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Abstract

Generalised partial credit models (GPCM) are ubiquitous in many applications in the health and
medical sciences that use item response theory. Such polytomous item response models have a great
many uses ranging from assessing and predicting an individual’s latent trait to ordering the items to
test the effectiveness of the test instrumentation. By implementing these models in a full Bayesian
framework, computed through the use of Markov chain Monte Carlo (MCMC) methods implemented
in the efficient STAN software package, this article exploits the full inferential capability of the
GPCMs. The GPCMs include explanatory covariate effects which allow simultaneous estimation
of regression and item parameters. The Bayesian methods for ranking the items using the Fisher
information criterion (FIC) are implemented using MCMC. This allows us to fully propagate and
ascertain uncertainty in the inferences by calculating the posterior predictive distribution of item
specific FIC in a novel manner that has not been exploited in the literature before. Lastly, we propose
a new Monte Carlo method for predicting the latent trait score of a new individual by approximating
the relevant Bayesian predictive distribution. Data from a Model Disability Survey carried out in
Sri Lanka by the World Health Organisation (WHO) and the World Bank are used to illustrate the
methods. The proposed approaches are shown to provide simultaneous model based inference for all
aspects of disability which can be explained by environmental and socio-economic factors.

Keywords: Bayesian Methods, Education Testing, Hierarchical Modelling, Item ranking, Item Re-
sponse Theory.

1 Introduction

Generalised partial credit models, proposed by Muraki (1992), for modelling polytomous response data
are applied in diverse fields and applications such as health, Li and Baser (2012); Verhagen and Fox
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(2013) and educational progress testing, Patz and Junker (1999). These models are examples in the
generic field of item response theory (IRT) for which there is an extensive literature (Birnbaum, 1968;
Rasch, 1961; Samejima, 1969; Lord, 1980; Bock and Aitkin, 1981). Increasing research interests in
the GPCMs started with the publication of the article by Muraki (1992) where the EM algorithm was
proposed to fit these models; see e.g. Falk and Cai (2016) for recent developments in this field. By now
there is a rich variety of fitting techniques and algorithms that facilitate inference using the GPCMs.

Development of Bayesian methodologies, see e.g. Mislevy (1986); Swaminathan and Gifford (1986);
Tsutakawa and Lin (1986) for IRT has led to the development of IRT specific software packages, such
as the Mult 1LCIRT by Bartolucci et al. (2014) which is an R (R Core Team, 2016) package that can fit
IRT models for binary and ordinal polytomous items. The adoption of the powerful MCMC techniques
for fitting item response models (see e.g. Albert (1992); Patz and Junker (1999); Fox and Glas (2001);
Sahu (2002); Glas and Meijer (2003); Sinharay et al. (2006); Fox (2010); Li and Baser (2012); Johnson
and Kuhn (2015)) has enabled the provision for richness in model checking and inference. Software
packages such as 1tm (Rizopoulos, 2006), gpcm (Johnson, 2007) and 1tbayes (Johnson and Kuhn,
2015) also allow model fitting and estimation.

Recently, the open source Bayesian software package STAN, Stan Development Team (2015), is
beginning to be used, see e.g. Furr et al. (2016). Software packages written in the R language to-
gether with model fitting using the general purpose Gibbs sampling software WinBUGS and OpenBUGS
are also increasingly being used, see for example, Curtis (2010); Li and Baser (2012); Thomas et al.
(2006). However, there is still a lack of literature on exploiting the rich inferential capabilities of a full
Bayesian GPCM. To address this gap in the literature this article develops Bayesian computation meth-
ods to achieve three important inferential tasks, all of which are motivated below by a practical problem
of analysing data from a comprehensive international disability survey developed by the WHO and the
World Bank.

The Model Disability Survey (MDS)!, developed as part of WHO’s Global Disability Action Plan?,
is a standardised instrument for data collection on disability that provides comprehensive and system-
atic documentation on all aspects of health and functioning in a population. It is a general population
survey, measuring how persons with different levels of disability conduct their lives while identifying
the hindering and facilitating aspects of their environments. The MDS makes it possible for countries
to collect information, not merely about persons who experience very significant levels of disability, but
about those along the entire disability spectrum ranging from no disability to complete disability. This
is especially important as it allows countries to develop public health strategies and policy interventions
that promote, maintain and enhance functioning for people with varying degrees of disability. The MDS,
used alone or as a module in a larger population survey, enables countries to collect internationally com-
parable disability data for national health and social policy planning purposes. Furthermore, it can be
used to monitor the implementation of the requirements of the United Nations Convention of the Rights
of Persons with Disabilities.?

MDS, being a very large scale comprehensive survey, collects information on a large (more than 100)
number of items describing disability such as intrinsic capacity, daily functioning and environmental fac-
tors and also many socio-economic factors such as age, gender and annual income, see e.g. Sabariego
et al. (2015). To estimate the effects of the socio-economic factors these authors propose a non-Bayesian
approach of regressing the estimated latent trait scores, measuring physical and psychological disability,
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for capacity and performance, which are obtained using a Rasch model analysis. This approach, though
useful in practice, does not correctly assess the uncertainties of the regression parameter estimates since
it does not allow for uncertainties present in the estimated latent trait scores. At the modelling stage the
GPCM is allowed to have any number of explanatory factors, e.g. environmental and socio-economic.
Although there is a large literature on using the GPCM, only a handful articles incorporate simultane-
ous estimation of the covariate effects and the parameters of an IRT model, see e.g. Furr et al. (2016);
Karabatsos (2017). The approach adopted in this paper is similar in spirit to the explanatory item re-
sponse models collected in the edited book, de Boeck and Wilson (2004) mostly from a likelihood based
inference point of view, see e.g. Glas (2005), and not specifically for GPCM.

