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Abstract

In this work the use of machine learning in medicine, with a particu-
lar focus on liver disease, is investigated and summarised. A variety
of machine learning techniques for feature selection and classification
are then applied to a novel medical application. A dataset of healthy
(20,089) and unhealthy (714) patients’ full blood count blood tests is
analysed to further medical understanding of how liver disease affects
the blood and to enable a new diagnosis technique based on commonly
available information. Methods for outlier identification and robust
classification are also introduced and evaluated.

Logistic regression and soft margin support vector machines are used
to classify patients as healthy or unhealthy based on the blood tests.
Feature selection is performed on the data. Three primary features
(90% area under receiver operating characteristic curve accuracy) and
four secondary features are found for the peak accuracy based on the
7-feature support vector machine classifier of 92 & 0.5%. These features
are verified by a liver specialist to be influenced by liver disease. The
final classifier is further tested on a completely new dataset of 100,000
patients” data and achieved 90% accuracy, marginally outperforming
the classifier designed by a liver specialist.

Feature selection and classification tasks are performed on time cohorts
to investigate temporal information in the data. Differences in features
selected are found between blood tests taken near diagnosis and years
prior. Classification accuracy is shown to decrease steadily as time
prior to diagnosis increases. However, blood tests taken 6 years prior
to diagnosis can still be dichotomised with greater than 75% accuracy.

An outlier rejecting support vector machine is developed and tested
on artificial datasets and the portal hypertension dataset. The outlier
rejection during training shows major improvements for small, well
structured datasets but struggles to improve on soft margin support
vector machines for larger, more complex datasets.
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Chapter 1

Machine Learning in Medicine

The use of machine learning as a tool to aid medical diagnostics is becom-
ing increasingly prevalent. The exact scenarios in which machine learning
methodologies are applied are very varied. However, they all have one thing
in common: rapidly escalating access to large quantities of data. This chap-
ter gives a brief overview of some of the primary challenges and existing

solutions to machine learning problems in medicine.

1.1 Feature Selection

Feature selection is a method to reduce model complexity by selecting a
subset of the most informative features in the input space and rejecting the
remaining features. Reducing the number of features used in a model has

three main benefits:
1. The model is easier to interpret

2. The model is trained and tested on less data so processing time is

reduced

3. The model is less likely to overfit a training dataset

1.1.1 Preventing Overfitting

A model is considered to have overfitted a set of data if it performs signif-
icantly better on the data it was trained on (training set) than a separate

set of previously unseen data of the same origin (testing set). This happens
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when a system learns features specific to the training set (often statistically
random correlations) which are not found in the general data population.
Models are most susceptible to overfitting when they have many features,
P, and few examples, N. It is generally best practice to have enough data
points that N >> P. Situations where this is not possible (e.g. genomics,
computer vision) have a greater focus on narrowing down the input features,

either by exclusion or combination into higher-level features.

1.1.2 Independence of Features

When selecting the best feature subset one must consider the independence
of the individual features. It is rarely the case that the best set of n features
is simply the combination of the best n individual features. If any subset!
of features, A, can predict the values of another subset of features, B, the
combination of the two subsets, {A,B}, will be no more valuable than A

alone.

For example, imagine a case where the aim is to estimate the value of a
house based on F = total floor area, R = number of rooms and C = condition
of the house. F and R both give information about the size of the house, so
individually they will be good predictors. C alone will be a comparatively
poor predictor since size is more important than condition for house prices.
If one were to combine the top two predictors however, the resulting predic-
tor {ER} would be little better than F or R alone, since either can estimate
the other with reasonable confidence. Combining F or R with C is much
more likely to create a better classifier than {ER} since C is independent of
both F and R.

Due to this, the feature subsets found by any feature selection algorithm
other than a brute force search can never be assumed to contain the best

individual predictors or even the best smaller subsets of predictors.

1.1.3 Feature Selection Method Summary

There are many methods used for feature selection. The ideal scenario
would be to test a model built on every possible distinct combination of
features. However, this is infeasible for all but the smallest datasets since

1a subset could be a single feature
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the time complexity of this exhaustive search is O((n + 1)!) where 7 is the
number of features present. The choice of which method to use in a given
scenario depends on the requirements of accuracy and efficiency. Some algo-
rithms (such as greedy forward feature selection, GFFS, described in section
3.3.3) prioritise accuracy over efficiency by comparing many selective fea-
ture combinations, though still much fewer than exhaustive search. The
time complexity for GFFS is O((n + 1)?). These techniques tend to be lim-
ited to work on datasets with a low number of features. Large datasets, such
as work on bioinformatics and computer vision, can easily have in excess of
a million features and it is therefore infeasible running O(n?) algorithms on
them. At the other end of the scale, heuristic techniques aim to find good
estimates of the ideal feature subset in minimal time. At the extreme ef-
ficiency end of the spectrum there are techniques that predict the ranking
of features based on a single test, such as ranking by the magnitude of the
feature weights given by a linear SVM, which have time complexity of O(1).
Though heuristic techniques often do not find subsets of features as close to
the theoretical optimum, they are still widely used in large datasets where

time complexity is an issue (Saeys, Inza, and Larrafiaga, 2007).

A few examples of feature selection techniques (from slowest to fastest) are

given below:

e Brute force - Complexity O((n +1)!)
Every possible subset of features is evaluated and the best subset is

retained.

e Sequential search - Complexity O((n + 1)?)

Forward selection: feature set S starts off empty, set of unused features
U starts off containing all features. On each iteration: evaluate the
performance of f(S U x) for each x € U and move the best performing
feature x from U to S. Repeat until a high enough accuracy is reached
or the required number of features are selected.

Backward elimination: feature set S starts off with all features. On each
iteration: evaluate the performance of f(S\ x) for each x € S and
remove the feature x that reduced the performance least from S. Re-
peat until a minimum accuracy threshold is reached or the required

number of features are removed.

e Sequential ranked search - Complexity O(n)
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Each feature is ranked (see below), then features are added one by one
based on their rank until the required accuracy is reached.

e Ranking methods - Complexity O(1)
Each feature is given a ranking (such as Pearson’s Correlation Coeffi-
cient) and the top n features are taken based on their rank, where 7 is
the required number of features.

1.2 Accuracy vs Interpretability

In machine learning there is a general trade-off between the accuracy and
interpretability of a system (Caruana et al., 2015). On the most interpretable
end of the scale, linear systems give a single scalar weight to each input
feature. It is therefore easy to see how the system reached its conclusion -
the higher the magnitude of each feature’s weight, the more influence it has
on the final conclusion. The cost of such a system is that linear systems are
often not capable of picking up on more complex underlying patterns in the
data and therefore suffer in terms of accuracy. On the other end of the scale
are systems like deep recurrent neural networks. Such systems often achieve
the highest accuracies possible with current understanding since the internal
state of the abstract networks can pick up on more complex underlying
patterns in data. However, due to the complexity of the networks generated
it is often unclear exactly how and why the system gives the answer it gives.
(Choi et al., 2016)

Both interpretability and accuracy are important in medical applications;
accurate systems are crucial for correct diagnoses and treatments to be given
and interpretable systems allow researchers to develop their understanding
of the medical processes they tackle, as well as allowing doctors to correct
false assumptions in the system. The machine learning techniques chosen
for a project will be heavily influenced by the balance required between

accuracy and interpretability.

1.3 Types of Machine Learning used

Medical machine learning tasks can be roughly grouped into five categories:
genomics, audio analysis, computer vision, natural language processing and
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direct health record regression. These groups are by no means exclusive
(tasks may draw from multiple groups) or exhaustive (tasks may have novel
requirements outside of these groups) but they should serve to highlight the
main challenges faced by different tasks and the resulting solutions.

1.3.1 Genomics

Genomics is the study of the structure and function of the entire set of DNA
(the genome) of an organism. Sections of the genome, known as genes,
define how proteins are produced (through multiple intermediate stages).
These proteins in turn define both the physical structure of the organism and
also its chemical signalling (and consequently certain behaviours). Identify-
ing genes within the genome, along with mapping genotypes (the physical
structure of the gene’s section of DNA) to phenotypes (observable character-
istics such as physical structure and behaviour) has great medical value. For
example, in the study of the human genome finding genotypes that cause
medical disorders could allow early diagnosis and development of preven-
tative medication for the disorders, sometimes before external symptoms
are even displayed. Genomics can also be used to sequence the genomes
of organisms behind infectious diseases, allowing scientists a better under-

standing of how to best treat or even eradicate the disease.

Genomes encode a very large amount of data; the human genome, for ex-
ample, has approximately 3 billion base pairs (features), each of which can
take one of four values. Analysis of such large quantities of data lends itself
nicely to techniques developed in machine learning, such as those reviewed
by Leung et al., 2016.

Since there are so many features (base-pairs) in genomes and often very few
instances (genomes) to compare, machine learning techniques have to be
designed with measures to prevent overfitting (see 1.1.1) when dealing with
genomics data. One crucial step in this process is feature selection, since
a model with fewer features will be less prone to overfitting than a model
with a greater number of features. Another technique to establish whether a
model is overfitting the data is to train the model on randomised data, with
the expectation that the model should find a pattern in the real data but
find nothing in the randomised version. If the model claims to find similar

strength trends in random data compared to those found in the real data,
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the model is most likely overfitting.

1.3.2 Computer Vision

Computer vision is the use of computer algorithms to identify useful infor-
mation in digital images and videos. Some applications aim to re-create
human visual abilities (e.g. face detection). Others go beyond the capability
of human vision, such as using images composed from wavelengths of the
electromagnetic spectrum humans cannot see (e.g. radar and magnetic res-
onance imaging (MRI) machines). Many applications use a combination of
the two (e.g. self-driving cars which use visible light in combination with

radar, lidar, etc).

Machine learning is used extensively in computer vision for classification
and clustering (including labelling). The primary challenge in using ma-
chine learning in this field is the sheer quantity of information. Each pixel
in an input image represents a single feature. Even a small image of dimen-
sions 100x100 pixels represents 10,000 input features (30,000 for a colour
image), each of which typically have 256 possible values. It is therefore in-
feasible to have more samples than features (N >> P), which means a lot of
work goes into extracting higher-level features. These features are typically
values found by kernel functions (masks) applied to groups of nearby pixels.
The high-level features can then be used directly for analysis or they can be
passed into higher-level feature extractors, as is the case in convolutional

neural networks, before eventual analysis.

Applied in medicine, there is a distinction to be made between image aug-
mentation to assist human analysis and direct image analysis that attempts
to automate an entire process independent of human intervention. Two ex-
amples to illustrate this distinction are the works of Mahmud et al., 2015

and Havaei et al., 2017 respectively.

In the work of Mahmud et al., 2015 the authors describe a system to assist
doctors performing gastrointestinal (GI) endoscopies. In GI endoscopies a
high-definition camera is inserted on a flexible endoscope into a patient’s
intestines. The endoscopist uses a live feed from the camera to guide the
endoscope through the intestines while simultaneously attempting to iden-
tify defects (such as polyps) on the intestinal walls that may be causing
medical issues. The authors highlight the issue that endoscopists frequently
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miss defects even when they show up on the camera. They suggest a new
system whereby the live video is analysed by a computer to identify likely
polyp sites and highlight those areas in real-time on the endoscopist’s screen.
(Mahmud et al., 2015)

This example shows how computer vision can be designed into systems to
enhance the work of specialists. This methodology has the advantage of not
needing to be as accurate as direct analysis techniques, since it only offers
suggestions that the specialist will rule on, rather than aiming giving final
diagnoses.

In comparison, Havaei et al., 2017 introduce an example of a direct-analysis
system. In their work, the authors develop a deep neural network to seg-
ment cross-sectional images of brains taken from MRI machines. The net-
work is trained to pick up on glioblastomas (a type of brain cancer). The
network can then automatically classify regions of the brain scan images

without necessary intervention from medical professionals. (Havaei et al.,
2017)

This methodology has the benefit of requiring minimal specialist knowl-
edge to use the developed system (see also Onu et al., 2017) but the con-
sequent disadvantage of needing to be much more thoroughly tested since

it attempts to give a final diagnosis rather than just a suggestion.

1.3.3 Audio Analysis

Audio analysis seeks to find interpretable patterns in digital audio record-
ings. Typical applications include speech recognition, music identification
and detecting known marker sounds against a background noise, for exam-
ple to detect the presence of a certain animal in a forest. Auditory informa-
tion can be viewed as a spectrogram (see Figure 1.1) and therefore audio
analysis becomes a special case of computer vision, drawing on the exten-

sive suite of techniques already present in that field.

An example use of machine learning-based audio analysis in medicine is
given in the work of Onu et al., 2017. The authors set out to tackle the is-
sue of infant mortality caused by birth asphyxia in “resource-poor settings”
which do not have access to expensive or highly-technical diagnostic meth-
ods. They use Support Vector Machines (SVMs) combined with existing
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Figure 1.1: Spectrogram of author saying “Machine Learning for Liver Disease
Classification”. Brightness indicates a level of a certain frequency (y-axis) at a given
time (x-axis). Scale: orange (highest) - yellow - green - black (lowest).

speech recognition techniques to design a classifier that can distinguish the
cry of a healthy baby from that of a baby with birth asphyxia. This classifier
can then be used on a mobile phone with its built-in microphone to give
immediate, low-cost and low-expertise diagnoses.

1.3.4 Natural Language Processing

Natural language processing attempts to extract useful information from
text written with a particular set of structural rules (a language). Machine
learning techniques are used to give numerical values to measurable fea-
tures, such as word or phrase frequencies. These values can then be anal-
ysed using regression tools.
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A passage of text will exhibit patterns based not just on the national lan-
guage of the author but also on the purpose of the text. For example, a
transcribed informal conversation between close friends will have a differ-
ent style to an academic paper, even if both are written in English. Any
analysis on text therefore needs to be normalised against the background

specific to that form of text.

Within patient health records is a wealth of written reports. These often
follow common structures (statements of diagnoses, clinical narratives) and
contain large quantities of diagnostically useful information. Developing
NLP systems capable of unlocking the data stored in this text would there-
fore provide an influx of machine learning-processable data from historical
records that could improve future diagnostic systems and care. (Pons et al.,
2016)

1.3.5 Health Record Regression

Regression analysis seeks to establish what underlying relationships exist
between variables (features). The aim is to find a function, f, such that
f(x) = y where x is the vector of known feature values (predictors) and y
is the dependent feature value. For traditional regression systems both x
and y are continuous-valued features, however modifications can be made
to allow discrete inputs. Classification systems simply use one or more
threshold values on the predicted value of y. These threshold values can
either be learned as part of the training process or predefined, depending

on the classification technique employed.

Regression analysis will be used at some stage in all of the prior example
groups. However, each of those cases require extra processing (particularly
feature selection) beforehand. Numerical datasets compiled from patients’
health records can commonly be analysed with significantly less, if any, pre-

processing.

An example use of regression in healthcare is introduced in the work of
Shameer et al., 2017. In this paper, the authors used the Naive Bayes al-
gorithm to find the relationships between 4,205 input features taken from
patients” health records and the patients’ readmittance rate. This system
would then allow doctors to identify which patients need extra attention

prior to being discharged.
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An example of classification from health record data is given by Patel and
Joshi, 2013. This work looks at classifying heart disease directly from ex-
isting health record information. This system can then identify potential
heart disease in patients from past data without them needing to be sent for
specific tests for heart disease, improving early detection.



Chapter 2

Machine Learning for Liver Disease
Analysis

In this chapter the past use of machine learning in the classification and
diagnosis of liver disease is reviewed. Work in this field to date can be

grouped into three areas:
e Image analysis of MRI, CT or ultrasound scans
e Mortality prediction among hepatitis patients
e Diagnosis of liver diseases from numeric and binary data

Many of the reviewed studies here used one or more datasets freely avail-
able from the Machine Learning Repository of the University of California,
Irvine!. These will be referred to as UCI ML datasets.

2.1 Image Analysis

The work reviewed in this section all focusses on the analysis of medical
images. Though the sources of images differ between studies, the methods

used to analyse them are comparable.

2.1.1 Data

Guo et al., 2009 compile a dataset of magnetic resonance images (MRIs) of

40 rat livers, some with hepatocellular carcinomas (HCCs). 106 images (82

Thttps:/ /archive.ics.uci.edu/ml/index.php (page last accessed 30/10/2018)

11
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HCC regions, 24 non-HCC) are split into 161 regions of interest (ROI) (81
HCC, 80 non-HCC).

Mala, Sadasivam, and Alagappan, 2015 use a dataset of computerised to-
mography (CT) scans of human livers. 40 CT scans were performed on
patients with fatty liver disease and 40 on patients with cirrhotic patients
and each scan has approximately 20 slices (individual images).

Virmani et al., 2013 use a dataset of 56 ultrasound images; 15 of healthy
livers, 16 of cirrhotic livers and 25 of livers with HCC. Each ultrasound was
taken from a separate patient. 180 non-overlapping ROIs are extracted by a
radiologist, 60 per class, as the final dataset.

