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Abstract

Details of an open-source planar perovskite solar cell
simulator, that includes ion vacancy migration within
the perovskite layer coupled to charge carrier trans-
port throughout the perovskite and adjoining trans-
port layers in one dimension, are presented. The
model equations are discretised in space using a fi-
nite element scheme and temporal integration of the
resulting system of differential-algebraic equations is
carried out in MATLAB. The user is free to mod-
ify device parameters, as well as the incident illu-
mination and applied voltage. Time-varying voltage
and/or illumination protocols can be specified, e.g.
to simulate current-voltage sweeps, or to track the
open-circuit conditions as the illumination is varied.
Typical simulations, e.g. current-voltage sweeps, only
require computation times of seconds to minutes on
a modern personal computer. An example set of hys-
teretic current-voltage curves is presented.

Keywords: Perovskite solar cell; drift-diffusion;
device simulation; ion vacancy migration.

1 Introduction

Perovskite solar cells (PSCs) are a promising thin-
film technology that, due to their rapid rise in power
conversion efficiency to 22.7% [15], are attracting a
lot of interest and research effort in the photovoltaic
community. However, PSCs display unusual tran-
sient behaviour (exemplified by current-voltage hys-
teresis) on the order of seconds to days which affects
the power output of the device [24]. The consensus
in the literature is that this slow (compared to the
timescale of electronic motion) behaviour is due to
the motion of mobile ion vacancies within the per-
ovskite layer. The species of ion vacancy deemed
most likely to be responsible for the behaviour ob-
served on the order of seconds to minutes is that of
the halide (e.g. iodide, I−) ion vacancy due to its high,
mean density and high diffusion coefficient (compared
to the other ionic species) predicted by DFT calcula-
tions [8, 26]. Visual evidence of iodide ion migration
within a perovskite film has also been obtained ex-
perimentally [7]. Recent reviews of the outstanding
challenges in the field of perovskite solar cells have
been given by Snaith [23], Egger et al. [9] and Phung
& Abate [17].

Due to the existence of mobile ion vacancies, the
perovskite layer must be treated as a mixed ionic-
electronic conductor for the purpose of device simu-
lation. The first works [2, 11, 25] to apply numerical
methods to PSC modelling reported that their sim-
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ulations suffered from prohibitively long calculation
times and inaccuracies in solution for realistic values
of the parameters. A combined analytic/numerical
method was used by Richardson et al. [5, 18] to
reveal how iodide ion vacancies accumulate/deplete
in very narrow layers (called Debye layers) adjacent
to the perovskite boundaries. The associated, rapid
changes in solution across these Debye layers is a sig-
nificant source of spatial stiffness, while the disparity
in timescales between the motion of electronic and
ionic charges is a source of temporal stiffness [6], ren-
dering the task of finding solutions to realistic models
of PSCs very challenging.

In [6], Courtier et al. developed a finite element
scheme, implemented in MATLAB [14], that is able
to cope with the spatial and temporal stiffness of the
problem and obtain accurate solutions to a coupled
model for ion migration and charge carrier transport
within the perovskite layer of a PSC. Since then, al-
ternative numerical methods have also appeared in
[13, 27]. Walter et al. [27] have developed a solver
that includes the motion of both cations and anions.
Their scheme is based on the freely-available soft-
ware Quokka3 [10], originally designed for the solu-
tion of models of silicon-based photovoltaic devices.
Whilst this provides a thoroughly tested and vali-
dated framework for their results, the model being
solved only explicitly models the perovskite absorber
and there is strong evidence suggesting that the ad-
jacent transport layers play a key role in determining
device behaviour [4]. Meanwhile, Jacobs et al. [13]
use the proprietary COMSOL package via a MAT-
LAB interface to simulate three layers of a PSC over
a range of timescales. However, the details of the
modelling and solutions techniques are not given in
full, making their results difficult to reproduce and
compare with alternatives.

In this work, we present the extension of the fi-
nite element code presented in [6] for a single-layer
model of a PSC to a model that explicitly describes
the three core layers of a PSC: the electron transport
layer (ETL), perovskite absorber layer and hole trans-
port layer (HTL). Full details of the charge transport
model equations and the implementation of the code
are given. The code is freely available on GitHub
at https://github.com/PerovskiteSCModelling/

IonMonger (under an AGPL-3.0 copyleft license) and
can be used to simulate a variety of different ex-
perimental protocols. Current density-voltage (J-V )
curves are the typical measurement that is performed
to assess solar cell performance including, for per-

ovskite solar cells, the extent of J-V hysteresis dis-
played at a particular scan rate. In addition to J-
V curves, the code can be used to simulate photo-
current transients (during which the applied voltage
and/or the illumination intensity is varied over time)
and photo-voltage transients (during which the cell is
held at open-circuit and the illumination intensity is
varied) that occur on timescales of microseconds to
minutes. Uncovering the links between model param-
eters and the results of such simulations will help to
improve understanding of the underlying physics of
PSCs and hence guide further improvements in their
design. One such investigation, into how the extent of
observable hysteresis depends on material properties
of the two transport layers, has been conducted by
Courtier et al. [4]. The investigation is based upon
simulations of the same1 three-layer model as that
considered in this work.

In section §2, we show an example set of simulation
results obtained using the code. In §3, we present
and discuss the governing equations in each of the
three layers as well as the boundary and interface
conditions through which the equations couple to-
gether. A non-dimensionalisation is also presented
which is geared to study the behaviour of the cell on
the timescales associated with anion vacancy motion
and aids in obtaining uniformly well-resolved solu-
tions by ensuring that the numerical tolerances are
applied equally to each of the model variables. In §4,
we detail the finite element discretisation of the sys-
tem, and highlight the differences between how open-
circuit and applied voltage protocols are imposed at
the discrete level. The focus of §5 is a discussion of
the how the time-stepping is carried out and how the
output current density is calculated from the numer-
ical solution. In §6, we validate the results of the
numerical scheme upon which IonMonger is based.
Finally, in §7, we draw our conclusions.

2 Application example

The main purpose of this paper is to provide the
perovskite solar cell community with a high quality,
free and useful tool with which to better understand
PSC behaviour, and not to provide a detailed analy-
sis or interpretation of the device physics. The power

1The simulations in [4] are based on the same mathematical
model as described in this work, however the definitions of the
constants of proportionality kE and kH and the built-in voltage
Vbi vary between the two works; the definitions in this work
are compatible with Boltzmann statistics for non-degenerate
semiconductors, see (13)-(17).

