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 

Abstract—There is societal need for techniques to identify 

subjects at a distance and when conventional biometrics are 

obscured, for example in fighting crime. Soft biometrics have this 

capability and include a subject’s height, weight, skin colour and 

gender. Although the distinctiveness of soft biometric features is 

intuitively less than that of traditional biometric features, 

numerous experiments have demonstrated that the desired 

recognition accuracy can be achieved by using multiple soft 

biometric features. This paper will propose state-of-the-art 

multimodal biometric fusion techniques to improve recognition 

performance of soft biometrics. 

The key contribution of this paper is the analysis of the 

influence of distance on soft biometric traits and an exploration 

of the potency of recognition using fusion at varying distances. A 

new soft biometric database, containing images of the human 

face, body and clothing taken at three different distances, was 

created and used to obtain face, body and clothing attributes. 

This new database was constructed to explore the suitability of 

each modality at a distance: intuitively, the face is suitable for 

near field identification, and the body becomes the optimal choice 

when the subject is further away. The new dataset is used to 

explore the potential of face, body and clothing for human 

recognition using fusion. We present a novel fusion technique at 

score and rank level that improves identification performance. 

A novel joint density distribution-based rank-score fusion is 

also proposed to combine rank and score information. Analysis 

using the new soft biometric database demonstrates that 

recognition performance is significantly improved by using the 

new methods over single modalities at different distances. 

 
Keywords— Soft biometric; recognition at a distance; joint 

density distribution; rank-score fusion 

 

I. INTRODUCTION 

OFT biometrics are traditionally used to strengthen ‘hard’ 

biometric signatures: using, say, gender and age to 

improve performance [1]. Soft biometrics for identification 

concerns recognition using semantic descriptions as 

discriminatory features to identify subjects  [2]. Here, we shall 

concentrate on those attributes used for identification. These 

approaches use computer vision/ machine learning and there 

is parallel interest in psychology concerned with 

 
. 

identification, showing how trained (human) examiners have 

yet to use external face and body in recognition [4]. Soft 

biometric attributes include height, weight, gender and skin 

colour, which can be used to identify a person. In contrast, 

traditional biometrics overwhelmingly rely on sophisticated 

data collection devices. For example, facial recognition 

generally requires high image quality; however, image quality 

dramatically decreases as distance increases. Soft facial 

features, such as skin colour and face size, are relatively 

straightforward to perceive, even at a long distance. In 

comparison with traditional biometrics, soft biometric 

attributes are more easily understood. 

Recognition performance using individual soft biometric 

datasets has been studied in previous research. A model using 

the human semantic description of soft biometrics to identify 

subjects was proposed in [5], where soft biometric features 

were used to enrich the recognition method. There were 19 

body features investigated in [6] and the results demonstrated 

that shoulder shape and arm length can aid recognition. 

Another paper discussed 24 soft facial attributes [7], and their 

performance is measured through analysis of variance, 

entropy and mutual information. Skin colour, eyebrow length 

and face length were demonstrated to be more reliable for use 

in recognition. In addition, 21 clothing features were reported 

in [8], demonstrating that clothing features can also be used 

for recognition (though clothing is innately short term as 

clothes can easily be changed). Furthermore, it was also 

demonstrated that head coverage, lower body clothing 

category and belt presence can greatly improve recognition. 

Most traditional biometric features distinguish people by 

using their distinctive features, such as DNA and fingerprints, 

whilst soft biometric features are not so discriminative by their 

nature. Nonetheless, accurate recognition can be achieved by 

using multi-modal soft biometrics. Despite the research into 

multi-modal soft biometric recognition being at an early stage, 

some articles have reported results using the most advanced 

methods. A method proposed in [9] used soft biometric 

attributes to improve recognition performance of traditional 

biometric. Prior work on soft biometrics at a distance is 

reported in [10], which demonstrated that the fusion of soft 
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biometrics and traditional facial features could improve the 

performance of recognition based on a sparse representation. 

A fusion method proposed in [11] used soft biometrics (body, 

clothing and face) for identification at a distance. The results 

demonstrated that Bayesian fusion can greatly improve 

recognition performance. 

In order to achieve more accurate recognition, recognition 

systems frequently employ multi-modal fusion. Fusion 

approaches are conventionally divided into five different 

levels: sensor, feature, score, rank and decision [12].  

Feature level fusion based on feature extraction from 

multiple data sources is intended to create a new feature set to 

represent a subject. Therefore, the key requirement of the 

technology is to effectively describe feature information in 

order to achieve the most accurate recognition. The general 

idea is to minimise the distance of feature information between 

intra-class samples, and maximise the distance between inter-

class samples. Another important research field in the area of 

feature fusion focused on how to extract effective information 

by removing redundancy. Among a number of potential 

techniques used for feature extraction, linear feature extraction 

methods are widely used to reduce the dimensionality of the 

feature set. For example, a feature fusion method based on 

canonical correlation analysis (CCA) is introduced in [13]. 