2.1.2 Methods

All three studies used wavelet packet texture descriptors with gray-level
co-occurrence matrices to generate numeric features from the images. Mala,
Sadasivam, and Alagappan, 2015 specified the use of the biorthogonal wavelet
and Virmani et al., 2013 used the same in addition to a variety of other

wavelets.

Once features had been extracted from the images, Mala, Sadasivam, and
Alagappan, 2015 and Virmani et al., 2013 narrowed down the selection of
features using genetic algorithms and sequential forward searches.

To analyse the feature vectors generated Guo et al., 2009 and Mala, Sada-
sivam, and Alagappan, 2015 used neural networks (NNs), while Virmani
et al., 2013 used support vector machines (SVMs).

2.1.3 Results

In distinguishing between HCC and cirrhotic MRI scans of rat livers, Guo
et al., 2009 achieved an overall classification accuracy of 92%. However, the
finer details are concerning: for the HCC images the training accuracy was
96% and testing accuracy only 83%, suggesting a high degree of overfitting.
Conversely, the cirrhosis images have an accuracy in both training and test-
ing of 100%. This suggests the classifier is too biased towards cirrhosis clas-
sification and a more effective classifier could be found if the classification
boundary were shifted further towards HCC data points.
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Mala, Sadasivam, and Alagappan, 2015 achieved an overall accuracy of 95%
in distinguishing between fatty liver disease and cirrhosis from CT scans.
The sensitivity of 96% and specificity of 94% suggest this classifier is better
balanced than that of Guo et al., 2009.

Finally, Virmani et al., 2013 found an accuracy of 89% using SVMs to dis-
tinguish between healthy, cirrhotic and HCC liver ultrasound scans. They
further specified a sensitivity of 90% for cirrhosis scans and 87% for HCC

scans.

2.1.4 Conclusions

These examples of analysis of liver scans using machine learning show that
existing techniques already give high-quality results. The three studies each
achieve classification accuracies between 89-95% in distinguishing between
healthy, carcinogenic, cirrhotic and fatty liver tissue images. Two use neural
networks and the third uses support vector machines, showing that different

methodologies can achieve similarly high results.

2.2 Hepatitis Mortality Prediction

The three studies in this category all used the same dataset from the UCI ML
repository. The aim of these studies is to predict if a patient with hepatitis
will die of the disease or return to health and continue living.

It is worth noting that Chen et al., 2011 incorrectly state that the purpose of
the dataset is to “predict the presence or absence of hepatitis”. However, this
does not affect their results, since their methodologies still use the correct

binary feature as the true class definitions.

2.2.1 Data

The data for these studies was taken from the UCI ML dataset named "Hep-
atitis Data Set”?. It consists of 19 predictor features (13 binary, 6 continuous)

and one target feature (binary; live or die).

Faris, Aljarah, and Mirjalili, 2016 also use many other datasets, but only
performance on the one UCI dataset is analysed here for comparison.

Zhttp:/ /archive.ics.uci.edu/ml/datasets/ Hepatitis (page last accessed 30/10/2018)

13
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2.2.2 Methods

Local Fisher discriminant analysis was used by Chen et al., 2011 for feature
selection prior to training, while the other two papers performed no feature

selection.

For classification, Chen et al., 2011 and Sartakhti, Zangooei, and Mozafari,
2012 used SVMs; the former using radial basis function (RBF) kernels and
the latter using the SVM in conjunction with a simulated annealing (SA)
process. Faris, Aljarah, and Mirjalili, 2016 used a multi-layer perceptron
(MLP) with a single hidden layer.

2.2.3 Results

Sartakhti, Zangooei, and Mozafari, 2012 and Chen et al., 2011 both achieved
near identical results, the former achieving 96% accuracy (99% sensitivity
and 85% specificity) and the latter outperforming that by 1% on all three
measures. Faris, Aljarah, and Mirjalili, 2016 achieved a maximum accuracy
of 94% and they did not give the necessary information to calculate sensitiv-
ity or specificity metrics.

2.2.4 Conclusions

These studies show that it is possible to create classifiers using a variety of
training techniques to predict mortality in hepatitis patients. Overall accura-
cies were between 94-97%. The SVM-based techniques here showed a slight
advantage but not by a huge margin.

2.3 General liver disease detection

Of the reviewed papers there are four different classification tasks tacked
by six of the studies (listed below). These all try to detect signs of one or
more forms of liver disease using numeric medical data. However, the form
of liver disease targeted and thus the dataset used differs between the four

tasks.

The four tasks and the papers that tackle them are the detection of...
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alcoholic liver disease (erroneous, see paragraph below) Ramana, Babu,
and Venkateswarlu, 2011, Olaniyi and Adnan, 2013 and Faris, Aljarah,
and Mirjalili, 2016

general liver disease (unspecified type) Sontakke, Lohokare, and Dani,
2017 and Ramana, Babu, and Venkateswarlu, 2011

non-alcoholic fatty liver disease (NAFLD) Perveen et al., 2018

hepatitis B virus (HBV) Mahesh, Kiruthika, and Dhilsathfathima, 2014

The first of these shall be ignored since all three papers using the dataset,
UCI ML “Liver Disorders Data Set”?, misinterpreted the data. All three sets

of authors mistook a binary selector feature indicating train and test sets

used by the data authors to be class labels indicating presence or absence

of liver disease. The results from these analyses are therefore meaningless.

Ramana, Babu, and Venkateswarlu, 2011 and Faris, Aljarah, and Mirjalili,

2016 do appear in other sections since they perform analysis on multiple

datasets, whereas Olaniyi and Adnan, 2013 only used the one dataset.

2.3.1 Data

The three remaining tasks are based on three datasets, described in the fol-

lowing headings:

UCI Indian Liver Patient Dataset

This dataset, created by Ramana, Babu, and Venkateswarlu, 2011 and used
by Sontakke, Lohokare, and Dani, 2017, is available on the UCI ML reposi-

tory*. The dataset consists of 10 predictor features (9 continuous, 1 boolean)

and a single boolean class descriptor (liver patient or non-liver patient). In

the dataset version held by the UCI ML repository there are 583 records (one

per patient; 416 liver patients, 167 non-liver patients). However, Sontakke,

Lohokare, and Dani, 2017 use an extended version with 751 patients. This

extended version also contains two further features.

Shttps:/ /archive.ics.uci.edu/ml/datasets /liver+disorders ~ (page  last  accessed
30/10/2018)

4https:/ /archive.ics.uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset) (page
last accessed 6/11/2018)
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Canadian Health System Dataset

The dataset used by Perveen et al., 2018 was gathered from the Canadian
Primary Care Sentinel Surveillance Network (CPCSSN). This network con-
tains 667,907 records recorded between 2003 and 2013. The records cover
many different diseases and provide data on a range of physical attributes,
vital signs, diagnoses and demographics. Perveen et al., 2018 narrow this
dataset down to the 40,637 records that include all risk factors required for
the study. These risk factors are based on the Adult Treatment Panel III
(ATP III) guidelines and comprise gender, age, blood pressure, fasting glu-
cose, triglycerides, high-density lipoproteins and body mass index. The
authors also use other diagnoses as predictors. The aim of the research is
to give a risk factor of developing non-alcoholic fatty liver disease (NAFLD).
To this end, the authors define four ordinal classes and label records based

on current clinical diagnostic measures.

Chronic Hepatitis B Dataset

This dataset, compiled by Mahesh, Kiruthika, and Dhilsathfathima, 2014,
contains 300 records, each with 7 predictor features and 1 class label. Each
predictor is a binary value denoting the presence or absence of a protein or
antigen in the blood of the patient. The class label is an ordinal class value
from 1 (healthy) to 4 (severe HBV).

2.3.2 Methods

For feature selection Sontakke, Lohokare, and Dani, 2017 use a ranking
method before testing every subset of features ranked 1 to n where n is
the number of features selected. No feature selection was performed by the

other studies.

Mahesh, Kiruthika, and Dhilsathfathima, 2014 focussed on the use of gener-
alised regression neural networks (GRNNSs), Sontakke, Lohokare, and Dani,
2017 used neural networks (NNs) and support vector machines (SVMs) and
Perveen et al., 2018 used decision trees. Ramana, Babu, and Venkateswarlu,
2011 tested a wide array of machine learning techniques to compare their
effectiveness on medical classification tasks. They experimented with Naive
Bayes (NB), decision trees (DTs), NNs, k-nearest neighbour (KNN) and sig-
moid kernel SVMs (SK-SVMs).



