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Abstract

We study the problem of computing Stackelberg equilibria in Stackelberg games
whose underlying structure is a congestion game, focusing on singleton conges-
tion games, i.e., on congestion games where each player can choose a single re-
source, and assuming that one of them acts as leader while the other ones act as
followers. We provide a comprehensive picture of the computational complexity
of finding equilibria in these games, investigating different forms of commit-
ment (pure-strategy and mized-strategy) and followers’ tie-breaking rules (opti-
mistic and pessimistic). We identify two features of such games, namely, identi-
cal/ different action spaces and monotonic/generic cost functions, by which we
provide a complete characterization of the cases in which the equilibrium-finding
problem is either easy or hard. In particular, we show that, in the case where
the action spaces are different, the cost the leader incurs in an optimistic or pes-
simistic Stackelberg equilibrium cannot be approximated in polynomial time up
to any polynomial factor in the size of the game unless P = NP, independently
of the cost functions being monotonic or generic. This result holds even when
the commitment is restricted to pure strategies. For general mixed-strategy
commitments, we show that a similar result also holds when the players have
generic cost functions, even if their action spaces are identical. Furthermore, we
prove that the case with identical action spaces and monotonic cost functions is
easy. We also improve the efficiency of a polynomial-time algorithm available in
the literature for the computation of a socially optimal Nash equilibrium in non-
Stackelberg singleton congestion games with identical action spaces and generic
cost functions, and we extend it to the computation of a Stackelberg equilibrium
for the case where the leader is restricted to playing pure strategies. For the
cases in which the problem of finding an equilibrium is hard, we show how, in

*A preliminary version of this work appeared in [I]. This extended version contains new
computational complexity proofs for problems addressed only partially in the preliminary
version, proofs of results concerning problems not addressed previously, new algorithms, and
their experimental evaluation.
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the optimistic setting where the followers break ties in favor of the leader, the
problem can be formulated via mixed-integer linear programming techniques.
We also provide an experimental evaluation of our algorithms both on random
instances and on instances generated from our inapproximability reductions.

Keywords: Algorithmic Game Theory, Stackelberg Equilibria, Congestion
Games, Computational Complexity, Bilevel Programming

1. Introduction

The Stackelberg paradigm was originally introduced by von Stackelberg in
1934 [2] to model economic situations where a firm moves first and, then, another
firm moves second by reacting to the first firm’s move. Over the last years,
Stackelberg Games (SGs) and the corresponding Stackelberg Equilibria (SEs)
have received growing attention in the artificial intelligence literature, where
the computational problem of finding SEs in often referred to as the problem
of computing optimal strategies to commit to [3]. In their most classical form,
SGs involve a player who, acting as leader, has the ability to commit to playing
a strategy beforehand, while the other player, acting as follower, can play only
after observing the leader’s commitment [4]. The leader’s commitment can be
either pure (d la von Stackelberg [2]) if the follower can observe the action that
the leader draws from her commitment or mixed (d la Conitzer and Sandholm [3]
and von Stengel and Zamir [4]) if the follower cannot.

While, traditionally, the majority of the works on SGs have focused on the
single-leader single-follower case, the variant with more than two players has
recently started to receive more attention: See [l [6l [7] for the single-leader
multi-follower case, [8, [0 [10, 11l 12] for the multi-leader single-follower case,
and [I3], 14 [I5] 16] for the multi-leader multi-follower case.

When multiple equilibria can arise in the follower’s game for a single a leader
strategy, two main variants are typically considered: the Optimistic Stackelberg
Equilibrium (OSE), achieved when the followers break ties in favor of the leader,
and the Pessimistic Stackelberg Equilibrium (PSE), achieved when they break
ties against her. E|

Applications of SGs can be found in, among others, security games [I8]
19, 20, 2], toll-setting games [22] 23], interdiction games [24] 25], network
routing [26], inspection games [27], and mechanism design [28].

In this work, we focus on the Stackelberg paradigm applied to multi-player
SGs whose underlying structure is that of Congestion Games (CGs) (see [29, [30]
[31), B2], and [33] for a recent survey), which model scenarios involving multiple
players competing for the use of shared resources.

In a CG, the players’ actions are subsets of a given set of resources and the
costs the players incur depend (monotonically or not) on the level of resource

n the literature, optimistic and pessimistic SEs are also known as strong and weak SEs,
respectively, following the terminology of [I7] which first introduced this distinction.
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utilization, which is typically referred to as resource congestion. Despite their
simplicity, CGs model a wide spectrum of real-world problems including, among
others, job scheduling [34], facility location [35], and network routing [36]. Cru-
cially, CGs always admit Nash Fquilibria (NEs) in which the players play pure
strategies [29]. Moreover, such equilibria are always achievable in a finite number
of iterations by best-response dynamics, i.e., by applying an iterative procedure
by which, at each iteration, a player changes her action and switches to playing
a best response to the actions currently played by the other players [37].

CG games can be characterized according to the combinatorial structure of
the players’ action spaces, such as the case where the players’ actions are paths
connecting a source to a destination [38] or spanning trees [39]. An interesting
case on which we will focus in the paper is that of Singleton CGs (SCGs) [31],
i.e., CGs where each player selects a single resource. E| Computing an NE in
SCGs is easy [30] and, for the case in which all the players have the same action
space (we will refer to these games as symmetric), finding an NE minimizing
the social cost is also easy [31].

Except for some sporadic works which applied the Stackelberg paradigm
to games with a CG-like structure where the leader is a welfare-maximizing
central authority (see, e.g., [40] and its extensions), a systematic study of the
Stackelberg paradigm applied to CGs is still missing.

In this paper, we focus on Stackelberg SCGs, i.e., on the fundamental case
of Stackelberg CGs in which each player selects a single resource, assuming that
a single player takes the role of leader and commits to a strategy defined over
her resources before the other players decide how to play. We independently
address the two cases where the leader commits to a pure or a mixed strategy,
assuming that, after observing the (mixed or pure) strategy the leader has
committed to, the followers always reach a pure-strategy NE. This is w.l.o.g.
since, as the followers’ game is a CG, it always admits at least a pure-strategy
NE. For the sake of generality, we assume that the leader’s costs may differ from
the followers’.

Since in general SGs the leader may get a higher utility /incur a smaller cost
by committing to a mixed strategy [4], one may wonder whether this is also the
case in Stackelberg SCGs. Among other findings, the results that we present in
the paper show under which conditions this is the case.

1.1. Applications

Introduced in [34], one of the simplest problems which can be modeled as
Stackelberg SCGs is a job scheduling problem where the users (players) select
which machines (resources) have to execute their jobs (such as in virtualized
environments or data centers). The time needed to complete a job on a machine
(the resource cost) depends on its workload (the resource congestion). Assuming
a single job per player to be executed on a single machine without preemption,

2See [30] for a generalization of SCGs where each player’s action space is expressed as a
matroid defined over the set of resources.
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the players’ actions are singletons and the problem fits in the setting of SCGs.
The case of a single-leader Stackelberg SCG arises when one of the players is the
owner of the machines and is willing to share her resources with the others, but,
being the owner, she decides which resource/machine to pick before the others
do. Under the assumption that the players schedule their jobs in an open-loop
fashion, i.e., without any knowledge of the current congestion of the machines,
it is plausible that the followers could not observe the machine on which the
leader’s job is running. It is therefore natural, for the leader, to try and achieve
a smaller cost by committing to a mixed strategy.

Another application can be found in facility location problems [35, 41] where
the players are firms and they have to decide on which site to locate their infras-
tructures (which, depending on the specific application, may be, e.g., factories,
shops, or mineral extraction plants). Each firm selects a location from a list
of candidate sites (the resources) and the cost it incurs depends on the num-
ber of firms that made the same choice. In these scenarios, the single-leader
Stackelberg SCG case arises whenever one of the firms either has a competitive
advantage over the others (due to, e.g., being a governmental agency) or, as, in
the job scheduling problem, it owns the candidate sites and, thus, can decide
before the other ones where to locate its infrastructures. Mixed-strategy com-
mitments are plausible when the time between the choice of the location and the
beginning of the construction works of the facility is extremely long, due to, e.g.,
administrative issues and/or the time needed for obtaining the authorizations.
In this case, the follower could prefer to choose her location before observing the
beginning of the construction works of the leader’s facility to avoid incurring an
excessive delay w.r.t. the leader.

It is worth pointing out that, due to constituting the simplest scenario in
which the Stackelberg paradigm is applied to a CG, Stackelberg SCGs are the
natural starting point to tackle more general settings involving arbitrary actions
and multiple leaders.

1.2. Original contributions

In this paper, we draw a complete picture of the computational complex-
ity of the problem of finding an SE in SCGs (i.e., CGs where each player can
select a single resource) with one leader and multiple followers and pure or
mixed-strategy commitments, considering the cases of finding either an OSE
or a PSE. Interestingly, we identify two features of SCGs which allow for thor-
oughly characterizing hard and easy game instances. The first one concerns the
relationship among the action spaces of the players, with two possibilities: the
one where the players are symmetric as they have identical action spaces and
therefore they share the same set of resources, and the one where their action
spaces may differ. The second feature is related to the shape of the players’ cost
functions. T'wo cases are possible: the one where these functions are monoton-
ically increasing in the resource congestion and the one in which they may be
not. Moreover, for each of the four cases identified by these two independent
features, we provide a concrete application of our model, motivating the study
of the four scenarios beyond their purely theoretical interest.



Table 1: Summary of the original contributions on the problem of computing an O/PSE in
Stackelberg SCGs with a single leader provided in this paper.

Optimistic
Leader’s commitment Pure Mixed
Identical Monotonic |Complexity P P
action spaces costs Algorithm Greedy Greedy
(symmet)nc Generic | Complexity P NP-hard, ¢ Poly-APX
ames o
8 costs Algorithm ||Dynamic Programming MILP
Monotonic |Complexity|| NP-hard, ¢ Poly-APX |NP-hard, ¢ Poly-APX
Different costs | Algorithm MILP MILP
action spaces | ..o .. |Complexity|| NP-hard, ¢ Poly-APX |[NP-hard, ¢ Poly-APX
costs | Algorithm MILP MILP
Pessimistic
Leader’s commitment Pure Mixed
Identical Nlog)zttgnic Comp-lexlty P P
action spaces Algorlthm Greedy Greedy
(symmet)rlc Generic | Complexity P NP-hard, ¢ Poly-APX
ames ok
& costs Algorithm ||Dynamic Programming -
Monotonic |Complexity|| NP-hard, ¢ Poly-APX |NP-hard, ¢ Poly-APX
Different costs Algorithm - -
action spaces | ... |Complexity| NP-hard, ¢ Poly-APX |NP-hard, ¢ Poly-APX
costs Algorithm - -
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Table [I] summarizes the original results that we provide with this work.
In particular, we show that, in SCGs where the players’ action spaces can be
different, computing an O /PSE is not in Poly-APX unless P = NP even when the
players’ cost functions are monotonic, the leader has only one action available,
and her costs are equal to the followers’. This result also holds if we restrict
the leader to pure-strategy commitments, given that the leader has only one
action available. Moreover, this also shows that, as we will better explain in
the following, the same inapproximability result also holds for the problem of
computing, in the same game setting, an NE which minimizes/maximizes the
cost incurred by any given player, a result which may be of independent interest.

For the symmetric games where the players have identical action spaces, we
show that the complexity of computing an O/PSE depends on the nature of
the players’ cost functions. For the case where the players’ costs are generic
(monotonic or not) functions of the resource congestion, we prove that the
problem is not in Poly-APX unless P = NP. On the other hand, we show
that, in symmetric games, the problem of computing an O/PSE can be solved
in polynomial time when the cost functions are monotonic by proposing an
algorithm for it. While proving the soundness of the algorithm is straightforward
when the leader’s commitment is a pure strategy, the analysis is more involved
with mixed-strategy commitments. As we will show, our result follows from
the fact that mixed-strategy commitments do not allow the leader to incur a
cost smaller than the one she incurs with a pure strategy. We also consider
the case where the leader is restricted to pure-strategy commitments, providing
a polynomial-time algorithm for its solution which applies even to symmetric
games with generic cost functions. This algorithm is based on a polynomial-
time dynamic programming algorithm available in the literature for computing
a socially optimal NE in non-Stackelberg SCGs with identical action spaces,
which we improve and extend to solve our problem.

Finally, we provide two mathematical programming formulations to compute
an OSE for games with different action spaces in, at most, exponential time, and
a more compact one for the symmetric games. Experimentally, we also evaluate
the scalability of the two formulations when fed to a state-of-the-art Mized-
Integer Linear Programming (MILP) solver and compare their performance—in
terms of computing time and solution efficiency—to simple heuristic algorithms
based on best-response dynamics.

1.8. Structure of the work

The remainder of the paper is organized as follows. Section [2] provides a
review of the literature on the computation of SEs in single and multi-leader
SGs. Section [3]introduces basic concepts and the notation we use, including the
formal definitions of the game models we consider, also providing some concrete
examples where they can be applied. Section [4] provides the main hardness
results for the problem of computing an O/PSE in games where the players’
action spaces are different. Section [5] does the same in games where the play-
ers’ action spaces are identical, but the cost functions are generic. Section [6]
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establishes which problems can be solved efficiently, providing the correspond-
ing polynomial-time algorithms. Section [7]proposes mathematical programming
formulations for computing an OSE in the intractable cases. Section [§] provides
experimental results assessing the scalability of the proposed formulations. Fi-
nally, Section [J] concludes the work summarizing the results and pointing out
directions for future research. Full proofs are reported in while
supplementary experimental results are provided in

2. State of the Art on Stackelberg Equilibrium computation

In this section, we provide a comprehensive review of the literature on SE
computation. First, we focus on SGs with a single leader and one or more
followers. Then, we conclude the section with a brief discussion on the works
dealing with games involving multiple leaders and followers.

2.1. Stackelberg games with a single leader

When focusing on SGs involving one leader and one or more followers, we
can classify most of the works in the literature according to two crucial aspects:
the followers’ tie-breaking rule (which distinguishes between OSEs and PSEs)
and the structure of the underlying followers’ game.

Table[2 summarizes most of the known computational results for the problem
of computing SEs in single-leader SGs according to these two features.

The problem is known to be easy in 2-player normal-form games in both the
optimistic and the pessimistic setting, as shown in, respectively, [3] and [4]. In
particular, [5] shows that the problem of computing an OSE can be formulated as
a single Linear Program (LP), while [4] illustrates that a PSE can be computed
by solving a polynomial number of LPs.

When one considers the case of n-player normal-form games with n > 3,
many cases are possible, depending on how the followers behave after observing
the leader’s commitment. A reasonable choice, which has been widely investi-
gated in the literature, is to assume that they play simultaneously and nonco-
operatively, reaching an NE. In this case, it is known that finding an O/PSE
is not in Poly-APX unless P = NPeven when there are only two followers (i.e.,
with n = 3) [2]. Computing an OSE becomes easy for any n if we restrict the
followers to playing pure strategies only, as it requires the solution of an LP for
each outcome of the followers’ game, whose number is polynomial in the size
of the game representation [7]. On the other hand, computing a PSE is still
NP-hard even with only two followers playing pure strategies [6] and it is not in
Poly-APX unless P = NP with at least three followers (i.e., with n > 4) [1].

As for algorithms, the authors of [43] [44], 42] show how to formulate the
problem of finding an OSE in n-player normal-form games as a nonlinear and
nonconver mathematical program, which they solve via spatial branch-and-
bound techniques. As shown in [6], when the followers are restricted to play
pure strategies a PSE can be found by employing an algorithm which solves
multiple lexzicographic Mized-Integer Linear Programs (lex-MILPs), which, as
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the authors show, can be further enhanced by embedding it in a branch-and-
bound scheme.

As to works on n-player normal-form games where the followers do not play
an NE, [B] shows that finding an OSE is easy when the followers can play
correlated strategies, while [3] proves that the problem becomes NP-hard if the
followers play in a hierarchical fashion.

Besides normal-form games, the literature has devoted considerable attention
to Bayesian 2-player normal-form games where the follower can be of different
types, mainly due to their relevance in security games. In this setting, it is known
that finding an OSE is Poly-APX-complete [45] and that an equilibrium can be
found by solving a MILP [I8]. As recently shown in [46], the same hardness
result also holds for the problem of computing a PSE. [46] also provides an
algorithm for computing an equilibrium via the solution of exponentially-many
LPs, without resorting to the normal-form representation.

Over the last years, the Stackelberg paradigm has also been applied to 2-
player extensive-form games. In particular, the authors of [47] prove that finding
an OSE is NP-hard even in games without nature. The results are extended by
the authors of [48], who prove that computing a PSE is also NP-hard. Works
such as [49] [50] address the problem of computing an OSE in extensive-form
games, providing worst-case exponential-time algorithms based on MILPs. In
the context of extensive-form games, attempts have also been made towards
the refinement of SEs. In particular, the authors of [51] introduce the idea of a
robust SE, where an optimal commitment is found against a worst-case follower’s
utility model. Pursuing a different approach, the authors of [48] and [52] show
how to guarantee an optimal commitment off the equilibrium path by adopting
the idea of trembling-hand perfection to the Stackelberg setting.