Another feature level fusion technique, discriminant 

correlation analysis (DCA) [14], develops CCA by 

incorporating the class information into the correlation 

analysis of the feature sets. A multi-modal method, based on 

sparse representation, is proposed by Sumit, which 

significantly improved robustness and accuracy [15]. 

Score level fusion uses a combination of match scores from 

different biometric matchers, and then derives a new score 

from this information. Some simple methods, such as product 

rule, sum rule, max, medium and min rules, were introduced 

[16]. These methods can be readily implemented, since they 

do not require statistical information. Some score level fusion 

methods are based on the match score density distribution. A 

combinational method, using the Bayesian approach, was 

proposed in [16]. It estimated the genuine and impostor 

matching scores for each component modality. A support 

vector machine (SVM) based score level fusion was 

introduced and validated in [17]. The weighted score level 

fusion achieved a higher accuracy with the lower equal error 

rate (EER), compared with individual modalities [18]. 

A new rank and score level fusion method is presented here, 

based on joint density distribution. Since rank is a linear 

description (i.e. 1, 2, 3, …), it can be used to indicate the order 

of enrolled samples, but fails to describe the variations 

between adjacent samples. Thus, a novel technique is 

proposed to combine the effective information in rank and 

similarity scores, namely joint density-based rank-score fusion 

to consolidate the recognition result. The fusion effects over 

soft biometric characteristics and over distances are also 

analysed.  

II. SOFT BIOMETRIC DATASET 

For soft biometric recognition, there is no standardised 

dataset to evaluate recognition performance, and this is 

especially problematic in the research area of soft biometrics 

at different distances. One significant advantage of soft 

biometrics is that it does not have strict requirements on the 

resolution of collected images. The soft biometrics labels can 

be collected at a distance. Research into the influence of 

distance on feature annotation can give more useful 

information about features to be used at far or close distances. 

A new soft biometric database, based on different distances, 

was built to investigate this. In order to approach real life 

identification, the images in this database were simulated to be 

in an outdoor environment. Compared with the background 

controlled in a laboratory, there are more objects, such as 

buildings and cars, in the outdoor background, which can be 

used as points of reference when the soft traits are labelled. 

The accuracy of feature annotation can be improved with the 

help of reference objects. 

A. Synthesising images 

The new database, comprising of 131 male and 69 female 

subjects, was built and labelled with face, body and clothing 

traits. The original images were collected from the gait tunnel 

in University of Southampton [19], and then synthesised with 

an outdoor environment. The constant synthetic outdoor 

background removes any influence of change in indoor 

laboratory background, and avoids any change in illumination 

which is often experienced in outdoor imagery. There were 12 

cameras deployed in different positions in the gait laboratory. 

The resolution of cameras is 640×480 and the capture rate is 

30 frames per second. The viewpoint, at which the images 

collected provide the maximum face and body information of 

subjects was selected, as shown in Figure 1. The length of the 

gait laboratory is 7 meters. The minimum distance for the 

whole-body observation is 2 meters away from the camera so 

image acquisition occurs between 2 and 7 meters. Three points 

(2, 4.5 and 7 meters away from the camera) were marked as 

close, medium and far, respectively. Three images were 

selected in which the subjects stood at those three distances, 

and then simulated in an outdoor environment. 

The outdoor environment required a geometry similar to 

that of the laboratory and the outdoor camera was positioned 

 
Fig. 1.  Diagram of data acquisition environment 
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to be the same as that used in the laboratory. Three points at 

the close, medium and far distance were marked in advance. 

A cloudy day was chosen to eliminate shadows in the outdoor 

environment. Moreover, the brightness and contrast of 

laboratory images were improved to resemble outdoor 

conditions.  In that way the outdoor images had a consistent 

background for all subjects at the three distances, and so the 

background could not affect recognition. 

The next step was to segment subjects from laboratory 

images and to place them at appropriate locations in the 

outdoor background images. First, the subject’s image is 

extracted from the laboratory image (Figure 2 (a), (b)) and 

then added to the background (Figure 2 (c)). A synthesised 

image is shown in Figure 2 (d). This process is applied to 

laboratory images acquired at the close, medium or far 

distances from the camera. 

B. Soft biometric attributes and labels 

The next step was to select soft biometric features for the 

body, face and the clothes that could be observed and 

described precisely and conventionally at different distances 

(i.e. skin colour and height). The facial features (i.e. the shape 

of the eyebrows and the length of the face) have strong 

discriminatory power; the body and clothing traits such as 

gender and the majority colour of clothes, more easily can be 

discerned. The earlier research studied recognition capability, 

and this part will utilise that work. It is possible to prune the 

feature set according to their recognition capabilities. 

