165
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4.1 Summary of concepts

Long relaxation times are possible by exploiting nuclear singlet states between pairs of
spin-1/2 nuclei.[16, 17] For isolated spins, the slowest decay process is the relaxation of
longitudinal polarisation, (time constant 7} ), namely the population asymmetry across the
Zeeman states |a) and |5). In systems containing two spin-1/2 nuclei, singlet spin order
may outlast 77. The singlet has the non-magnetic configuration (| Bx) —|B;)) V2, where
spins are polarised in opposite directions with respect to the quantisation axis. Singlet order
is invariant under conditions that preserve magnetic equivalence of the pair and is therefore
slow provided: (i) the nuclei inhabit magnetically similar environments; and (ii) the decay
mechanisms involve strong correlation across the pair. This is true of most relaxation in
solution, including for intramolecular-[19, 62, 82| and intermolecular- [79] dipole-dipole
coupling, paramagnetic [111]| and spin-rotation relaxation mechanisms.|[20] Nuclei with low
gyromagnetic ratio (e.g. C and '°N) are encouraging, where T may approach several

tens of minutes, under favourable conditions.|22, 23|

4.2 Summary of outcomes

To set up a foundation for future applied work, the main goals of this work were to (i)
consolidate and (ii) extend the NMR methodology and concepts for exploiting nuclear

singlet states. The main outcomes are summarised as below:

Resume of chapter 2

e An in-depth study was made on singlet preparation and readout. Singlet order
can be prepared on a spin-1/2 pair starting from a state of longitudinal polari-
sation provided the nuclei are magnetically inequivalent. The coherent evolution
can be broken down into chains of transformations within the singlet-triplet Hilbert
space. Spin-symmetry-breaking interactions usually induce transformations within
two-dimensional (two-level quantum state) ket subspace, which can be visualised as

rotations on a Bloch sphere.

e The most appropriate ‘magnetisation-to-singlet’-converting pulse sequence for a given

molecule depends whether the spin pair is strongly or weakly coupled (how close or
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far from equivalence). However, all sequences excite singlet order with the same effi-

ciency, and obtain the maximum singlet order accessible through unitary evolution.

e For all the sequences examined that excite singlet order from a thermally polarised
sample, the final detectable signal is two-thirds the intensity of that obtainable from
the initial magnetisation. This is the theoretical maximum ignoring all relaxation
effects. The recovered magnetisation may be slightly higher in samples with unity-
order polarisation, but requires some careful consideration about the direction of the

subspace-specific rotations.

e Long-lived singlet order is accessible in the ‘near-equivalence’ regime, where symmetry-
breaking interactions are weak compared to the intra-pair spin-spin coupling. This
avoids use of spin-locking and the associated complications. Demonstrations have
been made for weak asymmetric induction on an otherwise equivalent spin pair by a

remote chiral centre,[88] and 0 /160 isotopic substitution.|[102]

e Singlet NMR of chemically equivalent nuclear spin pairs is facilitated also by het-

eronuclear symmetry-breaking.

e Hyperpolarised singlet order is shown to be available immediately after dissolution
DNP, avoiding altogether the need for pulse sequence preparations. While this ‘brute-
force’ method generates a relatively small singlet polarisation scaling as pg = —p?/3,
it may save against the resources, time and delicate control involved in hardware and

pulse sequences for magnetisation-singlet conversion.|32]

e Singlet-triplet rotations may be induced by weak, transition-selective rf field pulses.
This method, however is inferior to the synchronised spin echo method, as its per-

formance is extremely sensitive to homogeneity of the static B° field.

e Singlet order of an ensemble of two spin-1/2 nuclei behaves as the unique rotation-
invariant (rank-zero) operator, which allows one to obtain NMR spectra containing

only singlet-derived signals.

Resume of chapter 3

e Relaxation in solution NMR proceeds by rotational modulation of anisotropic spin

interactions, for example dipole-dipole couplings. Spherical tensor operators trans-
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form as irreducible representations of the rotation group SO(3) and are therefore a

natural language of the density operator when analysing relaxation.

In the extreme-narrowing regime, most relaxation mechanisms behave as scalar su-
peroperators and cannot induce cross relaxation between tensor operators of different
ranks, ¢.e. cannot change the total angular momentum of spin order. This allows nu-
merous shortcuts to be taken in Redfield’s formalism and leads to concise analytical

formulae for both singlet and longitudinal relaxation rates.