Other works attempted to relax the general structure of normal-form games,
trying to identify games with many players where SEs can be efficiently com-
puted. Along this line of research, the authors of [46] analyze n-player polyma-
triz games, which are games where the players interact pairwise and each player
takes part to a 2-player normal-form game with each of the other players. For
these games, [42] shows that, when the followers play mixed strategies, finding
an O/PSE is not in Poly-APX unless P = NP. The result is extended in [46],
where the authors show that it holds even when the followers are restricted to
pure strategies. While, for fixed n, finding an OSE with the followers playing
pure strategies is easy, the same does not hold for PSEs, as the problem is hard
even with only three followers (i.e., with n = 4) [53].

For works studying other game models, such as stochastic games and Bayesian
signaling games, we refer the reader to [54] [55] 56].

While the Stackelberg paradigm has already been applied to games with
a structure resembling that of CGs, the only works which, to our knowledge,
pursue this line of research are [40] and its extensions [57, 58, [59]. We remark,
though, that the author of [40] considers a different Stackelberg paradigm where
the leader is an authority whose objective is to minimize the social cost of the NE
reached by the followers. Differently, in this work, as also done in all the papers
we mentioned above, we adopt the classical Stackelberg paradigm introduced
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by [M] and [3], assuming that the leader is a special player who has the ability
to commit to a strategy beforehand with the aim of minimizing her own cost.

2.2. Stackelberg games with multiple leaders

SGs with multiple leaders are widely unexplored. In this setting, the key
aspect by which the works in the literature can be categorized is how they
model the leaders’ commitments and, in particular, on what kind of equilibrium
constraints they enforce on them.

The vast majority of the works on multi-leader SGs is restricted to the field
of security games and address games with multiple uncoordinated defenders (the
leaders) and a single attacker (the follower) [8 [0l 10, I} 12]. All these works
introduce models which enforce NE-like constraints on the leaders’ commitments
and, in general, they all suffer from the drawback that the resulting SEs may
not exist.

Recently, the authors of [I3] studied the Stackelberg paradigm with multiple
leaders and followers in SGs with an arbitrary structure. Their framework gen-
eralizes the one introduced in [5] by considering the case in which the leaders’
commitments are governed by a correlation device which must obey some par-
ticular constraints which, in turn, guarantee that an equilibrium always exists.

The operations research literature provides further works on multi-leader-
follower settings—some of which can be found in the literature on mathematical
programs with equilibrium constraints [60]. Such works assume that both leaders
and followers be subject to NE-like constraints, with the latter playing in the
game which results after observing the leaders’ strategies [14, (15 [16]. Other
works from the same field focus on oligopoly models where the leaders select
the level of investment to maximize their profits [61], [62].

3. Preliminaries

First, we introduce our notation and provide the formal definitions of Stack-
elberg SCGs and their equilibria. We conclude the section with some application
examples showing how the games we consider map to real-world problems.

3.1. Stackelberg singleton congestion games and their symmetric variant

Adopting the notation introduced in [63], we provide the following formal
definition of the class of games we study:

Definition 1 (Stackelberg SCG (SSCG)). A Stackelberg SCG (SSCG) is a
tuple (N, R, A, co,cy), where:

o N =FU{{} is a finite set of players, £ being the leader and F the set of
followers;

e R is a finite set of resources;

o A = {A,}pen is the set of all players’ actions, with A, C R, for each
p € N, being the set of actions of player p;
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o ¢/ ={civticr and ¢y = {c; s bicr are, respectively, the leader’s and follow-
ers’ cost functions, with c;¢,c;y : N = Q being the costs of resource i as
a function of its congestion for, respectively, the leader and the followers.

We denote by n and r the number of players and of resources, i.e., n := |N|
and r := |R|. As usual, we assume ¢; ¢(0) = ¢; (0) = 0 for every i € R. We
call the players’ cost functions (weakly) monotonic if, for every resource i € R,
cio(x) <cig(x+1) and ¢; f(x) < ¢ f(x+1) for all z € N, and strictly monotonic
if all the inequalities are strict. Whenever the inequalities are not satisfied, we
say that the players’ cost functions are nonmonotonic.

We call strategy of player p € N a probability distribution o, over A,
where 0,(ap) denotes the probability that a, € A, is played. Let A, be the set
of player p’s strategies. A strategy o, € A, is said pure if it prescribes player p
to always play some action a, € A,, i.e., if 0,(a,) = 1 and oy,(a;,) = 0 for all
ay, € Ap \ {a,}. Otherwise, o, is said mixed. A collection of strategles is called
strategy profile in general and action profile if all the strategies it contains are
pure. In this work, we collectively denote by o = (0y,a) a strategy profile in
which the leader plays a (possibly) mixed strategy oy € Ay and the followers
play the pure strategies contained in the action profile a = (a,)per € X perAp.

Let a = (ap)per € XpeFAp be a followers’ action profile. We denote by
vié = |{p € F | ap, = i}| the number of followers selecting resource i € R in
a. This quantity is equal to the resource congestion caused by the followers’
presence only. We call followers’ configuration (induced by action profile a) the
vector v* € N” whose i-th component is v} for all i € R.

For any o, € Ay, we define the followers’ expected cost for resource i € R
given the leader’s strategy o, as the function ¢] b N— Q. Specifically, ¢ "f is
a function of the number = € N of followers Who select resource i, i.e.:

' (x) = au(i)ei p(x + 1) + (1 — o0(i))ei (). (1)

Note that, given a leader’s strategy o, and a followers’ congestion z, all the
followers who select resource i € R experience a congestion that may (with
probability o,(7)) or may not (with probability 1 —o¢(4)) be incremented by one
w.r.t. x, depending on whether the leader chooses resource i or not. Given the
strategy profile 0 = (0¢, a), the leader’s cost is:

=Y ouli)eie(vf +1). (2)

i€EAy

Note that, whenever the leader selects resource ¢ € R (which happens with
probability o4(7)), her costs depends on the followers’ congestion v plus an
additional unit of congestion which due to her choosing that resource.

After observing a leader’s commitment o, € Ay, the followers play an SCG
where the resource costs are specified by the functions ¢}%, for i € R. We
assume that, after witnessing the leader’s commitment, the followers play a
pure-strategy NE. This is always possible as, being a CG, the new SCG played
by the followers always admits one [29].

11
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Given a strategy profile o = (o, a), the followers’ action profile a = (ap)per
is an NE for the leader’s strategy oy if the following holds:

ey3

Can s Wa,) Scir (Ve +1) Vp € Fray, € Ay,

In words, a is an NE for o, if no follower has an incentive to unilaterally deviate
from a,, by selecting another resource a;,. In the following, for any given o, € Ay
we let £7¢ be the set of NEs in the followers’ game resulting from oy.

We also consider symmetric SSCGs (SSSCGs), a subclass of SSCGs in which

every player can select every resource, i.e., where A, = R for all p € N:

Definition 2 (Symmetric SSCG (SSSCG)). We call an SSCG defined by a
tuple (N, R, A, cp, cy) symmetric if A = XpeFR,

Note that, in an SSSCG, all the followers are identical due to being allowed
to choose the same resources. Thus, only the number of followers selecting each
resource is significant and, therefore, the action profile a of any follower can
be equivalently represented by the followers’ configuration v* it induces. As a
consequence, when studying SSSCGs we do not explicitly refer to the followers’
action profiles but, rather, to their configurations v € N, with )}, pv; =n—1.
When working with followers’ configurations rather than with action profiles,
with a little abuse of notation we adopt o = (o4, v) to denote a strategy profile.
Adopting this notation, we have that v is an NE for the leader’s strategy oy € Ay
if the following holds:

5 ) (v +1) VieR:v>0,j€R

3.2. Stackelberg equilibria in SSCG's

Given a leader’s strategy, the followers’ SCG may admit multiple NEs. As
customary in the literature, we consider two extreme cases which lead to the
definition of OSEs and PSEs []. In the first one, we assume that the followers
act in favor of the leader, playing an NE minimizing her cost. In the second
one, we assume that the followers act against the leader, always playing an
NE which results in the maximum leader’s cost. Let us remark that we are
not assuming that the followers can coordinate so as to reach a particular NE
in the game resulting from the leader’s commitment. The leader’s cost at an
OSE corresponds to the smaller cost the leader may incur under the optimistic
assumption that the followers would (somehow) end up playing an NE which
minimizes the leader’s cost. Differently, the leader’s cost at a PSE corresponds
to a cost value the leader could always incur independently of the followers’
behavior. Formally:

Definition 3. A strategy profile 0 = (04,a) is an OSE if it solves the following
bilevel programming problem:

. . (O'e,a)
min min & .
oiEAy a€EEC
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As it is clear, an OSE always exists in SSCGs and, since the same objective
function is minimized in both levels, the problem can be equivalently rewritten
as the following single-level problem:

min o),
0eEAL, aEETL
Definition 4. A PSE, if it exists, is a strategy profile o = (04, a) which solves
the following bilevel problem:

H (0¢,a)
min max CZ .

gr€EAy acE

Let us recall that, in general, the problem in Definition [f] may not admit a
minimum (but only an infimum) and, thus, a PSE may not exist [4].

Proposition 1. There are SSSCGs in which a PSE does not exist.

Proof. Consider the following instance of an SSSCGs (whose cost functions are
reported in the table below), where |F| =1 and R = {rq,r2}.

L|Cri,t Cri,f|Cral Crof
11 2 1 2 1
0 2 2 2

Clearly, the single follower selects ry if op(r1) < %, she chooses r if op(r1) > %,
and she is indifferent between r1 and 7o if og(ry) = 1 Thus, the leader’s cost
is 2 — 204(r) if o4(r1) < %, while it is 2 if o(r1) > 35, since, in the pessimistic
case, the follower selects ro rather than r; when oy(rq) = % As a result, the
problem in Definition [4f achieves an infimum with value 1 at oy(r1) = %, but it

does not admit a minimum. Thus, the game does not admit a PSE. O

3.8. Ezxamples of applications

Our characterization of hard and easy SSCG instances is based on two inde-
pendent features of these games, namely, identical/different action spaces and
monotonic/generic cost functions.

We illustrate how the different scenarios identified by these two features arise
in the applications we mentioned in Subsection [L.1

e Identical action spaces. In job scheduling problems, the action spaces are
identical whenever the jobs can be executed on any machine. Similarly, in
facility location problems, this happens if the firms can build their facilities
on any candidate site, without restrictions.

e Different action spaces. In job scheduling problems, the action spaces
are different whenever each job can be executed only on the machines
which meet the job’s technical specifications (such as, e.g., running a cer-
tain operating system or being equipped with CPUs supporting a certain
instruction set architecture). In facility location problems, the case of
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different action spaces arises whenever each firm is willing to build its fa-
cility only on a subset of the candidate sites such as, e.g., those located
in geographical areas which are more likely to meet the firm’s projected
demand.

e Monotonic cost functions. In both the job scheduling and the facility lo-
cation problems, the case of monotonic costs is natural. In job scheduling,
the time required to execute a job is likely to increase with the number
of jobs simultaneously running on the machine (since, e.g., there is an
overhead due to process switching). In facility location, the cost functions
are monotonic if, e.g., the firms compete for different market segments
(one per candidate site) and the larger is the number of firms selecting
the same segment the smaller is the market share of each firm (and, thus,
the larger the profit loss).

e Generic cost functions. In facility location problems, the case of generic
cost functions arises if we consider costs which depend (additively) on
both the profit loss and on the cost for the construction works, under
the assumption that the latter be equal to a fixed cost (incurred when
the construction works start) plus a variable cost decreasing with the
congestion level due to economies of scale (since, e.g., building two facilities
on the same site is likely to be cheaper than building them at different
ones, as it allows for sharing workers between them).

4. SSCGs NP-hardness and inapproximability

Let us start our analysis with a negative result, showing that the problem of
computing an O/PSE in SSCGs with different action spaces is computationally
intractable even if the leader can only select a single resource and all the costs are
monotonic functions of the resource congestion. This also shows that, in general
non-Stackelberg SCGs with different action spaces, computing an NE which
either maximizes or minimizes the usage of a resource (or the cost incurred by a
player) is hard, which may be of independent interest. Moreover, given that our
intractability results hold even when the leader has only one resource available,
computing an O/PSE in SSCGs with different action spaces is intractable even
if we restrict the leader to pure-strategy commitments.

First, we prove that finding an OSE is not in Poly-APX unless P = NPusing
a reduction from 3SAT. As a result, the leader’s cost in an OSE cannot be ap-
proximated, in polynomial time, up to any approximation factor which depends
polynomially on the size of the game given as input, unless P = NP. Then, we
show that the same intractability result holds for computing a PSE by means
of a different reduction still based on 3SAT.

For the main results in this section (namely, Theorems [1| and we only

report proof sketches. The full proofs are provided in
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4.1. Computational complexity of finding an OSE in SSCGs

We analyze the problem of computing an OSE in SSCGs in the general case
with different action spaces. The hardness and inapproximability results that we
present are based on a reduction from 3SAT (see [64] for its NP-completeness),
which is defined as follows:

Definition 5 (3SAT). Given a finite set C' of 3-literal clauses defined over a
finite set V' of Boolean variables, is there a truth assignment to the variables
which satisfies all the clauses?

In the following, let [ € ¢ denote a literal (i.e., a variable or its negation) ap-
pearing in clause ¢ € C and v(l) € V denote the variable corresponding to that
literal. Moreover, given a 3SAT instance (C,V), let m and s be, respectively,
the number of clauses and variables, i.e., m := |C| and s := |V].

We introduce our reduction in the proof of the following theorem.

Theorem 1. Computing an OSE in SSCGs with different action spaces is NP-
hard, even if the leader has only one action (i.e., she can only select a single
resource) and the cost functions are monotonic.

Proof sketch. We provide a reduction from 3SAT. Specifically, given a 3SAT
instance (C, V) and a real number 0 < € < 4, we build an instance I'.(C, V') of
an SSCG admitting an OSE ¢ = (0, a) in which ¢f = ¢ if and only if (C,V)
is satisfiable; if not, ¢ = 4 in any OSE. I'.(C, V') has one resource ry4 for each
clause ¢ € C' and four resources, namely 7y, ry ¢, 75, and r; ¢, for each variable
v € V. It also has resources ry ., and 74 5 for every ¢ € C and v € V. Moreover,
there is an additional resource r;. Figure [I| shows an example of the instance
['.(C,V). The following table specifies the cost functions, where, additionally,
Cro.f = Cry.fs Cros.f = Cry o fs Crouf = Croufs and ¢y, f = ¢y, ¢ (let us remark
that, given e < 4, the costs are monotonic functions of the resource congestion):

T Cre.f  Cro,f  Croo,f  Crow,f  Crif
1 2 0 0 1 e
[2,m] 5 0 6 6 4
m+1,00 | 5 7 6 6 4

The leader can only select resource 7y (i.e., o¢(r;) = 1) and ¢J = ¢ if and only if
vy, =0, while ¢ = 4 otherwise. For each variable v € V, the gadget composed
of 7y, Tu,t, T5, and 73 ¢ is built in such a way that, in order to have v, = 0, either
all the m followers p, ;, (with k € {1,...m}) select r, (v is false) or all the m
followers pp . (with k € {1,...m}) select r; (v is true). Due to how the costs
are defined, in the first case each follower py , (one per clause ¢ € C') prefers
T¢ v Over r, while, in the other case, each follower py 5 (for every ¢ € C) prefers
r¢,5 rather than r3. For each clause ¢ € C, there is a follower ps; who has to
choose between ry and 7, preferring the latter unless she is the only follower
selecting 4. Moreover, there is a follower py who can choose between 7, and
the resources r4,; for all literals [ € ¢, preferring the former only if she is the
only one selecting it. In order to have v, = 0, for every clause ¢ € C py; must
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therefore select r4 and pg must choose one of the resources ry;. Due to how
the costs are defined, this happens only if py; selects r;, which is the case only
if v < m. This implies that v(l) is true if [ is positive, while it is false if
is negative, thus satisfying clause ¢. Thus, since the same argument holds for
every ¢ € C, ¢j = € if and only if the 3SAT instance is satisfiable. O

Figure 1: Example of a game instance I'c (C, V') used in the reduction in the proof of Theorem
with V = {z,y,2}, C = {¢1,¢2}, 1 =xVyVz,and g2 =FVyV Zz

The proof of Theorem (1] also shows the following:

Corollary 1. In general non-Stackelberg SCGs with different action spaces,
computing an NE minimizing the cost of a given player (or the usage of a given
resource) is NP-hard even if the cost functions are monotonic.

Proof. The result is easily proved by noticing that, in the I'.(C, V) games de-
fined in the proof of Theorem [1| since the leader can only use a single resource
any OSE ¢ = (04, a) is also an NE. Thus, given that the followers behave opti-
mistically, such games admit an NE with ¢J = e if and only if the corresponding
3SAT instance is satisfiable; otherwise ¢§ = 4 in any NE. As a result, due to
3SAT being NP-complete, computing an NE minimizing the cost of a given
player (the leader) is NP-hard. Since ¢ = e if and only if v = 0, the same
holds for the problem of finding an NE which minimizes the usage of a given
resource. O

Theorem [1| also implies that the leader’s cost in an OSE cannot be efficiently
approximated up to any factor which depends polynomially on the size of the
input:

Corollary 2. The problem of computing an OSE in SSCGs with different action
spaces is not in Poly-APX unless P = NP even if the leader has only one action
and the cost functions are monotonic.
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Proof. Given a 3SAT instance (C,V), let us build an SSCG T'.(C,V) as in
the proof of Theorem We have already proved that T'.(C,V) admits an
OSE ¢ = (0¢,a) in which ¢f = € if and only if (C,V) is satisfiable and that,
otherwise, ¢§ = 4. Let ¢ = 2;%. Assume that there exists a polynomial-
time approximation algorithm .4 with approximation factor poly(n,r), ie., a
polynomial function of n and r. Assume (C,V) is satisfiable. .4 applied to
I'.(C,V) would return a solution with ¢J < 2;% poly(n,r). Since, for n and r
large enough, 2;% poly(n,r) < 4, A would allows us to decide in polynomial
time whether (C, V) is satisfiable, a contradiction unless P = NP. O

Since that the intractability results, in Theorem [T]and Corollary 2] hold even
when the leader can select only a single resource, we also obtain the following:

Corollary 3. The problem of computing an OSE in SSCGs with different action
spaces is NP-hard and not in Poly-APX unless P = NP even if we restrict the
leader to pure-strategy commitments.

Since the followers break ties in favor of the leader in the reduction, the
results in Theorem [I] and Corollaries [2] and [3] do not apply to the problem of
finding a PSE. We consider this case in the next subsection.

4.2. Computational complexity of finding a PSE in SSCGs

The hardness and inapproximability results that we are about to present for
the problem of computing a PSE in SSCGs with different action spaces are still
based on 3SAT but rely on a different reduction.

Theorem 2. Computing a PSE in SSCGs with different action spaces is NP-
hardeven if the leader has only one action and the cost functions are monotonic.

Proof sketch. We provide a reduction from 3SAT with a structure similar to the
one used in Theorem [l| for the optimistic setting. In this case, given a 3SAT
instance (C,V) and a real number 0 < € < 4, we build I'.(C, V) so that it
admits a PSE ¢ = (0y, a) in which ¢ = € if and only if (C, V') is not satisfiable;
otherwise, if (C,V) is satisfiable, ¢ = 4 holds in any PSE. Figure [2| shows
an example of game I'.(C, V). The following table specifies the cost functions,
where, additionally, ¢, ; = ¢, f, Cryof = Cryo.py and ¢ 5 = cp, 0 (let us
remark that, given € < 4, the costs are monotonic functions of the the resource
congestion):

€ Cro.f  Crof  Crouf  Cryo.f  Crif
1 2 1 2 0 €
[2,m] 5 1 5 7 €
m-+1 5 6 5 7 €
[m+s+1,0] 5 6 5 7 4

As in the other reduction, the leader can only choose resource ry, but, in this
case, ¢ = 4 holds if and only if 1! = m+s (i.e., all the followers py ¢, for ¢ € C,
and p, ¢, for v € V, select resource r;), while ¢ = € otherwise. Differently from
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the other reduction, for every variable v € V the gadget corresponding to v
is composed of three resources r,, r, and r5 ;. It is built in such a way that,
whenever follower p,; selects resource r;, at least one between p,, (if v is false)
and pp (if v is true) must choose r, ¢, preferring it over the other resource r,
(or rz). Given how the costs are defined, each follower py , prefers ry ., over r,
whenever r, is chosen by p,. Similarly, each follower py 5 is better off selecting
T¢,5 rather than ry if py chooses ry. For each clause ¢ € C, in addition to
follower py ¢ we have three other followers p; 4, one per literal [ € ¢ (differently
from the other reduction, where there is only ps). Whenever follower py ; selects
¢, at least one follower p; 4 must choose 7y, otherwise pg; would decrease her
cost by switching to r4. Since, given how the costs are defined, p; ¢ prefers being
the only follower using rg; rather than selecting 74, follower ps; must choose
r4,1- This implies that p; would select resource r;, and, thus, [ evaluates to true,
satisfying clause ¢. Since the same argument holds for every ¢ € C, ¢f = 4
holds if and only if the 3SAT instance is satisfiable. O

Figure 2: Example of a game instance I'c (C, V') used in the reduction in the proof of Theorem
with V' = {z,y,2}, C = {¢1,02}, 1 =xVyVz and ¢p2 =T VyV Z.

Theorem [2] also implies the following:

Corollary 4. In general non-Stackelberqg SCGs with different action spaces,
computing an NE mazimizing the cost of a given player (or the usage of a given
resource) is NP-hard even if the cost functions are monotonic.

Proof. In games T'c(C, V) such as those used in the proof of Theorem [2| any
PSE is also an NE (since the leader can choose a single action). Moreover,
I'.(C,V) admits a PSE 0 = (04,a) in which ¢ = 4 if and only if the given
3SAT instance has answer no, otherwise ¢ = e. This proves the result for the
problem of finding an NE maximizing the cost of a given player. Since ¢ = 4
if and only if v}, = m + s, the same holds for the problem of computing an NE
maximizing the usage of a given resource. O
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Furthermore, from Theorem [2 it directly follows that the leader’s cost in a
PSE cannot be efficiently approximated up to any approximation factor which
depends polynomially on the size of the input:

Corollary 5. The problem of computing a PSE in SSCGs with different action
spaces is not in Poly-APX unless P = NP, even if the leader has only one action
and the cost functions are monotonic.

Proof. Given a 3SAT instance (C, V), let us build an instance I'.(C, V) of SSCG
as in the proof of Theorem We have already proven that I'.(C, V') admits
a PSE 0 = (0y¢,a) in which ¢ = ¢ if and only if the 3SAT instance has an-
swer no; otherwise, ¢ = 4 in any PSE. Let € = ﬁ Assume that there
exists a polynomial-time approximation algorithm A4 with approximation fac-
tor poly(n,r), i.e., a polynomial function of n and r. Assume the answer to
the 3SAT instance is no. A applied to I'.(C, V') would return a solution with
cj < 2;% poly(n,r). Since, for n and r large enough, 2;% poly(n,r) < 4, A
would allow us to decide in polynomial time whether the answer to the 3SAT
instance is yes or no, a contradiction unless P = NP. O

Since in the reduction the leader only has one resource available we can
conclude the following:

Corollary 6. The problem of computing a PSE in SSCGs with different action
spaces is NP-hard and not in Poly-APX unless P = NP even if we restrict the
leader to pure-strategy commitments.

5. SSSCGs NP-hardness and inapproximability

In this section, we focus on SSSCGs (the subset of SSCGs in which the
players have identical action spaces), showing that the problem of finding an
O/PSE in such games is NP-hard and not in Poly-APX unless P = NP. This
result matches the other result that we have established for the problem of com-
puting an O/PSE in general SSCGs with different action spaces. For SSSCGs,
the inapproximability result relies on the nonmonotonicity of the players’ cost
functions and on the leader’s ability to commit to mixed strategies. This must
necessarily be the case since, as we will show in Section [6] the problem is easy
when the costs functions are monotonic and the players are symmetric (Theo-
rem E[), and the same holds even with generic cost functions if we restrict the
leader to pure-strategy commitments (Theorem [11] and its Corollary @

For the problem of computing an OSE, we rely on a reduction from K-
PARTITION, a variant of PARTITION with an additional size constraint,
whereas we adopt a different reduction based on the classical version of PAR-
TITION for the problem of computing a PSE. The two problems are defined as
follows:

Definition 6 (PARTITION). Given a finite set S = {x1,...,35/} of positive
integers x; € LT with Y, g x; even, is there a partition (S', S\ S") of S, with
S'C S, such that 3, co @i =3, cq\50 Ti?
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Definition 7 (K-PARTITION). Given a finite set S = {x1,...,x g/} of positive

integers x; € Lt with both |S| and Y-, s x; even and a positive integer K < |2ﬂ,

is there a partition (S',S\ S’) of S, with S C S and |S'| = K such that
ineS’ Ti = ZmiES\S’ i ?

Letting s = %Zwe < T, we assume for both problems that z; < s for all
z; € S. Indeed, if some x; > s then Zmes, x; > s holds for every S’ C S and,
thus, the answer to both PARTITION and K-PARTITION is trivially no.

PARTITION is well-known to be NP-complete [64]. To see that K-PARTITION
is also NP-complete (its membership to NP is clear), it suffices to observe that
PARTITION has answer yes if and only if K-PARTITION has answer yes for

some K € {1, cee %} This gives us a simple Cook reduction from PAR-
TITION to K-PARTITION: after solving K-PARTITION % times, once per

value of K € {1, ceey |2i|}7 if answer yes is found for some K, PARTITION has
answer yes; if, instead, answer yes is never found, PARTITION has answer no.

For the main results in this section (namely, Theorems [3| and [4| for the
problem of finding an OSE, and Theorems [f] and [f] for the problem of finding a

PSE) we only provide proof sketches. Full proofs are provided in|Appendix Al

5.1. Computational complexity of finding an OSE in SSSCGs

We start our analysis with the problem of computing an OSE in SSSCGs.
We introduce our main reduction in the proof of the following theorem.

Theorem 3. Computing an OSE in SSSCGs is NP-hard.

Proof sketch. We provide a reduction from K-PARTITION. Given a finite set S
of positive integers and a positive integer K < @, we build an SSSCG instance
with 4]S5|+2 followers, a resource r; for each x; € S, and two additional resources
¢, and 7y,. Letting w; = %* for all 2; € S, the players’ costs are the following
ones:

€z Cri,f Cril | Croof  Cril | Criyf  Crigt
1 2s s 352 s 1 st
2 0 s 352 st 452 st
3 Ui’f € 352 s* 452 s
4 ? S 352 st 452 st
[5,4|S| — 2K] 452 s 352 st 452 st
4|15 —2K +1 45> 5 2s st 452 st
48| - 2K +2 45> s st 45> st
[4]S| — 2K + 3, ] 452 s 0 st 452 st

The costs are defined in such a way that there is an OSE o = (04, v) in which
¢j = e if and only if the K-PARTITION instance has answer yes. Specifically,
in order to have ¢f = € the followers’ configuration must be such that v, =
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418 - 2K + 1, vp,, = 1, and v, = 2 for K different resources r;, whereas the
leader’s strategy must satisfy op(r;) = == for these resources. This is an OSE
as cj is minimized and the followers behave optimistically. Intuitively, if v <
4|S| —2K + 1 then the followers selecting r, would have an incentive to dev1ate
to a resource r; (incurring a smaller cost) while, if vy, > 4|S] —2K +1, at least
one follower would switch to resource r;,, paying at most 1. For similar reasons,
exactly one follower must choose resource r.,. Moreover, all the followers who
do not choose 7, or r;, must select a resource r; with v,, = 2, otherwise
their cost would be greater than 1 and they would have an incentive to deviate
to r¢,. In order to have c¢J = €, the leader’s strategy o, must place positive
probability only on resources r; with v,, = 2, i.e., o¢(r;) = w; must hold for

these resources. If oy(r;) < w;, a follower would deviate from r;, to r; paying

25— L 41
(1 —=o04(rs)) o Lo wi$+ < 2s while, if o4(r;) > w;, the followers selecting r;

Wy

would pay —cw(rz) > 1 and they would prefer to switch to ry,. Thus, letting S’
be the set of x; € S with o(r;) = w;, ZT cs 0¢(ri) = 1 implies ZI cg wi = 1
thus, 3, .o @; = s and (S',S\ §') is a partition of S.

Next, we show that even approximating the leader’s cost in an OSE up to
any polynomial factor of the input size is hard.

Theorem 4. The problem of computing an OSE in SSCGs is not in Poly-
APX unless P = NP.

Proof sketch. The result is based on the same reduction from K-PARTITION
used for Theorem Indeed, it can be proved that, if the K-PARTITION

ﬁstance has answer no, then ¢J > 1 holds for any OSE ¢ = (o, a) (see|Appendix

for the technical details). The result is then proved by arguments similar to
those employed in Corollaries [2] and O

5.2. Computational complexity of finding a PSE in SSSCGs

We focus now on the problem of computing a PSE in SSSCGs. The proof
of the following theorem introduces our main reduction.

Theorem 5. Computing a PSE in SSSCGs is NP-hard.

Proof sketch. We provide a reduction from PARTITION. Given a finite set .S of
positive integers, we build an SSSCG instance with 3|S| followers, a resource r;
for each z; € S, and an additional resource 7. Letting w; = =t for all x; € S,
the players’ costs are the following ones:

€z Cri,f Cri | Cri,f  Crit
1 0 € 1 st
2 wii T st 1 st
3 L € 1 st
17wi - s%
4 0 st 1 st
[5, 00] s € 1 st
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The costs are defined in such a way that there is a PSE ¢ = (o4, v) in which
c¢] = € if and only if the PARTITION instance has answer yes. Given that
the followers behave pessimistically, in the game resulting from o, all the NEs
must provide the leader with a utility ¢ < e. In order to have ¢f = ¢, the
leader’s strategy o, must place positive probability only on resources r; that
satisfy one between v,, = 0, v, = 2, and v,, > 4. For each resource r;, if
oe(r;) < w; — S% then v, = 1 holds in an NE of the resulting followers’ game,
since the follower selecting r; would not have an incentive to deviate (as her cost

would be — L —04(r;) < 1). Moreover, if oy(r;) > w; + 2% then v, = 3 holds
4

in an NE of the resulting followers’ game since the followers selecting r; would

incur a cost of 1;1(1 —o0y(r;)) < 1 and no other follower would deviate to
S—

r; as sog(r;) > 1. Tﬁus, for every resource ry it must be the case that either
w; — & < og(r;) < w; + % or o4(r;) = 0. Since each z; € S is integer and
> z,e50¢(ri) = 1, we can conclude that the set S’ of all the x; € S such that
w; — & < oy(r;) < w; + % defines a PARTITION. O

Finally, we show that the same inapproximability result that we have estab-
lished for OSEs also holds for PSEs.

Theorem 6. The problem of computing a PSE in SSCGs is not in Poly-APX un-
less P = NP.

Proof sketch. The result is based on the same reduction from PARTITION used
for Theorem [5] Further analyses allow us to prove that, if the PARTITION
instance has answer no, then ¢f > 1 holds in any PSE o = (o¢, v) (see [Appendiy]
for the technical details). The claim is then proved via arguments similar to
those we employed in Corollaries [2] and O

6. Polynomial-time algorithms for SSSCGs

In the previous sections, we have shown that the problem of computing an
O/PSE in SSCGs is, both in the general case and when restricting ourselves to
SSSCGs, computationally intractable. We provide, here, two positive results for
SSSCGs, showing that, under certain conditions, the computation of an O/PSE
in these games can be carried out in polynomial time.

First, we design a polynomial-time algorithm for finding an O/PSE in SSS-
CGs where the players’ costs are monotonic functions of the resource congestion.
The algorithm relies on the fact that, as we will show, in such games the leader
cannot decrease her cost by playing mixed strategies and, thus, pure-strategy
commitments are sufficient. We also exhibit a few examples showing that our
algorithm cannot be easily extended to more general settings as, if the players
have either different action spaces or nonmonotonic cost functions, the leader
could be better off playing mixed strategies, thus violating the fundamental
assumption of our algorithm.

Finally, we show that, if we restrict our attention to pure-strategy commit-
ments in SSSCGs, an O/PSE can be found in polynomial time by means of a
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Dynamic Programming (DP) algorithm, even when the players’ cost functions
are generic.

6.1. Polynomial-time algorithms for computing an O/PSE in SSSCGs with mono-
tonic cost functions

Let us recall that, in SSSCGs, an NE minimizing the social cost can be
computed in polynomial time [3I]. It is also easy to show that an NE min-
imizing/maximizing the cost incurred by one player can be found efficiently
using an algorithm similar to that of [31] (see Section[6.3]for additional details).
As a consequence, computing an O/PSE would also be easy if an equilibrium
could only be induced by a leader’s pure-strategy commitment. This is, unfor-
tunately, not the case, as there are SSSCGs admitting O/PSEs in which the
leader’s commitment is a mixed strategy and the followers’ configuration could
only be induced by the leader committing to a mixed strategy.

Proposition 2. There are SSSCGs with strictly monotonic cost functions which
admit an O/PSE o = (oy,v) where the leader’s strategy oy is mized and, ad-
ditionally, the followers’ configuration v is an NE only for mized-strategy com-
matments of the leader.

Proof. Consider the following SSSCG with strictly monotonic cost functions
where |F| =3 and R = {ry,r2,73}.

L | Crib Cryf | Crot Crof | Crs 8 Crg,f
1 1 1 3 4 1 1
2 2 3 4 5 2 3

3 3 6 ) 6 3 6

The followers configuration v = (1,1,1)7 in which each follower selects a dif-
ferent resource is not an NE if the leader commits to a pure strategy while, for
instance, it is an NE for o,(r1) = o¢(r3) = 3 and o¢(r2) = 0. Moreover, notice
that the game admits O/PSEs in which the leader’s commitment is a mixed
strategy. For instance, for o(r;) = o4(r3) = % and oy (r2) = 0 the leader incurs

a cost of 2 and there is no other strategy which allows her to pay less than 2. [

Next, we focus on finding OSEs in SSSCGs with weakly monotonic cost
functions. We show that, for every strategy profile o = (o¢, ) where the leader’s
commitment oy is a mixed strategy and v is an NE in the followers’ game, there
is another strategy profile & = (64, 7) where the leader’s commitment 6, is a pure
strategy and for which her cost is no larger than the one for ¢. In particular,
this implies that, in order to achieve an OSE, the leader can always commit
w.l.o.g. to a pure strategy. This is formalized in the following theorem, whose
proof shows constructively how to build ¢ from o.