There were 19 body attributes analysed in [6]. The 

recognition performance of 12 body attributes was 

investigated in [20]. Considering the results in [6] and [20] , 

10 effective attributes were selected as the body attributes for 

the new dataset. The attributes and labels are listed in Table I.  

24 facial attributes were compared in [7]. ANOVA 

(Analysis of variance), Entropy and mutual information were 

employed to analyse the recognition performance of the 

attributes. The results demonstrated that Skin Colour, 

Eyebrow Length, Lip Thickness and Face Length have better 

recognition performance and are the most consistent. The 

facial traits were selected based on [7]. In this paper, the face 

images were collected at a close distance with high-quality 

images. Some features which cannot be observed from far 

away, such as Eye-to-Eyebrow Distance and Inter Eyebrow 

Distance, are modified in the new dataset. For example, 

Eyebrow Thickness and Eyebrow Length are replaced with 

Eyebrow Shape. The attributes and labels are listed in Table 

II. 

In [8], 21 categorical traits and 7 comparative traits of 

clothing are analysed. The results demonstrated that clothing 

attributes can achieve good results when they are used for 

recognition. Furthermore, the accuracy using categorical traits 

is better than comparative traits. ANOVA was used to analyse 

the performance of different traits, and the results show that 

head coverage, lower body clothing category and belt presence 

are better identifiers than other traits. Thus, categorical traits 

  
(a) Laboratory – close (b) Subject extraction 

  
(c) Outdoor background (d) Synthetic – close 

 

Fig. 2.  Synthesising images with outdoor environment 

TABLE I 
BODY TRAITS AND LABELS USED TO COMPARE SUBJECTS 

 

Body traits  Labels  

Gender  More feminine, Same, More 

masculine  
Age  Older, Same, Younger  

Height  Taller, Same, Shorter  

Weight  Fatter, Same, Thinner  
Shoulder shape  More square, Same, Rounder  

Hair colour  Lighter, Same, Darker  

Hair length  Shorter, Same, Longer  
Neck length  Shorter, Same, Longer  

Humpback  More straight, Same, More curved  
Arm length  Longer, Same, Shorter  

 
TABLE II 

FACE TRAITS AND LABELS USED TO COMPARE SUBJECTS 

 

Face traits  Labels  

Eyebrow shape  More straight, Same, More curved  

Nose shape  More flatter, Same, More 

protruding  

Forehead  Straighter hairline, Same, More 
receded hairline  

Eyes  Smaller, Same, Larger  

Ears  More hidden, Same, More evident  
Skin colour  Lighter, Same, Darker  

Face size  Shorter, Same, Longer  

Face  More bony, Same, Fleshier  
Lips  Thinner, Same, Thicker  

Chin and jaw  More angular, Same, Rounder  

 

TABLE III 
CLOTHING TRAITS AND LABELS USED TO COMPARE SUBJECTS 

 

Clothing traits  Labels  

Upper body clothing category  Jumper, T-shirt, Shirt, Blouse, 

Sweater, Coat, Hoodie, Other  
Lower body clothing category  Trousers, Skirt, Dress  

Any attached object category  None, Bag, Gloves, Hat, Scarf, 

Necktie, Other  
Clothing style  Well-dressed, Business, Sporty, 

Fashionable, Casual, Other  

The majority colour of upper body  Grey, Black, White, Jeans blue, 
Others  

The majority colour of lower body  Grey, Black, White, Jeans blue, 

Others  
Face coverage  Yes, No  

head coverage  Yes, No  

Presence of belt  Yes, No, Unsure  
Wear glasses  Yes, No  
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are used for the new clothing dataset. Seven features are 

investigated in [8], which have good recognition performance 

and are straightforward to observe at different distances, plus 

three new attributes: the majority colour of upper body and of 

lower body, and the presence of glasses, constitute the new 

clothing feature set. The attributes and labels for clothing are 

listed in Table III. 

C. Data acquisition via Crowdsourcing 

The soft features were labelled by human operators via 

crowdsourcing. A crowdsourcing task needed to be built for 

the large collection of high-quality comparative annotations. 

The CrowdFlower platform was used to build and run the 

crowdsourced annotation task. CrowdFlower provides 

comprehensive data analysis and quality control tools, 

allowing acceptance of a range of responses, whilst rejecting 

non-genuine answers. 