2

https://github.com/PerovskiteSCModelling/IonMonger
https://github.com/PerovskiteSCModelling/IonMonger


Figure 1: Example simulation results: (a) A J-V curve measured at 100 mV/s from 1.2 V to short-circuit
and back, after a 5-second preconditioning step. The simulation uses the parameters given in Tables 1 and
2(b) of [4] except that here the effective doping densities dE = dH = 1024 m−3 and the effective densities
of state gEc = gHv = 5 × 1024 m−3. The purple lines show the current-density output, while the blue and
red lines show the current losses due to interface recombination at the ETL/perovskite and perovskite/HTL
interfaces, respectively. Losses due to bulk recombination are not shown. The direction of scan is indicated
by both the arrows and the style of each line: solid for the reverse scan and dashed for the subsequent
forward scan. (b) A set of three J-V curves. Here, the example in panel (a) is plotted alongside two other
J-V curves measured at scan rates of 50 mV/s and 200 mV/s, but for otherwise identical input parameters.
These results demonstrate the ability of the model to reproduce the scan-rate dependent J-V hysteresis
commonly exhibited by PSCs due to the migration of ion vacancies within the perovskite layer.
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of the solver in advancing our physical understand-
ing of PSCs is demonstrated in Courtier et al. [4] in
which an investigation of the effects of material prop-
erties of the transport layers on cell performance is
detailed. There it is found that two material prop-
erties in particular, namely the permittivity and the
effective doping density of the transport layers, have
a significant role to play in determining the extent
of J-V hysteresis exhibited by a PSC. In addition,
characteristics of simulations that can be used to
identify the dominant recombination mechanism in
a PSC are discussed. Results from two other simu-
lations, also computed using the capabilities offered
by IonMonger, have been presented by Id́ıgoras et al.
[12] in a study of the role of surface (also often termed
interfacial or interface) recombination, which occurs
on the interfaces between the perovskite layer and
the adjacent transport layers, on PSC performance.
However, further work in this area is vital for the
future development and optimisation of PSCs. Here,
we show how IonMonger can be used to both simulate
the most common measurement protocol for assessing
the performance of a solar cell, namely a J-V curve,
and reveal how each type of recombination included
in the model contributes to the observed behaviour.

Figure 1 (a) shows the J-V output for an exam-
ple simulation of a typical J-V measurement pro-
tocol performed on a planar, standard-architecture
PSC (see Figure 2 for the cell geometry). The cell is
initially preconditioned for 5 seconds before the ap-
plied voltage is scanned from 1.2 V to short-circuit
(0 V) and back to 1.2 V at a scan rate of 100 mV/s.
In addition, Figure 1 (a) displays the corresponding
current losses due to the two types of interface re-
combination included in the model. Note that bulk
recombination occurring within the perovskite layer
is also included in the model but is not shown. By
comparing the shape of the current-loss curves to the
J-V curve, it is clear that, for this example, the ob-
served behaviour is controlled primarily by the rate of
recombination at the ETL/perovskite interface (the
blue line), while the rate of recombination at the per-
ovskite/HTL interface (the red line) has little effect
on the performance of the cell. The parameter val-
ues used in the simulation are equal to those given in
Tables 1 and 2(b) of [4] except that here the effective
doping densities dE = dH = 1024 m−3 and the effec-
tive densities of state gEc = gHv = 5× 1024 m−3. The
input file for this simulation, along with a GUIDE and
documentation to aid in using the code, is provided
in the main folder of the IonMonger GitHub reposi-

Perovskite HTLETL

−bE 0 b b+ bH
x

metalφE φHP φ

nE n p pH contact
metal
contact

Figure 2: A schematic of the three-layer geometry of
the PSC model detailed in Section 3. The symbols
in each layer indicate which variables are explicitly
modelled in that region. The markers along the x-
axis represent the non-uniform grid spacing used by
IonMonger.

tory so that users can utilise these as a starting point
for investigations of their own.

In Figure 1 (b), the example J-V curve from panel
(a) is shown alongside the corresponding results for
two other simulations. The only difference in the in-
put parameters between the three simulations is the
rate at which the applied voltage is scanned back
and forth to measure the J-V curve. The three scan
rates are 50, 100 and 200 mV/s. Harvesting the full
set of results in Figure 1 (b) required a total of 34
seconds of computation time on a standard desktop
machine, i.e. approximately 11 seconds per simula-
tion including the calculation of appropriate initial
conditions and the preconditioning step. See §6 for
figures showing how the accuracy of the solution and
the computation time vary with respect to the num-
ber of grid points on which the solution is computed.
Next, the equations that underlie these simulations
are detailed.

3 The charge transport model

In this section, the charge transport model for a
planar lead halide perovskite solar cell consisting of
a perovskite absorber layer sandwiched between an
electron transport layer (ETL) and a hole transport
layer (HTL) is presented. Tables of the model vari-
ables and parameters along with their definitions are
given in the SI. The structure of the cell is shown
in Figure 2. The non-dimensionalisation used by the
code is also given.
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3.1 Model equations

Perovskite absorber layer (0 < x < b) A model
for the perovskite layer consists of equations for the
conservation of conduction (free) electrons, holes and
halide ion vacancies coupled with the Poisson equa-
tion for the electric potential, φ(x, t). We denote
the halide ion vacancy density by P (x, t), its flux by
FP (x, t) and define N̂0 as the mean ion vacancy den-
sity. It is assumed that an equal, uniform density N̂0

of immobile cation vacancies also exists within the
perovskite layer. The electron and hole concentra-
tions are denoted by n and p with current densities
jn and jp, respectively. The functions G(x, t) and
R(n, p) denote the charge carrier photo-generation
and bulk recombination rates, respectively. In the
perovskite layer, we thus have

∂p

∂t
+

1

q

∂jp

∂x
= G(x, t)−R(n, p),

jp = −qDp

(
∂p

∂x
+

p

VT

∂φ

∂x

)
, (1)

∂n

∂t
− 1

q

∂jn

∂x
= G(x, t)−R(n, p),

jn = qDn

(
∂n

∂x
− n

VT

∂φ

∂x

)
, (2)

∂P

∂t
+
∂FP

∂x
= 0,

FP = −DI

(
∂P

∂x
+

P

VT

∂φ

∂x

)
, (3)

with Poisson’s equation,

∂2φ

∂x2
=

q

εA
(N̂0 − P + n− p). (4)

Here, DI denotes the diffusion coefficient of the iodide
ion vacancies and εA is the permittivity of the per-
ovskite absorber layer. These differential equations
are supplemented by continuity conditions at the in-
terfaces with the transport layers (given at the end
of this section).

Electron transport layer (−bE < x < 0) The
majority carriers through the ETL are free electrons.
The model for the electrical behaviour of this layer
thus consists only of a conservation equation for the
free electrons which couples to Poisson’s equation.
Here DE denotes the electron diffusion coefficient,
εE the permittivity and dE the intrinsic free electron

density (due to the doping) in the ETL.