The idea of the proof is the following. Let 0 = (o¢,v) be a strategy profile
where oy is a mixed strategy and v is an NE in the followers’ game. Assume that
the leader switched to selecting with probability one any of the resources for
which she would incur the minimum cost when committing to o,. As this would
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increase the congestion of that resource, due to the cost functions being weakly
monotonic the followers could only react by switching to another resource—this
translates in the leader incurring a cost on that resource which is never larger
than the one she would incur when committing to the mixed strategy oy.

Theorem 7. Every SSSCG with weakly monotonic cost functions admits an
OSE o = (04,v) in which o, is pure.

Proof. Given a strategy profile 0 = (oy, v) with o, mixed and v € E?¢, we show
how to construct another strategy profile 6 = (64, 7) with v € E%¢ in which &,
is pure and ¢ < ¢J. Let S = {i € R | 04(i) > 0} be the set of resources played
by the leader with positive probability in o, and let i* € argmin;es ¢; ¢(v; +1).
Clearly, since the leader’s utility is a convex combination weighted by o, of
the costs she incurs in the resources chosen with positive probability, c¢j =
ZieAg oe(i)cio(vi + 1) > ¢ix o(vix +1). Moreover, since v is an NE for oy, the
following holds by definition:

cZ?(yi)gc%c(z/jJrl) VieR:v; >0, j€R. (3)

Let us define 6, € Ay such that 64(i*) = 1. We now show that such &, is part
of an OSE. Notice that ¢ %(z) = ¢; f(2) Vo € N for every i € R\ {i*} (as the

leader does not select these resources), while cff’ ;@) =cpp(x+1) Vz €N (as
the leader selects that resource). Since the followers behave optimistically, it
is sufficient to exhibit a o € E?¢ such that & = (64, 7) satisfies ¢ < ¢J. We
construct a sequence of followers configurations which starts from v and reaches
such ©. Given &y, let us consider the sequence (v(0) = v,v(1),...,v(T) = D)
such that each configuration differs from the previous one in that a single follower
has changed resource, strictly decreasing her cost. Formally, this corresponds
to showing that, for all 0 <t < T, there is a pair i, j € R such that v(t); > 0,
vt +1); = v(t) — 1, v(t+1); = v(t); + 1, and 74 (v(t):) > ] v(t + 1);).
Moreover, let us assume that a follower deviates to resource i*, i.e., v(t+1);» >
v(t);=, only if this is the only way of strictly decreasing some follower’s cost.
This is w.l.o.g., as it is consistent with the assumption of optimism. Let us now
prove that the sequence of followers’ configurations satisfies the following:

By contradiction, assume there exists 0 < ¢ < T such that v(t + 1);+ > v(t);«.
Then, there is a follower who can strictly decrease her cost in V(t) by choosing i*
instead of some j # i* € R:v(t); >0, ie., ¢ff ;(v(t)ir +1) <% (v(t);) holds.
Thus, given that cff’f(y(t)i* +1) = ¢« s (v(t)i +2) and cj’f(u(t)]) =¢;,1(v(t);),
we conclude that:

Wi 1) <o p(W(t)ie +2) <5 (v(t);), ()
where the first inequality holds since v(t);« = v;» (as Equation (4)) holds for the

elements of the sequence preceding v(t) and the number of followers selecting i*
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cannot decrease with respect to v;+). Two cases are possible. In the first one,
v(t); < vj, implying, by monotonicity, ¢; ¢(v(t);) < ¢j ¢(v;) < ¢ (v;), which,
together with Equations and , leads to a contradiction. In the second
case, v(t); > v; implies that there exists k # ¢* € R such that v(t); < v4 (and
vk > 0), otherwise > . p v(t); > n — 1. It follows that c; (v(t);) < cr,r(v(t)r +
1)< cgf"f(uk), where the first inequality holds since, due to our assumptions on
the sequence, it cannot be ¢; ¢ (v(t);) > i s (v(t)r+1) as v(t+1); > v(t);, and
the second inequality follows from v(t); < vg. Thus, Equations and give
a contradiction. As a result, Equation holds, and, thus, 7+ < v;+. Given
the monotonicity of the costs, we conclude that C‘Z < c¢j. The prove the claim,
it now suffices to take as strategy profile 0 = (oy,v) an OSE in which oy is
mixed—since the leader’s cost at o is the smallest possible, her cost at & will
be identical to it. O

We prove, now, that a similar result holds for the pessimistic case, i.e.,
for computing a PSE. The result is weaker though, as it requires the stronger
assumption that the followers’ cost functions be strictly monotonic.

The idea of the proof is similar to the previous one. Given a PSE ¢ = (oy, V)
in which o, is a mixed strategy, we show that there exists another PSE ¢ =
(6¢,7) where the leader’s commitment &y is a pure strategy which selects with
probability one any of the resources for which the leader incurs the minimum
cost when committing to o,. In order to show this, we prove, by contradiction,
that any NE © in the followers’ game resulting from 6, provides the leader with
a cost smaller than or equal to the one for o.

Theorem 8. FEvery SSSCG in which the leader’s and followers’ cost functions
are, respectively, weakly and strictly monotonic, admits a PSE o = (og,v) in
which oy s pure.

Proof. Assume there exists a PSE ¢ = (0¢,v) in which oy is mixed. We show
that there must be another PSE 6 = (64, 7) such that 6, is pure. Let us define
1* € Rand 6, € Ay as in the proof of Theorem so that ¢ > ¢+ o(v;» +1) and
Equation holds. Given that the followers behave pessimistically, we need to
show that, for every ¥ € E%¢, 6 = (64,0) satisfies ¢§ < ¢J. By contradiction,
assume c;f’ > ¢7, which implies ¢;x ¢ (D3« +1) > ¢« (V3 +1). It easily follows from
the monotonicity of the costs that ©;« > v;«. Thus, there must be a resource
J € R such that ¥; < v; as, otherwise, > ;.7 > n — 1. Let us also remark
that v; > 0. Thus:

Cigf’f(Vp + 1) < Ci*’f(ﬁi* + 1) < ijf(ﬁj + 1) < C;['f(Vj), (6)

where the first inequality follows from v;« < D+, the second one from the fact
that © is an NE for &4, and the third one from 2; < v;. Equation implies
¢4 (vy) < cff p(vie +1). IE ¢5%(v;) < ¢ff ;(vi + 1), then Equation (6) leads
to a contradiction. Otherwise, if ¢7%(v;) = ¢if ;(v3» + 1) all the inequalities
in Equation @ hold as equations. This, however, implies cffy f(VZ'* +1) =
cir,f(Di» + 1) and ¢ #(05 + 1) = ¢%(v;), which is a contradiction since oy is
mixed and the followers’ cost functions are strictly monotonic. O
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Theorem [§) fails to hold if the followers’ cost functions are weakly, rather
than strictly, monotonic, as the following result shows:

Proposition 3. There are SSSCGs with weakly monotonic cost functions where
any PSE prescribes the leader to play a mized strategy.

Proof. Consider the following instance of SSSCG with weakly monotonic cost
functions, where |F| =1 and R = {rq,r2}.

L1Cril Cry,f |Cral Crof
1] 1 1 1 1
2 1 2 1

Clearly, any followers’ configuration is an NE in this game, independently of the
leader’s commitment. Whenever the leader commits to a pure strategy, be it
the selection of 71 or 73, the follower, due to the pessimistic assumption, chooses
the same resource, so to have the leader incur a cost as large as possible (of 2).
By uniformly randomizing between the two resources, though, the leader can
reduce her cost to 2% + % =1.5. O

Relying on Theorems [7| and |8, we can compute an OSE (respectively, PSE)
by enumerating the leader’s pure strategies and, for each of them, computing a
followers’ NE which results in the smallest (respectively, largest) leader’s cost.
Such NE can be computed by applying a simple greedy procedure which progres-
sively assigns followers to resources. At each step, a single follower is assigned
to the resource which is cheapest for her, given how the previously considered
followers have been distributed over the resources. Moreover, at a given step,
among all the resources minimizing followers’ cost the procedure selects one
minimizing (respectively, maximizing) the leader’s cost. An O/PSE is then ob-
tained by picking any leader’s pure strategy for which the leader’s cost is the
smallest.

The detailed procedure is described in Algorithm [I] where, for some S C R
and i € S, the function 0-Pick(S,) (respectively, P-Pick(S,)) returns some
resource j* € S, giving precedence to resources j* # i (respectively, j* = 7).

Let us remark that, in Algorithm [I} o,[-], v[-,], and ¢,[-] are the algorithm’s
variables and, for every i € R, v[i,j] denotes the number of followers selecting
resource j € R in the NE which is reached when the leader’s strategy is og[i].

Theorem 9. Algorithm is correct and it runs in time O(nrlogr).

Proof. We rely on the pseudocode reported in Algorithm [I] to show its correct-
ness. Thanks to Theorems [7] and [§] we only need to prove that, for every i € R
and after the execution of the while loop, the followers configuration v is such
that, for all j € R, v; = v[i,j] is an NE for o,[i] minimizing (or maximizing)
the leader’s cost. First, let us show that v is an NE. Suppose, by contradic-
tion, that it is not. Then, there exists j € R : v; > 0 and k € R such that
oeld] oeld]

;s (vj) > ¢ (vk +1). Let 1 be the value of v[i, k] during the step in which

v[i, j] is set to its final value v;. Clearly, c%c[i] (vj) > cgf}i] (vp+1) > ch}i] (7 +1),
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Algorithm 1: Algorithm computing an O/PSE in SSSCG with monotonic costs.
input : An SSSCG I = (N, R, ¢, ¢y)
output: o that is an O/P-LFE of I’
Function Compute-0/P-LFE(I")
for i € R do
a’z[i] —op €Ny G’[(i) =1;
v[i,jl <0 Vi,j € R;
while }°. . v[i,j] <n do
S < arg minjer cjff[l](u[i,j] +1);
j* < 0/P-Pick(S,1);
v[i, 3] < Vi, ]+ 1
| celi] < cie(v]iyi] +1);

i* < arg min;erg ce[il;
| returno = (oeli*], v[i*, -]);

and the algorithm would have not incremented v[i, j] during that step, a con-
tradiction. Let us show now that (oy[i],v) is an O/PSE. In the remainder of
the proof, we focus on the optimistic case (the pessimistic one can be treated
analogously). Suppose, by contradiction, that v is not an NE minimizing the
leader’s cost for o4[i] (i.e., not an OSE). Then, there exists another NE & for
o¢[i] such that ¢; ¢(?; + 1) < ¢;¢(v; +1). Given the monotonicity of the costs,
U; < v; must hold. Therefore, there must exist some j # i € R such that
v; > vj. Let us consider the step in which v[i,4] is set to v;, and let 7;
be the value of v[i,j] during that step. Note that c?ff[’](ui) < C?;EJ[’L](D]‘ +1)
must hold as, otherwise, the algorithm would have incremented l/fi, j] instead
of V[z,z] But, thep, cff[z}(ﬁj + 1) < C;Zf[z](l/j_Jr 1) < c‘;ff[z] (7j), which implies
cZ‘}[Z](ﬂi +1) < cZ‘}[Z](V,») < c;f}[z](ﬂj +1)< c;ef[l](ﬁj), contradicting the fact that
v 1s an NE for the given oylz].

Since the while loop is executed exactly r times, each execution carries out
n steps. Using efficient data structures, each step takes time O(logr). Thus,
the overall running time is O(nrlogr). O

Next, we provide a characterization of O/PSEs in SSSCGs with monotonic
costs under the additional assumption that leader’s and followers’ costs be equal,
which may be of independent interest besides the computation of O/PSEs.

Theorem 10. Given an SSSCG with monotonic costs and ¢, = ¢y = {¢;}icr,
any O/PSE o = (0¢,a) with oy pure is an NE.

Proof. Let o = (04,v) be an O/PSE with o,(i*) = 1 for some i* € R. Clearly,
given that v € E?¢, ¢/*(v;) < ¢f*(v; +1) holds for every i € R : v; > 0 and
for every j € R. Therefore, no follower has an incentive to change resource.
Thus, it is sufficient to prove that the leader has no incentive to deviate from
resource ¢* unilaterally, i.e., without assuming that the followers would react
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to her deviation (which is the case in the Stackelberg setting). If v;« > 0, we
have ¢;« (vi+ + 1) = ¢l (vix) < ] (v + 1) = ¢j(v; + 1) for every j # i* € R,
and it immediately follows that the leader does not deviate and o is an NE.
The case in which v;« = 0 is more involved. By contradiction, assume that o is
not an NE. As a consequence, the leader must have an incentive to deviate to
some resource j # i* € R, ie., ¢;x(vi» + 1) = ¢+ (1) > ¢;(v; + 1). Let 6, with
Ge(j) = 1 be the strategy the leader commits to. We prove (by contradiction)
that, for every o € E%, & = (64,0) provides the leader with a cost strictly
smaller than ¢;«(1). Assume ¢;(#; + 1) > ¢;«(1). Three cases are possible. In
the first one, 7; < v; and ¢;« (1) > ¢;(v;+1) > ¢; (75 +1) > ¢;+(1). In the second
one, ¥; = vj and ¢;(; + 1) > ¢;+(1) > ¢j(v; +1). In the third case, 7; > v,
which implies that there must be a resource k # i* € R such that 0, < vk, and
cix(1) > ¢j(v; +1) > er(vg) > cp(Pk +1) > ¢ (05 +1) > ¢+ (1). As all the cases
lead to a contradiction, it must be ¢;(?; + 1) < ¢;+(1). The proof is complete
as, in &, the leader’s cost is ¢;(?; + 1) < ¢;+(1), contradicting the fact that o is
an O/PSE. O

6.2. On the necessity of the assumptions we made

We provide some examples showing why Algorithm [I] cannot be easily ex-
tended to more general settings—the reason being that Theorems [7] and [§] do
not hold if the assumption of monotonicity is dropped.

First, let us analyze the general case of SSSCGs in which the costs need not
be monotonic functions of the resource congestion:

Proposition 4. There are SSSCGs in which, even if the cost functions of one
player only are monmonotonic, be it the leader or one of the followers, any
O/PSE prescribes the leader to play a mized strategy.

Proof. Consider the following instance of SSSCG with nonmonotonic followers’
cost functions where R = {rq,r2} and there is a single follower (|F| = 1).

T|Cri 0 Cry,f|Crot Crof
1] 1 2 1 2
2 1 2 1

The follower selects ro whenever oy(ry) < %, while, if op(r1) > %, she chooses
r1. The leader’s cost is 2 — gy(r1) if o(r1) < %, and 1+ oy(r1) if o4(r1) > %
There is, thus, a unique O/PSE that prescribes the leader to commit to oy with
ou(r1) = oe(r2) = 3.

Consider now the following instance of SSSCG with nonmonotonic leader’s

cost functions, where R = {r,r2} and there is single follower (|F| = 1).

T|Cri 0 Cry,f|Crol Cro,f
1] 2 1 2 1
0 2 0 2
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The follower selects ry if oy(rq) > % and 7 if op(ry) < % The leader’s cost is

thus 204(rq) if op(r1) > % and 2—20y(ry) if oy(r1) < % There is, thus, a unique

O/PSE which prescribes the leader to commit to oy with o,(r1) = o4(re) =

1

1 O
Finally, we show that Theorems[7] and 8] do not hold for general SSCGs with

different action spaces, even if all the cost functions are monotonic:

Proposition 5. There are SSCGs with different action spaces and monotonic
cost functions where any O/PSE prescribes the leader to play a mized strategy.

Proof. Consider the following SSCG with R = {ry,73,73}, two followers F =
{p1,p2}, and Apy = {r1,ra}, Apo = {ra, 73}, Ap = {r1,m2}:

L | Cri,f Cril | Crof  Crol | Cra,f
1 1 0 0 1 3
2 1 1 2 1 3
3 1 1 4 1 3

If the leader plays o¢(r1) = 1, there is a unique NE where follower p; plays
r1 and follower ps plays ro. Indeed, py incurs a cost of 0 and, thus, has no
incentive to deviate, while p; would incur a cost of 2 > 1 by deviating to rs.
Thus, the leader’s cost is 1. The leader’s cost is also 1 if she played o4(r2) = 1,
as po would also choose 7y, while p; would choose 1. Let us show that the
leader can commit to a mixed strategy and incur a cost smaller than 1. Indeed,
with o¢(r1) = op(r2) = %, there is a followers’ NE where p; chooses 72 and ps
chooses r3: pi, incurring a cost of 1 (smaller or equal than any other cost), has
no incentive to deviate, while ps, currently incurring a cost of 3, by switching to
r5 would incur the same (expected) cost of 3 (i.e., a cost of 2 with probability 1
and one of 4 with probability %), thus having no incentive to deviate. At that
NE, the leader’s cost is O - % +1- % = % O
6.3. Pure-strategy commitment in SSSCGs with generic costs

We propose, here, a simple polynomial-time algorithm for computing an
O/PSE in SSSCGs with generic costs where the leader is restricted to pure-
strategy commitments. It is based on a dynamic programming algorithm pro-
posed in [31] for the computation of an optimal NE in symmetric non-Stackelberg
SCGs. The original algorithm runs in O(n®r%). One can compute an O/PSE
in r iterations, fixing, at each iteration, the action the leader would choose and
calling the previous algorithm to compute an NE which either minimizes or
maximizes the leader’s cost. This takes, overall, O(n%rf).