Human categorical descriptions were originally acquired 

[2] based on subjective measurements that can vary between 

people due to differences in perception. Comparative 

descriptions [3] use features that are easily understood and 

annotated. Essentially by comparing features and then using a 

ranking algorithm each feature is projected along an axis 

which leads to more reliable measures. For height, as we shall 

find, subjects are not labelled as short or tall but the process 

provides a measures that indicates a subject’s height relative 

to the population. The information for identification needs 

multiple comparisons between objects. Comparative 

descriptions can deliver more accurate descriptions. In this 

case, each of the new images was labelled with all 30 soft 

biometric traits. In data collection, categorical descriptions of 

clothing and comparative descriptions of the face and body 

traits were used. It was demonstrated that the clothing traits 

could be used for recognition, and it is properly described 

using categorical labels [21]. In terms of face and body traits, 

comparative descriptions can convey more accurate 

descriptions, since observers can easily perceive differences 

between two subjects, for example, one person being taller 

than the other [6] [22]. This eliminates known psychological 

effects, such as owner variables and confirmation bias. 

Each comparison describes the difference of each feature 

between two subjects, such as height, weight and the length of 

an arm. The comparison for each feature is labelled using three 

classes: shorter, the same or higher, following the observation 

that a scale of 3 could lead to better discriminative capability 

[7]. Each level is denoted by a signed integer, for example, 

when comparing the height of two subjects, -1 means shorter, 

0 represents the same and +1 means taller. The labels for the 

new database based on the traits were collected using 

CrowdFlower. The interface for the collection system is 

shown Figure 3. Each of the 200 individuals was labelled by 

20 people for the categorical clothing labels. The face and 

body were labelled by the comparison between each of the 200 

subjects and 20 randomly chosen subjects. The total number 

of comparisons is 4000, each one labelled by 20 people. 

III. RANK-SCORE FUSION 

The results presented in previous research demonstrated the 

effectiveness of fusion in rank and score level using biometrics 

features for subject identification. The methods demonstrated 

that recognition performance can be improved by rank or score 

fusion. In this paper, an improved fusion method based on rank 

and score level fusion will be proposed. The difference 

between testing samples and enrolled samples can be observed 

intuitively using similarity scores, based on which ranks are 

sorted. However, the rank and similarity score information is 

different. Since rank is a linear description it can be used to 

indicate the order of enrolled samples, but does not describe 

the variation between adjacent samples. A novel technique 

will, therefore, be proposed to combine the effective 

information in rank and similarity scores, namely rank-score 

fusion, and then used to consolidate the recognition results. 

A. Rank-score distribution 

The outputs of a classifier always comprise a match score 

list or a rank list. The match score describes a distance or a 

similarity between the testing subject and the registered 

subject. The distance between subjects is calculated by 

Euclidean distance, Mahalanobis Distance or other metrics. 

The rank list is then obtained by sorting the similarity score in 

descending order. 

Given 𝑘 samples as registered samples for each matcher, a 

rank-score distribution can be constructed after training. In 

order to reduce the influence of outliers on the experiment and 

achieve more reliable results, each subject is used to match all 

remaining subjects. During the training process, similarity 

score matrix 𝑠𝑖 = {𝑠𝑖,1, … , 𝑠𝑖,𝑘−1} , and rank matrix 𝑟𝑖 =

{𝑟𝑖,1, … , 𝑟𝑖,𝑘−1} are obtained, where 𝑖 is the subject ID in the 

 

(a) Body labels 

 

(b) Clothing labels 

 

Fig. 3.  Interface of label collection system 
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range of 1 to 𝑘 − 1, and 𝑠𝑖,𝑛 is the similarity score between 𝑖𝑡ℎ  

subject with 𝑛𝑡ℎ remaining subject. The variables in the rank 

and score matrices are in one-to-one correspondence (𝑟𝑖,𝑛 is 

the rank order of 𝑠𝑖,𝑛). For multi-modal biometrics, there are 

𝑚  different matchers, each of which produces one rank matrix 

and one score matrix. 𝒮 = {[𝑠𝑖,1
𝑗

, … , 𝑠𝑖,𝑘−1
𝑗

]}  and ℛ =

{[𝑟𝑖,1
𝑗

, … , 𝑟𝑖,𝑘−1
𝑗

]}  are used to denote the sets of scores and rank 

matrices separately, where 𝑗  is the number of biometric 

matcher (𝑗 = 1, … , 𝑚) and 𝑖 = 1, … , 𝑘. 

As mentioned in the last paragraph of introduction, both 

score and rank fusion have their own advantages and 

limitations. Our rank-score fusion method is proposed here to 

combine the complementary information in rank and 

similarity scores. A two-dimensional density distribution with 

two corresponding variables in 𝒮  and ℛ  is estimated. The 

calculation is constructed using a Gaussian Kernel function to 

smooth the result. The density function with rank and score is 

estimated by: 

 

𝑝(𝑠, 𝑟) =
1

2𝜋𝜎𝑟𝜎𝑠
𝑒𝑥𝑝 [− (

(𝑟−𝜇𝑟)2

𝜎𝑟
+

(𝑠−𝜇𝑠)2

𝜎𝑠
)]       (1) 

B. Normalization 

After 𝑝(𝑠, 𝑟) is obtained, the joint density of a pair of match 

score and rank, 𝑝(𝑠𝑚,𝑟𝑚) , is calculated and employed as 

measurement of weights. In order to further improve the 

method, the density is normalised before it is used as a weight. 