An experimental study is made for dipolar-dipole relaxation influence on singlet
relaxation in systems of three and four nuclei. Relaxation rate contributions from a
given nucleus in a molecule are obtainable, within reasonable approximation, by rate
difference with a spin-zero isotopologue. Singlet relaxation rates depends strongly on
the relative geometry between the spin pair and other magnetic particles, in general
decreasing with the inverse eighth power with distance from the centre of the spin

pair.

Redfield theory says the ratio T's/T) for protons in the extreme-narrowing limit is
purely a function of geometry between the spins. For rigid molecules, the measured
value of Ts/T) therefore allows a basic form of conformational analysis. The ra-
tio T's /Ty in general provides structural restraints that are complementary to other
structure determination methods in solution NMR, including vicinal J-couplings and
the nOe. Singlet relaxation may also be less-susceptible to spin diffusion than the

nQOe.

Experimental relaxation rates 1/77 and 1/Tg are found to be proportional to the
concentration of paramagnetic transition metal ion or radical dopants in solution,
but the slope with respect to concentration, or ‘relaxivity’, is lower for the singlet.
This means that singlet order is less-sensitive to paramagnetic relaxation than the 7T
of the pair. In general, the ratio depends on the nature of the interaction between the
paramagnetic species and the nuclear spin pair. Singlet relaxivity of the methylene
protons in Ala-Gly in a solution containing dissolved transition metal ions is found

to be two to three lower than the T3 relaxivity.

e The effect of accelerated relaxation due to paramagnetic metal ions by can be re-
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moved by addition of EDTA or similar multi-dentate complexing agents. In the case
of radicals the same outcome is achieved by adding a mild reducing agent, such as
ascorbate.[111] The magnetism of transition metal ions may also be altered by suit-
able reducing or oxidising agents, where the number of unpaired electrons depends

on oxidation state.

4.3 An outlook for singlet NMR

The most interesting area for future study is singlet relaxometry. While in this thesis
the singlet lifetimes have been analysed for several mechanisms, many variables remain
unexplored.

Perhaps the most obvious is the B° field dependence. Spin relaxation via the chem-
ical shielding anisotropy mechanism (CSA) increases in importance at higher BY field as
CSA-CSA auto-correlation terms scale quadratically in vB°. Cross-correlated CSA-dipole
relaxation scales linearly with vB°. Both mechanisms are significant for essentially all
spin-1/2 isotopes except protons, which have large shielding anisotropies (e.g. 3C, 31P;
CSA of order 10 to 200 ppm). A separate issue at high B fields is the exit from extreme-
narrowing, where molecular tumbling appears slow on the Larmor frequency timescale and
may not sample the spectral density uniformly for all coherence orders. In the Redfield
treatment, nonuniform spectral density adds complication in the form of cross-relaxation
between spin ranks, so that concise rate formulae may not be obtainable analytically. In
general, both 1/Ts and 1/T) rates are expected to decrease outside extreme narrowing, in-
creasing lifetimes as a result. The overall ratio Ts /T, however is likely to fall, since singlet
relaxation may be mediated through transitions at the zero-quantum frequency (spectral
density j(0) = 7. is always finite), while longitudinal relaxation is not.

There is also a lot to care about besides fluctuating interactions on the molecular
rotation timescale. At low enough B field the Larmor frequency may fall within frequency
of slow motions that include intermolecular processes, for instance chemical exchange,
which may be explored through pH, temperature and solvent-dependence studies. In non-
rigid molecules there may be conformational exchange and fluxionality such as ring flips,
inversion and other functional group jumps. These may cause sizeable relaxation and result

in problems for storing singlet order in low or zero magnetic field, or transporting through
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low-field regions.

A better knowledge of singlet relaxation through such studies may help one design
molecules with the longest possible lifetimes, by minimising relaxation sources under a
given set of conditions. This may help assess potential for singlet NMR applications in
vivo, for instance in tracking the progress of metabolites across longer timescales, or as
a tool in transporting exogenous hyperpolarised substances through the body to a site of
interest, whereupon MRI is performed.

In contrast one may ask which systems exhibit strong singlet relaxation, and may be
used to yield useful information. For instance, is paramagnetic singlet relaxation a viable
tool for molecular geometry and dynamics determination in metallo-proteins, or a tool for

measuring that oxidation state of a dissolved complex?
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