2.3. General liver disease detection

2.3.3 Results

UCI Indian Liver Patient Dataset

The accuracy, sensitivity and specificity of the 7 different methodologies
tested on the Indian Liver Patient dataset are shown in Table 2.1. The two
techniques used by Sontakke, Lohokare, and Dani, 2017 show markedly
lower results than the techniques used by Ramana, Babu, and Venkateswarlu,
2011. This is particularly relevant in the comparison between the neural net-
works used in each paper, since these used near-identical setups. One differ-
ence is that Ramana, Babu, and Venkateswarlu, 2011 used feature selection;
however, this cannot account for the difference since they also quote results
when using all features and still achieve accuracies above 95%. There are
therefore only two documented differences in the setup that could account
for the disparity: number of data samples and additional features. These
are both due to Ramana, Babu, and Venkateswarlu, 2011 using the original,
extended, version of the dataset which contains 168 more samples and two
more features. In the feature ranking conducted on the extended dataset
the third-ranked feature is ”“Indirect_bilirubin”, which is one of the two fea-
tures not present in the UCI ML repository version of the dataset used by
Sontakke, Lohokare, and Dani, 2017. The authors do not state any results
omitting this feature, so this seems to be the most likely reason for the dif-
ference in accuracies. The difference in numbers of samples may have some
impact, though likely less than the omitted feature.

Table 2.1: Percentage accuracy, sensitivity and specificity for different algorithms
applied to the UCI Indian Liver Patient dataset.

Sontakke, Lohokare, and Dani, 2017

Paper Ramana, Babu, and Venkateswarlu, 2011
Method | SVM NN NB DT NN KNN  SK-
SVM
Accuracy | 71 73.2 95.1 96.7 97.7 97.9 96.9
Sensitivity | 71.5 73.3 96.1 20 92.8 95 88.9

Specificity | 88.3 87.7 94.7 98.7 99.3 98.8 99.5
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Canadian Health System Dataset

The accuracy, sensitivity and specificity for each class are shown in Table
2.2. The accuracies are given as area under receiver operating characteris-
tic curve (AUROC), since the authors did not give the required information
for the accuracy measure used in the other reviewed papers. The results
show a strong bias towards class 1 (healthy) making the probability of detec-
tion low for all three disease classes. In its current state it would therefore
appear to be unfit for its purpose of detecting disease risk. However, the
AUROC scores suggest better performance could be found (excluding class
4, whose AUROC implies near-random classification) by shifting the classi-
fication boundaries away from the healthy class, at the cost of healthy-class

sensitivity.

Table 2.2: Percentage accuracy (area under receiver operating characteristic curve),
sensitivity and specificity for each of the four classification categories (1=healthy to
4=very high disease risk).

Class 1 2 3 4
AUROC | 748 63.1 73.8 50.7
Sensitivity | 93.7 5 296 24
Specificity | 22.3 97 947 999

Chronic Hepatitis B Dataset

The authors did not give numerical results of the performance of the clas-
sifier they designed. They gave only 5 “sample results” without stating
whether the diagnoses were correct.

2.3.4 Conclusions

While there have been a number of studies misusing a freely-available dataset,
the majority of studies show promising results for detecting different forms
of liver disease. Accuracies (including sensitivities and specificities) greater
than 90% were achieved using a variety of machine learning techniques for
the binary classification of liver disease patients from non-liver disease pa-
tients. Perveen et al., 2018 have also shown there is information available in
existing electronic health records to begin the process of identifying risk of

non-alcoholic fatty liver disease.



2.4. Overall Conclusions

The studies that performed well enough to be clinically beneficial all depend
on liver-specific markers and are therefore only viable if suspicion of liver
disease is already present and specialist tests are performed. The work on
Canadian health system data is a promising attempt to base classification
attempts on non-specialist data but the techniques used are not yet clinically

viable.

2.4 Overall Conclusions

In this chapter the use of machine learning in the diagnosis and classification
of liver disease has been reviewed. The reviewed works can be grouped
into three areas: Image classification / segmentation, prediction of mortality

from liver disease and general liver disease diagnosis.

All three areas show good accuracies at their respective tasks when provided
with specialist data relating to liver function. However, attempts to use more
general health data has so far been met with limited success. This limits the
scope of tests to patients already known to be at risk from liver disease,
leaving the remainder of the population untouched. One study based on
data made available by the Canadian health system started to look into a
method of using more broadly available data but achieved low accuracies.
Such an attempt may be improved if more complex machine learning tools

were investigated rather than the decision trees they used.

Although mentioned in the work of Perveen et al., 2018, no attempts were
made by any of the studies to track the progression of liver disease over time

in patients.
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Chapter 3

Prediction of the Onset of Portal
Hypertension

3.1 Liver Disease in the UK

Over the past five decades liver disease has been one of the most rapidly
worsening health problems in the UK. While the mortality rate of liver dis-
ease has been declining in many European countries over this time period,
in the UK the mortality rate rose over 400% from 1970 to 2010, as shown in
Figure 3.1. This sits in stark contrast to all other major illnesses in the UK

whose mortality rates have fallen in the same given period.

One major complication in dealing with liver disease is that it exhibits no ex-
ternal symptoms while it progresses. Most often the first sign of the disease
comes as the liver reaches cirrhosis — irreversible scarring of the organ. The

most common symptoms in this case are:

e Jaundice, where the liver ceases to filter out a substance called bilirubin

from the blood causing skin to turn yellow.?
e Abdominal swelling

e Coughing up blood, caused by portal veins in the oesophagus swelling
and bursting due to increased resistance flowing through the damaged

liver.

Thttp:/ /www.euro.who.int/en/data-and-evidence /databases/ european-health-for-all-
database-hfa-db (last accessed 21/06/2016)

http:/ /www.nhs.uk/Conditions /Jaundice/Pages/Introduction.aspx ~ (last accessed
02/10/2016)
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Figure 3.1: Relative changes in mortality rate for eight major diseases in the UK,
normalised to 100% in 1970. Data sourced from WHO HFA database!.

Once a liver reaches cirrhosis the only possible treatment is a liver transplant,
else the disease will lead to death. However, if the disease can be picked up
at an earlier stage, before external symptoms emerge, the damage can be

reversed.

While there is a lot of work that can be done to tackle the major driving fac-
tor behind this trend, availability of cheap alcohol and resulting alcoholism
(Anderson and Baumberg, 2006), there is also large scope for work in early
detection of liver disease onset. The need for better early detection methods
was outlined clearly in a meeting (and subsequent report) held in 2013 by the
Foundation for Liver Research entitled “Addressing the Crisis in Liver Dis-
ease in the UK: Alcohol, Viral Hepatitis and Obesity”. Out of this meeting
came ten key recommendations of how to best tackle the growing problem
with immediate effect. The first two of these were:

1. Strengthen detection of early liver disease and its treatment by improv-

ing the level of expertise and facilities in primary care.



3.2.

Data

2. Improve support services in the community setting for screening of
high-risk patients.
(Williams et al., 2014)

Current techniques for detecting liver disease all require existing suspicion
of liver damage, often due to a patient having had problems with alcoholism,
obesity or hepatitis. Existing techniques also have other major drawbacks
such as being invasive (liver biopsies, endoscopies) and requiring special-
ist, often very expensive, equipment (CT & MRI scanning, elastography)
(Cadranel, Rufat, and Degos, 2000). Despite these drawbacks, the “gold
standard” for liver disease diagnosis still remains as the liver biopsy, so this
is the technique many studies compare results to (Bravo, Sheth, and Chopra,
2001)(Ratziu et al., 2005). Of the currently available techniques, those that
best fit the requirements outlined in the 2013 meeting are the techniques
based on blood tests. The first of these is the liver function test, commonly
used by general practitioners in primary care with patients who are most
at risk from liver disease. This test measures the levels of certain enzymes
released as by-products of the fibrosis (scarring) of the liver and proteins re-
leased by the healthy function of the liver, whose levels drop in an unhealthy
liver. The second blood test is the FibroTest developed by Castéra et al., 2005.
However, the exact process the FibroTest uses has not been published and it
is only permitted to be carried out in a few licensed laboratories making it

difficult to roll out into a primary care environment.

