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An acoustic waveguide consisting of a cylindrical tube with fitted thin rigid rings whose inner radius
decreases appropriately causes incident acoustic waves to slow down, resulting in considerable ab-
sorption in the cavities between the rings. The absorption becomes greater towards the end of the
waveguide, where the wave speed becomes very small and the waves are spatially concentrated. Such
a system demonstrates the so-called ‘Acoustic Black Hole’ effect. In this paper, the reflection coef-
ficient of an acoustic waveguide whose ring inner radius has either a linear or a quadratic profile is
calculated, using a Transfer Function method. A Transmission Line model is also used, which forms
a low-frequency approximation to the Transfer Function method. Different geometrical assumptions
for the cavity between two consecutive rings and for the core of the waveguide are considered for both
methods. The results are compared with experimental ones from the literature. The numerical results
predict the general characteristics of the reflection coefficient. For the linear case, the fluctuations of
the reflection coefficient are also predicted over part of the spectrum.
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1. Introduction

The concept of absorption of flexural waves on a plate with a termination of a tapered power-law
thickness of order equal to or greater than two was introduced by Mironov in [1]. A similar idea was
proposed for acoustic waves by Mironov and Pislyakov in [2], where thin rigid rings of decreasing inner
radius were fitted inside a tube terminated at a rigid wall. An analytical model was presented, where
the compliance of the discrete cavities between consecutive rings was approximated by a continuous
equivalent wall admittance. It was shown that for the case of such an acoustic waveguide, the variation
of the inner radius of the rings can be of order one, that is linear, or higher. It was theoretically predicted
in [2]] that, in a waveguide with inner-radius variation of order one, that is, linear, or higher, an incident
acoustic wave slows down theoretically to zero propagation velocity at the end of the waveguide, where
the equivalent continuous inner radius of the vanishes. In practice, however, the last ring always has a
non-zero inner-radius, so that reflection takes place at the termination of the waveguide.

A numerical approach using Transmission Matrices was presented in [3], and results for the reflection
coefficient were compared with those from the analytical method presented in [2]], both for a linear and a
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quadratic ring inner-radius variation. The variation of the reflection coefficient with respect to the varia-
tion of several parameters of the model was also presented. The reflection coefficient for waveguides with
both linear and quadratic ring inner-radius variations was measured experimentally, using an impedance
tube, by Azbaid El Ouahabi et al. in [4] and [3].

In this paper, a method based on the Transfer Function of the acoustic admittance is presented. This
method is equivalent to the Transmission Matrix method presented in [3] when the latter is used to
calculate the input impedance or the reflection coefficient, since this does not require the knowledge of
the acoustic pressure and volume velocity, which are both explicitly calculated with the Transmission
Matrix method. A Transmission Line model is also presented, which forms an approximation of the
initial Transfer Function method when the inter-ring distances are small compared to the wavelength.
Two different geometrical approaches are considered for the representation of the inter-ring cavities and
of the core of the waveguide between two consecutive rings, namely, a cylindrical and a conical one.
Results for both linear and quadratic waveguides with the Transfer Function and the Transmission Line
method, and with different modelling geometrical shapes for the cores and cavities, are compared to each
other, as well as against the experimental results presented in [S]. The similarities and discrepancies
between the numerical and experimental results are discussed.

2. Methods

A graphic representation of a longitudinal cross section of a non-uniform waveguide consisting of a
cylindrical tube with fitted rings of varying inner radius is shown in Fig.[I] The non-uniform waveguide
forms a termination to a cylindrical tube of slightly smaller radius, in accordance with the experimental
setup presented in [Sl].

A numerical method using Transmission Matrices for calculating the reflection coefficient of such a
waveguide was presented in [3]. This method calculates the input impedance and, from this, the reflec-
tion coefficient by calculating the acoustic pressure and volume velocity at the input boundary. A similar
but simpler method can be followed if only the input impedance and the reflection coefficient are sought
for. Namely, instead of using Transmission Matrices, the Transfer Functions of the impedance or, equiv-
alently, the admittance can be used. Similarly to [3], the waveguide is divided in longitudinal elements,
each of which starts from the left, or input, boundary of a ring and finishes at the input boundary of the
next ring, as depicted in Fig. 2] The method provides the input admittance of the element from a known
input admittance of the next element. Thus, starting from a known admittance at the termination of the
waveguide, in this case, where the waveguide has a rigid termination, Y.,; = 0, as shown in Fig.[l| the
input admittance of the whole waveguide can be found, by iteratively calculating the input admittance of
each element of the waveguide, starting from the last, that is, the rightmost one. The Transfer Function
method, like the Transmission Matrix method, assumes plane wave propagation and is therefore lim-
ited by the cut-off frequency of the first higher-order radial mode. It also does not take into account any
nearfield pressures at the end of the rings, including any end effects or interaction between adjacent rings.