The second inferential objective comes from the need to develop evidence-based brief versions of
the core modules in the MDS that preserves their ability to capture essential information but can be more
easily implemented in any national data collection platform or population survey. This article develops
statistical methodology for creating this brief version of the MDS by ranking the importance of each
item to explain the total information content in metrical scales (or latent trait scores). In this article
the total information content is defined as the sum total of the expected Fisher information criterion
(FIC) over all individuals for each item, where the expectation is evaluated with respect to the posterior
distribution of the unknown parameters. Although the Fisher Information is defined in the same way as in
the literature, see e.g. Muraki (1993) and Li and Baser (2012), our proposal for ranking the items differs
fundamentally since these articles base their comparisons on the item characteristic curve obtained with
plug-in estimates of the item specific parameters, see e.g. Ramsay (1991), whereas we use the entire
Bayesian predictive distribution which takes care of the associated uncertainty.

The final inferential task is motivated by the need to predict the latent trait scores of new individuals
who are not included in the current survey. This helps to achieve several objectives. For example, it
eliminates the need for re-fitting the model when data from new individuals are available at a later date.
Using the methods developed here it is possible to predict the latent trait scores of the new individuals
which can be used to monitor latent trait over a longer time period. The methodology developed here is
similar to that of Li and Lissitz (2004). However, the primary goal of their article was to derive analytical
expressions for the standard errors of item parameter estimates in a classical inference case, while the
contribution of this article lies in developing a predictive computational tool for estimating the latent trait
score and not the item parameters. Moreover, the proposed method is designed to be implemented after
MCMC model fitting in a Bayesian inference framework which has not been attempted in the literature
as far as we are aware.

The remainder of this article is organised as follows. The motivating MDS data set is described in
Section 2. Section 3 details the Bayesian modelling developments. Model fitting and prediction results
for a selected data set from the MDS illustrate the Bayesian methods in Section 5. A few summary
remarks are provided in Section 6. An online supplement contains further results with larger tables and
graphs and also the data set used and the STAN code developed here to reproduce the numerical results
of this paper.

2 Descriptive analysis and data exploration

We have data from a national survey conducted in Sri Lanka which was financed by the World Bank.
One of the aims of this survey was to develop a continuous measure of latent trait across a representative
sample of the general population and derive the most parsimonious set of items to measure this trait in
a cross-population comparable manner. The survey was completed by n = 3000 individuals, of which



1791 were females (59.7%), each responding to J = 17 items that mainly relate to an individual’s capac-
ity to perform certain tasks. For each item, respondents were asked to select one of K = 5 categories,
ranging from 1, “no difficulty” to 5, “extreme difficulty” in capacity levels. Table 5 in the online Sup-
plement provides a brief description of the items along with the total number of respondents for each
category for each item. Overwhelmingly, people responded in category one which implies good capacity
levels.

Values of three covariates: age, gender and household income (hereafter referred to as income)
were also recorded for each individual. Age, which varied between 17 and 96, is treated as a continuous
covariate in our modelling. The respondents’ income varied between 0 and 500,000 in the local currency,
the Sri Lankan Rupee (LKR). This large range of the income distribution makes it problematic to include
it as a continuous explanatory variable. To tackle this we treat income as an explanatory factor having
five levels which are obtained by using the four income quintiles, 18, 25, 35, and 50 (in thousands) LKR
of the income distribution. The mean incomes in the five groups were 10,651, 20,063, 27,949, 39,083
and 71,524 LKR.

The total score for each individual from the 17 items can vary between 17, corresponding to the best
health state to 85, corresponding to the worst possible health state. The left panel of Figure 1 provides
separate boxplot of the total scores for the males and females. The median total scores for the males and
females in this figure are 19 and 20 respectively; the corresponding means are 23.5 and 24.7. Thus, the
males, on average, report lower levels of disability than the females. The difference in scores between the
males and females, though very small, can still lead to significant gender effect since the sample sizes,
1209 for males and 1791 for the females, are large. The plots in the middle panel confirms the gap in self
reported disability levels between the two genders widens with increasing age. This panel, however, does
not indicate a very strong age and gender interaction effect, i.e. different slopes for males and females
for the covariate age. Hence, we do not consider such interaction effects in the modelling in Section 3.
The right panel of Figure 1 shows that the individuals in the lowest income group have much higher level
of disability than the rest of the population. In fact, the average total scores for the five income groups
(smallest to largest) are 27.33, 24.41, 23.45, 23.49 and 23.00 respectively. The corresponding standard
deviations are 13.14, 10.75, 10.48, 10.93, and 10.17 respectively. This shows a slightly higher variability
in the scores for the smallest income group but very similar variability for the remaining groups.

3 Bayesian model descriptions

Let Y;; denote the response of the ith individual on the jth item, where 7 = 1,...,nand j = 1,...,J.
The response for the jth item is categorised as one of the K; possibilities, although in our data example
K; = K =5forall j =1,...,17. Thus, each Y;; can take the value y;; where y;; = 1,2,..., K;. Let

y denote all the observed data y;;, fori = 1,...,nand j = 1,...,J. Any individual level covariate
information, i.e., demographic and socio-economic, will be captured in a m dimensional vector x; =
(%1, .., Tim). In this article we have m = 6 corresponding to the continuous covariate age and the

dummies for female, and the four upper income quintiles. The effect for lowest income quinitle is set at
zero to facilitate comparison with the other income groups.
The GPCM (Muraki, 1992; Li and Baser, 2012) without including any covariate effects is given by:

Yij
exp 21 a(0; — Bjn
IPr(lej:y'L_]WHOij@]): K; { L lk ]( J )} ayijzlv"'aKja (1)
Sy exp { Shoy a6 — Bn) |




100
)

§ i : — s

|
] L]
L .ii‘i
‘ lg- w i

o == === — | o

80

60

i.,
S —

40

20

T T T T T T T T T T T T T
M F <50 M <50 F 50-69 M 50-69 F 70+ M 70+F 1 2 3 4 5
Gender Age and gender Income quintile

Figure 1: Boxplot of the total scores. Left panel: by gender; middle panel by gender and age groups and
right panel by income groups.

where 3; = (Bjts---» 0 K; ). Here, 0; denotes the latent trait score of the ith individual, a; denotes the
discriminatory power of the jth item and 3; are the item specific difficulty parameters, as is common in
these type of models often assumed in IRT. The underlying distribution of each Y;; is the multinomial
distribution with parameters 1 and the probabilities Pr (Yij = vij|0i, a5, 8 j) as given in (1). Clearly each
IPr (Yij = v;|6s, aj,,Bj) > 0 and Zy ', IPr (Yij = v;10s, aj,,Bj) = 1 for each i and j, as required by
the multinomial distribution.

