Empirical Study on the Usage of Graph Query
Languages in Open Source Java Projects

Philipp Seifer
University of Koblenz-Landau
Software Languages Team
Koblenz, Germany
pseifer@uni-koblenz.de

Ralf Lammel
University of Koblenz-Landau
Software Languages Team
Koblenz, Germany
laemmel@uni-koblenz.de

Abstract

Graph data models are interesting in various domains, in
part because of the intuitiveness and flexibility they offer
compared to relational models. Specialized query languages,
such as Cypher for property graphs or SPARQL for RDF,
facilitate their use. In this paper, we present an empirical
study on the usage of graph-based query languages in open-
source Java projects on GitHub. We investigate the usage of
SPARQL, Cypher, Gremlin and GraphQL in terms of popular-
ity and their development over time. We select repositories
based on dependencies related to these technologies and
employ various popularity and source-code based filters and
ranking features for a targeted selection of projects. For the
concrete languages SPARQL and Cypher, we analyze the
activity of repositories over time. For SPARQL, we investi-
gate common application domains, query use and existence
of ontological data modeling in applications that query for
concrete instance data. Our results show, that the usage of
graph query languages in open-source projects increased
over the last years, with SPARQL and Cypher being by far
the most popular. SPARQL projects are more active in terms
of query related artifact changes and unique developers in-
volved, but Cypher is catching up. Relatively few applications
use SPARQL to query for concrete instance data: A majority
of those applications employ multiple different ontologies,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SLE ’19, October 20-22, 2019, Athens, Greece

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6981-7/19/10...$15.00
https://doi.org/10.1145/3357766.3359541

Johannes Hartel
University of Koblenz-Landau
Software Languages Team
Koblenz, Germany
johanneshaertel@uni-koblenz.de

Martin Leinberger
University of Koblenz-Landau
Institute WeST
Koblenz, Germany
mleinberger@uni-koblenz.de

Steffen Staab
University of Koblenz-Landau
Koblenz, Germany
University of Southampton
Southampton, United Kingdom
staab@uni-koblenz.de

including project and domain specific ones. Common applica-
tion domains are management systems and data visualization
tools.

CCS Concepts « General and reference — Empirical
studies; « Information systems — Query languages; «
Software and its engineering — Software libraries and
repositories.

Keywords Empirical Study, GitHub, Graphs, Query Lan-
guages, SPARQL, Cypher, Gremlin, GraphQL

ACM Reference Format:

Philipp Seifer, Johannes Hértel, Martin Leinberger, Ralf Limmel,
and Steffen Staab. 2019. Empirical Study on the Usage of Graph
Query Languages in Open Source Java Projects. In Proceedings
of the 12th ACM SIGPLAN International Conference on Software
Language Engineering (SLE ’19), October 20-22, 2019, Athens, Greece.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3357766.
3359541

1 Introduction

Graph data models are interesting in various domains, in
part due to the flexibility and intuitiveness they offer. Unlike
the relational data model, schemata may be incrementally
developed and adapted, or even omitted entirely. The graph
model is also intuitive for modeling tasks, for example in
general knowledge as exemplified by the Wikidata Knowl-
edge Graph [70]. Specialized query languages facilitate the
use of the graph data model. A long-standing standard is
SPARQL [57], a query language for RDF graphs which con-
ceptually matches on the triple structure of RDF. For prop-
erty graphs, languages like Cypher [27] emerged, featuring
specialized constructs to build results by selecting nodes
and edges, either of which may potentially hold properties.
While the major graph-related query approaches have been
compared in terms of various properties of both language [4]
and implementation [2, 34], we are interested in the practical

https://doi.org/10.1145/3357766.3359541
https://doi.org/10.1145/3357766.3359541
https://doi.org/10.1145/3357766.3359541

SLE ’19, October 20-22, 2019, Athens, Greece

usage of such technologies. The focus of this study, therefore,
is the comparison of overall popularity and practical use of
graph-related query languages in real-world projects. More
specifically, we analyze open-source Java projects on GitHub.
Our primary contributions follow.

1. We compare the overall popularity of graph-related
query languages in open-source projects, in terms of
numbers of projects using the query languages, num-
bers of affected methods and files, numbers of devel-
opers involved and the changes of these numbers over
time.

2. We use a refined, usage criteria-based approach to ana-
lyze usage of query languages in open-source projects,
in terms of distinction of framework-like functionality
versus concrete query usage and in terms of determin-
ing usage of ontologies.

The remainder of this paper is structured as follows. Section 2
motivates the selection of query languages we analyze and
gives a short overview of these technologies. In Section 3,
we introduce our research questions in depth and design
the methodology of our study, to then present our results
in Section 4. We conclude with related work in Section 5,
before our summary and future work in Section 6.

2 Graph Query Languages

We restrict our study to popular graph-related query lan-
guages. Our selection is primarily based on two factors.
First, we consider languages popular enough to occur in
the GitHub Linguist classification [29]. For all 461 candidate
languages' we manually identify query languages by con-
sidering resources such as project websites, GitHub reposi-
tories, or otherwise related Wikipedia entries. We classify
the following 11 languages as query related: Flux, GraphQL,
HiveQL, JsonlQ, Lasso, PLSQL, SPARQL, SQL, SQLPL, TSQL
and XQuery. Here SPARQL and GraphQL [21, 30] are pri-
marily related to graphs and therefore included in our com-
parison. As a baseline we also refer to XQuery [59] (an XML
database query language) and SQL.

We suspect not all interesting query languages to be listed
in Linguist, especially since not all languages must pro-
duce dedicated artifacts. Therefore, we use our identified
languages as seed languages to find related work on graph-
related query languages. Such work (e.g., [4, 34]) frequently
refers to both Cypher [27, 52], the property graph query
language initially developed for Neo4j [51], and the Gremlin
graph traversal language [25, 60]. We do not include lan-
guages exclusive to proprietary graph databases, or more
recent developments in research, such as G-CORE [3]. In

1For the 519 languages that occur in this list, we consider all languages
classified as type: data (95, e.g., SQL) or type: programming (366, e.g., C),
while excluding those with type classifications of markup (45, e.g., HTML)
and prose (13, e.g., Markdown). We include programming languages since
some languages such as XQuery are not classified as data languages.

Philipp Seifer, Johannes Hartel, Martin Leinberger, Ralf Limmel, and Steffen Staab

both cases we do not expect representative results in open-
source projects. Our study therefore focuses on the following
four graph-related query languages. Examples are given in
Figure 1, in the context of a simple graph consisting of person
nodes and knows edges.

SELECT ?p ?k WHERE {
?p a foaf:Person ; foaf:knows ?k
?k a foaf:Person

MATCH (p:Person) —[:KNOWS]—>(k: Person)
RETURN p, k

g-V()
.hasLabel ('person ').as('p")
.outE ("knows ') . inV ()
.hasLabel ('person ').as('k")
.select('p', 'k")

person {
name
knows { name }

}

Figure 1. Example queries selecting people and the people
they know in SPARQL (1st), Cypher (2nd), Gremlin (3rd) and
GraphQL (4th).

SPARQL is a W3C standardized query language for RDF
graphs, which at its core matches the triple structure (subject,
predicate and object) of RDF data. SPARQL is strongly asso-
ciated with the semantic web and commonly used conjointly
with ontologies.

Cypher isadeclarative query language for property graphs,
initially developed for the Neo4j platform. Since 2015, the
language is standardized by the openCypher [53] project.
Cypher queries rely on matching graph patterns expressed
with ASCII-Art syntax.

Gremlin is a graph traversal language with a focus on
path-like expressions. It is the core graph matching language
of the Apache Tinkerpop [24] framework.

GraphQL Unlike the other three query languages, the pri-
mary focus of GraphQL is not purely database access. Instead,
GraphQL was developed as a graph-based replacement for
the REST paradigm. In GraphQL, queries consist of JSON-like
templates that are matched on server side schema definitions,
usually in the context of web APIs.

Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects

3 Methodology

Our empirical study targets open-source projects, with a
scope restricted to Java projects and the GitHub platform.
This section defines the two research questions we answer,
as well as the design of our study in terms of data extraction
and analysis. With our first research question we aim at
understanding popularity and usage of the selected graph-
based query languages.

ROQ 1: What is the overall popularity of different graph query
languages in open-source Java projects and the development
of query-related repository characteristics over time?

We compare the aforementioned languages in terms of the
following two aspects. We investigate the overall popularity
(over time) of the respective query languages via the number
of associated projects, while also comparing them to the
number of SQL and XQuery projects as baselines. In addition,
we analyze popularity in terms of GitHub stars.

For the most popular identified languages, we find projects
that include queries in their source code. We compare the
number of projects with and without queries. For projects
that include queries, we analyze commit activity related to
query containing methods and dedicated query files, as well
as activity of the repositories in general. We also compare
the number of contributing developers over time.

RQ 2: What are characteristics of applications, selected via
usage criteria, that employ concrete queries?

With this second research question we refine our analysis
via concrete usage criteria, by making a distinction between
framework-like functionality and concrete query usage in
applications. We focus our analysis on the latter and perform
it for SPARQL, the most popular language as determined in
the context of RQ1. For a selection of projects working with
concrete queries, we find common application domains and
investigate the usage of query kinds and data conceptualiza-
tion in the form of ontologies.

Our data set collection, filtering and evaluation process is
incremental and aligned with these two research questions.
The remainder of this section is structured accordingly: We
first describe the data collection methods for our initial data
set of repositories, which forms the basis for all subsequent
evaluation. We then introduce the commit history analysis
and usage-criteria based filtering and ranking approaches we
employ. Figure 2 outlines the steps of our general approach
that are covered in Sections 3.1 through 3.5.

