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It is well-established that patients with sickle cell disease (SCD) are at substantial risk
of neurological complications, including overt and silent stroke, microstructural injury,
and cognitive difficulties. Yet the underlying mechanisms remain poorly understood,
partly because findings have largely been considered in isolation. Here, we review
mechanistic pathways for which there is accumulating evidence and propose an
integrative systems-biology framework for understanding neurological risk. Drawing
upon work from other vascular beds in SCD, as well as the wider stroke literature,
we propose that macro-circulatory hyper-perfusion, regions of relative micro-circulatory
hypo-perfusion, and an exhaustion of cerebral reserve mechanisms, together lead to a
state of cerebral vascular instability. We suggest that in this state, tissue oxygen supply
is fragile and easily perturbed by changes in clinical condition, with the potential for
stroke and/or microstructural injury if metabolic demand exceeds tissue oxygenation.
This framework brings together recent developments in the field, highlights outstanding
guestions, and offers a first step toward a linking pathophysiological explanation of
neurological risk that may help inform future screening and treatment strategies.

Keywords: sickle cell disease, stroke, silent cerebral infarction, cerebral hemodynamics, vascular instability,
anemia, oxygen extraction fraction, cerebrovascular reserve

INTRODUCTION

Sickle cell disease (SCD) refers to a group of inherited lggohinopathies that a ect 20-25
million people globally I, 2). The condition is caused by a single-base substitutiohldzals to the
production of mutant hemoglobin type S (HbS). When oxygen tenss low, HbS polymerizes,
giving erythrocytes their characteristic “sickle” shaplee Wider pathophysiology is complex and
appears to involve a cycle of inter-related processes, im@ueliythrocyte-leukocyte adhesion to
the endothelium, endothelial activation, hemolysis, immation, and hyper-coagulatior3{8).

NEUROLOGICAL COMPLICATIONS

In developed countries, medical advances have led to draaitincreased life expectancy for
children with SCD ). The transition from fatal disorder to chronic iliness haswever, brought a
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new set of challenges with regard to the clinical complicationin lesion size and location, rather than underlying physiddad
that can have major implications for quality of life. Amongeth mechanism, that determines whether an ischemic insult is
most debilitating and poorly understood complications are aaccompanied by focal symptoms (ischemic stroke) or goes
number of conditions a ecting the brain, including overt and undetected [SCI,33)].

silent stroke, cerebrovascular disease, cognitive imgaitpand Both in addition to, and in the absence of, overt stroke and
structural abnormalities Kigure 1). Below, we consider these SCI, vasculopathy on MR angiography (MRA) is common in
in turn. SCD patients32). Although vasculopathy de nitions have varied
considerably between studies, intra- and extra- craniahat
STROKE AND CEREBROVASCULAR occlusive arteriopathy, often involving the distal intercarotid
DISEASE and the proximal anterior and middle cerebral arteries, are

frequently reported, particularly in patients with overt isshic

In the absence of screening and prophylactic treatmert),( stroke (34, 35, and SCI 24). Incidence of progressive stenosis

11% of SCD patients will suer an overt stroke by theirwith compensatory collateral vessel formation is as high as
20th birthday, and 24% by their 45thl7). Ischemic insults 30-40% in SCD patients with vasculopathy6,(37). In a
are most common, accounting for up to 75% of SCD-relatednulti-center pediatric study in which 37 chronically transed
strokes (2, 13). Patients are however at considerable risk of bottpatients underwent serial MRI, 38% of patients presented with
overt ischemic and hemorrhagic stroke, with the former rdpdr  a new vessel segment of stenosis or occlusion at followzgp (
more frequently in children, and the latter more frequentty = Despite aggressive hematological management, the chidibn
young adults {4-16). In a recent cohort study, 10% of SCD vasculopathy progression were also 12 times more likely to
patient deaths were attributable to overt stroke7)( Whilst  present with new SCI or overt ischemic stroke than those with
overt ischemic stroke is rarely fatal, death may occur falhgw no progression.
26% of hemorrhagic case$1j. Without secondary prevention, Some authors have proposed a sequential moyamoya-
recurrence rates of up to 70% have been reported for ovelike model of SCD vasculopathy and strokgd), in which
ischemic stroke, with the risk greatest within 36 months ofearly ischemic events are associated with stenosis, and later
the initial event ((8). Both types of overt stroke are associatechemorrhagic events with the development and eventual
with signi cant long-term morbidity, including seizurephysical  rupturing of friable and maximally dilated collateral vesse
disability, and cognitive impairmentLQ). However, the majority of SCD-related intra-cerebral and

More common than overt stroke is “silent cerebralsubarachnoid hemorrhages are associated not with cadlater
infarction” [SCI; 0], where hyperintensities consistent vessel rupture, but with aneurysm rupturé 41). Intracerebral
with infarction/ischemia are apparent on brain MRI in the aneurysms are also prevalent in SCD patierii§, ¢1), and
absence of focal neurological symptoms. SCI may occur &srtuosity and ectasia are well-documented in humans and
early as the 6th month of life2(l, 22). There is evidence that animal models 42-45). Whilst aneurysms are not signi cantly
prevalence reaches 25% by 6 years of age 89% by 18 years associated with collateral vessel formatidit)(they do appear
of age £4), and 53% by young adulthoo@%), with no reports to form in the context of progressive vasculopathy, with a
of a plateau. Although clinically “silent,” evidence of pregsion majority of patients with aneurysms having more than oré)(
was rst provided by the co-operative study of SCD (CSSD)In a recent clinical case review of children with SCD, ve of
where SCI was associated with a 14-fold increase in riskarft ov seven patients with overt hemorrhagic stroke and/or aneurysm
ischemic stroke, and 25% of children with SCI presented witlpresented with evidence of overt ischemic stroke and/or SCI
new or enlarged lesions at follow-ugf). In the CSSCD, SCI (48). These ndings may indicate concurrent development
was also associated with cognitive declifié).( These ndings of pathology underlying both ischemia and hemorrhagé)(
have been replicated in more recent work, including in a studyith shared underlying mechanismss(). Further support
where SCI in patients younger than 5 years old were showfor this notion comes from the identi cation of a number of
to be associated with later progressive ischemia, vaschlppatcommon, albeit non-specic, risk factors for both ischemic
academic di culties, and a higher risk of overt ischemicate  and hemorrhagic stroke, including anemia, chest syndrome,
(22). Further indicative of progressive ischemia, a recenicdin hypertension, and previous infarctiod§, 51).
review of 60 unselected adult cases found that 37% of patients
with SCI had more than one lesio2%). COGNITIVE DIFFICULTIES

Infarction in the territory of large intracranial vesseksthe
most common pattern in SCD patients with overt ischemicOvert stroke was originally identi ed as the primary cause of
stroke, but the watershed regions of the deep white-mattecognitive impairment in SCDX2). However, subsequent work
are particularly vulnerablel@, 28, 29), whether or not there has indicated that, whilst overt stroke and SCI are typically
is concomitant intra-cranial cerebral vasculopathy0)( The associated with the greatest impairment, cognitive di dak
distribution of SCI is similar, with up to 90% of SCI reportgdl may be common even in patients with no observable MRI
occurring in a relatively small deep watershed white matteabnormality €3, 54), manifesting as poorer school-readiness
region, encompassing only 5.6% of brain volurd&)(SCl and during the preschool years5% 56), academic diculties
overt ischemic stroke are often indistinguishable on MBP)(  during childhood through adolescence#-59), and employment
and several authors have suggested that it may be di erenceésculties during adulthood (60).
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FIGURE 1 | Neurological complications. Time of flight angiography image overlaid on 3D rendered Fluid Attenuated Inversion Recovery (FLAIR) image, edited to
depict common neurological complications in SCD.
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Already in infancy, up to 50% of patients show delay in earlymaging studies have further revealed signi cant reduetion
markers of cognition and expressive langua@®.(Throughout  white matter integrity, with watershed regions of the cemtr
development, patients continue to be at risk of impairmentsemiovale consistently a ected in SCI patients well as in those
across a range of domains including executive function, wm  without MRI-de ned lesions 79-83).
and processing speed®? 62-67). Although several authors Several studies have provided evidence that volumetric
have highlighted the need to consider SCD in the frameworland structural integrity alterations contribute to cogwmi
of a neurodevelopmental disorde6§), there have been no impairmentin patients with and without SCI. Lower gray matter
comprehensive longitudinal studies modeling raw cognitivervolumes have been associated with worse performance 1Q in
trajectories over time. The extent to which later cognitiveadults (72), with decline in FSIQ in children §4), and with
impairment is causally related to earlier developmental delaynemory impairment in mice §5). Moreover, decreases in white
and/or previous/ongoing pathophysiological processes, fheze matter density {5 and reductions in white matter integrity

remains unclear. (86), have been associated with worse performance on tests of
processing speed, irrespective of presence of SCI. It is therefo

MACRO- AND MICROSTRUCTURAL possible that cerebrovascular disease represents only thef“tip

BRAIN ALTERATIONS itr:lji:;?:grg[)m terms of functionally signi cant cerebrassue

Quantitative MRI studies have indicated that the total exteht

cerebral tissue injury may go beyond overt stroke, SCI, amgtel  MECHANISMS OF NEUROLOGICAL

vessel disease in SCD. There have been reports of reduceacortpN | ORBIDITY

and subcortical gray matter volumeSS-72) as well as reduced

subcortical white matter volume§§-75). Abnormal patterns of Although the incidence and impact of neurological
brain maturation have also been describe®«78). Diusion  complications in SCD are well-described, the underlying
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mechanisms remain poorly understood. As a result, currenavailable data do not suggest a high prevalence of silent
treatment strategies are inadequate, with many patienthicrohemorrhages in children and young adults with SCD
continuing to su er progressive vasculopathy and/or ischemig97, 98). Moreover, whilst susceptibility-weighted MRI (SWI)
despite being on gold-standard transfusion regimés, 87). of the brain has revealed patterns consistent with venular
Co-existing and interdependent pathophysiological processearefaction in SCD patients9¢), which may indicate vascular
pose signi cant challenges to understanding the individualpruning (89, 93), concerns have been voiced about the potentially
impact of each in SCD. Systems and network approaches, whicbnfounding e ects of decreased hemoglobin and increased
focus on the relationship between processes, have not beeerebral blood ow on SWI signal9g). Moreover, erythrocyte
comprehensively applied, but may be useful in combination witttongestion, CSVD, and/or vascular pruning cannot alone
reductionist approaches in developing an understanding of thaccount for the disproportionate vulnerability to injury of ¢h
complex pathophysiology36). deep watershed white matter regions in SGD, 31).
Taking a systems-biology approach to neurological
complications, we propose a novel framework that emphasizes
a role for vascular instability as a linking pathophysiolaic ENDOTHELIAL DYSFUNCTION
explanation for the various implicated mechanisms, inclgdin
vaso-occlusion, hypercoagulability, thrombosis, heniolyt Models have also been proposed in which neurological
anemia, and hypoxia, as well as the interactions betweasomplications are thought to occur as a result of downstream
them (Figure 2). According to this tentative framework, ischemia from progressive large-vessel vasculopatidy. (t
vascular instability is in part a result of operating at thehas been postulated that endothelial damage, exacerbated
limits of hemodynamic compensation for these physiologicaby in ammation, hyper-coagulation, and erythrocyte-leudyte
mechanisms. In this state, tissue oxygen supply is fragile aratihesion to the endothelium, may play a cardinal role in
easily perturbed by relatively minor changes in clinicaldition,  progressive large-vessel vasculopathy and perhaps also in CSVD
with the potential for overt stroke, SCI, and/or micro-sttucal and capillary pruning {6, 51, 93). There is indirect clinical
brain injury if metabolic demand exceeds tissue oxygenatio evidence in support, with studies reporting associations betw
In the following sections, we review frequently implicatedrisk of cerebral infarction and leukocyte courigj, leukocyte
mechanisms, and demonstrate how the proposed framework expression of L-selectinl(0, and endothelial expression of
able to integrate them with the most current evidence intleéd.  VCAM1 variant(-1594) {07J).
According to one model of large-vessel vasculopathy), (
endothelial dysfunction may either lead to a reparative
VASO-OCCLUSION AND CEREBRAL response involving intimal thickening and smooth muscld-cel
SMALL VESSEL DISEASE proliferation or to fragmentation of the elastic lamina, withe
former resulting in vessel narrowing and the development of
Vaso-occlusion was originally proposed to cause progressiwtenosis, and the latter in vessel wall dilation and aneurysm
vasculopathy and stroke, with erythrocyte adhesion, sigklin formation. It has been suggested that local rheology, skiass,
sludging, and congestion in small arterioles and venuleselV and/or tissue characteristics may determine whether emel@l
it became clear that patients with SCD and overt stroke hathjury leads to focal narrowing or dilation4@). Although the
large vessel disease, the suggestion that this processeadvolprecise mechanisms are not well-de ned, this model is able to
the vaso-vasorum network of feeders of large-vesselsedjainaccount for cases in which regional ischemic and hemorihagi
traction as an explanatory mechanism for both macro- andathology develop concurrently§).
micro-circulatory pathology %4). However, with the later However, whilst associated with an increased risk of iscbem
discovery that large intracranial vessels lack a vasowaso events, there is evidence that intracranial vasculopatbyeals
the notion that vaso-occlusion alone is the proximate causaeither necessary, nor su cient, for the development of dver
of macro-circulatory pathology has been challengédl).( ischemic stroke, SCI, reduced integrity, or cognitive innpesnt
Erythrocyte adhesion and congestion in post-capillary veaul in SCD. Neuropathological4Q), angiographic 4, 102, and
with backward propagation and potential vascular pruning [i.e. MRA/I (30, 38, 71, 82, 103 104 studies have consistently
regression; 9], nevertheless remain an in uential model of described cases of overt ischemic stroke and SCI both in the
micro-circulatory pathology or “cerebral small-vesseledise” presence and absence of observable intracranial vascujopath
[CSVD; 06-93)]. Conversely there have been reports of intracranial vascthgpa
Despite a lack of histological evidence, SCI, structurah the presence and absence of SCI and overt strbké-06).
abnormalities, and cognitive impairment are often desalibe For example, in a large triain(D 516) in which patients
as manifestations of CSVD, secondary to vaso-occlusiweith prior overt stroke or abnormal transcranial-doppler (TGD
pathophysiology in SCD9¢4, 95). CSVD is typically regarded as screening results were excluded, 84% of children with SCI
a “whole-brain” disease, encompassing not only white-matteshowed no MRA evidence of intracranial vasculopathy at
hyperintensities, but also other diuse pathologies incluglin baseline, and 36% of those with MRA de ned vasculopathy
silent micro-hemorrhages, white matter hyperintensitiesier ~ showed no evidence of SCIL{4. At exit, only 1 of 15
to SCI but in non-SCD populations, lacunar infarcts, andpatients with SCI recurrence had baseline vasculopatiy)(
prominent perivascular spaces9d). However, the scanty Similarly, in a medium-sized trialn(D 150) in SCD children
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FIGURE 2 | Systems biology framework. Proposed Model of neurological risk emphasizing role for vascular instability. Highlighting several potential mutually enforcing
pathways. Different colors used to differentiate different mechanistic pathways, and to distinguish them from outcomes.