We show, in the following, how to improve the complexity of the original
algorithm to O(n*r3), thanks to which we can compute an O/PSE for the
restricted case in O(n*r%). The algorithm is based on the same recursive formula
shown in [3I], which we reintroduce, here, in a different and, possibly, clearer
way.
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Let A(h, B, M, V') be the cost of an optimal NE for a symmetric SCG without
leadership restricted to h resources {1,2,...,h} C R and B players, where M is
the largest cost incurred by a player and V is the smallest cost a player would
incur if she were to switch to another resource.

Proposition 6. A(h, B, M, V) satisfies the following recursive equation:

A(h,B,M,V)=  min A(h—1,p,m,v)+ (B—p)cp(B—p) (7)
pe{0,...,B}
mezZt, vezt

st. m<M (8)

v>V ()

en(B—p) <M (10)

cn(B-—p+1) =V (11)

cn(B—p)<w (12)

cn(B=p+1)>m (13)

Proof. We show that all the constraints are necessary for the definition of
A(h, B, M,V) to be respected. If Constraint were not satisfied, m > M

would imply that there is at least a resource among those in {1,...,h—1} cost-
ing strictly more than M. If Constraint @D were not satisfied, v < V would
imply that the cost to deviate to a resource among those in {1,...,h — 1} is

strictly smaller than V. If Constraint were not satisfied, ¢, (B —p) > M
would imply that M is smaller than the cost of the most expensive chosen re-
source. If Constraint were not satisfied, ¢, (B —p+ 1) < V would imply
that V' is larger than the cheapest cost a player would incur upon deviating to
another resource. If Constraint were not satisfied, ¢, (B —p) > v would im-
ply that each of the B — p players who chose resource h would have an incentive
to deviate to any of the resources in {1,...,h — 1}. If Constraint were not
satisfied, ¢, (B —p+ 1) < m would imply that at least one of the p players who
selected a resource in {1,...,h — 1} (i.e., all those incurring a cost of m) would
have an incentive to deviate to resource h. O

We now show how to simplify the recursive formula for A(h, B, M,V):
Theorem 11. A(h, B, M, V) satisfies the following recursive equation:

A(h,B,M,V) = pe{r(g{l_riB}A(h —1,p,m(p)",v(p)*) + (B —p)cn(B —p) (14)
st. ep(B—p) <M (15)

can(B—p+1) >V, (16)
where m(p)* = min{M, cp,(B —p+ 1)} and v(p)* = max{V,cp(B —p)}.

Proof. Constraints f and @[)f imply, respectively, m < min{M, ¢, (B—
p+ 1)} and v > max{V,c,(B — p)}. Hence, m(p)* and v(p)* are feasible for
Problem f. Note that, if m’ > m and v’ < v, the feasible region un-
derlying A(h,p,m’,v") contains the one underlying A(h,p, m,v), which implies
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A(h,p,m’,v") < A(h,p,m,v). The claim follows since m(p)* and v(p)* are,
respectively, the largest and smallest values m and v can take. O

Corollary 7. In symmetric non-Stackelberg SCGs, an optimal NE can be found
in O(n*r3). In SSSCGs with the leader restricted to pure strategies, an O/PSE
can be found in O(n*r?).

Proof. Since there are at most nr different values of ¢;(z), for all j € R and z €
N, there are at most nr values of M and at most nr values of V. There are also
exactly r values of h and exactly n of B. Hence, the dynamic programming table
of A(h, B, M, V) contains O(n3r3) entries. Due to Theorem (11)), computing an
entry of the table requires O(n). Overall, an optimal NE is computed in O(n*r?).
For the case with leadership restricted to pure strategies, it suffices to run the
algorithm for each resource the leader may choose, i.e., O(r) times, obtaining a
complexity of O(nr?). O

7. Mixed-Integer Linear Programming Formulations for Computing
OSEs in Intractable SSCGs and SSSCGs

In this section, we provide two MILP formulations for the problem of com-
puting an OSE (in exponential time in the worst case) in SSCGs and SSSCGs
for which the problem is intractable (see Sections [4] and . Our goal is to pro-
vide methods which work suitably well in practice, even though their worst-case
running time is exponential. E|

We start from SSSCGs, for which the MILP formulation is simpler, and then
extend the result to the more general case of SSCGs.

7.1. Computing an OSE in SSSCGs (with generic costs)

For the ease of notation, let V= {1,...,n—1} be the set of possible conges-
tion levels induced by the followers on a resource. Let, for every resource i € R
and value v € V, the binary variable y;, be equal to 1 if and only if v; = v,
i.e., if and only if v followers select resource i € R. We use these variables
to achieve a binarized representation of the followers’ configuration v € N"|
namely, v; = ) .y, V¥ for all i € R. Let, for each i € R, o; € [0, 1] be equal
to o4(i). Let also, for each i € R and v € V, the auxiliary variable z;, be equal
to the bilinear term y;, ;.

The complete MILP formulation reads:

minz Z cio(v+1) 2 (17a)

i€ER veV

S6Y Y <1 Vie R (17b)
veV

3We recall that, while we do not directly propose algorithms for the computation of PSEs
for these intractable cases, their computation can be carried out with the general method
proposed in [6] [7] for general SGs in normal form.

31



955

960

965

970

975

Z Zvyiv:n—l (17¢)

i€ER veV

> (l/jvcj,f(v + 1)+ 2 (Cj,f(v +2) —¢plv+ 1))) >

veV

> (e +z(aso+ D —ey@))  ViFjeR (17
veV

Zip < @; Vie RRYveV  (17e)
Ziv < Yiv Vie RVYveV  (17f)
Ziv 2 Q; + Yiv — 1 Vie RYvoeV (17g)
Zin >0 Vie RyVoeV  (17h)
D ai=1 (17i)
i€ER

a; >0 ie R (17))
yiv € {0,1} Vie RYveV. (17k)

Function (17a)) represents the leader’s expected cost (to be minimized). Con-
straints ([17b]) ensure that at most one variable y;, be equal to 1 for each resource
1 € R, thus guaranteeing that the congestion level of each resource be uniquely
determined (note that ) .y, % = 0 if no followers select resource i € R). Con-
straints (17c)) guarantee that the followers’ configuration be well-defined, i.e.,
that } . pvi be equal to n — 1 (the number of followers). Constraints (17d])
force the followers’ configuration defined by the ;, variables to be an NE for
the leader’s strategy identified by the «; variables. This follows from the fact
that Z (ywciyf(v) + 2io (ci7f(v +1)— c@f(v))) (recall that z;, = yipay) is

veV
equal to the cost incurred by the followers who select resource i € R, while
) (ijcj,f(v + 1)+ zjo (Cj,f(v +2) —cislo+ 1))) (recall that zj, = yjua;)
veV
is equal to the cost they would incur after deviating to resource j € R. Let us

remark that Constraints are trivially satisfied if y;, = 0 for all v € V.
This is correct as, if no followers choose resource ¢ € R, no equilibrium con-
ditions need to be enforced. Constraints f are McCormick envelope
constraints [65] which guarantee z;, = y;,; whenever y;, € {0,1}.

We remark that Formulation features r(2n — 1) variables, nr of which
binary, and r(r — 1) 4+ r(3n — 2) + 2 constraints.

7.2. Computing an OSE in SSCGs

We now extend Formulation to the case where the followers may have
different action spaces, i.e., to general SSCGs.

For the ease of notation, let, for every i € R, v, = |[{p € F | i € A,}| be
the maximum number of followers who can select resource ¢, and let V(i) =
{1,...,9;} be the set of possible congestion levels for resource i. For every
follower p € F' and resource ¢ € Ay, let the binary variable x,; be equal to 1 if
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and only if player p selects resource ¢, i.e., if and only if a,, = ¢. All the variables
in Formulation are used with the same meaning.
The complete MILP formulation reads:

minz Z cip(v+ 1)z (18a)

i€ER veV (i)
s.t. Z Tpi =1 Vp e F (18b)

i€A,

Z Yiv < 1 Vie R (18c)
veV (i)

Yoovye= Y T vie R (18d)
veV (i) peF:icA,

> (ijcj,f(v +1) + 2o (Cj,f(v +2) —cjp(v+ 1))) >
veV (7)

2 Z (yivci,f(v) + Ziw (Ci,f(v +1) - Ci}f(U))) Vpe Fii#je Ay, (18e)

veV (i)
Ziv < Vie R,Yv e V(i) (18f)
Ziv S Yiv V’L S R, VU S V(Z) (18g)
Ziv 2 0+ Yip — 1 Vi e R,Yv € V(i) (18h)
2w >0 Vie R Vv e V(i) (18i)
doai=1 (18)
i€R
a; >0 Vie R (18k)
;=0 Vie R\ A, (18])
zpi € {0,1} Vp € F,¥i € A, (18m)
Yiv € 10,1} Vi€ R,Yv € V(i). (18n)

980 Objective Function (18a)), Constraints (18¢)), and Constraints ([18e])—(18k])

have the same meaning as their counterparts in Formulation . Constraints (18b])
ensure that each follower selects exactly one resource. Constraints (18d|) guar-
antee that the followers’ configuration be well-defined, i.e., that, for each i € R,
Vi = Y uev V¥ be equal to ZpeF Zpi, which is the number of followers who
ws select resource i. Notice that, differently from the previous formulation, Con-
straints are enforced for each follower p € F here, and only for pairs of
resources ¢, j € R follower p has access to. Note also that, via Constraints ,
«; is forced to be 0 for all the resources ¢ € R the leader has no access to.
We observe that Formulation features >  cp[Ap| + 2,0 + 1 =
9 O(r(3n + 1)) variables, > p|A4,| + > ,cg 0 = O(2rn) of which binary, and
n+2r+33 e p Vit e [Apl ([Ap] — 1) = O(n+2r+3nr+nr(r—1)) constraints.
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7.8. Computing a pure-strategy OSE in SSSCGs and SSCGs with generic costs

Formulations and can be easily modified for the case in which the
leader’s commitment is forced to be in pure strategies. This can be achieved by
imposing the variables «; to be binary. Notice that, when both «; and y;, are
binary variables, z;, becomes binary as well due to the McCormick constraints.
The resulting formulations are ILPs.

One may wonder on the practical advantages of introducing an ILP formu-
lation for computing a pure-strategy OSE in SSSCGs since, in Section [6.3] we
have shown that this can be done in O(n*7%) by dynamic programming. As
we will see comment on in Section [§] preliminary experiments show that, due
to the high order of complexity of the dynamic programming algorithm, it is,
in practice, more efficient to solve this formulation with state-of-the-art ILP
algorithms than running the dynamic programming algorithm, even if solving
Formulation with branch-and-bound (and its variants, such as branch-and-
cut) may take an exponential amount of computing time in the worst case.

8. Experimental evaluation

Since Algorithm [1] has a very low complexity—O(nrlogr)—its efficiency is
clear and it does not need to be established via computational experiments.

As to the dynamic programming algorithm proposed in Section for SSS-
CGs with generic costs when the leader is restricted to pure-strategy commit-
ments, preliminary tests have shown that this algorithm takes several hours to
solve instances which are solved only in a matter of seconds with a state-of-the-
art ILP algorithm applied to Formulation . This happens in, e.g., instances
with 10 resources and 25 followers, on which the dynamic programming algo-
rithm takes more than 11,000 seconds while with the ILP formulation we can
solve them in less than a second. For this reason, in the remainder of the section
we solely focus on the mathematical programming formulations.

Notice that games with monotonic cost functions and identical action spaces
can be solved efficiently using Algorithm [1| (which we proposed in Section @
For this reason, we focus on games with generic cost functions and/or different
action spaces, assessing how state-of-the-art branch-and-bound methods behave
when solving our formulations on instances of increasing size.

For the purpose, we experiment with Formulations and on a testbed
of randomly generated game instances of two classes:

e SSSCG instances: we assume a number of followers in {20, 40, 60, 80,100},
with r resources in the range {10, 20, 30,40,50} and players’ costs ran-
domly generated by sampling from {1,...,(n—1) 7} with a uniform prob-
ability. [1]

4The value (n—1) 7 is chosen as, when looking for pure-strategy NEs, cost functions taking
(n — 1) r different values are sufficient to represent every possible SCG.
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e SSCG instances: we assume a number of followers in {20, 40, 60, 80, 100},
with 7 = 30 resources and a number of actions |A,| per player in the
range {7,15,22}, generated by sampling uniformly at random without
replacement; the players’ costs are sampled from {1,...,(n — 1)r} with
uniform probability.

We also test our MILP formulations on the worst-case game instances generated
by following the reductions of Theorems [I] and

e SSSCG instances: instances built following the reduction of Theorem
starting from K-PARTITION instances with |S| € {50,100, 150, 250, 300}
integer numbers with values sampled from {1,...,100}.

e SSCG instances: instances built following the reduction of Theorem
using random 3SAT instances with |V| € {3,5,7,9, 11,13} variables and
|C| = E|V| clauses, where k & 4.26 is the phase-transition parameter
which typically characterizes hard-to-solve 3SAT instances [66].

We generate 15 instances per combination of the parameters. All the experi-
ments are run on a UNIX machine with a total of 32 cores working at 2.3 GHz,
equipped with 128 GB of RAM. Each game instance is solved on a single core
within a time limit of 7200 seconds. We use Python 2.7, solving the MILP
formulations with GUROBI 7.0.

We use, as baseline for the comparisons, a simple algorithm which, starting
from a randomly generated assignment of the players to the resources, simulates
best-response dynamics halting after a time limit of 10 minutes. When ties arise,
i.e., whenever there are two or more players who are not playing their best
response, we select a player lexicographically and make her switch to playing
her (currently) best response. We refer to this algorithm as a best response
dynamics heuristic since it is not exact when applied to the intractable cases
of SSCGs and SSSCGs. E| On average, within the time limit of 10 minutes we
observe a number of deviations to a best response of the order of 10°. Let us
recall that the method always produces, by design, pure-strategy NEs. EI

Figure [3| and Figure [5| (a) report the results for SSSCGs with generic costs.
Figure|3| (a) displays the average computing time required by Formulation ,
as a function of the number of followers and for different numbers of resources.
One can see that, with Formulation , an optimal solution is always found

5We also evaluated different heuristic algorithms combining Algorithmtogether with best
response dynamics, e.g., using the solution returned by Algorithm [I] as a starting point for
best-response dynamics instead of using randomly generated starting points. However, these
approaches exhibited worse empirical performances than the best-response dynamics heuristic
for all the settings which we have considered, including the more symmetric ones, showing
that the algorithm does not benefit from the degree of symmetry of the instance. For this
reason, we defer their analysis to

6Notice that, for games with identical action spaces, one could think of using the dynamic
programming algorithm presented in Section [6.3] to find a pure-strategy OSE as heuristic
approximation of a mixed-strategy OSE. However, as we mentioned above, the dynamic pro-
gramming algorithm does not scale well enough in practice.
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within the time limit of 7200 seconds in all the instances. This suggests that,
even if the problem is hard in the worst case, an optimal solution can be found in
a reasonable amount of time on randomly generated instances. Figure[5|(a) dis-
plays the results for worst-case instances. Surprisingly, within the time limit of
7200 seconds we are able to solve games with up to 302 resources and 1202 follow-
ers. Thus, while the instances generated by our reduction from K-PARTITION
are the hardest ones asymptotically, they are solved more easily than randomly
generated instances of the same size. Figure|3|(b) reports, as a function of the
number of followers, the average leaders’ cost of the solutions obtained with For-
mulation , compared to the average cost obtained with the best-response
dynamics heuristic. As the figure shows, the difference in leader’s utility be-
tween solutions found with the two methods can be quite large as the number
of followers increases, up to a factor of 6 with n = 100, showing a clearly growing
trend.

—~
n

[ R 1= = B —
§ i;g ’ 30 —I— best response dynamics : //////
26000, @ 2
) —1-50 S
e o 20
= 4000 5
]
£ g /
>
% 2000 =10
=Yl
< S I
& 20 40 60 80 100 20 40 60 80 100

number of followers number of followers

(a) (b)

Figure 3: Results for the computation of an OSE in SSSCGs with generic costs. (a) Average
computing time required by Formulation , as a function of the number of followers and for
different numbers of actions available to each player. (b) Average leader’s cost of the solutions
obtained with Formulation and with the best-response dynamics heuristic as a function
of the number of followers, with 30 resources.