When comparing discrete categories it is customary to nominate a base or reference category. In our
modelling the category 1 for each item () is taken as the reference category. The model (1) simplifies
to the familiar binary logistic regression model when K; = 2 for all j = 1,...,J. In this case y;; can
take only two values, 1 and 2 and (1) is written as:

0. . 3 — exp{ 2 j_1 @ (%i—Bjn) }

IPr (Y;,] - ]-|927 a_]) /8_]) - Zi:l exp{22:1 O‘j(gi_ﬁjh)}

exp{a;(0;—B51)}
exp{>_j—1 o (0i—B;n) pHexp{>h_1 o (0:—B;n) }

exp{a;(0i—Bj1)} _ 1
exp{a;(0i—Bj1)}expia;(0:i—Fj1)+a;(0i—Bj2)} — 1+exp{a;(0i—Fj2)}
and Pr (Yi; = 2/0;,5,8;) = 1 —Pr (Yj; = 1/6;, aj, B;). Thus ;1 disappears from the probabilities,
as it does for the general model (1). Therefore, we set ;1 = 0 corresponding to the reference category
1 foreachitem j =1,...,J.

We introduce the covariate information in the above GPCM as follows:
Pr (Yij = yij|0i, 05, B4,7) = G exp {307 a;(6; — Bjn) + zi; xI v} (2)

where z;; = I(y;; > 1) is the indicator variable taking the value 1 if y;; > 1 and O otherwise,
and the normalising constant

ZJ—ZeXp{Za] ﬁ]h +I(k>1)x ’7}
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foralli=1,...,nandj=1,...,Jandy = (71, .., Ym)-

Note that we must exclude the regression term x;fr'y from the reference category (j = 1) because if
we have IPr (Yij = 116;, aj,,Bj,'y) = exp {aj (0; — Bj1) + X;fr’y} /Gij then the term x. = is cancelled
out in the ratio for every IPr (Y;j = v:5|0;, aj,ﬁj,'y), yij = 1,..., K}, and the extended model (2)
collapses to the original model (1), rendering no likelihood contribution for the regression parameter =y.

An alternative way to include the covariate information, as has been done by Furr et al. (2016),
would be to write the regression component xZT’y, inside the exponent in (2) as EZZI a;(0; — Bjn +
zij x1 ) instead of the proposed "}, aj(6; — Bjn) + 2 X! ~. This alternative formulation allows for
multiplicative interaction effect between the item discriminatory parameters «; and the covariates x;.
However, it causes further identifiability issues in parameter estimation due to the presence of the terms
like ovjy. The product term, cvjy, adds to non-identifiability of the parameters «; and -y since the product
remains unchanged if an arbitrary non-zero constant is multiplied to each «; and then each « is divided
by the same constant. Below we comment on the identifiability issue further and we also compare these
two alternative model specifications in Section 5.

In this paper we do not consider an essentially deterministic model 6; = X'f'y, for the latent trait
0; as suggested by some authors, see, e.g. de Boeck and Wilson (2004). Instead, we assume normal
prior distribution for the latent trait §; (see Section 3.1 below) and assume that the covariates provide
additional explanatory information in the model.

We now write down the likelihood function needed for our Bayesian model fitting. Let 8,, =
(01,...,0,) and & = (a,B,7) where @« = (a1,...,a5) and B8 = (B4,...,3;). The likelihood
function of £ and 0, is given by:

n J

L(0,.& y) = [[ ] Pr (Vi = visl0i, . 8;.7) - 3)

i=1j=1

3.1 Prior and posterior distributions

The Bayesian model is completed by assuming prior distribution for all the parameters. We assume
that each 6; ~ N (my, sg) independently where my and 33 are hyper-parameters specified below. The
item discriminatory parameters «; are given independent normal prior distributions with mean m,, and
variance s2, but are forced to be on the positive part of the real line.

The item difficulty parameters (3, h > 1 are given independent normal prior distributions with
mean mg and variance s%. Components of the regression parameter ~ are given independent normal
prior distributions with mean m., and variance 5,%. The hyper-parameters of these prior distributions are
specified below.

The model is over-parametrised and this poses an identifiability problem since we can multiply each
a; and divide 6;, 3;, by the same constant without changing the likelihood function. To tackle this
problem we let ; ~ N(0,1) as is customary in the literature, see e.g. Albert (1992); Sahu (2002);
Sinharay et al. (2006). Typically, we take diffuse prior distributions for regression parameters and so
with s2 large, 10* say.

The identifiability of the item discriminatory, c and difficulty, 3 parameters, is also weak, see e.g.
Sahu (2002) and Sinharay et al. (2006) which suggests that an informative prior distribution is required
for these parameters. Following the above authors we assume m, = mg = 0 and 52 = s% = 10.
In Section 5, we also compare the proposed model with the model restricting all the discriminatory
parameters «’s at 1 using the adopted Bayesian model selection criteria.



In our investigation we find that the model parametrised by Z%Zl a;(0; — Bjn + zij xI v), labelled
as model M4, leads to slower mixing of the MCMC algorithms. Moreover, the model comparison results
presented in Table 1 in Section 5 we see that this weakly identified model is not selected by the adopted
Bayesian model selection criteria.

The posterior distribution of 8,,, £ is now obtained as

(O, &ly) o< L(0n, &; y)m(0,,6), 4)

where 7(6,,, &) denotes the joint prior distribution of 8,, and £. Hence there are n + J + Zi:2 Kj+m
parameters to estimate.

