The University of Southampton
University of Southampton Institutional Repository
Warning ePrints Soton is experiencing an issue with some file downloads not being available. We are working hard to fix this. Please bear with us.

Eukaryotic influence on the oceanic biological carbon pump in the Scotia Sea as revealed by 18S rRNA gene sequencing of suspended and sinking particles

Eukaryotic influence on the oceanic biological carbon pump in the Scotia Sea as revealed by 18S rRNA gene sequencing of suspended and sinking particles
Eukaryotic influence on the oceanic biological carbon pump in the Scotia Sea as revealed by 18S rRNA gene sequencing of suspended and sinking particles
Suspended marine particles constitute most of the particulate organic matter pool in the oceans thereby providing substantial substrates for heterotrophs, especially in the mesopelagic. Conversely, sinking particles are major contributors to carbon fluxes defining the strength of the biological carbon pump (BCP). This study is the first to investigate the differential influence of eukaryotic communities to suspended and sinking particles, using 18S rRNA gene sequencing on particles collected with a marine snow catcher in the mixed layer and upper-mesopelagic of the Scotia Sea, Southern Ocean. In the upper-mesopelagic, most eukaryotic phytoplankton sequences belonged to chain-forming diatoms in sinking particles and to prymnesiophytes in suspended particles. This suggests that diatom-enriched particles are more efficient in carbon transfer to the upper-mesopelagic than those enriched in prymnesiophytes in the Scotia Sea, the latter more easily disintegrating into suspended particles. In the upper-mesopelagic, copepods appeared most influential on sinking particles whereas soft-tissue metazoan sequences contributed more to suspended particles. Heterotrophic protists and fungi communities were distinct between mixed layer and upper mesopelagic, implying that few protists ride along on sinking particles. Furthermore, differences between predatory flagellates and radiolarians between suspended and sinking particles implied different ecological conditions between the two particles pools, and roles in the BCP. Molecular analyses of sinking and suspended particles constitute powerful diagnostic tools to study the eukaryotic influence on the BCP in a more holistic manner compared to classic carbon export studies focusing on sinking particles.
0024-3590
S49-S70
Duret, Manon
e9f43140-067d-45d4-b7ea-68dd432798ea
Lampitt, Richard
dfc3785c-fc7d-41fa-89ee-d0c6e27503ad
Lam, Phyllis
996aef80-a15d-4827-aed8-1b97b378f6ad
Duret, Manon
e9f43140-067d-45d4-b7ea-68dd432798ea
Lampitt, Richard
dfc3785c-fc7d-41fa-89ee-d0c6e27503ad
Lam, Phyllis
996aef80-a15d-4827-aed8-1b97b378f6ad

Duret, Manon, Lampitt, Richard and Lam, Phyllis (2020) Eukaryotic influence on the oceanic biological carbon pump in the Scotia Sea as revealed by 18S rRNA gene sequencing of suspended and sinking particles. Limnology and Oceanography, 65 (S1), S49-S70. (doi:10.1002/lno.11319).

Record type: Article

Abstract

Suspended marine particles constitute most of the particulate organic matter pool in the oceans thereby providing substantial substrates for heterotrophs, especially in the mesopelagic. Conversely, sinking particles are major contributors to carbon fluxes defining the strength of the biological carbon pump (BCP). This study is the first to investigate the differential influence of eukaryotic communities to suspended and sinking particles, using 18S rRNA gene sequencing on particles collected with a marine snow catcher in the mixed layer and upper-mesopelagic of the Scotia Sea, Southern Ocean. In the upper-mesopelagic, most eukaryotic phytoplankton sequences belonged to chain-forming diatoms in sinking particles and to prymnesiophytes in suspended particles. This suggests that diatom-enriched particles are more efficient in carbon transfer to the upper-mesopelagic than those enriched in prymnesiophytes in the Scotia Sea, the latter more easily disintegrating into suspended particles. In the upper-mesopelagic, copepods appeared most influential on sinking particles whereas soft-tissue metazoan sequences contributed more to suspended particles. Heterotrophic protists and fungi communities were distinct between mixed layer and upper mesopelagic, implying that few protists ride along on sinking particles. Furthermore, differences between predatory flagellates and radiolarians between suspended and sinking particles implied different ecological conditions between the two particles pools, and roles in the BCP. Molecular analyses of sinking and suspended particles constitute powerful diagnostic tools to study the eukaryotic influence on the BCP in a more holistic manner compared to classic carbon export studies focusing on sinking particles.

Text
18S_Scotia_Sea_manuscript - Accepted Manuscript
Download (2MB)

More information

Accepted/In Press date: 12 August 2019
e-pub ahead of print date: 9 September 2019
Published date: January 2020

Identifiers

Local EPrints ID: 433854
URI: http://eprints.soton.ac.uk/id/eprint/433854
ISSN: 0024-3590
PURE UUID: 16325693-abb5-410b-85b8-398fc614d55f
ORCID for Manon Duret: ORCID iD orcid.org/0000-0002-0922-4372
ORCID for Phyllis Lam: ORCID iD orcid.org/0000-0003-2067-171X

Catalogue record

Date deposited: 04 Sep 2019 16:30
Last modified: 26 Nov 2021 05:34

Export record

Altmetrics

Contributors

Author: Manon Duret ORCID iD
Author: Richard Lampitt
Author: Phyllis Lam ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×