Figure [4] and Figure [5| (b) report the results for SSCGs with generic costs
and 30 resources. Figure (a) reports the average computing time required by
Formulation to find an OSE, as a function of the number of followers and
for a different number of actions available to each player. Similarly to the case
of SSSCGs, the chart shows that with Formulation we can find an optimal
solution within the time limit of 7200 seconds in all the instances. This suggests
that, even if the problem is hard in the worst case, also for SSCGs one can find
an optimal solution in a reasonable amount of computing time on randomly
generated instances. The chart also shows, though, that the time required to
solve this class of problems is much larger than the time required to solve their
SSSCGs counterparts. Figure [5| (b) displays results for worst-case instances
generated using our reduction from 3SAT. As for SSSCGs, these instances are
not harder than random ones for the instance sizes used in our experimental
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setting. In particular, within the time limit of 7200 seconds, we are able to
solve instances with up to 1538 resources and 2983 followers. Figure [4] (b)
reports, for games with 15 actions per player, the average leader’s cost of the
solutions obtained with the MILP Formulation and with the best-response
dynamics heuristic, as a function of the number of followers. Differently from
the case of SSSCGs, we observe that for SSCGs the heuristic returns solutions
which, empirically, appear to be within a constant approximation factor of the
optimal ones which is never larger than 5.

Overall, the results suggest the practical viability of our MILP formula-
tions for finding provably optimal solutions also for games where a simple best-
response heuristic provides poor-quality solutions.

Surprisingly, the results that we have obtained for the worst-case instances
are comparable to those for random games, empirically showing that, for the
games that we study, random instances are not easier to solve than structured
ones, differently from what is often observed in other cases (see, for instance,
[67] for the case of normal-form games).

9. Conclusions and future works

We have analyzed Stackelberg games where the underlying structure is a
congestion game, focusing on the case in which the players’ actions are single-
tons. We have shown that the problem of computing a Stackelberg Equilibrium
(SE) in such games is hard, except for the case in which all the players share
the same resources and the cost functions are monotonically increasing in the
congestion level. More precisely, we have shown that, for games where either the
players have different action spaces and their cost functions are monotonic or
their action spaces are the same but their cost functions are generic (monotonic

ERI =
Q ==l —1—best response dynamics {
5 —I-15 A 20+ —
2 6000 22 e +
Q
: = o 15
£ 4000 — %
E 510
% 2000 g
% 5
£
S 0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
R 20 40 60 80 100 20 40 60 80 100

number of followers number of followers

(a) (b)

Figure 4: Results for the computation of an OSE in SSCGs with generic costs and 30 resources.
(a) Average computing time required by Formulation (18], as a function of the number of
followers and for different numbers of actions available to each player. (b) Average leader’s
cost of the solutions obtained with the Formulation and with the best-response dynamics
heuristics, as a function of the number of followers and with 15 actions per player.
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or not), it is not possible to approximate in polynomial time the leader’s cost
at an either optimistic SE (OSE) or pessimistic SE (PSE) to within any factor
polynomial in the size of the game unless P = NP.

We have proposed a polynomial-time algorithm for finding an O/PSE for
the case where the players have identical action spaces and their cost functions
are monotonic, and we have shown that games in this class always admit a
pure-strategy SE. We have also shown how to improve the complexity of the
state-of-the-art algorithm for the computation of an optimal NE in singleton
congestion games, which has allowed us to compute an O/PSE in polynomial
time for the case where the leader is restricted to pure strategies. For the
intractable cases with different action spaces and generic cost functions, we have
proposed a mixed-integer linear programming formulation for finding an OSE,
and a more compact one for the case in which the action spaces are identical. We
have shown that state-of-the-art integer linear programming solvers scale well
in practice when solving our formulations on random game instances, allowing
for tackling games with up to 40 resources and 100 followers.

In the future, we will investigate whether congestion games with a special
structure allow for efficient solution algorithms, e.g., when users can be of a fixed
number of types [68]. We will also investigate more dominance relations for our
dynamic programming algorithms in order to reduce the number of states they
explore and, ultimately, improving their efficiency. Another natural research
direction is addressing the multi-leader case and, in particular, investigating
whether, for the cases in which the problem we studied admits a polynomial-
time algorithm, the introduction of more than a single leader makes the problem
harder.
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Figure 5: Results for the computation of an OSE in worst-case instances built on the base of
our inapproximability reductions. (a) Average computing time required by Formulation
for instances based on K-PARTITION (Theorem [3)), as a function of the number of resources.
(b) Average computing time required by Formulation for instances based on 3SAT (The-
orem , as a function of the number of resources.

38



1140

1145

1150

1155

1160

1165

1170

1175

References

References

[1]

EONNS)

[10]

[11]

[12]

[14]

[15]

A. Marchesi, S. Coniglio, N. Gatti, Leadership in singleton congestion
games, in: IJCAI, 2018.

H. von Stackelberg, Marktform und Gleichgewicht, 1934.

V. Conitzer, T. Sandholm, Computing the optimal strategy to commit to,
in: Proceedings of the 7th ACM conference on Electronic commerce, 2006,
pp- 82-90.

B. von Stengel, S. Zamir, Leadership games with convex strategy sets,
Games and Economic Behavior 69 (2) (2010) 446—457.

V. Conitzer, D. Korzhyk, Commitment to correlated strategies, in: AAAI,
2011, pp. 632-637.

S. Coniglio, N. Gatti, A. Marchesi, Pessimistic leader-follower equilibria
with multiple followers, in: IJCAI, 2017, pp. 171-177.

S. Coniglio, N. Gatti, A. Marchesi, Computing a pessimistic leader-
follower equilibrium with multiple followers: the mixed-pure case, CoRR
abs/1808.01438. arXiv:1808.01438.

A. Smith, Y. Vorobeychik, J. Letchford, Multidefender security games on
networks, PERF E R 41 (4) (2014) 4-7.

J. Lou, Y. Vorobeychik, Equilibrium analysis of multi-defender security
games, in: [JCAI, 2015.

A. Laszka, J. Lou, Y. Vorobeychik, Multi-defender strategic filtering against
spear-phishing attacks, in: AAAI 2016.

J. Lou, A. Smith, Y. Vorobeychik, Multidefender security games, IEEE
INTELL SYST 32 (1) (2017) 50-60.

J. Gan, E. Elkind, M. Wooldridge, Stackelberg security games with multiple
uncoordinated defenders, in: AAMAS, 2018.

M. Castiglioni, A. Marchesi, N. Gatti, Be a leader or become a follower:
The strategy to commit to with multiple leaders, in: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, 1J-
CAI 2019, Macao, China, August 10-16, 2019, 2019, pp. 123-129.

J.-S. Pang, M. Fukushima, Quasi-variational inequalities, generalized nash
equilibria, and multi-leader-follower games, COMP MAN SC 2 (1) (2005)
21-56.

S. Leyffer, T. Munson, Solving multi-leader-common-follower games, OPT
MET SO 25 (4) (2010) 601-623.

39


http://arxiv.org/abs/1808.01438

1180

1185

1190

1195

1200

1205

1210

[16]

[17]

[18]

[23]

[24]

[25]

[28]

[29]

[30]

A. Kulkarni, U. Shanbhag, A shared-constraint approach to multi-leader
multi-follower games, SET-VALUED VAR ANAL 22 (4) (2014) 691-720.

M. Breton, A. Alj, A. Haurie, Sequential stackelberg equilibria in two-
person games, J OPTIMIZ THEORY APP 59 (1) (1988) 71-97.

P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez, S. Kraus,
Playing games for security: an efficient exact algorithm for solving bayesian
stackelberg games, in: AAMAS, 2008, pp. 895-902.

C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordénez, M. Tambe, Comput-
ing optimal randomized resource allocations for massive security games, in:
AAMAS, 2009, pp. 689-696.

B. An, J. Pita, E. Shieh, M. Tambe, C. Kiekintveld, J. Marecki, Guards and
Protect: Next generation applications of security games, ACM SIGecom
Exchanges 10 (1) (2011) 31-34.

M. Tambe, Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned, Cambridge University Press, 2011.

M. Labbé, P. Marcotte, G. Savard, A bilevel model of taxation and its
application to optimal highway pricing, Management science 44 (12-part-
1) (1998) 1608-1622.

M. Labbé, A. Violin, Bilevel programming and price setting problems, ANN
OPER RES 240 (1) (2016) 141-169.

A. Caprara, M. Carvalho, A. Lodi, G. J. Woeginger, Bilevel knapsack with
interdiction constraints, INFORMS J COMPUT 28 (2) (2016) 319-333.

J. Matuschke, S. T. McCormick, G. Oriolo, B. Peis, M. Skutella, Protection
of flows under targeted attacks, OPER RES LETT 45 (1) (2017) 53-59.

E. Amaldi, A. Capone, S. Coniglio, L. G. Gianoli, Network optimization
problems subject to max-min fair flow allocation, IEEE COMMUN LETT
17 (7) (2013) 1463-1466.

R. Avenhaus, A. Okada, S. Zamir, Inspector leadership with incomplete
information, in: Game equilibrium models IV, Springer, 1991, pp. 319—
361.

W. H. Sandholm, Evolutionary implementation and congestion pricing, The
Review of Economic Studies 69 (3) (2002) 667—689.

R. W. Rosenthal, A class of games possessing pure-strategy nash equilibria,
International Journal of Game Theory 2 (1) (1973) 65-67.

H. Ackermann, H. Roglin, B. Vocking, On the impact of combinatorial
structure on congestion games, Journal of the ACM (JACM) 55 (6) (2008)
25.

40



1215

1220

1225

1230

1235

1240

1245

[31]

[32]

[33]

[34]

[35]

[43]

S. Ieong, R. McGrew, E. Nudelman, Y. Shoham, Q. Sun, Fast and compact:
A simple class of congestion games, in: AAAT, 2005, pp. 489-494.

P.-A. Chen, C.-J. Lu, Generalized mirror descents in congestion games,
Artificial Intelligence 241 (2016) 217-243.

D. Fotakis, A selective tour through congestion games, in: Algorithms,
Probability, Networks, and Games, Springer, 2015, pp. 223-241.

S. Suri, C. D. Téth, Y. Zhou, Selfish load balancing and atomic congestion
games, Algorithmica 47 (1) (2007) 79-96.

D. Konur, J. Geunes, Competitive multi-facility location games with non-
identical firms and convex traffic congestion costs, Transportation Research
Part E: Logistics and Transportation Review 48 (1) (2012) 373-385.

T. Roughgarden, Selfish routing and the price of anarchy, Vol. 174, MIT
press Cambridge, 2005.

D. Monderer, L. S. Shapley, Potential games, Games and economic behavior
14 (1) (1996) 124-143.

A. Fabrikant, C. Papadimitriou, K. Talwar, The complexity of pure nash
equilibria, in: Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, ACM, 2004, pp. 604-612.

R. Werneck, J. Setubal, A. da Conceicao, Finding minimum congestion
spanning trees, Journal of Experimental Algorithmics (JEA) 5 (2000) 11.

T. Roughgarden, Stackelberg scheduling strategies, SIAM Journal on Com-
puting 33 (2) (2004) 332-350.

H. Kiigiikaydin, N. Aras, 1. K. Altmel, A leader—follower game in com-
petitive facility location, Computers & Operations Research 39 (2) (2012)
437-448.

N. Basilico, S. Coniglio, N. Gatti, A. Marchesi, Bilevel programming
methods for computing single-leader-multi-follower equilibria in normal-
form and polymatrix games, EURO Journal on Computational Optimiza-
tiondoi:10.1007/s13675-019-00114-8.

N. Basilico, S. Coniglio, N. Gatti, Methods for Finding Leader-Follower
Equilibria with Multiple Followers: (Extended Abstract), in: Proc. of AA-
MAS, International Foundation for Autonomous Agents and Multiagent
Systems, 2016, pp. 1363-1364.

N. Basilico, S. Coniglio, N. Gatti, A. Marchesi, Bilevel programming ap-
proaches to the computation of optimistic and pessimistic single-leader-
multi-follower equilibria, LEIBNIZ INTERNATIONAL PROCEEDINGS
IN INFORMATICS 75 (2017) 1-14.

41


http://dx.doi.org/10.1007/s13675-019-00114-8

1250

1255

1260

1265

1270

1275

1280

1285

[45]

[46]

[47]

[54]

[55]

[56]

[57]

[58]

[59]

J. Letchford, V. Conitzer, K. Munagala, Learning and approximating the
optimal strategy to commit to, in: International Symposium on Algorith-
mic Game Theory, Springer, 2009, pp. 250-262.

G. De Nittis, A. Marchesi, N. Gatti, Computing the optimal strategy to
commit to in polymatrix games, in: AAAI 2018, pp. 82-90.

J. Letchford, V. Conitzer, Computing optimal strategies to commit to in
extensive-form games, in: EC, 2010.

G. Farina, A. Marchesi, C. Kroer, N. Gatti, T. Sandholm, Trembling-hand
perfection in extensive-form games with commitment, in: IJCAI, 2018.

B. Bosansky, J. Cermak, Sequence-form algorithm for computing stackel-
berg equilibria in extensive-form games, in: AAAI, 2015.

J. Cermak, B. Bosansky, K. Durkota, V. Lisy, C. Kiekintveld, Using cor-
related strategies for computing Stackelberg equilibria in extensive-form
games, in: AAAI, 2016.

C. Kroer, G. Farina, T. Sandholm, Robust Stackelberg equilibria in
extensive-form games and extension to limited lookahead, in: AAAI, 2018.

A. Marchesi, G. Farina, C. Kroer, N. Gatti, T. Sandholm, Quasi-perfect
stackelberg equilibrium, in: AAAI, 2019.

G. De Nittis, A. Marchesi, N. Gatti, Computing the strategy to commit to
in polymatrix games (Extended Version), CoRR abs/1807.11914. arXiv:
1807.11914.

J. Letchford, L. MacDermed, V. Conitzer, R. Parr, C. L. Isbell, Computing
optimal strategies to commit to in stochastic games., in: AAAI, 2012.

Y. Vorobeychik, S. P. Singh, Computing stackelberg equilibria in dis-
counted stochastic games., in: AAAI, 2012.

H. Xu, R. Freeman, V. Conitzer, S. Dughmi, M. Tambe, Signaling in
bayesian stackelberg games, in: Proceedings of the 2016 International Con-
ference on Autonomous Agents & Multiagent Systems, International Foun-
dation for Autonomous Agents and Multiagent Systems, 2016, pp. 150-158.

D. Fotakis, Stackelberg strategies for atomic congestion games, Theory of
Computing Systems 47 (1) (2010) 218-249.

V. Bonifaci, T. Harks, G. Schéafer, Stackelberg routing in arbitrary net-
works, Mathematics of Operations Research 35 (2) (2010) 330-346.

V. Bilo, C. Vinci, On stackelberg strategies in affine congestion games, in:
International Conference on Web and Internet Economics, Springer, 2015,
pp. 132-145.

42


http://arxiv.org/abs/1807.11914
http://arxiv.org/abs/1807.11914
http://arxiv.org/abs/1807.11914

1290

1295

1300

1305

[60]

[61]

[62]

[63]

[64]

[65]

Z.-Q. Luo, J.-S. Pang, D. Ralph, Mathematical programs with equilibrium
constraints, 1996.

H. Sherali, A multiple leader stackelberg model and analysis, OPER RES
32 (2) (1984) 390-404.

V. DeMiguel, H. Xu, A stochastic multiple-leader stackelberg model: anal-
ysis, computation, and application, OPER RES 57 (5) (2009) 1220-1235.

Y. Shoham, K. Leyton-Brown, Multiagent systems: Algorithmic, game-
theoretic, and logical foundations, Cambridge University Press, 2008.

M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness, WH Freeman and Company, 1979.

G. McCormick, Computability of global solutions to factorable nonconvex
programs: Part I — Convex underestimating problems, Math. Program.
10 (1) (1976) 147-175.

P. Cheeseman, B. Kanefsky, W. Taylor, Where the really hard problems
are, in: IJCAI, 1991, pp. 331-337.

T. Sandholm, A. Gilpin, V. Conitzer, Mixed-integer programming methods
for finding nash equilibria, in: AAAI 2005, pp. 495-501.

A. Marchesi, M. Castiglioni, N. Gatti, Leadership in congestion games:
Multiple user classes and non-singleton actions, in: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, 1J-
CAI 2019, Macao, China, August 10-16, 2019, 2019, pp. 485—491.

43



1310

1315

1320

1325

1330

1335

Appendix A. Omitted proofs

Theorem 1. Computing an OSE in SSCGs with different action spaces is NP-
hard, even if the leader has only one action (i.e., she can only select a single
resource) and the cost functions are monotonic.

Proof. We provide a reduction from 3SAT showing that the existence of a
polynomial-time algorithm for computing an OSE in SSCGs would allow us
to solve any 3SAT instance in polynomial time. Specifically, given a 3SAT in-
stance (C, V) and a real number 0 < € < 4, we build an instance I'.(C, V') of an
SSCG admitting an OSE in which the leader’s cost is € if and only if (C,V) is
satisfiable; if not, the leader’s cost is 4 in any OSE.

Mapping. I'.(C,V) is defined as follows:

o N=F U {{}, with F = {pg,pss | ¢ € C} U {py | v €V} U {pvk, o1 |
veVike{l,....m}} U{ppv,Do5 |0 €CiveV}

R={rfU{ry| o ecCtU{ry,ro,rs,75: | vEV}IU{rpv,Tes5| ¢ €
C,veV};

Ap, ={re} U{re | L€ 0} Ap,, ={ry,m} Vo EC;
Apv,k = {7"1),ta7”v}vAp@,k = {Tﬁ,taTﬁ} VoveVike{l,...,m};

Ap, = {Ttﬂ’v,t,%,t} VoveV;
AP(M = {TU’T@U}?A?%,E = {T177T¢,z7} VoeCuveV;
Ap={r}.

