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On valid descriptive inference from
non-probability sample

Li-Chun Zhang1

Abstract: We examine the conditions under which descriptive inference can be based

directly on the observed distribution in a non-probability sample, under both the super-

population and quasi-randomisation modelling approaches. Review of existing estimation

methods reveals that the traditional formulation of these conditions may be inadequate

due to potential issues of under-coverage or heterogeneous mean beyond the assumed

model. We formulate unifying conditions that are applicable to both type of modelling

approaches. The difficulties of empirically validating the required conditions are discussed,

as well as valid inference approaches using supplementary probability sampling. The key

message is that probability sampling may still be necessary in some situations, in order to

ensure the validity of descriptive inference, but it can be much less resource-demanding

given the presence of a big non-probability sample.

Keywords: non-informative selection, prediction model, calibration, inverse propensity

weighting, sample matching, model misspecification

1 Introduction

There is a resurgence of interest in the use of non-probability samples. See e.g. Baker et

al. (2013) and Elliot and Valliant (2017) for two recent reviews. Such data may arise in

situations where probability sampling is either infeasible or too costly. The observations

may be obtained from the so-called big-data sources, such as payment transaction data

via a specific platform, cellphone call data from a major provider of the service. These big-

data non-probability samples can be much larger in size, compared to the more familiar

non-probability samples collected from web panel surveys, quota sampling, etc.

Following Rubin (1976) and Little (1982), Smith (1983) considers the so-called super-

population (SP) approach to inference from non-probability sample. Under this approach,

a prediction model is constructed for the outcome variable of interest, often conditional

on some chosen covariates. In particular, Smith (1983) observes an important distinction

between analytic and descriptive inference. In analytic inference, the target is the model

parameters that are of a theoretical nature; such parameters can never be observed directly

no matter how large the sample is. Whereas the targets of descriptive inference are

statistics of a given finite population, such that in principle they can be directly observed

given a perfect census of the population.

Moreover, Smith (1983) focuses on validity conditions, under which the non-probability

sample observation mechanism can be ignored, in the sense that inference can be based
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on the observed distributions directly, such as the conditional distribution of the outcome

variable given the covariates in the sample. The two key validity conditions under the SP

approach can be roughly stated as follows: (i) the prediction model is correctly specified

for the population units, (ii) the non-probability sample selection mechanism is non-

informative, in the sense that the relevant distribution under the population model can

be observed in the non-probability sample directly. Similar validity conditions for the SP

approach apply in other situations, such as purposive sampling (Royall, 1970), missing

data problems (Rubin, 1976).

In this paper we concentrate on descriptive inference methods that depend on validity

conditions in the sense of Smith (1983). Of course, inference is also possible without such

validity conditions. For instance, not missing-at-random models (Rubin, 1976) can be

used to deal with informative missing data, where the unobserved full-sample outcome

distribution is not the same as that among the respondent subsample. Or, the sample

likelihood of Pfeffermann et al. (1998) can be applied to survey data under informative

sampling, where the distribution that holds in the population cannot be directly observed

in the sample. See also Pfeffermann (2017) for several other situations where this approach

may be relevant. We do not consider such approaches here, which require explicitly

modelling the informative observation mechanism of sample selection or measurement.

As reviewed by Elliot and Valliant (2017), there exists another quasi-randomisation

(QR) approach to non-probability samples. Under the QR approach, one hypothesises

a randomisation model of the non-probability sample inclusion indicator, but treats the

outcomes of interest as unknown constants in the population. Though it is clearly inspired

by the randomisation approach based on probability sampling, the QR approach is also

a model-based approach, based on a model of the sample inclusion indicator instead of

a prediction model of the outcome variable under the SP approach. A key motivation is

that the correct inclusion probability can be used for any outcome of interest, just like

when it is known under probability sampling, whereas the SP approach by nature must

be specified differently for different outcome variables. In the context of survey sampling,

the QR approach was introduced to deal with nonresponse, where response to survey is

modelled as the second phase of selection, in addition to the first phase of sample selection

according to a probability sampling design (Oh and Scheuren, 1983).

According to Elliot and Valliant (2017), two key validity conditions are required for

the QR approach. (I) The non-probability sample does have a probability sampling

mechanism, even though it is unknown. In particular, one assumes that this hypothesised

sample inclusion probability is strictly positive for all the population units, so that the

only difference to probability sampling is that the inclusion probability is unknown. (II)

There exist a set of covariates that “fully govern the sampling mechanism”. In other

words, the sample inclusion probability is a function of these covariates.

Thus, there are two model-based approaches to inference from non-probability sample.

Under the SP approach, one models the outcome variable conditional on the realised
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sample inclusion indicators; whereas under the QR approach, one models the sample

inclusion indicators, but treats the outcomes as unknown constants. Although one may

envisage the outcomes as the realised values of random variables, a fully specified model of

the outcome variable will not be required under the QR approach, given suitable validity

conditions. Similarly, although one acknowledges that the sample selection mechanism

may be critical to the SP approach, a fully specified model of the inclusion indicator will

not be required under the SP approach, given suitable validity conditions.

