The University of Southampton
University of Southampton Institutional Repository

Analytical investigation of the cyclic behavior and plastic hinge formation in deep wide-flange steel beam-columns

Analytical investigation of the cyclic behavior and plastic hinge formation in deep wide-flange steel beam-columns
Analytical investigation of the cyclic behavior and plastic hinge formation in deep wide-flange steel beam-columns
This paper investigates the cyclic behavior of deep wide-flange sections, used as columns in steel Special Moment Frames (SMFs), through detailed finite element (FE) analysis. A wide range of wide-flange sections is subjected to symmetric cyclic lateral loading combined with different levels of constant compressive axial load ratios representing the loading conditions of interior steel columns in SMFs. The FE simulations demonstrate that wide-flange beam-columns, with web and flange slenderness ratios near the current compactness limits of seismic design provisions (AISC 341-10), experience rapid cyclic deterioration in flexural strength under high axial load ratios. It is also found that deep wide-flange slender sections shorten axially to about 10 % of their length due to severe flange and web local buckling. Based on the FE simulations, for bottom story columns, where axial load ratios are in the range of 20–35 %, a reduction to about two thirds of the current compactness limit for highly ductile members would achieve a 4 % chord rotation while maintaining a flexural strength larger than 80 % of the expected plastic flexural strength of a steel column. The FE simulation results also suggest that the pre-capping rotation predicted by current modeling recommendations for steel components (PEER/ATC 72-1) is overestimated for sections with high web and flange slenderness ratios undergoing monotonic and/or cyclic lateral loading combined with high axial load levels.
Axial shortening, Finite element analysis, Pre-capping plastic rotation, Steel beam-columns, Strength deterioration, Wide-flange sections
1570-761X
1097-1118
Elkady, Ahmed
8e55de89-dff4-4f84-90ed-6af476e328a8
Lignos, Dimitrios G.
9f55ad65-7b12-4ad6-972c-5a967ec0497b
Elkady, Ahmed
8e55de89-dff4-4f84-90ed-6af476e328a8
Lignos, Dimitrios G.
9f55ad65-7b12-4ad6-972c-5a967ec0497b

Elkady, Ahmed and Lignos, Dimitrios G. (2015) Analytical investigation of the cyclic behavior and plastic hinge formation in deep wide-flange steel beam-columns. Bulletin of Earthquake Engineering, 13 (4), 1097-1118. (doi:10.1007/s10518-014-9640-y).

Record type: Article

Abstract

This paper investigates the cyclic behavior of deep wide-flange sections, used as columns in steel Special Moment Frames (SMFs), through detailed finite element (FE) analysis. A wide range of wide-flange sections is subjected to symmetric cyclic lateral loading combined with different levels of constant compressive axial load ratios representing the loading conditions of interior steel columns in SMFs. The FE simulations demonstrate that wide-flange beam-columns, with web and flange slenderness ratios near the current compactness limits of seismic design provisions (AISC 341-10), experience rapid cyclic deterioration in flexural strength under high axial load ratios. It is also found that deep wide-flange slender sections shorten axially to about 10 % of their length due to severe flange and web local buckling. Based on the FE simulations, for bottom story columns, where axial load ratios are in the range of 20–35 %, a reduction to about two thirds of the current compactness limit for highly ductile members would achieve a 4 % chord rotation while maintaining a flexural strength larger than 80 % of the expected plastic flexural strength of a steel column. The FE simulation results also suggest that the pre-capping rotation predicted by current modeling recommendations for steel components (PEER/ATC 72-1) is overestimated for sections with high web and flange slenderness ratios undergoing monotonic and/or cyclic lateral loading combined with high axial load levels.

Text
Analytical investigation of the cyclic behavior and plastic hinge formation in deep wide-flange steel beam-columns - Proof
Restricted to Repository staff only
Request a copy

More information

e-pub ahead of print date: 8 June 2014
Published date: April 2015
Keywords: Axial shortening, Finite element analysis, Pre-capping plastic rotation, Steel beam-columns, Strength deterioration, Wide-flange sections

Identifiers

Local EPrints ID: 433842
URI: http://eprints.soton.ac.uk/id/eprint/433842
ISSN: 1570-761X
PURE UUID: 043436d1-3c8c-4698-b78c-8d5173aca865
ORCID for Ahmed Elkady: ORCID iD orcid.org/0000-0002-1214-6379

Catalogue record

Date deposited: 04 Sep 2019 16:30
Last modified: 16 Mar 2024 04:41

Export record

Altmetrics

Contributors

Author: Ahmed Elkady ORCID iD
Author: Dimitrios G. Lignos

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×