Three effects need to be accounted for in calculating the input admittance of a given element. These
are the compliance of the cavities between two consecutive rings, corresponding to the lined region in
Fig. [2] the propagation of the acoustic wave in the core of the waveguide between the two rings, and
the propagation of the wave in the thin region of the ring [3]. The parallel combination of the input
admittance of the (n + 1)-th element with the admittance due to the compressibility of the cavity is given
by

Yen = Yen + Yot (1

where Y, ,, is the admittance of the n-th cavity and Y,,; is the input admittance of the (n + 1)-th element.
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Figure 1: Schematic representation of a longitudinal cross section of a waveguide of length [, which con-
sists of a rigidly terminated cylindrical tube of radius 7, with 18 thin rigid rings of linearly varying inner
radius. The non-uniform waveguide forms a termination to a semi-infinite cylindrical tube of slightly
smaller radius, r,, in accordance with the experimental setup in [S]]. The input admittance, Y;,,, the termi-
nation admittance, Y,4, and the intermediate admittances, Y,, and Y,,; 1, of the n-th and (n + 1)-th ring,
respectively, are shown, along with the longitudinal position, x,,, and the inner radius, r,, of the n-th
ring. The reflection coefficient at the connection of the uniform and non-uniform parts is denoted by R.
The calculation of the admittance at the input position of a ring of arbitrary order from the admittance
at the input position of the next ring is represented by a thick arrow and labelled as TF, which stands for
Transfer Function.

| Xy

-

The admittance of the cavity can be approximated by a lumped admittance [6]
Yen = ikyoVh, 2)

where i is the imaginary unit, k& = w/c is the wavenumber, where w is the angular frequency and c is
the speed of sound, yo = (pcy)~! is the characteristic specific acoustic admittance of air, where ¢ is
the lossless speed of sound, and V/, is the volume of the cavity. In Eq. (2), it is assumed that the radial
dimensions of the cavity are much smaller than the wavelength [3]]. Losses in the system are included by
an imaginary part in the speed of sound, ¢ = ¢o(1 + ix), where 1 is a positive constant.

The cavity region can be considered as either the difference of two cylinders or the difference of a
cylinder and a truncated cone, corresponding to the two different lined regions on Fig. 2] Therefore, the
volume of the n-th cavity can have either of the two forms

1
Vn,cyl = th,n (7‘3 - Ti) s Vn,con = ﬂhc,n 7“2 - g (ri + 7"721_’_1 + TnTn—i-l) s (3)
where 7 is the radius of the tube in which the rings are fitted and r,, is the inner radius of the n-th ring.
Accordingly, the core of the element can be modelled as either a cylinder or a truncated cone. This
leads to two different forms for the Transfer Function of the admittance accounting for the propagation
along the core of the n-th element [6],

~ 1S,y0 sin(khen) + f@n cos(khe)
Yn,cyl = SnyO R R 5
Sn¥yo cos(khepn) + 1Yo, sin(khey)

“4)
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Figure 2: Detailed schematic of an element of the waveguide, showing the difference between the cylin-
drical and conical assumed geometries, comprising the region which starts from the input boundary of
the n-th ring, located at x,,, and finishes at the input boundary of the (n + 1)-th ring, located at x,,, 1. The
length of the element region is h,,, which consists of the thickness of the n-th ring, A, ,,, and the length be-
tween the n-th and (n+1)-th rings, A, ,,. The admittances at the inputs of the n-th and (n+1)-th rings, Y,
and Y,, 1, respectively, are shown, along with admittances involved in intermediate calculations, which
are explained in the text.

where S,, = 772 is the cross-sectional area of the region of propagation, and [[7]]

Snt1Yo sin(khen, + 01 — 02) — iffcm sin(khe, + On1) sinb,, o
0 1S, 11y sin(khep, — 6p2) sinb, 1 + chn sin(khe,y,) sin 6,1 sin 6,, 5 ’

