On the predictability of Galileo disposal orbits
On the predictability of Galileo disposal orbits
The end-of-life disposal of Galileo satellites is needed to avoid collisions with operational spacecraft and to prevent the generation of space debris. Either disposal in stable graveyard orbits or disposal into the atmosphere exploiting eccentricity growth caused by lunisolar resonances are possible. However, there is a concern about the predictability of MEO orbits because of possible chaotic behaviour caused by the overlap of resonances. In this work, we investigate if Galileo disposal orbits are predictable and if safe disposal is possible under initial uncertainties. For this, we employ finite-time Lyapunov exponents (FTLE) and sensitivity analysis and compare these two methods regarding their practicality for analysing the predictability of disposal orbits. The results show that FTLE are not suitable for determining if an orbit behaves chaotically or not on the time scale of interest. Sensitivity analysis, on the other hand, can be used to quantify the effect of uncertainties on the orbital evolution and to determine if safe disposal is possible. In addition, we show that reliable re-entry disposal is feasible with a limited \Delta V budget. However, safe disposal into a graveyard orbit is not always feasible considering uncertainties in the disposal manoeuvre and dynamical model when the available \Delta V for disposal is low.
University of Southampton
Gondelach, David J.
693aa9ad-3625-4ec6-867c-101fa9c98b00
Armellin, Roberto
61950d5c-3dcf-45f5-b391-7e8c6ffb8e6f
Wittig, Alexander
3a140128-b118-4b8c-9856-a0d4f390b201
21 January 2019
Gondelach, David J.
693aa9ad-3625-4ec6-867c-101fa9c98b00
Armellin, Roberto
61950d5c-3dcf-45f5-b391-7e8c6ffb8e6f
Wittig, Alexander
3a140128-b118-4b8c-9856-a0d4f390b201
Gondelach, David J., Armellin, Roberto and Wittig, Alexander
(2019)
On the predictability of Galileo disposal orbits
Southampton.
University of Southampton
29pp.
Record type:
Monograph
(Working Paper)
Abstract
The end-of-life disposal of Galileo satellites is needed to avoid collisions with operational spacecraft and to prevent the generation of space debris. Either disposal in stable graveyard orbits or disposal into the atmosphere exploiting eccentricity growth caused by lunisolar resonances are possible. However, there is a concern about the predictability of MEO orbits because of possible chaotic behaviour caused by the overlap of resonances. In this work, we investigate if Galileo disposal orbits are predictable and if safe disposal is possible under initial uncertainties. For this, we employ finite-time Lyapunov exponents (FTLE) and sensitivity analysis and compare these two methods regarding their practicality for analysing the predictability of disposal orbits. The results show that FTLE are not suitable for determining if an orbit behaves chaotically or not on the time scale of interest. Sensitivity analysis, on the other hand, can be used to quantify the effect of uncertainties on the orbital evolution and to determine if safe disposal is possible. In addition, we show that reliable re-entry disposal is feasible with a limited \Delta V budget. However, safe disposal into a graveyard orbit is not always feasible considering uncertainties in the disposal manoeuvre and dynamical model when the available \Delta V for disposal is low.
Text
1901.06947v1
- Other
More information
Published date: 21 January 2019
Identifiers
Local EPrints ID: 433792
URI: http://eprints.soton.ac.uk/id/eprint/433792
PURE UUID: 941f86f4-8003-4bcf-87f8-3266adfc8264
Catalogue record
Date deposited: 04 Sep 2019 16:30
Last modified: 16 Mar 2024 04:30
Export record
Contributors
Author:
David J. Gondelach
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics