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Falls are a common recurrent event for People with Parkinson’s (PwP) and may result in injuries
and loss of independence in daily activities. Falls prevention trials evaluate whether an intervention
is effective in reducing falls. The traditional analysis is the logistic regression, but Negative Binomial
(NB) models have become widely used recently. The distribution of the falls count is usually heavily
skewed, with a relatively small mean and a few outlying large numbers. These large counts are a
challenge in modelling falls count because they may have great influence in model estimation,

especially when there is imbalance between groups.

This thesis focuses on examining the statistical methods used in analysing falls counts, especially
the NB model. Diagnostic plots specifically designed to assessing the influence of outliers on NB

modelling are developed in this context, so that the outliers can be easily identified.

The falls counts during a pre-randomisation baseline period is usually strongly correlated with the
falls counts during an outcome period. Approaches to incorporating the baseline count in modelling
outcome falls counts are examined in three motivating datasets and simulations carried out
generating data resembling the characteristics of real data with respect to the methods used to
collect the falls count. Data from trials with prospectively collected outcome counts and
retrospectively collected baseline counts are examined using an actual dataset and simulations to
check whether this design impacts on model estimation. Overall, including the logged baseline
count as a covariate in NB regression was shown to have satisfying power and to be robust when

the underlying assumption does not hold.

Some alternative count response models to the standard NB model are also considered: Poisson
Inverse Gaussian models for heavily skewed data; zero-inflated NB to check for potential
zero-inflation in falls counts; right-censored/right-truncated NB to reduce the influence of large
falls counts; finite mixture Poisson model to accommodate the frequent fallers as a subpopulation;
and random-effects NB models to explore the possibility of modelling longitudinal falls counts. They
all show potential in dealing with specific issues in analysing falls data.
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Chapter 1

Introduction

Falls are common events for people with Parkinson’s (PwP) and often result in injuries (Gray
and Hildebrand, 2000; Nystrom et al., 2016; Pickering et al., 2007; Wang et al., 2014).
Frequent fallers may develop psychological difficulties, such as loss of confidence in daily
activities due to fear of falling, which greatly affects their quality of life (Jgrstad et al., 2005;
Yardley and Smith, 2002).

Randomised Control Trials (RCTs) have been conducted to evaluate the potential of
treatments for preventing falls, and they are usually referred to as falls prevention trials.
Typically, after randomisation, participantsin an intervention group receive an intervention
while participants in a control group receive usual care. The number of falls experienced by
each person during a follow-up period is recorded as the outcome, and then compared
between groups to evaluate whether the intervention reduces the occurrence of falls. The
falls count may be collected prospectively via a falls dairy, or retrospectively by asking
participants to recall the number of falls that occurred during a period in the past. In
addition to the outcome falls count, it is common to also obtain the number of falls during
a pre-randomisation baseline period, which is referred to as the baseline falls count in this

thesis.

In general, the distribution of a falls count is positively skewed and heavy tailed, with a
relatively small mean and a few large outliers. Various methods are available for analysing
data from falls prevention trials. A common approach is to dichotomise falls counts into a
binary variable and fit a logistic model, which yields an Odds Ratio (OR) to estimate the size
of the intervention effect. However, valuable information is lost in the process, resulting in
low statistical power. In contrast to the logistic model, a count response model yields an
Incidence Rate Ratio (IRR) to estimate the risk of falling based on all falls. The IRR is called

a Falls Rate Ratio (FRR) in the context of a falls prevention trial, and the 95% Confidence
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Interval (ClI) of the FRR is often reported. Poisson regression is the standard and most
commonly used count response model. It has an underlying assumption of equidispersion,
which means that the response variance is equal to the mean. However, this assumption
rarely holds for falls data due to heterogeneity, which arises when important dependent
variables are not included in models or not observed in trials. This was described by
Winkelmann (2008) as “the explanatory variables do not account for the full amount of
individual heterogeneity in the conditional mean of the dependent variable.” Failing to
account for heterogeneity in a model results in overdispersion, defined as the variance
being greater than the mean (Hilbe, 2011). This is a major challenge in the analysis of falls
counts, as overdispersion leads to inflated type | error rates in model-based hypothesis

tests.

In recent years, Negative binomial (NB) regression has grown popular and become the
recommended statistical model for falls data (Gillespie et al., 2012). It can be regarded as
an extension of Poisson regression—fundamentally, NB regression is a Poisson model with
a gamma-distributed random subject effect in the model to accommodate overdispersion.
Compared to Poisson regression, NB is more robust to heterogeneity: the model-based
standard errors (SEs) of regression coefficients are not underestimated to the same extent,

and the type | error rates of the model-based tests are closer to the nominal level.

1.1 Research objectives

Despite the growing popularity of NB models for falls data, there are a few challenges in
practice. The aim of this thesis is to address the issues in analysing falls counts from falls
prevention trials in PwP, especially for NB and NB-related models. In particular, the thesis

seeks to address the following topics:

e Utilising the baseline count in statistical analysis: Incorporating the baseline falls
count in an NB model is expected to improve the statistical power in the testing of
intervention effect, because the falls count during a baseline period is usually
strongly correlated to the outcome count. Some trials collect outcome counts
prospectively but baseline counts retrospectively. In such trials there is a
discrepancy in the collection methods between the two counts, which would be

anticipated to affect the relationship between them. The thesis seeks to examine

2
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how best to incorporate the baseline count in NB modelling, and how a discrepancy

in methods of collecting the counts impacts on modelling.

Large outcome falls counts: One of the challenge in modelling falls counts is the
presence of outliers. Most people record only a few falls during trial follow-up, but
occasionally some record massive numbers. Although NB models are based on a
long-tailed distribution, large counts may still be influential in model estimation, but
it is not straightforward to identify whether a large count is indeed influential and
how it impacts on the estimation of the intervention effect. The study aims to
develop diagnostics plots in the context of a falls prevention trial where a baseline
count has been collected, develop software to automate the production of the plots,
and explore statistical approaches to reduce the influence of the large outcome

counts.

NB functionality in statistical packages: An aim of the thesis is to review statistical
packages regarding their functionality in NB modelling to facilitate researchers in

selecting a package that best meet their requirements.

Alternative count response modes: In addition to NB models, alternative count

response models are studied in the context of modelling falls count.

1.2 Motivating datasets from falls prevention trials

Three motivating datasets from falls prevention trials for PwP were made available to this

project. Each of the three trials is comprised of a baseline period, and one, two, or more

post-randomisation follow-up periods of falls collection.

1.2.1 Goodwin et al. dataset

The Goodwin et al. (2011) trial is an RCT carried out in the South West of England. One

hundred and thirty PwP meeting the following eligibility criteria were recruited: with a

diagnosis of Parkinson’s, with a history of at least two falls in the year prior to enrolment

(the number was obtained via a retrospective question at the screening interview but not

recorded other than for checking eligibility), with mobilising ability, and resident in or

registered with a general practitioner in Devon.
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The recruited PwP were randomised to either an intervention (n=64) or a control group
(n=66), but not informed of group allocation until they had finished a 10-week baseline
prospective falls collection period. During 20 weeks of follow-up, each participant
prospectively recorded the number of falls they experienced in diaries; the number
recorded during the baseline period is referred to as the baseline falls count. Note that this

number is different to the retrospective falls count, which was only used to check eligibility.

After the baseline period (weeks 1-10), the participants in the intervention group received
one strength and balance group exercise session and two home exercises in each week.
The intervention sessions lasted for 10 weeks (weeks 11-20), and the participants were
followed up for another 10 weeks (weeks 21-30). Throughout the trial period, both the
intervention and control groups received usual care that was delivered by a clinical team
blind to group allocation. The number of falls recorded during the two outcome periods,
weeks 11-20 and 21-30, are referred to as the intervention and outcome falls counts

respectively.

The following baseline characteristics were made available to this project: sex, age, the

number of years since diagnosis of Parkinson’s, the Hoehn and Yahr stage, and living status.

1.2.2 Martin et al. dataset

The Martin et al. (2015) trial is a parallel delayed-start RCT carried out in New Zealand. The
aim of the study was to investigate whether cueing could reduce the risk of falling. Cueing
improves gait for PwP (Nieuwboer, 2008; Spaulding et al., 2013) and may alleviate Freezing
of Gait (FOG), which is a symptom associated with PwP, but there is currently no evidence

that a cueing program reduces the risk of falling (Rocha et al., 2014).

Twenty-one participants with diagnosis of Parkinson’s, over 65 years old, with FOG,
independently mobile, and with stable Parkinson’s medication were recruited and
randomized to an Immediate-Start (IS, n=12) or a 6-month Delayed-Start (DS, n=9) group.
The delayed-start design is an alternative to the standard parallel-group RCT, aiming to
increase the recruitment rate (Spineli et al., 2017). All participants received the same
intervention four weeks (IS) or six months (DS) after entering the trial. The intervention
was a home-based exercise and education program, which provided instruction on cued

exercises using a metronome. Participants were instructed to record falls in a daily diary.
4
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The dataset made available to this project included the count of falls in each of the 30

weeks, but no baseline characteristics were available in the dataset.

To make the dataset comparable with the other two, only the first 24 weeks are included
in the analysis (see Table 1-1). Within these weeks, the IS group has records of falls counts
after the intervention starts (at week 5), while the DS group is regarded as a control group.
The reduced dataset thus follows the form of a standard RCT with four weeks of baseline
and twenty weeks of follow-up falls collection. In the following text, IS and DS are referred

to as the intervention and control groups respectively.

Table 1-1  Structure and included weeks in the Martin et al. dataset.

Group Included data set Excluded data set
Weeks 1-4 Weeks 5-24 Weeks 24-30
IS (intervention group) Waiting Receiving intervention Receiving intervention
DS (control group) Waiting Waiting Receiving intervention

The Martin et al. trial has a limitation compared with the other two trials discussed in this

section: its sample size of 21 is too small to detect even a large intervention effect.

1.2.3 EXSart dataset

The EXSart trial (Ashburn et al., 2007) is an RCT carried out in the UK between October 2002
and April 2005. The eligibility criteria were: with a diagnosis of Parkinson’s, independently
mobile, community dwelling, with a history of at least two falls in the previous year (the
number was obtained via a retrospective question and referred to as the baseline falls
count), and having passed a gross cognitive impairment test. One hundred and forty-two
people were enrolled and randomised to an intervention (n=70) or control (n=72) group.
The participants in the control group received usual care while the intervention group
received a 6-week home based exercise programme. After the programme the participants
in the intervention group were telephoned monthly to encourage them to continue the
exercises. Baseline characteristics that were collected included sex, age, the number of
years since diagnosis of Parkinson’s, the Hoehn and Yahr stage, UPDRS (defined in section

2.1), and living status (alone, with partner, and with family/friends/other).
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The design of the EXSart trial is similar to the other two, but with one major difference—

the baseline and outcome falls were recorded using different methods. The baseline falls

count was obtained retrospectively, by asking the participants how many falls they had

experienced in the previous year in the screening interview. After the randomisation, the

participants were instructed to prospectively record the number of falls they experienced

in diaries with telephone reminders to do so. The falls count was analysed for the first 8

weeks and from 8 weeks to 6 months periods, they are referred to as the intervention and

follow-up counts, respectively.

1.3 Structure of the thesis

The rest of the thesis is presented in the following structure:

Chapter 2 is a review of the literature, background to falls prevention trials for PwP,
and the statistical methods used in the thesis. In section 2.1, the diagnosis,
treatment, and measures of severity for Parkinson’s are introduced, and the
intervention on falls in PwP are summarised. The designs for falls prevention trials
are described in section 2.2, especially relating to the baseline count of falls and the
two methods commonly used to collect the counts in falls prevention trials. In
section 2.3, we introduce the statistical analyses that can be used for modelling falls,
focussing on the NB model and NB-related models. Diagnostics for assessing and

validating NB models are also described in this section.

In Chapter 3, NB models are fitted to the three datasets, and compared to the
Poisson model. The goal of this chapter is to 1) help understand the characteristic
of the data, and 2) highlight the limitation of the NB modelling when the baseline

count is not included in the model.

Chapter 4 and Chapter 5 aim to provide tools to facilitate applied statisticians in

analysing falls counts using NB models.

o In Chapter 4, five statistical packages (Stata, SAS, SPSS, R, and Python)
are reviewed regarding their functionality for fitting the NB and NB-related
models. Some models can be fitted using several different modules in a

package, each supporting different post-estimation commands for
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producing diagnostics, and the parameterisation of the models may differ
across modules and packages. The difference between these options are
discussed to assist in selecting a statistical package that best meets the

specific goals of modelling.

Chapter 5 covers the application of diagnostic plots for NB models and a new
plotisintroduced in section 5.2. It is designed specifically for falls prevention
trials where an outcome and baseline count are available but can also be
used for other trials with similar features. An existing diagnostic plot, the
covariate-adjusted probability plot, is described and examined in section 5.3.
The possibility of using this plot to provide a visual inspection of
overdispersion is discussed. In section 5.4, these plots are produced to show
diagnostic statistics from the Poisson and NB models fitted to the three

datasets.

In Chapter 6 and Chapter 7, a number of approaches to incorporating the baseline
count in NB or Conditional NB (CNB) models are compared based on the analysis of

data from the motivating trials, and simulation studies.

o Chapter 6 is motivated by the Goodwin et al. dataset and focuses on

scenarios where the outcome and baseline counts are highly correlated, and
heterogeneity in the outcome count is controlled by incorporating the

baseline count in modelling.

Chapter 7 is motivated by the EXSart dataset, where the outcome was
collected prospectively but the baseline count retrospectively, which
introduces greater discrepancy between the two counts, violating the
assumption underlying the CNB model. The goal of this chapter is to

examine the robustness of the models to this discrepancy.

Chapter 8 describes some other count response models. In section 8.1, the Poisson
Inverse Gaussian model, which can model heavily skewed count data, were fitted
to the EXSart dataset. The issue of zero-inflation was examined in the Goodwin et
dataset in section 8.2. The possibility of using the right-censored or
right-truncated NB model to reduce the influence of large counts is considered in

section 8.3. Section 8.4 examines whether a finite mixture model could outperform

7
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an NB model in accommodating heterogeneity and large counts. Section 8.5
explores the benefits of fitting the random-effects NB model to a longitudinal count

dataset.

e In Chapter 9, the contribution and the limitations of the study are summarised and

discussed. Potential future research is suggested.



Chapter 2

Background

2.1 Falls among people with Parkinson’s

In 1817, an English doctor named James Parkinson published an essay (Parkinson, 1817)
describing a neurological condition that led to “involuntary tremulous motion, with
lessened muscular power, in parts not in action and even when supported; with a
propensity to bend the trunk forwards, and to pass from a walking to a running pace: the
senses and intellects being uninjured.” Parkinson named this condition “Shaking Palsy”, but
today it is better known as Parkinson’s disease, or now just Parkinson’s. In his essay,
Parkinson reported some cases who were afraid of falling forwards, and chose to either
walk “on toes and forepart of the feet” or “take much quicker and shorter steps” to avoid
falling. Since then, the condition is recognised as a risk factor of falling world-wide. While
one third of elderly people experience at least one fall every year (Tinetti et al., 1988), for

People with Parkinson’s (PwP), the proportion is doubled (Wood et al., 2002).

Guidance from the National Collaborating Centre for Chronic Conditions (National
Collaborating Centre for Chronic Conditions, 2006) defined Parkinson’s as “a progressive
neurodegenerative condition resulting from the death of the dopamine containing cells of
the substantial nigra”. It is the second most common neurodegenerative disorder, with a
prevalence of about 0.3% in the general population of industrialised countries (Goetz and
Pal, 2014). As the average age of the global population is increasing, and Parkinson’s is
becoming more recognized, the number of PwP is anticipated to further increase in the

future (Rubenis, 2007).

To this date, the physiological mechanism for the high risk of falling among PwP is unclear.
Freezing of gait (FOG) was found to be related to falling (Latt et al., 2009). Another possible

reason causing PwP to fall is activities involving switching from one movement to another.
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Foongsathaporn et al. (2016) found that switching movement, especially in the vertical

direction (such as getting out of a car), is correlated to falling.

Pickering et al. (2007) conducted a meta-analysis of six prospective studies of falling in
Parkinson’s. The authors found 213 of 461 participants (46%, 95% Cl: 38 to 54%) fell within
3 months, and even amongst those with no history of falling in the previous year the rate
was 21%. A systematic review conducted by Deandrea et al. (2010) showed that PwP had
a significantly higher risk of falling (OR: 2.71, 95% Cl: 1.08 to 6.84) and recurrent falling (OR:
2.84,95% Cl: 1.77 to 4.58) than community-dwelling older people without Parkinson’s.

A prospective cohort (Paul et al., 2017) conducted in Australia studied Fall-Related Hospital
Admissions (FRHA) and injuries in the general elderly (= 60 years). The authors found that
2.5% of FRHAs were for people with a diagnosis of Parkinson’s, while PwP only comprised
1.7% of the population in the same age group. PwP had a higher rate ratio for FRHAs (1.63,
95% Cl: 1.59-1.67) than people without Parkinson’s, as well as having longer hospital length
of stay (median: 9 days versus 6 days). Another finding of the study was that PwP had a
higher risk of injury (rate ratio: 1.47, 95% Cl: 1.43-1.51). Around 67% and 35% of fall-related

Parkinson’s admissions in the study were related to injury and fracture, respectively.

Injury and fracture are common consequences of falls (Cumming et al., 1990). Genever et
al. (2005) reported in a retrospective cohort study that the risk of injury for PwP is about
twice that of a control group. A study conducted by Melton et al. (2006) showed a similar
result: the risk of sustaining a fracture is 2.2 times higher in PwP than in non-Parkinson’s
community dwellers, and the risk of hip fracture specifically is 3.2 times higher for PwP. A
number of studies indicated that the higher risk of injury for PwP is associated with falling.
Allcock et al. (2009) reported from a prospective study that 32% and 1.2% of falls
experienced by PwP resulted in injury and fracture respectively. Nystrom et al. (2016)
found an increased risk of fall-related injury (OR: 1.19) for PwP up to ten years before
Parkinson’s diagnosis, and an increased risk of fall-related hip fracture (OR: 1.36) more than
15 years before diagnosis, which suggests that injurious falls are likely to be related to the

progress of Parkinson’s from an early stage.

There may be psychological consequences of falls, including fear of falling, avoidance of

daily activities, as well as loss of confidence and independence (Foongsathaporn et al., 2016;

10
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Jgrstad et al., 2005). The quality of life for PwP is considerably affected. In a falls study for
elderly community dwellers, Tinetti et al. (1988) reported that 48% people who fell were

afraid of falling, and 26% restrained their daily activities (e.g. shopping) to avoid falling.

The standard medication for Parkinson’s is levodopa (Rascol et al., 2002), which is used as
a dopamine-replacement therapy (Fahn et al., 2004). Although dopaminergic medicine is
effective in decreasing bradykinesia and rigidity, it has less effect on falling (Keus et al.,
2004). Despite using medicine or neurosurgery, PwP typically experience worsening body
function and deteriorated daily activities as their condition progresses (Nijkrake et al.,

2007).

A potential intervention to prevent falling is physiotherapy, which provides exercises, aids,
education, and advice to PwP (Deane et al., 2002). It has been shown to improve the

strength, postural balance, and motor co-ordination (Keus et al., 2004).

In clinical trials, the severity of Parkinson’s is commonly measured by the Unified
Parkinson’s Disease Rating Scale (UPDRS) (Tomlinson et al., 2014), which comprises six
sections (Wade, 1992): I. Mentation, behaviour, and mood; Il. Activities of daily living; III.
the Motor examination; IV. Complications of therapy; and two stand-alone scales V. the
Modified Hoehn and Yahr staging; and VI. the Schwab and England Activities of Daily Living
Scale. In 2008, the Movement Disorder Society (MDS) published a revision of this scale
known as the MDS-UPDRS (Goetz et al., 2008), consisting of revisions to the first four parts
of the original scale, and excluding Parts V and VI. The Section Ill Motor Examination is
similar in both versions of the UPDRS and includes questions regarding: speech, facial
expression, rigidity, finger tapping, hand movements, pronation/supination of hands, toe
tapping, leg agility, arising from chair, gait, freezing of gait, postural stability, posture,
global spontaneity of movement, postural tremor of hands, kinetic tremor of hands, rest
tremor amplitude, and constancy of rest tremor. Because the questions of motor
examination are most relevant to falling, Section Il is often the only section of the UPDRS
included in falls prevention trials in Parkinson’s. Although participants should, ideally, rate
their own disability (Goetz et al., 2008), the motor examination has to be assessed by a

qualified clinician such as a physiotherapist.

11
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The Hoehn and Yahr scale (Hoehn and Yahr, 1967) is a commonly used assessment of
severity of Parkinson’s for clinical use and research in its own right. The scale classifies
Parkinson’s into five stages: “1. Unilateral involvement only usually with minimal or no
functional disability; 2. Bilateral or midline involvement without impairment of balance; 3.
Bilateral disease: mild to moderate disability with impaired postural reflexes; 4. Severely
disabling disease; the patient is still able to walk and stand unassisted but is markedly
incapacitated; 5. Confinement to bed or wheelchair unless aided”. Goetz et al. (2004)
guestioned the reliability of this scale, and proposed a modified Hoehn and Yahr scale,
which is more specific for intermediate disease stages. The modified version consists of:
“1.0 - Unilateral involvement only; 1.5 - Unilateral and axial involvement; 2.0 - Bilateral
involvement without impairment of balance; 2.5 - Mild bilateral disease with recovery on
pull test; 3.0 - Mild to moderate bilateral disease; some postural instability; physically
independent; 4.0 -Severe disability; still able to walk or stand unassisted; 5.0 - Wheelchair

bound or bedridden unless aided.”

One may anticipate that PwP with poor UPDRS motor examination or more severe Hoehn
and Yahr stage would experience more falls than those with medium scores since
maintaining postural balance is more challenging for them. However, Pickering et al. (2007)
showed an inverse U-shaped curve in a plot of the falls count against the UPDRS motor
examination score: PwP fell more frequently as the UPDRS rating increased to begin with,
but the falling rate decreased as UPDRS further increased. PwP with serious balancing

difficulties may restrict their daily activities to avoid falls and fall related injuries.

2.2 Falls prevention trials

In falls prevention trials, outcomes assessing falling may include the rate of falling (or near

falling), number of fallers, time to first fall, or fall related fractures (Gillespie et al., 2012).

In this study, we focus on the rate of falls, as it is both practical and has become increasingly
popular in falls prevention trials. The rate of falls is the number of falls experienced by a
participant in a certain period of time. The rate is interchangeable with the count of falls if
the length of observation is the same for all trial participants. The length of observation is
usually planned to be equal, but in practice participants may drop out of follow-up, usually

assumed to be missing at random.
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In addition to the outcome falls count collected during a post-randomisation period, it is
not uncommon for falls prevention trials to collect the falls count during a
pre-randomisation baseline period, which is typically planned to have equal duration for all
participants. A meta-analysis (Pickering et al., 2007), which included six prospective studies
of falling in Parkinson’s from 2000 to 2004, found that the strongest explanatory variable

for falls is the number of falls in the previous year.
2.2.1 Methods for collecting the count of falls

In a falls prevention trial, there are two main approaches to collecting information on the

occurrence of falls: the retrospective and prospective methods.