4 MCMC based inference methods

Model fitting has been performed by using the general purpose software package STAN. The code for
implementation and the data are available from the authors upon request and will be published alongside
the paper. The adopted STAN software package also facilitates model comparison using the Watanabe
information criteria (WAIC) proposed by Watanabe (2010). Gelman et al. (2014) provide a very thorough
comparison between the well-known Bayesian model choice criteria including the DIC proposed by
Spiegelhalter et al. (2002). Like all information criteria, WAIC is made up of two components, one of
which is the effective number of parameters, denoted by p_waic, measuring the complexity of the adopted
hierarchical model. The second component assesses the quality of the model-fit and as a result a model
with a smaller value of the WAIC is preferred.

Bayesian model checking proceeds by calculating the posterior predictive distribution of a new in-

dependent replicate data set Yig.rep), i1=1,...,n,5 =1,...,J. The posterior predictive distribution is
given by:

Pr(v,"P) = k) = / Pr(v,"P) = k|0,, €)m (0, Ely)dOdg (5)

The difficulty in evaluating (5) is easily solved by MCMC methods as suggested by Sinharay et al. (2006),
see also Sinharay (2005). First, one obtains a large sample 0% ), E(Z), ¢ =1,...,L for alarge value of
L, from the posterior distribution 7 (£|y). Given each simulated value of o) €W a replicated data set
Y (eP.0) jg generated from the top level multinomial model and for a statistic subsequently S (Y(rep, Z))
is calculated, where S(y) is a suitable summary statistic of the data y. Graphical plots of the replicated
S(Y TP:9)) with the superimposed value of the observed S(y) are used as informal model checks. For
example, here we consider the total number of respondents for each of the 5 catgories of each of the 17
items:

Si)=> I(yiy=Fk), j=1,...,17, k=1,...,5, (6)
i=1

where I(A) denotes the indicator function of its argument A.
More formal model checking is afforded by calculating the posterior predictive ‘p-values’,

Pr (Sjk:(y(rep) > Sjk(Y)ly) :

corresponding to the observed totals Sji(y), j = 1,...,17, k = 1,...,5, see e.g. Sinharay (2005).
Here the probabilities are calculated under the discrete posterior predictive distribution defined in (5).
Ideally, for a well fitted model these p-values should be close to 0.5 so that the observed totals, Sj;(y),
j=1,...,17, k =1,...,5, are neither under or over predicted by the fitted model.



4.1 Item Information for item ordering
The Fisher’s Information for 6;,7 = 1, ..., n from the jthitem (5 = 1,...,J) is given by,

82

00;
where the expectation is with respect to the distribution of the data y. For notational simplicity we write
k = y;; and hence p;;r = IPr (Y;j = vij10i, o, 7, ,Bj) in the steps below. By noting the product form of
the likelihood L(8,,, &; y) in (3) we write,

K; 1 o 2
I; (9175) = |: Di k::|
’ ; pijk [060;""

Note that I;;(6;,€) depends on the unknown parameters . The Bayesian inference paradigm sug-
gests that the posterior distribution of £ given y, w(£|y), provides the best information about £. Hence,
the expected value of 1;;(6;, &) with respect to 7(£|y), is the most natural information measure to con-
sider for the jth item provided by the ith individual. Formally, we define,

I;(6:) = E (1;(6:. &)ly) = / L (65, €)m(€ly) €. )

We use MCMC samples & © for ¢ = 1,..., L toestimate I;;(6;) as follows:

L
- 1
Lij(0:) = ¢ > L(6:,€9). 8)

(=1

These estimates can be graphically examined for a range of values of 6; as has been done in the sup-
plementary Figures 8 and 9. Our proposal differs fundamentally from the literature, e.g. Li and Baser
(2012) so far. They also obtain ;;(6;, §) which depends on £. However, instead of integrating over the
uncertainties in the parameter estimates for £ as done in (7) they replace the unknown £ by its posterior
mean, thus effectively ignoring the uncertainty.

The unknown 6; in fij (0;) can be integrated over using the posterior samples to obtain

L=+ > 1;(00,€9),

1

| =

L
=

which is interpreted as the posterior information for the jth item provided by the ¢th individual. For
item ranking purposes we obtain the item specific Fisher information, FIC, by totaling the information
provided by each individual. That is, we obtain

=% / 1,;(0;,€)7(0,, Ely)dO,dE,
=1

which is estimated by I =2 IA” Values of the estimated FIC, T j» provide the relative information
content of the jth item and hence items are ordered according to these.



4.2 Predicting the latent trait score for a new individual

The Bayesian hierarchical GPCM enables prediction of the latent score for a new individual, n + 1, for
whom we may or may not have observed y,+1 = (Yn+1.1,- -  Yn+1, 7). If y,4+1 has not been observed
then we treat it as missing data and routine Bayesian methods are available to estimate the unobserved
data by sampling from the full conditional distribution of y,; given all the parameters and y. Here
the parameter vector will include the new latent trait parameter 6,,;; and that must be sampled as well
conditional on y, the sampled y,,+1 and all the parameters. The covariate values for the new individual,
Xn+1, must be available.

Consider the more interesting case when the observations y,+1 and the covariate values, x4 for
the new individual are observed after model fitting with data y from the first n individuals. In this case, it
seems to be trivial to estimate (or predict) 8,41 since we can simply augment y,, 11 to the n.J dimensional
data vector y to obtain the (n + 1).J dimensional data vector and re-fit the model with the additional
parameter 6,1, for which we assume an independent N (0, 1) prior distribution. Conceptually, this is
very simple but operationally it poses a huge problem when our aim is to estimate the latent scores for
a large number of new individuals whose data are observed on a later date after model fitting has been
done. The problem arises due to the necessity of re-fitting the model every time a new individual’s data
becomes available. Below we develop an approximation scheme, which does not require re-fitting, to
predict 6,11 using new data y,, 11 and x,,11.

