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ABSTRACT 
A theoretical investigation is performed where spherical harmonic series expansions are used to describe the 
primary and secondary pressure fields in the problem of actively controlling sound scattering around spheres. 
The study focuses on the scenario of point-monopoles radiators in the vicinity of a sphere with a uniform, 
locally-reacting and real-valued surface impedance. A control method based on minimizing the contributions 
of the spherical harmonic components to the scattered sound power is proposed. Under the established 
circumstances, any radiated sound power is found to be dominated by a few spherical harmonic terms of low 
degree in the region of large relative wavelength. As this wavelength decreases, numerous terms of higher 
degree become significant, thus increasingly more sources are required to achieve any suppression. A study 
case is performed where one point-monopole is placed at infinite distance to form an incident plane-wave. 
The scattering due to this is controlled with up to four point-monopoles on or near the surface of the sphere. 
Progressively better attenuation is achieved at large relative wavelength when increasing the number of 
control sources and the behaviour can be described using asymptotes of the spherical harmonic coefficients. 
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1. INTRODUCTION 
Scattering represents the behaviour generated in the medium surrounding an obstacle when the 

combination of travelling waves forming a disturbance impinges on it. This behaviour is the total 
result of reflection, absorption and diffraction. In the case of acoustic waves, the understanding and 
control of scattering is important for a number of applications. One such example is binaural sound 
reproduction where the physical presence of the head plays a major role on the perceived sound [1]. 
Another example is acoustic cloaking, which has its purpose in situations where it is complicated to 
achieve desirable sound properties of certain elements. Structural components such as walls, columns, 
rafters and balconies have an impact on the soundscape within a building [2]. The ability to 
acoustically hide these once constructed could potentially simplify some of the challenges in 
designing spaces within concert halls, schools and hospitals that require specific acoustic properties.  

In general, traditional passive absorption has drawbacks when it comes to performance and covered 
frequency range, which has sparked research interest into alternatives such as active control [3, 4]. 
When it comes to actively controlling sound scattering, there are currently two fundamental strategies. 
The first is a theoretical approach based on surrounding the obstacle with continuous layers of sensors 
and actuators in order to achieve perfect cancellation [5, 6]. The second method is rooted in practical 
realization and relies on supressing the scattered field, for a given frequency, by minimizing its 
radiated power at a finite number of error sensor positions with a finite number of control actuators 
[7-9]. In some of these works, the sound fields are modelled as series of orthogonal basis functions, i.e. 
expansions into uncoupled components that can be individually studied and manipulated. However, 
this quality can be further exploited when deriving the optimal strengths of the control sources.  

The current paper proposes and theoretically investigates an alternative to the second fundamental 
strategy described above. This is done in the rudimentary case of an absorptive model for a spherical 
scatterer, surrounded by point-monopole sources, and consists of minimizing the contributions to the 
scattered sound power of the spherical harmonic components rather than the pressure at error points.  
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2. THEORETICAL BACKGROUND 

2.1 Spherical Harmonic Representations for Sound Scattering from Spheres 
Let there be a fluid that is stationary, isentropic, inviscid and a perfect gas. The motion of acoustic 

waves propagating through this medium is governed by the linearized wave equation in the time 
domain. Given a system of spherical polar coordinates, as defined in [10], the equation can be solved 
to yield the general solution for the complex-valued acoustic pressure at location  [10, 11]  

 (1) 

at a single angular frequency .  represents the wavenumber associated with . A factor of  is 
omitted in (1) for convenience of notation, and it represents the chosen time-frequency convention.  

Expression (1) is composed of an interior solution, the first double summation, and an exterior one, 
the second double summation, which are distinct through their different regions of validity  [10]. 

 and  are the spherical Bessel function of the first kind and, respectively, the spherical 
Hankel function of the second kind, as detailed in [10]. They describe the variation of the acoustic field 
with radial distance. The basis functions  are the real-valued spherical harmonics [11] 

 (2) 
where  for  and , while  and .  are the 
associated Legendre functions; however, they are defined as in [10], rather than in [11], to include the 

 factor corresponding to the Condon-Shortley phase.  can be interpreted as 3D 
patterns of angular variation around a given coordinate system and they can be visualized in [12].  
and  are complex-valued coefficients which uniquely define a particular sound field and are 
derived based on the circumstances of the given problem (e.g. boundary conditions on obstacles). 