For both methods the falls count is reported by the trial participants, so the reported
number of falls depends on each participant’s subjective understanding of falling. It is
essential to give a clear definition in order to exclude falls related to external reasons. Clark
et al. (1993) defined a fall as “an event that resulted in a person coming to rest
unintentionally on the ground or other lower level, not as a result of a major intrinsic event
or overwhelming hazard”. This definition is strict and precise for falls prevention trials in
PwP, but other versions have also been used, some of which are not clear and thus may be
problematic. There are debates for categorizing falls in ambiguous settings. For example, if
a person learns to collapse on chair or bed intentionally to avoid injury, does it count as a

fall?

The retrospective method is a one-off question, asking participants to recall the number of
falls they experienced over a specified period of time in the past. This approach is easy to
implement, and thus has become a standard question in trial screening interviews to obtain
a history of falling, which is often used as an eligibility criterion—for example, a trial may
only enrol PwP who have experienced at least two falls in the previous year. The reason for
choosing a threshold on a retrospective falls count is to limit the study population to people
with a higher risk of falling. If most of the participants experienced no falls during the trial,
the statistical power for the analysis is anticipated to be low. People who have already
experienced falls are more likely to have subsequent falls and thus setting the selection

criterion on the history of falls should increase the power of a trial (Cook and Wei, 2003).
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When the number of falls is collected using the prospective method, participants are
instructed to record each occurrence of falling in diaries during a period of follow-up. Lamb
et al. (2005) recommended recording falls in monthly or shorter diaries, and participants
should be reminded to complete their diaries by telephone. The prospective approach is
more time-consuming and expensive, but the advantage of better accuracy compensates

its higher cost.

It is not uncommon that participants of falls prevention trials record a large number of falls
during a study period. This has been found in trials that collect the falls count prospectively
or retrospectively. The mechanism under frequent falling is not clear for PwP. A possible
reason is that the frequent fallers have a much higher risk of falling than average PwP;
Another possibility is that when the falls count is collected retrospectively, participants may
recall a large number because they had experienced frequent falling during a few weeks
before the interview. The true reason that large falls counts occurred in falls prevention

trials in PwP remains an open question.

Over the years, concerns have arisen regarding the objectivity of the retrospective method
(Tinetti et al., 1988). Several studies have been conducted to examine discrepancies
between counts obtained from the retrospective and prospective approaches. Cummings
et al. (1988) compared both methods in a prospective study. People (not necessarily PwP)
over the age of 60 were instructed to record falls and were followed up weekly for 12
months. At the end the study, they were asked to recall whether a fall had occurred within
the trial period. There were 13% participants who failed to recall falls which were reported
on their prospective diaries. The correlation between the number of falls recorded
prospectively and retrospectively was only between 0.28 and 0.59 at 3, 6 and 12 months.
The authors concluded that the number of falls recalled by elderly people has limited
accuracy as they tend to forget falls. Because the memory of falling might be reinforced by
the process of prospective recording, the true bias may be even larger than reported in the

study.

Peel (2000) conducted a similar study with a duration of 12 months and showed results in
line with Cummings et al., but with falling categorised as having “fallen at least once” or
not. A considerable disagreement was found between the two methods: kappa agreement

coefficient of 0.7, sensitivity of 79.5%, and specificity of 91.4% for reports of falling. The
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study further examined the accuracy of recalling the number of falls: over a third of the
participants did not recall the number correctly, and the proportion of recalled falls became

smaller as the number of falls increased.

Mackenzie et al. (2006) found 4% of participants gave false positive self-reports of falling
and 13% gave false-negatives in a 12-month study (kappa = 0.84). The sensitivity of the

retrospective recall over six months was 56% (95% Cl: 44.1 to 67.5).

Although these three studies were targeted towards the general elderly rather than PwP,
the conclusion is anticipated to hold for PwP for two reasons: 1) PwP are predominantly
elderly people—the onset age of Parkinson’s is rarely before 50 (Tysnes and Storstein,
2017); and 2) evidence suggests that Parkinson’s is related to memory loss (National
Collaborating Centre for Chronic Conditions, 2006). Therefore, forgetting falls is likely to be

an even more serious problem among PwP than among the general elderly population.

Mackenzie et al. also suggested that the retrospective method may introduce bias into
group comparisons. The participants in their intervention group were found to recall falls
more accurately (sensitivity of 71.0%) than those in their control group (sensitivity of
40.5%), suggesting that intervention may improve the recall of falling, which would make
the estimate of effect smaller than, or in the opposite direction to, its true value. A
Cochrane review of falls prevention trials (Gillespie et al., 2012) described the methods of
collecting outcome falls counts used in the trials and found that 55% adopted the
prospective method while the rest either adopted the retrospective method or not clearly
stated. The latter method was considered to be at high risk of introducing bias. The authors

recommended that falls “should be recorded daily and monitored monthly.”

McLennan et al. (1972) conducted a trial to investigate whether Parkinson’s affects the
hand-writing, which is usually referred to as micrographia. They found micrographia
occurred in 5% of participants as the first symptom recorded. Difficulty in hand-writing may
discourage PwP from recording each fall in their diaries. Although they could ask a carer to
record falls for them, this provides a reason that a prospectively reported number of falls

might be lower than the true value.

15



CHAPTER 2 - BACKGROUND

2.3 Statistical methods for the analysis of falls counts data

In falls prevention trials, the number of falls experienced by PwP is typically zero, one, or
two, but in some cases very large numbers are reported. The distribution has the following

pattern (an example is shown in Figure 2-1):

e Positive skew: the mean number of falls in the example dataset is 5.93 and the
median is 1.

e With a few outliers: the maximum value in the example dataset is 499.
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Figure 2-1 Distribution of an outcome falls count from the EXSart (Ashburn et al., 2007) trial
(n=125).

Because of the skew, procedures that assume the normal distribution, such as the t-test,
ANOVA, or linear regression, should not be used. The Mann-Whitney U test (also called
Wilcoxon rank sum test) is a nonparametric approach and is widely used for skewed data.
Aban et al. (2009) conducted a simulation study to compare the performance of models
and tests in the analysis of NB-distributed count data. The study showed that the
Mann-Whitney U test had lower statistical power than model-based tests, especially when

the simulated data were closer to Poisson—that is, less overdispersed (see sections 2.3.1
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and 2.3.3). The study also suggests that Mann-Whitney U test was conservative: its type |
error rates were found to be lower than the nominal level 0.05 (minimum around 0.01)
when the simulated data were closer to Poisson. Another drawback of the standard
Mann-Whitney U test is that it cannot control for covariates, which is often needed in
clinical trials. Two other nonparametric tests, the van Elteren and the Tyq,p, tests, are
capable of controlling for just one stratification variable, and they are limited to the
comparison of only two groups (Jakobsen et al., 2015). The probabilistic index model (Thas
et al., 2012; Vermeulen et al., 2015) can control for covariates and may be considered as a
generalisation of the Mann-Whitney U test, it is a semiparametric model and its robustness

to model misspecification has not yet been fully investigated for count data.

A traditional method of analysing counts of falls is to set a threshold to dichotomise the
outcome count and then fit a logistic model. In practice, people not falling or falling at least
once are categorized as “non-fallers” and “fallers” respectively, and people falling less than
twice and at least twice as “seldom fallers” and “frequent fallers”. Donaldson et al. (2009)
conducted a systematic review of fall prevention RCTs for community-dwelling older
people. The review found that the most popular method of analysing falls data in trials
reported during the period 1994 to November 2006 was reporting percentages and the
Odds Ratios (OR) of people falling once or more (47 of 83 trials, 57%). Castafieda and
Gerritse (2010) pointed out that ignoring the subsequent events results in a great loss of
information. Cumming et al. (1990) argued that the proportion of participants with at least
one fall within a time interval only focuses on the first fall. Since each fall has a risk of
resulting in injury, subsequent falls should not be ignored. They further argued that the risk
of the first fall is correlated to the length of the study. If a trial lasts a year, the proportion
of people falling at least once would be much larger than a trial lasting ten weeks, assuming

the average falls rate is the same in the two trials.

The advantage of fitting a logistic model is that outliers do not have a large impact on the
estimation, but information is lost during this process, resulting in low statistical power.
The power loss may be negligible when analysing a rare event but falling is a common
recurrent event for many PwP. The dichotomising approach not only ignores the higher risk
of injuries for frequent fallers, but also discards valuable information that would otherwise

have been incorporated in statistical analysis.
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A similar approach is to categorise the outcome count into an ordinal outcome (for example,
“not falling,” “1-5 falls,” “6-20 falls,” and “more than 20 falls”) and fit an ordinal response
model. Similar to the dichotomisation approach, modelling the ordinal outcome is robust
to outliers, and it is anticipated to have higher statistical power than the standard logistic
model. However, the categorisation of count variable still involves the subjective decision
of choosing cut-points, and the issue of wasting information persists, although less

information is lost compared to the standard logistic models.

A more appropriate approach for analysing falls data is to fit a count response regression
model, which is based on the mean rate and results in an estimate of the effect size as an
Incidence Rate Ratio (IRR), referred to as a Fall Rate Ratio (FRR) in this context. Because the
FRR is based on all falls, it is easier to extrapolate to a wider population. An alternative
model for a count outcome is based on the median of counts using quantile regression
(Koenker and Bassett, 1978; Machado and Santos Silva, 2005). Although this model is
robust to outliers, this study focuses on modelling the mean falls rate because 1) it usually
requires a smaller sample size; 2) the estimated intervention effect on the mean rate may
be easier to interpret by practitioners than the effect on the median; and 3) the effects of
skewness/outliers on the estimation of a mean rate based model can be mitigated by using

a suitable distribution for the outcome.

In some cases, logistic models were used because the cut-points bear clinical meaning;
however, Sroka and Nagaraja (2018) argued that this should not be invoked as a
justification for dichotomising count data because count response models can also produce
ORs. They proposed an approach of fitting geometric, Poisson, or NB models with a
log-odds link function, where the odds are based on the probability of the outcome count
being greater or equal to the cut-point divided by the probability of the complement.
Because these models share the same log-odds link function, their estimates are
comparable to those of logistic models. The authors provided a mathematical proof
showing that ORs estimated from count response models were more efficient (with higher
Fisher information and smaller variance) than those from logistic models, and that the
power improvement increases exponentially (especially for NB models) as the mean of the

count increases; these were confirmed by their simulation study: the 95% Cls of OR from
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NB models were only 61-69% as wide as those from logistic models, and the MSEs of

log (OR) in NB were only 37.4-50.9% as high as those from logistic models.

In addition to examining the performance of each model when they were correctly
specified, Sroka and Nagaraja (2018) included simulations to check their performance
under model-specification. They simulated data from NB model (with various level of
extra-Poisson variance) and compared the estimates for a binary covariate between
Poisson and logistic models. The results bore out the robustness of logistic models to
outliers: the Poisson models yielded heavily biased estimates when they are overdispersed,

while the logistic models consistently gave estimates with low bias.

Though logistic models are robust to outliers, their power is generally low in the context of
falls prevention trials and thus researchers are moving away from their use. Sroka and
Nagaraja’s (2018) approach of calculating ORs from count response model will not be
further investigated in this thesis, because preventing the first or second fall, which are
commonly-used cut-points for the dichotomisation approach, is not the goal of falls
prevention trials for PwP in most cases; instead, the thesis focuses on count response

models, with the aim of attenuating the effects of outliers and overdispersion.
2.3.1 Poisson regression model

Poisson regression is the most widely used statistical model for count data (Cameron and
Trivedi, 2013). It assumes that a discrete random variable Y follows a Poisson distribution

with parameter u (4 > 0). The Probability Mass Function (PMF) of Y is given by

exp(—w) p”

)] (2-1)

fw =

)

wherey € {0,1, ... }.

One possible derivation of the Poisson distribution is as the limit of the binomial
distribution: f(y;n,p) = (;l) pY (1 —p)*7Y, as the number of trials n approaches infinity

and the probability of success p approaches zero, such that np equals a constant u

(McCullagh and Nelder, 1989).
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As the Poisson model is a member of the Generalized Linear Models (GLM) family
(McCullagh and Nelder, 1989), covariates can be introduced into the model via a linear

predictor, linked to u by the log function, in the form

g(W=log(w) =x"p, (2-2)

where x is a vector of m covariates xj,Xx,,..,x,;, and with coefficients vector
B =B, Bz ) Bm)T. Let B be the parameter for a group allocation variable x;, (x;, = 1
for the intervention group and x; = 0 for the control group), then exp(fy) is the FRR for

the intervention effect.

Essentially, in Poisson regression the rate of an event is analysed, but when all subjects
have the same exposure, say, one year, a falls count is effectively the falls rate per year.
The number of falls occurring during the same length of observation is referred to as a falls
count in the thesis for the sake of simplification. If participants are lost to follow up due to
reasons independent of the risk of falling and group allocation (such as administrative
reasons), the counts of the falls they experience after dropping out are assumed to be
missing at random and not informative to model estimation (Balakrishnan, 2014). In this
case, the length of follow-up periods, termed exposure, is different across subjects because
they are shorter for those who drop-out, and this needs to be accommodated in the model

by including the exposure as an offset.

An underlying property of the Poisson distribution is that the variance equals the mean;

therefore, for Poisson regression:
E(Y|x) = Var(Y|x). (2-3)
which is termed equidispersion.

In practice, when Poisson models are fitted to count data (including counts of falls), the
response variance is often greater than the mean, and this problem is referred to as Poisson
overdispersion, or overdispersion for short (Hilbe, 2011). Overdispersion results in inflated
type | error rates in statistical tests based on Poisson models, leading to false positive test

results (Breslow, 1990).
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As overdispersion is common in falls data, the basic Poisson model is generally not suitable
for analysing datasets from falls prevention trials. The reasons causing overdispersion and

the alternative models are discussed in the following sections.
2.3.2 Heterogeneity and mixed Poisson models

Overdispersion may be caused for a number of reasons. In Poisson regression, each of the
recurrent events is assumed to be independent of the others. If there are unobserved
(latent) prognostic variables, the variance will exceed its mean. Overdispersion may also
arise when there is positive correlation between events, which is termed positive
occurrence dependence. If the explanatory variables in a model do not incorporate all the
heterogeneity across individuals in a study, the problem is called unobserved heterogeneity,

or heterogeneity for short (Winkelmann, 2008).

Let Y denote a count variable that follows a Poisson distribution with a conditional

expectation of
E(Y|x,s) = exp (xTB)s, (2-4)

where Y € {0, 1, ...}, x is a vector denoting the m observed covariates x4, x5, ..., X;, B is a
vector of the m coefficients, and s is a random variable representing the effects of the

unobserved heterogeneity. Suppose that s follows a distribution with density g(s), then

FOylx) = f FOlx,9)g(s)ds, (2-5)

where s > 0. Based on (2.5), we can construct a mixed Poisson model with a random
subject effect s, in which the heterogeneity is accommodated (Lawless, 1987). To ensure
identifiability of the regression parameters, without loss of generality, we choose that s
satisfies that E(s) = 1. There are three distributions that are commonly employed: the
gamma, the inverse-Gaussian, and the log-normal distribution. They result in the following
three mixed Poisson models: NB, Poisson Inverse Gaussian (PIG) (Dean et al., 1989), and
Poisson log-normal (Winkelmann, 2008). The NB model is the only one with a closed form
solution for likelihood function, while estimation of the other two models is based on

simulation or quadrature (Hilbe, 2011).
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There are alternative models based on the same underlying mixed Poisson distribution.
Cook and Wei (2003) proposed the Conditional Negative Binomial (CNB) model, which is
derived from the joint distribution of a baseline and outcome count, with a shared
gamma-distributed random subject effect, by conditioning on the baseline count. The NB
model can also be derived from the joint distribution by marginalising over s, as shown in

equation (2-5). The CNB model is discussed in detail in section 6.2.1.

The main focus of the thesis is the NB model, but the PIG model is investigated in section

8.1.
2.3.3 Negative binomial regression model

The NB regression was first described by Glynn and Buring (1996) as a statistical model for

analysing the rate of a recurrent event in medical studies.

The NB regression model is a generalization of the standard Poisson model, allowing extra
variation in the outcome count of falls by including a random subject effect that follows a
gamma distribution with mean 1 and variance a. The variance function of NB model is

derived as

Var(Y) = u + au?. (2-6)

It is sometimes referred to as the NB2 model (Hilbe, 2011), as the extra variance over the
mean is provided by the product of @ and the quadratic form of the mean (u?). Another

parameterization for the variance function is

e
Var(Y) = pu + o (2-7)
where 8 = 1/a. The variance function in the (2-7) parameterisation is less straightforward

but is the default in some statistical packages.

The parameter «a reflects the amount of Poisson overdispersion: as a approaches zero, the
NB model tends to a Poisson model; a larger a indicates greater overdispersion. Hilbe
(2011) refers to a as the Heterogeneity Parameter (HP), because it indicates how much

heterogeneity has been accounted for in the gamma component.
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The PMF of the NB distribution (Hilbe, 2014) is:

a1

_ Ty +a™) 1 ap \Y )
fOima) = IF'y+ 1) T'(a™?) (1+a,u) (1+a,u) ’ 28)

wherey € {0,1,...}.

A linear predictor for the parameter u in the NB model can be set up in an identical way to
that for a Poisson model. An FRR is again calculated by exponentiating the coefficient of
the covariate in question. The difference between NB and Poisson regression is that,
because overdispersion is accommodated in the subject effect, NB produces more accurate
model-based SEs, and it also results in a type | error rate that is closer to the nominal level

in significance testing of intervention effects (Lawless, 1987).

Because NB is a GLM if « is constrained to be constant (Lawless, 1987), it can be estimated
using an amended version of the Iteratively Reweighted Least Squares (IRLS) algorithm,
which is used in the estimation of GLM models (Nelder and Wedderburn, 1972). The
procedure for fitting the NB model as a GLM (Hilbe, 2011; Hilbe and Robinson, 2016) is to:
1) estimate a with a working fi extracted from an initial iteration of Poisson or the previous
NB GLM fit, and 2) estimate the regression coefficients with a fixed to @ from the previous

step. These steps are repeated iteratively until convergence is achieved.

Afactor for trial allocation may be included in an NB model, and then tested using the Wald,
score, or Likelihood Ratio (LR) test. Aban et al. (2009) recommended using the score test
when the sample size is small (less than 50) because its type | error is closer to the nominal
level than other tests, and using the Wald and LR tests for trials with reasonably large
sample sizes because of their higher power. They found that the power of the Wald and LR
tests were almost identical. Because the Wald test is the default option for NB modelling

in most statistical packages, it will be the focus of the analysis in the following chapters.

The goodness of fit of NB models can be examined using the Akaike Information Criterion

(AIC) or Bayesian information criterion (BIC) statistics. AIC is defined as (Akaike, 1974):

AIC = =2L + 2m, (2-9)
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where £ is the maximised log likelihood of the model and m is the number of estimated

parameters; BIC is defined as (Schwarz, 1978):

BIC = —2L + log(n) m. (2-10)

where n is the number of subjects.

Although the NB model is recommended for analysing falls data (Gillespie et al., 2012;
Robertson et al., 2005), it was found to be under-used (20/83, 24%) in a systematic review

of falls prevention trials from 1994 to November 2006 (Donaldson et al., 2009).

There are other types of NB models, but NB2 is the standard and most commonly used NB
model (Hilbe, 2011). It is conventional to refer to NB2 as the NB model for simplification.
We follow this terminology unless a different type of NB model is used, in which case we
switch to the full name NB2. A review of statistical packages regarding their functionality
for fitting other types of NB models is included in Chapter 4. These models are described

below.

Linear negative binomial model (NB1)

In linear NB models, the variance function is parameterised as Var(Y) = u + Su where
6 > 0 (Cameron and Trivedi, 1986). This model is usually referred to NB1 because,
compared with the quadratic form of i in the NB2 variance function, the linear NB model

has a variance function with a linear form of p.

The NB1 distribution is derived from Y ~ Poisson(4;), where A; ~ gamma(1/6, ). The
PMF of NB1 is

y

'y +w 1 \r &
fOimw) = Ty + 1) (W) (1 n 6) (1 ¥ 5) ' (2-11)

Truncated and censored negative binomial models

A truncated distribution arises when the range of the outcome Y is a subset of the range
of the original distribution (Rigby et al., 2017). For example, if in a falls trial all the
participants reporting over 100 falls are excluded, the resultant distribution of the falls

count is right-truncated, and if the participants who report less than 2 falls are excluded,

24



CHAPTER 2 - BACKGROUND

the distribution is left-truncated. A censored distribution occurs when the exact value of
the observation y; is unknown given 1) y; < ¢, (left censoring), 2) y; = c, (right censoring),
or 3) ¢c; <y; <c, (interval censoring) where ¢; to ¢, are known positive integers
(Cameron and Trivedi, 2013). When the outcome count is truncated or censored, it is
necessary to adjust the PMF of the NB model to accommodate the censoring or truncation

structure.

Terza (1985) proposed the right-censored model as a solution to fit count response models
to survey data, in which a common way to collect a count of an event is via a survey
guestion, and one answer is commonly specified as “x times or more” where x stands for a
positive integer. Cameron and Trivedi (2013) considered this model as a solution to

attenuate the great influence of outliers.

The estimation of right-censored NB models is similar to the survival models. Let d; be a
censoring indicator such thatd; = 1if y; < candd; = 0if y; > ¢, where c is a cut-point.
For n independent observations, the log-likelihood function of a right-censored NB model

is given by:

n

Ly, a) = Z[dilog Fuma)) + (1 —dplog (1 = F(c,u,a))], (2-12)

i=1

where f(y;; u, @) are F(y;; 4, &) is the PMF and Cumulative Mass Function (CMF) of NB,

respectively (Brannds, 1992; Cameron and Trivedi, 2013).

Grogger and Carson (1988a, 1988b) were the first to study truncated count response
models: they proposed the zero-truncated Poisson and NB models to analyse count data
with no zeros — a special case of left-truncation. Gurmu and Trivedi (1992) generalized the
truncated models for left- and right-truncated distribution. The PMF of right-truncated NB

model (Gurmu and Trivedi, 1992) can be written as:

_fsua)

Pr(Y=y|Y§c)—F(C_’ua).

(2-13)

Cameron and Trivedi (2013) pointed out that the right-truncated and right-censored

models can both be used to solve the issue of outliers, but less information is lost in the
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right-censored model because large counts are revalued and labelled as right-censored,

instead of dropped.

Zero-Inflated Negative Binomial (ZINB)

When there are excessive zero counts, it is possible that some zeros are generated from a
process that is different to the count process. For example, if a participant of a falls
prevention trials has fallen at least once during an observational period but has recorded
no falls in the falls dairy, this zero count would be a different process to the zero count
reported by another participant who has not experienced any falls during the period. It
would be impossible to distinguish these two source of zeros, so the natural approach is to

account for the excessive zeros in a model.

To solve the issue of excessive zeros, Lambert (1992) proposed the Zero-Inflated Poisson
(2IP) model, which assumes the zeros are generated from a binary component and a count
component: the binary component generates excessive zeros with probability 7. The count
component accounts for the remaining 1 —  probability and is assumed to follow a

Poisson distribution (including zeros).