with prior overt stroke, there was no consistent pattern ofat intra-pulmonary or intra-cardiac (e.g., through a PFO; pate
intracranial vasculopathy associated with SCI, and theree weforamen ovale) level and paradoxical embolism may also be more
no consistent hematological biomarkers for SCI or vasculopa common in children 83,115 116 and adult ((17) SCD patients
(87). Reduced cortical thickness/k), sub-cortical volumes and may be associated with cerebral infarctiaid. Although
(69, white-matter integrity, and cognitive performanc&Z there are few data in SCD, PFO is an established risk-faotor f
86) are also well-documented in patients without MRI-de ned overt stroke in the general populatioh13-121).
lesions or MRA-de ned vasculopathy. Whilst these studies are Hypercoagulability =~ may  pre-dispose to  cerebral
plagued by highly heterogeneous samples and use of incamtsist¢thromboembolism and is also a feature of SCD. Activation
vasculopathy de nitions §2), these and other ndings have of the coagulation cascade and brinolysis are favoréd?
nevertheless encouraged authors to explore alternatigbgies and there is a high risk of venous thromboembolisi?§. Risk
for neurological morbidity in SCD1089. factors may include genetic predispositiot2f), in ammation
(122, and splenectomyl1@5. Phosphotidylserine exposure on
red cells and microparticles may play a role, related in part to
HYPERCOAGULABILITY AND EMBOLIC acquired protein S de ciency1¢6. Whole blood thrombin
EVENTS generation is increased in SCD, while plasma thrombin
generation is decreased, suggesting a cellular component,
There is indirect evidence that cerebral embolic eventsioicc ~ although this does not appear to be related to phosphotidylserine
SCD patients, including reports of associations betweentoveexposure {26. There is cross-sectional evidence indicating that
ischemic stroke and thromboemboliL@9 110 as well as of hypercoagulability may contribute to risk of overt strokede®Cl
fat-embolism syndrome from bone-marrow necrosis (-114. in SCD patients 127, 129. Proteomic analyses have revealed
Although comprehensive prevalence data are lacking, shgntirassociations between SCI and the prothrombotic proteins

Frontiers in Neurology | www.frontiersin.org 5 August 2019 | Volume 10 | Article 871


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Stotesbury et al. Vascular Instability and Neurological Morbidity in SCD

o2-antiplasmin, brinogeny chain and thrombospondin-4 a disproportionate 20% of the body's total oxygen supply. In
which are considered to predispose to hypercoagulabiligd);  children, brain oxygen consumption is even higher, reactsiog
Although ndings have been mixed, several studies have alsiuring the rst decade of life 144). As re ected by these high
shown lower serum levels of coagulation markers [e.g., BxMj demands, a baseline cerebral metabolic rate of oxygenatiiiz
Von Willebrand factor, TAT complex;1(29] and lower thrombin  (CMRO) is required to maintain tissue viabilityL¢5.
generation {30 in SCD children deemed at low risk of overt CMRO;, is de ned as the product of arterial oxygen content
stroke on the basis of transcranial doppler (TCD) velocite=e( (Ca(y), rate of blood delivery (CBF; Cerebral blood ow),
page 10). In addition, poor splenic function is associated witland the percentage of oxygen extracted by the tissue (Oxygen
SCI 99, although the link to hypercoagulability has not beenextraction fraction; OEF).
made for SCP asithas for thalassentia’, 132, The following equations, derived from the Fick principle show

Upregulation of platelets may exacerbate the hypercoagulable . . e

) ) . their relationship;

as well as the proin ammatory state associated with SCD.
Platelets may also promote endothelial activation and .
erythrocyte adhesion by stimulating several major endidhe CaC; D (Hemoglobin 1.34 SaQ) C (0.003 paGy)
adhesion molecules, including vascular adhesion molecul@xygen DeliveryD CaO, CBF
(VCAM-1) (133 and by forming an increased number of OEFD (Ca®, Cvp)/Cal
platelet-erythrocyte 134 135, platelet-monocyte 13§ and
platelet-neutrophil aggregated 3. Although the underlying CMRO, D Ca0,CBF OEF
mechanisms are unclear, there is cross-sectional evidiate
patients with SCI or overt ischemic stroke have higher mea

platelet values than patients without lesions on MRI3). . -
. . . . the ratio of oxygenated hemoglobin to the sum of oxygenated
Also, thrombocytosis (platelets 500 1(P/L) is associated with A . .
and deoxygenated hemoglobin in arterial blood, and @u®

cognitive impairment across multiple domains in children -
with SCD (139, and elevated levels of erythrocyte and platele}/(?nous oxygen content (o) de ned similarly tc_: CaQ, but

. ) . . ; ..~ with metrics drawn from venous rather than arterial blood.
derived microparticles have been described in those with a
history of overt stroke 139. Whilst there is also evidence In normal vascular physiology, CBF is closely coupled to
that higher mean platelet volume is associated with a globdlaseline CMR@, leading to globally uniform OEF1¢6 147).
increase in white matter volume in SCD patients, further workBy arteriolar dilatation, CBF increases in response to iaseel
is required to determine whether this is adaptive or a re enti metabolic demand related to function, e.g., movement of a
of edema (4). Given these data, there is a good case for furthelimb or response to a visual stimulus. Under conditions in
investigation into the relationships between platelet atton, which oxygen delivery is decreased [e.g., hypo%iéd( carotid
hypercoagulability, and neurological complications in SCDartery occlusion; {49] or CMRO; is increased beyond normal
Mechanisms could include embolism through a cardiac offunctional demands [e.g., pyrexia or seizurekid] the brain
pulmonary shunt from the systemic venous circulation eug., i is able to fall back on two reserves; a cerebrovasculaodilat

IWhere 1.34 is the oxygen a nity of normal hemoglobin type A,
paQ; is the partial pressure of oxygen in arterial blood, $&O

the pelvis or the limbs, as well as local thrombosis. reserve (CVR) and a metabolic reserve. CVR re ects the
capacity of smooth muscles to alter vessel caliber in respgonse

HEMODYNAMIC COMPROMISE uctuations in arterial blood gases such as carbon dioxidd a
oxygen (L50. The arterioles respond to changing carbon dioxide

Watershed Vulnerability tension with a positive linear response across the physiolbgica