When it comes to the exterior solution in particular, the acoustic power it radiates is [10, 11] 

 (3) 

Each spherical harmonic component  contributes independently to the overall radiation and, 
thus, they are uncoupled from each other. This is a direct result of the basis functions being orthogonal 
and leads to theoretical and practical benefits, as will become apparent later in the study. 

The acoustic scattering from a uniform, locally-reacting impedance sphere can be described in 
terms spherical harmonic components by applying the boundary condition  

 (4) 
to the general solution in (1).  is the surface impedance of the sphere normalised by the 
characteristic acoustic impedance of the medium exterior to it. This model represents an impedance 
that is manifested at each point of the boundary in the outgoing normal direction, independent of its 
value at all other points. Furthermore, it is considered that . A negative real part translates into 
the sphere creating additional energy, which is not generally encountered in the natural world. 

In the case of a monochromatic point-monopole, when placed in free-field at  while 
having a volumetric strength , it generates a sound pressure that is expanded as [10, 11]  

 (5) 

where  is equal to  and  is equal to . Due to linearity, the total pressure field 
 resulting from the interaction between the point-monopole and a spherical obstacle of radius , 

centred at the origin, is the superposition between the incident field (5) and a scattered field  taking 
the form of the exterior solution from (1). At , applying (4) to the total field leads to  

 (6) 

and, by extension, to the scattered field 
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 (7) 

where .  and  are the first 
derivatives in respect to the dimensionless quantity , which describes the wavelength of sound 
relative to the size of the scatterer as an alternative to frequency. The scattered field (7) is present in 
both radial regions of (6) and is an exterior solution. The acoustic field generated directly by the 
point-monopole is converging towards the origin between  and , where it has the form of an 
interior solution, while diverging away from the origin after , where it is an exterior solution.  

Allowing  in (6) imposes the first branch and results in the scattering of a plane-wave of 
magnitude  arriving from angles , where the total and scattered pressure fields are [10, 11] 

 (8) 

 (9) 

Furthermore, allowing  in (6) also imposes the first branch and yields the radiated pressure 
of a point-monopole with source strength , situated on a spherical baffle at location  [10, 11] 

 (10) 

2.2 Tonal Active Control of Scattering Based on Spherical Harmonic Coefficients 
When it comes to the problem of actively supressing the scattering around the sphere of radius , 

let the primary field be the superposition of scattered fields due to  incident point-monopole 
disturbances, situated external to the obstacle. Each of these fields can take any of the forms expressed 
in (7), (9) or (10). In the same region of space, let there also be a secondary field composed of  
point-monopole control sources, distinct from the previous set.  Each of these fields can take the forms 
expressed in (6) or (10). It is chosen that the control system attenuates the radiated sound power of the 
primary, a measure that is invariant with space outside of the obstacle. When determining the sound 
power before and after control on a virtual sphere that encloses the  sources, all possible forms of 
acoustic field in the control problem are purely radiations, i.e. behave as exterior solutions.  

The above tactic leads to the considered primary and secondary fields being 

 (11) 

 (12) 

where the double summations are denoted in a compact way. The possible forms taken by  and 
 are shown in Table 1 for different regimes of , where  

and . The field after control is  

 (13) 

and, from (3), radiates a sound power of  

 (14) 

 is a -dimensional, continuous, quadratic function with the source strengths  as variables. 
Active control is meant to find the set of  for which this function admits a minimum, if any. In 
practice, manipulating (13) and (14) requires the truncation of the infinite summation over , turning 
them into numerical results. Let  be the truncation and let the spherical harmonic terms   
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Table 1 – Possible forms of spherical harmonic coefficients in primary and secondary 

   

   

   

  -- 
 
be arranged in the order: , , ,  …  … … . This leads to a 
total of  components present in the series, of which  are of the same degree .  

The version of (13) truncated to  can be arranged into the matrix equation  
 (15) 

The  column vector  contains the components of the primary and is expressed as  

 (16) 

In the  matrix , the -th column contains the corresponding components in the secondary for 
the -th control source and is given by 

 (17) 

The  column vector  is governed by the constraint of the control problem and is equal to  
 (18) 

The  column vector  contains the components after control is applied and is written as 
 (19) 

Relation (15) forms a linear system of equations that is an established topic in the area of active 
control [3, 4]. The system emerges when using the traditional strategy of minimizing the means square 
pressures or particle velocities at a finite set of sensor positions, given a finite set of secondary sources. 
If (15) is overdetermined, i.e. , and  is positive-definite, then source strengths given by  