It is possible to construct estimators that combine both the models of outcome and

sample inclusion indicator, in a manner such that the estimator is consistent as long as

one of the two models hold. Over the recent years, it is becoming common to refer to

this estimation approach as “doubly robust” (Robins et al., 1994; Kang and Shafer, 2007;

Kim and Haziza, 2014). Notice that the traditional generalised regression estimator in

survey sampling is doubly-robust in the same sense, except that here the randomisation

mechanism is actually known. Nevertheless, it is a fact that in the debate between model-

based and design-based inference from probability sampling, either side questioned the

“robustness” of the other.

The rest of the paper is organised as follows. In Section 2 we review the estimation

methods from non-probability sample which do require validity conditions. Although

these have been roughly stated above, a closer examination under both modelling per-

spectives reveals nuances across the different estimators. Moreover, we shall highlight

the potential challenges of under-coverage and heterogeneous means beyond the assumed

model. The traditional formulation of validity conditions is inadequate in both regards.

We outline a set of unified validity conditions in Section 3, which are formulated non-

parametrically and encompasses both the modelling approaches. Post-stratification and

calibration estimators are considered in light of these conditions. However, as will be

discussed, a key difficulty in practice is that the validity conditions may be impossible

to verify empirically based only on the data used for the estimation. Finally, we outline

shortly in Section 4 some valid approaches given a supplementary probability sampling

of the outcome of interest, followed by a brief summary in Section 5.

The key message is that probability sampling may still be necessary in some situations,

in order to ensure the validity of descriptive inference, but it can be much less resource-

demanding given the presence of a big non-probability sample. In fact, the bigger the

non-probability sample, the better it is.

2 Review of existing approaches

Denote by U the population of known size N . Let each population unit be associated with

an outcome of interest, denoted by yi, for i ∈ U . Denote by B the observed nonprobability

sample of size nB. A common assumption to all the estimators we discuss below is that

B does not contain any out-of-scope units, such that B ⊂ U , and there are no duplicated
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units in B. Let δi = 1 if i ∈ B, and 0 if i ∈ U \B. Let yi be observed for all the units in

B, and let yB = {yi; i ∈ B}. To fix the idea, let

Y =
∑
i∈U

yi

be the population total that is the target of descriptive inference. Let xB = {xi; i ∈ B}
in cases where any relevant covariates xi are available in the sample B. Let X =

∑
i∈U xi

be the population totals and let X̄ = X/N . Given xB, one can have two situations

depending on whether (X, X̄) are known or not. In the case they are unknown, it may

still be possible that there exists a second probability sample S, for S ⊂ U , in which xi is

observed, so that (X, X̄) can be estimated based on the sample S.

2.1 B-sample expansion estimator

Consider first the most basic situation where only yB is observed, and no relevant covari-

ates are available at all. Let ȳB =
∑

i∈B yi/nB be the B-sample mean. The B-sample

expansion estimator of Y is given by

Ŷ = NȳB (1)

Under the SP approach, let

µi = E(yi|δi, i ∈ U)

be the conditional expectation of yi given δi, for any i ∈ U , where both δi and yi are

treated as random variables. Provided the conditional expectation is the same as the

unconditional expectation given either δi = 1 or δi = 0, for any i ∈ U , denoted by

µ = µ(δi = 1) = E(yi|i ∈ B) = E(yi; i ∈ U) (2)

we have

E(ȳB − Y/N |B) =
∑
i∈B

µ/nB − µ = 0

such that the B-sample expansion estimator is prediction unbiased for Y . We shall refer

to (2) as the SP assumption, which is a validity condition for the B-sample expansion

estimator under the SP approach.

Under the QR approach, where yi is treated as a fixed constant, let

pi = Pr(δi = 1; yi, i ∈ U)

be the inclusion probability of any population unit that is associated with the value yi. The

notation “;” is used here instead of “|” because, strictly speaking, pi is not a conditional
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probability now that yi is not conceived as the realised value of a random variable under

the QR approach. Now, provided the inclusion probability is the same for any i ∈ U ,

pi = p (3)

we have Ỹ =
∑

i∈B yi/p is unbiased for Y , since

E(
∑
i∈B

yi/p) =
∑
i∈U

E(δi; yi, i ∈ U)yi/p =
∑
i∈U

pyi/p = Y

In reality, p is unknown. It is natural to estimate it by p̂ = nB/N under (3), which yields

(1) as the resulting plug-in estimator. It follows that the QR assumption (3) is the key

validity condition, which ensures that the B-sample expansion estimator is consistent for

Y , as N →∞ and nB/N = Op(1) asympotically.

In summary, the B-sample expansion estimator (1) can be motivated under both the

SP and QR approaches, given validity conditions (2) and (3), respectively.

2.2 B-sample calibration estimator

Suppose relevant covariates xB are available in the sample B. The population totals X

may be either known or unknown. In the latter case, suppose they can be estimated from

a second probability sample S. The B-sample calibration estimator of Y is given by

Ŷ =
∑
i∈B

wiyi where


∑

i∈B wixi = X if known X∑
i∈B wixi = X̂(S) if unknown X

(4)

where X̂(S) is some consistent S-sample estimator, as the S-sample size increases, and

the weights wB = {wi; i ∈ B} are calibrated in a way depending on the availability of X.