The Zero-Inflated NB (ZINB) model is an extension to the ZIP model by allowing both zero-
inflation and overdispersion (Yau et al., 2003). In ZINB models, the distribution of the

response variable Y can be written as (Ridout et al., 2001)

a1

Pr(Y =0)=n+ (1 —m) (1 m a,u) (2-14)
for zero counts, and
N Iy +a™) 1\ au VY ]
Pr(¥ =y) = (1 —m) I'(y+1)T'(a?) (1 + au) (1 + au) (2-15)

for y > 0; m is usually parametrised with a logit link such that

log (&) =z'y, (2-16)
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where z is the vector of inflation covariates and y is the vector for the corresponding

coefficients.

The Vuong test (Vuong, 1989) compares two non-nested models fitted to the same data. It
is regularly used to test zero-inflation by comparing the ZINB to the standard NB model, or
ZIP to the standard Poisson model. The test statistic is asymptotically normally distributed,
with positive test statistic values in favour of zero-inflated models while negative values in
favour of standard NB or Poisson models. Desmarais and Harden (2013) showed that the
Vuong test is biased in favour of choosing the ZINB model instead of the standard NB model.
The authors proposed correcting the Vuong test statistic using the AIC or BIC statistic. They
conducted a simulation study to compare the test results with corrections to that for the
original test. The results confirmed that the Vuong test without corrections rarely rejects
ZINB when the true model was NB but performed the best when the true model was ZINB.
The simulations also showed that the AlC-based correction moderately favours ZINB, while

the BIC-based correction favours NB.

Heterogeneous NB (NB-H) model

In the heterogeneous NB (NB-H) model, a in equation (2.6) is modelled with a linear

predictor (Hilbe, 2011; Venkataraman et al., 2016), taking the form of log(a;) = exp(z;y).

2.3.4 Diagnostic statistics

Anscombe Residual

Residuals are informative for examining the fit of a model and the variability that remains
unexplained by a model. McCullagh and Nelder (1989) described that an ideal residual “can
be used to explore the adequacy of fit of a model, in respect of choice of variance function,
link function and terms in the linear predictor.” Among the numerous types of standardised
residuals available for NB regression, the Anscombe residuals (Anscombe, 1972) are
reasonably normally distributed, and heterogeneity and outliers are easily identified (Hilbe,

2011; McCullagh and Nelder, 1989).

The Anscombe residual for the NB model (Hilbe, 2011) is defined as
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T
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For models in the exponential family, Anscombe residuals approximately follow the
standard normal distribution (Cameron and Trivedi, 2013). However, the NB model is not
a member of the exponential family and | have not found literature that discusses whether
the Anscombe residuals for NB models approximate the standard normal distribution. Hilbe
(2011) recommended the Anscombe residual for NB models because it generally achieves
better normality than the other residuals. Because of this, the Anscombe residual is

reported for model diagnostics throughout the thesis.

Leverage

The diagonal of the hat matrix, a vector, is called leverage, and is a measure of the overall
extremeness of the values in the explanatory variables for each subject (Madsen and

Thyregod, 2010).
In NB regression, the hat matrix (Atkinson and Riani, 2012; Hilbe, 2011) is defined as:
1 1
h = W2X(X"WX)"1XTWz, (2-18)

where X is an n X m matrix denoting m explanatory variables for n subjects, B is a vector

of the m coefficients, W is a diagonal matrix where the element in row i and column i is:

1 alli)2
Wi = ,\ ’ (2'19)
AN (am

V(.) is the variance function for NB regression in equation (2-6), and 7; is the i*" element

ofn = XTB.

A high leverage suggests that the explanatory variables of this subject show low agreement
with the other subjects, and this subject may potentially be influential in model estimation

(Cook and Weisberg, 1982; Davison, 2003).
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Cook’s distance

In linear regression, the influence of each subject can be measured by Cook’s distance
(Cook, 1977). The measure of influence of subject i in a GLM (Williams, 1987) equivalent

to Cook’s distance for linear regression is given by

COOKD, = — (72 (2-20)
T m@—hy

where h; is the it" element of the leverage vector, and rip is the standardised Pearson

residual for subject i:

A

P = S (2-21)

V@A —h)

This measure is an approximation of 2m=1[L(B) — L(B(;))], where the m X 1 vector ﬁ(i)
denotes the Maximum Likelihood Estimates (MLE) of B after subject i is deleted, and
L(ﬁ@) is the log likelihood evaluated at ﬁ(i). Statistics based on assessing the effect of

deletion are usually referred to as deletion diagnostics (Atkinson and Riani, 2012).

Cook’s distance is a useful tool for detecting outliers. Because it is based on both the
standardised Pearson residuals and the leverage, the Cook’s distance measures the overall
influence of each subject on the goodness of fit of a model. It is especially useful if the
leverage of a subject is large but the residual is small, or vice versa.

DFBETA

The DFBETA statistic (Belsley et al., 1980; Williams, 1987) is a deletion diagnostic that
approximates the influence of removing subject i on the estimation of a regression

coefficient. The DFBETA of B (j = 1, ..., m) for subject i is defined as the jt" element of

1 —_ —
DFBETA; = w3 (1 —h) 2P (X™WX)™'x; = B- By, (2-22)

where vector x] is the it" row of X.
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2.3.5 Assessing overdispersion in Poisson and NB models

Pearson dispersion statistic

The Pearson dispersion statistic (Hilbe and Robinson, 2016) can be used to assess both

Poisson and NB overdispersion. The statistic is defined as (Wood, 2017):

i — ﬁi)z

LVG@n-m)’ (22

Pearson dispersion statistic =

where V({1;) is the variance function of the model, that is, fi; for Poisson and f; + &f; for

NB regression.

If the dispersion statistic is close to 1, it suggests that the model is equidispersed; if the
statistic is greater than 1, it suggests overdispersion. However, this statistic is associated
with sample size, so that a model with dispersion statistic only slightly greater than 1 may
indicate overdispersion if the sample size is large. Two formal tests for Poisson and NB

models are introduced as follows.

Testing Poisson overdispersion using the boundary likelihood ratio test

Because Poisson can be regarded as a special case of NB regression as a approaches 0, the
two models are nested. A boundary likelihood ratio test with a boundary at &« = 0 can be
conducted to assess whether there is overdispersion in the Poisson model (Cameron and

Trivedi, 2013), with the deviance given by:

LR = —2(Lpo; — Lyg) (2-24)

where Lp,; and Ly denote the log-likelihood of a Poisson model and the NB model fitted
to the same data and with the same linear predictor. The test statistic LR in equation (2-24)
asymptotically follows one half chi-square distribution, so the P value from the chi-square

statistic is divided by 2 (Schlattmann, 2009).

Testing NB overdispersion using the Kim and Lee score test

The NB model accommodates overdispersion in a gamma distributed subject effect.
However, if overdispersion exceeds that from the NB variance, the NB model itself can also
be overdispersed.
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Xue and Deddens (1992) included the extra-variation in NB regression as a multiplicative

random effect v;

Yilvi ~ NB(uiviJ a)' (2'25)

such that in addition to the heterogeneity accommodated by the gamma component in the
NB2 model, there is hidden heterogeneity v; with mean 1 and variance ¢ that is not
controlled for in the NB model. The authors proposed a score test for 2 as a means for

testing for NB overdispersion.

Kim and Lee (2018) pointed out that the Xue and Dedden test treated  and «a as fixed, and
showed it to be conservative in a simulation study. The authors proposed a score test that

adjusts for the uncertainty of,[>3 and @, and the test statistic is given by:

S(B, &)
T =——=~N(0,1), (2-26)
I(B, @)
where S(.) is the score function for 62 = 0:
_dlogL(B,a,0?) I w0 = (g +apyy)
SB,a) = > == > : (2-27)
do sy 2 i 1+ ay;)

The formula for f(ﬁ, Q) is not given here due to its length; see Kim and Lee (2018) for

details.

Kim and Lee showed that their score test had higher power than Xue and Deddens’s test

and its type | error is closer to the nominal level 0.05.
2.3.6 Robust standard errors

Assume a model is fitted to a sample of n observations and B is the vector of MLEs of the
model parameters, the robust variance estimator (also referred to as the sandwich

estimator) for E (Hardin, 2003; Huber, 1967; White, 1980) is defined as

Viop(B) = H'MHT, (2-28)

where H is the Hessian of the log likelihood, and
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n - T
M=n_12“i“i' (2-29)
i=1

where u; is the score at the MLE B for subject i.

The robust standard errors for B are given as

SE,p(B) = /diag(M). (2-30)

The robust standard error is a consistent estimator of the standard deviation of the
sampling distribution ofB even when the variance function is misspecified (Hardin and
Hilbe, 2007), and they are robust when there is overdispersion and model misspecification

(Hardin, 2003).
2.3.7 Finite mixture models

If a sample is drawn from a homogeneous population, the count outcome y can be
described using a PMF f(y|1) where A is a parameter of population. However, if there are
subpopulations such that for each sub-population j there is a corresponding 4;, this is
referred to as unobserved population heterogeneity (Bohning, 1999; Béhning and Seidel,

2003).

A Finite Mixture Model (FMM) accommodates the population heterogeneity using a

mixture model such that

k
FO.P) =D mif 05, (231)
J

where p; is the proportion of the subpopulation (also known as component) j; the number

of components k may or may not be pre-specified (Schlattmann, 2009).
2.3.8 Longitudinal negative binomial models

Negative binomial models assume that observations are independent of each other
(Breslow, 1996). This assumption is violated when observations are correlated within an
observed data structure, which is usually termed panels (Cameron and Trivedi, 2013). Such

data are called panel data, and often referred to as longitudinal data when “each of a
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number of subjects or patients give rise to a vector of measurements representing the

same variable observed at a number of different time points” (Everitt, 1995).

When falls counts are recorded prospectively, they may be made available in the dataset
as the number of falls recorded during, say, each week of an observation window. The
datasets usually include an id variable to denote the subject and a time variable to indicate

the weeks.

In general, there are four approaches for analysing count panel data: Generalized
Estimation Equations (GEE), unconditional/conditional fixed-effects, and random-effects
models (Hilbe, 2011). In the thesis, only the random-effects NB model is used in the analysis
(section 8.5), the GEE and fixed-effects NB models are described here because Chapter 4

contains a review of software functionality for fitting NB related models.

Generalized Estimation Equations NB models

GEE models are an extension to GLMs that modify the variance function with a specified
correlation matrix structure that parameterizes within-subject correlation (Liang and Zeger,
1986). The goodness of fit of GEE models can be assessed using the AIC, QIC (Quasi-
likelihood Information Criteria), and CIC (Correlation Information Criteria) statistics; see Hin
and Wang (2009) and Pan (2001) for details. Hin and Wang (2009) conducted a simulation
study and showed that CIC had higher sensitivity and specificity in choosing the correct
correlation structures than both QIC and AIC. The command to produce the QIC and CIC

statistics in Stata is described in section 4.2.

Fixed-effects NB models

Unconditional fixed-effects NB models treat the subject effect as fixed, including a
categorical subject indicator in the model linear predictor to estimate a different intercept
for each participant of the trial, but it is only applicable when the number of participants
(n) is small: a large n results in too many parameters in the linear predictor (Cameron and
Trivedi, 2013). Hilbe (2011) suggested that n should be “less than 20” as a guide. When
there are a large number of subjects, it is preferable to use a conditional fixed-effects NB
model, which conditions on the subject effect through a sufficient statistic ).; y;;, where
yi denotes the number of counts for subject i during the t* observation period (Hausman
et al., 1984).
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Although the fixed-effects model accounts for the subject effect, they are of little practical
value for falls prevention trials. The reason is that the main goal of these trials is to study
the effect of an intervention, estimated from the time-invariant regressor of group
allocation, which is collinear with the fixed subject effect because it is also time-invariant

(Hardin and Hilbe, 2002).

Random-effects NB models
Hausman et al. (1984) proposed the random-effects NB model for analysing longitudinal

counts data.

Let y;; be the falls count in the tt" observation for subject i. Assume y;;|y;: ~ Poisson(¥;;),
where y;:|6; ~ gamma(y;;, §;) and §; is the heterogeneity parameter for subject i. The

PMF of Y;; conditional on pu;; and §; is given by

(2-32)

F(yie + tie) 1 M, 5 (0
Pr(Yie = ¥iel piz, 6;) = ‘ d ( ) ( ) )

Iy + D) \1 +6; 1+94;

so that Var(Y;;) = u;; + 6;it;¢- The PMF in (2-32) is similar to the PMF of an NB1 model as

shown in equation (2-11), but §; now varies across subjects such that

1
~ Beta(r, s), -
155, ~ Ber(s) (2-33)
which yields a PMF (Hausman et al., 1984; Hilbe, 2011) given by
Pr(Yit = yit; uwr, S)

T +s)+T(r+ 30 ) +T(s + 202, vie)
FOTE(r + s+ Zpky e + XL, vie)

(2-34)

n;
% C(uie + yie)
i P )T + 1)

An advantage of the random-effects NB model over the fixed-effects NB model is that the
time-invariant variables (including the intervention effect and baseline characteristics) can

be included as covariates.
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As shown in equations (2-11) and (2-32), the random-effects NB model is essentially an
extension of the NB1 model: §; is constant across subjects in NB1 but varies in the
random-effects NB model. Therefore, an NB1 model fitted to the panel data is sometimes

compared to the random-effects NB model in an LR test.
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Chapter 3

The characteristics of the three motivating
datasets: exploratory analysis

3.1 Introduction

This chapter includes an exploratory analysis of the three datasets made available to this
project. Each dataset is from a falls prevention trial aiming to investigate whether a

physiotherapy or exercise intervention is effective in preventing falls among PwP.

In general, participants in the three trials recorded or recalled the number of falls they had
experienced during a baseline period. After the randomisation, they prospectively
recorded falls during an intervention period, in which they received physiotherapy
programmes. In two trials, they were followed up for a period of time after the programme
had ended. Although all three datasets share a common structure, they have unique

characteristics that are important to data analysis.

Summary statistics for all the variables made available for each dataset are reported in
section 3.2. Poisson and NB models are fitted to the falls counts during the outcome
period(s) of each dataset. The models are compared and evaluated to provide an outline
of how much Poisson overdispersion can be explained by observed baseline variables

(excluding the baseline count).
This chapter aims to answer the following questions:

e If the baseline count is not collected in a falls prevention trial, would an NB model
suffice to accommodate overdispersion for a small to medium sample size?

e Do the baseline characteristics reduce heterogeneity, and which of these variables
are most important in this respect?

e Are outliers influential in the estimation and testing of the intervention effect?
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3.2 Exploratory analysis for the three datasets

To better understand the three datasets, especially for Poisson overdispersion and other
issues in NB modelling, both Poisson and NB regression were fitted to the three datasets

and referred to as:

e basic models: including a Poisson (Poi-basic) and an NB (NB-basic) models that
include only one covariate — the group allocation;

e full models: including a Poisson (Poi-full) and an NB (NB-full) models that include
the group allocation and the baseline characteristics that are commonly collected

in falls prevention trials — such as age, sex, severity of Parkinson’s, and social status.

The basic models yield an FRR to estimate the intervention effect, without controlling for
other subject-specific variables; whilst the full models incorporate the baseline
characteristics, which are anticipated to reduce the heterogeneity and improve the

statistical power in testing intervention effects.

The models are compared regarding the estimation of the intervention effect and goodness
of fit. For each covariate included in a Poisson/NB model, the P value is reported from the
likelihood ratio (LR) test to examine the explanatory power of the variable in modelling falls
counts. For the categorical variables included in the full models, the largest category is

chosen as the reference category.

To examine overdispersion in each model, the Pearson dispersion statistic is produced. We
test Poisson and NB overdispersion using the boundary overdispersion test and NB

overdispersion score test, respectively.

The statistical analysis was conducted in R (version 3.5.0). The Poisson and NB models are
fitted using the glm () function in the stats package and the glm.nb () function in the
MASS package, respectively. The P values from the NB overdispersion score test was

produced using the code made available by the authors (Kim and Lee, 2018).

Note that though the baseline falls count is by far the most important regression covariate
for predicting future falls (Pickering et al., 2007), it is not included in the full models in this
chapter. How to incorporate a baseline falls count in NB models will be discussed in Chapter
6 and Chapter 7.
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3.2.1 The Goodwin et al. dataset

Figure 3-1 shows the distribution of the falls count during the baseline (weeks 1-10),
intervention (weeks 11-20), and follow-up periods (weeks 21-30) in the Goodwin et al.
(2011) dataset. Overall, the distributions during the three periods are similar: most
participants reported only a few falls, but a small number of people recorded outlying large
numbers. Figure 3-2 shows that the falls counts during the three periods are strongly
correlated; also, the largest counts shown in Figure 3-1 were reported by the same
participants. The trial participants, including the most frequent fallers, tended to report

consistent falls rates.
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Figure 3-1 Goodwin et al. dataset: distribution of the falls count during baseline (weeks 1-10,
n=124), intervention (weeks 11-20, n=125), and follow-up (weeks 21-30, n=126) periods.
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As shown in Table 3-1, the average falls rate of the control group is around thirty falls per
ten weeks across the baseline, intervention, and follow-up periods. Although the risk of
falling may increase as the Parkinson’s progresses, the average falls rate of the control
group is relatively stable during the whole trial, which may be explained by the short length
of the study (30 weeks in total). The average count in the intervention group, in comparison,
decreases from 26.48 per 10 weeks during the baseline period to 17.93 per 10 weeks during
the intervention period, and is further reduced to 7.36 per 10 weeks during the follow-up

period.

The ranges of the reported falls counts are wide: the maximum is over five hundred falls
within 10 weeks (this participant reported the largest counts for all three periods; see Table
3-3). In both groups, the falls counts have much greater variances than the means,
suggesting the presence of overdispersion if the heterogeneity is not sufficiently accounted

for by covariates in a statistical model.
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Figure 3-2  Scatter matrix plots of the baseline, intervention, and follow-up falls count in the
Goodwin et al. dataset. The Spearman’s correlation coefficient p and P value is shown in each
subplot.
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Table 3-1 Summary of the complete falls count during the baseline, intervention, and follow-up
periods in the Goodwin et al. trial

Period Group N Missing Mean Median SD (variance) Range
Baseline period Intervention 60 4°? 26.48 6.5 77.18 (5956.65) 0-531
(weeks 1-10) Control 64 2 2908 65 78.13 (6103.53) 0-577
Total 124 6 27.82 6.5 77.36 (5985.15) 0-577
Intervention period Intervention 61 3 1793 3.0 56.44 (3185.60) 0-398
(weeks 11-20) Control 64 2 3225 6.0 93.41(8724.89) 0-677
Total 125 5 25.26 5.0 77.63 (6025.84) 0-677
Follow-up period Intervention 56 8° 7.36 2.5 11.17 (124.85)  0-49
(weeks 21-30) Control 60 6° 31.88 4.0 94.32(124.85)  0-678
Total 116 14 20.04 3.0 69.11 (4775.87) 0-678

2 ID 1 has missing values during weeks 4-10 (baseline periods);
b |D 18 and 97 from the intervention group dropped out at week 22;
¢1D 51 and 101 from the control group dropped out at weeks 23 and 21, respectively

The extreme skew of the distribution suggests that Poisson models are likely to be
overdispersed, but overdispersion cannot be verified unless a model is actually estimated.
The Poisson and NB models are fitted to the intervention and follow-up falls counts.
Following the nomenclature defined in section 3.1, the Poisson and NB models are referred
to as: Poi-basic and NB-basic when the group allocation is the sole covariate; Poi-full and

NB-full when group allocation, gender, age, years since diagnosed with Parkinson’s, Hoehn
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and Yahr stage, living status are included in the models. The baseline characteristics that

are included as covariates in the full models are summarized in Table 3-2.

Table 3-2  Goodwin et al. trial: characteristics of the participants at baseline

Intervention group Control group Total
(n=64) (n=66) (n=130)

Sex

Male 39 (61%) 35 (53%) 74 (57%)

Female 25 (29%) 31 (47%) 56 (43%)
Age (years)

Mean (SD) 72.0 (8.6) 70.1 (8.3) 71.0 (8.5)

Range 50-87 53-89 50-89
Years since diagnosis

Mean (SD) 9.1 (6.4) 8.2 (6.4) 8.7 (6.4)

Range 1-26 1-30 1-30
Hoehn and Yahr

Stage 1 4 (6%) 9 (14%) 13 (10%)

Stage 2 31 (48%) 28 (42%) 59 (45%)

Stage 3 16 (25%) 21 (32%) 37 (28%)

Stage 4 13 (20%) 8 (12%) 21 (16%)
Living status

Alone 14 (22%) 19 (29%) 33 (25%)

With partner 48 (75%) 44 (67%) 92 (71%)

With family/friends 1(2%) 2 (3%) 3 (2%)

Other 1(2%) 1(2%) 2 (2%)

Table 3-3 lists the ten most frequently falling participants during each of the baseline,

intervention, and follow-up periods. The two groups are reasonably balanced for large

baseline counts. During the intervention period, eight out of ten most frequently falling

participants were in the control group, possibly because the intervention has reduced the

falls rate. Because two frequently falling participants in the intervention group dropped out

before the follow-up period started, only one of the ten most frequently falling participants

during the follow-up periods was in the intervention group. The baseline characteristics of

the participants shown in Table 3-3 are listed in Table 3-4, and no clear pattern could be

seen.
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Table 3-3  Ten largest falls counts during each of the baseline, intervention, and follow-up
periods of the Goodwin et al. trial

Period ID Group Baseline count Intervention count Follow-up count
Baseline 75 Control 577.0 677 678
97 Intervention 531.0 398 -
18 Intervention 267.0 197 -
95 Control 177.0 245 187
9 Control 150.0 98 98
108 Intervention 149.0 50 33
45 Control 148.0 236 154
7 Intervention 64.0 8 3
101  Control 64.0 94 -
112 Control 61.5 20 25
Intervention 75 Control 577 677 678
97 Intervention 531 398 -
95 Control 177 245 187
45 Control 148 236 154
18 Intervention 267 197 -
9 Control 150 98 98
101  Control 64 94 -
12 Control 60 59 50
44 Control 38 57 48
22 Control 56 56 97
Follow-up 75 Control 577 677 678
95 Control 177 245 187
116  Control 36 41 173
45 Control 148 236 154
9 Control 150 98 98
22 Control 56 56 97
99 Control 34 47 65
11 Control 21 35 50
12 Control 60 59 50
96 Intervention 21 39 49

For each period, the rows are sorted by the grey column
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Table 3-4  Baseline characteristics of the frequent fallers listed in Table 3-3.

ID  Group Sex Age Years since diagnosis Hoehn & Yahr Living status
7 Intervention Male 73 10 Stage 3 With partner
9 Control Male 71 30 Stage 4 With partner
11 Control Female 69 20 Stage 3 With partner
12 Control Male 81 5 Stage 3 With partner
18 Intervention Male 79 13 Stage 3 With partner
22 Control Female 72 12 Stage 2 With partner
44  Control Male 64 6 Stage 2 Alone

45  Control Male 55 21 Stage 3 With partner
75  Control Male 71 2 Stage 3 Alone

95  Control Male 62 7 Stage 4 With partner
96 Intervention Female 78 5 Stage 1 Alone

97 Intervention Male 74 10 Stage 4 With partner
99  Control Male 78 8 Stage 2 With partner
101 Control Male 70 14 Stage 3 With partner
108 Intervention Male 5 2 Stage 2 With partner
112  Control Female 75 5 Stage 3 With partner
116 Control Male 67 1 Stage 1 With partner

We shall first look at the models fitted to the falls count during the intervention period.

Intervention period

As shown in Table 3-5, the Poi-basic model yields an FRR of 0.556 for the intervention
effect, which indicates that during weeks 11-20 the fall rate was 44% lower for people

received the intervention than those received the usual care.