∂n

∂t
− 1

q

∂jn

∂x
= 0, jn = qDE

(
∂n

∂x
− n

VT

∂φ

∂x

)
, (5)

∂2φ

∂x2
=

q

εE
(n− dE). (6)

These equations couple to the perovskite equations
via four continuity conditions at the interface (given
at the end of this section). On the external boundary
with the metal contact we impose Ohmic boundary
conditions. These read

n = dE , φ =
Vbi − V (t)

2
on x = −bE , (7)

where V (t) is the applied voltage and Vbi denotes the
cell’s built-in voltage, which is defined in (17).

Hole transport layer (b < x < b + bH) The ma-
jority carriers in the HTL are holes and, analogously
to the case in the ETL, we need specify only two
equations, specifically

∂p

∂t
+

1

q

∂jp

∂x
= 0, jp = −qDH

(
∂p

∂x
+

p

VT

∂φ

∂x

)
,

(8)

∂2φ

∂x2
=

q

εE
(dH − p). (9)

Here DH is the hole diffusion coefficient, εH is the
permittivity and dH is the intrinsic hole density (due
to the doping) in the HTL. These equations couple
to the equations in the perovskite via four continu-
ity conditions at the interface (given at the end of
this section) and satisfy the following Ohmic contact
conditions on the metal contact.

p = dH , φ = −Vbi − V (t)

2
on x = b+ bH . (10)

Continuity conditions on the interfaces (x = 0
and x = b) At the interface between the perovskite
and the ETL, (i) the electron flux (and its associated
current density) is conserved, (ii) the hole flux (and
its associated current density) is conserved, (iii) there
is no flux of halide ion vacancies, (iv) and (v) both the
electrostatic potential and electric displacement field
are continuous, and (vi) the majority carrier density
(in this case the electrons) at the edge of the ETL
is related to the neighbouring carrier density in the
perovskite by a factor, kE , which depends upon the
relevant band offset and change in effective density
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of states [11]. Therefore, at the interface between the
ETL and the perovskite, the following conditions are
applied

jn|x=0− = jn|x=0+ − R̄l
jp = −qR̄l
FP = 0

φ|x=0− = φ|x=0+

εE
∂φ

∂x

∣∣∣
x=0−

= εA
∂φ

∂x

∣∣∣
x=0+

kEn|x=0− = n|x=0+


on x = 0. (11)

Analogous conditions are applied at the interface be-
tween the perovskite and the HTL (where the holes
are the majority carrier). These read

jp|x=b− − R̄r = jp|x=b+

jn = −qR̄r
FP = 0

φ|x=b− = φ|x=b+

εA
∂φ

∂x

∣∣∣
x=b−

= εH
∂φ

∂x

∣∣∣
x=b+

p|x=b− = kHp|x=b+


on x = b. (12)

Here, the superscripts of ± denote quantities eval-
uated at either the left- or right-hand side of the
perovskite/transport layer interfaces, respectively; R̄l
and R̄r are the recombination fluxes at the left
(ETL/perovskite) and right (perovskite/HTL) inter-
face, respectively; and kE and kH are constants of
proportionality between the charge carrier concen-
trations on each side of the interfaces according to
Boltzmann statistics, given by

kE =
gc
gEc

exp

(
−Ec − E

E
c

kT

)
, (13)

kH =
gv
gHv

exp

(
Ev − EHv

kT

)
. (14)

In these expressions, gc,v denote the effective con-
duction/valence band density of states; Ec,v are the
energies of the conduction/valence band edges; and,
the superscripts E or H indicate to which transport
layer a quantity relates. The validity of each of these
expressions relies on the validity of using the Boltz-
mann approximation to describe the distribution of
electrons in a non-degenerate semiconductor. Conse-
quently, users should choose an effective doping den-
sity which is less than 20 times smaller than the ef-
fective density of states in each transport layer in

order to ensure that the equilibrium Fermi level is
more than a few thermal voltages away from the band
edges, see (15)-(16).

Built-in voltage The cell’s built-in voltage is equal
to the difference between the workfunctions of the
two metal contacts. Assuming that the contacts form
ideal Ohmic contacts with the adjacent transport
layer, this difference is equal to the difference between
the equilibrium Fermi levels of the two transport lay-
ers which are approximated, using Boltzmann statis-
tics, by

EEf = EEc − kBT log

(
gEc
dE

)
, (15)

EHf = EHv + kBT log

(
gHv
dH

)
. (16)

Hence, the built-in voltage is given by

Vbi = EEc − EHv − kBT log

(
gEc g

H
v

dEdH

)
. (17)

3.2 Carrier generation and recombi-
nation rates

For the rate of charge carrier generation within the
perovskite layer, we use a simplified Beer-Lambert
model of light absorption [16] in which it is assumed
that absorption can be characterised by a single ab-
sorption coefficient (α) and photon flux that are in-
dependent of the wavelength of light. Taking into
account the possibility of choosing either a standard
or inverted architecture (i.e. applying the light to ei-
ther the ETL- or HTL-side of the cell, respectively),
this rate can be written as

G(x, t) = Is(t)Fphα exp

(
−α

[
b

2
+ l

(
x− b

2

)])
,

(18)
in which Fph denotes the flux of photons incident on
the light-facing perovskite surface (after accounting
for reflection) under the equivalent of 1 Sun illumina-
tion; the function Is(t) is the intensity of the illumina-
tion in Sun equivalents; and, the parameter l can be
set equal to either +1 for light from the left (through
the ETL) or −1 for light from the right (through the
HTL) by making use of the Inverted option in the
parameter input file.

We allow bulk recombination to be described
by a combination of bimolecular and trap-assisted
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Shockley-Read-Hall (SRH) recombination mecha-
nisms from e.g. Nelson [16] §4.5.5. Hence the vol-
umetric bulk recombination rate is

R(n, p) = β
(
np− n2

i

)
+

np− n2
i

τn(p+ pt) + τp(n+ nt)
,

(19)

in which β is the bimolecular rate constant, ni is
the intrinsic carrier concentration, τn and τp are the
charge carrier lifetimes and we assume that the trap
state energy level lies close to the intrinsic potential
energy of the perovskite such that we can apply the
approximation that pt = nt = ni.