 

Z-score normalization: This method requires the arithmetic 

mean and standard deviation of a given score list. The 

normalisation is: 

 

𝑠𝑘
′ =

𝑠𝑘−𝜇

𝜎
          (2) 

 

where 𝑠𝑘
′  is an updated score, 𝜇  is the arithmetic mean and 𝜎  

is the standard deviation. 

 

Min-max normalisation: Min-max normalisation is suitable 

for the case that the boundaries (minimum and maximum 

values) of the scores are known. After normalisation, all scores 

are in the range [0,1]. Given a set of match scores 𝑆 =
{𝑠1, … , 𝑠𝑘}, the normalisation scores are given by: 

 

𝑠𝑘
′ =

𝑠𝑘−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
             (3) 

 

Medium and median absolute deviation normalisation 

(MAD): Compared with Z-score normalisation, MAD is a 

robust method, since it is insensitive to outliers. The scheme 

of median and MAD is given by: 

 

𝑠𝑘
′ =

𝑠𝑘−𝑚𝑒𝑑

𝑀𝐴𝐷
           (4) 

 

where 𝑚𝑒𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑠1, … , 𝑠𝑘}  and 𝑀𝐴𝐷 =
𝑚𝑒𝑑𝑖𝑎𝑛{|𝑠𝑘 − 𝑚𝑒𝑑|}. This technique does not retain input 

distribution and does not transfer scores in a common range. 

 

Tanh-estimators: The tanh-estimator proposed in [23] is a 

robust and efficient method. The normalised scores are given 

by: 

 

𝑠𝑘
′ =

1

2
{𝑡𝑎𝑛ℎ (0.01 (

𝑠𝑘−𝜇

𝜎
)) + 1}      (5) 

 

where 𝜇 is the arithmetic mean and 𝜎 is standard deviation. 

The recognition performance of the rank-score fusion 

method using different normalised algorithms is shown in 

Table IV. Tanh-estimators are demonstrated to provide the 

best result across different normalisation techniques. At 

medium and far distances, the results given by tanh-estimators 

has a distinct advantage, and is as good as MAD at a close 

distance. 

C. Rank-score fusion 

The parameters of the rank-score distribution specified in 

Eq.(1) are calculated from training data before testing. During 

testing, an unknown user is matched with all registered users. 

For each matcher, one similarity score list and one rank list is 

obtained. Each registered user has a corresponding similarity 

score and a rank order, which are used as the inputs in Eq.(1). 

The joint density of similarity score and rank order is 

calculated. After normalisation, it is used as a weight to update 

the similarity score. The final similarity score of an unknown 

 
Fig. 4. Overview of the Rank-Score distribution calculation framework. The 

notation 𝑠𝑖𝑚(𝑋1, 𝑆𝑖)  is used to denote the similarity score obtained by 

comparing an unknown subject 𝑆𝑖  to the biometric sample 1 of a gallery 

subject in the face dataset. 

TABLE IV 
ACCURACY USING DIFFERENT NORMALISATION METHODS 

 

 Close Medium Far 

Non-normalised 96.5% 84.9% 74.0% 

Min-max 96.9% 85.7% 77.0% 

Z-score 96.7% 90.8% 78.8% 

MAD 98.6% 86.9% 74.8% 

Tanh-estimators 98.5% 92.5% 82.6% 
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user and the 𝑘𝑡ℎ enrolled user can be calculated using Eq.(6), 

which is a weighted sum of different matchers. 

 

𝑤𝑠𝑠(𝑘) = ∑ 𝑤𝑝𝑗,𝑘
𝑠𝑗,𝑘

𝑚
𝑗=1         (6) 

 

where 𝑠𝑗,𝑘 is the similarity score of enrolled user 𝑘 and 𝑤𝑝𝑗,𝑘
 

is normalised joint density. The unknown user is labelled as 

the class that has the maximum values of 𝑤𝑠𝑠. 

IV. EXPERIMENT AND DISCUSSION 

A. Attributes Analysis 

1) Ranking inference 

The Elo rating system provides a ranking method based on 

Thurstone’s case for comparative descriptions [24]. The Elo 

rating system was originally developed to quantify chess 

players’ rankings. In this case, Elo was used to rank the 

comparative data. It is necessary to ensure the Elo rating 

results are trustworthy. Pixel height is used to estimate the 

actual height of a subject in an image. Meanwhile, an Elo 

ranking result, in terms of human height, represents a 

systematic judgement of height according to the comparative 

description. The positive correlation of pixel height and Elo 

rating results can validate the accuracy of Elo rating results, as 

shown in Figure 5. 