There is evidence of overdispersion in the Poi-basic model. Firstly, the AIC of Poi-basic is
more than ten times higher than the AIC of NB-basic. Secondly, Poi-basic results in an
enormous dispersion statistic (225.215). In addition, the boundary LR overdispersion test
yields a significant result (P<0.001). Although the LR test of the intervention effect is

significant (P<0.001) in Poi-basic, it has little meaning since overdispersion often leads to
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false positives in model-based hypothesis testing, especially when NB-basic yields a

non-significant (P=0.072) test result.

The estimates of the intervention effect in the NB-basic and Poi-basic models are almost
identical, but the SE of the estimate is much larger in NB-basic. This is because SEs in

overdispersed Poisson regression are typically underestimated.

The large dispersion statistics and significant NB overdispersion score test result (P<0.001)
suggests that the NB-basic may also be overdispersed. Consequently, the test of the

intervention effect based on NB-basic is likely to be liberal.

Table 3-5 Goodwin et al. dataset: Poi-basic and NB-basic models fitted to the intervention
count (n=125)

Poi-basic NB-basic
Est. SE FRR (95% Cl) p Est. SE FRR (95% Cl) p
Intervention -0.587 0.037 0.556 (0.517, 0.599) <0.001 -0.587 0.322 0.556 (0.294, 1.051) 0.072
HP 3.187
Dispersion 225.215 2.825
AIC 10026.4 936.7
Overdispersion test P < 0.001° P <0.001°

@ Boundary LR overdispersion test; bNB overdispersion score test.

A solution to remedying overdispersion is to include more regression covariates, because
they may explain heterogeneity at the subject level. This approach also increases the

statistical power of the model.

As shown in Table 3-6, the FRRs of the intervention effect from Poi-full (0.513) and NB-full
(0.538) are close to the FRRs from the basic models. During weeks 11-20, the risk of falling
for people who received the intervention was expected to be halved compared to those
who received the usual care, with the remaining covariates held constant. The Poi-full
model is less overdispersed than Poi-basic, but the dispersion statistic is still large (90.624).
This is also borne out by the significant boundary LR overdispersion test (P<0.001), and the

SEs that are an order of magnitude smaller than the SEs from NB-full.

The LR test of the intervention effect in the NB-full model is significant (P=0.044), but this
may be caused by the imbalance of large falls count between the two trial arms. Eight out

of the ten most frequently falling participants during the intervention period, including ID
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75 who recorded the largest falls count in all three periods, were in the control group (see

Table 3-3), which may lead to an overestimated intervention effect in preventing falls.

Table 3-6  Goodwin et al. dataset: Poi-full and NB-full models fitted to the intervention count
(n=125)
Poi-full NB-full
Est. SE FRR (95% Cl) P Est. SE IRR (95% Cl) P
Intervention -0.667 0.038 0.513 <0.001 -0.619 0.289 0.538 0.044
(0.476, 0.553) (0.303, 0.955)
Female -1.557 0.055 0.211 <0.001 -1.194 0.300 0.303 0.001
(0.189, 0.235) (0.167, 0.550)
Age -0.020 0.002 0.980 <0.001 -0.015 0.018 0.985 0.469
(0.976, 0.985) (0.950, 1.022)
Years since diagnosis -0.017 0.003 0.984 <0.001 0.011 0.027 1.011 0.710
(0.977, 0.990) (0.958, 1.066)
Hoehn & Yahr <0.001 0.003
Stage1 -0.148 0.102 0.863 0.543  0.513 1.722
(0.706, 1.055) (0.623, 4.755)
Stage 2 1 1
Stage3 1.534 0.051 4.635 1.104  0.353 3.015
(4.190, 5.126) (1.497, 6.072)
Stage4 1.752 0.058 5.767 1.485  0.469 4.413
(5.139, 6.473) (1.742, 11.180)
Living status <0.001 0.458
With partner 1 1
Alone 0.373 0.043 1.452 0.263  0.354 1.301
(1.332, 1.583) (0.645, 2.624)
With family/friends  0.882 0.253 2.416 0.264 1.194 1.302
(1.463, 3.989) (0.122, 13.871)
Residential home -2.904 1.002 0.055 -2.410 1.434 0.090
(0.008, 0.399) (0.005, 1.538)
HP 2.365
Dispersion 90.624 1.459
AlC 6918.6 914.5
Overdispersion test P <0.0012 P =0.038

a Boundary LR overdispersion test; ® NB overdispersion score test.

Among the baseline characteristics that are included in NB-full as covariates, sex and Hoehn
and Yahr scale were significant (P = 0.001 and 0.003 respectively). A female PwP has 69.7%
lower falls rate than a male PwP with the same baseline characteristics and in the same
group. The Cls of FRR for Stage 3 and 4 Hoehn and Yahr scale both do not contain 1, which
indicate significant higher risk of falling for PwP with Hoehn and Yahr Stage 3 and 4 than

with Stage 2 (the reference level).
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Although NB-full has a smaller dispersion statistic (1.459) than NB-basic (2.825), the NB

overdispersion score test indicates that it is also overdispersed (P=0.038).

Follow-up period

As shown in Table 3-1, four participants dropped out within the first four weeks of the
intervention period. With the assumption that this was due to missing at random, the
number of weeks available for the follow-up counts was considered as the exposure of the

follow-up count, and the logged exposure was included in the models as an offset.

As shown in Table 3-7 and Table 3-8, the Poi-basic and Poi-full models fitted to the follow-
up count are both significantly overdispersed (P<0.001). Similar to the Poisson models
fitted to the intervention count, they yield large dispersion statistics and AlCs.

Table 3-7  Goodwin et al. dataset: Poi-basic and NB-basic models fitted to the follow-up count
(n=120)

Poi-basic NB-basic
Est. SE FRR (95% Cl) P Est. SE FRR (95% Cl) P
Intervention -1.378 0.052 0.252(0.227,0.279) <0.001 -1.247 0.347 0.287(0.144,0.572) 0.001
HP 3.511
Dispersion 148.8 1.5
AIC 7342.1 817.3
Overdisperison test P < 0.001° P=0.018°

@ Boundary LR overdispersion test; bNB overdispersion score test.

The AIC of the NB-basic model is considerably smaller than Poi-basic. The FRR of the
intervention effect is estimated by NB-basic to be 0.287 (P<0.001) without controlling for
the baseline characteristics, which indicates an astonishing 71% lower falls rate during the
follow-up period experienced by people who received the intervention, compared to those

receiving the usual care.

Table 3-8 shows the estimation of the Poi-full and NB-full models. The estimated
intervention effect from NB-full (FRR=0.361, P=0.004) is relatively close to that from
NB-basic (FRR=0.287, P<0.001), suggesting the intervention reduced falls rate by more than
60%. The large estimated effect was possibly due to the group imbalance regarding
frequent fallers. As shown in Table 3-3, the nine most frequently falling participants during

the follow-up period were all in the control group. Although the NB-basic and NB-full
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models yielded remarkably large intervention effect during the follow-up period, the
estimates may be influenced by the large counts in the control group (see Figure 5-9 in

Chapter 5).

The NB overdispersion score test suggests that NB-basic is significantly overdispersed
(P=0.018) but NB-full is not (P=0.191). Sex is the only baseline characteristic with a

significant LR test result (P=0.010). The LR test of Hoehn and Yahr scale was significant

when modelling the intervention falls count but not the follow-up count.

Table 3-8  Goodwin et al. dataset: Poi-full and NB-full models fitted to the follow-up count

(n=120)
Poi-full NB-full
Est. SE FRR (95% Cl) P Est. SE FRR (95% Cl) P
Intervention -1.361 0.053 0.256 <0.001 -1.020 0.330 0.361 0.004
(0.231, 0.285) (0.188, 0.693)
Female -1.245 0.055 0.288 <0.001 -0.987 0.344 0.373 0.010
(0.258, 0.321) (0.188, 0.737)
Age -0.028 0.003 0.972 <0.001 -0.027 0.021 0.973 0.273
(0.967, 0.977) (0.933, 1.014)
Years since diagnosis  -0.015 0.004 0.985 <0.001 0.023 0.030 1.023 0.499
(0.977, 0.992) (0.963, 1.087)
Hoehn & Yahr <0.001 0.053
Stagel 0.376 0.082 1.457 1.098 0.569 2.997
(1.239, 1.713) (0.970, 9.262)
Stage 2 1 1
Stage3 1.433 0.055 4.192 0.956 0.406 2.601
(3.760, 4.673) (1.163, 5.815)
Stage4 1.172 0.070 3.228 0.997 0.527 2.710
(2.810, 3.708) (0.953, 7.709)
Living status <0.001 0.586
With partner 1 1
Alone 0.588 0.047 1.800 0.412 0.404 1.510
(1.639, 1.976) (0.678, 3.360)
With family/friends  0.378 0.267 1.460 -0.343 1.336 0.709
(0.859, 2.480) (0.050, 10.026)
Residential home -1.502 0.583 0.223 -1.449 1430 0.235
(0.070, 0.707) (0.014, 3.994)
HP 2.963
Dispersion 76.2 13
AlC 5529.2 814.4
Overdispersion test P <0.001° P=0.191

a Boundary LR overdispersion test; ® NB overdispersion score test.

49



CHAPTER 3 - EXPLORATORY ANALYSIS

3.2.2 The Martin et al. dataset

Figure 3-3 shows the distributions of the falls rates (per week) during the 4-week baseline
and 20-week follow-up periods in Martin et al. (2015) dataset. Note that the falls rates are
reported instead of the counts, because a large proportion of subjects missed at least one
week of records in falls diaries (assumed to occur at random and not informative), and thus
have varying lengths of observation time. No baseline covariates were made available to

the project, so only Poi-basic and NB-basic are examined in this section.

The sample size of the Martin et al. dataset is only 21, but the distributions of the falls
counts are nevertheless heavily skewed (Figure 3-3). Similar to the Goodwin et al. dataset,

the follow-up falls rate is correlated to the baseline rate (see Figure 3-4).
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Figure 3-3 Martin et al. dataset: distribution of the falls counts during baseline (4 weeks, n=21)
and follow-up (20 weeks, n=21) periods
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Figure 3-4 Martin et al. dataset: scatter matrix plots of the baseline and follow-up falls rate (per
week) The Spearman’s correlation coefficient p and P value is shown in each subplot.

Table 3-9 shows the summary statistics of the baseline and follow-up fall rates. It is
interesting that for a trial with such a small sample size, one participant (ID CU21) reported
eighty falls per week (see Table 3-10) and 1599 falls in total during the follow-up period.
Because ID CU21 was randomised to the intervention group, the average falls rates of the
intervention group are higher than those of the control group. Outliers in a small dataset

are anticipated to be influential in the model estimation.

Table 3-9  Martin et al. dataset: summary of the falls rate (per week) during the baseline and
intervention periods

N Mean Median SD (variance) Range
Baseline period Intervention 12 6.69 1.5 11.68 (136.46) 0-33.75
(weeks 1-4) Control 9 2.83 2.3 3.17 (10.06) 0-9.50
Total 21 5.04 1.75 9.11 (82.90) 0-33.75
Follow-up period Intervention 12 8.60 0.3 22.80 (519.82) 0-79.95
(weeks 5-24) Control 9 3.04 1.0 4.78 (22.84) 0-14.55
Total 21 6.22 9.0 17.41 (303.00) 0-79.95

The most frequently falling participants during each of the baseline and follow-up period
are listed in Table 3-10. The falls rate reported by ID CU21 is outlying large compared to
the other participants.
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Table 3-10 Ten largest falls rates during the baseline and intervention periods of the Martin et
al. trial.

Period ID Group Baseline rate Intervention rate

Baseline CU21 Intervention 33.8 80.0
CU11 Intervention 28.8 13.2
CU02 Control 9.5 14.6
CUO1 Intervention 7.0 5.9
CU09 Control 6.2 6.7
CUO6 Intervention 3.2 1.6
CU20 Control 3.0 1.6
CU1l4 Control 2.5 0.9
CU18 Intervention 2.5 0.0
CU03 Control 2.2 2.1

Intervention CU21 Intervention 33.8 80.0
CU02 Control 9.5 14.6
CU11 Intervention 28.8 13.2
CU09 Control 6.2 6.7
CUO1 Intervention 7.0 5.9
CU03 Control 2.2 2.1
CUO6 Intervention 3.2 1.6
CU20 Control 3.0 1.6
CU10 Intervention 1.8 1.5
CU12 Control 1.8 1.0

For each period, the rows are sorted by the grey column

Table 3-11 presents the results of the Poi-basic and NB-basic model. The boundary LR
overdispersion test indicates significant Poisson overdispersion (P<0.001), which is
confirmed by the large dispersion statistic and AlIC of the Poi-basic model, compared with

those of NB-basic.
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Table 3-11 Martin et al. dataset: Poi-basic and NB-basic models (n=21)

Poi-basic NB-basic
Est. SE FRR (95% Cl) P Est. SE FRR (95% Cl) P
Intervention 1.156 0.050 3.178 (2.864, 3.526) <0.001 1.041 0.856 2.833(0.472, 16.993) 0.250
HP 3.753
Dispersion. 660.3 1.4
AIC 7482.9 204.2
Overdisperison test P < 0.001° P=0.353"

@ Boundary LR overdispersion test; bNB overdispersion score test.

The NB-basic model yields an FRR of 2.833 for the intervention effect, which indicates that
the risk of falling for people who received the intervention increased by 183% (P=0.250).
The reason the FRR is greater than 1 is that participant CU21 recorded 1599 falls during the
follow-up period, which is more than five times of the second largest number, and this
participant was in the intervention group (see Table 3-10). This result indicates that, when
the sample size is small, the estimation of the intervention effect is extremely susceptible

to the influence of outliers, which are unlikely to be balanced between groups.

The NB overdispersion score test suggests that the NB-basic model is not significantly

overdispersed (P=0.353).

3.2.3 The EXSart dataset

Figure 3-5 shows the distributions of the falls counts in the EXSart dataset (Ashburn et al.,
2007) during the baseline (1 year prior to the screening interview), intervention (first 6
weeks), and follow-up (between 8 weeks and 6 months) periods. As shown in Figure 3-5,
the distribution of the baseline count is more skewed than the intervention and follow-up
counts, because 1) the baseline period lasts for one year, longer than the other two periods;
and 2) the falls count during the baseline period was obtained retrospectively, which has

lower precision than the prospective method, especially when a person falls frequently.
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Figure 3-5 EXSart dataset: distribution of the count of falls during the baseline (1 year, n=142),
intervention (first 8 weeks, n=129), and follow-up (between 8 weeks and 6 months, n=127)

periods.

Compared to the other two datasets, the baseline falls rates in the EXSart dataset are less
consistent with the rates during the intervention and follow-up periods (see Figure 3-6).
The baseline rates for the frequent fallers in the Goodwin et al. dataset are close to the
intervention and follow-up rates; even the frequent fallers in the Martin et al. dataset,
which has a very small sample size, have consistent baseline and follow-up falls rates. The
participants in the EXSart trial reporting large baseline falls counts did not record as many

falls during the intervention and follow-up periods.
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Figure 3-6  EXSart dataset: scatter matrix plots of the baseline, intervention, and follow-up falls
count The Spearman’s correlation coefficient p and P value is shown in each subplot.

As shown in Table 3-12, outlying large counts were reported during the baseline,
intervention, and follow-up periods, with the maximums of 1820, 499, and 1099
respectively. A difference to the other two datasets is that there were no zero or single falls
during the baseline period, because only PwP who had fallen twice or more were recruited

to the trial. Therefore, the distribution of the baseline count is left-truncated.
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Table 3-12 EXSart dataset: summary of falls counts during the baseline, intervention, and follow-
up periods

Period Group N Missing Mean Median SD (variance) Range
Baseline period Intervention 70 0 4990 6.0 225.30 (50761.51) 2-1820
(12 months)
Control 72 0 61.21 5.0 154.17 (23768.17) 2-900
Total 142 O 55.63 5.5 191.94 (36841.30) 2-1820
Intervention period Intervention 65 5 1.83 1.0 3.18 (10.11) 0-19
(first 8 weeks)
Control 64 8 10.12 1.0 62.16 (3863.76) 1-499
Total 129 13 5.93 1.0 44 (1969.38) 0-499
Follow-up period Intervention 64 6 3.14 1.0 5.39(29.01) 0-29
(8 weeks to 6 months)
Control 63 9 2133 1.0 138.19 (19095.55) 0-1099
Total 127 15 12.17 1.0 97.44 (9494.12) 0-1099

Similar to section 3.2.1 (the Goodwin et al. dataset), the Poi-basic and NB-basic models are
fitted to the falls count during the intervention (first 8 weeks), and follow-up (between 8
weeks and 6 months) periods. Also, Poi-full and NB-full are fitted, and they include the
group allocation and the following baseline characteristics as covariates: gender, age, years
since diagnosed with Parkinson’s, Hoehn and Yahr stage, UPDRS rating, and living status

(the baseline characteristics are summarised in Table 3-13).
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Table 3-13  EXSart trial: characteristics of the participants at baseline

Intervention group Control group Total
(n=70) (n=72) (n=142)
Sex
Male 38 (54%) 48 (67%) 86 (61%)
Female 32 (46%) 24 (33%) 56 (39%)
Age
Mean (SD) 72.7 (9.6) 71.6 (8.8) 72.2(9.2)
Range 44-91 52-90 44-91
Years since diagnosis
Mean (SD) 7.7 (5.8) 9.0(5.8) 8.3(5.8)
Range 1-31 1-30 1-31
Hoehn and Yahr
Stage 2 8 (11%) 8 (11%) 16 (11%)
Stage 3 44 (63%) 48 (67%) 92 (65%)
Stage 4 18 (18%) 16 (22%) 34 (24%)
UPDRS
Mean (SD) 19.77 (8.82) 22.17 (11.90) 20.98 (10.32)
Range 3-41 4-74 3-74
No. of missing 1 2 3
Living status
Alone 18 (26%) 16 (22%) 34 (24%)
With partner 43 (61%) 52 (72%) 95 (67%)
With family/friends / other 9 (13%) 4 (6%) 13 (9%)

Table 3-14 show the most frequently falling participants during the baseline, intervention,

and follow-up periods. An interesting finding is that some participants who had recalled a

large baseline falls count only reported a few falls during the intervention and follow-up

periods. A typical example is ID 71, who recalled 1820 falls during the baseline period and

only 7 and 13 falls during the intervention and follow-up periods.
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Table 3-14 Ten largest falls rates during the baseline, intervention, and follow-up periods of the
EXSart trial.

Period ID Group Baseline count Intervention count Follow-up count
Baseline 71 Intervention 1820 7 13
28 Control 900 499 1099
23 Control 700 11 3
99 Control 366 1 3
68 Control 365 9 7
106 Intervention 365 1 2
113  Intervention 365 2 8
126  Control 365 6 7
30 Control 360 11 8
109 Intervention 260 19 28
Intervention 28 Control 900 499 1099
109 Intervention 260 19 28
114  Control 220 15 Na
23 Control 700 11 3
30 Control 360 11 8
84 Intervention 20 11 8
63 Intervention 100 9 0
68 Control 365 9 7
118  Intervention 52 8 29
69 Control 120 7 5
Follow-up 28 Control 900 499 1099
48 Control 30 1 55
118  Intervention 52 8 29
109 Intervention 260 19 28
1 Control 15 6 25
102  Control 100 5 14
71 Intervention 1820 7 13
100  Control 3 6 13
86 Control 8 4 11
10 Control 6 1 9

For each period, the rows are sorted by the grey column
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Table 3-15 Baseline characteristics of the frequent fallers listed in Table 3-14.

ID Group Sex Age Years since diagnosis Hoehn & Yahr UPDRS Living status
1 Control Male 90 15 Stage 4 31 With partner
10  Control Male 80 17 Stage 3 22 With partner
23 Control Female 78 30 Stage 4 46 With partner
28  Control Male 60 11 Stage 4 - With partner
30 Control Male 53 20 Stage 4 74 With partner
48  Control Male 56 12 Stage 3 6 With partner
63 Intervention Female 69 5 Stage 3 16 With partner
68  Control Male 67 5 Stage 4 30 With partner
69  Control Female 86 6 Stage 4 26 With partner
71  Intervention Male 67 16 Stage 4 23 With partner
84  Intervention Male 59 10 Stage 3 16 With partner
86  Control Female 75 8 Stage 3 27 With partner
99  Control Male 76 5 Stage 3 12 With partner
100 Control Male 71 10 Stage 3 16 With partner
102 Control Male 84 4 Stage 4 36 With partner
106 Intervention Male 74 5 Stage 4 27 With partner
109 Intervention Male 76 31 Stage 4 18 With partner
113 Intervention Female 76 7 Stage 4 41 Alone

114 Control Female 60 15 Stage 3 22 Alone

118 Intervention Female 57 10 Stage 4 30 With partner
126 Control Female 63 1 Stage 4 33 With partner

The baseline characteristics of the participants listed in Table 3-14 are shown in Table 3-15,
which indicates that the frequent falling participants were all rated Stage 3-4 on the Hoehn

and Yahr scale (more severe Parkinson’s), and no other pattern can be seen.

First, we compare the models on the falls count during the first 6 weeks, during which the

participants received the home-based exercise and strategy programme.
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Intervention period

Table 3-16 and Table 3-17 present the basic and full models, respectively. Note that the
number of participants included in the full models is smaller than the number in the basic
models, because three participants have missing values for the covariate UPDRS. Both the
Poi-basic and Poi-full models are significantly (P<0.001) overdispersed. The dispersion
statistic in Poi-full model (3.100) is much smaller than that in Poi-basic (660.328), which
bears out that incorporating baseline characteristics can be effective in adjusting for
heterogeneity when modelling falls counts. Besides, there is a much larger difference in AIC

between Poi-basic and NB-basic, than between Poi-full and NB-full.

Table 3-16 EXSart dataset: Poi-basic and NB-basic models fitted to the intervention count
(n=129)

Poi-basic NB-basic
Est. SE FRR (95% Cl) P Est. SE FRR (95% Cl) P
Intervention -1.710  0.100  0.181(0.148, 0.220) <0.001 -1.710 0.348  0.181(0.091, 0.360) <0.001
HP 3.753
Dispersion. 660.3 1.4
AIC 7482.9 204.2
Overdisperison P <0.0012 P <0.001°

@ Boundary LR overdispersion test; bNB overdispersion score test.

The FRR of the intervention estimated from NB-basic is 0.181 (P<0.001), which indicates a
more than eighty percent reduction in the falls rate for people who received the
intervention. The estimated effect has a marked difference to that from the NB-full model
(FRR=0.763, P=0.253). The reason for this great discrepancy is that one participant (ID 28)
in the control group reported an outlying large falls count during the intervention period
(see Table 3-14). Because the UPDRS rating of this participant was missing, this outlier is
not included in NB-full. The huge impact of one subject on the model estimation highlights

the danger of outliers.

The NB overdispersion score test indicates significant NB overdispersion in NB-basic
(P<0.001) but not in NB-full (P=0.396). The dispersion statistic of NB-full (1.1) is closer to
one than that of NB-basic (1.4), and it also has a smaller HP (1.002) compared to NB-basic

(3.753). The NB-full model accommodates overdispersion better than NB-basic, not only
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because heterogeneity is to some extent controlled by the baseline characteristics, but also

because ID 28 is not included in NB-full.