3.1 Dependency Selection

We select projects pertaining to the query languages intro-
duced in Section 2 via related dependencies. In order to
obtain such dependencies, we use the search function of
mvnrepository [49], which indexes more than 14 million

SLE ’19, October 20-22, 2019, Athens, Greece

Table 1. Number of dependencies per query language, num-
ber of distinct groups (i.e., project names) and average num-
ber of dependencies per group (where ~ marks estimations).

Language Dependencies Groups Per Group

SPARQL 191 72 2.65
Cypher 80 14 5.71
GraphQL 343 140 2.45
Gremlin 84 35 2.40
XQuery 24 18 1.33
SQL 3336 ~2058 ~1.62

artifacts across various Maven repositories, including Maven
Central [26]. We perform one search per technology, using
the keywords sparql, cypher, graphql and gremlin respec-
tively. The search considers metadata, including names and
descriptions. See also Step 3.1 in Figure 2.

Each result we obtain consists of the group ID (the project
name, for example org. apache. jena) and the artifact ID (jar
name, for example jena-arq) for the respective dependency.
The number of results for each language is listed in Table 1.
Additionally, the table shows the number of unique groups
and average number of artifacts per group. Overall, we find
the most dependencies for GraphQL, followed by SPARQL.
Cypher, while more recently becoming an open language
standard, is still closely associated with Neo4;j. Therefore, it
occurs rarely outside the context of a few projects (namely
Neo4j and openCypher) resulting in the high per-group aver-
age. For our baseline comparison, we also search for xquery,
where we find 63 dependencies, and sql with 3336 depen-
dencies. Due to limitations of the mvnrepository search, we
can only retrieve up to 500 results. Therefore, groups and
dependencies per group are estimations on a sample of 500
for SQL.

These initial results consist primarily of specific artifacts,
such as the ARQ query processor of the Jena framework.
However, common libraries provide convenient meta pack-
ages that include frequently used components. To accommo-
date for this, we extend the set of dependencies by clustering
artifact names of the same group by their longest common
prefix of at least length 4. With this approach we add a to-
tal of 18 SPARQL, 8 Cypher, 50 GraphQL and 11 Gremlin
generalized dependency fragments to the dependency set.

3.2 Project Search

As a next step, we use the query language related dependen-
cies obtained in Step 3.1 to search for projects on GitHub that
depend on them. To this end, we consider the popular Java
build systems Maven, Gradle and Ivy by performing code
searches in files related to these systems. We query via the
GitHub code search API for all combinations of our search
terms (that is, occurrence of both the group ID and artifact

SLE ’19, October 20-22, 2019, Athens,

(3.1)
Dependency
Selection

Greece

3.2)
Project Search

Search for query
language on
mvnrepository.com.

Related
Dependencies

mvnrepository

Philipp Seifer, Johannes Hartel, Martin Leinberger, Ralf Limmel, and Steffen Staab

Search dependencies

in build files Matching Projects

[F -
e
1 7
Code-API |
7 -

e
git clone (shallow)

git clone (bare)

(3.3) (3.4)
Metadata Filter _ Content-Based _
Qé Filtering [
opular queries

(Maven, vy, Gradle). /7

Source files (*.java)
2+ stars /,/V contain queries or

Java - dedicated query files.

7
Repo-API // -

(3.5)
Commit Histories

Tracking changes on
methods with queries
and query files.

Figure 2. Overview of our general approach and resulting data sets O related to RQ1 and RQ2. Dashed lines represent access
to external resources such as GitHub or mvnrepository. Solid lines represent data flow between filters.

Table 2. Build systems and associated queries per depen-
dency consisting of a group ID $g and artifact ID $a.

System Search Query

Maven /code?g=%$g+$a+in: file+filename:pom.xml
Gradle /code?qg=%$g+$a+tin:filetextension:gradle
Ant/lvy /code?q=$g+$a+in:file+filename:ivy.xml
Ant/lvy /code?q=$g+$a+in:file+filename:build.xml

ID) and build files. Table 2 lists the resulting four queries
we execute per dependency. The table omits the common
prefix https://api.github.com/search for brevity. From
the resulting set of matching build files, we extract the sets of
repositories for each of our query languages (i.e., repositories
for which at least one build file was found, containing one
or more dependencies related to the respective language).
Due to restrictions? of the GitHub API, only files on the
default branch and smaller than 384 KB are considered. Since
build files are commonly small, this should not impact results.

3.3 Metadata Filter

We obtain the repository metadata via the GitHub repository
API for each related repository. We filter the initial results
based on the following criteria, as is displayed in Step 3.3 of
Figure 2.

Usage of Java While we target Java projects in our initial
search via Java build systems such as Maven or Gradle, these
build systems are also used for other languages. We therefore
remove all repositories from our data set, that do not include
Java in the set of languages obtained via the languages_url
resource of the respective repository. We refer to this set of
repositories as Dy prq;-

2We also avoid restrictions in the number of results returned by the code
search API by segmentation of files based on a shifting window of file sizes.

Popularity For some of the following steps, we only con-
sider repositories above a popularity threshold, using the
number of stars (the stargazers_count property). Given
the relatively small number of overall results, we consider
repositories with at least 2 stars. We refer to this refinement
of Dtutal as Dpopular~

3.4 Content-Based Filtering

We analyze repositories of the two most popular languages
SPARQL and Cypher based on the occurrence of queries
in Java source code and in dedicated query files (Step 3.4,
also in Step 3.5). We consider queries that return values,
which includes SELECT, ASK, DESCRIBE and CONSTRUCT
queries in SPARQL and queries that use RETURN in Cypher.
We refer to the data set of projects with queries as Dgyeries-
The following filter is used to determine whether a project
contains queries in its source code.

For both languages, queries in source code are commonly
represented as strings. Since Java has no direct support for
multiple line strings, projects may use various well-known
composition techniques: Query construction may range from
java.lang.string methods, such as join, format or the +
operator, to StringBuilder or Streams. For all approaches,
the concatenation of string literals on a per-file basis yields
query fragments, which may be incomplete if variables are
included. To accommodate for this, we only match on the
coarse structure of queries. In the case of SPARQL, we match
query headers which are less likely to be affected by compo-
sition techniques or argument splicing. Our regular expres-
sions are directly modeled after the SPARQL grammar [57].
For Cypher, we match on query headers such asMATCH (...)
concluded by RETURN. As for SPARQL, we do not consider
the potentially incomplete bodies of queries.

We validate this approach by sampling 10 random source
files with queries per language (using simple search terms
and manual filtering) and count the number of queries by
hand, to a total of over 200. We also include additional 180
files without queries, false positives of the simple search and

Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects

files with the opposite query language. Our extraction has
an accuracy of 97.4% and 100.0% for SPARQL and Cypher
respectively (with no false positives in either case).

In addition to considering Java source files, we also in-
clude dedicated query files. For SPARQL, these are files with
the commonly used extensions .rq or .sparql which are
also assigned to SPARQL by GitHub Linguist. The .rq ex-
tension in particular is used by Jena ARQ [23]. For Cypher
we consider the file extensions .cyp and . cypher.

3.5 Commit Histories

As the analysis of query related activity over the full lifespan
of a repository is expensive, we sample from the Java reposi-
tories (Dyorq1) that are either related to Cypher or SPARQL.
The analysis applied to this sample continuously tracks the
activities on files and methods containing queries. To decide
if an artifact contains queries, we use the file extension filters
and query detection approaches as introduced in Step 3.4.

Activity at a certain point in time is measured in terms
of changes done by a commit. First, the artifact content is
converted into a bag of words to exclude simple effects of
reordering within content. Changes are extracted by com-
paring the bag representation of a method or file before and
after a commit. Added and removed terms are interpreted
as changes. We track developers and artifacts involved in
a query activity by attributing such change to the respec-
tive developer doing the commit, to the changed artifact’s
identification (a path or qualified method name) and to the
corresponding timestamp. The resulting data can be used
to compute the number of distinct repositories, developers
and artifacts involved in a query activity at one time, over a
timespan or in a window.

At the technical level, we perform parsing to extract method
content; we track simple refactorings of files and methods
to prevent wrong changes according to [5]; we consider
branches to correctly capture changes that are merged into
the master [42]; and we determine characteristics of SPARQL
and Cypher repositories by performing a linear regression
analysis to generalize on the population that we sampled
from.

3.6 Content-Based Ranking

For our first research question, we select projects that are
in any way related to the target languages. Such projects
may range from framework extensions to databases and
triple stores, or even approaches that employ SPARQL for
its reasoning capabilities.

For our second research question, we aim to identify ap-
plications that make use of concrete queries, by refining our
initial selection of projects. We perform this in-depth analy-
sis for the most actively used language SPARQL. To this end,
we first define the following categories of possible use cases
for the SPARQL query language in various types of projects.
These insights were gained from manual exploration of our

SLE ’19, October 20-22, 2019, Athens, Greece

preliminary results. In particular, SPARQL may be part of a
projects source code in the following scenarios:

C1. Query Framework. Libraries, frameworks and frame-
work extensions that interface between concrete ap-
plications (via API or DSL) and back-end components,
such as triple stores. Since such libraries facilitate the
use of SPARQL, queries may be a part of either usage
examples or test cases.

C2. Query Processor or Executor. Applications that pro-
cess queries (e.g., rewriting or optimization) or evalu-
ate them (e.g., triple stores). In such projects, SPARQL
frequently occurs as part of testing or benchmark com-
ponents. Projects may also include query fragments
as templates or for query generation.

C3. Reasoning Tools. Applications that include SPARQL
queries, but not for the purpose of querying data stores,
but for its reasoning capabilities. Practical examples
include tasks such as rule-based data validation.