Whilst vaso-occlusive, thrombotic, and/or embolic evemtay range but attening at the extremesl1%l). Although the
contribute to some ischemic insults in SCD, several authaxe  underlying mechanisms are less well-understood, the méitabo
argued that the high density of overt and silent infarctiomda reserve re ects the capacity of the brain to augment CMRO
microstructural abnormalities in watershed regions maypod  via increases in OEF, which may potentially involve changes in
hemodynamic compromise or “brain drain” as a more commone ective oxygen di usibility (L52).

contributor (32, 140. Historically, in non-SCD patients, In models of hemodynamic stroke there is a disproportionate
watershed infarcts have been associated with hemodynanticop in oxygen delivery relative to baseline CMRGand
causes, and are sometimes referred to as hemodynamic strole exhaustion of vascular reserve mechanisin&l)( Within
(141, 1429). As the watershed regions lie at the end junctionghe rst 48h of an ischemic insult, a state of hemodynamic
between adjacent arterial territories, vascular supply isiiehtly compromise known as “misery perfusion” is often observed,
low. Much as the last eld on a farm is the area with the leasinvolving reductions in regional CBF that are accompanied by
supply of water and therefore the most vulnerable to a reductio increases in regional OEF. Regional OEF increases may serve t
in ow, the watershed regions of the brain are believed tole t maintain CMRQ up to a point, beyond which tissue injury may

most vulnerable to a reduction in perfusiof43. ensue {46 153-155.
) There have been reports of hemodynamic changes consistent
Vascular Physiology with a similar model of hemodynamic compromise in patients

Despite only accounting for 2% of total body weight, the brainwith SCD, including altered Caf) CBF ((56-161), CVR (162-
has the highest metabolic requirements of any organ, comsgm 164, and OEF {65-167). Whilst vaso-occlusion, vasculopathy,
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and emboli are all ow-restricting phenomena that may CVR response timesl@4. There is evidence that a majority
contribute to hemodynamic compromise, some hemodynamiof patients may approach the upper limit of dilatory capacity,
changes may represent compensatory responses to physiologiaatl that a quarter may also exhibit negative reactivity teédt
stressors associated with SCD pathophysioldgy)( including  (193. Steal refers to blood being “stolen” from one cerebral
anemia and hypoxia. In the following subsections, we comsideegion and given to another, and occurs when a pressure gradie

research on aspects of CMR@ SCD in turn. exists between regions, such as when one region is maximally
. dilated and unable to respond to a vasodilatory stimulus.[e.g
Arterial Oxygen Content (CaO,) hypercapnic challengei$9]. In these instances, blood may be

In patients with SCD, hemolytic-anemia leads to chronicredistributed from regions unable to dilate to regions thes able
hemoglobin-driven reductions in CaD (6). Ca®: may, to. Theoretically, therefore, in a parallel vascular systemere
however, be further reduced in these patients due to acutéhere is CVR exhaustion, an increase in perfusion in one regio
intermittent, and/or chronic daytime, nocturnal, and/or can lead to a relative decrease in perfusion in another.
exercise-induced  oxyhemoglobin  desaturation.  Daytime Studies in healthy populations suggest that some brain regions
oxyhemoglobin desaturation, when de ned by pulse oximetryare more vulnerable to CVR exhaustion and steal than others.
as SpQ@ <96%, may a ect between 30 and 50% of steady-staleVR appears to be greater in gray matter than white mafteg(
patients ((68-173. 197, as well as in phylogenetically older than phylogenetically
Although a well-described phenomenon, there is noyounger gray-matter regions of the braihqg 199, which may
consensus on cause, de nition, or treatment of oxyhemoglobi be related to the relatively greater vascularization irygreatter
desaturation in SCD 1(74. Proposed mechanisms include regions that perform essential homeostatic functiori<d.
phenomena often considered “hypoxemic” such as abnormathere is also evidence that watershed white matter regioms a
HbS oxygen anity, elevated levels of dyshemoglobins, andiisproportionately at risk of steal in young healthy populations
pulse oximeter calibration for HbA rather than Hb$715 179.  during hypercapnia 196, suggesting that these regions may
“Hypoxic” phenomena, including obstructive and restrictivepe continuously compensating for low perfusion pressure.
lung disease, sleep disordered breathing, and shunting, 8o  Exhausted CVR, alone or in combination with steal, may thus
been proposed to play a rol@{g 177). render the watershed white matter regions disproportionately
The anity of hemoglobin for oxygen is a fundamental vulnerable to ischemia in settings where there is increased
determinant of the oxygen-carrying capacity of blood and ismetabolic demand (e.g., infection, pyrexia, seizures) cacrie
altered in patients with SCD. HbS polymerization has long beedrop in CaG [e.g., acute chest syndrome with acute anemia and
known to reduce oxygen anity, causing a right shift of the hypoxia; 83)], which are common in SCD.
oxyhemoglobin dissociation curve [ODC;{8-181)]. Although Whilst several MRI studies suggest that global white matter
there is signi cant heterogeneity, the p@t which hemoglobin  CBF is on average elevated in “steady-state’ SCD patients
is 50% saturated (P50) is increased in a majority of SCD patien (158 166 200), the elevation is lower than that observed for
meaning that hemoglobin oxygen saturation for any givennf®> gray matter, and may therefore be insu cient to maintain
lower (171, 182-189. Whilst this right shift of the ODC is seen oxygen delivery regionally. Results from a more recent study
in many anemias, and facilitates unloading of oxygen frdood  are consistent with this notion, and suggest that global @it
to tissue (see section below on OEF), it inhibits oxygenilugd matter oxygen delivery is signi cantly reduced in “steadgtet
at the lungs, which may promote oxyhemoglobin desaturation irsCD patients without MRA de ned vasculopathy compared
SCD (189. to controls @0J). Using a rigorous partial volume correction,
Studies using near-infrared spectrophotometry have provide¢the authors found signi cantly elevated global gray-matter
evidence that cerebral oxyhemoglobin tissue desaturaison CBF in patients, but no dierences in global white-matter
common and can be severe in steady-state SCD pati&é6s-( CBF, indicating inadequate compensatory vasodilation in
189. However, oxygen carrying capacity appears to only partiallyhite-matter. Importantly, through t-score maps, the authors
explain cerebral desaturation, with CaGge, and male gender showed the reduction in white matter oxygen delivery to

together accounting for 40% of the variand&§. be disproportionate in watershed regions vulnerable to SCI
and reduced integrity, going beyond that expected due to

Cerebral Blood Flow, Cerebrovascular anatomical constraints and the watershed e ect aloaé1).