The number of years since Parkinson’s diagnosis and Hoehn and Yahr scale are significant
in the NB-full model (P=0.025 and 0.019 respectively). Participants who were rated Hoehn
and Yahr Stage 4 had significantly higher falls rate (FRR: 2.040, 95% Cl: 1.103 to 3.772) than

those rated Stage 3. The trend that people with more severe Hoehn and Yahr rating have

higher risk of falling is in line with the finding in the Goodwin et al. trial (see Table 3-6)

Table 3-17 EXSart dataset: Poi-full and NB-full models fitted to the intervention count (n=126)

Poi-full NB-full
Est. SE FRR (95% Cl) P Est. SE FRR (95% Cl) P
Intervention -0.180 0.130 0.835 0.166 -0.270 0.234 0.763 0.253
(0.645, 1.081) (0.480, 1.213)
Female -0.022 0.133 0.979 0.870 -0.098 0.246 0.907 0.694
(0.752, 1.273) (0.557, 1.475)
Age -0.015 0.008 0.985 0.049 -0.011 0.014 0.989 0.442
(0.970, 1.000) (0.962, 1.018)
Years since diagnosis 0.051 0.009 1.052 <0.001 0.041 0.020 1.042 0.025
(1.034, 1.071) (1.001, 1.084)
Hoehn & Yahr <0.001 0.019
Stage2 -0.847 0.325 0.429 -0.829 0.453 0.437
(0.225, 0.816) (0.178, 1.071)
Stage 3 1 1
Stage4 0.698 0.160 2.010 0.713 0.310 2.040
(1.464, 2.759) (1.103, 3.772)
UPDRS -0.002 0.006 0.998 0.752 0.000 0.013 1.000 0.973
(0.986, 1.010) (0.975, 1.027)
Living status 0.015 0.274
With partner 1 1
Alone -0.323 0.188 0.724 -0.396 0.306 0.673
(0.499, 1.050) (0.367, 1.234)
With family/friends /others -0.817 0.366 0.442 -0.635 0.535 0.530
(0.214, 0.913) (0.184, 1.529)
HP 1.002
Dispersion 3.1 11
AlC 570.4 478.7
Overdispersion test P <0.001° P =0.396

a Boundary LR overdispersion test; ® NB overdispersion score test.

Follow-up period

The basic and full models are presented in Table 3-18 and Table 3-19, respectively. The
Poisson models are significantly overdispersed (P<0.001), and again with much larger

dispersion statistics and AIC than the NB models.
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The FRR from the NB-basic model is 0.147, close to the FRR from NB-basic during the
intervention period. The model estimation is again influenced by the outlier ID 28, who
reported 1099 falls between 6 weeks and 8 months. The NB-full model, which does not
include this subject, yields an FRR of 0.724 (P=0.189), which is also close to that from NB-full

fitted to the intervention count.

Table 3-18 EXSart dataset: Poi-basic and NB-basic models fitted to the follow-up count (n=127)

Poi-basic NB-basic
Est. SE FRR (95% Cl) P Est. SE FRR (95% Cl) P
Intervention -1.916 0.076 0.147(0.127,0.171) <0.001 -1.916 0.357 0.147(0.073,0.298) <0.001
HP 3.865
Dispersion. 448.6 5.7
AIC 8975.6 674.1
Overdispersion test P < 0.001% P <0.001°

@ Boundary LR overdispersion test; bNB overdispersion score test.

The NB overdispersion score test suggests that the NB-basic model is significantly

overdispersed (P<0.001) but NB-full is not (P=0.296).

The Hoehn and Yahr scale is the only significant covariate in the NB-full model. During the
follow-up period, the falls rate was higher for people with a more severe Hoehn and Yahr
rating at the baseline — the same pattern also shows in the intervention period. Compared
with the participants with a Hoehn and Yahr rating of Stage 3, the falls rate for those with
a rating of Stage 2 was eighty-five percent lower (FRR: 0.149, Cl: 0.052 to 0.426), whilst for
the participants with a rating of Stage 4 the rate was more than three times higher (FRR:

3.049, 95% Cl: 1.618 to 5.748).
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Table 3-19 EXSart dataset: Poi-full and NB-full models fitted to the follow-up count (n=124)

Poi-full NB-full
Est. SE FRR (95% Cl) P Est. SE FRR (95% Cl) P
Intervention -0.305 0.102 0.737 0.003 -0.323 0.241 0.724 0.189
(0.603, 0.901) (0.450, 1.167)
Female -0.250 0.108 0.779 0.019 -0.330 0.251 0.719 0.200
(0.629, 0.965) (0.437,1.182)
Age -0.032 0.006 0.968 <0.001 -0.016 0.015 0.984 0.234
(0.956, 0.980) (0.955, 1.014)
Years since diagnosis  0.045 0.007 1.046 <0.001 0.035 0.021 1.036 0.087
(1.032, 1.061) (0.994, 1.079)
Hoehn & Yahr <0.001 <0.001
Stage2 -2.155 0.388 0.116 -1.901 0.529 0.149
(0.054, 0.250) (0.052, 0.426)
Stage 3 1 1
Stage4 1.044 0.125 2.842 1.115 0.320 3.049
(2.218, 3.640) (1.618, 5.748)
UPDRS -0.031 0.005 0.970 <0.001 -0.017 0.014 0.983 0.199
(0.960, 0.980) (0.956, 1.010)
Living status <0.001 0.325
With partner
Alone -0.461 0.157 0.630 -0.421 0.312 0.656
(0.462, 0.860) (0.354, 1.217)
With family/friends -0.728 0.298 0.483 -0.522 0.554 0.594
/others (0.268, 0.871) (0.198, 1.778)
HP 1.219
Dispersion 6.0 11
AlC 857.2 554.5
Overdispersion test P <0.001° P =0.296

a Boundary LR overdispersion test; ® NB overdispersion score test.

3.3 Summary

In this chapter, the three datasets made available to this project were explored and

described regarding the distribution of falls counts and other variables.

The Poisson and NB models were compared using the three datasets, with two scenarios
considered to resemble the procedure of analysis in practice: the basic models that
compare the falls rates between the two trial arms without controlling for other variables,
and the full models that in addition include the baseline characteristics as covariates. The
baseline falls count, which is the main topic of Chapter 6 and Chapter 7, has not been

considered as a covariate for the NB models in this chapter.
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The three trials share a similar trial design (after the transformation of the Martin et al.
dataset) — falls are collected during a pre-randomisation baseline period and one or more
follow-up periods after the randomisation. In general, the falls counts have heavily skewed
distributions. Typically, a small proportion of subjects recorded considerably more falls

than the others, and they are influential in model estimation.

All the fitted Poisson models were significantly overdispersed. For this reason, the
covariates in all the fitted Poisson models were significant. The AlCs of Poisson models were

an order of magnitude higher than those of the NB models with the same covariates.

The dispersion statistics in Poi-full models were smaller than the Poi-basic models, and the
AIC disparities between Poi-full and NB-full were not as large as between Poi-basic and NB-
basic. This suggests that incorporating baseline characteristics in models explains the

heterogeneity to some extent and reduces overdispersion.

The NB models accommodate the overdispersion, and thus fitted the three datasets better
than the Poisson models: they not only had lower AIC values, but also resulted in smaller
dispersion statistics than the Poisson models. In addition, the boundary LR overdispersion
tests, which directly compares the goodness of fit of NB and Poisson models, produce small

P values (<0.001).

The NB-basic models showed lower statistical power than the NB-full models, as indicated
by their dispersion statistics. The Hoehn and Yahr scale was a significant covariate in the
NB-full models fitted to the EXSart dataset and the intervention counts in the Goodwin et
al. dataset, suggesting the risk of falling is associated with the severity of Parkinson’s. Sex
was found to be significant in the Goodwin et al. dataset, but not in the EXSart dataset. The
number of years since Parkinson’s diagnosis was significant only when modelling the

intervention falls in the EXSart dataset.

Large outcome falls counts were found to be a crucial issue in modelling falls. They appear
in all three datasets, including the Martin et al. dataset (with the smallest sample of only
21 people): one participant recorded 1599 falls within 20 weeks. How to cope with the
large counts has been a great challenge in statistical modelling. The estimation of the fitted
NB models is influenced by outliers, especially when the sample size is small, and when

large falls counts are not balanced between two groups.
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NB overdispersion, which is rarely addressed in falls prevention trials, was examined in the
fitted NB models. Most of the NB-basic models reported in this chapter are significantly
overdispersed, including covariates reduces the dispersion statistic and may control for

overdispersion in NB-full (compare Table 3-7 and Table 3-8 for example).

In conclusion, falls data often result in Poisson overdispersion, which leads to false positives
if it is not controlled in a model. Including the baseline characteristics as model covariates
is effective in reducing heterogeneity. The NB models fit the falls data better than the

Poisson models, but the model estimation is not robust to outliers.
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Chapter 4

A review of NB functionality in five statistical
packages

4.1 Introduction

Over the years, NB regression has become the standard statistical model for analysing falls
counts from falls prevention trials. Because of their increasing popularity, NB models are

supported in various statistical packages.

Five packages—Stata, SAS, SPSS, R, and Python—are reviewed regarding their
functionality for NB modelling. Among the five packages, Stata, SAS, and SPSS are
commercial software, while R and Python are open-source statistical/general-purpose

programming languages that support NB modelling.

In each package, the NB functionality is generally provided in a module, which is named
differently across packages. For example, a module is called a “procedure” in SAS and a
“command” in Stata. Note that a module in the R language is referred to as an “R
package,” which may be confused with a statistical package. For clarity, the name of a
module is shown in bold font. We discuss the pros and cons of the five statistical packages

in general and review the NB modules within each package.

The NB2 model is considered as the standard and most commonly-used version of NB
models. It is referred to as the NB model throughout the thesis, but the full name NB2 is

used in this chapter to distinguish from the other types of NB models.

Table 4-1 summarizes the modules that provide functionality for fitting NB2 and other
types of NB models in each of the five packages. The NB2 model can be fitted using all the
five packages, but the options and post-estimation commands from each module provide

different model-based statistics. These are also reviewed in this chapter.
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Table 4-1  Functionality of NB models in Stata, SAS, SPSS, R, and Python

Stats. packages Version NB2 Modules Other NB models and modules
Stata v. 15 nbreg = NB1: nbreg

glm = ZINB: zinb, countfit

countfit = NB-H: gnbreg

NB GEE: xtnbreg, xtgee, qic
= Random-/fixed-effects NB: xtnbreg

SAS 9.4 x64 GENMOD = ZINB: GENMOD
= NB GEE: GENMOD
SPSS v.22 GENLIN = NB GEE: GENLIN
R 3.5.0 MASS = NB1: gamlss, COUNT
msme = ZINB: gamilss, pscl
COUNT = NB-H: msme, aod
aod = Zero-hurdle NB: gamlss, pscl
mgcv = Censored/truncated NB: gamlss.cens,
gamlss gamlss.tr
Python 3.6.4 statsmodels = NB GEE: statsmodels

4.2 NB modelling in Stata

Stata is a commercial statistical package that is widely used in medical research, public
health in particular (Dembe et al.,, 2011). Stata not only supports a wide range of
statistical models, but also provides a navigation menu making a user-friendly software
interface (see Figure 4-1). In addition, Statas supports community-contributed
commands so that professional users can implement functions that are missing in the
original package, and upload the commands to the Stata Journal, the Statistical Software
Component (Boston College Department of Economics, n.d.) archive, or other websites to

make them easily accessible by other users (StataCorp, 2015).
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Figure 4-1 User interface of Stata/SE 15.1 on macOS 10.14

Two commonly used Stata modules for fitting NB2 models are the nbreg and gim
commands. They produce almost identical regression coefficients but different diagnostic
statistics. Stata also provides commands to fit other types of NB models. These

commands are introduced and compared in this section.

The nbreg and glm commands

The most straightforward way to fit an NB2 model is using the nbreg command (which
stands for NB regression). An alternative to nbreg is to use the GLM command (glm) and
specify the distribution family as negative binomial, that is, family (nbinomial ml)

in the Stata syntax.

In practice, these two commands result in close but not identical estimates. A more
substantial difference lies in the range of post-estimation statistics. For example, only the
glm command provides the Pearson dispersion statistic, which is useful to assess whether
there is model overdispersion (see section 2.3.5). Another difference is that the gim

command reports a in the form of a variance function, while it is listed along with other
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estimates in the output of nbreg, with SEs and Cls reported. There are also minor
differences in the syntax between the two commands. The option for reporting the IRR for

each covariate is irr in nbregand eformin glm.

A dilemma is that only nbreg provides the boundary likelihood ratio test to test
overdispersion while only glm produces diagnostic statistics for examining the influence of
outliers, which is especially needed in the case of falls prevention trials as subjects
reporting large falls counts are suspected to be overly influential in model estimation, so

both need to be run.

The zinb command

The zinb command fits an ZINB model with the inflation covariates specified using the

option inflate (), and the zip command for ZIP models uses the same syntax.

In the previous versions of Stata, the zinb and zip commands reported the result of the
Vuong test for zero-inflation when the option vuong is specified, but this option has been
removed from Stata 15. If the option is specified in Stata 15, a warning message is
shown to remind users that the standard Vuong test may result in biased result for testing
zero-inflation. Desmarais (2013) provided two community-contributed commands zinbcv
and zipcv to support AIC- and BIC-based corrections of the Vuong tests for zero-inflation in

ZINB and ZIP models (see section 2.3.3).

The xtnbreg and xtgee commands

The xtnbreg command supports conditional fixed-effects NB models in the fe option,

random-effects NB models in the re option, and NB GEE models in the pa option.

The xtgee command fits an NB GEE model when family (nbinomial) is specified. The

syntax of xtgee is similar to xtnbreg but with a few minor differences:

e Before running the xtnbreg command, the dataset must be specified as a panel
data using the xtset command; in xtgee the subject and time variables of a
longitudinal dataset can be specified in the options 1 () and t (), respectively.

e xtnbreg uses the irr option (same as nbreg) to report IRRs from the fitted GEE

models, while xtgee uses the e form option (same as glm).

70



CHAPTER 4 - REVIEW OF SOFTWARE FUNCTIONALITY FOR NB MODELS

Stata does not support estimating HPs from GEE models. Instead, the common approach
is to 1) fit a standard NB2 model using nbreg or glm and store the estimate of HP, and 2)
fit a GEE model with HP fixed to the stored value. In xtgee this is done by specifying HP in
the family (nbinomial [HP]) option. For example, if the estimate of HP from nbreg
is 1.5, the option should be specified as family (nbinomial 1.5)in xtgee. Note that
xtnbreg, pa estimatesthe model with HP fixed to 1 and no option is available to change

this value, thus xtgee is preferable than xtnbreg for fitting NB GEE models.

The gic command

When GEE models are used in practice, it is often desired to examine the goodness of fit
statistics to facilitate decision making in choosing correlation structures, but these statistics

are not reported in either xtnbreg or xtgee.

The gic command (Cui, 2007) is a community-contributed command that fits GEE models
using the same syntax as xtgee and reports the QIC and CIC statistics (see section 2.3.8).
The qic command does not support specifying a covariate as a factor—users have to create

dummy variables manually.

The countfit command

The countfit command is included in a community-contributed commands combo
spost13_ado (Long and Freese, 2006). It compares four different count models (Poisson,
NB2, ZIP, and ZINB), showing the corresponding regression coefficients, BIC/AIC, and the
difference in the predicted and observed probabilities. This command is very useful in

model selection.

Others

Some other varieties of NB models described in section 2.3.3 are also supported in Stata.
NB1 models can be fitted by specifying the option dispersion (constant) in the
nbreg command; the default option for dispersion () ismean, whichis the NB2 model.
NB-H models can be fitted using the gnbreg command, where the predictor for estimating

a is specified in the 1nalpha () option.
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4.3 NB modelling in SAS

SAS (SAS Institute Inc., 2013) supports NB2 and ZINB in its generalized linear modelling
procedure (GENMOD) by specifying DIST=NEGRBIN and DIST=ZINB, respectively. The
GENMOD procedure produces the following diagnostic statistics: Cook’s distance, leverage,
and DFBETA. In addition, the GENMOD procedure has an option PLOTS=ALL for

producing various residual and diagnostic plots.

It is straightforward to fit an NB GEE model in SAS—by specifying the option REPEATED
in the GENMOD procedure. The subject ID and the correlation structure are specified using
the subject and TYPE options, respectively. Unlike Stata, fitting NB GEE models in

SAS does not require providing a value for HP.

4.4 NB modelling in SPSS

Similar to Stata, statistical analysis can be conducted in SPSS (IBM Corp., 2017) using

the syntax, or the menus and graphical user interface (see Figure 4-2).

NB2 modelling is supported in the GLM command (GENLIN) by specifying the options
DISTRIBUTION=NEGBIN (1) and LINK=LOG. If the /REPEATED option is specified,

the GENLIN command fits an NB GEE model.
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4.5 NB modellinginR

R (R Core Team, 2016) is an open-source programming language for statistical analysis. The
R language is free, powerful, and widely used in academia. It is distributed as a set of R
core packages, which provide support for standard statistical analyses, numerical
computations, and constitute the foundation of the R language. The R core packages were
written and maintained by the R Foundation (R-Foundation, 2015). In addition, statistical
models and methods are implemented as user-programmed packages, which are written

and maintained by R users and made accessible to others.
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For commercial packages such as Stata, SAS, and SPSS, the company that owns the
intellectual property of a package is responsible for validating and maintaining the package
to make sure it conducts the analyses correctly (not for user-submitted commands), and it
also provides technical support to consumers who purchased a license. The source code is
compiled and thus the models are essentially fitted in verified “black boxes”. By contrary,
R as well as the other open-source languages such as Python, distribute their source code
freely so any programming bug or error could be found by users. The online community for
R (such as the Stack Overflow website and the R-help mailing list) is blooming and friendly.
When facing difficulties in using R, users can raise questions on the online forums and

usually get prompt replies.

Another advantage of the R language is that making a package is easy and straightforward.
When an author publishes a paper to propose a new statistical method or model, it has
become standard to also publish an R package, so that readers can try it on their own
datasets. This approach has greatly accelerated the promotion of new statistical methods.
Although it is also common to publish papers with community-contributed commands in
Stata, the R language is more popular due to its modern language features such as
object-oriented programming and functional programming. While Stata is a powerful
scriptable software, it is not a programming language and its customisability is limited
compared to R. As a result, algorithms to fit cutting-edge models are mostly produced in R

exclusively.

In the following sections, the available R packages that can be used to fit NB models are

introduced.

The MASS package

A popular R function for NB2 modelling is g1lm.nb () in the MASS package (Venables and
Ripley, 2002). As g1lm.nb () was developed as an extension of the g1m () function in the
stats package (the NB2 model can be considered as a GLM model when a or @ is fixed, as
discussed in section 2.3.3; stats is a core package), most of the post-estimation generic

functions in g1m can be directly applied to a glm.nb () model fit.

The glm.nb () function yields an estimate of 8 in equation (2-7), while most of the other

software parameterises via a in equation (2-6). As discussed in 2.3.3, the parameterisation
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using 8 may be counter intuitive, because a smaller 8 indicates greater overdispersion, and

the NB2 model tends to a Poisson model as 8 approaches infinity.

Note that if the MASS package is used for NB2 modelling, the generic function confit ()
is linked to the confit.glm () function in the MASS package, which reports the profile
Cl instead of the standard model-based ClI (which assumes that each parameter estimator
is approximately normally distributed). If standard model-based Cls are preferred to profile

Cls, the confit.1lm() function should be used.

The msme package

A less well-known R function for NB2 modelling is nbinomial () in the msme package
(Hilbe and Robinson, 2014). This package was written to include the functions and datasets

used in Hilbe and Robinson’s (2016) book Methods of Statistical Model Estimation.

The output of nbinomial () function is generally similar to the glm.nb () function

except for a few enhancements:

e The parameterization of overdispersion can be specified either via a (when the
option fami 1y is specified as the default "nb2") or 8 (when fami 1y is specified
as "negBinomial").

e The Cls for the estimates of parameters are reported in the output of the
summary () function.

e HP can be parameterized as a linear predictor via a log link-function, that is the
NB-H model described in section 2.3.3.

e The dispersion statistic is produced.

e The alrt () function in the msme package can be used for testing Poisson
overdispersion using the boundary LR test. The support of the boundary LR test is

missing in the MASS package.

The limitations of the msme package is that it does not support as many diagnostic options
as MASS. While the leverage of each subject can be calculated with the hatvalues ()

function in msme, the Cook’s distances cannot be produced.
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A useful feature of the msme package is that the P disp () function produces the
dispersion statistic for a fitted glm () Poisson model or a glm.nb () model. This is a

useful tool that is missing in the stats and MASS packages.

The COUNT package

The COUNT package was written for a book, Negative Binomial Regression (Hilbe, 2011).
This package includes the data and code used in the book, including the m1.nb2 () and

ml.nbl () functions, which support the NB2 and NB1 models, respectively.

The aod package

The aod package (Lesnoff et al., 2012) includes various functions for overdispersed count

data or proportions, including the negbin () function for NB modelling.

Similar to the nbinomial () function in the msme package, negbin () supports both
the NB2 and NB-H models: a linear predictor can be specified in the random option to

estimate «.

The mgcv package

The mgcv package (Wood, 2017) is designed for Generalized Additive Models (GAMs). As
GAMs are a generalization of GLMs, this package can also be used for fitting the NB2 model.
This is done by specifying the option family=nb () in the gam () function. Similar to
glm.nb () in MASS, gam () parameterises NB2 with 8. Although another mgcv function
named negbin () also supports NB2 modelling, a value of 8 has to be given as an

argument.

The gamlss package

The gamlss package is an R package for fitting the Generalised Additive Models for Location,
Scale and Shape (GAMLSS) model, which is a very flexible framework that can be used to
model more than a hundred discrete, continuous and mixed distributions, and it is also a
generalization of the GLM family (Stasinopoulos and Rigby, 2007). The NB2 model is
supported in the gamlss package via the NBI () function, which returns a
gamlss.family object that is passed to the gamlss () function as an argument

(family) to specify the distribution of the response variable.
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It should be noted that there is a confusion in the nomenclature of the distributions in the
gamlss package: NBI refers to the distribution that is conventionally named NB2, and

NBIT refersto NB1.

A feature of the gamlss package is that it supports right-, left-, and interval-
censoring/truncation for any model that is a member of the gamlss family, in the
gamlss.cens and gamlss.tr packages respectively (Hilbe, 2011; Stasinopoulos et al., 2017).
These two packages provide functionality for fitting right-censored or right-truncated NB

models.

The pscl package

Although the pscl package (Jackman et al., 2007) does not include functions for fitting the
NB2 model, it includes a number of useful tools fora glm.nb () fit and other types of NB
models. For example, the odTest () function can be used to examine overdispersion
using the boundary likelihood rate test. In addition, the zero-inflated NB model can be

fitted using the zeroinf1 () function.

The pscl package supports the Vuong test in the vuong () function, as well as the

corrections based on AIC and BIC (see section 2.3.3).