 The Pearson’s correlation coefficient is 0.93 using this 

method, and outperforms the result 0.87 obtained previously 

[25]. This is likely due to the fixed geometry used from an 

outdoor environment, which allows labellers to pay more 

attention to the comparison of height. 

2) Correlation analysis 

The correlation coefficient (Pearson’s) of each semantic 

feature in three groups (close and medium, close and far, 

medium and far) was employed to measure the stability of the 

ranking system. Theoretically, a larger coefficient indicates 

that a particular trait is less sensitive to distance. 

The correlation coefficient of each trait in three groups is 

depicted in Figure 6. It shows that the stability of most of the 

clothing traits, and some of the body traits, is relatively high, 

whilst the stability of face traits varies substantially at different 

distances. For example, in the body feature set, humpback and 

neck length are the most sensitive traits. Hair colour is good 

between close and medium distance, but worse at close-far and 

medium-far. The result demonstrated that the hair colour is 

less stable at a far distance. In the facial feature set, the ear is 

weak at all three groups, which means it is a sensitive feature, 

whilst face size has the highest stability in the face trait set. In 

clothing traits, face coverage and head coverage are equal to 

one at all three groups. In other words, these two features are 

the most straightforward to be observed. 

3) Mutual information 

Mutual information was introduced to measure the strength 

of the dependency between two variables. Given two random 

variables, 𝑋  and 𝑌 , whose marginal probability distribution 

functions are 𝑝(𝑥)  and 𝑝(𝑦)  respectively, the mutual 

information 𝐼(𝑋; 𝑌) was given in  

 

𝐼(𝑋; 𝑌)  = ∑ ∑ 𝑝(x, y)𝑙𝑜𝑔
𝑝(x,y)

𝑝(x)𝑝(y)𝑥∈𝑋𝑦∈𝑌      (7) 

 

Here mutual information is used to measure the relevance 

between each trait and subject ID. Since subject ID presents 

the explicit differences of each subject, larger mutual 

information demonstrates the stronger discriminating capacity 

of the trait. Moreover, small differences of mutual information 

for each trait at three distances reflect superior reliability. 

Figure 7 shows that age and upper body clothing category 

have the highest discriminatory differentiating power on body 

and clothing trait sets, respectively. 

Despite skin colour showing the highest discriminatory 

power at close and medium distance, it is relatively weak at a 

far distance. It can be concluded that body traits have the 

highest discriminating power at different distances, whilst the 

clothing traits are more stable across all distances. It appears 

 
Fig. 6. Pearson’s correlation coefficient for each trait in three groups (close 

and medium, close and far, medium and far) 

 

 

Fig. 5. Relationship between estimated and measured height 
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that clothing traits are more easily observed in comparison 

with the other two types of traits. However, they have less 

distinctiveness in recognition, which reduces discriminatory 

power. Further, clothing is an innately short-term biometric, 

since clothing can easily be changed. Moreover, since body 

traits have more detail than clothing traits, they have stronger 

differentiating power. It is known that the resolution of the 

face varies greatly with distance. Thus, the discriminatory 

power of facial traits decreases sharply at far distances. 

Furthermore, the trait stability evaluated by mutual 

information is in accordance with the results given by 

correlation analysis. The clothing traits appear to be the most 

stable traits for recognition. 

B. Single-modal recognition 

The purpose of the identification experiment is to assess the 

effectiveness of the proposed attributes (listed in Table I, 

Table II and Table III) for identification using the new dataset, 

and show the applicability of single-modal soft biometrics. 

The experiments simulate a realistic scenario that aims to 

retrieve the identity of an unknown subject (or probe) from a 

soft biometric database using verbal descriptions for the probe 

(i.e. eyewitness statement). 

The experiments used LoO (Leave-one-out) cross-

validation, and were implemented using 200 subjects, in 

which 100 subjects were selected at random as a gallery, and 

the remaining samples were used for testing. 

The identification of unknown subjects was performed by 

k-nearest neighbors algorithm, the distance is calculated by the 

Euclidean distance 𝑑, between the biometric signature of the 

probe and the biometric signature of each subject in the gallery 

as follows: 

 

𝑑 = √∑ (𝑋(𝑖) − 𝑌(𝑖))
2𝑇

𝑖=1        (8) 

 
where 𝑋 is a vector that represents the biometric signature of 

one subject. For example, the unknown subject, 𝑌, is a vector 

that represents the biometric signature of another subject (the 

subject in the gallery that is compared with the unknown 

subject), and 𝑇 = 10 is the number of soft biometric attributes 

composing the biometric signatures. The nearest neighbour 

was used here for classification: subjects were sorted in 

ascending order according to their distances from the probe, 

and the rank of the correct match was used to report the 

identification performance. 