 (20) 
form the unique, optimal set that produces a minimum, if it exists, in the cost function  

 (21) 

at a single value of . (21) is the truncated version of (14) without the factor of . This 
factor is a constant relative to  and does not affect the derivation of  from (20); however, it 
does scale the minimum achievable value of . It can be concluded that minimizing either the mean 
squared pressures at sensing locations or the mean squared spherical harmonic coefficients of the 
pressure leads to the same analytical result for the scattered power after control. The two methods 
differ when it comes to inner and cross coupling of primary and secondary. For a grid of pressure 
sensors, the elements in  and, respectively, in each column of B are inherently interconnected, thus 
limiting the optimization. Spherical harmonic coefficients are uncoupled and do not exhibit this.  

The amount of attenuation achievable after the optimization depends on which elements of  are 
dominant and on how well the corresponding elements of each row in  can couple into them. The act 
of altering or completely cancelling a specific spherical harmonic component in (15) establishes one 
constraint on the set of source strengths, thus creating residuals in the other non-zero components. The 
effect is referred to as spill-over [3, 4] and is unavoidable in the current model. This is because all 
forms of the primary and secondary described in Table 1 have at least a countably infinite set of 
non-zero spherical harmonic components, regardless of point-monopole location in the region . 
Imposing specific behaviours on  distinct components requires at least  distinct sources.  

While the problem is not ill-conditioned, the optimization balances between manipulating specific 
components and generating residuals, such that the passive situation is not made worse after control.  
However, (20) is a numerical result and cannot directly describe how each optimal variable is chosen.  
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Table 2 – Asymptotic behavior relative to  of  factors in spherical harmonic coefficients 

     

    

    

    

 

2.3 Method for Assessing the Performance of Active Control  
To interpret the outcome of (20), the spherical harmonic coefficients after control are compared to 

analytical predictions. These require studying the behaviour of the coefficients in the primary and 
secondary. The forms of  and  from Table 1 share a general structure of three factors  

 (22) 
Relative to ,  is either a real or purely imaginary constant that gives the units of .  
is a dimensionless, complex-valued quantity. It solely governs the variation with  of  and, 
hence, that of the contribution to the radiated sound power, before and after control, from the spherical 
harmonic terms of degree .  is a real-valued, dimensionless constant relative to . 
When using the general form (22) into (3), the spherical harmonics closure relation reduces (3) to  

 (23) 

where  is the combined contribution to the radiated power of components with degree . 
In (23),  does not depend on , given the results from Table 1. The asymptotic behaviour of 

the  factors when  becomes very small or very large can be established, as seen in [13, 14]. 
Choosing the appropriate expansion for the spherical Bessel and Hankel functions that compose 

 and then considering the leading order term, yields the results from Table 2, where 
. Computing these results for different values of  and using 

them to analyse  reveals that, in the region of , the contribution of a lower  component 
is larger than that of a higher  one while, generally, also varying as a lower power of . This leads 
to the radiated power being dominated by the first few spherical harmonic components. Furthermore, 
at large ,  is dominated by a number of spherical harmonic components of high .  

As  increases, achieving considerable suppression of the scattered power implies more control 
sources, such that each component that becomes significant can be addressed. Thus, when using a 
small number of sources, the predicting the asymptotes when  is of interest in the analysis. 

3. STUDY CASE: ACTIVE CONTROL OF SINGLE PLANE-WAVE SCATTERING 

3.1 Defining the Active Control Problem 
The specific example presented in this paper consists of controlling the scattering of a single 

monochromatic plane-wave as it insonifies the impedance sphere. The plane-wave has a magnitude 
 and arrives from the incidence angles . The generated scattered field represents the 

primary and is expressed as (9), with coefficients given by . The 
plane-wave is chosen to propagate parallel to the yz-plane, in the direction of the z-axis from  to 

. This corresponds to  and, from (2), results in only the components of order 
 being activated in the primary. Furthermore, three spheres of surface impedances  , 

 and  are exemplified. The first and the last cases approximate a soft sphere of  
and, respectively, a hard sphere of . This was done to maintain consistency, as a secondary 
source on the surface of a soft obstacle cannot radiate. The case of  represents the impedance of 
the sphere matched to that of the surrounding medium. Air at normal atmospheric conditions is used in 
all results. 
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The scattered power due to the plane-wave, , is expressed using the coefficients  in (3). 