4.6 NB modelling in Python

Python (Python Core Team, 2015) is a general-purpose programming language. Over the
past decade, Python has become increasingly popular in data science and statistics.
Although Python is not as commonly used in medical statistics as in machine learning, a
Python module statsmodels (Seabold and Perktold, 2010) is available for fitting statistical
models. The statsmodels module is based on NumPy arrays (Oliphant, 2006), which is
numeric computing package, and pandas data frames (McKinney, 2010), which is a
counterpart of the R dataframe in the base package. The NumPy and pandas modules also
have good performance in terms of speed due to Python incorporating very fast

optimisation methods.
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NB2 models can be fitted using the GLM function GLM () in statsmodels, by specifying the
argument family= families.NegativeBinomial (). NB GEE models can be fitted

using the gee () function with the same option for the family argument asin GLM ().

4.7 Discussion

In this chapter, five statistical packages were reviewed regarding the functionality for NB
modelling. All the packages support the widely-used NB2 models and some other types of
NB models. Different modules also result in different model-based statistics, even for

modules within the same package. There are a few practical points worth mentioning here:

Stata provides a very complete set of NB commands, but only a few post-estimation
diagnostic statistics are supported. As Stata is widely used in public health, learning to fit
an NB model would be relatively straightforward for an applied researcher. In terms of the

cost, the price of Stata is lower than SPSS or SAS.

SAS is a popular statistical package for medical studies, especially in the pharmaceutical
industry. Although SAS only supports three types of NB models (NB2, ZINB, and NB GEE)
in PROC GENMOD, it produces a number of diagnostic statistics and plots. However, SAS

is more expensive than the other four packages.

Among the five reviewed packages, SPSS is most user-friendly. Its graphical user-face is
well designed and straightforward, especially for people with no prior knowledge of
programming. Data input in SPSS is convenient, but the functionality for NB modelling is

limited.

R is a free and powerful programming language for statistics and computation. Although
rarely used in medical research a few years ago, R is now a fast-growing language, and is
used more and more by medical researchers. R is distributed freely, but there is a drawback:
users often have to seek help from the online community. This is particularly tricky if a
package is rarely used or no longer maintained. Although the authors of R packages are
usually responsible for maintaining the projects and answering technical questions, they
are not obliged to. Therefore, the questions or bugs may not be dealt with promptly—most

authors only contribute to the projects in their free time. Conducting a statistical analysis
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in R requires more advanced programming skills than the commercial packages, but it

provides greater flexibility.

Python is a programming language commonly used in data science, and it has become
increasingly popular for data analysis. Given Python’s rising popularity, more Python

modules are expected to support NB models in the future.
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Chapter 5

Diagnostic plots for NB modelling of falls data

5.1 Introduction

The distribution of a falls count reported by PwP is usually positively skewed, with most
participants reporting relatively small counts whilst a few participants report large counts,
and when a count response model is fitted, these large counts are generally highly
influential in model estimation. Because NB regression can fit a more heavily skewed
distribution to count data than Poisson regression, it copes with large falls counts better
than Poisson models. However, if a falls count is extremely large, it may exceed the capacity
of the NB model to accommodate outliers. The results presented in Chapter 3 suggest that
large outcome counts greatly influence model estimation, and the estimation of the
intervention effect was sensitive to outliers. Even a single large count may substantially

change the estimated intervention effect.

Large counts are a great challenge in NB modelling. Although they may have a major impact
on model estimation, large counts are not always influential: if the covariates have good
predictive power, they may be fitted very well. Hence, pinpointing outliers, quantifying
their influence on model estimation, and understanding how individual counts impact on

model estimation is essential to statistical analysis of falls counts.

The diagnostic statistics introduced in section 2.3.4 are useful in model checking, as they
assess the influence of each subject from a quantitative perspective, but they may not be
straightforward to use in practice. Sifting through the diagnostics for each participant is
time-consuming and error-prone, especially for a large dataset. A visual inspection of a

diagnostic plot, in comparison, should be intuitive and easy to interpret.

In this chapter, a new diagnostic plot specifically designed for modelling falls counts from

falls prevention trials is introduced, and it is produced for the NB models presented in
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Chapter 3, that is, without the baseline count included. An existing diagnostic plot is
examined in the context of NB modelling. These diagnostic plots are discussed regarding
the traits of each model and dataset. An R package (see Appendix A) was written to

automate the production of NB diagnostic plots.

This chapter provides a tool for examining NB model diagnostics graphically in the context
of falls prevention trials, and other trials with recurrent events as the outcome and also

collected at baseline.

5.2 Baseline/Outcome Event plot

Standard diagnostic plots for NB regression are not generally helpful in relation to analysing
data from a falls prevention trial, specifically, the core requirement of assessing diagnostic
statistics relating to the participants reporting high falls rates. Therefore, a diagnostic plot
for falls data should present both the diagnostic statistic and the corresponding falls rate
at the subject level. Ideally, the plots should not only be useful in identifying the influential
subjects, but also help in inspecting patterns of diagnostic statistics in the context of their
baseline/outcome fall rates. They should facilitate the examination of whether the
estimated intervention effect, which is usually the main research question, is substantially

influenced by a few outliers.

Four new diagnostic plots are proposed to present the following statistics: Cook’s distance,
leverage, Anscombe residual, and DFBETA. The collective set of plots are referred to as
Baseline/Outcome Event (BOE) plots in the thesis, and each plot is referred to by the name

of the model diagnostic presented.

For the sake of demonstration, two examples — a Cook’s distance plot and a DFBETA plot
— are shown in Figure 5-1 and Figure 5-2, respectively. Both plots are based on an NB
model fitted to a simulated two-arm trial dataset (n=200). Assume the falls count is
collected during a baseline and a follow-up period, both lasting for one month. Let the NB
distribution be denoted by NB(u, @). The baseline count in both groups follows the
distribution NB(30,1), while the outcome count follows the distribution NB(20,1) in the
intervention group and NB(30,1) in the control group, so that on average the outcome

falls count is 33% lower in the intervention group. The same gamma-distributed subject
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effect is used in generating the outcome and baseline counts for the same subject (more
details of the simulation are given in section 6.2.1). The fitted NB model includes only one

covariate: the group allocation.

As shown in Figure 5-1 and Figure 5-2, the BOE plots are based on a scatter plot with the
outcome rate plotted against the baseline rate, both axes on a logarithmic scale. The
diagnostic statistic for each subject is indicated by the size of the plotting symbol. In order
to include zero falls, 0.5 is added to both rates before log-transformation. A vertical and a
horizontal dashed line are plotted at the location of log(0.5) to indicate zero counts. In
order to compare the two groups, the plotting symbols from different groups are shown in
different colours. Because Anscombe residuals and DFBETAS may be negative, they are
plotted with triangular symbols, with upside-down triangles indicating negative values (see

Figure 5-2).

1

=
‘:‘ 4 Group
g Control
® Intervention
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2 < i
o Cook's distance
g ® 005
S @ o010
3 0.15
3 @]

0 2 5 15 50 200 500

Baseline rate (per month)

Figure 5-1 Demonstration of the Cook’s distance plot (n=200). The IDs of the subjects with the
largest Cook’s distance are shown as labels.
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Figure 5-2 Demonstration of the DFBETA plot (n=200). The IDs of the subjects with the largest
absolute values in DFBETA are shown as labels.

The reason that the rates are plotted on a logarithmic scale is to cope with the skewed
distribution of the falls rate. The x- and y-axes are labelled with the untransformed falls
rates to improve readability (example Figure 5-1 and Figure 5-2). Compared to the original
scale, the plotting symbols under a logarithmic scale are more evenly distributed, so that it
is easier to compare different diagnostic statistics for the same subject across plots based
on the location of the plotting symbol on different plots. For example, one may be
interested in examining the Cook’s distance and residual for the participant with the
highest falls rate during the outcome period. It is straightforward to compare the two
statistics in the corresponding BOE plots, because the plotting symbols lie at the top of the

body of points.

To provide a reference line for comparing the outcome and baseline rate, the BOE plots
include a Line of Falls Equity (LoFE), defined as a line with the slope 1 and intercept 0. The
x- and y-axes have the same range so that the LoFE is the diagonal of the plot. If an outcome
rate is exactly the same as the baseline rate, the plotting symbol would perfectly lie on the
LoFE, which is shown as the diagonal in the plots (for example see Figure 5-1 and Figure

5-2).
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If the intervention effect is effective in preventing falls, the red symbols for the intervention
group are anticipated to be below the blue symbols for the control group (this pattern is
clear in Figure 5-1 and Figure 5-2). This is especially useful for examining the estimated
intervention effect: if an intervention has no effect in reducing falls rate, the estimated
intervention effect may still be significant because of a few outliers, but this would be

apparent from the BOE plot.

Another function of the LoFE is to show the period effect. If the plotting symbols in the
control group are symmetric around the line (for example see Figure 5-1 and Figure 5-2), it
shows that the falls rate in the control group is relatively constant across periods,
suggesting at most a mild period effect. If the symbols are generally above the LoFE, it
indicates that the outcome falls rate is higher than the baseline level, possibly due to the
worsening of body balance or progress of Parkinson’s. Although most plotting symbols
from the control group may also be below the LoFE, this should be relatively rare if the
outcome and baseline falls counts are obtained using the same collection method, because
the falls rate is not anticipated to decrease if a participant is not given an intervention.
However, the pattern is possible when the outcome count is collected prospectively but
the baseline count is collected retrospectively, because trial participants may overestimate
how many falls they experienced when asked to recall the number at baseline. For example,
a participant who falls twice per week on average but by chance falls more frequently in
the few weeks prior to the screening interview, say, 5 times per week, this participant may
give an approximate baseline count by multiplying 5 by 52 (to arrive at the falls count in
the previous year), so that the number would be greater than the actual falls count.
Another possibility is that frequent fallers may stop recording falls because of the
continued effort of recording every fall event in diaries, and if only the outcome count was
collected prospectively, this would result in a lower than anticipated outcome rate. The
average falls rate in the control group may also be lower during the follow-up period due
to regression to the mean, especially when the eligibility criteria include a threshold for the

baseline count (for example, “falling at least twice in the previous year”).

The four diagnostic statistics are chosen for the following reasons. The Cook’s distance is a
deletion diagnostic that approximates the effect of deleting a subject on the goodness of

fit of the model. The Cook’s distance shows the overall influence of each subject on model
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estimation, but it does not indicate why a subject is influential. The leverage and Anscombe
residual, however, measure respectively how extreme are the covariates from the typical
values in the sample and whether the subject conforms to the fitted model. Comparing the
leverage and residual for a subject shows whether a large Cook’s distance is due to outlying
covariates, or poor model fit for the subject. The DFBETA shows the influence of each

subject on the estimate of the intervention effect, the focus of a falls prevention trial.

The four statistics, when compared with each other, provide valuable diagnostic
information on the outliers. For instance, the combination of a large Cook’s distance and a
large residual indicates a poor agreement between an outcome count and the model fit. If
this pattern is found for all frequent fallers, it suggests that the fitted model cannot
accommodate the outliers. It would then be of interest to know to what extent they have
altered the estimate of the intervention effect using the DFBETA plot. Another example is
when the Cook’s distance and leverage are large, but the residual is small. This suggests
that the subject is so influential that reducing the residual of this subject becomes a priority
of model estimation, and the case would not be identified in a residual analysis alone (Hilbe,

2011).

The BOE plots are supported in the R package NBDiagnostics. The package includes a
function nbdiagnostic () to fit an NB model, and the fitted model is then passed into
the boeplot () function as an argument to produce the BOE plots (for details see

Appendix A).

5.3 The covariate-adjusted probability plot for NB models

Holling et al. (2016) proposed a covariate-adjusted probability plot as a diagnostic plot for
a fitted count response model. Suppose there are n subjects in a sample. Let the outcome
count for each subject i be y; (i = 1, ..., n) and the vector of covariates be denoted by x;.
Let f, denote the frequency of counts in the sample y;, ..., y, with a range from 0 to the
maximum of y;. Assume that the variable Y; follows a distribution p, (1(8,1;)), where @ is
a vector of unknown parameters, n; is a vector of known parameters, and A(.,.) isa known

function that links @ and n; to p,,. In the case of NB model:
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py(2(6,1,)) = NB(y| exp(x{B) , @)
Iy +at) ( 1 )a_l ( aexp(xB) )y (5-1)

- Ty+ D T(a)\1+aexp(x'B) 1+ aexp(x!B)

where @ = (B, a)T and 17; = x;. The authors defined the covariate-adjusted probability as:

S I
Py(0n) = ;Z py(4), (5-2)
i=1

where 8,, is a consistent estimator for @ and A; = 1(8,,n;). For a fitted NB model
— B A T
0,=(B.a) .

The authors proved that the covariate-adjusted probability p,, and f,,/n converges if the
model is correctly specified. Therefore, the covariate-adjusted probability plot enables
comparison of the estimated probability marginalising over the distribution of the

covariates to the observed probability (that is, the relative frequency f,, /n).

If a Poisson and an NB model include identical covariates, their covariate-adjusted
probabilities can be shown in one plot to compare their goodness of fit. This plot could be
used to show 1) whether Poisson overdispersion is present, and, 2) is the NB model a good

fit to the dataset?

Figure 5-3 show the covariate-adjusted probabilities of Poisson and NB models from six
simulated datasets. Each set of data comprised of 500 subjects in group 1 with group mean
of exp(1), and 500 subjects in group 2 with group mean of exp(1.2). When the dataset is
equidispersed (Figure 5-3 a), the covariate-adjusted probabilities of the Poisson and NB
models are indistinguishable from the observed probabilities. For this subplot, the Poisson
model is anticipated to fit well because the dataset is simulated from a Poisson distribution,
while the NB model yields a small HP and thus its estimation is close to Poisson. As datasets
become more overdispersed, indicated by greater «, the Poisson models show much worse

goodness of fit, while the NB models remain close to the observed probabilities.
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Figure 5-3  Covariate-adjusted probability of NB and Poisson models on simulated data with two
groups (small difference in group means). For each subplot 500 counts (y;) are generated from
NB(exp(0.2x; + 1), @), where i = 1, ..., 1000; the binary group indicator x; = 0 for i < 500 and
x; = 1 from the rest. The NB and Poisson models include the same covariate x;.

Another example is shown in Figure 5-4. The simulation settings are same as in Figure 5-3,
except for the group means, which are exp(1) in in group 1 and exp(2.2) in group 2.
Because the difference between group means is bigger than in Figure 5-3, the observed
probabilities show a bimodal pattern, especially for small a. Again, the covariate-adjusted
probabilities from the NB models are indistinguishable from the observed probabilities. The

Poisson models yield much worse goodness of fit than the NB models, except when a = 0.
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Figure 5-4 Covariate-adjusted probability of NB and Poisson models on simulated data with two
groups (large difference in group means). For each subplot 1000 counts are generated from
NB(exp(1.2x; + 1), @), where i = 1, ...,1000; the binary group indicator x; = 0 for i < 500 and
x; = 1 from the rest. The NB and Poisson models include the same covariate x;.

The two examples demonstrate that the covariate-adjusted probability plot is a practical
tool for graphically illustrating whether NB should be used instead of Poisson regression.

This plot is also produced by the R package NBDiagnostics.

5.4 Application of NB diagnostics plots to three falls datasets

The diagnostic plots described in this chapter are produced for the NB models included in
Chapter 3, using the Goodwin et al. (2011), Martin et al. (2015), and EXSart (Ashburn et al.,
2001) datasets.

The NB models included in Chapter 3 are: 1) NB-basic, which includes only one covariate—
the group allocation; and 2) NB-full, which includes both the group allocation and baseline
characteristics as covariates (the baseline count is not included in both models). The
covariate-adjusted probabilities from Poi-basic and Poi-full are compared with those from

NB-basic and NB-full in plots for visualisation of Poisson overdispersion.
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5.4.1 Goodwin et al. dataset

Figure 5-5 presents the comparison of the Poisson and NB models in section 3.2.1 regarding
goodness of fit, by plotting their covariate-adjusted probabilities and the observed
probabilities. In each subplot, the covariate-adjusted probabilities from NB model are
closer to the observed probabilities than those from Poisson model, indicating that the NB

models fit the data better than the Poisson models.
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Figure 5-5 Covariate-adjusted probability plots for model comparisons in the Goodwin et al.
dataset. (a) intervention falls count: Poi-basic versus NB-basic (n=116); (b) intervention falls count:
Poi-full versus NB-full (n=116); (c) follow-up falls count: Poi-basic versus NB-basic (n=130); (d)
follow-up falls count: Poi-full versus NB-full (n=130).

Figure 5-6 shows the Cook’s distance plots of the NB-basic and NB-full models for counts
from the intervention and follow-up periods. Overall, most plotting symbols are close to
the LoFEs. The blue plotting symbols (control group) are symmetric with respect to the LoFE,
indicating that the period effect is small, and the falls rates during both the intervention
and follow-up periods are consistent with the baseline rate. There is a tendency for the red
symbols to fall mostly below the LoFE, suggesting that the participants in the intervention

group had lower outcome falls rates.
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The plotting symbols at the top of Figure 5-6 a) and c) are bigger than those in b) and d),
suggesting that the frequent fallers are more influential in the NB-basic models than in the
NB-full models. Participant ID 18 (from the intervention group) reporting around 30
falls/week during both the baseline and intervention period, yields the third largest Cook’s
distance in the NB-basic model on intervention falls (Figure 5-6 a). The great influence of
this subject does not persist in the NB-full model (Figure 5-6 b). The participant ID 75 had
reported the largest falls count during all three periods. Even though the plotting symbol
of ID 75 lies on the LoFE of all four subplots, the corresponding Cook’s distance from
NB-basic is large (around 0.6). In comparison, the Cook’s distance of ID 75 from NB-full is
around 0.2, though this value is still higher than the Cook’s distances for most participants.
The pattern shown in the Cook’s distance plots implies that NB-full better accounts for large
counts than NB-basic, but it is still limited when an outcome count is very large and the

baseline count is not included in the model.
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Figure 5-6 Cook’s distance plots for the models fitted to the Goodwin et al. dataset. (a) NB-basic
fitted to the intervention falls count (n=116); (b) NB-full fitted to the intervention falls count
(n=116); (c) NB-basic fitted to the follow-up falls count (n=130); (d) NB-full fitted to the follow-up
falls count (n=130). In each subplot, the three subjects with the largest Cook’s distances are labelled
with their ID.

Having identified the influential subjects in each model, we examine the leverage and
Anscombe residuals (shown in Figure 5-7 and Figure 5-8 respectively) of the subjects with

large Cook’s distances.

The leverage plots have little diagnostic value for the NB-basic model, because it includes

only one binary covariate — group allocation. The leverage plots for the NB-full models
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does not indicate that the participants with high Cook’s distance have unusual covariate

values.

The Anscombe residuals show a similar pattern in all four models: the residuals are negative
when the outcome rate is small and positive when the outcome rate is large, that is, large
outcome counts are underestimated by the model and small counts overestimated. This
indicates that the models do not sufficiently accommodate the variance of the data, and
they fit poorly for the large numbers (indicated by the large sizes of the plotting symbols at
the top-right corners in Figure 5-8). This result shows that the large Cook’s distances for
the frequently falling participants are not because of peculiar values in the covariates, but

because the residuals are large.
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Figure 5-7 Leverage plots for the models fitted to the Goodwin et al. dataset. (a) NB-basic fitted
to the intervention falls count (n=116); (b) NB-full fitted to the intervention falls count (n=116); (c)
NB-basic fitted to the follow-up falls count (n=130); (d) NB-full fitted to the follow-up falls count
(n=130). In each subplot, the three subjects with the largest leverage are labelled with their ID.

94



CHAPTER 5 — DIAGNOSTIC PLOTS FOR NB MODELS

T T
a | b |
804 E Y
X 40 - ] X 40 1
£ I 7 $ : 7
- 20 - - 20 - '
& | 18 g | 18
2 1 A e I AS v
e | ¢ 1 :
c 5= a S 5 = v
2 1 - £ ] .
g - 5 2~ v A s A
g 2 | % -V : ' A
= [ w5 £ /28
L A - o A
N s ‘V ————————— () - ‘V ———————— —
1
L T T T 1 I 1 T T T L) T
0 2 5 20 40 80 0 2 5 20 40 80
Baseline rate (per week) Baseline rate (per week)
T T
c | d I
- - 7
80 \ /\ 80 |
= 40 + 1 = 40 |
F [ ¢ 1
2 20~ 2 20~ A
o l -~ l 22
-4 116 A -4
: .1 'y&u §.0 )
% 5 - : A é 5= : A
, N As P
g 24 v C Y F 24 A > A
3 & 3 54",
w | e V i u [ y
Dot T e e o e o - - [ e -
1 1
L L L L T L 1 L I I L L
0 2 5 20 40 80 0 2 5 20 40 80
Baseline rate (per week) Baseline rate (per week)
Group Anscombe residual Sign of residual
® Control Intervention e 5@ 2 ' 40 V Residual <0 & Residual >0

Figure 5-8 Anscombe residuals plots for the models fitted to the Goodwin et al. dataset. (a)
NB-basic fitted to the intervention falls count (n=116); (b) NB-full fitted to the intervention falls
count (n=116); (c) NB-basic fitted to the follow-up falls count (n=130); (d) NB-full fitted to the
follow-up falls count (n=130). In each subplot, the three subjects with the largest absolute values
of Anscombe residuals are labelled with their ID.

The DFBETA of the intervention effect is shown in Figure 5-9. As discussed in section 3.2.1,
the nine most frequently falling participants during the follow-up period were all in the
control group. They are shown at the top-right corner of subplots ¢) and d), and they all
have negative DFBETA, which indicate that excluding these subjects from the model would
result in a larger regression coefficient, that is, the FRR for the intervention effect would
be closer to 1. This is in line with the extreme intervention effects estimated from NB-basic
(FRR: 0.287; Table 3-7) and NB-full (FRR: 0.361; Table 3-8). The plotting symbols of these

participants are generally close to the LoFE, indicating that they had a consistent falls rate
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during the baseline, intervention, and follow-up periods. Thus, it is anticipated that they

will be less influential if the baseline count is incorporated in the models.
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Figure 5-9 Intervention DFBETA plots for the models fitted to the Goodwin et al. dataset. (a)

NB-basic fitted to the intervention falls count (n=116); (b) NB-full fitted to the intervention falls
count (n=116); (c) NB-basic fitted to the follow-up falls count (n=130); (d) NB-full fitted to the
follow-up falls count (n=130). In each subplot, the three subjects with the largest absolute values
of DFBETA are labelled with their ID.

5.4.2 Martin et al. dataset

Figure 5-10 compares the covariate-adjusted probabilities from the Poi-basic and NB-basic
for the Martin et al. dataset, from which it is clear that the NB-basic model has a better fit

than Poi-basic. The covariate-adjusted probabilities from the NB model (the green curve in
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the figure) are reasonably close to the observed probabilities (the blue curve), considering

the sample size is only 21.
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Figure 5-10 Covariate-adjusted probability plots for model comparisons in the Martin et al. dataset:
Poi-basic versus NB-basic (n=21).

BOE plots from NB-basic fitted to the Martin et al. dataset are shown in Figure 5-11 to
Figure 5-14. Similar to the plots for the Goodwin et al. dataset, the plotting symbols are
close to the LoFE, which implies that the falls rate is stable across the baseline and follow-
up periods. There are two reasons for the strong correlation between the baseline and
intervention rates: 1) falls counts were collected prospectively during both periods; 2) the
baseline and follow-up periods were relatively short (4 and 20 weeks respectively) and
there is no gap in between, so the risk of falling during the intervention period was not

considerably different from the baseline risk.