We are not interested in these kinds of applications in the
context of our second research questions. Instead, we aim to
analyze usage of SPARQL in concrete, data centric applica-
tions, defined as follows:

C4. Applications. Applications using SPARQL to query
for data. Query usage in such applications can be fur-
ther categorized as:

a. Meta. Queries predominantly explore the structure
of a data source, i.e., select for properties and con-
cepts. Example: Quality checker for SKOS vocabu-
laries.

b. Concrete. Queries predominantly select concrete
instances of concepts. Example: Management system
for the Oslo public library.

Since we aim to investigate applications working on concrete
instance data, we are interested in projects belonging to
category C4.b.

Such applications might exhibit, and thus be identified by,
a number of features. In order to find such concrete appli-
cations, we extend our general approach with two further
steps, as is outlined in Figure 3. We first apply more restric-
tive filters to Dgyeries (see also Additional Filters below) and
then rank remaining projects based on the log-scaled and
normalized average of the following three features, before
manually reviewing the top ranking projects.

LOV Concrete queries might rely on ontologies or other
vocabularies. 660 popular linked open data vocabularies are
listed in the LOV [32, 67] data set. In particular, it provides
URIs of vocabularies which, for example, can be part of prefix
definitions or occur in SPARQL queries. We search all Java
files and count occurrences of URIs that occur in the data set.
We limit our analysis to Java source files, since other files
may use these URIs to describe arbitrary artifacts (e.g., in
XML files) unrelated to query usage.

SLE ’19, October 20-22, 2019, Athens, Greece

Philipp Seifer, Johannes Hartel, Martin Leinberger, Ralf Limmel, and Steffen Staab

(3.7) irrelevant
Manual Review

(3.4) (3.6)
Content-Based Content-Based Filtering & Ranking
Filtering @
X . Dﬁqueries
Source files (*.java) 1
contain queries or 2. Queries Total 2. Pushed last 12 months
dedicated query files. 3. Query Distribution 3. 1+ forks

Ranking (relevant) source files | Filtering with meta
. Lov 1. Queries in relevant files

Manually classify the
top 75 repositories.

i

concrete

Figure 3. Overview of our extended approach (related to RQ2) as an extension to Figure 2.

Number of Queries Secondly, we consider the total num-
ber of SPARQL queries in relevant source files. We define
source files as relevant, if they match the following criteria.
Firstly, the file must be a Java source file In addition, the name
of the file must not include the term test (case-insensitive)
and the path of the file within the repository must not include
the terms test or testing (case-insensitive). Finally, the
path must also not include the terms example or examples
(case-insensitive). With this definition of relevant source files,
we aim to exclude projects which include SPARQL (exclu-
sively) in their tests or usage examples. By strong convention,
Java tests use the word ’test’ in their class (and file) name and
are located in a folder such as src/test. Even in instances
where these conventions are not followed (e.g., when the
project does not use a common test framework), paths to
such test cases are still likely to include the terms test or
testing. Similarly, we aim to exclude usage examples. As
strong a convention as for tests does not exists in this case, so
we only exclude directories that explicitly include the term
example. For all relevant source files, we search for SPARQL
headers using the same approach as before (Section 3.4) and
we again include dedicated query source files.

Query Distribution Our third feature refers to the per-
centage of relevant files that contain SPARQL queries, using
the same criteria for relevance as for the Number of Queries.
This is calculated as the count of relevant files that include at
least one SPARQL query (i.e., matched by the second feature)
over the count of all relevant files.

Additional Filters On top of the ranking calculated based
on the three features above, we apply a number of additional
filters to the data set: The Number of Queries (and as a
consequence Query Distribution) must be non-zero. This
eliminates projects without queries in relevant source files.
We also apply additional popularity filters to reduce the
overall number of repositories for manual review. In addition
to two or more stars, projects must also have a push within
the last 12 months and at least one fork.

3.7 Manual Review

The ranking and filters we have defined in the previous step
produce a greatly reduced number of ranked candidates. We
manually review the top 75 highest ranked repositories and
label them as either irrelevant, meta or concrete in the follow-
ing manner. A reviewer first reads the description (which

includes the primary README . md file and the project descrip-
tion) of the repository. If available (i.e., linked in any part of
the project description as defined above), external project
websites are considered as well. A short comment about the
nature of the repository is recorded. In a second step, the re-
viewer investigates the usage of SPARQL within the project
by considering (examples of) detected SPARQL queries that
exist in the project. In this second step, irrelevant projects can
be identified via their use of SPARQL in a reasoning context
or solely as part of examples or test cases that were missed by
our filters. We label all projects pertaining to categories C1
through C3 as irrelevant. Examples include graph database
implementations, various optimization approaches such as
SPARQL to SQL rewriting and validation rules expressed
in SPARQL, among others. We only report the number of
repositories labeled as such, but do not consider them any
further.

Projects that were not immediately labeled as irrelevant
are examined more closely, in order to differentiate between
meta query usage versus concrete queries (categories C4.a
and C4.b) and projects are then labeled accordingly. For appli-
cations labeled as meta, some overlap with irrelevant exists.
For example, various frameworks use SPARQL to obtain
meta-level information about ontologies or resources they
manage. In such cases, we prefer the meta label. The concrete
label is used for applications matching exactly category C4.b.
Examples for this category are discussed in more detail with
the results of our second research question.

4 Results

The results presented in this paper are based on an execution
of our query pipeline in June, 2019. The resulting data sets
are available in a git repository”.

4.1 First Research Question

For our first research question, we compare the overall pop-
ularity of graph-based query languages. Figure 4 shows the
total number of distinct Java repositories returned for the de-
pendencies related to each of the four graph-related technolo-
gies as a Venn diagram. These repositories are not filtered
by popularity, but exclude any repositories that do not em-
ploy Java (the D;,;4; data set). We find that the most related
repositories exist for Cypher (9882), followed by SPARQL
(6919). In the Venn diagram, overlap means that repositories

3https://www.github.com/softlang/graphgqls

https://www.github.com/softlang/graphqls

Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects

Cypher GraphQL

SPARQL

Gremlin

Figure 4. Venn diagram of repositories per language.

are in the result sets of both overlapping languages (note,
that the diagram is not rendered to scale). Overlap primarily
exists between Gremlin and SPARQL, as well as Gremlin and
Cypher. In fact, 40% of Gremlin repositories are related to at
least one additional language, with the largest overlap exist-
ing between Cypher and Gremlin. Cypher also overlaps with
GraphQL. This is not unexpected, as for example Neo4;j sup-
ports both traversal via Gremlin and the GraphQL language,
in addition to Cypher. While some minimal overlap between
our initial dependencies exists (a total of 5 dependencies
are shared among two or more languages), this accounts for
only a handful of overlapping repositories, to a maximum of
five of the overlap between Gremlin and Cypher. The most
frequently occurring dependencies (i.e., most projects in our
data set depend on them) are org. apache. jena followed by
org.eclipse.rdf4j for SPARQL, org.neo4j followed by
org.opencypher for Cypher, org.apache. tinkerpop for
Gremlin and com. graphql-java for GraphQL.

Popularity In order to filter less relevant repositories from
our data set, we consider the frequently used popularity met-
rics of stars. In Figure 5, both the number of stars and forks
for all four languages are visualized. Most repositories have
0 forks and 0 stars. The averages indicate a small number
of extremely popular repositories, while the majority has
few or no stars. Accordingly, the median number of stars
and forks (excluding 0) is 2 for all languages except Gremlin,
where it is 4 and 3, respectively. The correlation coefficient
for both metrics is strong (as expected, e.g. [11]) and ranges
between 0.84 for GraphQL and 0.95 for Cypher. We choose a

SLE ’19, October 20-22, 2019, Athens, Greece

+
w
=
J
+

350

I o)
> e

w

bl 167 105

jll 595 225 1 el
13831499 1125 [\ 6807539
0 1

0 1 2 3 4 5 +
SPARQL forks (22.99)

Cypher stars (914.74)
Now

SPARQL stars (@7.5)

2 3 4 5 +
Cypher forks (210.1)

I wu +
—
o
by

I
o =
2 15y

w

N
N
N
o
~

ZE

jll 231 | 49
[1l2259/117

0 1 2 3 4 5 + 0 1 2 3 4 5 +
Gremlin forks (210.35) GraphQL forks (@14.22)

Gremlin stars (29.04)
w
GraphQL stars (223.92)

-
3
=
w
bt

Figure 5. Popularity metrics: Number of forks and stars
ranging from 0 to 5, or more than 5 (+) as well as the average
number forks and stars (&). Colors indicate percentage of
repositories on a logarithmic scale. Correlation coefficients
are 0.86, 0.95, 0.88 and 0.84 respectively.

minimum of 2 stars for our popularity restricted data set in
RQ1, while additionally requiring 1 fork for RQ2.

Number of Projects Figure 6 (first row) depicts the devel-
opment of repositories in Dy, 47 Over time, where the x-axis
is time and the y-axis describes the count of projects that
existed at this time. On the right hand side of the first row,
the same is depicted for popular projects with 2 or more
stars. Developing almost identically before, over the last
three years Cypher related projects overtake SPARQL. This
closely correlates with the establishment of the openCypher
group in late 2015, possibly explaining this change in number
of projects. There is less of a difference in project numbers
for popular projects, with SPARQL taking a slight lead. For
both Gremlin and GraphQL, significantly fewer projects ex-
ist, both popular and in general. The number of non-popular
GraphQL projects, however, grows rapidly since its publi-
cation. We must note, that these numbers might be biased
by the fact that we only compare Java applications. Since
GraphQL is primarily a REST replacement, projects in other
languages, such as JavaScript, might exist.