The cost functions take values according to the following table, and satisfy
Crof = Crorfs Cryof = Cryuifsr Croeif = Cryofy and ¢ p = ¢, ¢ (let us remark
that, given e < 4, they are all monotonic functions of the resource congestion):

x Crof  Crof  Croef  Cronf  Cref
1 2 0 0 1 €
2, m] 5 0 6 6 4
[m+ 1, 00] 5 7 6 6 4

Figure [1| shows an example of the game instance I'.(C, V).

Given a 3SAT instance (C,V), T<(C,V) can be constructed in polynomial
time, as it features n = 2m + s + 4ms + 1 players and r = m + 4s + 2ms + 1
resources. Since, in I'.(C, V), the leader can only select a single resource, ry,
the only leader’s commitment is oy € Ay : 0y(ry) = 1. As a result, the leader’s
cost is € if and only if no follower selects resource r;; otherwise, it is 4.

If. Assume that (C,V) is satisfiable, and let 7 : V. — {T,F} be a truth
assignment satisfying all the clauses in C. Using 7, we show how to recover
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a followers’ action profile a = (ap)per € XpGFA;D such that a € E7¢ with
o = (o4, a) providing ¢J = e. Note that, since € is the minimum cost the leader
can achieve and the followers behave optimistically, ¢ is an OSE. In particular,
let ap, , = ry, for all $ € C. Moreover, if 7(v) = T, let a,, = ry s and ap, , = 7y,
ap, , = Ton for all ¢ € C, while, for all k € {1,...,m}, let a,,, = 7, and
ap,, = Tp. Instead, if 7(v) = F, let a,, = ry; and a,, , = 75, ap, , = ¢, for
all ¢ € C, while, for all k € {1,...,m}, let ap, , = r5; and a,, , = r,. Notice
that, since either 7(v) = T or 7(v) = F, two cases are possible. If 7(v) = T,
we have vy = m (followers py ), vy, = m (followers pg i), vy , = m (followers
puk), and v =1 (follower p, ). If 7(v) = F, we have vt = m (followers py 5),
vy = m (followers p, i), vy = m (followers py ), and vt , =1 (follower p,).
Assume, w.l.o.g., 7(v) = T, as the other case is analogous. First, no follower
Pg,» would deviate from 7, to 744, as, otherwise, she would incur a cost of at
least 1, rather than 0. The same holds for followers py 5, as their cost is at most
6 while, if any of them switched to r3, she would incur a cost of 7. Similarly,
followers p, 5 would not deviate from r,; (as 6 < 7) and followers pg  would
not deviate from 75 (as 0 < 6). Since v;2 , = 1, follower p, would not deviate
from ry; (as 0 < 6 and 0 < 4 ). Furthermore, since 7 is a truth assignment
satisfying (C,V), at least one literal [ € ¢ evaluates to true under 7 for every
¢ € C. Let ap, = 1y, for every ¢ € C. Since | evaluates to true, it must be
ap,, = 71, thus py is the only follower who selects r4;. As a result, py incurs
a cost of 1, and she has no incentive to deviate. Finally, ps: does not deviate
from r4 to r, as 2 < 4. Thus, we can conclude that a is an NE and that, since
no follower chose 14, the leader’s cost is e.

Only if. Suppose there exists an OSE o = (0y, a) in which the leader’s cost
is €. We show that, in polynomial time, one can recover a truth assignment
T that satisfies all the clauses in C from a = (ap)per. First, let us note that
no follower selects 7; in a as, otherwise, the leader’s cost would be 4 > €. As
a consequence, all followers py; and p, must select one of the other resources
available to them, i.e, a,, , = r4 and ap, € {ry¢,rs:}. Moreover, there cannot
be two followers using resource 74 for every ¢ € C as, otherwise, pg: would
have an incentive to deviate from ry4 to 7y (as 5 > 4). Thus, a,, # rg, and,
for all ¢ € C, there must be a literal | € ¢ such that a,, = rg;. In addition,
there cannot be two followers selecting rq; as, otherwise, py would have an
incentive to deviate to ry (as 5 < 6). Thus, it must be the case that a,,, = 7.
This implies that v} < m as, otherwise, the cost of py; would be 7 > 6, and
that follower would change resource, switching to 74 ;. Thus, at least one of the
followers p; , must select r;; as, otherwise, vy, > m. As a consequence, if [ is
positive and v(l) = v, p, selects r5 4 as, if she selected r, ¢, she would have an
incentive to deviate (as 6 > 4). Moreover, no other follower would select 15 ¢
as, otherwise, p, would deviate to r; (as 6 > 4). This implies that vpo, =1
(follower p,) and all the followers p;j select resource ry, while the followers
Pg.5 choose resources ry 5. On the other hand, if [ is negative and v(l) = v,
similar arguments allow us to conclude that v¢ =1 (follower p,) and all the

Tu,t

followers p, . select resource r,, while the followers pg ,, choose resources 74 ,.
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As a result, either v =1 or vy = 1. In conclusion, we can define a truth
assignment 7 such that 7(v) = Tif ap, = r5, and 7(v) = Fif a,, = r, ;. Clearly,
7 is well-defined. Moreover, as previously shown, for every ¢ € C there exists a
literal I € ¢ such that a,,, = 7, which, letting v = v(l), implies that vy = 1.

Thus, 7(v(l)) = T if [ is positive, while v =1 and 7(v(l)) = Fif l is negative.
Hence, 7 satisfies all the clauses. O

Theorem 2. Computing a PSE in SSCGs with different action spaces is NP-
hardeven if the leader has only one action and the cost functions are monotonic.

Proof. We provide a reduction from 3SAT showing that the existence of a
polynomial-time algorithm for computing a PSE in SSCGs would allow us to
solve any 3SAT instance in polynomial time. Specifically, given a 3SAT instance
(C,V) and a real number 0 < € < 4, we build an SSCG instance I'¢.(C, V') such
that it admits a PSE where the leader’s cost is € if and only if the 3SAT instance
admits a no answer, i.e., if and only if (C, V) is not satisfiable. Instead, if the
3SAT instance has answer yes, i.e., if (C, V) is satisfiable, then the leader’s cost
is 4 in any PSE.
Mapping. I'.(C,V) is defined as follows:

o N=F U {{}, where F = {py+ | » € C} U {put,pv,05 | v €V} U {p1,6 |
(b S Cal € ¢} U {ptﬁ,vaptb,fl | d) S C7U < V}a

R={r}U{ry | ¢ € CYU{rp s, 70,75 | v € VIU{rou 145 | ¢ € Cov €V}
Ap, . =A{re,me} Vo e

Ay, =A{rvero ), Apy = {10070}, Ap, . = {107t} YV EV;

Ap = 1{ret Ulrg t VoeCVIc e

o Ay, ={ro,ront Ap, ., ={re,792} VoeCveV;

Ap = {r}.

The cost functions take values according to the following table, and satisfy
Crof = Crofs Croo.f = Cryo.fr a0d Cr, 5 = cp, ¢ (let us remark that, given e < 4,
they are all monotonic functions of the resource congestion):

x Crof  Crof  Croef  Crowf  Cref
1 2 1 2 0 €
[2,m)] 5 1 5 7 €
m+1 5 6 ) 7 €
[m+s+1,x] 5 6 5 7 4

Figure [2| shows an example of the game instance T'.(C, V).
Given (C, V), T'.(C,V) can be constructed in polynomial time, as it features
n = 3m+m+3s+2ms+1 players and r = m+3s+2ms+ 1 resources. Observe
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that, in I'.(C, V'), the leader can only select a single resource r; and, hence, the
only leader’s commitment is oy € Ay : o4(ry) = 1. As a result, the leader’s cost
is 4 if and only if all followers pg; and p, ; select resource r;; otherwise, it is €.

If. Suppose that the 3SAT instance has answer no, i.e., there is no truth
assignment to the variables in V' that satisfies all the clauses in C. We prove
that, in that case, I'.(C,V) admits a PSE with leader’s cost equal to e. By
contradiction, let us assume there exists a PSE 0 = (o, a) in which the leader’s
cost ¢7 is 4 > e¢. We show that a = (a,)per can be employed to recover, in
polynomial time, a truth assignment 7 that satisfies all the clauses in C', which
is a contradiction. First, let us notice that all the followers pg ; and p, ; select r;
in a as, otherwise, the leader’s cost would be € < 4. As a result, a,, , = 7 for all
¢ € C and ap,, =1 for all v € V. Thus, for every v € V, at least one between
p, and pp must select r, , as, otherwise, player p,, would deviate from r; (as
2 < 4). If ap, = 7y 4, then all the followers py , select 7, as, otherwise, p, would
have an incentive to deviate from 7, (since vp o <m and p, would incur a cost
of 1 < 2 by switching to r,). Similarly, if a,, = 7, ¢, then all the followers py 5
select 75. Let us define a truth assignment 7 such that 7(v) = T if a,, = 1y,
T7(v) = F if ap, = r and 7(v) is either T or F whenever a,, = a,, = Ty4.
Clearly, 7 is well-defined. Since a,,, = r; for all ¢ € C, there must be at least
one follower using resource 74 for every ¢ € C' as, otherwise, py+ would have
an incentive to deviate from r; to ry (as 4 > 2). Thus, for each ¢ € C there
must be a literal I € ¢ such that ap, , = ry. This implies that ap,, = ry, as,
otherwise, follower p; 4 would deviate from 74 to 74, (as 2 > 0). As a result, it
must be the case that a, = 1, since, if ap, = 7,)¢, then py; would select r;
instead of 74 ;. Thus, 7(v(l)) = T if [ is positive or 7(v(l)) = F if it is negative.
Therefore, T satisfies all the clauses, which is a contradiction.

Only if. Suppose that the 3SAT instance admits answer yes, i.e., there exists
a truth assignment to the variables which satisfies all the clauses in C'. We prove
that in any PSE of T'.(C, V') the leader’s cost is4 > €. Let 7: V — {T,F} be one
such truth assignment. We show how to recover from 7 a followers’ action profile
a = (ap)per € X epAp such that a € E, with 0 = (04, a) providing ¢f = 4.
Since 4 is the maximum cost the leader can achieve and the followers behave
pessimistically, o is clearly a PSE. In particular, let ay, , = r; for all ¢ € C' and
ap,, = r¢ for all v € V. Moreover, if 7(v) = T, let a,, = 1y, ap, = 1y, and,
for all ¢ € C, ap, , = r¢» and ayp, , = r5. Additionally, for every clause ¢ € C
and [ € ¢ such that v(l) = v, let ay, , = ry if [ is positive, while a,, , = r¢;
if it is negative. Conversely, if 7(v) = F, let a,, = 13, ap, = Ty, and, for all
¢ €C,ap,, =145 and ap, , = r,. Furthermore, for every clause ¢ € C' and
I € ¢ such that v(l) = v, let a,, , = 7y if | is negative, and ap, , = 1y if it is
positive. Notice that, since either 7(v) = T or 7(v) = F, one between p, and p;
selects r,,;. Assume, w.l.o.g., 7(v) = T (as the other case is analogous). First,
no follower py ., would deviate from 7y, to r,, as, otherwise, she would incur
a cost of 1, rather than 0. The same holds for followers pg 3, as their cost is
1 while, if any of them switched to r4 5, she would incur a cost of 7, because
ap, , = T¢p- Similarly, since there is one follower selecting r, ¢, follower p, ¢
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would not deviate from r; (as 4 < 5), while follower p, would not deviate from
v because her cost is 1 < 5 and py would not switch from 7, + (as she would get
6 rather than 1). Furthermore, since 7 is a truth assignment satisfying (C, V),
for each clause ¢ € C there exists at least one literal [ € ¢ that evaluates to
true under 7. Thus, p; 4 would not deviate from 74 (as she pays either 2 or 5
instead of 7). Thus all the followers pg; would not deviate from r; (as 4 < 5)
and we can conclude that a is an NE. Since m + s follower use 7y, ¢ =4. [

Theorem 3. Computing an OSE in SSSCGs is NP-hard.

Proof. We prove the theorem using a reduction from K—PARTITION, showing
that the existence of a polynomial-time algorithm for computing an OSE in
SSSCGs would allow us to solve K—~PARTITION in polynomial time. Let (.S, K)
be a given K-PARTITION instance, and let us recall that we assumed z; < s
for all x; € S, where s = %Zzies x;. Clearly, any valid partition (S’, 5\ S’)
is uniquely defined by a subset S" C S such that }°, . i = s and |5'| = K.
Let w; = % for all z; € S. Due to having x; < s for all z; € S, we also have
w; < 1. Given (S, K), we build an instance I'c(S, K) of SSSCG with 0 < e < 1
such that there exists an OSE ¢ = (og,v) in which ¢ = e if and only if the
K-PARTITION instance (S, K) admits answer yes.
Mapping. I'.(S, K) is defined as follows:

e N =FU{{}, with |F| =4|S| +2;
o R={ry, yU{ry,}U{r |z €S}

The players’ cost functions are specified in the following table:

T Cri,f Cril | Croof  Cril | Criyf Crigt
1 2s s 352 st 1 st
2 0 s 352 st 452 st
3 wi € 3s2 st 452 st
4 251)7”%“ s 352 st 452 st
[5,4|S| — 2K] 452 5 352 st 45* st
4|5 - 2K +1 452 s 2s st 452 st
41S] — 2K +2 45> s 1 st 4s? st
[4]S| — 2K + 3, ] 452 s 0 st 452 st

Clearly, I'.(S, K) can be built in polynomial time, as it features n = 4|S| + 3
players and r = |S| + 2 resources.

If. Suppose that the K—-PARTITION instance (S, K) admits a yes answer.
Let S" C S be a set of integers with |S'| = K and }_, ¢ xi = s. We prove
that I'c(S, K) admits an OSE o = (o4, v) in which ¢] = €. Given S’, we build
the followers’ configuration v € R" and the leader’s strategy o, € Ay. Let
vr, = 2 and oy(r;) = w; for all z; € S', while, for every z; ¢ S, let v, =0
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and o4(r;) = 0. Moreover, let v,, = 4[S|—2K +1, o4(ry,) =0, v, = 1, and
oe(rt,) = 0. First, let us observe that the leader’s strategy oy is well-defined, as

> oulr) +oulr) +oulrn) = Y oulr) = Y wi= Y T =1,

z; €S z, €S’ z; €S’ z, €S’

where the last equality follows from the fact that S’ defines a partition of S.
Next, we show that v is an NE for o, with the following argument.

e All the followers who selected resource r;, with x; € S’, do not have any
incentive to change resource, as their cost is w; - U% = 1 and they cannot
improve it by switching to another resource. Indeed, if they selected a
resource 1; with xz; € S’, they would incur a cost of w% (1 —wj) +

1
# -w; = 25 > 1. Similarly, their cost would be 2s if they choose 7;
with z; ¢ S’. They would not benefit from choosing resource r;,, as they
would incur a cost of 1, which is the same as their current cost, and they

would not switch to resource ry,, as their cost would become 452 > 1.

e All the followers who selected resource 7, incur a cost of 2s. Thus, they
do not have an incentive to deviate to a resource r; with z; € S’, as they
would still incur a cost of 2s. The same holds for resources r; with z; ¢ S’
Similarly, if they chose to play r,, they would incur a cost of 4s% > 2s.

e The follower who chose resource r;, does not deviate, as her cost is 1 and
she would incur a cost of 2s and 1 if she switched to resource r; (for some
x; € S) and ry,, respectively.

Overall, the leader’s cost is:

o = Z oe(ri)er e(vr, +1) + Uf(rh)cml,f(’/nl +1)+ Uf(rtz)crm ,f(Vrtg +1) =

z; €S
= Z oe(ri)er, o(vr, +1) = Z cw; = €.
z; €8’ €8’

Only if. Suppose that I'.(S, K) has an OSE o = (oy,v) in which ¢] = e.
Then, o¢(rt, ) = o4(re,) = 0 must hold. Moreover, the leader must place positive
probability only on resources r; with v, = 2. Clearly, there is always a resource
r; with v, = 2 and o¢(r;) > 0. Next, we prove that v,, =4[S|—2K +1. By
contradiction, assume that v, # 4[S| — 2K + 1. Three cases are possible.

e v, = 0 implies that either there exists at least one resource r; with
vr, 2 5 or v, =2, but, then, the followers who chose r; or, respectively,
rt,, would deviate by choosing ry,, decreasing their cost from 4s? to 3s2.

e 1 <v, <4|5]—2K implies that the followers who selected 74, incur a

cost of 3s2. Thus, they would deviate to some resource r; with v, = 2,
1

. . 25— o —+1
since their cost would be at most —=+— < 3s%.

i
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e vy, > 4|S| — 2K + 2 implies that the followers’ cost when they deviate
by playing resource 7, is 0. Thus, the followers who selected a resource
r; with v, = 2 and oy(r;) > 0 would change resource, since their current
cost is strictly greater than 0.