3.2 Data

A dataset was compiled from records at Southampton General Hospital of
patients who visited the hospital for a gastroendoscopy. It contains numer-
ical results of 320,833 full blood count (FBC) blood tests taken from the
20,803 patients. Most patients will have multiple blood tests recorded in
the dataset, though the number per patient varies; the median number of
blood tests per patient is 8 and the maximum is 391. Each data point (FBC
blood test) contains numerical readings of 13 different blood components
(the 13 tests done as part of the FBC) along with the age and gender of the
patient. These features and their abbreviations are listed in Table 3.1. Each
patient also has an eventual diagnosis from the gastroendoscopy was (portal
hypertension (PH) present / no sign of PH) and each blood test is tagged
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with how many days there were between the blood test and final diagnosis.
Gastroendoscopy patients were selected since PH, a consequence of around
half of liver disease cases, can be accurately identified from the process. A
consequence of this, however, is that although there is a control group that
are PH-negative (20,089 patients vs 714 with PH) the control group cannot
be assumed to be healthy. The fact that the patients have all been in need of
a gastroendoscopy suggests that all patients in this dataset are in some way
unwell and it is reasonable to assume that many represented illnesses will
affect the patients’ blood test results in some way.

Given that the majority of patients have at least two blood tests recorded,
each tagged with the time prior to diagnosis, a time-series is naturally
formed for each of these patients. The timeseries of each feature is shown in
Figure 3.2, while a summary of the number of blood tests taken per patient
can be seen in Figure 3.4. However, the gaps between blood tests are not
consistent even within a single patient’s results, let alone between patients.
This makes direct comparisons based on time-series analysis difficult. Tests
based on patient comparisons (as opposed to individual blood test compar-
isons) have therefore been based on data generated from the component-
wise mean of each patient’s blood tests. While taking the mean in this man-
ner does remove any temporal information from the data, it allows for direct

comparison between patients, even those with only one blood test result.

The distributions of each individual feature are shown in Figure 3.3. These
cumulative frequency graphs, split into portal hypertension-positive and
negative, give a good initial indication of which features can best split the
data between the two classes. Any location on the x-axis on any of the
graphs where there is a large vertical separation between the two curves
demonstrates a good location for an individual linear classifier. Feature

value distributions are also given in Table 3.2.

In certain tests we retained some temporal information by first segmenting
the data into time cohorts based on the time prior to diagnosis of each blood
test. For example, averaging over each patient’s blood tests taken only in the
week prior to the gastroendoscopy is likely to give more extreme values than
between 1 and 2 years prior. Finally, while most tests conducted used pa-
tient comparisons as described above, in some tests we also used individual

blood tests for comparison. Using individual tests has the benefit of pro-
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viding much larger training and testing sets, however due to the uneven
distribution of blood tests among patients any classifier trained in this way
is likely to be biased towards the blood composition of those patients who
have had the most blood tests.
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Figure 3.2: Time series of each feature taken from patient 1. The x axes show time
prior to diagnosis in years. The gaps in the graphs show where that feature value
is missing from a particular test.
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Number of patients

Table 3.1: Features and abbreviations

# Abbr. Full Name

1 Sex Sex

2 Age Age

3 ALB Albumen

4 ALP  Alkaline Phosphotase

5 ALT  Alanine Aminotransferase
6 CR Creatinine

7 HB Haemoglobin

8§ K Potassium

9 MCV Mean Corpuscular Volume
10 NA Sodium

11 PLT  Platelet

12 TB Tuberculosis

13 TP Total Protein

14 UR Urea

15 WBC White Blood Cell

Histogram of the number of blood tests recorded per patient
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Figure 3.4: Histogram of the number of blood tests recorded per patient.
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Table 3.2: Distribution of feature values across all patients

Percentile
Feature Mean StD 0 10 25 50 75 9 100
Age 65.611 16.573 | 6 41 56 69 78 84 109
ALB 34446 7.1697 |5 23 30 36 40 42 60
ALP 18748 19547 |1 58 84 152 220 318 11640
ALT 3632 94958 |1 12 16 22 34 58 6212
CR 102.41 56435 | 6 63 76 90 111 146 1801

HB 120.7  22.096 | 104 91 105 122 137 149 216
K 4.0354 0.55507 |13 34 37 4 434 47 102
MCV  89.056 7.283 447 806 852 892 931 972 1346

NA 137.66 4.2384 | 89 132 136 138 140 142 179
PLT 27322 12581 |1 140 198 257 328 422 1821
TB 17.046 33.814 |1 6 8 11 16 24 888
P 68.82 9.2394 | 16 56 64 70 75 79 141

UR 6.7357 49674 |01 29 4 55 76 115 94
WBC 87025 55007 |01 47 6 78 102 135 2927

3.3 Methods

3.3.1 Soft Margin SVM

Soft margin support vector machines is a machine learning technique for

classification of numeric data. It is described in detail in section 4.1.1

3.3.2 Logistic Regression

Logistic regression seeks to define a probability variable, p giving an esti-
mated likelihood of a data point belonging to one of two distinct classes in
order to dichotomise the dataset. First, the data, X, is normalised to have

zero mean and unit standard deviation. The logistic function,

1

T 3.1
1+e X 3-1)

ﬁ =
is then used to estimate the class probability. The value of P will be between

0 and 1, where 0 is the highest likelihood of one class and 1 is the highest
likelihood of the other. A threshold is defined to divide the data based on
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this probability metric. This threshold is commonly set at 0.5, however it
can be adjusted to identify a threshold that can better divide the data.

3.3.3 Greedy Forward Feature Selection

Greedy forward feature selection is an iterative feature selection method in
which one feature is selected on each pass to be added to the feature set.

The process is described in Algorithm 1.

Algorithm 1 Greedy feature selection algorithm

1: N = number of features in dataset

2: Initialise candidateFeatures =1: N

3: Initialise selectedFeatures = {}

4: while size(candidateFeatures) > 0 A\ endCondition # true do
5: Separate dataset into train & test sets

6:  Setaccuracies(f) to zero for all f
7: for all feature in candidateFeatures do
8: Train classifier using selected Features and feature
9: accuracies( feature) = test(classifier)
10: end for
11: best Addition = maXeapyr (accuracies(feature))
12: Remove best Addition from candidateFeatures

13: Add best Addition into selectedFeatures
14: end while

3.3.4 Recursive Feature Elimination

Recursive feature elimination is another iterative method for feature selec-
tion. Unlike greedy forward feature selection which iteratively adds features,
the process is started by testing a model with all possible features and elim-
inating one per iteration. While the process can be performed using many
different models and evaluation techniques, this work focusses on the im-
plementation based on support vector machines, as described in algorithm
2.
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Algorithm 2 SVM Recursive Feature Elimination algorithm

N =number of features in dataset
Initialise remainingFeatures =1 : N
Initialise rejectionOrder = {}
while size(remainingFeatures) > 0 A endCondition # true do
Train classifier using remainingFeatures
Define worstFeature as the feature with the lowest absolute weight in
classifier
Remove worstFeature from remainingFeatures
: Add worstFeature into rejectionOrder
9: end while

3.4 Results

3.4.1 Logistic Regression

A logistic regression classifier was trained on all blood tests (split into train-
ing and testing subsets). The accuracies were measured as area under re-
ceiver operating characteristic curve. The classifier achieved 92% training
error and 89 £ 1% testing error (Muscat, 2015). 89 & 1% is within the range
of the FibroTest and FibroScan classifiers which achieved accuracies (when
combined) of between 88-95% AUROC (Castéra et al., 2005), showing that
a simple logistic regression can perform comparably with existing accepted

techniques.

The logistic regression classifier was tested for comparison against an SVM
classifier. Both classifiers were trained and tested on the same data segments
over 10 runs of a 10-fold cross validation for a total of 100 accuracy ratings
(AUROC). The results of this comparison are shown in Figure 3.5. While the
logistic regression classifier is able to split data effectively, it is consistently

below the performance attained by the SVM classifier.

3.4.2 Feature Selection

Feature selection is particularly important in this classification problem since
the classifier needs to be as interpretable as possible. Which features (blood
test components) are selected could give as much information as the clas-
sifier results and a medical professional should be able to understand why

the classifier gives the result it gives.
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Accuracies of classifications based on SVM and Logistic Regression models
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Figure 3.5: Comparison of classification accuracies between SVM and Logistic Re-
gression classifiers.

Feature selection was performed in two groups of data; first, feature se-
lection was performed on all data (per-patient averages) to find the best
classifier overall and second, data was split into time cohorts before feature

selection was performed over each time segment independently.

Selection over all data

Features TB, PLT and ALB were consistently selected as the first, second and
third-most descriptive features respectively. While there was some variation
in order, features TP, Age, MCV and HB were consistently selected fourth to
seventh. After these seven features have been selected, the accuracy peaks
at 92 £ 0.5% area under receiver operating characteristic curve (AUROC)
and adding any of the remaining features causes the accuracy to dip, likely
due to overfitting. These seven features are therefore taken to be the most
descriptive for predicting the onset of liver disease.