Similarly, the interfacial recombination fluxes (R̄l
and R̄r) can be chosen as a combination of bimolecu-
lar and SRH recombination as follows, noting the use
of recombination velocities rather than carrier life-
times in the SRH recombination rates (see Nelson
[16] §4.5.6),

R̄l,r(n
−,p+) = βE,H

(
n−p+ − n−i n

+
i

)
+

n−p+ − n−i n
+
i

1

νE,H
n

(p+ + p+
t ) + 1

νE,H
p

(n− + n−t )
, (20)

in which the superscripts of ± denote quantities eval-
uated at either the left- or right-hand side of the per-
ovskite/transport layer interfaces, respectively; βE,H

are the bimolecular rate constants; and, νE,Hn and
νE,Hp are the electron and hole recombination veloci-
ties, respectively. In order to satisfy the principle of
detailed balance, we assume that the intrinsic carrier
density in the ETL nEi = ni

kE
and the intrinsic carrier

density in the HTL nHi = ni

kH
for consistency with the

continuity conditions in (11f) and (12f). Then, in or-
der to keep the number of input parameters to a min-
imum, we approximate pt = nt = ni in analogy with
the approximation made to the bulk recombination
rate above. Therefore, the interface recombination
rates used by the code are equivalent to

R̄l

(
n

kE
, p

)
=
βE

kE

(
np− n2

i

)
+

np− n2
i

kE
νE
n

(p+ ni) + 1
νE
p

(n+ ni)
on x = 0+, (21)

R̄r

(
n,

p

kH

)
=
βH

kH

(
np− n2

i

)
+

np− n2
i

1
νH
n

(p+ ni) + kH
νH
p

(n+ ni)
on x = b−. (22)

3.3 Calculation of the total current
density

In order to calculate the total current density from a
numerical solution of the drift-diffusion model, we de-
rive an expression that can be evaluated at any point
in the domain. The code automatically calculates
the current density at the midpoint of the perovskite
layer, where the grid spacing is larger and the solu-
tion varies more smoothly than in the Debye layers,
to minimise numerical error. By subtracting equation
(2a) from equation (1a), we get

∂

∂t
(p− n) +

1

q

∂

∂x
(jp + jn) = 0. (23)

Then, by substituting the difference in the carrier
concentrations (p − n) using Poisson’s equation for
the perovskite layer, given in (4), and multiplying by
q, we get

∂

∂x
(jp + jn)− ∂

∂t

(
εA
∂2φ

∂x2
− q(N̂0 − P )

)
= 0.

(24)

Applying the time-derivative to the last term in the
brackets allows us to eliminate N̂0 (the constant and
uniform cation vacancy density) and to use the ion
vacancy conservation equation in (3) to make a sub-
stitution for the time-derivative of P , which gives

∂

∂x
(jp + jn)− ∂

∂t

(
εA
∂2φ

∂x2

)
+ q

∂FP

∂x
= 0. (25)

Similarly, for the transport layers, we have

∂jn

∂x
− ∂

∂t

(
εE
∂2φ

∂x2

)
= 0, (26)

∂jp

∂x
− ∂

∂t

(
εH

∂2φ

∂x2

)
= 0. (27)

After swapping the order of spatial and temporal dif-
ferentiation, it is possible to integrate these three
equations with respect to the spatial variable x. By
integrating and applying the continuity conditions
and the Ohmic boundary conditions at either metal
contact, we get an expression for the total current
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density which is independent of x and given by

J(t) =



jn + jp − ∂

∂t

(
εA
∂φ

∂x

)
+ qFP ,

for 0 < x < b,

jn − ∂

∂t

(
εE
∂φ

∂x

)
, for − bE < x < 0,

jp − ∂

∂t

(
εH

∂φ

∂x

)
, for b < x < b+ bH .

(28)

The term involving a time-derivative in each equa-
tion is the displacement current density. It should be
noted that the magnitude of the displacement current
density is usually even smaller than the magnitude of
the expected numerical error in the solution, see §6.

3.4 Boundary conditions for open-
circuit conditions

It is possible to simulate open-circuit conditions,
rather than a fixed voltage protocol, by changing just
two of the model equations. The two conditions that
describe the application of a fixed potential differ-
ence are (7b) and (10b). The model for simulation
of a device at open-circuit instead includes boundary
conditions to ensure that there is zero flux of elec-
trons across the metal/ETL boundary (and hence no
photocurrent) and that the values of the electric po-
tential at each contact are equal and opposite. This
amounts to imposing, in place of (7b) and (10b),

jn|x=−bE− = 0, φ|x=−bE = −φ|x=b+bH . (29)

3.5 Non-dimensionalisation

The code is programmed to solve a non-dimensional
form of the model equations. Note, how-
ever, that all input parameters values are non-
dimensionalised automatically and the output is re-
dimensionalised prior to output. Details of the
non-dimensionalisation are given here to allow the
possibility that users can adapt the equations that
underlie the model described here. The non-
dimensionalisation is given by:

x = bx∗, t = τiont
∗, φ = VTφ

∗,

p = dHp
∗, n = dEn

∗, P = N̂0P
∗,

jp = qG0bj
p∗, jn = qG0bj

n∗, FP =
DIN̂0

b
FP
∗
,

(30)

where G0 is a typical value of G (the rate of photo-
generation of charge pairs per unit volume) and τion
is the characteristic timescale for ion motion into the
Debye layers, given by

G0 =
F ph

b
(1− e−αb), τion =

b

DI

√
VT εA

qN̂0

. (31)

The perovskite (ionic) Debye length is defined as

LD =

√
VT εA

qN̂0

. (32)

The other input functions and constants are rescaled
as follows

V = VTΦ, Vbi = VTΦbi, G = G0G
∗,

R = G0R
∗, R̄l = bG0R̄l

∗
, R̄r = bG0R̄r

∗
,

σ =
dE

G0τion
, χ =

dH
dE

, κp =
DpdH
G0b2

,

κn =
DndE
G0b2

, κE =
DEκn
Dn

, κH =
DHκp
Dp

,

wE =
bE
b
, wH =

bH
b
, rE =

εE
εA
,

rH =
εH
εA
, δ =

dE

N̂0

, λ =
LD
b
,

λE =

√
εEN̂0

εAdE
λ, λH =

√
εHN̂0

εAdH
λ.

(33)

The star notation is dropped in following sections.

4 Discretisation

The numerical method upon which our code is based
was developed by Courtier et al. [6] to solve a sim-
plified model description of a perovskite solar cell in
which it was assumed that the transport layers were
so highly doped that the potential within them was
uniform, thereby reducing the model to equations in
the perovskite absorber layer only. In that work,
the speed and accuracy of the method is compared
against that of two previously-used alternatives. It
is shown that the method we adopt here is superior
to both of these methods for both metrics of per-
formance. Here, we adapt that finite element based
scheme to solve the dimensionless three-layer model
set out in the previous section. We do not use the
Scharfetter-Gummel scheme [19], commonly used for
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the solution of drift-diffusion equations, because it is
tailored to deal with issues related to charge carrier
transport rather than accurately resolving solutions
in narrow Debye layers, which is the main difficulty
in the present work.

4.1 Spatial grid

The discretisation is formulated on a computational
grid comprised of N + NE + NH + 1 non-uniformly
positioned grid points which partition the (non-
dimensional) domain x ∈ [−wE , 1 + wH ] into N +
NE +NH subintervals. The perovskite layer (includ-
ing interfaces) contains N + 1 grid points denoted by
x = xi for i = 0, ..., N with subinterval widths de-
noted by ∆i+1/2 = xi+1 − xi. The transport layer
domains (excluding interfaces) contain NE and NH
grid points, respectively, with grid points denoted
by x = xEi for i = 0, ..., NE − 1 and x = xHi for
i = 1, ..., NH , respectively, with corresponding subin-
terval notation.