This is normalized by the power associated with the plane-wave, , then plotted as 
 versus  for the three cases of impedance in the graphs of Figure 1. A truncation 

degree of  was used alongside a range of  logarithmically-spaced points between 
 and . Simulations have shown that, at a given large value of , the number of 

spherical harmonic degrees  that contribute significantly to this scattered power is equal to . 
The asymptotic behaviour of  when  is dictated by the most dominant spherical 

harmonic terms in that region, which can be established from Table 2. The  and  
spheres are both dominated by the  term, which leads to their normalized powers 
having asymptotes of  and, respectively, . The  sphere is dominated by both 

 and  terms, which contribute to the scattered power as  and, 
respectively, . This leads to an asymptote of  equal to , as described in [15].  

In the following paragraphs, results of active control are shown for the four different arrangements 
of point-monopole sources depicted in the diagram of Figure 1. To have corresponding spherical 
harmonic components activated in both primary and secondary, the sources are placed on the z-axis. 

3.2 Control Results when Using a Small Number of Surface Radiators 
A secondary field composed of point-monopoles on the scattering surface has the coefficients 

. Simulations show that the power radiated by such a field follows the 
same truncation rule as the primary, where  terms are required at a given large value of . 

Choosing the same truncation degree, , for both primary and secondary, the minimization 
(20) was computed over the  contributing spherical harmonic components of , at each 

 logarithmically-spaced points between  and . For a single control source 
placed at , it is assumed that the minimization attempts to perfectly cancel the 

 term, which is the largest for all three cases of . Then, the optimal source strength is   
 (24) 

and, after control, the  term is  
 (25) 

The formulas from Table 2 are used in (24) and (25) to calculate the asymptotic behaviour after control 
when . The hierarchy between contributions to the power is maintained, ignoring the cancelled 
component. The  term varies as the lowest power of  and, thus, is the new dominant 
component. This translates into the normalized scattered power after control, , having 
asymptotes of ,  and  for ,  and, respectively, .  

    

    
  Figure 1 – Normalized scattered power due to plane-wave before and after control, as a function of  
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A second point-monopole is now placed on the surface of the sphere at  and all 
the computational circumstances are maintained. It is assumed the minimization attempts to perfectly  
supress both the  and  terms, which are the largest two for all three cases 
of . Due to the parity of the spherical harmonic functions, the linear combinations  

 (26) 

(27) 
of the two optimal source strengths govern (15). After control, the  term is expressed as 

 (28) 
and is now the dominant component in the  region, yielding asymptotes of  equal to 

,  and  for ,  and, respectively, . 
For both control arrangements, the predicted asymptotes, seen as dashed lines in Figure 1, are good 

representations of the computed outcomes of (20), seen as solid coloured lines in Figure 1. Overall, the 
reduction of  has improved when going from one to two sources. For , considerably better 
attenuation is achieved with two sources as both significant terms in the primary are addressed. 

3.3 Control Results when Using a Small Number of Surface and Near-Surface Radiators 
To control more than the first two spherical harmonic components, extra variables need to be 

introduced in (15). However, new sources have to be placed such that their coefficients  are 
considerably different from  and  used previously. Otherwise, the control generates as much 
attenuation of the power as for the previous two sources and manifests ill -conditioning when inverting 

. Therefore, extra point-monopoles are placed away from the surface of the scatterer at a distance 
of . In this way, the secondary has  coefficients that can have either of the two forms from 
Table 1. Simulations show that the power radiated by such a secondary requires a truncation degree of 

, at a given large value of , where  corresponds to the source furthest away. 
In the previous arrangement of two control sources, a third point-monopole is now added at 

. (20) is computed under the same circumstances, but the higher truncation 
degree corresponding to the secondary, , is chosen rather than that of the primary to avoid 
aliasing. This mismatch introduces terms of high degree  that are zero in the primary but non-zero in 
the secondary. Attenuation is achieved only in the  region, which is dominated by terms of low 
degree  and, hence, is minimally affected by the mismatch. Assuming that the spherical harmonic 
components of the first three degrees  are perfectly cancelled leads to the optimal source strengths 

 (29) 

(30) 

(31) 

that govern the individual equations of (15). After control, the  term is expressed as 

 (32) 

and now dominates in the  region, yielding asymptotes of  equal to , 
 and  for ,  and, respectively, . 