The accuracy of the composite classifier as each selected feature is added
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can be seen in Figure 3.6.

Accuracy (AUROC) of classifiers vs number of features used
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Figure 3.6: Accuracies of classifiers trained with increasing sets of selected features.
Accuracies were measured using area under receiver operating characteristic curve
(AUROCQ). Each test uses all features from all preceding tests plus the feature listed

with that measurement. For example, the classifier with 4 features would use TB,
PLT, ALB and TP together.

Selection over time cohorts

The reasoning behind performing feature selection on time cohorts is in
seeing whether the same features selected at time of diagnosis are selected
at increasing time intervals prior to diagnosis. If there are differences, this
would suggest the disease affects the patient in different ways as the disease

progresses, hopefully leading to a greater understanding of how the disease
affects the body.

The time cohorts were defined as follows:
1. >2 years prior to diagnosis
2. 1-2 years prior to diagnosis
3. 8-365 days prior to diagnosis

4. First week prior to diagnosis
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The majority of features are selected in similar positions across all cohorts,
with a few exceptions. ALB is selected with high priority in cohorts 1 and
2 but not in cohorts 3 and 4, suggesting the disease progression affects that
component of the blood most dramatically over a year before portal hyper-
tension is exhibited. In contrast, TB is selected second and first in cohorts
3 and 4 respectively but given lower priority in cohorts 1 and 2, suggesting
this blood component is most systematically affected close to (within a year
of) diagnosis of portal hypertension.

3.4.3 Accuracy Over Time

While the ability to classify blood tests into PH/non-PH is useful, the pri-
mary aim is still to predict the onset ahead of time. To this end, a test was
set up to establish how much predictive capacity there was in blood tests
taken in increasing time intervals prior to diagnosis. A classifier was trained
using all blood tests taken within the fortnight prior to each patient’s gas-
troendoscopy (diagnosis date) and tested on all blood tests taken from each
half-year time segment back from that date. As Figure 3.7 shows, there was
already enough information in the blood tests 6 years prior to diagnosis
to split the data with 75.5 + 1.2% AUROC accuracy. This suggests that it
should be possible to detect the onset of liver disease years in advance of
when it would otherwise be detected in these patients.

3.4.4 Testing on Hampshire Health Record

The Hampshire Health Record is a database of over 400,000 patients” records.
After the classifier was trained using the portal hypertension dataset, the
weights assigned to each feature were sent to Prof. Sheron to be tested
against the (previously unseen) HHR data. The classifier was run on the
records of approximately 100,000 patients® and achieved an accuracy of
90% AUROC. This was a fraction of a percent higher than the classifier con-
structed by Prof. Sheron and close enough to the 92% AUROC on training
data to suggest the classifier had generalised sufficiently.

3the remaining 300,000 were missing one or more of the features required for the classi-
fier
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Figure 3.7: Accuracies (AUROC) of classifiers built using the 7 best selected features
and tested on time segments taken from each half-year time segment back from
diagnosis.

3.5 Discussion

In this chapter we have introduced a novel medical classification problem
and explored solutions using a variety of machine learning techniques. Of
primary importance was the ability to clarify how and why the classifier
performed as it did. For this reason, feature selection was used to reduce
the number of contributing factors and only linear classifiers were used to
allow direct interpretation. Since medical patient data is particularly prone
to systematic outliers (due to patients having heterogeneous biologies) a

focus was put on identification of outliers and robust classification.

3.5.1 Feature selection

Features were selected using greedy feature selection, first from the whole
dataset and then from four smaller time cohorts taken from the data. All

feature selection passes found that a classifier built on the most informative
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7 teatures achieved the peak classification accuracy and the addition of the
remaining 8 features either offered no improvement or decreased accuracy,
likely due to overfitting. This subset of features is particularly useful for
highlighting the components of the blood test that are most affected by the
onset of liver disease and thus increasing medical understanding through

direct data analysis.

The feature selections on time cohorts highlighted the features whose use-
fulness for classification changes over time. Some features remained infor-
mative across all time cohorts, while others were better closer to diagnosis
or furthest from it. This should lead to a greater understanding of how the

progression of liver disease affects the blood and thus the patient.

3.5.2 Classification

Classification was performed by logistic regression and linear support vector
machines. For the initial tests all blood test data was used (split into training
and testing subsets) and for some later tests data was segregated based on

how long prior to the patient’s eventual diagnosis the blood tests were taken.

Over all data

Logistic regression achieved an accuracy of 89 £ 1% area under receiver op-
erating characteristic curve (AUROC) and linear SVMs achieved an accuracy
of 92 £ 0.5% over the same data. The baseline for these tests comes from the
closest work: the FibroTest and FibroScan classifiers from Castéra et al., 2005;
these baseline techniques achieved accuracies between 88% and 95% on liver
disease classifications from blood tests. Our results are therefore well within
the accuracy range of currently accepted techniques and crucially they use
the full blood count blood test rather than specifically designed tests, such
as those used by Castéra et al., 2005, giving this classifier a much wider

scope for deployment in health services.

Over time cohorts

A linear SVM classifier was trained on blood tests taken from the first fort-
night prior to patients” diagnoses and tested on each half-year period back
from diagnosis. This showed how much information was already present

in patients” blood in the years leading up to diagnosis. The results from
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this were particularly promising, revealing that even 6 years prior to diag-
nosis the classifier trained in the fortnight of diagnosis could still separate
the classes (patients with and without portal hypertension) with 75.5 £1.2%
AUROC accuracy. This suggests that diagnosis could be made from blood

tests far in advance of current methods.



Chapter 4

Outlier Rejecting Classification

4.1 Background

4.1.1 Soft Margin SVM
Definitions of terms used in this section can be found in Table 4.1.

In the standard formulation of soft margin support vector machines (SVMs)

the aim in training the machine is to minimise the hinge loss function,
hinge(w, x;,y;) = [1 — yix] w] (4.1)

The classification error for a given data pair is simply defined as 1 for incor-
rect class prediction and 0 for correct class prediction, as defined in (4.2).

Lif yix]w <0
err(w,x;,y;) = { fy (4.2)

0 otherwise

The weights defining the SVM class boundary are found by solving:

mm’BHwHZ—I—Z — yix] w]y

:minEHsz—i—eTé,‘ *3)
w 2

st. E=e—YX"w, >0
While this formulation allows a linear SVM to find a decision boundary with

overlapping classes, extreme outliers on the incorrect side of the decision

boundary will still have a greater effect on the final classifier than any other
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“normal” data point. In order to mitigate this effect Xu, Crammer, and
Schuurmans, 2006 seek to reduce and even eliminate any influence data
points perceived to be outliers have on the classifier training. They introduce
a modified version of the hinge loss function,

n-hinge(w, x;,y;) = mi[1 — yix]w]. +1—1n; (4.4)

This includes a new term, #, which is a vector with one element for each
training example. Each element #; € [0, 1] defines how much effect the ith
training example should have on the final classifier where 7; = 1 means the
training example will have full effect as in standard hinge loss and 77; = 0
suggests the data is an outlier and causes it to have no effect on the training.

This modified formulation can be solved by the following minimisation:
min min E||w| >+ Y y-hinge(w, xi, ;) (4.5)
w 0<yp<1 2 ; r It |

Table 4.1: Definitions of components used in equations from Xu, Crammer, and
Schuurmans, 2006

Symbol Definition

N Total number of data pairs

k Total number of features

w SVM weight vector

X Input matrix consisting of N col-
umn feature vectors

y Target vector of N scalar values

[a]+ max(a,0)

B Regularisation modifier; p = 1
used throughout this paper

e Vector of 1s

X; The ith row (ith input vector) in X

Vi The ith target in y

Y diag(y)

err(w,x;,y;) || Classification error using w to pre-
dict y; from x;
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4.1.2 Outlier Rejecting Regression

Robust calculation is also important for many regression problems. Most
large data sets will have erroneous data (random outliers) or data points
influenced by factors beyond the scope of a given experiment (systematic
outliers). These two cases present subtly different challenges, though both
can be tackled with similar approaches.

e Random outliers are typically created through random chance errors,
such as mistakenly typing an incorrect value when entering records
onto a computer system. This type of outlier is typically easier to de-
tect (using nearest-neighbour clustering for example) than systematic
outliers since they tend to be far more isolated in the feature space.
However, for the same reason, such points can have a large impact on
regressors if they are not removed prior to training - the distance of
the point from the true distribution will force the regressor to shift a
potentially large distance in order to accommodate it. It is therefore
important, though usually not difficult, to detect and remove such out-

liers from the dataset prior to training.

e Systematic outliers occur when a bias is present in the data which is
not a part of the study being conducted. For example, a doctor could
frequently misdiagnose one condition as another or a study on the
effects of a particular drug on patients could be skewed by multiple
participants also being on a second drug. Ideally sources of systematic
errors should be identified and eliminated prior to final data collection,
however this is not always possible, particularly when using existing
datasets for new purposes. Systematic outliers can be more difficult to
identify, since they form a local distribution of their own and therefore
cannot be separated by nearest-neighbour techniques alone.