Figure 5-11 shows that participant CU21 recorded the highest falls rate during both the
baseline and intervention periods, and this participant also showed the greatest Cook’s
distance in the NB model. The three participants with the largest Cook’s distance had fallen

more frequently than the others.
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Figure 5-11 Cook’s distance plot for NB-basic fitted to the Martin et al. dataset (n=21). The three
subjects with the largest Cook’s distances are labelled with their ID.
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Figure 5-12 Leverage plots for NB-basic fitted to the Martin et al. dataset (n=21). The three
subjects with the largest leverage are labelled with their ID.

As shown in Figure 5-12, all subjects have small leverage, again because the model has only

one covariate—group.
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In addition to the large Cook’s distances, CU21 and CUO2 show large Anscombe residuals
(Figure 5-13). The small outcome rates typically yielded negative residuals, while the large
outcome rates vyielded positive residuals, suggesting the model has not fully

accommodated the skewness of the data.
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Figure 5-13 Anscombe residual plots for NB-basic fitted to the Martin et al. dataset (n=21). The
three subjects with the largest absolute values of Anscombe residuals are labelled with their ID.

Figure 5-14 shows the DFBETA for the intervention effect from NB-basic. Because of the
small sample size, the subjects with the largest or smallest outcome counts have
remarkably large DFBETA, suggesting that these subjects have large impacts on the
estimation of the intervention effect. NB-basic yields an FRR of 2.833 (see Table 3-11) for
intervention effect, which is not in line with the pattern shown in the BOE plots: the blue
symbols (control group) do not show a trend of falling under the red dots. This suggest that

the extreme FRR is likely to be influenced by the outliers.
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Figure 5-14 Intervention DFBETA plots for NB-basic fitted to the Martin et al. dataset (n=21). The
three subjects with the largest absolute values of DFBETA are labelled with their ID.

5.4.3 EXSart dataset

Figure 5-15 compares the covariate-adjusted probabilities from Poisson and NB models for
the EXSart dataset. The NB models again fit the dataset better than the Poisson models,
and the covariate-adjusted probabilities from the NB-full models are closer to the observed

probabilities than those from NB-basic.
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Figure 5-15 Covariate-adjusted probability plots for model comparisons in the EXSart dataset. (a)
intervention falls count: Poi-basic versus NB-basic (n=129); (b) intervention falls count: Poi-full
versus NB-full (n=126); (c) follow-up falls count: Poi-basic versus NB-basic (n=127); (d) follow-up
falls count: Poi-full versus NB-full (n=124).

The EXSart trial is different to the other two in that the baseline falls count was obtained
by asking the participants to retrospectively recall how many falls they had experienced
during the year prior to the screening interview. The correlation between a retrospective
and a prospective falls count would be expected to be weaker than that between two

prospectively collected counts.

As shown in Figure 5-16, the plotting symbols deviate from the LoFE to a greater extent
than those in the other two datasets, confirming the weaker correlation between
retrospective baseline and prospective follow-up counts. The most frequently falling
participants during the intervention and follow-up periods, ID 28, has the largest Cook’s
distances (around 5) from NB-basic for both the intervention and follow-up counts. ID 28
does not appear in Figure 5-16 b) and d) because this participant was excluded from the

NB-full models due to missing data in UPDRS.
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Figure 5-16 Cook’s distance plots for the models fitted to the EXSart dataset. (a) NB-basic fitted
to the intervention falls count (n=129); (b) NB-full fitted to the intervention falls count (n=126); (c)
NB-basic fitted to the follow-up falls count (n=127); (d) NB-full fitted to the follow-up falls count
(n=124). In each subplot, the three subjects with the largest Cook’s distances are labelled with
their ID.

Figure 5-17 shows the leverage plots. The participant with the largest Cook’s distance did
not have large leverage, indicating that the large influence is not due to the particular

values in covariates.
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Figure 5-17 Leverage plots for the models fitted to the EXSart dataset. (a) NB-basic fitted to the
intervention falls count (n=129); (b) NB-full fitted to the intervention falls count (n=126); (c)
NB-basic fitted to the follow-up falls count (n=127); (d) NB-full fitted to the follow-up falls count
(n=124). In each subplot, the three subjects with the largest leverage are labelled with their ID.

Figure 5-18 shows the Anscombe residuals from each NB model. Similar to the other two
datasets, the small outcome rates have negative residuals while the large outcome rates
have positive residuals. ID 28 has a massive positive Anscombe residual of around 70. This

suggests that the large counts have not been fully accommodated in any of the models.

103



CHAPTER 5 — DIAGNOSTIC PLOTS FOR NB MODELS

250 ~

100 =
50 =

Intervention rate (per month)
@
L

A&

242
A
5 - A A A A
21 ~ 2 A
2 - zA v v
v
14 lowiry
A 4 v A\ 4
0 == L R I BB
T T T T L T
0 12 5 15 50 100 250
Baseline rate (per month)
I
C
i K
|
£ 1004
§ s04 |
-~
g |
e 154 |
4
A
< ! 2 242
2 5= 1 A
H - o
: 2 '; v A
E 141 v v
1 vy ¥V
o-- -, - W ——————

® Control ®

% LI | T I I T L
0 12 5 15 50 100 250
Baseline rate (per month)
Group

Intervention

Intervention rate (per month)

Intervention rate (per month)

T
250+ |
1
100
50 |
1
15 - l
47
| 217
5 - A A
! A ﬁ
I Wl
2+~ .A A
14 s v
1 \ v
0= - P e - - - - - -
1
1 L ) 1 L) L) T 1
0 12 5 15 50 100 250
Baseline rate (per month)
T
250 |
|}
1004
so0- |
|
154 | 48
I A
5= 1 A
25
24 144 A .
14 15 A I
| ; 4 vy v
0-— —vw ———————

Anscombe residual

° 5.35.70

o

UL T T T
12 5§ 15

Baseline rate (per month)

50 100 250

Sign of residual

Y Residual<0 & Residual >0

Figure 5-18 Anscombe residual plots for the models fitted to the EXSart dataset. (a) NB-basic
fitted to the intervention falls count (n=129); (b) NB-full fitted to the intervention falls count
(n=126); (c) NB-basic fitted to the follow-up falls count (n=127); (d) NB-full fitted to the follow-up
falls count (n=124). In each subplot, the three subjects with the largest absolute values of

Anscombe residuals are labelled with their ID.

Figure 5-19 shows that ID 28 is influential in the estimation of the intervention effect,

shown by the large negative DFBETA values (around —0.15 for both the intervention

counts and follow-up counts).
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Figure 5-19 Intervention DFBETA plots for the models fitted to the EXSart dataset. (a) NB-basic
fitted to the intervention falls count (n=129); (b) NB-full fitted to the intervention falls count
(n=126); (c) NB-basic fitted to the follow-up falls count (n=127); (d) NB-full fitted to the follow-up
falls count (n=124). In each subplot, the three subjects with the largest absolute values of DFBETA
are labelled with their ID.

5.5 Discussion

Outlying large outcome counts are a major challenge for modelling falls data, as they often
result in model overdispersion and are influential in the estimation of the intervention
effect. Diagnostic plots of the model diagnostic statistics assist in pinpointing influential
subjects, but existing plots are limited for analysing data from falls prevention trials. Four
BOE plots were described in this chapter to present the following diagnostic statistics:
Cook’s distance, leverage, Anscombe residual, and DFBETA for intervention effect. These

plots provide useful diagnostic information and are straightforward to interpret.
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BOE plots show whether the outcome falls rate is consistent with the baseline rate. An LoFE
is included in the BOE plot to provide a reference line of constant falls rate across periods.
Because the falls rate may change over time due to disease progression, it would be
desirable to assess the possibility of a period effect, and this can be done by examining
whether the plotting symbols from the control group are symmetrical around the LoFE. The
BOE plots also provide a visualisation of the intervention effect, and the estimate of the
effect from an NB model can be examined in the DFBETA plot regarding whether it could

be due to just a few influential outliers.

Plotting covariate-adjusted probabilities from NB models is also discussed in this chapter.
By overlaying the observed probabilities with the covariate-adjusted probabilities from the
NB and Poisson models with the same covariates, this plot proves to be an effective

diagnostic tool for examining Poisson overdispersion.

The diagnostic plots described above were produced for the NB models in Chapter 3. The
covariate-adjusted probability plots show that all the NB models resulted in a much better
fit to the falls data than the Poisson models, which conforms to the LR overdispersion tests
in Chapter 3. Overall, the large outcome counts are highly influential when baseline counts
are not included in the model, as shown in the Cook’s distance plots. The Anscombe
residuals are mostly negative for small outcome counts and positive for large counts. This

indicates that the variance of the outcome count exceeds the NB variances (1 + au?).

The three datasets each has its own characteristics that result in different patterns in the
BOE plots. During the follow-up period of the Goodwin et al. trial, most of the participants
who recorded the largest falls counts were in the control group. The BOE plots showed that
the frequently falling participants during the follow-up period are influential in model
estimation, especially for the estimation of the intervention effect. The Martin et al.
dataset has a small sample size, and therefore each participant has great influence on the
estimation of the intervention effect, as indicated by the DFBETA plot. EXSart is the only
dataset in which the baseline falls were collected retrospectively, while the method of
collecting the outcome falls rate was consistent with that for the baseline rate in the
Goodwin et al. and Martin et al. datasets. As a result, the outcome and baseline rates have
much weaker correlation in the EXSart dataset (the plotting symbols deviate from the LoFEs

to a greater extent in the BOE plots).
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By comparing the four BOE plots, a reader gains a full picture of the influential subjects. An
R package was written to produce the diagnostic plots for NB models for dataset from falls

prevention trials, as well as trials for other recurrent events with a baseline count.
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Chapter 6

Comparison of approaches to incorporating the
baseline count in NB-related models

Most of this chapter has been published in Biometrical Journal (Zheng et al., 2018). An
exception is section 6.6, which is presented for the first time here. The author of this thesis
(HZ) is the first author and the main contributor to the publication and conducted the
analysis as well as the simulation study. The formulae and tables in section 6.2 to 6.5 are
the same as used in the published paper. The chapter has been rewritten slightly to fit the
formatting of the thesis and examines models for the falls count in the Goodwin et al. (2011)
dataset during the intervention period, including the intervention effect and baseline count.

Other baseline characteristics are not considered.

6.1 Introduction

A common design for falls prevention trials is to collect the number of falls experienced by
each participant during a baseline period (prior to randomisation) as the baseline falls
count, and during a follow-up period (after randomisation and the onset of the intervention)
as the outcome count. Outcome falls counts are often analysed using count response
models to calculate an FRR as the estimate of the intervention effect, but how best to

incorporate baseline counts in modelling remains a question.

Vickers and Altman (2001) discussed methods for analysing RCTs with a continuous variable
measured at the baseline and as an outcome at follow up. They commented that the most
straightforward method, basing analysis solely on the outcomes in each trial group, does
not cope with the potential imbalance of the baseline measurements between groups. The
authors recommended including the baseline measurement as a regressor instead,

because it copes with the baseline measurement regardless of whether they are balanced
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between groups. Although Vickers and Altman demonstrated the issue using normally

distributed data, their argument is applicable to falls counts as well.

Including a baseline falls count in NB models is expected to increase the statistical power,
and in addition, control for overdispersion. If the heterogeneity of a model is primarily due
to unobserved latent subject-specific prognostic variables, the outcome and baseline
counts are anticipated to be correlated as they measure the same person. Because the
baseline period of a trial is prior to the randomisation, the number of falls during the period
is not confounded with the intervention. Therefore, including a baseline count in a model

accounts for the latent variables.

Despite the great benefit of including baseline falls counts in models, few Parkinson’s
researchers have recognized the importance of utilising this information in statistical
analysis. Whether the baseline count was incorporated in modelling and how it was done
is often not explicitly described in papers. In a Cochrane review of falls prevention trials
(Gillespie et al., 2012), the authors recommend using NB regression for analysing falls data,
but did not provide guidance on incorporating baseline counts in the model, nor did they
review how this was done in practice: the baseline count may be ignored, categorised into
a discrete covariate, or included after transformation. The lack of description implies that

the baseline count has been largely overlooked.

Cook and Wei (2003) proposed the Conditional Negative Binomial (CNB) model to
incorporate the baseline count. Similar to the NB model, the heterogeneity is modelled in
CNB as a gamma distributed random subject effect. The difference is that the CNB model
is based on a mixed Poisson distribution in which a baseline count shares the same random
subject effect as the outcome. This enables modelling the outcome count conditioning on
the baseline count; while an NB model ignoring the baseline count can be deemed a model

marginalising over the random effect.

To ensure that only PwP with high risk of falling could enter the study, some trials restricted
participation to those with baseline counts greater than a threshold. This design increases
statistical power, but it also results in a truncated distribution for the baseline count, which
violates the mixed Poisson distribution underlying the CNB model. For a trial with this

design, the threshold value must be specified in the CNB model to accommodate the
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truncation. A problem of this design is that it is expensive, because it requires recruiting
more PwP during the baseline period, many of whom may not fall. An alternative approach
is to, 1) ask the interviewees at the screening interview to recall the number of falls they
had experienced during a period of time in the past, 2) only recruit people who recalled
more falls than the eligibility criterion, and 3) obtain a baseline count during a baseline
period using the prospective method. This approach is more cost-effective, as only the PwP
who are likely to fall enter the prospective study. Because this approach does not result in
a truncated baseline count, the CNB model does not need to be adjusted based on the

eligibility criterion.

The motivating dataset of this chapter was that reported by Goodwin et al. (2011). An
eligibility criterion was that participants had to report having fallen at least twice in the
previous year, obtained by a retrospective question asked at a screening interview prior to
enrolment and baseline. As discussed above, this did not result in a truncated count during
the prospective baseline diary collection period, and thus the CNB model does not need to

account for the truncation in the baseline count.
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Figure 6-1 Goodwin et al. dataset: follow-up falls counts against baseline falls counts (n=124,
Spearman p=0.813, P<0.001). The diagonal line is the LoFE described in section 5.2. In subplot b,
0.5 is added to both counts before log-transformation to include zero counts.

Figure 6-1 shows the falls counts in the Goodwin et al. dataset. The outcome counts are
plotted against the baseline counts, on the linear (Figure 6-1a) and logarithmic (Figure 6-1b)

scale. The falls counts have a relatively small mean and a few outlying large numbers. The
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figure indicates that the outcome counts, in a broad sense, follow a linear relationship with
the baseline counts. In isolation, the large outcome counts may be classified as outliers
because they are far from the body of cases in Figure 6-1, but overall they show a strong

agreement with the corresponding baseline counts in the scatter plots.

Although CNB can be used to model the relationship between the outcome and baseline
counts, it is not widely supported in statistical packages, which raises a question—how to
incorporate the baseline count in an NB model so that the model reflects the underlying

mixed Poisson distribution?

In this chapter, different approaches are compared to incorporating the baseline falls count
in NB and Poisson models. Their performance is compared to that of CNB, which is
considered as the benchmark model. The models are fitted to the Goodwin et al. dataset,
and model diagnostic statistics are further examined. A simulation study is conducted to
compare the models regarding bias, power, type | error rate, and the standard error of the
intervention effect, under scenarios reflecting our motivating dataset. Statistical
significance of the intervention effect was assessed using the Wald test, because it is
typically the default model-based test in statistical packages. P values from score tests were

also calculated and compared to those from Wald tests.

6.2 Models incorporating the baseline count
6.2.1 Mixed Poisson distribution with subject-specific heterogeneity

Suppose m subjects are enrolled in a trial, which is comprised of a baseline period
(indicated by j = 0; prior to randomisation) and an outcome period (indicated by j = 1;
post randomisation). Let t, denote the duration of the baseline period, which is assumed
to be the same for all subjects (common in falls prevention trials), and t;; the duration of
the outcome period for subject i, where i = 1, ..., m. The subjects may have varying length
of the outcome period due to dropout, assumed to occur at random. At randomisation,
subject i is allocated either to an intervention (denoted by x; = 1) or a control group (x; =
0). Let y;o and y;; denote the number of falls experienced by subject i during the baseline

and outcome periods respectively. If variables Y;, and Y;; both follow Poisson distribution,
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(Aoto)Yio exp(—Aoty)
Pr(Yio = ¥io; Ao, to) = =2 y F — (6-1)
i0°

and

(A1 exp(Bx;) t;;)”ir exp(—A, exp(Bx;) ti1)
Pr(Yyy = yis; A, ti) = 1 explf . y F 1 exp(f ! ) (6-2)
i

where A, is the average falls rate during the baseline period, 1, is the average rate for the
control group during the outcome period, and f is the logarithm of the FRR for the

intervention effect.

Let uy = Aoty and p;; = A,exp(Bx;) t;1, the expectation and variance of Y;, and Y;; are
E(Y;o) = Var(Yjp) = o (6-3)
E(Y;1) = Var(Yj;) = uj. (6-4)

If there is heterogeneity in the baseline and outcome counts, they will both be
overdispersed, that is, the variance of Y;; will be greater than the expectation y;;, which

violates the assumption of equidispersion in Poisson regression.

We further assume that the heterogeneity is brought about by a gamma distributed
random subject effect s; with mean 1 and variance a. The conditional probability
distributions of Y;, and Y;; given s; is a mixed Poisson distribution (Cook and Wei, 2003)

given by
Yiols; ~ Poisson(s;p;o) (6-5)
Yi1|s; ~ Poisson(s;p;1). (6-6)

The counting process underlying Y;, and Y;; was described by Cook et al. (2005) as a
time-homogeneous Poisson process, because heterogeneity is introduced by a latent

subject-specific effect, such that Y;, and Y;; are conditionally independent given s;.

Marginalising over s; yields the PMF of NB regression:

113



CHAPTER 6 — INCLUDING THE BASELINE COUNT IN NB REGRESSION

-1

Ty +a?! 1 * ap;;  \Yi
Pr(Yiy = yiss ip, @) = i ) ( ) ($) . (6-7)

Iy + D@ ) \1 + auy, 1+ au,
The variance of Y;; in (6-7) is
Var(Yj;) = u; + allizp (6-8)

where au?, accommodates the extra variance exceeding that in Poisson regression, which
can be regarded as an NB model with a approaching zero. Conversely, NB regression is a
generalisation of the Poisson model, with the same log link function

g(E(Y;1)) =log(ui1) = ni1, Where n;4 is the linear predictor of the model.

From the mixed Poisson distribution described in equations (6-5) and (6-6), Cook and Wei

(2003) derived the conditional distribution of Y;; given the baseline y;, as:

TOio +ya +a™) (L +apg)® o (ap,)’n (6-9)

P Y =Y i 52‘ IA' P = - ’
i =Yabioifo P O = G TG0 + D 0+ aluo + @) o

and their Conditional Negative Binomial (CNB) model fits this distribution to data.

As introduced in section 2.3.3, the estimate of a from NB regression is referred to as the
Heterogeneous Parameter (HP) by Hilbe (2011). It shows the degree of heterogeneity
remaining unaccounted for by the model covariates. Therefore, including more covariates
in an NB model may, to some degree, explain heterogeneity, and would be expected to
result in a smaller HP. In contrast, the & from a CNB model is the variance of the underlying
random subject effects and is estimated from both the baseline and the outcome counts.
Larger @ indicates stronger association between the outcome and baseline counts.
Because of the distinct interpretations of the two estimates, the estimate of « is referred

to as HP for NB model and as @ for CNB model.
6.2.2 Including the baseline count as a covariate in NB models

Although CNB model is a direct derivation from the mixed Poisson distribution put forward
in (6-5) and (6-6), a commonly seen alternative is to include the baseline count as a

covariate in NB regression. In this section some alternative approaches to incorporating
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the baseline count in an NB regression are described so that it captures the correlation of

Yio and ;.
Given the random subject effect s;, the conditional expectations of Y;;, and Y;; given s; in
(6-5) and (6-6) are
E(Yiolsi) = 4osito (6-10)
E(Yiylsi, xi, tin) = 445 exp(Bx;) tiy. (6-11)

Hence

o
E(Yi1|ss, xi, tig) =

At exp(ﬁxl)E(Yl0|s )tll' (6'12)
0 0

Marginalising over s; in (6-10) and (6-11) gives

oo

E(Y,) = f E(Vols0)fs(s0)ds, (6-13)

0

oo

E(Yiq|xi, ti) = f E(Yiylsi, xi, tin) gs(si)ds;, (6-14)
0

where gs(.) is the PDF of s;. Based on equation (6-11), equation (6-14) can be written as

<2
E(Yiqlx;, tig) = f ﬁexp(ﬁxi) E(Yiols)tings(si)ds;
0 0%0

oo

——exp(Bx;) tiy f E(Yols1)gs(s)ds; (6-15)

AO tO 0

Aoto ——exp(Bx;) E(Yio)tin

Taking the logarithm of both sides of (6-15) yields

Ay
log(E(Yiy |x;, ti1)) = log(l )+ﬂx +log(E(Y;p)) + log(t;1). (6-16)

Putting the moment estimator of Y;, that is, y;o/1 = y;0, instead of E(Y;,) gives
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A
log(E(ul %, t)) = log (5-) + Bx; + logio) +log(t).  (6:17)
0%0

Equation (6-17) suggests a Poisson/NB regression model for Y;; of the following form:

log(E(Yi1|Yior %0 ti)) = 9(uin) = ¢ + Bx; + log(yio) + log(tiy), (6-18)
where the constant term log(1,/(44ty)) in (6-17) is absorbed in the intercept ¢.

This suggests that, compared to including the baseline count y;, as an untransformed
regressor, it is more appropriate to include log (y;,) as an offset. If the exposure t;; varies
across subjects, the offset in the model is the combined term log(y;,) + log(t;;), which

can be reduced to log (y;o) if t;; is the same over i.

The performance of NB regression with the following four linear predictors are compared:
1) ignoring the baseline count y;,; 2) including the untransformed y;, as a covariate; 3)
including log (y;o) as a covariate; and 4) including log (y;) as an offset. The results of
Poisson models with the same four linear predictors are produced for comparison, and the

CNB model is included as the benchmark model.

The NB / Poisson Models with the four linear predictors described above are referred to as
NB-null / Poi-null, NB-unlogged / Poi-unlogged, NB-logged / Poi-logged, and NB-offset /

Poi-offset respectively in Zheng et al. (2018). They are introduced and described below.

Ignoring the baseline count (NB-null/Poi-null)

As discussed earlier, the HP in NB regression shows how much variability relative to Poisson
has been introduced by s;, and remains unexplained by any explanatory variables in the
model. When the baseline count is ignored, the intervention indicator x; and the exposure

log (t;1) are the only explanatory variables in the linear predictor:

g(ui1) = ¢+ Bx; +log(tiy). (6-19)

The HP from NB-null is estimated based on the outcome count only, thus its value is

anticipated to be close to & from CNB model.
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Including the unlogged baseline count as a covariate
(NB-unlogged/Poi-unlogged)

In the NB-unlogged and Poi-unlogged models, the baseline count y;, is included as a
covariate, with no transformation. The HP from an NB-unlogged model is anticipated to be
smaller than that from NB-null, because the included covariate y;, may partially reduce

heterogeneity.

The linear predictor in either NB-unlogged or Poi-unlogged is:

9(win) = ¢+ Bx; + Yyio + log(tsy), (6-20)
where 1 is the regression coefficient for the baseline count.