Reserve, and Cerebral Autoregulation These ndings suggest that watershed regions are hypo-peifus

Cerebral tissue oxygenation is dependent not only upon oxygein SCD patients, and highlight the need for future studies to
availability and the blood's oxygen carrying capacity, bisba consider regional perfusion characteristics alongside ajlob
on tissue perfusion. Whilst CgQis chronically decreased in averages. In line with this, Positron Emission Tomography [PET
SCD patients, studies have consistently reported compensatafl61, 192 202)], Single Photon Emission Computed Tomography
vessel dilation190), leading to increases in global CBF and CBV[SPECT; 203-205], Xenon-Computed Tomography [CT;
(157, 166 191, 192, which appear to maintain oxygen delivery (20§] and MRI studies {58 16Q 201 have also reported

and metabolism when averaged globall{; 167). regions of hypo-metabolism and/or hypo-perfusion in patients
However, in patients with SCD, compensatory increases iwith SCD.
global CBF are associated with reduced CVR {62-164 193, The etiology of regional hypo-perfusion in SCD is unclear. In

with the white matter also exhibiting disproportionate delays the absence of longitudinal data, it is impossible to deteemi
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whether injury in these regions occurs secondary to hyposecondary to acute drops in Ca@nd cerebral oedema [e.g.,
perfusion, or whether hypo-perfusion is secondary to the lowein acute hypertension;2(L§ or hypoxia; 17]. However, it is
metabolic requirements of injured tissue. Given that CBRpossible that critical closing pressure, the CPP at which igesse
and CMRQ are closely coupled, it is possible to speculateollapse and close completely, is reached during acute illness
that injured regions have lower CMROQ resulting in hypo- with relatively small increases in either ICP or JVP or reduts
perfusion. However, SCI-burden was relatively low in the iChain MAP.
et al. 01 sample, with only half of patients showing small Both CVR and CA must necessarily rely on the same
lesions. Moreover, there is evidence that even in “steaalg’st underlying capacity for cerebral vessels to regulate resista
patients without SCI, PET may nd regions of hypo-metabolism(150, a capacity which is modulated by local metabolites, RBC
and hypo-perfusion161). Whilst CVR-exhaustion and vascular chemistry, the autonomic nervous system, and blood rheglogy
steal secondary to compensatory increases in gray matteisCBRall of which are abnormal in SCD2(8. Vessel caliber is
another plausible explanation, it is also possible that them is ultimately dependent on the balance between the myriad of
broader vulnerability of vasculature regulation in SCD. vaso-constricting and vaso-dilating agents derived frone t
Cerebral autoregulation (CA) refers to the ability of thealr  endothelium, neuronal innervations, and physical factorshsas
to maintain relatively constant CBF over a broad range ofhear and stretci?(l9. Evidence from forearm and renal studies
cerebral perfusion pressures (CPP), and is thought to involveuggests that the vaso-active balance is inherently viifeeia
a complex interplay of autonomic, myogenic, and neuronaSCD patients, with concomitant upregulation and exhaustibn o
mechanismsZ07). vaso-constricting and vasodilating agert&(). For example, low
nitric oxide (NO) bioavailability occurs secondary to helysis in
patients with SCD, and given that NO is a powerful vasodilator
CPPD MAP ICP that also inhibits the vaso-constrictive e ect of endothelinthis
may increase reliance on other agents and tip the balance in

or L )
favor of vaso-constriction once alternative agents areaasted
CPPD MAP JVP (91, 221).

Where MAP is the mean arterial pressure and JVP is the jugular. Althqugh it is unclear how this plays out n the cerebr.al
circulation in SCD, and the molecular mechanisms undegyin
Venous pressure.

CVR and CA remain the subject of much debates() 222,

If blood pressure decreases or increases, CA maintairstudies in animals and humans suggest that endothelial NO
constant CBF across the autoregulatory range which varigeay play a role in moderating CVR as well as in extending the
with age and a variety of conditions. Below this range, CBFower limit of CA (223 224). In endothelial nitric oxide synthase
falls with decreasing CPP, risking ischemia, particulaniytie  knockout mice, for example, there is a substantial rightwadriit
watershed regions. Above this range, CBF rises with incrgas of the CA curve at low perfusion pressuré®f). Whilst a right
CPP, with the risk of edema, particularly in the posteriorshifted CA may protect the brain from brain-barrier disruption
circulation. There is some evidence indicating impaired CAsecondary to hyper-perfusion, it may also mean that a higher
in SCD patients, with one study showing that patients have aerfusion pressure is required to prevent hypo-perfusion.
reduced capacity to bu er the transfer of blood pressure sutges  Of note, impaired CA226-228 and reduced CVR429 230,
the cerebral tissu€(08. Whilst CA has traditionally been treated have also been observed following sympathetic stimulation i
as separate from CVR, both are mechanisms deployed to enswarimals and humans. There is evidence for autonomic nervous
CBF-CMRQ coupling in the face of changing physiological system dysfunction in SCD, with enhanced sympathetically
conditions, and there are persuasive data indicating syserg mediated vasoconstriction re exes2i§ 231234, which
and interdependence between theh®(} 209 210). For example, theoretically, could compound any e ect of reduced NO.
progressive hypotension appears to blunt and abolish the CBAthough there are no data comparing CVR, CA, and the
response to hypo and hypercapnia5(, 211, and hypoxia interaction between them in SCD, a vulnerability in the
and hypercapnia appear to reduce the ability of the brain tavailability of regulatory agents, either alone or in conation
defend against changes in perfusion pressure as @&} 213, with autonomic nervous system dysfunction, may mean that
suggesting that CVR and CA may rely on the same underlyingormal CVR and CA ranges are right-shifted and/or narrower
OW reserve. with loss of the plateau. Coupled with the inherent anatomical

The role of reduced CPP secondary to intra/or extracranialulnerability of watershed white matter regions, reduced/ar
vasculopathy Z4, 35, diastolic dysfunction 414, relative altered regulatory capacity may further predispose SCD patient
systemic hypotension2(l5, and/or embolism, has received to hypoperfusion and/or oxygen supply-demand mismatch in
relatively little attention in SCD, but any eect may be these regions.
compounded by CVR exhaustion. Some SCD patients may Theoretically, in patients with higher hematocrit, either
thus face a “quadruple jeopardy” of reduced Ga®ystemic naturally or as a result of transfusion, the increased \&igo
hypotension, CBF restricting stenosis/emboli, and extedist of blood containing HbS could exacerbate hypo-perfusion in
CVR (140. It is unclear whether low ow conditions are low-shear watershed region81( 235 236. There isin-vitro
further exacerbated by increases in JVP secondary to egjiteo evidence, including in patients with SCD, suggesting that a
congestion in post-capillary venules, and/or increases iR IClower hematocrit to viscosity ratio (HVR) measured at high