It is known that the largest gradients in the solu-
tion appear in narrow Debye layers adjacent to the
material interfaces [5]. This motivates the use of a
grid in which points are concentrated near the domain
boundaries and at internal interfaces so that compu-
tational resolution is focused there and not wasted
where it is not required. One such grid can be created
by extending the tanh grid used in [6] to the three-
layer cell geometry displayed in Figure 2. Specifically,
we set

xi =
1

2

(
tanh

[
s
(

2i
N − 1

)]
tanh(s)

+ 1

)
,

for i = 0, ..., N, (34)

xEi =
wE
2

 tanh
[
s
(

2i
NE
− 1
)]

tanh(s)
− 1

 ,

for i = 0, ..., NE − 1, (35)

xHi = 1 +
wH
2

 tanh
[
s
(

2i
NH
− 1
)]

tanh(s)
+ 1

 ,

for i = 1, ..., NH . (36)

Our numerical experiments indicate that a good rule-
of-thumb for deciding on a judicious choice for the
value for s can be to calculate a value which leads to
20% of the grid points falling within one Debye length
of each interface within the perovskite layer (i.e. the

intervals x ∈ [0, λ] and x ∈ [1 − λ, 1]), via numerical
solution of

λ =
1

2

(
tanh (0.6)

tanh(s)
+ 1

)
. (37)

The code is set up so that the number of grid points
NE and NH are chosen based on the input parameter
N to give approximately equal spacing immediately
either side the interface.

4.2 Finite element scheme

As in [6], we employ a common finite element ap-
proach, in which each of the dependent variables are
approximated as a linear combination of piecewise
linear basis functions with compact support. For a
generic dependent variable, u, defined within the per-
ovskite, i.e. for x ∈ (0, 1), we write

u(x, t) =

i=N∑
i=0

ui(t)ϕi(x) where (38)

ϕi(x) =



x− xi−1

xi − xi−1
if x ∈ (xi−1, xi)

xi+1 − x
xi+1 − xi

if x ∈ (xi, xi+1)

0 if x /∈ (xi−1, xi+1)

(39)

in which ϕi(x) are referred to as the basis functions.
Each of the governing equations of interest can be
manipulated into the form

A
∂u

∂t
= B

∂

∂x

(
∂u

∂x
± u∂φ

∂x

)
z + S(x, u, v1, v2, v3),

(40)

in which A and B are constants and the function
S(x, u, v1, v2, v3) is a source term which depends upon
the spatial variable x, the generic variable u, and
a series of other generic dependent variables vi for
i = 1, 2, 3. The electron, hole and halide ion va-
cancy conservation equations, (1), (2) and (3), are
rewritten in this form by eliminating the attendant
electron or hole current densities, or the halide ion
vacancy flux respectively. Poisson’s equation in the
perovskite, (4), is already in this form.

The spatially discretised equations in the per-
ovskite are derived by multiplying (40) through by
each of the test functions ϕj(x) (for j = 0, ..., N),
integrating over the domain x ∈ (0, 1) (using inte-
gration by parts where appropriate) and substituting

9



the form (38) for each of the dependent variables. On
doing so, we arrive at

A

i=N∑
i=0

dui
dt

∫ 1

0

ϕiϕj dx

= B

(
∂u

∂x
± u∂φ

∂x

)
ϕj

∣∣∣x=1

x=0

−B

{
i=N∑
i=0

ui

∫ 1

0

ϕ′iϕ
′
j dx (41)

±
i=N∑
i=0

k=N∑
k=0

uiφk

∫ 1

0

ϕiϕ
′
jϕ
′
k dx

}

+

∫ 1

0

S(x, u, v1, v2, v3)ϕj dx.

Each of the integrals containing expressions that de-
pend solely on the basis functions and/or their deriva-
tives can be computed exactly. Likewise, terms con-
taining quantities evaluated on the boundaries x =
0, 1 can be computed exactly using the continuity
conditions (11)-(12), else the relevant equation is re-
placed by the corresponding Dirichlet condition. The
one remaining term that is not so readily computed is
the final integral in (41) that depends on the source
terms S. For the anion vacancy conservation, S ≡ 0
and so this term is zero. For Poisson’s equation, this
term is a linear combination of dependent variables
and so can be computed exactly. However, for the
electron and hole conservation equations, (2) and (1),
the source term comprises both the generation and
bulk recombination rates, G(x) and R(n, p), which
are highly nonlinear, see Section 3.2. In order that
the integral contained in the final term of (41) can be
integrated (at least approximately) regardless of the
functional form of the source term, we make a further
approximation; that is, to replace the dependent vari-
ables in the integrand by functions that are piecewise
constant over each subinterval, x ∈ (xi, xi+1), and
have a value equal to that of the full series (38) at
the midpoint of that interval. In short, we make the

additional approximation

∫ 1

0

(G−R(n, p))ϕj dx ≈



∆
j− 1

2

2

(
G|x=x

j− 1
2

−R
(
n|x=x

j− 1
2

, p|x=x
j− 1

2

))
+

∆
j+1

2

2

(
G|x=x

j+1
2

−R
(
n|x=x

j+1
2

, p|x=x
j+1

2

))
,

if j = 1, ..., N − 1,

∆ 1
2

2

(
G|x=x 1

2

−R
(
n|x=x 1

2

, p|x=x 1
2

))
,

if j = 0,

∆
N− 1

2

2

(
G|x=x

N− 1
2

−R
(
n|x=x

N− 1
2

, p|x=x
N− 1

2

))
,

if j = N.

(42)

The additional error incurred as a result of this ap-
proximation is comparable to the error associated
with the original piecewise linear approximation for
the dependent variables. Thus, even though some
additional error is introduced, the scheme retains its
second order local accuracy, as demonstrated in §6.
We note that this approach to dealing with the non-
linear source terms is a special case of the method
used in the work of Skeel & Berzins [22], but we em-
phasise that in contrast to their method, we only use
this additional approximation for treatment of the
source terms whilst the rest of the terms are inte-
grated exactly.

An analogous methodology is used to derive the
discrete equations in the transport layers. The only
difference being that the basis and test functions are
piecewise linear functions with compact support de-
fined within the ETL and HTL respectively.

For notational convenience, we introduce three dis-
crete operators: a difference operator, Di; an inter-
polation operator, Ii; and, a linear operator Li. For
a generic dependent variable u, these three opera-
tors are defined as follows, in which the midpoint
x = xi+1/2 = xi/2+xi+1/2 is halfway between x = xi
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and x = xi+1.