To actually compute the estimator (4), one needs to choose a set of initial weights,

denoted by aB = {ai; i ∈ B}, and a distance function such as
∑

i∈B(wi − ai)2/ai between

the initial and calibrated weights (Deville and Särndal, 1992). In the case of

ai = 1/pi (5)

where pi is the true B-sample inclusion probability, for pi > 0, the calibration estimator

is consistent, as N →∞ and nB/N = Op(1), given mild regularity conditions in addition.

However, insofar as one cannot manage to set the initial weights (5), the calibration

estimator is unmotivated from the QR perspective.

Next, under the SP approach, suppose the SPx assumption given by

E(yi|xi, i ∈ U) = µ(xi) = x>i β (6)

5
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which relates the conditional expectation of yi linearly to the given xi, and

E(yi|xi, i ∈ U) = E(yi|xi, i ∈ B) (7)

by which the B-sample selection is non-informative given xi. We have then

E(
∑
i∈B

wiyi − Y |xU) = E(
∑
i∈B

wix
>
i β)−X>β = 0

given
∑

i∈B wixi = X, regardless of the initial weights aB. Otherwise, this expectation

would tend to 0, provided X̂(S) is an asymptotically unbiased estimator of X, under

some suitable asymptotic setting. It follows that the assumptions (6) and (7) are the key

validity conditions for the B-sample calibration estimator under the SP approach.

The estimator (4) becomes the B-sample post-stratification estimator in the special

case where xi is the post-stratum dummy index. For the QR approach, one can set ai to

be the inverse post-stratum B-sample fraction, which is equivalent to introducing the QR

assumption (3) in each post-stratum separately. This QRx assumption provides then a

validity condition for the B-sample post-stratification estimator under the QR approach.

For the SP approach, the two assumptions (6) and (7) remain formally the same.

2.3 B-sample inverse propensity weighting

Suppose relevant covariates xB are available in the sample B. The B-sample inverse

propensity weighting (IPW) estimator is constructed under the QR approach. Suppose

pi = p(xi; η) > 0 (8)

i.e. the B-sample inclusion probability is completely determined given xi, in the strictly

positive parametric form p(xi; η), which may as well be referred to as the QRx assumption.

Provided xi is known for all the units in the population, η can be estimated, say, by a

population estimating equation ∑
i∈U

H(δi; η) = 0

where E[H(δi; η)] = 0. Otherwise, suppose xS is observed in a second probability sample

S, one can use the pseudo population estimating equation∑
i∈S

diH(δi; η) = 0

(Kim and Wang, 2018), where di is the sampling weight, for i ∈ S, or some S-sampling

design-consistent adjustment of it. This requires that one is able to observe δi for each unit

i in S, in other words the two samples S and B can be matched, which is an important

assumption in terms of application. To ensure that H(δi; η) is the same in both of these

6
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two estimating equations, i.e. whether i ∈ S or just i ∈ U , one needs to assume that

S-sampling from U is non-informative for δi, so that

Pr(δi = 1|xi, i ∈ S) = Pr(δi = 1|xi, i ∈ U) (9)

Notice that, given non-informativeness (9), we have E[H(δi; η)] = 0 for all i ∈ s, such

that one can also use the unweighted S-sample estimating equation, which is given by∑
i∈S

H(δi; η) = 0

instead of the pseudo population estimating equation. Having obtained the parameter

estimate η̂, one obtains p̂i = p(xi; η̂) and the B-sample IPW estimator

Ŷ =
∑
i∈B

yi/p̂i (10)

which is consistent for Y under mild regularity conditions, if η̂ is consistent for η under

some suitable asymptotic setting. It follows that the QRx assumption (8) is its key validity

condition, whereas the non-informativeness assumption (9) is needed in addition when xi

is only available in a probability sample S instead of the population.

2.4 Another B-sample IPW estimator

Elliot and Valliant (2017) discuss another IPW estimator (10), where pi is obtained with

the help of a second so-called reference probability sample S, and is given by

pi ∝ Pr(Si = 1|xi, i ∈ U)
Pr(δi = 1|xi, i ∈ B ∪ S)

Pr(Si = 1|xi, i ∈ B ∪ S)
(11)

where Si = 1 if i ∈ S and 0 if i ∈ U \ S, and to fix the idea one may suppose S ∩B = ∅.
Firstly, the QRx assumption (8) is retained. The definition of pi by (11) can then be

motivated as follows:

Pr(δi = 1|xi, i ∈ U)

Pr(Si = 1|xi, i ∈ U)
∝ Pr(xi|δi = 1, i ∈ U)

Pr(xi|Si = 1, i ∈ U)

[
prop. to

Pr(δi = 1|i ∈ U)

Pr(Si = 1|i ∈ U)

]
∝ Pr(xi|δi = 1, i ∈ B ∪ S)

Pr(xi|Si = 1, i ∈ B ∪ S)

∝ Pr(δi = 1|xi, i ∈ B ∪ S)

Pr(Si = 1|xi, i ∈ B ∪ S)

[
prop. to

Pr(δi = 1|i ∈ B ∪ S)

Pr(Si = 1|i ∈ B ∪ S)

]
provided the S-sample inclusion probability is also fully determined by xi in the sense of

(8). Thus, the validity condition for the IPW estimator (10) based on (11) is that the

QRx assumption (8) holds for both the samples, given the same xi.