(&)

n,con — Sn

where 0,1 = tan™! (khe 10 /dy), Ono = tan™" (khe,rny1/dy) and d, = 100 — 7.
The last effect that needs to be accounted for is the propagation along the thin cylindrical region of
the ring, giving the impedance at the input of the n-th element as

iS,yo sin(kh,.,,) + Y, cos(kh,.,,
Yn = onYo % ( : ) ~r . ( : ) (6)
Snyo cos(kh,.,) + 1Yy, sin(kh,. )

The reflection coefficient can then be calculated by [8]]

Yo -V

R=-0 "™
Yo + Yin'

(7
where Yj is the characteristic acoustic admittance of the cylindrical tube, given by Yy, = ySy. In the
presented set of equations, either the combination of the first of Eqs. (3]) with Eq. (@) or the combination
of the second of Egs. (3) with Eq. (@) has to be used, corresponding to the cylindrical and the conical
approach, respectively, for the cavity and the core of an element of the waveguide.
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A Transmission Line model consisting of lumped parameters can also be used. It can be shown that
the Transmission Line model is equivalent to the Transfer Function method when the distances between
consecutive rings are much smaller than the wavelength. Therefore, the Transmission Line forms a low
frequency approximation to the Transfer Function method.

The shunt admittance of a segment between two rings is given by

YC,n = lkyO (hc,nSO + hr,nsn) . (8)

For the calculation of the series admittance due to the inertance of the fluid, two regions are considered,
namely, the thin cylindrical region of the ring and the core region between the two rings, the latter of
which can be either cylindrical or conical, as explained above. For the cylindrical approach, the series
admittance is given by

Sn¥o
neyl — T7.7 9
L,n,cyl lkhn ( )
whereas, for the conical approach, the series combination of the inertances of the two regions gives
TT 2T n 4130
Y) n,con — - . 10
Lo 1k(rnhc,n + rn—&-lhr,n) ( )
The admittance of the n-th segment is given by
Yon +Ya
AR (an

- YL,n + YC,n + Yn+1 ’

The reflection coefficient can then be calculated with Eq. (7).

3. Results and Discussion

In this analysis, both a waveguide with linear and one with quadratic ring inner-radius variation are
considered. Initially, the Transmission Line method is assessed by comparing results with corresponding
ones from the Transfer Function method. Subsequently, results from the Transfer Function method are
compared with experimental ones from Azbaid El Ouahabi et al. [S)]. Therefore, the geometrical prop-
erties of the system, shown in Table [I} are in accordance with [S]. The upper limit of the considered
spectrum is defined by the plane wave assumption, and it is calculated by f, = 0.293¢ /7o [7], giving
an upper limit of around 874 Hz. A loss parameter with a value of 1 = 0.05 has been used in all the
simulations, to provide good matching with the experimental results.

The modulus of the reflection coefficient calculated with the Transfer Function and Transmission Line
methods, using either the cylindrical or the conical approach, is shown in Figs. 3 and [3p, for linear and
quadratic ring inner-radius variation, respectively. It can be seen that the results from the two geometrical
approaches diverge from each other as frequency increases, particularly in terms of the frequencies of the
minima in the responses. The Transmission Line results appear to match well with the ones from The
Transfer Function method at lower frequencies. However as frequency increases, the Transmission Line
method predicts smaller fluctuations in the reflection coefficient. This can be linked to the fact that, at
lower frequencies, the dimensions of each element are relatively smaller compared to the wavelength than
they are at higher frequencies, and, therefore, the approximation of the Transmission Line is more valid
there. The pronounced dip in the reflection coefficient at about 155 Hz, based on the conical approach,
appears to be due to a half-wavelength resonance between the input of the waveguide and some position
close to the end, which would imply a pressure release at that position.
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Geometrical property Value Geometrical property Value
Linear Quadratic
Radius of tube with rings (rg) 115 mm Number of rings (V) 18 15
Ring thickness (h,) 2 mm Position of first ring (x1) 6 mm
o Distance between n-th and (21 — n) mm,
Length of tube with rings (/) 255 mm (n + 1)-th ring (he.) l<n<N
n—1
Radius of uniform tube (r,)  112.5 mm | Position of n-th ring (x,,) 21+ 2= (B + hem),
2<n<N
Distance between 9 mm 30 mm

last ring and end

Ring inner radius (r,) ro(1 — 2, /1) 1o(1 — 2, /1)