We assume that the model has been fitted to the original n.J dimensional data y and so MCMC
iterates & © ,¢ =1,..., L are available from the posterior distribution 7(&|y) in (4). We wish to sample
from the marginal distribution of 6,11 given all of the data y and y,,41. To do so requires evaluating the
integral

W(6n+1|y7yn+l) = /W(9n+1|£7YaYn+1)7T(€|YvYn+l)d£' 9

This integral can be evaluated by compositional sampling by first drawing samples £ ~ 7 (£|y, yns1)

1(1?1 ~ 7r(9n+1|£*(€),y,yn+1) for ¢ = 1,...,L. However, drawing &) from

7(&|y, ¥n+1) is the re-fitting we aim to avoid. Hence, instead of drawing 0531 from 7 (6,41 \E*(Z) Y Ynt1)

and then drawing 6

we propose to draw from 7(6,,41|& (Z), Y, ¥Yn+1), avoiding the re-fitting.
We now provide the details for sampling from 7 (0,41, y, yni1). The full conditional distribu-
tion of 0,41 given &, y and y,, 1 is given by:

J
TT®r (Yor1s = vns1l0nr1, a5, B5,7) T(0nsr), (10)
j=1

where 7(6,,+1) is the N (0, 1) prior distribution for #,,11 and following model (2) we have

Pr (Yoi1) = Unt1,l0nt1,05,8;,7) = e exp {usj},
n+1,5
where
Yn+1,5
P (0 — B, T
Uiy = O‘J( n+1 /th) + Znt1, Xp1Y-
h=1

In the above, 2,11 ; and G, 11 ; are similarly defined as in (2), see also the complete conditional distri-
bution for 6; provided in the Appendix B.



We use a random-walk Metropolis step (see e.g. Tierney (1994)) to sample 0,(1?1 from (10). A

proposal sample is drawn from the normal distribution centred at the current value and a variance tuned
to have the optimal acceptance rate 0.44 as suggested by Gelman et al. (1996). This proposal is accepted
or rejected by evaluating the ratio of the target densities (10) at the current and proposed values. The

sampled 91(121, ¢=1,..., L, values are summarised to provide predictions and their uncertainties for the
unobserved latent score 6,11 given the full data y, y,1 and the covariate values. The proposed method

of sampling Gg}rl given the incorrect samples & () instead of the correct 13 *(0), effectively constitutes

an approximation for the correct marginal posterior distribution (9) of 6,,+1 given the full data. In our
numerical examples we conduct a simulation study to verify this approximation by comparing it to the
estimates obtained by re-fitting using the full data set.

5 Results

5.1 Model choice and parameter estimates

The model was run for 1000 iterations after discarding the first 1000 initial iterations at which point
MCMC convergence was assessed using the Gelman and Rubin scale reduction factor (Gelman and
Rubin, 1992). The WAIC values for four plausible models are presented in Table 1. The descriptive
analysis in Section 2 indicates that the main effects of age, income and gender might be significant but
not their interactions. Indeed, the main effects model, M2, in Table 1 has a smaller WAIC value than the
model without any covariates, M1. This table also contains the WAIC values for the other two models,
M3 and M4, discussed in Section 3. Clearly, the main effects model M2 is the best according to the
WAIC and henceforth will be the selected model for our purposes in the rest of the paper.

Table 1: WAIC for different models. M1: GPCM without covariates. M2: GPCM with covariates, age,
gender, and income as quintiles. M3: GPCM with covariates but all o’s set to 1. M4: GPCM with the
alternative formulation of covariates as described in Section 3.

M1 M2 M3 M4
p-waic  1888.5  1734.2  1836.7 1850.0
waic 51432.1 50996.7 54919.7 51291.7

We use the previously described posterior predictive methodology for checking adequacy of the
selected model. Corresponding to the observed summaries in Table 5, S;i(y) as defined in (6), we
obtain the model based predicted totals at each MCMC iteration and hence the 95% predictive intervals
and the posterior predictive p-values. These p-values, reported in Table 2, range from 0.48 to 0.53
and, as expected, are very close to 0.5, although with a slight upward bias, which may be due to the
discrete nature of the posterior predictive distribution here. As a further check, we plot the predicted and
observed totals along with the 95% intervals in Figure 2. The plot shows a very good agreement between
the observed and model predicted totals for each category of each item. Hence, we proceed with this
model for making inference.
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Table 2: Posterior predictive p-values corresponding to the observed totals in Table 5.

. Categories
Item | Description | ) 3 4 5
1 | seeing 0486 0.512 0.495 0.499 0.532
2 | hearing 0.505 0.499 0.507 0.514 0.522
3 | walking or climbing 0.515 0.512 0497 0.513 0.481
4 | remembering or concentrating | 0.514 0.495 0.490 0.484 0.519
5 | washing all over or dressing 0.531 0.517 0509 0482 0.532
6 | communicating 0.492 0507 0.520 0.515 0.521
7 | using hands and fingers 0.501 0.493 0.505 0.530 0.505
8 | sleeping 0.515 0.496 0.527 0.506 0.509
9 | shortness of breath 0.505 0.521 0.491 0.510 0.510
10 | doing household tasks 0.511 0.515 0.506 0.519 0.511
11 | providing care for others 0.494 0.529 0.508 0.500 0.503
12 | joining community activities 0.513 0.507 0.489 0515 0.515
13 | feeling sad, low or depressed? | 0.516 0.514 0.483 0.523 0.522
14 | feeling worried or nervous 0.505 0.490 0.501 0.528 0.511
15 | getting along with close people | 0.518 0.485 0.516 0.529 0.514
16 | coping with everything 0.533 0489 0.516 0.510 0.528
17 | bodily aches or pain 0.514 0502 0.496 0.492 0.495
[=} = - -
g RS =+ * &
+ + I
9 8 +
g h +
g 811
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) f%i%f %%%%%%fif%i
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Figure 2: Plot of the predicted totals for the observed S;x(y),7 = 1,...,17,k = 1,...,5. These
observed values are plotted as red lines. Other colours indicate response; black for ones, blue for twos,
green for threes, purple for fours, grey for fives. Dots are the expected values with the bars representing
95% predictive intervals.

The estimates for the regression parameters for the selected model are presented in Table 3. The
main effect estimate of gender (0.099 for females compared to O for males) indicates that the males
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Table 3: Parameter estimates for components of « and their 95% credible intervals (CI) using model (2).
The first quintile of the 5 level factor income is the baseline, 71y, . . . , 715 are the incremental effects for
the upper income quintiles.