Cerebral perfusion pressure (CPP) is de ned as either:
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shear rate is associated with poorer cerebral oxyhemoglob@Xygen Extraction
saturation as measured by NIR83{). However, HVR is a Reports that OEF is abnormall§5 167, particularly in
measure that confounds CaCand viscosity, meaning that it watershed regions prone to SCI6H, are further indicative of
could be low secondary to either low Ca@r high viscosity. hemodynamic compromise and regional vulnerability in SCD
Moreover, studies in animals using high and low viscositypatients £50. There is evidence that changes in global OEF
replacement uids 239 as well as in humans with other anemia's,are associated with increases in global CBF, but that only
polycythemia, and paraproteinemia4g 239, suggest that once changes in OEF are related to higher levels of clinico-radiical
any di erences in Ca@are accounted for, the impact of viscosity impairment, de ned as moderate stenosib0% in any major
on global CBF is negligible. These ndings have beenreplidate vessel, prior overt stroke or SCI, and/or chronic debiliati
other populations with normal vascular function and hemafocr pain (167). Although there is controversy as to whether oxygen
during isovolumic conditionsZ40). This apparent contradiction extraction is higher 166 167 251) or lower (165 252, both
of Poiseuille's law may relate to the physiological condiiof patterns would be consistent with on-going metabolic strests,
the cerebral vasculature, with turbulent ow, non-Newtani higher or lower OEF potentially either re ecting compensation
uid, and atuoregulation of vessel calibePd4). However, if for, or exacerbation of, hemodynamic compromise.
vessels are less able to dilate in SCD patients, either due to These paradoxical ndings may be explained in the context
CVR exhaustion secondary to reduced Ga&hd/or a broader of preliminary reports of venous hyperintensities on arterial-
vulnerability in regulatory capacity, the ability to compatesfor  spin labeling MRI, consistent with arterio-venous shunting
increases in viscosity and/or reductions in deformabititay be  (253. One theory, named the “functional shunting hypothesis”
reduced. Whilst there is some data indicating no independen{254), postulates that regional shunting pathophysiology,
e ectof blood viscosity on global CBF in patients with SCI3{), coupled with compensatory increases in global CBF and
further work is required to examine the e ects of viscositydan reductions in arterial transit times and CVR, lead to region
deformability in both low and high shear regions of the brain  of impaired oxygen unloading and di usion in SCD, re ected
by regional reductions in OEF. In these instances, tissue
Mutually Enforcing Pathways oxygen delivery may be compromised even though di erences
Of note, hypo-perfusion reduces shear-stress, and there litween arterial and venous saturation are small. Such
evidence that endothelial cells exposed to low-shear cimmdit shunting could be compensatory in terms of minimizing
show sustained activation of adhesion molecules, tisstterfa  HbS polymerization and/or metabolic demand [e.g., hibermati
and in ammatory agents, as well as decreased production fil65], but could also be a dysfunctional consequence of
nitric oxide (241, 242. Hypo-perfusion may also increase the macrocirculatory hyperperfusion in the setting of reduced /am
risk of thrombus formation secondary to platelet-aggregati shifted CA.
(243. Interestingly, murine studies have demonstrated that The functional shunting hypothesis has been challenged,
pre-conditioning via prior exposure to ischemia can behowever, with one study nding no relationship between
neuroprotective by reprogramming the genetic respons&enous hyperintensities and global OER§ 259. Part of this
to ischemia, with adaptations including the suppression otontroversy stems from the need for calibration models when
thrombus formation @44). Presence or absence, or even thaising oxygen-sensitive MRI techniques. In SCD patients, T2
degree and timing, of pre-conditioning may be relevant inrelaxation under spin tagging (TRUST) can yield diametricall
determining the nature of acute neurological presentation®pposing results depending on data calibration model [HbA vs.
in SCD where patients are at risk of chronic sustained andHbS calibration; {65 256)], and there is no consensus on model
intermittent exposure to hypoxia?¢5. validity (259. As a result, global CMR£In patients with SCD
There is also evidence that high and turbulent shear-streshas been reported to be higherqg 257, 259, lower (165 252,
which may occur secondary to hyper-perfusion and reducednd similar (L67) to that of controls.
Ca(®, can induce angiogenesis and vascular remodeling Reports of higher global OEF are broadly consistent with a
(241, 246 247). Hypoxic exposure may additionally promote previous PET studyl©2 and have been established using two
angiogenesis through several non-mechanic endotheliali erent MRl methods [asymmetric spin echo-+66; TRUST
pathways 249, although these may be perturbed in SCD.with HbA calibration—(L67, 259]. However, both depend on
Nevertheless, reports indicate that patients with SCD displagroad assumptions that may not be valid in SCD patients
a heightened “angiogenetic tone,” with elevated levels ¢fi65 259, as demonstrated by a recent study employing
proangiogenic growth factors, which in combination with a novel susceptibility-based technique, where venous oxyge
endothelial dysfunction, could contribute to vasculopatff).  saturation was found to be elevated in SCD patients, consistent
Taken together, these ndings illustrate how mutually emiog  with lower global OEF 459. Further complicating matters,
pathophysiological processes may be at play, and suggest thatis possible that there are regional dierences in OEF and
depending on the extent of any pre-conditioning (e.g., via prio transit times, or thresholds beyond which increases in CBF
exposure to hypoxia), both global hyperperfusion and regionabegin to impair oxygen unloading. Whilst further work is
hypoperfusion could in turn exacerbate erythrocyte-leukecy required to determine whether OEF is higher, lower, or spigtia
adhesion, hypercoagulation, endothelial dysfunction, andheterogenous in SCD patients, the available data are nelesthe
vasculopathyZ49. indicative of OEF exhaustion and/or insu ciency, consistent
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with hemodynamic compromise, and likely exacerbated byvhite matter volume and tissue integrit$1, 82), and cognitive
hypoxic and anemic exposure. impairment 86, 265-267). Several case-series have highlighted
Of note, shunting pathophysiology has been described iacute chest syndrome in patients presenting with overt iscbem
other vascular beds in SCD, including the peripheral [Upper armstroke in the absence of intracranial large-vessel vapathy
(260] and pulmonary (L19 circulations. Whilst the similarities (11, 103 268, which may indicate a role for reduced oxygen
and di erences between vascular beds of various organs hadelivery and hemodynamic failur@¢9.
received little attention and are poorly understood, thediac Moreover, TCD, which captures the time averaged mean of
description of a “superimposed restrictive and hyperdynamit¢he maximum velocity of blood, can be high as a compensatory
physiology” @61), and the renal, ngertip, and skeletal muscle mechanism for reduced CgO(270Q 271) rather than vessel
descriptions of a “perfusion paradox®§ 220, are similar to narrowing, and there is evidence that up to 79% of SCD childre
the hemodynamic changes observed in the cerebral ciromati with high TCD have either no stenosis er25% stenosis?(/2).
with hyper-perfusion in the macro-circulation, hypo-perfusio In an analysis of the STOP trial data, only 2 out of 6 high TCD
in watershed regions of the micro-circulation, and an ex$tean  patients who went on to have a stroke showed evidence of intra-
of vascular reserve mechanisms. These ndings are suggesti cranial vasculopathy?(73. Although extra-cranial vasculopathy
a state of vascular instability, in which tissue oxygen supply imay not have been excluded, these ndings are consistent
fragile, and easily perturbed by uctuations in clinical abtion.  with the notion that hemodynamic factors, e.g., reduced CVR
associated with high CBF, may be more pertinent to the etiplog
of overt stroke than vasculopathy alone.
According to one seminal model of hemodynamic stroke in
Taken together, the reviewed mechanisms are consistehtawit non-S(_:D patients, tran3|t_|on from misery pe_rfusmn to ischemi
. . . - stroke is a result of perfusion pressure dropping to such an éxten
tentative systems-biology framework of neurological miditly . L . .
. : o . . that CMRQ is no longer maintainable by increases in OEE®).
with vascular instability at its coreF{gure 2). According . o
. . . - . - Whilst there are a number of PET studies in suppdit{ 279,
to this tentative framework, increases in CBF, reductions i . . ; i
: . o isolated reports of favorable tissue outcome following nyiser
CVR, and exhausted/insu cient OEF, may act synergisticall : . . - 9
- A . : : perfusion, termed the “ischemic penumbra,” including in one
to cause vascular instabilityFigure 2), a state in which risk . ; S .
: . . g . atient with SCD 276), indicate that there may be additional
of regional hypoperfusion, ischemia, re-perfusion, and the . . . . .
. . - . mechanisms involved in determining transition to obserieab
associated in ammatory milieu are high. These factors may. . :
. tissue infarction {46 277).

contribute either alone, or in combination with acute drops i Althouah the hemodvnamic underpinninas have not been
Ca(Q, vasculopathy, erythrocyte congestion, and/or thrombo- 9 y P 9