Lastly, a fourth source is now placed at . The previous computational context 
is maintained. Assuming that the components of first four degrees  are perfectly cancelled yields 

 (33) 

(34) 

 (35) 

(36) 

which govern the individual equations in (15). After control, the  term becomes 
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 (37) 

and now dominates in the  region, yielding asymptotes of  equal to , 
 and  for ,  and, respectively, .  

For the current two control arrangements, the predicted asymptotes, seen as dashed lines in Figure 
1, are also good representations of the computed outcomes of (20), seen as solid coloured lines in 
Figure 1. Going from two to three to four sources progressively improves the obtained suppression at 
low . The amount is different between cases of , as their corresponding asymptotes are dissimilar. 

4. CONCLUSIONS 
A theoretical investigation has been realized where spherical harmonic expansions were used to 

describe the primary and secondary fields, as well as the minimization method, in the problem of 
actively controlling the sound scattering from a sphere. Simulations were performed for truncated 
versions of these expansions, in the case of a single plane-wave arriving onto a uniform, 
locally-reacting sphere. A small number of point-monopoles on and near the surface of the obstacle 
were ideally placed relative to the known incidence. In the Rayleigh region, the spherical harmonic 
coefficients in both primary and secondary form a hierarchy of ascending powers of  with 
increasing . Thus, progressively better attenuation of the scattered power was achieved when adding 
a few more sources, as more of the first dominant components in the hierarchy can be controlled. This 
behavior was analytically predicted using the asymptotes of the spherical harmonic coefficients.  

In terms of future work, the presented modelling and control strategies can be extended to scenarios 
beyond that of a single plane-wave. Also, characterizing the effects on control performance of using a 
large number of sources and of solely moving the sources away from the obstacle can be further 
explored. In terms of experimental validation, a necessary first step is to devise a practical active 
control system that can sense and manipulate a 3D sound field as spherical harmonic components. 

ACKNOWLEDGEMENTS 
This work is supported by the Defense Science and Technology Laboratory, United Kingdom. 

REFERENCES  
1. Duda RO, Martens WL. Range dependence of the response of a spherical head model. J Acoust Soc Am. 

1998;104(5):3048-58. 
2. Kuttruff H. Room Acoustics. 5th ed. New York, USA: Taylor & Francis; 2009. 
3. Nelson PA, Elliott SJ. Active Control of Sound. London, UK: Academic press; 1991. 
4. Fuller CC, Elliott S, Nelson PA. Active Control of Vibration. London, UK: Academic Press; 1996. 
5. Guevara Vasquez F, Milton G, Onofrei D. Exterior cloaking with active sources in two dimensional 

acoustics. Wave Motion. 2011;48(6):515-24. 
6. Norris AN, Amirkulova FA, Parnell WJ. Source amplitudes for active exterior cloaking. Inverse 

Problems. 2012;28(10). 
7. Friot E, Guillermin R, Winninger M. Active control of scattered acoustic radiation: a real-time 

implementation for a three-dimensional object. Acta Acustica united with Acustica. 2006;92(2):278-88. 
8. Cheer J. Active control of scattered acoustic fields: Cancellation, reproduction and cloaking. The 

Journal of the Acoustical Society of America. 2016;140(3):1502-12. 
9. Liu J, Wang X, Wu M, Yang J. An active control strategy for the scattered sound field control of a rigid 

sphere. J Acoust Soc Am. 2018;144(1):EL52-EL8. 
10. Williams EG. Chapter 6 - Spherical Waves. In: Williams EG, editor. Fourier Acoustics. London: 

Academic Press; 1999. p. 183-234. 
11. Poletti MA. Unified description of Ambisonics using real and complex spherical harmonics.  

Ambisonics Symposium 2009; 25-27 June 2009; Graz, Austria2009. 
12. Green R. Spherical harmonic lighting: the gritty details.  Game Developers Conference; 2003. 
13. Godin OA. Rayleigh scattering of a spherical sound wave. J Acoust Soc Am. 2013;133(2):709-20. 
14. Arfken GB, Weber HJ, Harris FE. Chapter 14 - Bessel Functions. In: Arfken GB, Weber HJ, Harris FE, 

editors. Mathematical Methods for Physicists 7th ed. Boston: Academic Press; 2013. p. 643-713. 
15. Lamb H. Chapter VIII - Simple harmonic waves. Diffraction. In: Lamb H, editor. The Dynamical 

Theory of Sound. London, UK: E. Arnold; 1925. p. 223-53. 
 

76