We make two observations. Firstly, despite the superficial resemblance to the propen-
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sity scoring method of Rosenbaum and Rubin (1983), the above argument for pi is not

the same. As Rosenbaum and Rubin (1983) state clearly before their first enumerated

equation, “In this paper, the N units in the study are viewed as a simple random sample

from some population”, where N is the size of the combined sample of treatment and

non-treatment. The analogy to this combined sample is B ∪S here. However, it is gener-

ally untenable that B∪S can be treated as a simple random sample from the population.

Secondly, for any given probability sample S, it is possible to identify the variables that

determine the designed inclusion probability, denoted by πi = π(zi), for i ∈ U . There

arises thus a question, “what if π(zi) differs considerably from p(xi, η̂)?” Moreover, one

may have more than one probability sample in which xi is observed. There arises then a

question, “which reference sample should one use?”

2.5 Sample matching estimator

Rivers (2007) applies the SP approach in situations where a second probability sample

S is available. Yang and Kim (2018) study mass imputation methods, which include

the matching estimator of Rivers (2007) as a special case. The sample matching (SM)

estimator is given by

Ŷ =
∑
i∈S

diŷi (12)

where ŷi = yki , for ki = arg min
j∈B
‖xi − xj‖ based on a chosen metric ‖ · ‖. That is, yki is

the nearest-neighbour (NN) imputation value from the B-sample for i ∈ S.

To focus on the idea, assume for the moment exact matching is the case, where xki =

xi = x for all i ∈ S and ki ∈ B. We have then E(ŷi|xi = x) = E(yki |xki = x, ki ∈ B),

which is the same as E(yi|xi = x, i ∈ B) as if the unit i were in B. Given the non-

informativeness assumption (7) for the B-sample, which Yang and Kim (2018) call the

“ignorability” assumption, we have

E
[∑

i∈S

diE(ŷi|xi)
]

= E
[∑

i∈S

diE(yi|xi, i ∈ B)
]

= E
[∑

i∈S

diE(yi|xi, i ∈ U)
]

=
∑
i∈U

E(yi|xi, i ∈ U) = E(Y |xU)

With respect to both the population model and the design of S, the SM estimator (12) is

prediction unbiased for Y . Notice that in the case of S = U , the SM estimator is just an

NN-imputation method. Whether S = U or not, the NN-imputed SM estimator is likely

to be less efficient than a prediction-imputed SM estimator

Ŷ =
∑
i∈S

diE
(
yi|xi; β̂(B)

)
whenever a correct parametric specification of the conditional mean (via β) is possible.
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The simulations results of Yang and Kim (2018) show that NN-imputation is less efficient

than imputation based on semi-parametric generalised additive models.

Now, it is not difficult to see that the consistency of the SM estimator (12) can be

established, given asymptotic exact matching instead, i.e.

‖xi − xki‖ → 0 in probability, (13)

for any i ∈ S, as N →∞ and nB/N = Op(1). Yang and Kim (2018) make the assumption

of “common support” to the same effect. To ensure that E(yi|xi, i ∈ U) does not change

abruptly as the value xi varies, Yang and Kim (2018) assume that E(yi|xi, i ∈ U) is

continuous differentiable. Or, one may adopt the SPx assumption below:

‖E(yi|xi, i ∈ U)− E(yj|xj, j ∈ U)‖ = O
(
‖xi − xj‖

)
as N →∞ (14)

(Chen and Shao, 2000, Theorem 1). It follows that the assumptions (7), (13) and (14)

are the key validity conditions for the consistency of the SM estimator (12).

We make two observations. Firstly, an attractive feature of the NN-imputation is that

the imputed sample S looks more realistic and natural than, say, by the regression pre-

diction imputation. However, unless the S-sampling is non-informative, the NN-imputed

S-sample will not resemble the true S-sample that could have been observed, since

E(ŷi|xi, i ∈ S) = E(yi|xi, i ∈ U) 6= E(yi|xi, i ∈ S)

where the inequality is the case unless S-sampling is non-informative in the sense of (7).

Secondly, for any other covariate zi 6= xi, including when zi contains the S-sample design

variables, we have

E(ŷi|zi, xi, i ∈ S) = E(yi|xi, i ∈ U) 6= E(yi|zi, xi, i ∈ U)

unless yi and zi are conditionally independent of each other given xi. This is a general

problem for statistical matching of variables associated with distinct units, i.e. yi asso-

ciated with xi for some i ∈ B and zi associated with the same value xi but for some

different unit in S. The following example illustrates both remarks above.