Baseline We limit the scope of our baseline comparison
to repositories using the JDBC driver of the most popular
SQL database available through Maven. We define popularity
according to db-engines. com [64]. The highest ranking sys-
tem that matches our criteria is MySQL, the second highest
ranking database overall. We select repositories that use the
official JDBC driver of MySQL (mysql-connector-java). In

SLE ’19, October 20-22, 2019, Athens, Greece Philipp Seifer, Johannes Hartel, Martin Leinberger, Ralf Limmel, and Steffen Staab

615081 GitHub repositories with queries ... and more than 1 stars (4%)
10000 AR i i i I i i i
MySQL ithub release ICypher | ! ! IGithub release | Cypher ! !
w8000 EEm Cypher SPARQL 1.0 1Neo4j 1SPARQL 1.1 jopenCypher 11 SPARQL 1.0 1Neo4j 1SPARQL 1.1 jopenCypher
o BN SPARQL i i ' i i i i i
=}
£ 6000 EEm XQuery L L | ! ! !
g BN GraphQL ! ! ! : ! ! !
@ 4000 EEE Gremlin ! ! H ! ! !
B [N} 1 1 [N 1 1 1
i) [N} 1 1 [N 1 1 1
8 2000 i i i i i i i i
[1 1 1 [} 1 1 1
[N 1 1 [} 1 1
0 [N H L e p— H
Ll 1 1 1 Ll 1 1 1
I i i i N i i i
5 i i i i i i i i
[o2] 105
3 | an | | i |
%]
! | = =] s |
o
2102 H : : : i : : !
o) [1 1 [} 1 1
Q [N 1 [} 1
() [N 1 [N
: [N [} [N} [} 1
T 10 i i i
o [[} 1
- [N [} 1
[N} [N 1
Ll Ll 1

Il SPARQL (window 120 days)

i N i i i

1 [} 1 1 1
9 150 WM Cypher (window 120 days) i i i i i i
'g ;@ ------ !n query files : : : : : :
2m —— in Java methods 1 1 1 1 1
2 100 i i i i i i
foli)}

b] 1 [N] 1 1 1
Lo | i 1 1 1
¢ : H : :

.E w 50 1 1 T T
® i i i
1 [}
) [}
O 1
200
4
33 150
Om
g <
)
33100
Q E
20
o~ 50
©
0
i
800 |
25 i
SIS 1
8 & 600 1
3 :
© % 1
g 2400 i
s © 1
o & 1
© =200 |
1
0 s Ao
1006 qu% '7/0\'0 10\‘1 'LQ\'B‘ 10\‘6 7/0\'% 1006 7/00% 10\'0 PLQ\"L "LU)\‘D(7/0\'6 "1,0\‘%

Figure 6. The total amount of repositories and the activity concerned with query languages: The left column shows all
repositories, the right filters on those with more than one star. The first and second rows show the total amount of repositories
for all query languages. Following rows show the repository activity computed on a 43% sample of all repositories. It shows
the number of distinct repositories, developers and artifacts involved in a query activity in the last 120 days. We add important
GitHub, SPARQL and Cypher related dates: Github release (Oct 2007); W3C Recommendation of SPARQL 1.0 (Jan 2008);
Introduction Cypher to Neo4j (Jun 2011); W3C Recommendation of SPARQL 1.1 (Mar 2013); openCypher founded (Oct 2015).

addition to SQL, we also compare with the XQuery language, graph related query languages. Not unexpectedly, MySQL is
where we use the same approach as for the graph-related significantly more popular than any other language we com-
languages. Figure 6 (second row) shows the development pare, while popularity of XQuery is comparable to SPARQL
of project numbers over time for MySQL, XQuery and the and Cypher, being overtaken slightly over the last few years.

Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects

Query Activity Existing repository can stop being main-
tained or queries can become outdated without actually be-
ing deleted. Therefore, we complement the information on
the total amount of repositories existing at a certain time,
as shown previously in Figure 6 (row one), by a measure on
query activity based on a repository’s commits.

The activity in respect to queries is depicted in the last
three rows of Figure 6, showing data gathered on a sample
(43%) of the overall repositories featuring the two most pop-
ular query languages SPARQL and Cypher*. We compute the
temporal evolution of the number of distinct repositories, de-
velopers and artifacts involved in a query activity in the last
120 days. An activity is a commit changing a query related
artifact. The analysis depicted in Figure 6 further distinguish
between activity induced by queries in dedicated query files
(dotted lines) and such done in Java methods (straight lines).
Further, we plot the evolution for all repositories (left col-
umn) and for those with 2 or more stars (right column). We
make the following observations:

e SPARQL queries have been used more actively com-
pared to Cypher queries until 2018, with respect to the
involved repositories, developers and artifacts.

e Cypher activity increased faster compared to SPARQL
activity. Cypher has been introduced to Neo4;j three
years later than the initial recommendation of SPARQL
1.0 in 2008; however, the activity is almost on par in
2019.

e Java embedding is more prominent than using dedi-
cated query files for SPARQL and Cypher. We observe
this in the numbers of distinct repositories and de-
velopers working actively with files or methods. We
do not draw this conclusion from the number of dis-
tinct artifacts active, as the granularity of methods and
query files may vary. Dedicated query files are much
more uncommon for Cypher.

e We notice a stagnation in the last year respective active
repositories and developers for both query technolo-
gies. The activity reaches its peak at 2018 and does not
further increase. For repositories rated better than 1
star the SPARQL activity stops improving after 2016.

Repository Characteristics Differences in the repository
characteristics for SPARQL and Cypher are examined by a
linear regression applied on the 43% sample of repositories
containing one of both query technologies. We use stars, de-
velopers actively working with queries, query files and the
time since repository creation as independent variables and
regress on the dependent variable is_spargl (i.e., whether a

“In total, we processed 7274 repositories excluding 2.7% due to a timeout for
the processing of each repository. Our data set contains 1373.000 analyzed
commits; 22.000 contain queries; we excluded commits with more than 32
changed artifacts concerned with queries (1.21% of 22.000 commits). We
manually adjusted this threshold to avoid unnatural steps induced by single
commits.

SLE ’19, October 20-22, 2019, Athens, Greece

Table 3. Linear regression on whether a repository contains
SPARQL queries. The regression is applied on the 43% sample
of repositories containing SPARQL or Cypher. The table
shows the partial regression coefficients and the significance
of the coefficients for three models.

dep. var: is_spargl Model 0 Model1 Model 2
scale(np.log(active_developers + 0.5)) 0.134** 0.117***
scale(np.log(active_files + 0.5)) 0.06***
scale(np.log(created_days_ago)) 0.038™* 0.04™** 0.04***
scale(np.log(stargazers_count + 0.5)) 0.043"** 0.019** 0.017**

R-squ. 0.017 0.089 0.102
(" p<0.001, " p < 0.01, " p<0.05)

repository contains SPARQL queries opposed to not contain-
ing SPARQL but Cypher). We interpret the partial regression
coefficients on significance and sign as indication for a higher
or lower characteristic for SPARQL in the population at hand.
Table 3 depicts the partial regression coefficients in com-
bination with the significance levels. We log-transform and
scale the independent variables to assure normality. We suc-
cessively construct three models adding the factors on the
repository meta-data and the query activity®. We report on
r-square for model fit. We draw the following conclusions:

e SPARQL repositories tend to exist longer than Cypher
repositories, as the regression coefficients are positive
and significant in all three models for created_days_ago.
This reflects the SPARQL and Cypher release dates.
The coefficients for active query files are positive and
significant, indicating that for SPARQL repositories
contain more queries in files compared to Cypher.
Accordingly, the partial regression coefficients for the
active developers working with queries are positive
and significant. Hence, we conclude that SPARQL repos
itories tend to involve more developers working on
queries than Cypher repositories do. However, Cypher
manages to keep on par in the history of query activity,
as it exceeds SPARQL in the number of repositories.
e We can not make highly significant statements on the
ratings of repositories in this regression; but Cypher
repositories tend to share a lower rating than those
involving SPARQL.

4.2 Second Research Question

After applying our additional popularity filters, we obtain a
reduced number of 475 repositories. When applying our rank-
ing and filtering (concerning queries in relevant artifacts), we
obtain the data set D, ;,eq, consisting of 150 repositories.
We review the top ranking 75 (50%) manually. This review

5 All mutual correlations of the independent variables are under 0.3 and
the variance inflation factors are all under 2, suggesting no problems with
multicollinearity.

SLE ’19, October 20-22, 2019, Athens, Greece

Philipp Seifer, Johannes Hartel, Martin Leinberger, Ralf Limmel, and Steffen Staab

Table 4. Repositories labeled concrete with a short description summarizing the application. Results in ranking order (#1 =
highest relative rank). KnowledgeCaptureAndDiscovery was shortened to KCAD in this table.

Repository Description
1 sirmaenterprise/conservation-space Content management for conservators.
2 GRIDAPPSD/Powergrid-Models Model conversion in context of grid simulation models.
3 vivo-project/Vitro Semantic web application framework (that uses SPARQL).
4 linkedpipes/etl RDF-based ETL tool.
5 WDAqua/SummaServer Service for summarizing (specific) RDF graphs.
6 RENCI-NRIG/orca5 Meta-cloud managing network description model.
7 oeg-upm/map4rdf Visualization and interaction for linked, geospatial data.
8 digibib/ls.ext Oslo public library management system.
9 KCAD/wings Computational experiment workflow design system.
10 KCAD/DataNarratives Text-based narrative generation for workflow results.
11 rmap-project/rmap Management system of complex scholarly contribution relations.
12 EBISPOT/goci Visualization component of GWAS catalog curation tool.

results in 12 concrete, 21 meta and 42 irrelevant reposito-
ries. Projects labeled as irrelevant range from frameworks or
framework extensions, graph databases, specific API wrap-
pers, to coursework submissions and personal blogs that
include SPARQL tutorials. In these cases, queries occur as ex-
amples, test cases or benchmarks, usually in a non-standard
way that evaded our filters.