∂u

∂x

∣∣∣
x=xi+1/2

≈ Di+1/2(u) =
ui+1 − ui
∆i+1/2

, (43)

u|x=xi+1/2
≈ Ii+1/2(u) =

1

2
(ui+1 + ui), (44)

Li(u) =
1

6
∆i+1/2ui+1 +

1

3

(
∆i+1/2 + ∆i−1/2

)
ui

+
1

6
∆i−1/2ui−1. (45)

These discrete operators can be used to obtain dis-
cretised versions of the ion flux and carrier current
densities in the perovskite layer, given in dimensional

form in (3b), (2b) and (1b), as follows

FP i+1/2 = −
[
Di+1/2(P ) + Ii+1/2(P )Di+1/2(φ)

]
,

(46)

jni+1/2 = κn
[
Di+1/2(n)− Ii+1/2(n)Di+1/2(φ)

]
,

(47)

jpi+1/2 = −κp
[
Di+1/2(p) + Ii+1/2(p)Di+1/2(φ)

]
.

(48)

for i = 0, ..., N − 1. The electron current density in
the ETL (jn,E) and hole current density in the HTL
(jp,H) can be expressed in an equivalent way.

The carrier generation and bulk recombination
terms are approximated to be linear on each inter-
val and to take the value at the midpoint, hence we
define

Gi+1/2 = G(Ii+1/2(x), t), (49)

Ri+1/2 = R(Ii+1/2(n), Ii+1/2(p)). (50)

Perovskite absorber layer The discretised equations governing the evolution of the halide ion vacancy
density subject to no-flux boundary conditions, corresponding to (3), (11c) and (12c), are

∆1/2

[
1

3

dP0

dt
+

1

6

dP1

dt

]
= −λFP 1/2, (51)

Li

(
dP

dt

)
= −λ

[
FP i+1/2 − FP i−1/2

]
, for i = 1, ..., N − 1, (52)

∆N−1/2

[
1

6

dPN−1

dt
+

1

3

dPN
dt

]
= λFPN−1/2. (53)

The discretisation of Poisson’s equation, from (4), becomes

0 = λ2
[
Di+1/2(φ)−Di−1/2(φ)

]
+ Li(P )− 1

2

[
∆i+1/2 + ∆i−1/2

]
+δ [χLi(p)− Li(n)]

for i = 1, ..., N − 1. (54)

The conservation equations for the electrons and holes and the carrier current density boundary conditions,
corresponding to (1a), (2a), (11b) and (12b), become

σLi

(
dn

dt

)
= jni+1/2 − jni−1/2 +

∆i+1/2

2

[
Gi+1/2 −Ri+1/2

]
+

∆i−1/2

2

[
Gi−1/2 −Ri−1/2

]
,

for i = 1, ..., N − 1, (55)

σ∆N−1/2

[
1

6

dnN−1

dt
+

1

3

dnN
dt

]
= −jnN−1/2 +

∆N−1/2

2

[
GN−1/2 −RN−1/2

]
− R̄r(nN , pH0 ), (56)
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σχ∆1/2

[
1

3

dp0

dt
+

1

6

dp1

dt

]
= −jp1/2 +

∆1/2

2

[
G1/2 −R1/2

]
− R̄l(nENE

, p0), (57)

σχLi

(
dp

dt

)
= −jpi+1/2 + jpi−1/2 +

∆i+1/2

2

[
Gi+1/2 −Ri+1/2

]
+

∆i−1/2

2

[
Gi−1/2 −Ri−1/2

]
,

for i = 1, ..., N − 1. (58)

Electron transport layer The equations and Dirichlet boundary conditions for the electric potential and
the electron density in the ETL, from (5a), (6) and (7), become

0 = φE0 −
Φ− Φbi

2
, (59)

0 = λ2
E

[
DE
i+1/2(φE)−DE

i−1/2(φE)
]

+
1

2

[
∆E
i+1/2 + ∆E

i−1/2

]
− LEi (nE), for i = 1, ..., NE − 1, (60)

0 = nE0 − 1, (61)

σLEi

(
dnE

dt

)
= jn,Ei+1/2 − j

n,E
i−1/2, for i = 1, ..., NE − 1. (62)

Hole transport layer Similarly, for the electric potential and hole density in the HTL from (8a), (9) and
(10),

0 = λ2
H

[
DH
i+1/2(φH)−DH

i−1/2(φH)
]

+ LHi (pH)− 1

2

[
∆i+1/2 + ∆i−1/2

]
, for i = 1, ..., NH − 1, (63)

0 = φHNH
+

Φ− Φbi
2

, (64)

σχLHi

(
dpH

dt

)
= −

[
jp,Hi+1/2 − j

p,H
i−1/2

]
, for i = 1, ..., NH − 1, (65)

0 = pHNH
− 1. (66)

Continuity conditions The carrier relations and continuity of the potential across the interfaces from
(11d,f) and (12d,f) are applied directly as follows.

φENE
= φ0, kEn

E
NE

= n0, φN = φH0 , pN = kHp
H
0 . (67)

The continuity of the displacement field and the electric potential across the interfaces, from (11e) and (12e),
are ensured via

0 = D1/2(φ)− rEDE
NE−1/2(φE)−

∆1/2

λ2

(
1

2
− P1

3
− P2

6
+ δ

[n1

3
+
n2

6
− p1

3
− p2

6

])
− rE

∆E
NE−1/2

λ2
E

(
nENE−1

6
+

n0

3kE
− 1

2

)
, (68)

0 = rHDH
1/2(φH)−DN−1/2(φ)−

∆N−1/2

λ2

(
1

2
− PN−1

6
− PN

3
+ δ

[nN−1

6
+
nN
3
− pN−1

6
− pN

3

])
− rH

∆H
1/2

λ2
H

(
1

2
− pN

3kH
− pH1

6

)
. (69)
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Interface recombination is included in the equations for the continuity of carrier current densities, corre-
sponding to (11a) and (12a), as follows.

σ

(
1

6
∆E
NE−1/2

dnENE−1

dt
+

1

3

(
∆E
NE−1/2

kE
+ ∆1/2

)
dn0

dt
+

1

6
∆1/2

dn1

dt

)

= −
[
jn,ENE−1/2 − j

n
1/2

]
+

∆1/2

2

[
G1/2 −R1/2

]
− R̄l(nENE

, p0), (70)

σχ

(
1

6
∆N−1/2

dpN−1

dt
+

1

3

(
∆N−1/2 +

∆H
1/2

kH

)
dpN
dt

+
1

6
∆H

1/2

dpH1
dt

)

= jpN−1/2 − jp
,H
1/2 +

∆N−1/2

2

[
GN−1/2 −RN−1/2

]
− R̄r(nN , pH0 ). (71)

4.3 Boundary conditions for mod-
elling open-circuit conditions

In order to simulate open-circuit conditions using
the alternative boundary conditions given in (29), we
simply replace (59) and (64) by

σ∆E
1/2

[
1

3

dnE0
dt

+
1

6

dnE1
dt

]
= jn,E1/2, (72)

0 = φE1 + φHNH
. (73)

5 Implementation

In this section, we outline the steps performed by the
code. We begin by describing the procedure that is
used to integrate forward in time. Next, we outline
how the parameters, operating protocol and initial
conditions are set. Finally, we outline how IonMonger

post-processes the results so that quantities of inter-
est, e.g. the dimensional current output, can be ex-
tracted and visualised.