Parameter TAge F M2 M3 M4 OI5
Estimate 0791 0.099 0.4 -0.079 -0.085 -0.192
95% CI (Lower) 0.738 0.005 -0.018 -0.217 -0.231 -0.333
95% CI (Upper) 0.841 0.193 0299  0.044  0.059 -0.054

report themselves to be on average healthier than females and, also age is a significant predictor of
disability. The parameter estimates for the income effect show that on average people with higher levels
of income report lower levels of disability as has been noted in the right panel of Figure 1. However, the
difference is only significant between the groups with the highest and lowest levels of income.

In order to assess the effect of including the covariates into the GPCM we provide scatter plots of
the parameter estimates obtained from model (2) with the covariates A , G, and I against those obtained
using the no-covariate model in Figures 3 and 4. A similar plot for the latent scores 0 is provided in
Figure 7 in the online supplement. Without the covariates the GPCM over estimates the o parameters
but under estimates the 3 parameters. Such trends, however, are not so discernible in the estimates of
the latent scores 6 from the two models. The actual values of the parameter estimates for o and 3 are
provided in the online supplement. Those reveal that higher estimates for «; are generally associated
with lower values of 3, and vice versa which is expected due to the parameter product o (3, entering
into the GPCM (1). Also note that items 10 and 16 are among the most discriminatory while items 1
and 2 are least discriminatory. This is also confirmed by the item ordering analysis presented below in
Section 5.2.

4
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Figure 3: Scatter plot of the estimates of e T O
o from the GPCM with and without in-

cluding the covariates. Item numbers are
used as the plotting symbols.

Figure 4: Scatter plot of the estimates of 3 from the
GPCM with and without including the covariates.
Item numbers are used as the plotting symbols.
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5.2 Item ordering

Table 4 provides the ordering of the items according to the FIC. Here items relating to doing household
tasks (10), providing care (11), coping with everything (16) joining community (12) rank much higher
than the items such as seeing (1) and hearing (2). However, what is surprising is that the psychological
item numbers 15 (getting along), 13 (feeling sad) and 14 (feeling worried), all related to mental health,
rank much higher than the items 17, 3, and 5 all related to physical health. This is an important finding
of this paper.

Table 4: Item ordering according to the estimated FIC values, I i, =1,...,Jin Column 3. Incremental

percentage of the total (ijl I j) and the cumulative percentages are shown.

Step Item added FIC % of FIC Cumulative %
1 10 (household tasks) 2.85 12.71 12.71
2 11 (providing care) 2.57 11.50 24.21
3 16 (coping with everything) 2.52 11.27 35.48
4 12 (joining community) 244 10.90 46.37
5 15 (getting along) 222 9.93 56.30
6 13 (feeling sad) 1.85 8.27 64.57
7 14 (feeling worried) 1.79 7.98 72.55
8 17 (bodily aches) 1.06 4.73 77.28
9 3 (walking) 0.95 4.22 81.50
10 5 (washing or dressing) 0.91 4.08 85.58
11 4 (remembering) 0.84 3.74 89.32
12 8 (sleeping) 0.7 3.11 92.44
13 7 (using hands) 0.51 2.29 94.73
14 9 (shortness of breath) 0.49 2.17 96.90
15 6 (communicating) 0.47 2.11 99.01
16 2 (hearing) 0.11 0.51 99.52
17 1 (seeing) 0.11 0.48 100

5.3 Prediction of the latent scores for new respondents

In this subsection we illustrate the predictions obtained using the methodology detailed in Section 4.2
using two simulation experiments. In the first experiment we randomly select 50 out of the 3000 individ-
uals and set aside their data for validating the approximation method. We call the selected 50 individuals
as ‘new’ respondents. We fit the model using the data for the remaining 2950 individuals and then predict
the latent score of each of the 50 new respondents. In so doing we use the response data y; ;. for each of
these 50 individuals and their covariate values too. We also obtain the 95% prediction intervals associ-
ated with these predictions in each case. We judge the accuracy of the approximate prediction values by
comparing them with the estimates obtained by fitting the model to the data from all 3000 respondents.
Figure 5 compares the approximate predictions and the associated 95% prediction intervals. The actual
predictions are seen to be very close to the approximate ones. This figure also shows that the prediction
intervals are tighter for the individuals at the higher end of the latent trait scores, which is also observed
by the much larger second experiment described below.
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To provide further evidence on the accuracy of the approximation method, the simulation experiment
repeats the first one by setting aside data for 1000 randomly selected individuals and fitting the model
with data from the remaining 2000 individuals. Figure 6 shows that the approximate scores for the 1000
‘new individuals’ scatter very tightly around the estimates obtained by fitting the model to the full data
set. This figure also reveals that there is better agreement between the approximate and actual values at
the higher end of the latent scores than at the lower end, as similarly noted in Figure 5. This is intuitively
justified since the individuals with the higher latent scores provide better information and hence their
abilities are better estimated with lower levels of uncertainties.

6 Discussion

This paper has set out to achieve three inferential tasks when the GPCMs are employed. The first task
enables estimation of the item parameters adjusted for the covariate effects. Inference for the covariate
effects has been illustrated with the Model Disability Survey data from the WHO. A Bayesian approach
based on a single model, in contrast to a stage-wise procedural estimation method, allows us to accurately
assess the uncertainties not only for the item parameters but also for the regression parameters.

The second inferential task has been to rank the items so that a brief version of the MDS with fewer
items can be prepared. Using an expected FIC we have developed a method for ranking the items. It is
up to the practitioner to decide how many items can be afforded due to cost considerations in the reduced
survey and we acknowledge that there may be other practical considerations which may influence the
final item choice. The proposed method will guide item selection based on a desired percentage of
information that must be present in the reduced survey.

The third inferential task is the MCMC based methodology to predict the latent trait scores of new
individuals whose data are observed after model fitting has already been performed. The methodology
uses all the relevant covariate information of each new individual so that the best possible Bayesian esti-
mates are obtained. The proposed prediction methodology has been empirically verified by re-estimating
the latent trait scores of a large number (1000) of new individuals by fitting the model to the full data set.
Close agreement between the predicted scores and the estimated scores based on all the data shows the
effectiveness of the new methodology.