A good examples of the metalabel is cmader/qSKOS, a tool
for finding quality issues in SKOS vocabularies. The project
uses plenty of SPARQL queries as well as the SKOS vocabu-
lary. However, queries in this project operate on the meta
level and do not select concrete instance data. Other meta
uses of SPARQL include language generation or question
answering applications.

In order to answer our second research question, we now
consider the repositories labeled as concrete, which are listed
in their relative ranking order in Table 4, together with a
short description of the application that we recorded during
the labeling process. We will henceforth use the placement
in Table 4 to refer to these projects in other figures.

Domains The 12 applications can be grouped into specific
and general application domains, as is shown in Table 5. We
find that most applications are management related, with 3
document management systems and 3 process management
systems. Of the remaining 6 applications, 4 are related to
data visualization as either images (geospatial data) or text.
The remaining 2 are a tool for model conversion and a web
application framework that do not fit into any of the three
general categories.

SPARQL Figure 7 shows the distribution of SELECT (re-
turns result sequences), ASK (returns Boolean value), DE-
SCRIBE (returns specific graphs) and CONSTRUCT (returns
graphs) queries over the 12 SPARQL applications. Only four
repositories use more than 50 queries, with the average being

Table 5. Application domains of the top 12 applications
labeled as concrete. The number (#) refers to Table 4.

Domain Specific Domain

Document Management Conservation
Document Management Library
11 Document Management Scholarly/Authorship

o0 =

4 Process Management ETL Process

6 Process Management Cloud Management

9 Process Management Workflow

5 Data Visualization Summarization

7 Data Visualization Geospatial Data
10 Data Visualization Workflow Narrative
12 Data Visualization GWAS

2 Simulation Model Conversion

3 Web Application Web App Framework

Table 6. Ontology usage in concrete labeled repositories,
with PS referring to the existence of project specific ontolo-
gies (+) or lack thereof (=), DS the count of domain specific
ontologies and G the count of generic vocabularies.

1 2 3 4 5 6 7 8 9 10 11 12

PS + - + + - + + +
DS 9 2 2 1 9 3 6 1 5 5
G 4 4 6 4 5 3 1 2 1 5

73. The most frequent query kind is SELECT, with half of the
applications using exclusively SELECT queries. DESCRIBE
queries are only used in two projects, and no project uses
DESCRIBE without also using CONSTRUCT queries. Half
of all projects use ASK queries in addition to SELECT (and
other) query kinds.

Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects

[SELECT
M 3=
200 BN DESCRIBE
=1 CONSTRUCT
" i
2
5 150
3
o —
s i
o
2100
£
=}
=
50
: 1 H H H ulis H

Repository

Figure 7. Number of queries divided by query kind for the
12 applications labeled as concrete.

Ontologies Table 6 shows usage of ontologies across all
concrete projects. Interestingly, most projects employ three
kinds of ontologies: (1) Project specific ontologies, that is
ontologies that were specifically designed for the project.
(2) Domain specific or specialized ontologies, that relate to
the application domain of the project (but were not created
specifically for it), and (3) general vocabularies, such as OWL,
RDF or RDFS. For project specific ontologies we only record
whether such ontologies exist, not the quantity. For domain
specific and generic vocabularies, we record a lower bound
of quantity, that was automatically extracted by search for
URLs occurring in the LOV data set as well as searching
source code for SPARQL prefix definitions. All applications
use domain specific ontologies and generic vocabularies.
Only three applications do not employ any project specific
ontologies, two of which are in the visualization domain.
The third (#2) is the model conversion tool, which uses a
very specific domain related ontology.

4.3 Threats to Validity

We only include repositories that directly depend on libraries
that can be found on mvnrepository via the name of the
language. The limitations are twofold: For one, not all ex-
isting libraries related to the technologies might be found
this way. In particular, we might not find proprietary frame-
works via Maven. We argue, however, that such frameworks
are unlikely to be used frequently in open-source projects.
Secondly, we do not select repositories that only transitively
depend on these dependencies.

Composition of queries as strings is not standardized be-
tween frameworks, or even within a single framework. In-
stead, projects rely on various string composition techniques
available in Java. Our query extraction aims to generalize to

SLE ’19, October 20-22, 2019, Athens, Greece

common scenarios, but there might be exceptions that are
missed by our filters.

Finally, our results regarding application domains, query
and ontology usage in SPARQL projects include primarily
smaller, experimental or research applications. All projects
considered in our study are open-source applications avail-
able on GitHub. Our results, therefore, can not necessarily
be transferred to industry usage or other scenarios beyond
the scope of such open-source projects.

5 Related Work

Graph Query Languages and Databases Graph query
languages and databases have been studied regarding var-
ious aspects. In a study on their theoretical properties [4],
the authors compare graph data models (property and edge-
labeled graphs) as well as querying approaches (graph pat-
terns and navigational expressions), referencing examples
in SPARQL, Cypher and Gremlin. Similar surveys were per-
formed in the past [6, 33, 72]. Cypher and Gremlin have also
been compared in terms of their performance when access-
ing Neo4j [34]. Graph databases and database models have
been compared in various studies [2, 36]. In [69], the authors
compare the relational model (MySQL) with the graph model
(Neo4j), in terms of performance and subjective measures,
such as ease of use. A similar comparison is presented in [47].
Our work presents an empirical study on the usage of graph
query languages in open-source projects.

Cross-Sectional Studies The amount of publicly available
software projects on GitHub or SourceForge yet represents
an accurate picture of the current and past of open-source
development. Several empirical studies founded on such data
analyze various aspects of the involved technology. In the
following, we focus on cross-sectional observations in em-
pirical studies, i.e., on observations done at a certain time.
In [17], aspects such as co-occurrence of relational data-
base access technologies are examined on 2,457 Java projects
hosted on GitHub. The repositories are selected by search-
ing for commits with references to jdbc, jpa or hbm. We
identify projects via dependencies in their build files. While
we analyze ontology usage, the authors of [39] examined
GraphQL Schema usage in 20.000 GitHub projects. GraphQL
Schemas where also studied in [71], while comparing usage
in small and large GitHub projects, as well as commercial
projects. The research reported on in [58] faces a related
problem to our detection of embedded queries in Java code,
namely the reconstruction of link URLs in Andorid apps. A
total of 5.000 repositories are analyzed for the usage of Mock-
ing frameworks in [48]; test driven development in 256.000
repositories is subject to analysis in [12]; the usage of asserts
in the 100 most popular C or C++ repositories in revises
in [13]. All such analysis is working on GitHub repositories.
In [46], details like the costs or practices in local database us-
age are examined. The corpus for analysis consists of the top

SLE ’19, October 20-22, 2019, Athens, Greece

1.000 ranked Google Play apps. In [43, 44], the authors ana-
lyze usage of the P3P privacy policy language in respect to
vocabulary, correctness, common policies and policy clones.
Here, the corpus was constructed from websites listed in the
Google Directory and Open Directory Project, respectively.
The authors of [31] report on the characteristics of 2.080 ran-
domly chosen Java applications from SourceForge. Findings
are, for instance, that only a few Java methods are overridden.
The popularity, interoperability and the impact of different
languages are analyzed based on a sample of 100.000 GitHub
projects in [10]. Opposed to that, [50] compares languages
on the Rosetta Code corpus. The uniqueness of source code is
studied in [28] on 6.000 SourceForge software projects. The
empirical study in [66] focuses on social factors affecting
the evaluation of GitHub contributions. Here the analyzed
corpus consists of accepted and rejected pull requests in
GitHub projects. In [68], the gender and tenure diversity on
GitHub teams is discussed. A wide range of empirical studies
is concerned with the usage of APIL Such studies analyze
the usage [45, 61, 63, 73, 75], API migration [62] and API
patterns [76].

Longitudinal Studies Due to the availability of the full
repository history in open-source projects, longitudinal stud-
ies are frequently applied, so that trends in the evolution
of technologies can be recovered. In [54], the evolution of
exceptions (e.g., the amount of custom exceptions) is exam-
ined in four open-source Java systems. In [74], the evolution
of testing libraries is subject to analysis showing the migra-
tions in between such libraries. In [65], the evolution of unit
tests in 70.000 revisions of 10 different Python projects is
examined. In [41], model driven engineering technologies
in the context of EMF are analyzed, including the evolution
of the number of commits and contributing developers. We
also capture such data respective query usage. In [55], the
evolution and correlation of code-smells on 395 releases of
30 software systems is discussed. The authors of [1] examine
the co-evolution of documentation related artifact types and
the repository popularity. In particular, the authors track
ratings over time; we rely on the most recent rating of a
repository. In [35], evolutionary coupling is detected using
association rules. The authors of [14] examine co-commit
patters in GitHub repositories. The longitudinal part of our
study analyzes 7274 repositories, including the history in
terms of 1373.000 commits, thereby covering the develop-
ment activity of SPARQL and Cypher in the past years.

Mining Software Repositories Analysis of open-source
repositories is also subject to more general research in the
context of software linguistics [22].In [9, 37, 38], the promises
and perils of mining GitHub’s open-source data for empirical
analysis is discussed. The effects of branching in the repos-
itory history on empirical studies is discussed in [42]. We
treat branching by a dedicated method. In [15], a meta-study
summarizes empirical studies applied to GitHub with respect

Philipp Seifer, Johannes Hartel, Martin Leinberger, Ralf Limmel, and Steffen Staab

the methods, data set and limitation. One finding is that only
a few studies are longitudinal; our detailed analysis of the
commits history falls into such classification. The dangers of
unappropriated partitioned commits are discussed in [19, 40].
We apply a threshold for exuding commits as outliers. Iden-
tity management of developers is revised in [8]. We go for a
conservative solution assuming each email address to belong
to one developer.