Example: Let yi be independent of xi ∼ Unif(0, 1), for any i ∈ U . Then, the SPx

assumption (14) holds trivially, as long as the marginal expectaion E(yi) exists. Next,

suppose simple random sample B, so that the non-informative assumption (7) holds,

and E(ŷi|xi, i ∈ S) = E(yi|i ∈ U) regardless of the exact matching assumption. Suppose

stratified simple random S-sampling with two strata of different sampling fractions, so that

the S-sample inclusion probability is not a constant. Then, the S-sampling is informative
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(given xi) as long as the population stratum means are different, since

E(ȳS|xS, S) = E(ȳS|S) 6= E(Ȳ ) = E(Ȳ |xU)

where ȳS is the true S-sample mean that is unknown, since yi is not observed in S. It

follows that the NN-imputed S-sample {ŷi; i ∈ S} would look like a sample generated by

simple random sampling, rather than the actual stratified sampling. Moreover, the SM-

estimator of stratum means, corresponding to say zi = 1, 2, respectively, will be biased

for the population stratum means.

3 More generally on validity conditions

Non-informative selection in form of (7) or (9) is a critical condition for all the methods

in Section 2, which make use of auxiliary variable xi. Two kinds of possible violation of

these assumptions are worth noting.

First, Kim and Rao (2018) point out an important issue that has not received suf-

ficient attention in these methods, namely B-sample under-coverage is the case if some

population units have in fact zero chance of being included in it. Under the SP approach,

extrapolation of the conditional distribution of yi in the B-sample to these population

units can only be based on subjective beliefs but not empirical evidence. The QR ap-

proach is equally affected, since randomisation inference would have been invalidated even

if pi were known for all the B-sample units, let alone when it is unknown and needs to

be estimated. To address the issue, Kim and Rao (2018) consider a two-phase SM esti-

mator. Let the S-sample be partitioned into S1 and S0, such that S1 = {i; pi > 0} and

S0 = {i; pi = 0}. First, estimate this unobserved partition via the B-sample support:

Ŝ1 = {i; min
j∈B
‖xi − xj‖ < ε}

Each S-sample unit that is unsupported in the B-sample ε-neighbourhood is assigned to

Ŝ0. Let us suppose this partition estimator is consistent in the following sense:

|Ŝ1 ∪ S1|/|Ŝ1 ∩ S1| → 1 in probability,

as N →∞ and ε→ 0. Next, the two-phase SM estimator is given as

Ŷ =
∑
i∈Ŝ1

diw2iŷi

where
∑

i∈Ŝ1
diw2ixi =

∑
i∈S dixi. In other words, the under-coverage is dealt with by

the calibration of the weights w2i. This can be motivated, provided the conditional mean

E(yi|xi, pi = 0) can be linearly related to xi, and the relationship is the same for the units

10
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with pi > 0, i.e. the under-coverage is non-informative for the SP linear model.

Second, insofar one requires either an assumption of SPx (7) or QRx (9), there is

always the possibility of heterogeneous mean, beyond what is controlled by the chosen xi.

Let Ux = {i;xi = x, i ∈ U} be of the size Nx. Under the SP approach, which models the

mean µi of unit i by µ(xi), heterogeneous mean is the case if µi 6= µ(xi), despite

µ(x) =
∑
i∈Ux

µi/Nx (15)

and µ(xi) is statistically correct in that the µi’s average to µ(x) over all the units in Ux.

Under the QR approach, heterogeneous mean is the case if pi 6= p(xi), despite

p(x) =
∑
i∈Ux

pi/Nx (16)

Let us illustrate the concept of heterogeneous mean with a simple example.

Example: Let x ≡ 1, such that µ(xi) = µ, for all i ∈ U . Let U = U1∪U0 be a partition.

Let U1 be of size N1 and with mean µi = µ(1), for all i ∈ U1; let U0 be of size N0 and with

mean µi = µ(0), for all i ∈ U0. Suppose µ(1) 6= µ(0). Let µ = µ(1)N1/N + µ(0)N0/N .

Then, µi 6= µ for any i ∈ U , but we still have
∑

i∈U µi/N = µ, satisfying (15).

Heterogeneous mean affects the SP and QR approaches differently. Given (15), as-

suming µi = µ(x) for i ∈ Ux is prediction unbiased, despite heterogeneous mean, since∑
i∈Ux

[E(yi|δi)− µ(x)] =
∑
i∈Ux

[µi − µ(x)] = 0

Meanwhile, given (16), assuming pi = p(x) for i ∈ Ux yields

E
(∑
i∈Ux

δiyi
p(x)

)
−
∑
i∈Ux

yi = p(x)−1
∑
i∈Ux

(
pi − p(x)

)
yi 6= 0

in which case the IPW estimator under the QP approach may be biased, despite the

model of pi is statistically correct in the sense of (16).