Gunawardana et al., 2015 explored the use of an additional term, #, in re-
gression equations to mark suspected outliers and remove them from the

training set. This formulation,

. 1
I{B?AHwHZ + m;’ﬁl(xi,yi}w,b) (4.6)
can be solved using Algorithm 3. Definitions used in (4.6) and Algorithm 3
can be found in Table 4.2. This approach will iteratively find a subset of u
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of the data points which give the lowest error, ignoring the rest of the data.

This works well for eliminating random outliers but can still struggle with

systematic errors, particularly if u is set such that the number of excluded

points is fewer than the number of erroneous points.

Algorithm 3 "ORR2” method from Gunawardana et al., 2015 for solving
outlier rejecting regression

Set initial values of w and b
Define constants ¢ and A
Setk:=0
V; calculate I(x;, y;; w, b) and sort the results
0if I(x;, y;; w, b) was within
V; set 7k = the top u of sorted losses
1 otherwise

6: Find w**! and b*+! using (4.6)

Increment k by 1

8: If improvement in classification error is above a predefined threshold,

return to step 4

Table 4.2: Definitions of components used in equations from Gunawardana et al.,
2015

Symbol Definition

w Weight vector

b Bias term

A Regularisation parameter

U Fraction of the training data to be considered outliers (0 <

<1

m Total number of data points in the training set

7~ Vector of predicted outliers on the kth iteration (7¥ €
{0,1}; 0 — outlier)

X; Input vector of data sample i

Vi Target value of data sample i

I(xi,yi;w,b) || Generic loss function for predictor f(x;) = (w, x;) + b com-

pared to true value y;
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4.2 Robust SVM Formulation

After deriving (4.5) Xu, Crammer, and Schuurmans, 2006 propose that since
the equation is nonconvex a convex relaxation of the equation is required
to solve it. While it is true that the equation is nonconvex, I show in this
section that a simple algorithm can be derived from the equation without
the need for a convex relaxation. As a nonconvex optimisation problem, this
algorithm is not guaranteed to find a global optimum but its comparative
simplicity to convex relaxation solutions make it an attractive approach for

initial analysis of noisy data.

By substituting (4.1) into (4.4) one can observe that the #-hinge function can
be written in terms of the original hinge function:

n-hinge(w, x;,y;) = n;(hinge(w, x;,y;)) +1 —n; 4.7)
This can further be substituted into (4.5) and simplified down as follows:

mm mm 7Hw||2+2 i1 — yix{ w] — i+ 1)

B 2 T
= mainor<n”1£1 ||wl| +Z 7i([1 —yix; wly — 1) +1) (4.8)
—mdn0r<n”1£1 —||w||2+2771 —yixjw]y —1)+ N

The sum term can then be transformed into a vector equation by defining ¢
as used in (4.3)

min min —Hsz—f—Z 1:i(¢ )+ N

w 0<y<1

st V(&> 1 —yix]w, & >0) 4.9)

= min m1n ﬁ|\w||2~|—11 (E—e)+N

wo;,

s.t.é,'Ze—YXTw, >0

By defining & = ¢ — e the following alternating minimisation problem can

be found:
define: « =¢ —e

min é|]w||2 +4'¢ st E>e—YXTw, >0 (4.10)
min 11 o s.t. o > —YXTw, a > —1
0<y<1
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The first half of this minimisation can be seen as solving the hinge loss
soft margin SVM for all data pairs whose corresponding value of 7 is 1
(not an outlier). The second half of the minimisation, finding #, can be
achieved through calculating the error, (4.2), which adapts the alternating

minimisation to

ngngHwW—&—;]Tg st.E>e—YXTw, £>0

(4.11)
Vi(yi :=1—err(w,xi,y;))
This final formulation is easily computable using Algorithm 4.
Algorithm 4 Iterative method for computing the 77-hinge SVM, (4.11)
1: Initialise 7 := e
2: repeat
3: Solve the hinge loss soft margin SVM for all data pairs (x;,y;) where
ni=1
4: for all i do
5: Predict ¢; from x; using the computed SVM
6: Set prev-n; :=n;
lif i =y;
7: Set ;1= B :.Vl
0 otherwise
8: end for
9: until V;(prev-y; = n;)

4.2.1 Class Balancing

The primary issue with this formulation is revealed when there is a large
difference between the sizes of the two classes. The algorithm will often
end up marking all of the minority class as outliers and placing the decision
boundary arbitrarily far from the remaining class such that it achieves 100%
accuracy on the majority class. To avoid this behaviour an additional weight,
@; was added to the equation and set such that the sum of weights of each
class was equal. This ensured classification boundaries were drawn more
centrally between the classes rather than drifting towards (and beyond) the

minority class over successive iterations.
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define : Ny = number of data pairs belonging to class A
Np = number of data pairs belonging to class B

class(i) = the class that data pair i belong to

max(Ny, Np)
class(i)

(4.12)

.=
min min é|]w||2 +Z(p-(;7-[1 —y-x-Tw] —7i+1)
w 0<y<12 - YL [3ed ] + i

By following through the process taken from (4.8) to (4.11) but starting from
(4.12) rather than (4.8), the following alternating minimisation problem is
found:

: IB 2 T T
min w + n D¢ st.E>e—YX w, ( >0

Vi(i:==1—err(w, xi, ;)

4.3 Robust SVM Performance

The robust SVM was first tested on a small artificial dataset from Xu, Cram-
mer, and Schuurmans, 2006 to verify it was behaving as expected. This
dataset is made up of 20 samples drawn from two distributions with a fi-
nal 10 data points sampled from a ring as outliers for a total of 50 two-

dimensional data points. The two distributions have means of y; = (3, —3)
20 16

16 20
The ring the outliers are drawn from is centred around the origin with inner

and p» = (—3,3) and both share the same covariance matrix X =

radius of 15 and outer radius of 16. The 10 data points drawn from this ring

are randomly assigned to either of the classes with equal probability.

This artificial dataset was used to train first a standard soft margin SVM and
then a robust (outlier rejecting) SVM. The results of these two training meth-
ods are shown in Fig. 4.1. Despite the classification boundary being very
similar in both cases, the ORSVM is visibly more confident in the boundary
it finds after rejecting the highlighted outliers. This should lead to a more
accurate representation of class boundary since it is unbiased from extreme

erroneous data.

While the ORSVM algorithm can be seen to work on small datasets such

as that described above, it has so far shown no significant improvement to
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classification accuracies in large datasets. It is currently unknown if this is
more affected by the total number of data points or total number of features
used. Clearly, it is also unlikely to give any benefit for datasets with few

outliers.

Soft Margin SVM

Outlier Rejecting SVM

® Class1
Class 2
QO  Support Vectors
<  outlier Ring
Decision Boundary
[  Detected Outliers

-10

-15

-20

-20 -15 -10 -5 0 5 10 15 20 20

Figure 4.1: Comparison of class and support vector boundaries found by a Soft Mar-
gin SVM and Outlier Rejecting SVM on identical 2-dimensional artificial datasets
with outliers.

4.4 Discussion

A robust SVM was implemented based on the work of Xu, Crammer, and
Schuurmans, 2006 that identifies outliers while training and returns an SVM
trained on the remainder of the data along with the list of predicted outliers.
An extra term, ¢;, was added to the robust SVM equation to balance the
outlier rejection in cases where the positive and negative classes are not the

same size.

The final formulation worked well on small-scale, artificial datasets. How-
ever, the predicted increase in accuracy from this method did not scale up
to larger datasets like the portal hypertension dataset used in Chapter 3.
Combining the methodology with a cluster-based outlier identification tech-
nique could lead to improvements or insights as to why the algorithm in its

current form does not scale up well.

Despite not providing an increase in accuracy, the list of outliers identified

by multiple passes of the algorithm should provide some insights into larger
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datasets (such as the portal hypertension dataset), though this is a property
of outlier identification in general and not exclusive to this methodology.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

5.1.1 Liver Disease Classification
Prior Work

Chapters 1 and 2 investigated the work that has been done to date in apply-
ing machine learning to medicine in general and liver disease, respectively.
While there were some examples found of the use of general electronic med-
ical records (EMRs) in medical diagnoses, almost all work in liver disease
diagnosis used information specific to liver function. As discussed in chap-
ter 3 this presents the issue of narrowing down the scope of the tests to be
used only in cases where there is existing reason to suspect liver disease. A
system was required which can identify liver disease in patients who would

otherwise go untested.