. . . . investigated, a similar, albeit lower level, potentiallyersible
emboli to perturb tissue oxygenation, leading to overt s&,dBCl, . . ”
. . 7 . . . phenomenon termed “acute silent cerebral event” (ASCIE3, ha
or microstructural tissue injury (e.g., reduced integyitin this

tentative framework, it is di erences in the severity, duoat, and also beep observed in SCD pgtlerﬂ§'$—283. Ina prospectwe.
. . L . S case-series, 18% of SCD patients and 7% of non-SCD patients
precise location of a hypoxic-ischemic or hemorrhagic inghkt

. . . presenting with acute anemia (hemoglob#b g/dl and>30%
determine structural and functional tissue outcome. . .
: - . .. lower than steady state) secondary to infection, acute tches
Importantly, vascular instability provides a linking

. . . - N syndrome, and/or fever, showed lesions consistent with iside
pathophysiological explanation for the various implicated

. . : . . on DWI, termed ASCIE 279. On follow-up MRI, a majority,
processes, including vaso-occlusive, coagulative, thotimb . . :
. . . . _but not all, patients showed evidence of SCI corresponding to
hypoxic, and hemolytic phenomena, as well as the interactio

- 0 ; ; :
between them. The framework is consistent with a previo e original ASCIE. In 75% of the SCD patients presenting with

. . . u.iSCIE, there was no evidence of vasculopathy. A more recent
systems-biology model of systemic vasculopathy in SCD, Multi-center trial established that ASCIE were detectaine
which ischemia-re-perfusion injury and inammation are

emphasized, along with multiple overlapping and mutually_prevalent also in “steady-state” SCD patients undergoing MRI

enforcing mechanistic pathway8§). The current neurological screening, with an estimated 10times greater incidenceS@ ik

model similarly attempts to provide a parsimonious accountcompared 10 SCI[47.3vs. 4.8 per 100 patient yeat)k
y P P P The temporal association of ASCIE with acute anemia,

of neurological 'T'Sk.a”d morbidity, in which m_ultlple poteaﬂ_ along with the observed transition of some ASCIE to SCI,
pathways are highlighted, but the most proximate mechanism

: . . ) ) ?ﬁe consistent with, but do not establish, a role for reduced
is emphasized. Below, we consider evidence consistent wi i ) . h I
the framework. oxygen delivery in SCI. Given that not all ASCIE progress to

permanent lesions (i.e., SCI), these ndings may suggegt tha

) ) ) . additional hemodynamic, vaso-occlusive, in ammatory amd/
Evidence for Links With Neur0|og|cal pre-conditioning mechanisms are involved in determining
Morbidity transition from ASCIE to observable tissue infarction.
There are many strands of indirect clinical evidence broadly It is unclear what determines this tipping point in patients
consistent with a role for vascular instability in neurocicgl with SCD, but in prospective studies of non-SCD patients with
morbidity, with decreased hemoglobin and peripheral oxygertarotid occlusion, risk of infarction is highest in patientsth
saturation, components of CaQconsistently associated with both increased OEF and CBYV, the former indicative of misery
overt stroke (1, 262 263, SCI @0, 23 24, 99, 264, reduced perfusion, and the latter potentially of vasodilation and ex$tad

A SYSTEMS-BIOLOGY FRAMEWORK
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CVR (283 289. These ndings are consistent with models signi cantly reducing HbS% without substantially incréas
of hemodynamic stroke and tissue ischemia in which regionahematocrit and viscosity2Q1). It is also possible that post-
reductions in oxygen delivery2(1) along with both exhausted transfusion increases in Ca@nd CVR somewhat restore the
CVR and OEF may play mechanistic roles. Recent SCD researahility of the brain to compensate for slight increases icosty.
indicating that regions of CBF and CMRadir overlap with Consistent with this notion, a recent study comparing
the regions of highest SCI densitgl] and highest oxygen untreated, chronically exchange transfused, and hydroegu
extraction (L66), provide further indirect evidence for a similar (HU)-treated SCD patients, a less invasive treatment strategy
model in SCD Figure 3). Research on these hemodynamicbased on stimulation of fetal hemoglobin (HbF), found OEB&
factors is, however, just beginning. Further work is reqdito  lowest in the transfused patient8§8. Whilst “at-risk” regions
establish whether concomitant measurement of CBF, OEF, araf elevated OEF in watershed zones were detected across all
CBV/R may lead to better strati cation of neurological rigkan  groups, they were larger in the untreated and HU-treated p&tien
TCD in patients with SCD. than in the transfused patients, respectively. Interestirg/ybal
Whilst the mechanisms by which transfusion reduces rislgray and white matter CBF were similar among all groups,
of stroke are unknown and vigorously debated, there are somend there were no dierences in total hemoglobin or SpO
reports indicating that a reduction in vascular instabilityay between HU-treated and transfused patients, suggesting that
play a role. Transfusion signi cantly increases Ga@nd has the between-group dierences in OEF are not explainable
immediate hemodynamic e ects, re ected by reductions in CBFoy di erences in global oxygen delivery. Of note, given that
(2895 and TCD velocity 286. Post-transfusion reductions in imaging was conducted on the day before scheduled tramsfusi
OEF (191 259 and increases in CVR162 have also been and other studies have shown reductions in global CBF and
reported. Similar hemodynamic changes in global OEF and CBBEF 24 h post-transfusion1@l), these ndings may suggest
have also been observed following bone marrow transplamtatiothat the hemodynamic e ects of transfusion are greater near
(287, which is the only curative treatment option currently transfusion, compared to far from transfusion, as has been
available for SCD. Taken together, these ndings provide pado demonstrated for cognitive impairmenf92. Nevertheless, the
principle that normalization of Ca@and hyperemia, along with apparent inferiority of HU, even when compared with “late”
restoration of vascular reserves, may contribute to theaeyg of  transfusion e ects, may be accounted for by the increasedity n
transfusion in reducing risk of overt stroke. of hemoglobin F for oxygen2@3. Whilst the authors found no
Interestingly, post-transfusion reductions in global OBfla independent e ect of HbF% or HbS% in multivariate models, left
CBF are independently associated with improvement in totashifts in the oxygen dissociation curve are likely to impaiygen
hemoglobin, but not HbS fractionl@1, 255 289, which suggests o oading, and may be greater following HU than following
that a reduction in vascular instability is primarily achieive transfusion. Whilst the e ect on global oxygen metabolism may
via improvement in global oxygen delivery rather than RBCbe balanced by the concomitant improvement in global oxygen
rheology, and has implications for current transfusion tt¢gies  delivery, more work is required to establish whether thishis t
with HbS% targets. However, given their interdependenaeseh case also for regional oxygen delivery, particularly in vaéthe
e ects are di cult to disentangle. In SCD, both the compensato  nding that “at-risk” regions remain.
global increases and post-transfusion reductions in CBF are Whether vascular instability contributes to structural
greater than would be expected from changes in hemoglobidelay/deterioration not visible using conventional MRI and
levels aloneZ89, suggesting that factors beyond correction ofassociated cognitive impairment, is an open questi@asy.
CaQ are at play. The increased prevalence of ASCIE compared to SCI in acutely
Moreover, transfusion appears to reduce, but not completelill as well as steady state patients is consistent with the notion
normalize, CBF and OEF in SCD patients, with watershedf an on-going state of vascular instability, and suggesas t
zones continuing to exhibit “at-risk” regiond 91). There is also risk of ischemic insult may be far higher than previously
evidence that OEF and CBF responses to transfusion are blunteecognized in SCD. It is unclear whether some of these iasult
in adult SCD patients455. These factors could contribute to are radiologically reversible or lead to microstructuradstie
continuing risk of morbidity in some patients, and may relateinjury not visible using conventional MRI techniques. In support
to vaso-occlusive/rheological factors, endothelial aysfion, of the latter possibility, there is evidence that lesion dethility
concomitant shifts in the oxygen-dissociation curve, awd/ increases with increasing magnet strength in SCD, with one
reduced regulatory capacity. There iis-vitro evidence that study showing that 3T MRI fails to detect lesions that are \&sib
low-shear HVR decreases following simple chronic transfusi at 7T 299. Also, glial brillary acidic protein (GFAP), a marker
therapy in SCD patients, indicating that despite improvemenbf acute stroke and brain trauma, is signi cantly upreguthéend
in Ca0,, post-transfusion increases in blood viscosity mayassociated with performance 1Q, but not verbal IQ in “steady
worsen oxygen delivery in low- ow regiong85 290. However, state” SCD patients with and without SC196).
these ndings are inconsistent with the observation that “a  Correlations have also been demonstrated between redwction
risk” regions of elevated OEF in watershed white mattein CVR and cortical thinning in regions of high metabolic adty
zones appear to become smaller, rather than larger, followinig children with SCD {0), which may suggest that reduced
exchange transfusion1@l). A possible explanation for this dilatory capacity is involved in more subtle, and widespread
apparent juxtaposition is a di erence in ow mechanics following tissue atrophy and/or delayed maturation. This notion is het
simple and exchange transfusion, with exchange transfusicsupported by a recent report demonstrating a disruption in
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FIGURE 3 | Watershed vulnerability. Results from collection of studies illustrating watershed vulnerability in SCD. (A) Top: SCI density map from 286 SCD children.
Bottom: region encompassing 5.6% of brain volume in which 90% of SCI were confined [from Ford et al. (31)]. (B) Regions in which 20 SCD children without SCI
demonstrated reduced white-matter density compared to 31 controls [from Baldeweg et al. (73)]. (C) Top: Ratiometric maps showing regions of elevated OEF derived
from the ratio of SCD (n D 36) to control (n D 20) OEF values. (C) Middle: Region of high OEF (threshold 1.6, outlined in blue) overlaid on the average CBF map from
the SCD cohort. (C) Bottom: Region of elevated OEF overlaid on SCI density map created from an independent cohort of 23 participants with SCD [from