These three methodological extensions allowed us to extract a lot more information from the data
than what has been possible before, e.g. Sabariego et al. (2015). Using a unified model it has been
concluded that the main effects of gender, age and income are all significant in the presence of, hence
accounting for, the latent latent trait (¢), item discriminatory («) and item difficulty (3) parameters. In
addition, the main advantage of the unified model also lies in its ability to make coherent inference on
item ordering and latent score prediction for new individuals. By eliminating a stage-wise approach
for the three different inferential tasks, the developed Bayesian methodology proposes a rigorous and
coherent inference framework wherever GPCM models are to be used in practice. This framework en-
sures coherency by having the correct and mutually consistent levels of uncertainty in the three different
inferential tasks.

The methodological developments, though illustrated using the GPCM, can also be used with the
simpler one, two and three parameter item response models. Implementation of these models using
general purpose Bayesian software packages such as, Stan Development Team (2015); Thomas et al.
(2006), is relatively simple and here we have provided STAN code used in this paper.

This paper has not considered verification of the three most important assumptions inherent in IRT,
namely uni-dimensionality, local independence and monotonicity. Checking these assumptions for the
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Figure 5: Plot of the predicted 6; (black dots) for 50 presumed new respondents using the proposed ap-
proximation method in Section 4.2. The line segments represent the associated 95% predictive intervals
and red lines indicate the estimates obtained using the full data set including the new respondent.
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Figure 6: Scatter plot of the predicted 6; for a new set of 1000 presumed new respondents using the
proposed approximation method in Section 4.2 against the original estimates obtained using the full data
set including the new respondent. The line y = x is superimposed.
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MDS data used here has been discussed in Sabariego et al. (2015) using non-Bayesian tests of hypotheses
such as bi-factor analysis and informal graphical methods. Bayesian solutions to these problems are
based on posterior predictive checks discussed in Section 4 after model fitting has been completed. See
Sinharay (2005) and Sinharay et al. (2006) for further details regarding the posterior predictive checks.

This paper, as the title suggests, has considered the GPCM only, but not its competitors such as
the graded response model (GRM), (Samejima, 1969). Recently, Silva et al. (2019) have illustrated
some small differences, as measured by several Bayesian model choice criteria, between the GPCMs and
GRMs using simulation studies and a real data example. It will be worthwhile to make such comparisons
for the current data set in a future article. In addition, such future research efforts can also consider
modelling the analysed data set in a multi-group framework.

The developed methods can be applied in medical fields where comparative quantification of health
status is required to compare persons at a cross section and over time. In clinical medicine and health
surveys, it is imperative to quantify the level of health of a given individual that can be aggregated to
population levels. This is important to measure the impact of interventions both at an individual as well
as the population level. It is also necessary to monitor changes over time. This metric to quantify health
status needs therefore to be comparable across population and over time. Furthermore, since all the
observations may not be available at the same time, an analytical strategy that allows one to scale these
measurements at different points in time or different populations, on the same scale is crucial. Health
states are often measured as an individual’s execution of a task or action in a range of domains that is
then aggregated into a composite vector of health status, see e.g. Salomon et al. (2003). Our approach
to the analysis of data from a national population survey demonstrates the feasibility of quantifying the
levels of health status and addresses the above mentioned challenges.
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Supplementary materials

Appendix A: Contains additional results with larger tables and graphs.
Appendix B: Full Conditional distributions needed in our implementation.

Data: All data files can be found in the folder labelled data_files. A full description is given in the
README.txt file contained therein.

R code: The R code used to call STAN and to do the post-processing can be found in the folder labelled
R _files. A full description of the files is given in README.txt.

STAN code: The STAN code used to fit the models can be found in the folder labelled stan_files. A full
description of the files is given in README.txt.

Appendix A: Additional results with larger tables and graphs.

Table 5: For each of the J = 17 items a brief description is provided in Column 2. Items 1-16 started
with “How much difficulty do you have...” and item 17 asked, “How much bodily aches or pain do you
have?” Columns 3-7 provide the number of respondents selecting each of the K = 5 categories out of
n = 3000 participants. Some participants did not respond to certain items, hence there are some row
totals that are less than 3000.

. Categor

Item | Description 1 ) g3 Y 4 5 Total
1 | seeing 1449 499 421 408 202 | 2979
2 | hearing 2668 140 70 56 29 | 2963
3 | walking or climbing 2050 316 223 228 181 | 2998
4 | remembering or concentrating | 2295 352 155 131 67 | 3000
5 | washing all over or dressing 2708 188 32 35 37| 3000
6 | communicating 2781 132 37 28 22| 3000
7 | using hands and fingers 2543 223 107 86 41 | 3000
8 | sleeping 2423 255 132 117 72| 2999
9 | shortness of breath 2530 224 125 89 32| 3000
10 | doing household tasks 2419 287 127 88 79 | 3000
11 | providing care for others 2345 263 127 116 149 | 3000
12 | joining community activities 2435 266 107 95 94 | 2997
13 | feeling sad, low or depressed? | 2294 384 174 93 52 | 2997
14 | feeling worried or nervous 2304 366 162 107 54 | 2993
15 | getting along with close people | 2476 280 132 67 45 | 3000
16 | coping with everything 2409 338 119 80 52| 2998
17 | bodily aches or pain 1792 491 328 258 126 | 2995

Table 6 provides the parameter estimates and their 95% credible intervals for the ¢ and 3 parameters.
All of the o parameters for item discrimination are significant since the 95% credible interval for each o
does not include the value 1. Similarly all 3;;, for h > 1 are significant since the 95% credible interval
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Table 6: Estimates of a and 3 and their 95% credible intervals (CI) using model (2) with A, G and L.