Analysis of Portal Hypertension Data

To build a system which can detect early signs of liver disease with non-
liver specific information a dataset collected from inpatients at Southampton
General Hospital was analysed. The data consisted of full blood count test
results (a very common type of test frequently conducted and recorded in
general practices and hospitals), along with basic information like patient
sex and age. The dataset also contained diagnosis information for portal
hypertension, a reliable symptom of liver disease. The names of the blood

components measured were masked (replaced with labels A-O) in order to
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avoid any bias towards previous research in the creation of the classifier. The
key of letter label to feature name was retained by the liver specialist who
gathered the data so the eventual classifier could be verified and learned

from.

Feature selection was performed on the data to identify the best correlated
components of the full blood count data with the presence of portal hy-
pertension. Of the 15 features, 3 were found to carry the majority of the
information (> 90% classification accuracy) and 7 features were found to
perform best (92 4= 0.5% classification accuracy). Adding further features
decreased classification accuracy suggesting they gave no relevant indepen-
dent information and instead lead to overfitting. The features identified
were confirmed by the liver specialist to relevant in our current understand-

ing of liver disease progression.

Classification methods were explored for identifying markers in the full
blood count data that could predict the onset of portal hypertension. Lin-
ear support vector machines were the most thoroughly tested classification
tool, since they can create a robust classification boundary while remain-
ing fully interpretable. The final SVM classifier achieved a performance of
92 £ 0.5% area under receiver operating characteristic curve (AUROC), a mi-
nor improvement on the logistic regression classifier designed by the liver
specialist. The classifier was also tested on a previously-unseen dataset of
around 100,000 patients in Hampshire, UK. On this data an accuracy of 90%
was achieved, again marginally outperforming the classifier designed by the

liver specialist.

While the majority of the research was conducted on patient data aver-
aged over time (to create one data point per patient) the final investigations
looked into the temporal information content of the portal hypertension
dataset. First, the dataset was split into four time cohorts based on how
long prior to diagnosis the blood test was conducted (thresholds at 1 week,
1 year and 2 years). Feature selection was performed on data from these
cohorts to see if the most informative features changed over time. Features
3 and 12 varied most over time, with 12 being most important for very early
detection and 3 most important nearer diagnosis. The dataset was further
divided into half-year cohorts and tested with a classifier trained on the

fortnight immediately prior to diagnosis. This revealed a downward trend
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the further back from diagnosis date the data went, as would be expected.
However, most importantly, this demonstrated that a classification accuracy
of over 75% AUROC could be achieved six years prior to the date patients
were eventually diagnosed. This shows that there is a significant amount
of information available early enough in the disease progression to halt the
damage and prevent liver cirrhosis.

5.1.2 OQutlier Rejecting Classification

In chapter 4 techniques for automatically identifying and eliminating out-
liers were explored. A support vector machine-based technique was devel-
oped drawing from the work introduced by Xu, Crammer, and Schuurmans,
2006 and Gunawardana et al., 2015.

The outlier-rejecting support vector machine (ORSVM) was tested on a small
artificial dataset with two bivariate Gaussian classes and a small number of
erroneous outliers. On this dataset the power of such a system was demon-
strated as the classifier removed all outliers prior to final training, resulting

in a much tighter (more certain) classification margin.

The technique was then tested on larger scale data including the portal hy-
pertension dataset from chapter 3. On this data an issue with identifying
outliers in datasets with unbalanced class sizes was found. If one class was
sufficiently small, the algorithm could assume all of that class was erroneous
and ignore it. This brought accuracy to 100% but made any classifications
meaningless. To mitigate this a further term was added into the formulated
equation to balance the proportion of outliers identified from each class.
This stopped the classifier eliminating the minority class. However, it still
showed little (if any) improvement over standard soft-margin SVMs when

applied to large-scale datasets.

In its current form the outlier-rejecting support vector machine performs
well wherever there is significant separation between accurate and erroneous
data but in situations where erroneous data is close to the true distribution
of a class ORSVM shows no advantage over existing techniques like the
soft-margin SVM.
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5.2 Future Work

5.2.1 Outlier Rejecting Classification

Despite the lacking benefit demonstrated by the current ORSVM formula-
tion, the need for an accurate method of outlier rejection remains. One of
the situations ORSVM does not tackle is outlier clusters that fall the “cor-
rect’ side of the classification boundary. A potential solution to this may be
found in drawing on data clustering techniques and attempting to integrate
them into classification methods. These may include SVMs, however other
methods should be investigated too.

5.2.2 Portal Hypertension Dataset

RETAIN

Section 1.2 introduced the issue of accuracy vs interpretability. All of the
methods used thenceforth have been based on naturally interpretable meth-
ods adjusted to be as accurate as possible. An alternative solution would be
to take a naturally highly accurate method and adjust it to be interpretable.
This is the approach taken by Choi et al., 2016. They introduce a recurrent
neural network model (REverse Time AttentloN model - RETAIN) along
with methods to analyse the model after training to understand how the
model functions. This was used for the prediction of clinical diagnoses from
health record data, a near identical application to that discussed in Chap-
ter 3. Application and development of the RETAIN model to liver disease
prediction has two primary appeals:

e Recurrent neural networks (such as RETAIN) have far more scope
for learning complex patterns, in comparison to the linear models re-
searched in this thesis

e A lot of information is lost when health record values are averaged
over time. RETAIN was designed with time as one of the most impor-
tant pieces of information, so using this form of analysis should tap
into a very useful extra piece of data.
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New SGH dataset

Since the completion of this research a new dataset has become available to

Prof. Sheron compiled from in-patient data at Southampton General Hos-

pital. The new dataset has multiple benefits over the portal hypertension

dataset used in this research:

e It is not restricted to gastroendoscopy patients, so it should better rep-

resent the general population.

It is an order of magnitude larger, both in number of patients and
number of records, so there is greater scope for looking at finer details
without overfitting.

It contains additional fields that the PH dataset lacked, such as diagno-
sis codes (what was wrong with the patient when they were admitted).
These codes would be particularly helpful in identifying and eliminat-
ing systematic outliers caused by other common conditions and, as a
result, could assist in training classifiers to automatically detect such

groups of cases.

5.2.3 Natural Language Processing on Liver Biopsy Transcripts

The current process (outlined below) for conducting and analysing liver

biopsies in Southampton General Hospital involves a significant adminis-

trative overhead. Since the biopsy transcripts generated in stage 2 are in a

common format, a suggested task from Prof. Sheron is to automate stage 3

(generating the fibrosis score from the text).

1.
2.

Data

Doctor speaks notes into a dictaphone as they perform the biopsy.

Recording from dictaphone is sent to an external company to be tran-

scribed and returned.

Transcript is read by the doctor or a colleague/student and graded
from 0-4 (fibrosis score).

. Fibrosis score is used by the doctor to make a diagnosis.

A dataset of information taken from 5,659 liver biopsies was provided by
Prof. Sheron. There are 41 fields in the dataset in total, of which 7 are of
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particular interest. These 7 are described in Table 5.1.

Table 5.1: Descriptions of important fields in the liver biopsy dataset

Field | Data Type | Data Description

Bencode Numeric Patient ~ code  transformed  for
anonymity.  This code will be con-
sistent for any given patient over
the multiple datasets sourced by
Prof. Sheron allowing for tests to be
performed involving multiple datasets

Cirrhosis Boolean Marker indicating whether or not the
analysed liver was cirrhotic

Diagnosis Text

Datebiopsy Date Date the liver biopsy was taken

Fibrosisscore Integer (0-4) | A measure of how badly scarred the
liver was, from 0 indicating a healthy
liver, through to a 4 indicating a cir-
rhotic liver

Reportsummary | Text Transcript of notes taken during the
liver biopsy

SNOMEDcodes | Text A list of medical codes fitting the condi-

tion of the liver

The liver biopsy dataset overlaps with the portal hypertension dataset (Sec-
tion 3.2) on 797 patients. These patients account for 1,183 of the 5,659 biopsy
records and 18,804 of the 320,833 blood tests (see Figure 5.1).

FBC FBC

Biopsy Biopsy

(a) Patients (b) Records

Figure 5.1: Venn diagrams showing how many patients are shared between the por-
tal hypertension dataset and the biopsy dataset (a) and how many records belong
to these shared patients (b)
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