6 Conclusion and Future Work

In this study we investigated the popularity of graph-related
query languages in open-source projects on GitHub. We find
evidence for the real-world usage of graph query technolo-
gies. Of the languages we compare, SPARQL and Cypher
are significantly more frequent than other graph-related ap-
proaches. Both are slightly more popular than XQuery, but
all approaches we compare are significantly less popular than
SQL. In a direct comparison between SPARQL and Cypher,
we observe higher activity in SPARQL related repositories in
terms of query related changes to repositories and artifacts,
as well as active developers. However, activity in Cypher
grew faster, almost reaching the same level of activity as
SPARQL in 2019, even though Cypher was introduced three
years after SPARQL. For both languages, the activity regard-
ing repositories and developers stagnates after a peak in 2018.
For popular SPARQL repositories with 2 or more stars, this
occurs as early as 2016.

We also analyzed the usage of SPARQL in concrete appli-
cations. Only a small fraction of popular SPARQL projects
are applications that employ SPARQL to query for concrete
data, instead of frameworks or projects focusing on graph
structure related queries. Applications that do exist are pre-
dominately related to document or process management
tasks, or visualize data as images or text. SELECT queries
are the most frequently used kind of SPARQL query in these
applications. Projects do extensively employ ontologies, si-
multaneously creating projects specific ones and reusing
domain specific and general vocabularies.

For future work, we plan to perform an in-depth analysis
of developer interaction with query related artifacts on the
project level, including the specialization of developers and
the relationship between query artifacts and bug fixes. We
are also interested in comparing the usage of embedded
queries with approaches using fluent APIs. Furthermore, we
are interested in application of our commit history evaluation
to additional languages such as SQL, and the inclusion of
additional query languages to our overall approach.

Acknowledgments

The authors gratefully acknowledge the financial support of
project LISeQ (LA 2672/1-1) by the German Research Foun-
dation (DFG).

Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects

References

(1]

—
Do
—

—
w
-

—
w
—

—
~
—

—
oo
[t

—
=)
—

[10

[t

[11

—

[12

—

[13

[t

(14]

Karan Aggarwal, Abram Hindle, and Eleni Stroulia. 2014. Co-evolution
of project documentation and popularity within github, See [18], 360-
363. https://doi.org/10.1145/2597073.2597120

Renzo Angles. 2012. A Comparison of Current Graph Database Models.
In Workshops Proceedings of the IEEE 28th International Conference
on Data Engineering, ICDE 2012, Arlington, VA, USA, April 1-5, 2012,
Anastasios Kementsietsidis and Marcos Antonio Vaz Salles (Eds.). [IEEE
Computer Society, 171-177. https://doi.org/10.1109/ICDEW.2012.31
Renzo Angles, Marcelo Arenas, Pablo Barceld, Peter A. Boncz, George
H. L. Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies,
Stefan Plantikow, Juan F. Sequeda, Oskar van Rest, and Hannes Voigt.
2018. G-CORE: A Core for Future Graph Query Languages, See [16],
1421-1432. https://doi.org/10.1145/3183713.3190654

Renzo Angles, Marcelo Arenas, Pablo Barceld, Aidan Hogan, Juan L.
Reutter, and Domagoj Vrgoc. 2017. Foundations of Modern Query
Languages for Graph Databases. ACM Comput. Surv. 50, 5 (2017),
68:1-68:40. https://doi.org/10.1145/3104031

Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. 2004. An
Automatic Approach to identify Class Evolution Discontinuities. In
7th International Workshop on Principles of Software Evolution (IWPSE
2004), 6-7 September 2004, Kyoto, Japan. IEEE Computer Society, 31-40.
https://doi.org/10.1109/IWPSE.2004.1334766

Pablo Barcel6 Baeza. 2013. Querying graph databases. In Proceedings
of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2013, New York, NY, USA - June 22 - 27,
2013, Richard Hull and Wenfei Fan (Eds.). ACM, 175-188. https:
//doi.org/10.1145/2463664.2465216

Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum (Eds.).
2015. 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1. IEEE Computer So-
ciety. http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?punumber=
7174815

Christian Bird, Alex Gourley, Premkumar T. Devanbu, Michael Gertz,
and Anand Swaminathan. 2006. Mining email social networks, See
[20], 137-143. https://doi.org/10.1145/1137983.1138016

Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M.
German, and Premkumar T. Devanbu. 2009. The promises and perils
of mining git. In Proceedings of the 6th International Working Con-
ference on Mining Software Repositories, MSR 2009 (Co-located with
ICSE), Vancouver, BC, Canada, May 16-17, 2009, Proceedings, Michael W.
Godfrey and Jim Whitehead (Eds.). IEEE Computer Society, 1-10.
https://doi.org/10.1109/MSR.2009.5069475

Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and
Laurent Réveillére. 2013. Popularity, Interoperability, and Impact of
Programming Languages in 100, 000 Open Source Projects. In 37th An-
nual IEEE Computer Software and Applications Conference, COMPSAC
2013, Kyoto, Japan, July 22-26, 2013. IEEE Computer Society, 303-312.
https://doi.org/10.1109/COMPSAC.2013.55

Hudson Borges, André C. Hora, and Marco Tulio Valente. 2016. Un-
derstanding the Factors That Impact the Popularity of GitHub Reposi-
tories. In 2016 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016. IEEE
Computer Society, 334-344. https://doi.org/10.1109/ICSME.2016.31
Neil C. Borle, Meysam Feghhi, Eleni Stroulia, Russell Greiner, and
Abram Hindle. 2018. Analyzing the effects of test driven development
in GitHub. In Proceedings of the 40th International Conference on Soft-
ware Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark
Harman (Eds.). ACM, 1062. https://doi.org/10.1145/3180155.3182535
Casey Casalnuovo, Premkumar T. Devanbu, Abilio Oliveira, Vladimir
Filkov, and Baishakhi Ray. 2015. Assert Use in GitHub Projects, See

[7], 755-766. https://doi.org/10.1109/ICSE.2015.88
Eldan Cohen and Mariano P. Consens. 2018. Large-scale analysis

of the co-commit patterns of the active developers in github’s top

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

SLE ’19, October 20-22, 2019, Athens, Greece

repositories. In Proceedings of the 15th International Conference on
Mining Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-
29, 2018, Andy Zaidman, Yasutaka Kamei, and Emily Hill (Eds.). ACM,
426-436. https://doi.org/10.1145/3196398.3196436

Valerio Cosentino, Javier Luis Canovas Izquierdo, and Jordi Cabot.
2016. Findings from GitHub: methods, datasets and limitations. In
Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, Miryung
Kim, Romain Robbes, and Christian Bird (Eds.). ACM, 137-141. https:
//doi.org/10.1145/2901739.2901776

Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.).
2018. Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.
ACM. https://doi.org/10.1145/3183713

Alexandre Decan, Mathieu Goeminne, and Tom Mens. 2015. On
the Interaction of Relational Database Access Technologies in Open
Source Java Projects. In Post-proceedings of the 8th Seminar on Ad-
vanced Techniques and Tools for Software Evolution, Mons, Belgium,
July 6-8, 2015. (CEUR Workshop Proceedings), Anya Helene Bagge,
Tom Mens, and Haidar Osman (Eds.), Vol. 1820. CEUR-WS.org, 26-35.
http://ceur-ws.org/Vol-1820/paper-03.pdf

Premkumar T. Devanbu, Sung Kim, and Martin Pinzger (Eds.). 2014.
11th Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, May 31 - June 1, 2014, Hyderabad, India. ACM. http:
//dl.acm.org/citation.cfm?id=2597073

Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and
Stéphane Ducasse. 2015. Untangling fine-grained code changes. In
22nd IEEE International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015,
Yann-Gaél Guéhéneuc, Bram Adams, and Alexander Serebrenik (Eds.).
IEEE Computer Society, 341-350. https://doi.org/10.1109/SANER.2015.
7081844

Stephan Diehl, Harald C. Gall, and Ahmed E. Hassan (Eds.). 2006.
Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR 2006, Shanghai, China, May 22-23, 2006. ACM. https:
//doi.org/10.1145/1137983

Inc. Facebook. 2019. GraphQL Specification. Retrieved June 27, 2019
from https://graphql.github.io/graphgl-spec/

Jean-Marie Favre, Dragan Gasevic, Ralf Limmel, and Ekaterina Pek.
2010. Empirical Language Analysis in Software Linguistics. In Soft-
ware Language Engineering - Third International Conference, SLE 2010,
Eindhoven, The Netherlands, October 12-13, 2010, Revised Selected Pa-
pers (Lecture Notes in Computer Science), Brian A. Malloy, Steffen
Staab, and Mark van den Brand (Eds.), Vol. 6563. Springer, 316-326.
https://doi.org/10.1007/978-3-642-19440-5_21

The Apache Software Foundation. 2019. Apache Jena ARQ Docu-
mentation. Retrieved June 27, 2019 from http://jena.apache.org/
documentation/query/index.html

The Apache Software Foundation. 2019. Apache TinkerPop. Retrieved
June 27, 2019 from https://tinkerpop.apache.org

The Apache Software Foundation. 2019. Gremlin Overview. Retrieved
June 27, 2019 from https://tinkerpop.apache.org/gremlin.html

The Apache Software Foundation. 2019. The Central Repository. Re-
trieved June 27, 2019 from https://repo.maven.apache.org/maven2/
Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, To-
bias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra
Selmer, and Andrés Taylor. 2018. Cypher: An Evolving Query Lan-
guage for Property Graphs, See [16], 1433-1445. https://doi.org/10.
1145/3183713.3190657