5.1 Integration in time using MAT-
LAB’s ode15s

The system of differential algebraic equations formu-
lated in §4.2 is evolved forward in time using MAT-
LAB’s ode15s [20, 21]. A prerequisite for leveraging
this algorithm is assembling the state variables into
a column vector, u(t). A significant decrease in com-
putational cost (proportional to the length of u(t)
squared) is available if the size of u(t) can be reduced,
and so we eliminate superfluous variables, namely FP

jn, jp and E between equations (46)-(73) before as-
sembling the 4N+2NE+2NH+4 remaining unknown

functions of time, into the column vector u(t) as fol-
lows:

u(t) = [P0, · · · , PN , φ0, · · · , φN ,
n0, · · · , nN , p0, · · · , pN ,
φE0 , · · · , φENE−1, n

E
0 , · · · , nENE−1,

φH1 , · · · , φHNH
, pH1 , · · · , pHNH

]T
(74)

=
[
P(t)T Φ(t)T n(t)T p(t)T

ΦE(t)T nE(t)T ΦH(t)T pH(t)T
]T
,
(75)

where a superscript T denotes a transpose. In (75),
P, Φ, n and p are column vectors of length N + 1;
ΦE and nE are column vectors of length NE ; and,
ΦH and pH are column vectors of length NH . The
problem to be solved can now be written in the form

M
du

dt
= f(u) with u|t=0 = u0, (76)

in which f(u) is a nonlinear vector function of length
4N+2NE+2NH+4 whose entries are the right-hand
sides of (51)-(71) and M is a singular diagonal mass
matrix whose entries are the coefficients of the time
derivative terms in the same equations.

Another useful strategy for speeding up computa-
tions, and one that we make use of in IonMonger,
is to exploit ode15s’s jpattern option. This facil-
itates additional savings in computational cost by
specifying entries in the Jacobian of the vector func-
tion f which are known to always equal zero a priori,
thereby preventing the algorithm from having to nu-
merically approximate their value as the integration
in time proceeds. The function Jac creates a sparse
matrix that indicates which entries of the Jacobian
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need to be numerically approximated at each time
step and which are always equal to zero.

5.2 Parameter input and initial condi-
tions

The necessary dimensional parameters, the illumina-
tion protocol G(x, t), voltage protocol V (t) and solver
options are passed between functions in a MAT-
LAB structure called params. A params structure
can most easily be created using the script called
parameters.m.

Finding initial conditions which satisfy the requi-
site boundary conditions is non-trivial. In the code,
we opt to supply initial conditions that correspond
to a device which has been left to reach a quasi-
equilibrium with the applied voltage held equal to
either a fixed value or the open-circuit voltage such
that there is no output current from the cell. In either
case, the task of finding initial conditions amounts
to finding a valid steady-state solution to the PSC
model and we start by finding initial conditions cor-
responding to when the applied voltage is set equal
to the built-in voltage, as defined in (17). This task is
tackled by the function initial conditions.m. In
order to start the simulation protocol from a differ-
ent value of the applied voltage or from open-circuit
conditions, an additional call is then made to either
precondition.m or find Voc.m, respectively. All
three of these routines find discrete representations
of the (dimensionless) initial conditions which can be
written as

P |t=0 = P̂ (x), for 0 ≤ x ≤ 1, (77)

φ|t=0 = φ̂(x), for − wE ≤ x ≤ 1 + wH , (78)

n|t=0 = n̂(x), for − wE ≤ x ≤ 1, (79)

p|t=0 = p̂(x), for 0 ≤ x ≤ 1 + wH , (80)

where the initial profiles P̂ (x), φ̂(x), n̂(x) and p̂(x)
satisfy (up to numerical tolerances) the discrete coun-
terpart of the steady-state PDEs. This is achieved by
invoking MATLAB’s rootfinding tools (i.e. fsolve)
which act on the nonlinear system f(u) = 0, defined
in (76), with one minor alteration. An additional in-

tegral constraint, namely
∫ 1

0
P dx = 1, is imposed to

ensure that the overall number of anion vacancies is
maintained within the perovskite. In order to pre-
serve the system as a square system, we therefore
replace the last anion vacancy conservation equation
(53) in the nonlinear system f(u) = 0 with the equa-

tion

i=N−1∑
i=0

Ii+1/2(P )∆i+1/2 = 1. (81)

We note that in the original PDE setting, the elec-
tric potential, φ, satisfies an elliptic equation, namely
Poisson’s equation, and therefore does not require an
initial condition, since the initial potential is uniquely
defined by the initial densities. After spatial discreti-
sation, Poisson’s equation is translated into a set of
algebraic equations, see (54), (60) and (63)), and as
such, one would not expect initial conditions on the
electric potential to be required. However, it is a
requirement of ode15s that initial conditions for all
components of a DAE system are specified. It is this
feature of the integrator that requires us to find and
specify the initial potential profile φ̂(x); this profile
is chosen to satisfy the algebraic equations derived
from the discretisation of Poisson’s equation, and its
boundary conditions, into which the initial conditions
for P , n and p have been substituted.

5.3 Calculation of current densities
and output

In order to calculate the total (dimensionless) current
density J(t) from the dimensionless solution gener-
ated by IonMonger, from (28), we use

J(t) = jnk+1/2 + jpk+1/2

− εAVT

t̂qG0b2τion

(
φk+1 − φk

∆k+1/2

∣∣∣∣
t

− φk+1 − φk
∆k+1/2

∣∣∣∣
t−t̂

)

+
DIN̂0

G0b2
FP k+1/2, (82)

where k = ceil
(
N+1

2

)
is the index of the grid point

at (or nearest to) the midpoint of the perovskite
layer and t̂ denotes the time since the previous time
point. The quantities denoted by jnk+1/2, jpk+1/2

and FP k+1/2 are defined in (47), (48) and (46), re-
spectively. Note that the contributions from the third
and fourth terms are usually negligibly small in com-
parison to the sum of the first two terms.

In addition to the total current density, the (di-
mensionless) current density losses due to interface
recombination (Jl and Jr) are calculated prior to re-
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dimensionalisation as follows,

Jl(t) = −R̄l
(
n1

kE
, p1

)
, (83)

Jr(t) = −R̄r
(
nN ,

pN
kH

)
. (84)

The final steps of the solution procedure carried
out by IonMonger are to re-dimensionalise (see §3.5)
and then save the solution variables (P, Φ, n, p,
ΦE , nE , ΦH and pH), spatial vectors (x, xE and
xH), time (time), evolution of the applied voltage (V)
and evolution of the current densities defined above
(J, Jl and Jr). This data is saved into a .mat data
file along with the input structure (params).

