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Abstract: We employed anisotropic wet-etching to define Si wire, slot, and fin waveguides with low propagation loss for optical modulator applications. In a photonic crystal with broken mirror symmetry, we found an opening of a band gap with the mode profile similar to graphene and poly-acetylene made of vortices with topological charge. 
1. Introduction

A photon has spin for the polarisation properties as well as orbital degree of freedom accounting for the mode profile. Optical properties are significantly affected by the symmetries of the waveguides. Here, we introduce some of our activities to control photons by manipulating the symmetries of the waveguides in our silicon photonic platform [1-12].
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Fig. 1. Various Si Photonic Waveguides. (a) Wire, (b) slot, (c) MOS with fin, and (d) Ge microgear.  (e)-(f) corresponding Scanning-Electron-Microscope (SEM) images, and (i)-(l) mode profiles.Ja
2. Symmetries of Crystals
One of the most practical issue of a silicon waveguide is the propagation loss due to scattering. In order to reduce the loss, we have used a crystalline symmetry of Si [4-7] (Fig. 1). We used a Si-on-Insulator (SOI) substrate with Si (110) as the top SOI layer with the notch along <112> direction. Using this SOI substrate, the Si (111) surface is defined perpendicular to the surface (Fig. 1(a)), whose surface is atomically flat after the anisotropic wet etching [4-7]. We confirmed the reduced propagation loss of 0.85 dB/cm, compared with the dry etched one with 4.7 dB/cm [5]. This technique is also used to define a slot waveguide with the record propagation loss of 3.7 dB/cm for the gap of 100nm (Fig. 1(b)). We have also made a double SOI wafer by wafer bonding of 2 SOI substrates to form a Metal-Oxide-Semiconductor (MOS) structure made of single crystalline Si with a 10nm gate oxide in between [7]. We have successfully removed the bottom layer from the top through fins, and wet-etching was self-limited after defining Si (111). This allows to access the bottom and top cores of the waveguide, electrically through connections of fins (Fig. 1 (c)). We are also interested in converting the indirect band-gap character of Ge by strain enginnering (Fig. 1 (d)) [8, 9]. We observed a vertical emission of a light with a vortex from a Ge micro gear [9].

3. Symmetries of Photonic Crystals
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Fig. 2. Photonic crystals (a) with and (b) without a mirror symmetry. The half-lattice constant is shifted for the bottom crystal compared to the top in (b). Similar structures of double SOI fin waveguides for electrodes or suspensions (c) with and (d) without a mirror symmetry. 
We can also control the properties of lights by intentionally breaking the symmetries of the photonic crystals [1-3]. Fig. 2 (a) shows a typical band structure of a photonic crystal waveguide with a degeneracy for an index guided mode and a photonic crystal guided mode with different parities [1-3]. The system is described by a 2-level system with different polarisations [3]. Then, we have intentionally introduced a broken symmetry by introducing a mismatch to shift the bottom photonic crystal towards the top crystal across the waveguide. At the maximum mismatch of the half lattice constant (Fig. 2 (b)), the band-gap opening is maximized [3]. This means that the 2 orthogonal modes are coupled to form bonding and anti-bonding modes, forming photonic graphene and poly-acetylene structures (Fig. 3) [1-3]. We have also calculated the band structure for the double SOI structure with fins (Figs. 2 (c) and (d)). In this case, one of the mode is a slot mode, which was robust against the introduction of the mismatch.
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Fig. 3. Photonic organic chemistry. Energetically favorable mode profiles were found to have the same topological structure with carbon allotropes for both (a) bonding and (b) anti-bonding modes. Here, the topological charge corresponds to a node of the mode, where a vortex with orbital angular momentum is trapped. The vortices with positive and negative charges are alternatingly forming a “bond” to form a “crystal” in the forms of (c) graphene and (d) poly-acetylene.
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 Fig. 4. Proposed optical modulators. (a) MOS type cross section, (b) bird’s view, (c) SEM, and (d) eye diagram. (e) LiNbO3/Si hybrid modulator, (f) optical mode, and (g) electric field for Electro-Optic (EO) modulation.
4. Applications to Silion Photonics 
We think our waveguide structures are suitable for applications in high-speed optical modulators [11,12]. In order to replace conventional copper cables by active optical fibres, it is important to reduce the power consumptions. We have fabricated a MOS structure with a vertical slot oxide of 14nm. We have made the oxide by the thermal oxidation of the sidewall, followed by the amorphous Si deposition and re-crystallisations. The planarization by using Chemical-Mechanical-Polishing (CMP) was also employed. We confirmed eye opening at 25 Gbbps with an extinction ratio of 3.65 dB [11]. We are also planning to fabricate a hybrid optical modulator with LiNbO3 and Si. According to our simulation, using  a slot waveguide of a gap of 50 nm, We expect of VL=0.042V.cm, which allows us to remove the 50  termination towards the zero power consumption by using an Electro-Optic (EO) effect.

7. Conclusion
We have examined the impacts of crystalline and rotational symmetries on optical properties in Si photonic platform. We can use both spin (polarisation) and orbital degrees of freedom for various applications.
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