The discussion above suggests that the formulation of validity conditions in Section 2

is inadequate in the presence of under-coverage and mean heterogeneity. Below we first

reformulate the validity conditions, which cover both the SP and QR approaches, despite

the presence of under-coverage and mean heterogeneity. We elaborate and illustrate these

conditions for the post-stratification and calibration estimators. Finally, we discuss the

difficulties of verifying these validity conditions empirically.
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3.1 Non-parametric asymptotic (NPA) non-informativeness

We start by noticing that the B-sample mean equals to the population mean, denoted by

ȳB = Ȳ , provided
CovN(δi, yi) = 1

N

∑
i∈U

δiyi −
(

1
N

∑
i∈U

δi
)(

1
N

∑
i∈U

yi
)

= 0

EN(δi) =
∑
i∈U

δi/N > 0

where EN and CovN denote, respectively, expectation and covariance with respect to the

empirical distribution function that places point mass 1/N on each population unit. This

provides an empirical formulation of the non-informativeness of the B-sample observation

mechanism with respect to the outcome of interest. Similar expressions have appeared in

various discussions of the potential sample mean bias due to the observation mechanism,

such as unequal probability sampling (Rao, 1966), survey nonresponse (Bethlehem, 1988),

or big data (Meng, 2018). It motivates the following non-parametric asymptotic (NPA)

non-informativeness assumption in the absence of any covariates: lim
N→∞

CovN(δi, yi) = 0 i.e. non-informative B-selection

lim
N→∞

EN(δi) = p > 0 i.e. non-negligible B-selection
(17)

The NPA assumption (17) encompasses both the SP and QR approach. For the SP

approach, taking the conditional expectation of yi’s conditional on the δi’s yields

E
(
CovN(δi, yi)|δU

)
=

1

N

∑
i∈U

δiµi −
( 1

N

∑
i∈U

δi
)( 1

N

∑
i∈U

µi

)
→ 0

given NPA non-informative B-selection, where
∑

i∈U δi/N > 0 given non-negligible B-

selection in addition. Under this condition, the B-sample expansion estimator (1) is

asymptotically prediction unbiased from the SP perspective. For the QR approach, taking

the expectation of δi’s with the yi’s being constants yieldsE
(
CovN(δi, yi); yU

)
= 1

N

∑
i∈U

piyi −
(

1
N

∑
i∈U

pi
)(

1
N

∑
i∈U

yi
)
→ 0

E
(
EN(δi)

)
=
∑

i∈U pi/N → p > 0

In particular, the NPA assumption (17) allows for 0 ≤ pi ≤ 1, so that the B-sample

expansion estimator (1) remains consistent from the QR perspective, even in the presence

of under-coverage of the units with pi = 0 or non-representative units with pi = 1.

Example: Let U = U1∪U0 be a partition. Let U1 be of size N1, where pi ≡ 1 for i ∈ U1;

let U0 be of size N0, where pi ≡ 0 for i ∈ U0. Despite under-coverage of B ≡ U1, the first

NPA condition implies ȳB − Ȳ → 0, given the second condition N1/N → p > 0.
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3.2 Post-stratification estimator

Consider post-stratification by xi, for i ∈ U . Provided the assumption (17) holds within

each post-stratum, the B-sample post-stratification estimator is asymptotically unbiased

from both the SP and QR perspective. Below we consider the QR approach. The SP

approach is a special case of the calibration estimator discussed in Section 3.3.

Consider first the hypothetical estimator with known px =
∑

i∈Ux
pi/Nx:

Ỹ =
∑
x

∑
i∈Ux

δiyi/px

To fix the idea for variance estimation, suppose independent Bernoulli distribution of δi

with probability pi, where 0 ≤ pi ≤ 1. The variance of Ỹ is then given by

V (Ỹ ) =
∑
x

∑
i∈Ux

piy
2
i /p

2
x −

∑
x

∑
i∈Ux

p2i y
2
i /p

2
x

An unbiased estimator of the first term of the variance, denoted by τ1 is given by

τ̂1 =
∑
x

∑
i∈Ux

δiy
2
i /p

2
x =

∑
x

p−2x

∑
i∈Bx

y2i

where Bx = B ∩Ux. An unbiased estimator of the second term, denoted by τ2 is given by

τ̂2 =
∑
x

p−2x

∑
i∈Ux

δipiy
2
i =

∑
x

p−1x

∑
i∈Ux

δiy
2
i =

∑
x

p−1x

∑
i∈Bx

y2i

where the second equality follows given the additional QRx assumption, i.e. pi = px for

i ∈ Ux. Putting τ̂1 and τ̂2 together, we obtain

V̂ (Ỹ ) =
∑
x

(
p−1x − 1

)
p−1x

∑
i∈Bx

y2i

Now, the post-stratification estimator, denoted by Ŷ , is obtained from Ỹ on replacing

px by p̂x = nxB/Nx, where nxB is the observed size of Bx and Nx is the known post-

stratum population size. Expanding p̂x around px (i.e., linearisation) would yield an

asymptotically valid estimator of the unconditional variance of Ŷ .

3.3 Calibration estimator

The post-stratification estimator is infeasible, in cases when the B-sample contains empty

cells, or when the population size Nx is not all known. Let

ti = (t1i, t2i, ...tKi)
> =

(
t1(xi), t2(xi), ...tK(xi)

)>
= t(xi)
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be a vector of many-to-one mappings of xi, such that the population total T =
∑

i∈U ti is

known, and the sample total t =
∑

i∈B ti has only non-zero components.