Fields et al. (166)].

the relationship between CVR and white-matter integrity inframework brings together recent developments in the eld,
SCD patients 97). There is evidence that reduced integrity highlights outstanding questions, and provides mechamisti
is more common §2), and potentially also more functionally hypotheses that may guide future research.
signi cant than SCI alone in SCD patient8). Case reports of Whilst the many strands of indirect evidence presented
deterioration in cognitive function with acute drops in Ca@  are broadly consistent with the framework, they do not rule
SCD 393) along with studies showing correlations between TCDout alternative and/or additional mechanisms of neurotzdi
abnormalities and executive dysfunctio?f@-300 and between morbidity. In order to interrogate and re ne the framework,
reduced blood-oxygenated dependent (BOLD) MRI responses farther advanced MRI studies are required. For this purpose,
visual stimulation and intelligence(1), lend further supportto longitudinal measures of oxygen-metabolism would be most
a role for vascular instability in cognitive impairment. useful. As the framework and reviewed literature demonstrat
aspects of CMR@) such as oxygen delivery and extraction ought
CONCLUSION AND FUTURE DIRECTIONS to be considered together, both globally and regionally. Multi
modal, neurodevelopmental approaches that combine strutura
In summary, the pathophysiology of neurological morbidity di usion, hemodynamic, and cognitive measures would also be
in SCD is complex, and likely involves multiple mutually helpful in further addressing outstanding questions.
enforcing pathways, including vaso-occlusive/rheoldgica One of the key challenges with these advanced MRI techniques
hemolytic, and hypoxic phenomena. Based on existing theorigeémains validation in SCD patients, in whom some of the
and accumulating evidence, we have proposed an integratiwmderlying assumptions may not be validigs 256 259 302-
framework which emphasizes a role for vascular instability304. Comparison with current clinical gold-standard (e.g., PET
as a potential linking pathophysiological explanation. Thigor oxygen-extraction) may be useful in this regard. Emplogine
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of standardized criteria for detection of SCI and grading oftreatment target for therapies, with several potential awsnu
vasculopathy will also be important in facilitating betweendy  for intervention (e.g., anemia, oxygen desaturation, eheial
comparisons §2, 164). Given that the vast majority of reviewed dysfunction). Crucially, therapies need to balance anyeases
studies are based on patients with homozygous SCD, exploririg oxygen-delivery with any potential reductions in oxygen-
these measures in patients with other genotypes is also vital aunloading @93. With further re nement, this framework
may help shed further light on the underlying physiology.&lp, may therefore hold promise not only for guiding research,
further work is also required to establish the applicabilifttus  but also for prediction of risk and implementation of tailored
framework to other end-organs which are also at risk of daenagpreventative strategies before stroke, SCI and/or micucsaral

in SCD. injury occurs.

If fruitful, this line of enquiry has the potential to improve
precision medicine in SCD, which is a crucial next step InAUTHOR CONTRIBUTIONS
e orts to screen and intervene. Whilst there are evidenceel
strategies for stroke prevention in childreidj, treatment is HS and FK: design and conception. HS, FK, and JK: literature
often burdensome309, the speci city of screening is poolL(), review. HS: drafting the article. FK, JK, PH, DS, and CC:aaiti
and many patients continue to su er progressive vasculopathyevision of the article. HS, FK, JK, PH, DS, and CC: nal approval
and/or recurrent insults $8). There are few evidence-basedof the version to be published.
strategies for cognitive dysfunction, and none that tackle
microstructural tissue injury. Improved strategies arerdfere  FUNDING
urgently required.

According to the proposed framework, measures of regionaiS was funded by Action Medical Research (GN2509), JK was
oxygen delivery, CVR, and OEF are likely the most proximatéunded by Great Ormond Street Children's Charity (V4615)
targets for prediction of neurological risk. With further (gosh.org/what-we-do/grant-funding/recently-fundedgpects/
re nement, development of a “vascular instability risk pre’l national-calls), and PH was funded by Children with Cancer UK
based on these measures may enable selection of patieffflsvCUK-15-203). The National Institute for Health Research
with su ciently high-risk for invasive, burdensome, and (UK; PB-PG1112-29099) and National Heart, Lung, and Blood
costly treatment options such as transfusion, bone marrovinstitute (USA; RO1HL079937) also provided funding, and the
transplant, or eventually gene therapy. Such a prole mayvork was supported by the NIHR Great Ormond Street Hospital
also enable on-going monitoring of risk so that transfusionBiomedical Research Center. The views expressed are those of
is not necessarily lifelong. Another implication is thethe authors and not necessarily those of the NHS, the NIHR, or
identi cation of regional oxygen delivery as a potentialthe Department of Health.
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