The saved data can be further analysed and plotted
in MATLAB in any way chosen by the user. One ex-
ample plotting script is included in the IonMonger

GitHub repository and instructions for its use are
given in the GUIDE. This script can be used to plot
the current density generated by a PSC during the
reverse and forward scans of a J-V curve, alongside
the current losses due to recombination at each of
the perovskite/transport layer interfaces, as shown
in Figure 1 (a). Such a plot can enable the user to
identify the limiting recombination mechanism for a
particular set of input parameters as described in §2.

6 Validation

For the purpose of verifying the results generated by
IonMonger, in Figure 3 (a), we plot a measure of the
error in eight different solution variables against the
number of grid points (N +NE +NH + 1) on a loga-
rithmic scale for five example simulations. The only
input parameter that is varied between the five sim-
ulations is N , which takes values of 100, 200, 400,
800 and 1600, while all other input parameters are
the same as those used for Figure 1. Due to the
lack of an exact solution, the errors are calculated
with respect to another simulation performed on an
even finer spatial grid consisting of 5613 points (for
which the input parameter N is set equal to 3200).
The chosen error measure is the sum (an l1 norm) of
the differences between the value of the variable com-
puted by the example simulation and that computed
by the 5613-point simulation, averaged over all 300
time-points of the simulation protocol after t = 0.
The same error measure was used in [6] to compare
the same solution method applied to a single-layer
version of the model against two other methods on

different spatial grids. Here, the eight solution vari-
ables for which the error is calculated are the (di-
mensionless) ion vacancy density, electric potential,
electron concentration and hole concentration at the
ETL/perovskite and perovskite/HTL interfaces lo-
cated at x = 0 and x = 1, respectively, as listed
in the legend. The results demonstrate the expected
second-order pointwise convergence of the finite ele-
ment scheme on which IonMonger is based [6]. The
variation in the magnitude of the error between the
eight solution variables is due to differences in the
magnitude of the dimensionless variables themselves.

Figure 3 (b) shows the computation times associ-
ated with each of the five simulations in panel (a),
also plotted against the number of grid points on a
logarithmic scale. Note that the computation time
will also depend upon the length of the simulation
protocol. The temporal tolerances for the integration
in time performed by MATLAB’s ode15s were fixed
for all simulations at values of 10−6 for the relative
tolerance and 10−10 for the absolute tolerance.

A comprehensive verification of the single-layer fi-
nite element scheme, from which this code was de-
veloped, is provided in Sections 5 and 6 of [6]. This
work includes plots of each solution variable across
the perovskite layer against corresponding asymp-
totic results, which show very good agreement be-
tween the two approaches for realistic values of the
input parameters.

6.1 Comparison to asymptotic results

Further validation of the numerical scheme, against
results obtained using an alternative (although ap-
proximate) solution method, is given in Figure 4.
Here, we compare the simulation results for the
typical J-V measurement displayed in Figure 1 to
the equivalent quantities computed using a com-
bined asymptotic/numerical method. This alterna-
tive method is described in detail for a single-layer
model in [5] and has been used to explain trends in
experimental observations in [4]. Excellent agreement
is shown between the current density computed using
the two methods.

7 Conclusions

We have built a fast and robust numerical solver for
coupled ionic-electronic charge transport in a realis-
tic three-layer perovskite solar cell architecture. The
scheme is able to simulate a variety of relevant device
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Figure 3: (a) A measure of the error in each of eight solution variables (listed in the legend) for five simulations
versus the number of grid points in the domain on a logarithmic scale. Dotted lines show the expected rate
of convergence aligned to the rightmost data point. (b) The computation time for each of the same five
simulations versus the number of grid points on a logarithmic scale. Here, a dotted line is shown as a guide
for the eye. For each of the five simulations performed for both panels (a) and (b), the input parameter N
equals 100, 200, 400, 800 and 1600, while the other parameters are identical to those used for Figure 1 (a)
(for which N = 400). The number of grid points is equal to N + NE + NH + 1 where NE and NH are
automatically computed from N (see §4.1).

Figure 4: A comparison between the current density
calculated using the IonMonger code (purple lines)
and an alternative, combined asymptotic/numerical
method from [5, 4] (green circles) for the same simu-
lation of a J-V measurement as shown in Figure 1.

operating regimes, including current-voltage sweeps
and open-circuit transients, both with the possibil-
ity of having time-dependent illumination. Simula-
tions of this sort can be carried out in seconds to
minutes of computation time on a standard modern
personal computer. The only prerequisite for making
use of this tool is access to MATLAB and its suite of
routines for time integration of ordinary differential
equations, specifically the ode15s routine.

This work therefore provides a tool that is capable
of playing a major role in guiding the development of
perovskite solar cells. Our IonMonger code provides
the possibility of independently varying each of the
device parameters, so that their roles in determining
cell performance can be discerned; something that is
difficult, or even impossible, to achieve experimen-
tally. One area of particular practical interest is un-
derstanding what can be done to mitigate the amount
of parasitic recombination in PSCs, thereby further
improving their performance. As demonstrated in [4],
it is possible to suppress these losses via careful tun-
ing of the cell’s constituent material properties, and
we anticipate that further studies in the same spirit
will be made possible using the computational tool
provided here. A second area where such a simula-
tion tool is surely needed is in understanding the long-
term degradation processes that occur within PSCs
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on timescales of between hours and weeks. While the
current version of the code cannot simulate degrada-
tion, it can be used to predict the effects of different
device parameters on some of the proposed causes of
degradation. For example, degradation due to chem-
ical reactions at the perovskite/transport layer inter-
faces [3] is likely to be exacerbated by iodide ion accu-
mulation in the Debye layers, while degradation due
to the penetration of extrinsic ions e.g. oxygen into
the perovskite may be enhanced by an accumulation
of ion vacancies [1]. The development of IonMonger
to include additional physical processes that occur on
longer timescales would allow researchers to investi-
gate long-term behaviour and stability much more
quickly than is possible via experimentation, and
hence will be be the subject of future work.

The authors are committed to maintaining and
expanding the functionality of the code and any
updates will be hosted on the GitHub repository
which can be accessed at https://github.com/

PerovskiteSCModelling/IonMonger. Whilst we
cannot promise a high level of technical support to
all users, we are happy to receive any suggestions on
ways in which the features of the code can be im-
proved and/or expanded, and it is our intention that
the code will grow as the research priorities of the per-
ovskite community evolves. Contact details for cur-
rent code developers can be found in the README file
in the main folder of the IonMonger GitHub reposi-
tory.
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