Mark Gabel and Zhendong Su. 2010. A study of the uniqueness of
source code. In Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, Santa Fe, NM,
USA, November 7-11, 2010, Gruia-Catalin Roman and André van der
Hoek (Eds.). ACM, 147-156. https://doi.org/10.1145/1882291.1882315

https://doi.org/10.1145/2597073.2597120
https://doi.org/10.1109/ICDEW.2012.31
https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1145/3104031
https://doi.org/10.1109/IWPSE.2004.1334766
https://doi.org/10.1145/2463664.2465216
https://doi.org/10.1145/2463664.2465216
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7174815
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7174815
https://doi.org/10.1145/1137983.1138016
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1109/COMPSAC.2013.55
https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1145/3180155.3182535
https://doi.org/10.1109/ICSE.2015.88
https://doi.org/10.1145/3196398.3196436
https://doi.org/10.1145/2901739.2901776
https://doi.org/10.1145/2901739.2901776
https://doi.org/10.1145/3183713
http://ceur-ws.org/Vol-1820/paper-03.pdf
http://dl.acm.org/citation.cfm?id=2597073
http://dl.acm.org/citation.cfm?id=2597073
https://doi.org/10.1109/SANER.2015.7081844
https://doi.org/10.1109/SANER.2015.7081844
https://doi.org/10.1145/1137983
https://doi.org/10.1145/1137983
https://graphql.github.io/graphql-spec/
https://doi.org/10.1007/978-3-642-19440-5_21
http://jena.apache.org/documentation/query/index.html
http://jena.apache.org/documentation/query/index.html
https://tinkerpop.apache.org
https://tinkerpop.apache.org/gremlin.html
https://repo.maven.apache.org/maven2/
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/1882291.1882315

SLE ’19, October 20-22, 2019, Athens, Greece

—

= =

flan)

—

—

—

[t

=

—

[29] GitHub. 2019. Linguist Repository. Retrieved June 27, 2019 from https:

//github.com/github/linguist/blob/master/lib/linguist/languages.yml
GraphQL Foundation. 2019. GraphQL Foundation. Retrieved June 27,
2019 from https://gql.foundation/

Mark Grechanik, Collin McMillan, Luca DeFerrari, Marco Comi, Ste-
fano Crespi-Reghizzi, Denys Poshyvanyk, Chen Fu, Qing Xie, and
Carlo Ghezzi. 2010. An empirical investigation into a large-scale Java
open source code repository. In Proceedings of the International Sympo-
sium on Empirical Software Engineering and Measurement, ESEM 2010,
16-17 September 2010, Bolzano/Bozen, Italy, Giancarlo Succi, Maurizio
Morisio, and Nachiappan Nagappan (Eds.). ACM, Article 11, 10 pages.
https://doi.org/10.1145/1852786.1852801

Ontology Engineering Group. 2019. Linked Open Vocabularies. Re-
trieved June 27, 2019 from https://lov.linkeddata.es

Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. 2004.
A Comparison of RDF Query Languages. In The Semantic Web - ISWC
2004: Third International Semantic Web Conference,Hiroshima, Japan,
November 7-11, 2004. Proceedings (Lecture Notes in Computer Science),
Sheila A. Mcllraith, Dimitris Plexousakis, and Frank van Harmelen
(Eds.), Vol. 3298. Springer, 502-517. https://doi.org/10.1007/978-3-540-
30475-3_35

Florian Holzschuher and René Peinl. 2013. Performance of graph
query languages: comparison of cypher, gremlin and native access in
Neo4;j. In Joint 2013 EDBT/ICDT Conferences, EDBT/ICDT ’13, Genoa,
Italy, March 22, 2013, Workshop Proceedings, Giovanna Guerrini (Ed.).
ACM, 195-204. https://doi.org/10.1145/2457317.2457351

Md. Anaytul Islam, Md. Moksedul Islam, Manishankar Mondal, Banani
Roy, Chanchal K. Roy, and Kevin A. Schneider. 2018. [Research Paper]
Detecting Evolutionary Coupling Using Transitive Association Rules.
In 18th IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2018, Madrid, Spain, September 23-24, 2018.
IEEE Computer Society, 113-122. https://doi.org/10.1109/SCAM.2018.
00020

Salim Jouili and Valentin Vansteenberghe. 2013. An Empirical Compar-
ison of Graph Databases. In International Conference on Social Comput-
ing, SocialCom 2013, SocialCom/PASSAT/BigData/EconCom/BioMedCom
2013, Washington, DC, USA, 8-14 September, 2013. IEEE Computer Soci-
ety, 708-715. https://doi.org/10.1109/SocialCom.2013.106

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M. German, and Daniela E. Damian. 2014. The promises and
perils of mining GitHub, See [18], 92-101. https://doi.org/10.1145/
2597073.2597074

Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M. German, and Daniela E. Damian. 2016. An in-depth study
of the promises and perils of mining GitHub. Empirical Software
Engineering 21, 5 (2016), 2035-2071.

Yun Wan Kim, Mariano P. Consens, and Olaf Hartig. 2019. An
Empirical Analysis of GraphQL API Schemas in Open Code Repos-
itories and Package Registries. In Proceedings of the 13th Alberto
Mendelzon International Workshop on Foundations of Data Manage-
ment, Asuncion, Paraguay, June 3-7, 2019. (CEUR Workshop Proceed-
ings), Aidan Hogan and Tova Milo (Eds.), Vol. 2369. CEUR-WS.org.
http://ceur-ws.org/Vol-2369/short04.pdf

Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto.
2014. Hey! are you committing tangled changes?. In 22nd International
Conference on Program Comprehension, ICPC 2014, Hyderabad, India,
FJune 2-3, 2014, Chanchal K. Roy, Andrew Begel, and Leon Moonen
(Eds.). ACM, 262-265. https://doi.org/10.1145/2597008.2597798
Dimitrios S. Kolovos, Nicholas Drivalos Matragkas, Ioannis Korkontze-
los, Sophia Ananiadou, and Richard F. Paige. 2015. Assessing the Use
of Eclipse MDE Technologies in Open-Source Software Projects. In
Proceedings of the International Workshop on Open Source Software
for Model Driven Engineering co-located with ACM/IEEE 18th Interna-

tional Conference on Model Driven Engineering Languages and Systems
(MODELS 2015), Ottawa, Canada, September 29, 2015. (CEUR Workshop

Philipp Seifer, Johannes Hartel, Martin Leinberger, Ralf Limmel, and Steffen Staab

Proceedings), Francis Bordeleau, Jean-Michel Bruel, Juergen Dingel,
Sebastien Gerard, and Sebastian Voss (Eds.), Vol. 1541. CEUR-WS.org,
20-29. http://ceur-ws.org/Vol-1541/0OSS4MDE_2015_paper_2.pdf
Vladimir Kovalenko, Fabio Palomba, and Alberto Bacchelli. 2018. Min-
ing file histories: should we consider branches?. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engi-
neering, ASE 2018, Montpellier, France, September 3-7, 2018, Marianne
Huchard, Christian Kastner, and Gordon Fraser (Eds.). ACM, 202-213.
https://doi.org/10.1145/3238147.3238169

Ralf Laimmel and Ekaterina Pek. 2010. Vivisection of a Non-Executable,
Domain-Specific Language - Understanding (the Usage of) the P3P
Language. In The 18th IEEE International Conference on Program Com-
prehension, ICPC 2010, Braga, Minho, Portugal, June 30-July 2, 2010.IEEE
Computer Society, 104-113. https://doi.org/10.1109/ICPC.2010.45
Ralf Laimmel and Ekaterina Pek. 2013. Understanding privacy policies
- A study in empirical analysis of language usage. Empirical Software
Engineering 18, 2 (2013), 310-374. https://doi.org/10.1007/s10664-012-
9204-1

Ralf Limmel, Ekaterina Pek, and Jiirgen Starek. 2011. Large-scale, AST-
based API-usage analysis of open-source Java projects. In Proceedings
of the 2011 ACM Symposium on Applied Computing (SAC), TaiChung,
Taiwan, March 21 - 24, 2011, William C. Chu, W. Eric Wong, Mathew J.
Palakal, and Chih-Cheng Hung (Eds.). ACM, 1317-1324. https://doi.
org/10.1145/1982185.1982471

Yingjun Lyu, Jiaping Gui, Mian Wan, and William G. J. Halfond. 2017.
An Empirical Study of Local Database Usage in Android Applications.
In 2017 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017. IEEE
Computer Society, 444-455. https://doi.org/10.1109/ICSME.2017.75
Justin J Miller. 2013. Graph database applications and concepts with
Neo4;j. In Proceedings of the Southern Association for Information Sys-
tems Conference, Atlanta, GA, USA. 24.

Shaikh Mostafa and Xiaoyin Wang. 2014. An Empirical Study on
the Usage of Mocking Frameworks in Software Testing. In 2014 14th
International Conference on Quality Software, Allen, TX, USA, October
2-3, 2014. IEEE, 127-132. https://doi.org/10.1109/QSIC.2014.19
MvnRepository. 2019. MvnRepository Search Engine. Retrieved June
27, 2019 from https://mvnrepository.com

Sebastian Nanz and Carlo A. Furia. 2015. A Comparative Study of
Programming Languages in Rosetta Code, See [7], 778-788. https:
//doi.org/10.1109/ICSE.2015.90

Neo4j, Inc. 2019. Neo4j Product Website. Retrieved June 27, 2019 from
https://neo4j.com/

openCypher Project. 2018. OpenCypher Version 9 Standard. Retrieved
June 27, 2019 from https://github.com/opencypher/openCypher/blob/
master/docs/openCypher9.pdf

openCypher Project. 2018. Project Website. Retrieved June 27, 2019
from http://www.opencypher.org/

Haidar Osman, Andrei Chis, Jakob Schaerer, Mohammad Ghafari,
and Oscar Nierstrasz. 2017. On the evolution of exception usage in
Java projects, See [56], 422-426. https://doi.org/10.1109/SANER.2017.
7884646

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano,
Rocco Oliveto, and Andrea De Lucia. 2018. A large-scale empirical
study on the lifecycle of code smell co-occurrences. Information &
Software Technology 99 (2018), 1-10.