As discussed for the calibration estimator in Section 2, generally one is not able to set

the initial weight to be the inverse of B-sample inclusion probability in practice. Suppose

one simply starts with initial equal weights ai = N/nB for all i ∈ B. The linear calibration

estimator (Deville and Särndal, 1992) is given by

Ŷ =
∑
i∈B

wiyi

where the weights {wi; i ∈ B} minimise the distance to {ai; i ∈ B} as measured by∑
i∈B

(wi −N/nB)2 =
∑
t

(∑
i∈Bt

w2
i − 2(N/nB)

∑
i∈Bt

wi + ntB(N/ntB)2
)

subjected to the constraints
∑

i∈B witi = T , where Bt = {i; ti = t, i ∈ B} and ntB > 0.

It follows that wi = wt, for i ∈ Bt, since the only thing that matters to the calibration

constraints is
∑

i∈Bt
wi now that ti = t for i ∈ Bt and, given whatever

∑
i∈Bt

wi, the term∑
i∈Bt

w2
i is minimised at wi = wt for i ∈ Bt.

As the first validity condition for Ŷ , suppose there exists a vector βK×1, such that∑
i∈Ut

εi/Nt → 0 (18)

for each t-value, as N → ∞, where εi = yi − t>i β, and Nt is the population size of

Ut = {i; ti = t, i ∈ U}. The condition (18) is analogous to the SPx assumption (6),

where the covariate xi is replaced by ti here. Moreover, it relaxes the model (6) of the

conditional mean, allowing for potential heterogeneous mean similar to (15). Now that∑
i∈B witi = T , we have

Ŷ − Y =
∑
i∈B

wi(t
>
i β + εi)−

∑
i∈U

t>i (β + εi) =
∑
i∈B

wiεi −
∑
i∈U

εi

Given (18),
∑

i∈U εi/N → 0 as N →∞. Moreover, we have

1

N

∑
i∈B

wiεi =
∑
t

wt

N

∑
i∈Ut

δiεi =
∑
t

wt
Nt

N

(
CovNt(δi, εi) + (

1

Nt

∑
i∈Ut

δi)(
1

Nt

∑
i∈Ut

εi)
)
→ 0

as N →∞, given CovNt(δi, εi)→ 0

ENt(δi) =
∑

i∈Ut
δi/Nt → pt > 0

(19)

for any given t, which is an adaption of the NPA non-informativeness assumption (17) to

the present setting. It follows that the two assumptions (18) and (19) are the key validity

14
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conditions for the calibration estimator to be consistent for Y .

For variance estimation, suppose again independent Bernoulli distribution of δi with

probability pi, where 0 ≤ pi ≤ 1. An approximate variance estimator for the calibration

estimator Ŷ can then be given as

V̂ (Ŷ ) =
∑
t

(
p̂−1t − 1

)
p̂−1t

∑
i∈Bt

(yi − t>i β̂)2

where p̂t = ntB/Nt, and β̂ =
(∑

i∈B witit
>
i

)−1(∑
i∈B witiyi

)
.

3.4 Validation of non-informative B-sample selection

Of the validity conditions discussed above, the critical assumption is non-informative

B-sample selection, which can be stated in various forms. For instance, given the non-

informativeness assumption (17), an additional assumption like (18) can in principle to

validated empirically. However, the non-informativeness condition may not hold exactly,

and it is generally impossible to verify only based on the data used for the estimation.

Below we discuss the issue in more detail.

Consider first the propensity model pi = p(xi; η) under the QR approach. Suppose

known xU to avoid additional complications otherwise, the census score equation is

∑
x

∂p(x; η)

∂η

[
nxB

p(x; η)
− Nx − nxB

1− p(x; η)

]
= 0

which is always satisfied by p(x; η̂) = nxB/Nx, i.e. the saturated model. Insofar as a non-

saturated model of p(xi; η) does not fit perfectly to the data, one can always attribute its

cause to the non-saturated functional form of p(xi; η), instead of rejecting the assumption

that the set of covariates xi “fully govern the sampling mechanism”. In this sense the

validity of the latter assumption cannot be refuted empirically.

Next, for the SP approach, where both δi and yi are treated as random, assume the

B-sample inclusion probability pi depend on xi, where xi is known for i ∈ U to avoid extra

complications. For goodness-of-fit checks, let zi be a known covariate, which is distinct

from xi. We haveE(zB) =
∑

i∈U pizi =
∑

x p(x; η)
∑

i∈Ux
zi =

∑
x p(x; η)NzZ̄x

Z = E(
∑

i∈U δizi/pi) = E[
∑

x nxB z̄xB/p(x; η)]

where Z̄x =
∑

i∈Ux
zi/Nx and z̄xB =

∑
i∈Bx

zi/nxB. The two observed checks are

zB ≡
∑

x nxB z̄xB =
∑

x p̂xNxZ̄x

Z =
∑

x nxB z̄xB/p̂x

if zi≡1⇒


∑
i∈U

p̂i = nB∑
i∈B

1/p̂i = N
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Setting p̂x = nxB/Nx, which fits the assumption pi = p(xi;λ), both the two checks are

satisfied given Z̄x = z̄xB, i.e. the B-sample expansion estimate of Zx is perfect for all

x. This would suggest that the NPA assumption (17) holds for zi given xi, and may be

considered to support the plausibility of the NPA assumption (17) for yi given xi, provided

zi is known to be correlated with yi, but not otherwise. However, in situations where such

a covariate zi is available, it seems natural that it should be used in the estimation of

Y to start with. The two checks amounts then to the case of zi ≡ 1, and are satisfied

trivially by setting p̂x = nxB/Nx. Thus, one is faced with a dilemma, where building the

best model for estimation would at the same time reduce the ability to verify it.