J a; Bjo Bjs Bja Bjs
1 0.27(0.23,0.31) 3.53(2.78,4.41) 0.78(0.34,1.24) 0.51(=0.01, 0.98) 3.15(2.47, 3.86)
2 0.59(0.48,0.69) 5.79(4.89,6.87) 1.99(1.52,2.49) 1.5(0.93,2.06) 2.53(1.75,3.32)
3 1.19(1.07,1.31) 1.64(1.43,1.88) 0.91(0.76, 1.08) 0.98(0.81, 1.16) 1.47(1.28, 1.67)
4 143(127,159) 1.63(1.45,1.82) 147(132,1.63) 135(1.19,1.53) 1.99(1.78, 2.22)
5 246(2.13,2.83) 1.88(1.73.2.06) 2.05(1.86,225)  1.55(1.32,1.74)  1.83(1.6,2.07)
6 1.84(1.57,2.12) 2.48(2.23,2.77) 2(1.78,2.24) 1.75(1.45,2.05) 2.08(1.73,2.44)
7 1.24(1.08,1.41) 2.48(2.2,2.8) 1.58(1.36,1.79) 1.49(1.24,1.75) 2.21(1.89, 2.54)
8 129(1.15,1.44)  2.15(1.92,2.4) 1.42(121,1.61)  133(1.13,1.55) 1.89(1.66,2.14)
9 121(1.07,137) 251(224,2.8) 145(1.26,1.66) 1.59(1.35,1.85) 2.47(2.13,2.84)
10 3.9(3.47,436) 1.14(1.06,1.23) 137(1.29, 1.46) 15(141,1.6)  1.69(1.57, 1.8)
11 298(2.67,335) 1.19(1.09,1.29) 1.26(1.16, 1.36) 13(1.2, 141)  142(1.31, 1.53)
12 3.3(2.93,3.73) 1.24(1.15, 1.35) 1.4(1.31, 1.5) 1.41(1.3,1.52) 1.62(1.51,1.73)
13 2.82(2.53,3.14) 1.07(0.99,1.17) 1.36(1.27, 1.45) 1.61(1.49, 1.73) 1.9(1.74, 2.06)
14 2.68(2.4,3) 1.12(1.02,1.22) 137(127,147)  1.52(1.41,1.65) 1.93(1.78,2.09)
15 3.68(3.28,4.12) 124(1.15,133) 142(134,151)  1.68(1.56,1.8) 1.89(1.75, 2.04)
16 3.88(3.44,435) 1.11(1.04,1.19) 146(1.38,1.55) 157(147,1.68)  1.86(1.73,2)
17 1.34(1.21,1.46) 0.88(0.73,1.03) 0.88(0.77,0.99) 1.17(1.03,1.31) 1.85(1.67, 2.02)

for each does not include the value 0. Recall that 3;; has been set to zero. The parameter estimates also
reveal that higher estimates for o ; are generally associated with lower values of 3;;, and vice versa which
is expected due to the parameter product o ;3 entering into the GPCM (1).

The actual values of the FIC are plotted as boxplots in Figure 10. The plot is in broad agreement with
the estimates of the item discriminatory parameter estimates reported earlier in Figure 3 where item 10 is
the most discriminatory while item 1 is the least discriminatory. The plots show more extreme values for
the top 5 high ranking items than the bottom ranking items. The top ranking items are expected to have
large values of FIC as their information content is much higher and there may be many individuals for
whom these items are very informative. In the lower half of the ranked items we also find item numbers
5 (washing or dressing) and 6 (communicating) having many extreme values. This may be explained by
the presence of many elderly individuals for whom washing or dressing is much more problematic. They
may have more trouble in communicating as well. The full Bayesian inference extension of this article
has enabled us to perform such a detailed level of analysis, which is in contrast to a plug-in Bayesian
methodology.

Figure 8 provides density plots of the FIC for items 1 and 2 providing the least information (top
row) and items 10 and 11 providing the most information (bottom row) over a range of values for 6 for
a typical 50 year old woman with median income. This figure further explores the full capability of
the MCMC based Bayesian method as it reveals how informative is each item according to each typical
individual. Figure 9 provides similar plots for men in different income category. These show the gender
effect already seen in the main manuscript.

Appendix B: Full conditional distributions needed in our implementation

In what follows we give details of the full conditional distributions needed to sample from the joint
posterior distribution (4). Each distribution is unidimensional although jointly updating two or more
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Figure 7: Scatter plot of the estimates from 6 from the GPCM with and without including the covariates.
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Figure 8: Density plots of the Fisher information fij (6;) defined in (8) for items 1 and 2 providing the
least information (top row) and items 11 and 10 providing the most information (bottom row) over a
range of values for 6 for a 50 year old woman with median income.
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Figure 9: Density plots of the Fisher information for each item over a range of values for 6, found using
the plugin estimates for a 50 year old man with median income.
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Figure 10: Items are ranked according to the estimated FIC values. The boxplot for each of the 17 items
is based on [;;, % = 1,...,3000. The mean of the 3000 I;; is shown as a *.
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parameters at once is of course possible. We use the notation 6_; to mean the vector 8 without 6;. The
vectors &, B_;, and «y_; have similar interpretations. Further, we let 7(-) denote the prior distribution

of its argument. The full conditional distribution of 6;,¢ = 1,...,n, is
m(0;]0—i, 0, B,7,y) H]Pr i = vijl0i, o, By y) T(0:)

;0 %0?}

::]g

J:1

The full conditional distribution of v, j = 1,...,J is

=

m(a 10, B,7.y) o []Pr(Yy = yilo . 8;,7) wlay)

1

1 il 1
exp Z% — Bjn) — 55 (0 —ma)? ¢,
1G'LJ a

..
I

R
=

%

for o; € [0, 00), zero otherwise. The full conditional distribution of 85, j =1,...,J,h =2,...
n
7(Bjnl€, c, B_jp, Y, y) o H]Pf (Yij = yi5103, aj, By, v) ©(Bjn)
i=1
ol
x H G exp {vi;},
=1 J
where 1
vij = —a;l (yi; = h)Bjn — 22 (Bjn — mg)?,
B

and I(y;; = h) takes the value 1 if y;; = h and 0 otherwise.
The full conditional distribution of v;, [ = 1, ..., m, is given by

1
7r(7l|05a7B7’7717Y) X L(0a0757’73 Y)GXP{_ZSQ(W—mv)2}a
Y

where L(0, a, B,7; y) is the likelihood function given in (3).
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