For face and body, the comparative labels are used. The 

recognition accuracy (rank=1) over varying numbers of probe 

comparisons (𝑛) is shown in Figure 8 and Figure 9. It is easy 

to obtain that with increase in the numbers of comparisons; the 

recognition accuracy is improved accordingly. The similarity 

of Figure 8 and Figure 9 demonstrates that the number of 

comparisons directly influenced the recognition performance. 

Figure 8 shows body recognition accuracy obtained from 

 
a) Body 

 
b) Face 

 
c) Clothing 

 

Fig. 7. Mutual information between trait and subject ID at three distances. 
 

 
 
Fig. 8. Body recognition accuracy obtained from different numbers of 

comparisons. 
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different numbers of comparisons. In this case, 9 comparisons 

are required for recognition. The recognition accuracy used 

one comparison only to achieve accuracy, of roughly 10% at 

all three distances. The recognition performance continues to 

increase over the range. At close distance, the accuracy 

improvement is noticeable when the number of people 

compared is lower than 12 and achieves ~98% with 18 

comparisons. For medium and far distances, a ~85% correct 

recognition rate is achieved with 18 comparisons. 

In comparison with [20], the database is comprised of 100 

subjects and 12 body traits represented by comparative 

distributions. Their identification rate with 10 comparisons is 

around 97%, which is higher than that of the new method 

(around 85%). Nevertheless, the dataset used in this chapter is 

twice as large as the dataset in [20], and employs less features. 

This study concentrates on the fusion approaches and on 

whether fusion itself can be used for recognition as well as its 

properties, whilst assuming that all single mode approaches 

can be improved independently. 

 The facial recognition accuracy over different numbers of 

comparisons is shown in Figure 9. It shows that, at close 

distances, the accuracy of facial descriptions greatly 

outperforms that of body descriptions. The facial description 

achieves close to 80% identification accuracy with 7 

comparisons, whilst body only achieves around 60%. The 

recognition performance at a close distance is much better than 

that at medium and far distances. A 97% recognition accuracy 

is obtained with ten comparisons, obtaining a maximum of a 

100% accuracy at 18 comparisons. The recognition 

performance is limited at a far distance, with the accuracy rate 

achieving only 19% when using 18 comparisons. This 

suggests that distance is more important than the number of 

comparisons when using the face for recognition. 

By comparing the identification performance at close 

distance obtained from [6], which achieved an accuracy of 

100% with 10 comparisons by using 24 attributes with 4038 

subjects, the accuracy of the proposed method using 10 

comparisons is ~97%, which demonstrates that 10 traits used 

here include enough information for classification. 

The cumulative match characteristic curves (CMC) for 

single-modal soft biometric feature sets are depicted in Figure 

10. At a close distance, the recognition accuracy of facial traits 

is ~96% % (for rank 1 identification), but it falls sharply to 

~63% at a medium distance and ~13% for a far distance. The 

recognition by clothing is the most consistent, with accuracies 

of ~83% ~69% and ~67% at the three distances respectively. 

For facial traits, the recognition accuracy at close distance 

is 99.2% (rank=2) and 100% (rank=6). At medium and far 

distances, the recognition accuracy is 99.03% (rank=10) and 

49.3% (rank=10) respectively. In terms of recognition using 

clothing traits, the accuracy at medium (95.8%) and far 

(95.9%) distances is very similar. It performs higher at a close 

distance (98.5%). For the body traits, the recognition accuracy 

is 99.3% (rank=4) at a close distance and decreases slightly to 

98.4% and 96.6% (rank=10) at medium and far distances. In 

summary, at a close distance, the facial traits, as well as body 

and clothing traits, show high performance. At medium 

distance, three feature sets obtain similar accuracy, but at a far 

 
 

Fig. 9. Face recognition accuracy obtained from different numbers of 

comparisons. 

 

 
 

Fig. 10. Cumulative match characteristic curves for the individual modalities 

 

 
 
Fig. 11. Accuracy of single-modal recognition (rank=1). 
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distance, the accuracy of clothing and body traits significantly 

outperforms that of the face. 

The process is repeated 20 times, and the boxplot of 

recognition results is shown Figure 11. It shows the extent of 

the accuracy over 9 single-modal methods. It shows that the 

recognition performance of clothing and body traits is 

relatively stable, whilst the performance of facial traits varies 

substantially at different distances. As we know, the resolution 

of face images is greatly influenced by distance. Thus, the 

recognition accuracy of facial traits decreases sharply at far 

distances. 

C. Evaluation of rank-score fusion at three distances 

In this section, experiments are performed to validate the 

performance of the proposed rank-score fusion algorithm at 

three distances.  

The feature sets used are the same as those described in 

Section II. The experiments are implemented using 200 

subjects. Each subject has 20 samples, in which 5 samples are 

randomly chosen to train the joint density function and to 

obtain normalisation weights. The remaining samples are used 

for testing. The experiments were repeated 20 times, and the 

box-plot of recognition results are shown in Figure 12.  