4 Using additional probability sample of outcomes

So far we have only considered the situations, where the outcome values of interest are only

observed in the non-probability sample B. Obviously, the situation changes completely,

given in addition a probability sample of outcomes. Below we discuss shortly two different

approaches to inference in the absence of any relevant covariates. The ideas remain the

same in situations with additional covariates.

The first approach aims at consistent estimation combing the two samples, as e.g.

discussed in Tam and Kim (2018a, 2018b), where the probability sample is taken from the

whole population and overlaps with the B-sample. These authors also discussed additional

issues such as measurement errors or nonresponse. Here we discuss the situation where the

probability sample is taken from the B-sample complement population. Given the non-

probability sample observations yB, one may treat (B, yB) as fixed, and select a second

supplementary sample from the rest of the population, denoted by S ⊂ U \B. Given the

S-sample observations of the outcome, denoted by yS, it is straightforward to obtain a

test for H0 : Ȳ = ȳB vs. H1 : Ȳ 6= ȳB, given as

D = (ȳB − ̂̄Y c
B)2/V̂ (̂̄Y c

B) ∼ χ2
1

where ̂̄Y c
B is an S-sample estimator of the population mean outside of the B-sample, i.e.

Ȳ c
B =

∑
i∈U\B

yi/(N − nB)

and V̂ (̂̄Y c
B) is the associated variance estimator. If H0 is not rejected, then there is the

possibility of using ȳB as an estimate on its own, without regular concurrent surveys in

future. This would achieve the greatest cost savings. To this end, one may consider S

as a particular form of audit sampling, whose aim is to validate the big-data estimate ȳB

and to provide a meaningful accuracy measure that can accommodate its potential bias.

Zhang (2019) develops an approach to audit sampling inference for big data statistics.
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Let WB = nB/N . A consistent estimator of Ȳ using both samples is given by

̂̄Y S = WB ȳB + (1−WB)ȳw and ȳw =

∑
i∈S yi/πi∑
i∈S 1/πi

where πi is the S-sample inclusion probability, and the validity of ̂̄Y S now derives from

probability sampling of S, regardless of how the B-sample is generated. The relative

efficiency (RE) against the setting without the B-sample can be given by

RE =
[
(1−WB)2V (ȳw)

]
/V (̂̄Y ′)

where ̂̄Y ′ is a hypothetical probability sample from the whole population U , which has the

same sample size and the same sampling design as S. One may refer to this as the split-

population approach to inference, which is an age-old idea for combining survey sampling

with administrative data. The efficiency gain would be substantial provided the B-sample

is large. In fact, the larger the B-sample, the greater is the efficiency gain.

Under the second approach to inference, consider a composite estimator given by

̂̄Y C = γȳB + (1− γ)ȳw

where γ is the composition weight, for WB ≤ γ ≤ 1. Notice that when γ = WB, the

composite estimator is just the split-population estimator ̂̄Y S above, which is consistent

for Ȳ . As γ increases from WB towards one, one risks introducing greater bias, insofar as

ȳB 6= Ȳ . However, the composite estimator may yield a smaller mean squared error (MSE)

of estimation, provided this is desirable. One is then essentially trading the increasing

bias (γ −WB)(ȳB − Ȳ c
B) against the decreasing stand error (1− γ)SE(ȳw), as γ increases.

The composite estimator that achieves the minimum MSE is given by

γ =
V (ȳw) +WB(ȳB − Ȳ c

B)2

V (ȳw) + (ȳB − Ȳ c
B)2

Estimating Ȳ c
B by ȳw in application, one can use

γ̂ = min(WB + (1−WB)V̂ (ȳw)/(ȳB − ȳw)2, 1)

The validity of the composite approach derives from probability sampling of S, regardless

of how the B-sample is generated. Again, the bigger the B-sample, the better it is.

5 Summary

All the estimators from non-probability sample observations reviewed in Section 2 are

model-based, whether the modelling is carried out under the SP or QR approach. Two
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features regarding the model covariate xi, for i ∈ U , are worth recapitulating:

• compared to the situation with known xU , making use of an additional probability

sample xS entails a loss of efficiency, as can be expected;

• the availability of an additional probability sample without the outcome variable is

not a principal advantage, since it does not simplify the validity conditions compared

to the situation where xU is known, but it does resolve the practical difficulty when

xU is unavailable yet some functions of xU are needed for descriptive inference.

The situation changes completely, given in addition a probability sample of outcomes.

The probability sample then enables valid descriptive inference in combination with the

non-probability probability sample. Depending on the circumstances, the probability

sample can either be selected from the whole population, or just the rest population

outside the non-probability sample.

Finally, in situations where the non-probability sample is large, the cost savings will

be the greatest if it can replace regular survey sampling altogether. Use of an additional

probability audit sample is needed to validate the non-probability sample estimate, in

spite of possible failure of its underlying model assumptions, and to provide a meaningful

accuracy measure that can accommodate its potential bias.
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