Martin Pinzger, Gabriele Bavota, and Andrian Marcus (Eds.). 2017.
IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering, SANER 2017, Klagenfurt, Austria, February 20-
24, 2017. IEEE Computer Society. http://ieeexplore.ieee.org/xpl/
mostRecentlssue.jsp?punumber=7879528

Eric Prud’hommeaux and Andy Seaborne. 2013. SPARQL Query Lan-
guage for RDF. Retrieved June 27, 2019 from https://www.w3.org/TR/
rdf-spargl-query/

https://github.com/github/linguist/blob/master/lib/linguist/languages.yml
https://github.com/github/linguist/blob/master/lib/linguist/languages.yml
https://gql.foundation/
https://doi.org/10.1145/1852786.1852801
https://lov.linkeddata.es
https://doi.org/10.1007/978-3-540-30475-3_35
https://doi.org/10.1007/978-3-540-30475-3_35
https://doi.org/10.1145/2457317.2457351
https://doi.org/10.1109/SCAM.2018.00020
https://doi.org/10.1109/SCAM.2018.00020
https://doi.org/10.1109/SocialCom.2013.106
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
http://ceur-ws.org/Vol-2369/short04.pdf
https://doi.org/10.1145/2597008.2597798
http://ceur-ws.org/Vol-1541/OSS4MDE_2015_paper_2.pdf
https://doi.org/10.1145/3238147.3238169
https://doi.org/10.1109/ICPC.2010.45
https://doi.org/10.1007/s10664-012-9204-1
https://doi.org/10.1007/s10664-012-9204-1
https://doi.org/10.1145/1982185.1982471
https://doi.org/10.1145/1982185.1982471
https://doi.org/10.1109/ICSME.2017.75
https://doi.org/10.1109/QSIC.2014.19
https://mvnrepository.com
https://doi.org/10.1109/ICSE.2015.90
https://doi.org/10.1109/ICSE.2015.90
https://neo4j.com/
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
http://www.opencypher.org/
https://doi.org/10.1109/SANER.2017.7884646
https://doi.org/10.1109/SANER.2017.7884646
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7879528
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7879528
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

Empirical Study on the Usage of Graph Query Languages in Open Source Java Projects

(58]

(59]

(60]

(61]

(62]

(63]

[64

flan)

(65]

[66]

Marianna Rapoport, Philippe Suter, Erik Wittern, Ondrej Lhotak,
and Julian Dolby. 2017. Who you gonna call?: analyzing web re-
quests in Android applications. In Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories, MSR 2017, Buenos
Aires, Argentina, May 20-28, 2017, Jestis M. Gonzalez-Barahona, Abram
Hindle, and Lin Tan (Eds.). IEEE Computer Society, 80-90. https:
//doi.org/10.1109/MSR.2017.11

Jonathan Robie, Michael Dyck, and Josh Spiegel. 2017. XQuery 3.1: An
XML Query Language . Retrieved June 27, 2019 from https://www.w3.
org/TR/xquery-31/

Marko A. Rodriguez. 2015. The Gremlin Graph Traversal Machine
and Language. CoRR abs/1508.03843 (2015). arXiv:1508.03843 http:
//arxiv.org/abs/1508.03843

Coen De Roover, Ralf Laimmel, and Ekaterina Pek. 2013. Multi-
dimensional exploration of API usage. In IEEE 21st International Con-
ference on Program Comprehension, ICPC 2013, San Francisco, CA, USA,
20-21 May, 2013. IEEE Computer Society, 152-161. https://doi.org/10.
1109/ICPC.2013.6613843

Pasquale Salza, Fabio Palomba, Dario Di Nucci, Cosmo D’Uva, An-
drea De Lucia, and Filomena Ferrucci. 2018. Do developers update
third-party libraries in mobile apps?. In Proceedings of the 26th Con-
ference on Program Comprehension, ICPC 2018, Gothenburg, Sweden,
May 27-28, 2018, Foutse Khomh, Chanchal K. Roy, and Janet Siegmund
(Eds.). ACM, 255-265. https://doi.org/10.1145/3196321.3196341
Anand Ashok Sawant and Alberto Bacchelli. 2015. A Dataset for
API Usage. In 12th IEEE/ACM Working Conference on Mining Software
Repositories, MSR 2015, Florence, Italy, May 16-17, 2015, Massimiliano Di
Penta, Martin Pinzger, and Romain Robbes (Eds.). [IEEE Computer
Society, 506-509. https://doi.org/10.1109/MSR.2015.75

solid IT. 2019. DB-Engines. Retrieved June 27, 2019 from https://db-
engines.com/en/ranking_osvsc

Fabian Trautsch and Jens Grabowski. 2017. Are There Any Unit Tests?
An Empirical Study on Unit Testing in Open Source Python Projects. In
2017 IEEE International Conference on Software Testing, Verification and
Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017. IEEE Computer
Society, 207-218. https://doi.org/10.1109/ICST.2017.26

Jason Tsay, Laura Dabbish, and James D. Herbsleb. 2014. Influence
of social and technical factors for evaluating contribution in GitHub.
In 36th International Conference on Software Engineering, ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014, Pankaj Jalote, Lionel C.

[67]

[68]

[69]

[70]

[71]

[72]
[73]

[74]

[75]

[76]

SLE ’19, October 20-22, 2019, Athens, Greece

Briand, and André van der Hoek (Eds.). ACM, 356-366. https://doi.
org/10.1145/2568225.2568315

Pierre-Yves Vandenbussche, Ghislain Atemezing, Maria Poveda-
Villalon, and Bernard Vatant. 2017. Linked Open Vocabularies (LOV):
A gateway to reusable semantic vocabularies on the Web. Semantic
Web 8, 3 (2017), 437-452. https://doi.org/10.3233/SW-160213
Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark G. J. van den
Brand, Alexander Serebrenik, Premkumar T. Devanbu, and Vladimir
Filkov. 2015. Gender and Tenure Diversity in GitHub Teams. In Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, CHI 2015, Seoul, Republic of Korea, April 18-23,
2015, Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.).
ACM, 3789-3798. https://doi.org/10.1145/2702123.2702549

Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin
Chen, and Dawn Wilkins. 2010. A comparison of a graph database and
a relational database: a data provenance perspective. In Proceedings of
the 48th Annual Southeast Regional Conference, 2010, Oxford, MS, USA,
April 15-17, 2010, H. Conrad Cunningham, Paul Ruth, and Nicholas A.
Kraft (Eds.). ACM, 42. https://doi.org/10.1145/1900008.1900067
Denny Vrandecic and Markus Krotzsch. 2014. Wikidata: a free
collaborative knowledgebase. Commun. ACM 57, 10 (2014), 78-85.

https://doi.org/10.1145/2629489
Erik Wittern, Alan Cha, James C. Davis, Guillaume Baudart, and Louis

Mandel. 2019. An Empirical Study of GraphQL Schemas. arXiv e-
prints, Article arXiv:1907.13012 (Jul 2019), arXiv:1907.13012 pages.
arXiv:cs.SE/1907.13012

Peter T. Wood. 2012. Query languages for graph databases. SIGMOD
Record 41, 1 (2012), 50-60. https://doi.org/10.1145/2206869.2206879
Tao Xie and Jian Pei. 2006. MAPO: mining API usages from open source
repositories, See [20], 54-57. https://doi.org/10.1145/1137983.1137997
Ahmed Zerouali and Tom Mens. 2017. Analyzing the evolution of
testing library usage in open source Java projects, See [56], 417-421.
https://doi.org/10.1109/SANER.2017.7884645

Hao Zhong and Hong Mei. 2019. An Empirical Study on API Usages.
IEEE Trans. Software Eng. 45, 4 (2019), 319-334.

Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO:
Mining and Recommending API Usage Patterns. In ECOOP 2009 -
Object-Oriented Programming, 23rd European Conference, Genoa, Italy,
July 6-10, 2009. Proceedings (Lecture Notes in Computer Science), Sophia
Drossopoulou (Ed.), Vol. 5653. Springer, 318-343. https://doi.org/10.
1007/978-3-642-03013-0_15

https://doi.org/10.1109/MSR.2017.11
https://doi.org/10.1109/MSR.2017.11
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xquery-31/
http://arxiv.org/abs/1508.03843
http://arxiv.org/abs/1508.03843
http://arxiv.org/abs/1508.03843
https://doi.org/10.1109/ICPC.2013.6613843
https://doi.org/10.1109/ICPC.2013.6613843
https://doi.org/10.1145/3196321.3196341
https://doi.org/10.1109/MSR.2015.75
https://db-engines.com/en/ranking_osvsc
https://db-engines.com/en/ranking_osvsc
https://doi.org/10.1109/ICST.2017.26
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.3233/SW-160213
https://doi.org/10.1145/2702123.2702549
https://doi.org/10.1145/1900008.1900067
https://doi.org/10.1145/2629489
http://arxiv.org/abs/cs.SE/1907.13012
https://doi.org/10.1145/2206869.2206879
https://doi.org/10.1145/1137983.1137997
https://doi.org/10.1109/SANER.2017.7884645
https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1007/978-3-642-03013-0_15

	Abstract
	1 Introduction
	2 Graph Query Languages
	3 Methodology
	3.1 Dependency Selection
	3.2 Project Search
	3.3 Metadata Filter
	3.4 Content-Based Filtering
	3.5 Commit Histories
	3.6 Content-Based Ranking
	3.7 Manual Review

	4 Results
	4.1 First Research Question
	4.2 Second Research Question
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