It is clear that at the close distance is the most consistent, 

with an average recognition accuracy of 98.5% at close 

distance. The recognition accuracy at a medium distance 

slightly decreases to 92.5% on average, with the maximum 

95.3% and minimum 89.1%. The accuracy and the uncertainty 

at a far distance are worse than that at close and medium 

distances. 

D. Compared with single-modal recognition 

Figure 11 is a vertical boxplot that shows the extent of the 

accuracy over nine single-modal methods. At the close 

distance, the recognition accuracy of facial traits is 95.7%, 

which is the best modality when close. The average 

recognition accuracy is 98.5% after rank-score fusion, which 

is 2.8% higher than using single facial traits. The fusion result 

at a close distance is the most consistent, and the variance is 

smallest compared with the other two distances. The results 

demonstrate that clothing traits achieve the highest 

recognition rate at a medium distance (69.4%), which is 

increased by 23.1% using rank-score fusion. The stability of 

fusion results at a far distance is not as good as the other two 

distances, because the accuracy of facial traits at a far distance 

is only 13.1%, which lowers the fusion result. Meanwhile, the 

fusion results of rank-score fusion are slightly improved at a 

far distance, and the accuracy of the proposed rank-score 

fusion increases to 82.6%. 

E. Comparison with other fusion methods 

The recognition results at three distances using different 

fusion methods are listed in Table V. It is clear that the 

proposed method outperforms a selection of rank and score 

level fusion techniques. At all three distances, the recognition 

accuracy of the proposed fusion method is always superior to 

that of other methods. At a close distance, all the fusion 

methods achieve excellent recognition rates. Compared with 

the best results given by other methods (97.0%), rank-score 

fusion improves the accuracy by 1.5%. At a medium distance, 

the recognition performance of rank-score fusion improves 

significantly. The accuracy increases to 92.5%, and the EER 

achieves 0.69%. The improvement of fusion performance at 

close and far distances is not as apparent as at a medium 

distance, which improves recognition accuracy by 3.3% 

(Nonlinear weight ranks). 

V. CONCLUSIONS 

This paper introduces a new database for soft biometrics 

based on imagery collected from the University of 

 
 
Fig. 12. Accuracy of fusion at three distances (rank=1). 

 

TABLE V 

IDENTIFICATION PERFORMANCE USING DIFFERENT FUSION METHODS 
 

 Close Medium Far 

 Accuracy(%) EER(%) Accuracy(%) EER(%) Accuracy(%) EER(%) 

Bayesian theory [11] 96.3  0.38  84.6  1.07  78.1  2.57  

Log likelihood ratio [26] 96.1  1.07  87.7  2.46  76.5  3.02  

Logistic regression [27] 96.4  0.39  82.3  3.73  75.5  3.83  

Nonlinear weight ranks [28] 96.9  0.39  86.2  3.48  79.3  3.44  

PAV based [29] 97.0  0.38  86.0  3.01  79.1  3.33  

Rank-score fusion 98.5  0.33  92.5  0.69  82.6  2.42  
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Southampton Gait Tunnel, synthesised so as to appear to be 

from an outdoor environment, and then labelled using 

CrowdFlower. The influence of distance on soft biometric 

traits was firstly analysed. In terms of single-modal 

recognition, facial traits achieve the best result at close 

distance but are not stable, they fall sharply with an increase 

in distance. Compared with facial traits, as clothing and body 

traits have less distinctiveness, the accuracies of the two trait 

sets are lower than that of facial traits at close distances, 

whereas the stability of body and clothing is much better than 

stability for the face. They can achieve good recognition 

results, even at a far distance. 

A novel joint density-based rank-score fusion technique to 

fuse three soft biometric methods was proposed in this 

chapter. The experiments were conducted with other multi-

modal fusion methods to make comparisons. Accuracy and 

EER were employed to evaluate their performance. The result 

of rank-score fusion demonstrates that at a close distance the 

soft biometric recognition performance is the most consistent. 

Compared with other fusion methods, the proposed rank-score 

fusion is numerically demonstrated to be able to obtain the best 

results at all three distances, particularly at a medium distance. 

This leads to more general conclusions on this work. 

In conclusion, compared with single-mode biometric 

methods, the experimental results demonstrate clearly that the 

recognition performance of multi-modal soft biometrics is 

significantly improved by using biometric fusion. Naturally as 

recognition at a close distance is generally good, it can be seen 

that fusion largely improves the recognition at medium and far 

distances. There is still much room for improvement at the far 

distance. It would appear that the fusion process selects 

information that is best for recognition at any distance and so 

the effects are most dramatic when appropriate features are 

weighted more favourably for recognition purposes. 
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