Table 1: Geometrical properties of the system, based on [3].
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Figure 3: Modulus of the reflection coefficient calculated with the Transfer Function and Transmission
Line methods, using the cylindrical and the conical approach, for (a) linear and (b) quadratic inner-radius
variation. The geometrical properties of the waveguides are presented in Table|[T]

Comparing results from the two methods using a similar geometry but with 40 rings, which are
equally spaced, gives a much better correspondence, as can be seen in Figs. fp and @, for the linear and
quadratic cases, respectively. This is due to the fact that a larger number of rings leads to a larger number
of elements, which, in turn, leads to a smaller element length. Therefore, the element length becomes
smaller compared to the waveguide as the number of rings increases, which renders the Transmission
Line approximation more accurate.

Due to the considerable deviation of the Transmission Line results from the Transfer Function ones at
higher frequencies for the systems used in the experiments in [5], only the Transfer Function results are
compared with the experimental ones. It would also appear that the results with the conical assumption
are the most accurate representation of the experimental results,and so they also selected. The moduli of
the reflection coefficient taken from the experimental results in [S] along with the reflection coefficient
calculated with the cylindrical and conical approaches of the Transfer Function method, are plotted in
Figs. [Sh and b, for the linear and quadratic cases, respectively. It should be noted that the measured
response is also unreliable below about 114 Hz, due to limitations in the experimental setup, as explained
in [5]. The value for the loss parameter ;x = 0.05 has been chosen to provide good correspondence of
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Figure 4: Modulus of the reflection coefficient calculated with the Transfer Function and Transmission
Line methods, using the cylindrical and the conical approach, for (a) linear and (b) quadratic inner-radius
variation. The length and radii of the uniform and non-uniform parts of the waveguide are those given
in Table I} but 40 equally spaced rings of a thickness of 1 mm are used for both the linear and quadratic
waveguides.

the numerical results with the experimental ones for the general level of the modulus of the reflection
coefficient at the middle region of the considered spectrum.
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Figure 5: Modulus of the reflection coefficient from the experiments by Azbaid El Ouahabi et al. taken
from [5],compared to that calculated with the Transfer Function method, using the conical approach, for
(a) linear and (b) quadratic inner-radius variation.

In the case of linear ring inner-radius variation, the modulus of the reflection coefficient with the
conical approach appears to match relatively well at the middle region of the considered spectrum with
that obtained experimentally, that is, between about 300 and 600 Hz. Even at higher frequencies, the
frequencies of the two main dips of the experimentally measured reflection coefficient, one around 670
Hz and one around 850 Hz, are relatively well predicted, even though the level of the reflection coefficient
is higher in the numerical results. If the loss parameter is chosen to be greater, the correspondence of
the level of the modulus of the reflection coefficient improves at higher frequencies but it deteriorates at

ICSV26, Montreal, 7-11 July 2019 7



ICSV26, Montreal, 7-11 July 2019

lower frequencies. The results from the cylindrical approach, not plotted, give worse results, especially
at higher frequencies. This could be justified by the fact that the conical approach would be expected to
form a more accurate geometrical representation of the cavities and cores of the waveguide. Additional
simulations showed that the different representation of the core causes the main difference between the
two geometrical approaches, while the assumed shape of the cavity is not so important. The predicted
dip in the reflection coefficient at about 155 Hz is not observed in the experimental results.

For quadratic ring inner-radius variation, the Transfer Function results predict the general trend of the
level of the modulus of the reflection coefficient well with the chosen value for ;.. The distances between
consecutive dips in the modulus of the reflection coefficient are of similar width as the experimental ones.
However, the details of the Transfer Function results do not match well with the experimental ones, that
is, they do not follow the fluctuations, over any extended bandwidth.

4. Conclusions

A Transfer Function method has been presented for the calculation of the reflection coefficient of
an acoustic waveguide with fitted thin rigid rings, following one of two geometrical approaches. The
assumption of a conical core between the rings is shown to give significantly different results from pre-
vious assumptions of cylindrical geometry, and appears to be a more accurate representation of the true
geometry. A Transmission Line model has also been presented, which forms a low-frequency approxi-
mation of the Transfer Function Method. The results from the Transfer Function method were compared
with experimental ones from the literature [5]. It was found that for the case of linear ring inner-radius
variation, the conical approach can give a fairly good match with the experimental results in the middle
frequency range of the considered spectrum. For the case of quadratic ring inner-radius variation, the
numerical results are limited to predicting the general characteristics of the experimental response.
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