The only remaining option for v € E?¢ is v, = 4|S| — 2K + 1. Then, v, =1
must hold as, if v, = 0, a follower would switch form resource r¢, to resource
71, (incurring a cost of 1 instead of 2s > 1), while, if v, > 2, the followers who
selected resource r;, would deviate to resource r¢, (incurring a cost of 1 instead
of 45> > 1). Let us now consider a resource 7; with v, = 2. We prove that
o¢(r;) = w; by contradiction. Two cases are possible.

o If 0y(r;) < w;, the followers’ cost by switching to resource r; satisfies

1 25—+ +1 1 25— L 41
—(1— s W ;) < —(1—w; Wi
(=) + —— (i) < (1= wi) + —— 2

w; = 28,

where the inequality holds since the left-most quantity is a convex combi-
25— +1

nation of w% and with weights (1 — oy(r;)) and o¢(r;), and, since

1 ool : . .

o < ——i—, its maximum for oy(r;) < w; is attained at og(r;) = w;.
K k2

Thus, we deduce that a follower would deviate from resource r;, to re-

source 7; (as her current cost is 2s), contradicting the fact that v € E%¢.

e If 0y(r;) > w;, we reach a contradiction since the cost incurred by the
followers who are using resource r; would be ﬁag(ri) > 1 and they would
deviate playing resource r;,, decreasing their cost to 1.

We have shown that o4(r;) = w; for every resource r; with v, = 2. Finally, let
r; be a resource with v, # 2. Clearly, it must be the case that o¢(r;) = 0 since
the leader’s cost is e. Moreover, it cannot be the case that v,, = 1, as, if it were
the case, the follower would deviate to resource r;, with a cost of 1, instead of
2s. Similarly, v,, > 3 cannot hold, as one of the followers who are selecting
resource r; would deviate playing r;,, since her current cost is greater than 1.
Thus, either v,, = 2 or v, = 0. As a consequence, there are K resources r; with
vr, = 2 and o4(r;) = w;, and |S| — K resources r; with v,, =0 and o,(r;) = 0.
Let us define S’ as the set of integers x; € S such that the corresponding
resources 7; satisfy v, = 2. Since > g 0¢(r;) = 1 and o¢(r;) = w; for all
such resources r;, we can conclude that Zmies, w; = EIiES’ % =1, and, thus,

> e.cs Ti = 5. As aresult, (8,5 9) is solution to K-PARTITION. O

Theorem 4. The problem of computing an OSE in SSCGSs is not in Poly-
APX unless P = NP.

Proof. In order to prove the result, we rely on the reduction introduced in
the proof of Theorem We have already shown that in an OSE o = (oy,v)
of T'e(S, K) it holds ¢f = € if and only if the corresponding instance of K-
PARTITION (S, K) admits a yes answer. Now, we prove that, when the K-
PARTITION instance admits a no answer, ¢ > 1 in any OSE. By contradiction,
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assume that there exists an OSE o = (o4, v) in which ¢] < 1. Let S’ C S be the
set of integers corresponding to a group of resources r; with v,., = 2 (at least one

must exist since the leader’s cost is smaller than 1). Then, » g oe(r;) > -1

since D, o\ g0 0¢(1i) +00(re,) +0¢(re,) must be smaller than L in order to have

¢f < 1. Moreover, o¢(ry,) < % and o4(ry,) < & must both hold as, if not, we
would get ¢f > 1. We prove, now, that v, = 4|S| — 2K + 2 by contradiction.
We identify three cases:

e v, = 0 implies that either there exists at least one resource r; with
vr, 2 5 or v, = 2, and, thus, either a follower who selected resource
r; or one who selected resource r, would have an incentive to deviate to
resource 7, (as 4s% > 3s?).

e 1 <, <4[S|—-2K —1 implies that one of the followers who selected

ry, would have an incentive to deviate to resource r; with v,, = 2, as she
25— L 41
2

would incur a cost smaller than or equal to < 3s2.

e v, = 4]S| — 2K implies that the cost incurred by the followers who

selected resource 1y, is greater or equal than 3s%(1 — S%) + S%, as op(ry, ) <

. 25— 41 P
S%. Thus, since i < 252 < 352 — S% + S%, these followers would

k2
deviate from r4, to a resource r; with v,, = 2.

e vy, > 4|S| — 2K + 2 implies that the followers’ cost after deviating to
resource 1, would be 0 and, since there exists at least one resource r;
with v(r;) = 2 and o(r;) > 0, one of the followers who selected such
resource would switch from it in favor of 7.

Thus, v, = 4|S| — 2K + 1. Let us consider resource ry,. If v, = 0, the
followers’ cost incurred when deviating to resource r;, would be smaller than
or equal to (1 — &) + % (as oy(r,) < ), while the cost incurred by choosing
resource 1y, is at least 2s(1 — &) + & > (1 — %) + Z&. Instead, if Vr,, 2 2,
the followers’ cost for resource ry, is 4s? and they would have an incentive to
deviate to ry, to decrease their cost to 1 or less. Thus, v, = 1. We deduce
o¢(r,) = 0 as, otherwise (i.e., with o4(r¢,) > 0), a follower would deviate from
resource 1, to ry,, decreasing her cost to 1 or less. Let us focus on resources r;
with v,., = 2. If 04(r;) < w;, the followers’ cost of deviating to r; is

1 25 — = +1 1 25— L 41
—(1— s Wi ) < —(1—w; Wi
(1= 00(r)) + B oy(ri) < (1 w) 4

w; = 2s,

and they would deviate from 7, to 7;, as their current cost is 2s. Instead, if
oe(ri) > w; the cost of any follower who selected r; is greater than 1 and she
would deviate to resource r;, to decrease her cost to 1. Thus, o,(r;) = w; for
all resources r; with v,, = 2. Now, let us consider a resource r; with v,, # 2.
Clearly, o4(r;) < % must hold since ¢ < 1. If v,, = 1, the followers’ cost
for resource r; is at least 25% > 1 while, if v, > 3, the followers’ cost for
resource r; is at least wi > 1. In both cases, the followers who selected resource

1
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r; would have an incentive to deviate to r;, (as they would pay 1). Thus,
either v,, = 2 or v,, = 0. As a consequence, there are K resources r; with
v, = 2 and op(r;) = w; and |S| — K resources r; with v,, = 0. If ¢ <1,
there must be a subset S' C S with > g 00(ri) = >, cq wi > s=1 " which
implies that > .o % > =1 and > wes i > 8 — 1. Note that z; € N and
Ywes Ti = 5D e Wi = 5y cqou(ri) < s. Thus, Y7 o2 = s and
(8,5\ 9) is solution to K-PARTITION. So far, we have proven that T'.(S, K)
admits an OSE o = (og,v) in which ¢ = € if and only if (S, K) has answer
yes and that, otherwise, ¢§ > 1 in any OSE. Let € = 2,1% Assume that there
exists a polynomial-time approximation algorithm A with approximation factor
poly(n, ), i.e., a polynomial function of n and r. Assume (S, K) has answer yes.
A applied to I'c(S, K') would return a solution with ¢f < 51 poly(n,r). Since,
for n and r large enough, ﬁ poly(n,r) < 1, A would allows us to decide in
polynomial time whether (S, K) has a yes or no answer, a contradiction unless
P = NP. O

Theorem 5. Computing a PSE in SSSCGs is NP-hard.

Proof. We provide a reduction from PARTITION showing that the existence of
a polynomial-time algorithm for computing a PSE in SSSCGs would allow us
to solve PARTITION in polynomial time. Given a PARTITION instance with
a set S of positive integers, let, as in the previous proof, s = %Zzies x; and
w; = % for all 7; € S. Let us also recall that we assumed, w.l.o.g., z; < s for all
x; € S, and, thus, w; < 1. Given S, we build an instance I'.(.S) of SSSCG with
0 < € < 1 such that ¢ = €in a PSE ¢ = (04, v) if and only if the PARTITION
instance admits answer yes.
Mapping. ' (S) is defined as follows:

e N =FU{{}, with |F| = 3|5];
e R={r;}U{r;|ie S}

with the following cost functions:

€z Cri,f Crit | Cri,f  Crit
1 0 € 1 1
2 T st 1
w; — S
3 T € 1 st
vy ——
4 0 st 1 st
[5, 00] s € 1 st

Clearly, T'.(S) can be built in polynomial time, as it features n = 3|.S| players,
and r = |S| + 1 resources.

If. Suppose that the PARTITION instance admits a yes answer, and let
S C S besuch that ) g z; = s. Weshow that there exists a PSE o = (o, 1)
in which ¢f = e. Let o4(r;) = w; for all z; € S’, go(r;) =0 for all z; ¢ S’, and
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o¢(r¢) = 0. We prove that ¢f = € for any o = (oy,v) with v € E?¢. Assume, by
contradiction, that there exists an NE v € E?¢ such that ¢ = e. This implies
that there exists a resource r; with ; € S” and either v,, = 1 or v, = 3. If
vp, = 1, the cost incurred by the followers who select r; is ﬁwz > 1 and

any of them would deviate to resource r; to decrease her cost to 1. If Vp, = 3,

the followers’ cost is 1_w1_i (1 —w;) > 1 and any of them would deviate to
e

resource 7. In both cases, this contradicts the fact that v is an NE, and, thus,
it must be that v(r;) # 1 and v(r;) # 3 for all z; € S’. As a result, ¢j = € for
any o = (op,v) with v € E°¢.

Only if. Suppose that I'c(S) admits a PSE ¢ = (o4, v) in which ¢f = e.
Then, o,(ry) = 0 and o¢(r;) > 0 only if resource r; is such that v,, # 1 and
vr, # 3. Let us define R’ C R as the set of resources r; with o(r;) < w; — 5%1,
R as the set of resources r; with w; — S% < op(r;) <w;+ S%, and R as the set
of resources r; with ap(r;) > w; + S% Let v € R" be a followers’ configuration
such that v,, =1 for all r; € R', v, =0 for all7; € R”, v,, =3 for all r; € R"”,
and vy, = 3|S| = 32, cp\ () Vri- First, we show that v € E”*. Indeed, all the
followers who selected resource r; incurs a cost of 1, all those who selected a

resource r; € R’ incur a cost of — L oe(r;) < 1, and all those who selected
i
1

resource r; € R incur a cost of ———
].—-7l)i — ;7I

deviated, she would incur a cost greater than or equal than 1. In particular,
no follower would deviate to a resource r; € R, as she would incur a cost
that is a convex combination of values greater than 1. Similarly, no follower
would deviate to a resource r; € R” or r; € R, as she would incur a cost of,
respectively, ﬁa(m) > 1 or soy(r;) > 1. Finally, no follower has an incentive

(1 — o¢(ry)) < 1. If any follower

to switch to resource 14, as her cost would not decrease. This shows that, in the
followers’ game resulting from oy, there exists an NE such that, whenever the
leader selects a resource 7; in R’ U R”, she incurs a cost of s*. Thus, given that
¢] =€ R' = R" = () must hold. Let us define S’ C S as the set of integers
x; € S whose corresponding resource r; is such that w; — S% < op(r;) < w;+ S%

For all the other resources r;, it must be oy(r;) = 0. Since Zmies’ oe(ri) =1,
we have Y o (wi — &) <1<, co (wi+ %), and, therefore,

-1 1 1 +1
Ss <1—ZS—4< Zwi<1+287<88 ,

x; €S’ x; €S’ x; €S’

which implies s — 1 < ines, x; < s+ 1. Since Zmes, x; is an integer quantity,

we deduce ineS/ x; = s, implying that S’ is a solution to PARTITION. O

Theorem 6. The problem of computing a PSE in SSCGs is not in Poly-APX un-
less P = NP.

Proof. In order to prove the result, we rely on the reduction introduced in the
proof of Theorem [5| We have already shown that in a PSE o = (o, v) of T'c(.S)
it holds ¢ = € if and only if the corresponding instance of PARTITION admits
a yes answer. Now, we show that, if the partition problem has no answer,
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then ¢ > 1 in any PSE. Suppose, by contradiction, that there is a leader’s
strategy oy such that all NEs of the resulting followers’ game provide the leader
with a cost smaller than 1. Then, o¢(r;) < 1 for all resources r; such that
Vr, = 3, 0¢(r;) < -7 for all resources r; such that ve, = 1, and o4(ry) < 314
If there is a resource r; with og(r;) > w; + 514, we have already proven that
there is an NE with v,, = 3 providing the leader with a cost greater than
stoy(r;) > 1. Consider the set S” C S of integers z; corresponding to resources
r; with op(r;) < w; — S% We have already shown that there is an NE with
vy, = 1 for all x; € S”. Since the leader can select these resources with, at most,
probablht L (as p es oe(r;) < %), there is a set S’ of resources r; with

w;— % < oy(r;) < wi+ % and D e Jg(n) >1—2. From Y., o (wi+2r) >
Zr cg oe(ri) > 1 — 34’ we obtain Zx e wi > 1 — 5—4 - %l > 9;—1 From

Ypes (Wi — 21) < X, o oe(ri) <1, we deduce Y, o w; < 1+ lf% < =
Thus, s =1 < ), co @i < s+ 1 and, since ) g x; is an integer quantity,
we have that ) g 7; = s, showing that S’ is a solution to PARTITION. We
have proven that I'.(S) admits a PSE ¢ = (o4, v) in which ¢ = € if and only
if the PARTITION instance has a yes answer, while, otherwise, ¢ > 1 in any
PSE. Let € = Qn% Assume that there exists a polynomial-time approximation
algorithm A with approximation factor poly(n,r), i.e., a polynomial function
of n and r. Assume the PARTITION instance has answer yes. A applied to
I'.(S) would return a solution with ¢f < =%~ poly(n,r). Since, for n and r
large enough, 2,% poly(n,r) < 1, A would allow us to decide in polynomial
time whether the PARTITION instance has a yes or no answer, a contradiction
unless P = NP. O

Appendix B. Additional experimental results

In this section, we present a heuristic algorithm which combines Algorithm ]|
with best-response dynamics using the result produced by the former as starting
solution for the latter.

We remark that when Algorithm [[]runs on games with different action spaces
and/or generic cost functions we have no guarantees on the returned solution.
In particular, such solution may not be an OSE, neither a feasible strategy pro-
file, i.e., one in which the followers’ configuration is an NE given the leader’s
strategy. However, using best-response dynamics starting from the solution re-
turned by Algorithm [I| guarantees to find a strategy profile which is feasible.
The reason why we study this heuristic is that, in principle, one could expect
that, in SSCGs with almost identical action spaces and almost monotonic cost
functions, Algorithm [I] may return a strategy profile from which best-response
dynamics could lead to solutions better than those obtained by starting from
randomly generated followers’ configurations (as in the plain best-response dy-
namics heuristic we considered in Section [l

In more detail, our heuristic algorithm works as follows. We first randomly
order the followers and assign each of them, one at a time, to a resource ac-
cording to the procedure in Algorithm [I] i.e., each follower is assigned to the
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resource with the current smallest cost, breaking the ties in favor of the leader.
Then, we run best-response dynamics starting from the obtained followers’ con-
figuration. We compare this heuristic algorithm to the best-response dynamics
heuristic with randomly generated starting points and our MILP formulations,
using three classes of SSCGs instances:

o Almost monotonic cost functions and identical action spaces. We as-
sume r = 20 resources, |F| € {20,40, 60, 80,100} followers, and so-called
single-peak cost functions, which are built by increasing the resource cost
until a given level of congestion, or peak (sampled uniformly at ran-
dom in {1,..,|N|}) and decreasing it after the peak, sampling each in-
crement/decrement uniformly at random in {1,...,(n—1)r}.

e Monotonic cost functions and almost identical action spaces. We assume
r = 20 resources, |F| € {20,40,60,80,100} followers, cost functions in-
creasing by a value in {1,..., (n—1)r} for each additional unit of conges-
tion, and 15 actions per follower.

e Generic cost functions and almost identical action spaces. We assume 7 =
20 resources, |F| € {20,40,60, 80,100} followers, 15 actions per follower,
and cost functions randomly generated by sampling from {1,...,(n—1)r}
with uniform probability.

We generate 15 instances for each combination of the parameters.

In games with almost monotonic (i.e., single-peak) cost functions and iden-
tical action spaces, our heuristic combining Algorithm [I| with best-response
dynamics performs quite well, even if its performance is worse than the one
achieved with the plain best-response dynamics heuristic we introduced in Sec-
tion In games with monotonic cost functions and almost identical action
spaces, the performance of the two heuristics is comparable. This is reasonable,
since in these game there are few pure NEs and both algorithms achieve the
same solutions. The results on these two classes of instances are reported in
Figure (a).

When we completely drop the monotonicity assumption of the cost functions
(see Figure (b)), the heuristic based on Algorithm [1| performs much worse
than the plain best-response dynamics heuristic.
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Figure B.6: Comparison of the average leader’s cost of the solutions returned by our MILP
formulations, the best-response dynamics heuristic (brd), and best-response dynamics initial-
ized with Algorithm ] (greedy+brd). (a) Average leader’s cost as a function of the number of
followers with 20 resources, 15 actions per player, and monotonic and almost monotonic (i.e.,
single-peak) cost functions. (b) Average leader’s cost as a function of the number of followers,
with 20 resources, 15 actions per player, and random generic cost functions.
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