Including the logged baseline count as a covariate (NB-logged/Poi-logged)

In the NB-logged and Poi-logged models, the log-transformed baseline count is included as
a covariate to conform to the scaling of y;, in (6-18). The linear predictor including the

logged baseline count is given by:

9Wi) = ¢+ Bx; + plog(yio) + log(tir), (6-21)

where ¢ is the regression coefficient for the logged baseline count. It is anticipated to be

close to one when the data are in accordance with the mixed Poisson distribution.

If including logged baseline counts better accounts for the correlation between y;, and the
outcome y;; than including the untransformed baseline counts, the HP from NB-logged is
anticipated to be smaller than that from NB-unlogged. To include the subjects with y;, =
0 (which cannot be logged), 0.5 was added to all the baseline counts before

log-transformation.

Including the logged baseline count as an offset (NB-offset/Poi-offset)

Now we consider the NB-offset and Poi-offset models. Compared with the NB-logged and
Poi-logged models, they are a closer match to the form of (6-18)—the baseline count is
included as an offset, so the regression coefficient is constrained to be one. The linear

predictor with baseline count as an offset term is:
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g(i1) = ¢+ Bx; +1og(yio) + log(t;y). (6-22)

Again, 0.5 is added to the baseline count to ensure that zero baseline counts can be
log-transformed. If the approach of including logged baseline counts is more appropriate
than including the untransformed value, the HP from NB-offset is anticipated to be lower

than that of NB-unlogged.

6.3 Methods

Simulations and analysis were conducted using R (version 3.5.0). NB models were fitted
using the negbin () function from the aod package, and Poisson models were fitted using
the glm () function. CNB models were fitted using the n1m () function for non-linear

minimisation (using code from the authors) .

P values were obtained from Wald tests, and reported along with estimates, 95% Cl, and
the AIC. Cook’s distances were obtained from the glm.nb () function in the MASS

package (described in section 4.5).

The models were fitted to the falls counts collected during the intervention period of the
Goodwin et al. trial. To ensure that NB-null and Poi-null are comparable to the other models,

one participant (ID 1) was excluded from analysis due to missing value in the baseline count.

6.4 Poisson/NB/CNB models fitted to the Goodwin et al. dataset

The models described in section 6.2 are fitted to the Goodwin et al. dataset and the
estimates are shown in Table 6-1. Poi-null, which ignores both the baseline count and
overdispersion, yields the largest AIC among all the fitted models as expected. By
accounting for overdispersion, NB-null achieved a marked reduction in AIC (931.8 versus
9996.1 in Poi-null). Although the baseline count is not incorporated in NB-null, the model

results in a lower AIC than any of the fitted Poisson models.

NB-unlogged results in a smaller AIC (844.2) than NB-null, and its HP is smaller as well, with
1 estimated to be 0.019. By including the logged baseline count instead of the
untransformed count, the resultant model, NB-logged, further deceases AIC to 744.3, with

q3 estimated to be 0.911. NB-offset yields a marginally higher AIC (745.5) than NB-logged,
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and a similar estimate of the intervention effect (FRR=0.698 in NB-logged and 0.707 in
NB-offset). Both NB-logged and NB-offset yield significant intervention effects, with P
values of 0.021 and 0.032 respectively. Their HPs are also much smaller than that of

NB-unlogged.

The Poisson models show a similar pattern to the NB models. Poi-unlogged yields a smaller
AIC than Poi-null. The AIC is further decreased in Poi-logged and Poi-offset, and the two
models also give similar estimates for the intervention effect. The estimate of y from

Poi-unloggedis 7.02 x 1073 (close to zero), while ¢ from NB-logged is 1.030 (close to one).

The CNB model yields smaller SE for ,[? than the four NB models, as well as smaller P value

from the Wald test. The estimate of a is 2.873 in CNB.

Table 6-1  Poisson/NB/CNB models fitted to the Goodwin et al. dataset (n=124).

Model AIC B (SE)  FRR(95% Cl) P 1 (SE) ¢ (SE)  HP
Poi-null 9996.1  -0.571 0.565 <0.001
(0.037)  (0.525, 0.608)
Poi-unlogged 3247.6  -0.472 0.624 <0.001 7.02x1073
(0.038)  (0.580, 0.672) (6.78x1075)
Poi-logged 1131.5  -0.480 0.619 <0.001 1.030
(0.037)  (0.575, 0.666) (0.012)
Poi-offset 1135.6  -0.479 0.619 <0.001
(0.037)  (0.577,0.666)
NB-null 931.8  -0.572 0.565 0.077 3.189
(0.323)  (0.300, 1.064)
NB-unlogged 8442  -0.391 0.677 0.098 0.019 1.541
(0.236) (0.426, 1.074) (0.004)
NB-logged 7443  -0.359 0.698 0.021 0911 0.511
(0.156)  (0.514, 0.948) (0.048)
NB-offset 7455  -0.346 0.707 0.032 0.519
(0.161)  (0.516, 0.970)
@
CNB -0.479 0.619 <0.001 2.873

(0.051)  (0.561, 0.684)

Figure 6-2 displays diagnostic plots for NB-unlogged and NB-logged as a means of
examining graphically whether the baseline count should be logged. The Anscombe
residuals of NB-unlogged show a curvilinear pattern in Figure 6-2a—the residuals of the

subjects with the largest fitted values deviating remarkably downwards from y = 0, which
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indicates that they are considerably overestimated by NB-unlogged. The pattern is
confirmed by the Q-Q normal plot of the Anscombe residuals (Figure 6-2c). Although the
Anscombe residuals in Figure 6-2d show satisfying normality, in Figure 6-2b it is clearly not
a standard normal distribution (this was addressed in section 2.3.4). Figure 6-2e shows the
Cook’s distances from NB-unlogged in a BOE plot. The subjects who reported the largest
baseline and outcome counts, the plotting symbols at the top-right corner of the plot, have

the largest Cook’s distances.

In contrast, for NB-logged the points in the residual-versus-fitted plot (Figure 6-2b) are
reasonably symmetric around zero, and the residuals show satisfying normality in the Q-Q
normal plot (Figure 6-2d). Comparing Figure 6-2 f) to e), the large outcome counts in
NB-logged are not as influential as in NB-unlogged. The two subjects with the largest
baseline and outcome counts are highly influential in NB-unlogged, but not in NB-logged.
The subjects with inconsistent falls rates between the baseline and outcome periods, that
is, those whose plotting symbols deviate furthest from the LoFE in Figure 6-2f, had the

largest Cook’s distances in NB-logged.
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Figure 6-2 Goodwin et al. (2011) dataset: diagnostic plots from NB-unlogged versus NB-logged
(n=124). (a-b) Anscombe residuals versus fitted values. (c-d) Normal Q-Q plot of Anscombe
residuals. (e-f) The BOE plot presenting Cook’s distance with x- and y- axes on a logarithmic scale
(the diagonal line is the LoFE).
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6.5 Simulation study and model comparison
6.5.1 Simulation datasets

The simulations were based on the Goodwin et al. dataset with some simplifications. For
each simulation scenario 2000 trials were simulated from the mixed Poisson distribution
(see section 6.3), with each trial comprised of m subjects (an example code is given in
Appendix B). The first n subjects (n = m/2) were allocated to the control group and the
rest to the intervention group. The length of baseline and outcome periods was assumed
to be the same for all subjects (t, = t;; = 1). The average baseline count (u;y) was set to
30, which is close to the number (around 28) reported in the Goodwin et al. dataset (see
Table 3-1). We further assume that 4; = A, so that for participants in the control group
Ui1 = Uijo = 30. A few sets of data were simulated and examined, and found to show a

similar pattern to the Goodwin et al. data (not shown).
Twenty-four scenarios were considered expanding three factors: a, 8, and sample sizes m:

e The variance of the gamma-distributed subject effect () was set at 3 to resemble
a from the CNB model fitted to the Goodwin et al. dataset (Table 6-1), and at 0.5
for less overdispersed data.

e An intervention effect close to that estimated from CNB in the Goodwin et al.
dataset, f§ = —0.4 (FRR: 0.670), and a smaller intervention effect, § = —0.2 (FRR:
0.819), were considered for examining the power of the Wald test, while § = 0
(FRR: 1) was considered for examining the type | error rate.

e The datasets were simulated with total size (m) of 50, 100, 200, and 500, typical of

small to medium sized falls prevention trials.

The NB, Poisson, and CNB models were fitted to each simulated dataset using R as
described in section 6.3. From each fitted model, 8 and SE(f) were extracted, and the
following statistics suggested by White (2010) to show the properties of the model

estimators are reported:

Bias = av(f) — B, (6-23)
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where av(p) is the average value (denoted as av) of the estimates of 8 from the 2000
datasets in a scenario. The Monte Carlo error (MCError) is reported to show certainty

concerning Bias :

EmpSE

vV Ngim '

MCError(Bias) =

(6-24)

where ng;,, and EmpSE are the number of estimates and the empirical SE (that is, the
standard deviation ofﬁ), that is the standard deviation of ﬁ’ within the scenario. The
ModSE is defined as the average of SE(E), that is, the average of the model-based SEs.
White also suggested examining the model-based SEs from each model using the relative

error, which is defined as:

ModSE

-— 6-25
EmpSE L (6-25)

Relative Error =
such that a positive relative error suggests that the model-based SE is overestimated, and

vice versa for a negative relative error.

The following statistics were also computed across datasets within each scenario: av(HP),
av(@), av(), and av(h). The datasets where the algorithm did not converge or yielded
incorrect estimates (judged by | — B| > 5 or SE(f) > 1 were excluded, the selection
criteria were chosen by inspecting the respective distributions of ﬁ’ and its SE). The
proportion of simulated trials in which the null hypothesis of the Wald test of intervention
effect was rejected was reported as the empirical power when 70, and the empirical
type | error rate when f = 0. The empirical power and type | error rate of the score test
for B were further examined. The P value of the score test was obtained from the st .m1 ()

function in the robNB package (Aeberhard, 2016) in R.

To inspect the appropriateness of adding 0.5 in the log-transformation of the baseline
count, separate simulations were carried out, with the same levels of @, 8, and m as the
main simulation, for NB-logged and NB-offset only, to compare their performance when

different values (0.01, 0.1, and 1) are added.
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6.5.2 Simulation results

In most cases, the algorithms of the models converged without raising errors (the number
of successful convergences out of the 2000 repeats within each scenario are shown in

Appendix C Table C-1).

As shown in Table 6-2, NB-null yielded the largest HPs in every scenario, with averages of
HPs close to @ from the CNB model. The HPs from NB-unlogged are smaller than those from
NB-null, but much larger than the HPs from NB-logged and NB-offset (the HPs of the latter
two models are typically close). The estimates of 1 (the regression coefficient for the
unlogged baseline count from NB-unlogged) and ¢ (the coefficient for the logged baseline

count from NB-logged) are close to zero and one respectively.

Figure 6-3 shows the Bias ofﬁ from the NB and CNB models, with the error bars showing
the 95% Cl calculated from MCError. Generally, ﬁ yielded by the NB and CNB models are
close to the underlying value. The wide error bars for NB-null show that its estimates of the
intervention effect have a higher variability than the other fitted models. Although the
estimates of § from NB-unlogged have smaller variance than those from NB-null. The
empirical SEs of ,63 from NB-unlogged are larger than those from the NB-logged, NB-offset,
and CNB models, which suggests that these three models are more efficient in estimating
intervention effects. Also, the error bars from the NB-logged, NB-offset, and CNB models
have similar widths when @ = 3 and a = 0.5. In contrast, the error bars from NB-null were
much wider when a = 3, which suggests that B from NB-null has higher variability when
the underlying distribution is more skewed (with more outliers), while the effect of outliers

on the estimate of the intervention effect is mitigated by incorporating the baseline count.

The relative errors from each model are compared in Figure 6-4. Overall, the relative errors
are small when a = 0.5. The model-based SEs from NB-null, NB-logged, and NB-offset are
typically lower than the empirical standard errors when the sample size is small, but the
relative errors of the three models are generally low, especially for large sample sizes.
When a = 3, the model-based SEs from NB-unlogged are considerably larger than the
corresponding empirical SEs, which agrees with the low type | error rate in the Wald test

based on this model (Figure 6-5b).
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The empirical power and type | error rates of the Wald test in NB and CNB models are
presented in Figure 6-5. NB-null has the lowest empirical power, although its empirical type
| error rates are relatively close to the nominal level (0.05). Because of the extra
information from including the untransformed baseline count, NB-unlogged achieved
greater power than NB-null, but the improvement when a=3 is not as large as when a=0.5.
NB-logged and NB-offset result in almost identical power, which are substantially higher
than the power for NB-unlogged in all scenarios, and they are only marginally less powerful
than CNB. Similar to the CNB model, the power of the Wald test in NB-logged and NB-offset

are less affected by change of a than that of NB-unlogged.

The CNB model not only has the greatest power, its type | error rates are also more stable
than the other models—they are typically close to the nominal level regardless of the
sample size. The type | error rates of NB-null, NB-logged, and NB-offset are moderately
higher than the nominal level of 0.05 for small sample sizes (the maximum rate for
NB-logged is 0.071 when m=50 and a=3), but approach 0.05 as the sample size increases;
while the type | error rate for NB-unlogged is consistently deflated when a=3, without
showing any trend of convergence towards 0.05, even when m=>500. Type | error rates in

NB-offset are closer to 0.05 than NB-logged, but the difference is small.

The simulations were repeated to assess the performance of the score test for the four NB
models. For NB-null, NB-logged, and NB-offset, the empirical type | error rates of the score
test are closer to the nominal level than the Wald test when the sample size is small (Figure
6-6b). The type | error rates of the score test in NB-unlogged deviate further from 0.05 than
for the Wald test. For the scenarios with @ = 3, the test shifts from being liberal when the
sample size is small (50 and 100) to being conservative when the sample size is large (200

and 500).

Different values (0.01, 0.1, 0.5, and 1) were added to the baseline count before log-
transformation and the resultant NB-logged/NB-offset models were compared in
simulations regarding the estimation and hypothesis testing of intervention effects. The
results of the simulations show that the values examined do not have a large impact on the
estimation of f (Table 6-3) or the Wald test (Table 6-4). The results show that adding

different values (between 0.01 and 1) does not substantially change the model estimation.
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As shown in Figure 6-7, ,63 are generally close to the underlying values in Poisson models,
except when § = —0.4 and a = 3, in which Poi-unlogged underestimated ,[? The relative
error plot (Figure 6-8) illustrates that SE(,[?) are underestimated in every Poisson model,
leading to the extremely inflated type | error rates (Figure 6-9b). Note that Poi-logged and
Poi-offset have lower type | error rates than the other two Poisson models, and they also

have higher power (Figure 6-9a).

Table 6-2  Estimates of HP from NB models, @ from CNB, 1,[7 from NB-unlogged, and (f) from
NB-logged

av(HP) av(&) av(zf;) av(qS)

a B m NB-null NB-unlogged NB-logged NB-offset CNB  NB-unlogged NB-logged
3 -04 50 2931 1.152 0.018 0.019 2.988 0.033 1.017
100 2.951 1.192 0.019 0.019 2.981 0.032 1.018

200 2.982 1.223 0.018 0.019 2.994 0.031 1.018

500 2.989 1.233 0.019 0.019 2.997 0.031 1.018

-0.2 50 2954 1.195 0.019 0.020 3.012 0.033 1.021
100 2.969 1.225 0.019 0.020 3.000 0.032 1.019

200 2.980 1.244 0.019 0.019 2.997 0.031 1.018

500 2.989 1.257 0.020 0.020 2.996 0.031 1.018

0 50 2918 1.204 0.020 0.021 2971 0.033 1.020
100 2.972 1.250 0.020 0.021 2.999 0.032 1.019

200 2.988 1.271 0.021 0.021 2.998 0.031 1.019

500 2.994 1.284 0.021 0.021 3.000 0.031 1.018

0.5 -04 50 0.479 0.087 0.027 0.029 0.488 0.029 0.930
100 0.491 0.093 0.027 0.029 0.496 0.028 0.929

200 0.497 0.096 0.029 0.030 0.499 0.028 0.928

500 0.499 0.098 0.029 0.030 0.500 0.028 0.929

-0.2 50 0.484 0.089 0.026 0.029 0.493 0.029 0.930
100 0.490 0.093 0.027 0.029 0.495 0.028 0.931

200 0.496 0.097 0.029 0.030 0.498 0.028 0.929

500 0.497 0.098 0.029 0.031 0.498 0.028 0.927

0 50 0.483 0.090 0.027 0.030 0.491 0.029 0.928
100 0.489 0.094 0.028 0.030 0.494 0.029 0.927

200 0.494 0.098 0.030 0.031 0.497 0.028 0.926

500 0.498 0.100 0.030 0.031 0.499 0.028 0.928
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Figure 6-3  Bias plot of NB-null, NB-unlogged, NB-logged, NB-offset, and CNB. The Bias of [? are
shown as the points with error bars (the 95% Cl calculated from the MCError of Bias).
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CNB in simulations. (a) Empirical Power; (b) Empirical type | error rates.
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Table 6-3  The av(ﬁ) from NB-logged and NB-offset in each simulation scenario, with different
values (0.001, 0.1, 0.5, and 1) added before log-transformation.

NB-logged NB-offset
a B m +0.01 +0.1 +0.5 +1 +0.01 +0.1 +0.5 +1
3 -04 50 -0.401 -0.401 -0.402 -0.403 -0.407 -0.404 -0.401 -0.398
100 -0.397 -0.398 -0.400 -0.401 -0.402 -0.401 -0.398 -0.395
200 -0.397 -0.398 -0.400 -0.401 -0.402 -0.401 -0.398 -0.395
500 -0.398 -0.400 -0.402 -0.403 -0.403  -0.403 -0.400 -0.397
-0.2 50 -0.201 -0.201 -0.202 -0.202 -0.203 -0.202 -0.200 -0.198
100 -0.198 -0.199 -0.200 -0.201 -0.201 -0.201 -0.199 -0.197
200 -0.199 -0.200 -0.201  -0.202 -0.202  -0.202 -0.200 -0.198
500 -0.199 -0.200 -0.201 -0.201 -0.202 -0.201 -0.200 -0.198
0 50 -0.001 0.000 0.001 0.001 0.000 0.000 0.000  0.000
100 0.003 0.003 0.004 0.004 0.003 0.003 0.004  0.004
200 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
500 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
05 -04 50 -0.398 -0.398 -0.398 -0.399 -0.403 -0.402 -0.401 -0.401
100 -0.398 -0.399 -0.399 -0.399 -0.403  -0.403 -0.402 -0.401
200 -0.400 -0.400 -0.400 -0.400 -0.404 -0.404 -0.403 -0.402
500 -0.401 -0.401 -0.401 -0.401 -0.405 -0.405 -0.404 -0.403
-0.2 50 -0.200 -0.200 -0.200 -0.200 -0.201 -0.201 -0.201  -0.200
100 -0.200 -0.200 -0.200 -0.200 -0.201 -0.201 -0.201  -0.200
200 -0.198 -0.198 -0.199 -0.199 -0.201 -0.201 -0.200 -0.200
500 -0.200 -0.200 -0.200 -0.200 -0.202 -0.201 -0.201 -0.201
0 50 -0.002 -0.002 -0.002 -0.002 -0.003 -0.003 -0.003 -0.003
100 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
200 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
500 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000
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Table 6-4  Positive rate of the Wald test from NB-logged and NB-offset within each simulation
scenario, with different values (0.001, 0.1, 0.5, and 1) added before log-transformation. The table
presents the empirical Power when § # 0 and the empirical type | error rate when 8 = 0.

NB-logged NB-offset
a B m +0.01 +0.1 +0.5 +1 +0.01 +0.1 +0.5 +1
3 -04 50 0.963 0.982 0.985 0.981 0.985 0.986 0.988 0.980
100 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.2 50 0.627 0.660 0.674 0.658 0.668 0.668 0.666 0.654
100 0.869 0.894 0.906 0.886 0.896 0.900 0.904 0.892
200 0.990 0.994 0.996 0.995 0.997 0.996 0.997 0.994
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0 50 0.075 0.073 0.071 0.074 0.072 0.072 0.074 0.074
100 0.060 0.059 0.062 0.060 0.058 0.057 0.056 0.061
200 0.051 0.055 0.052 0.051 0.053 0.052 0.050 0.048
500 0.054 0.053 0.056 0.060 0.061 0.057 0.052 0.054
05 -04 50 0.996 0.998 0.998 0.998 0.998 0.998 0.998 0.999
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.2 50 0.738 0.742 0.746 0.746 0.722 0.722 0.730 0.738
100 0.952 0.954 0.954 0.953 0.947 0.948 0.950 0.954
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0 50 0.068 0.068 0.070 0.074 0.072 0.071 0.073 0.072
100 0.062 0.060 0.062 0.064 0.057 0.056 0.057 0.058
200 0.049 0.048 0.048 0.050 0.052 0.052 0.053 0.053
500 0.052 0.052 0.048 0.049 0.052 0.053 0.052 0.052
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Figure 6-7 Bias plot of Poi-null, Poi-unlogged, Poi-logged, and Poi-offset. The Bias of B are
shown as the points with error bars (the 95% Cl calculated from the MCError of Bias).
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Figure 6-8 Relative error plot of Poi-null, Poi-unlogged, Poi-logged, and Poi-offset. (Note that
the scaling of y-axis is different to that in Figure 6-4).
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Figure 6-9 Performance of the Wald tests from Poi-null, Poi-unlogged, Poi-logged, and Poi-offset
in simulations. (a) Empirical power; (b) Empirical type | error rates. (Note that the scaling in y-axis
is different to those in Figure 6-5b and Figure 6-6b).

6.6 Sample size calculation for NB-null, NB-logged, and NB-offset

Sample size

for NB-null

Zhu and Lakkis (2014) proposed a sample size formula for the LR test based on NB model,

without a baseline count, that is, the NB-null model.
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Let the ratio of the size of intervention group to that of control group be denoted by p. Let
the average outcome falls rate for the control group be denoted by A, = 4 and let the
corresponding falls rate for the intervention group be 4, = 1 exp (f). The null hypothesis

for the test of f = O is:

Hy: A, /A, =1
And the alternative:

Hi:A,/A, #1

To distinguish it from a in the CNB model, the level of significance for the test is denoted
by a*. To achieve the power of 1 — ¢, Zhu and Lakkis show the number required in the

control group to be:

m, = (Za*/Z\/V_'(Z;:' Z<p\/V_1)2 ’ (6-26)

where 3,4/, = @71 (a*/2) and z, = ™' (¢); P(.) is the cumulative density function of
the standard normal distribution; V; is the estimate of m,Var(f) under the alternative

hypothesis and is given by:

Vi

1 (1 1 ) N 1+ p)a’ (6-27)

=—(=+
t;\A ~ piexp(B) p

and V, is the estimate of m,Var(B) under the null hypothesis. V, can be estimated using

three approaches:

e Approach 1: because 1, = A, = A under Hy,, V, can be based on the rate in the

control group, giving:

1+p (A +pa
01 — + .
t;pA p

(6-28)

e Approach 2: IV, can be based on the rates of both groups (4, and 4,), so that:

Vo2 = Vi (6-29)
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e Approach 3: maximizing the log-likelihood function underlying the LR test with
Aqa/Ap constrained to be 1 yields an MLE of the overall events rate, and based on

this V, can be estimated by:

1+ p)? 1+ p)a
Vo, = (1+p) (1+p) _ (6-30)
t1p(A+ pAexp(B)) p
The number required to achieve power of 1 — ¢ in the intervention group is:
m, = pmy, (6-31)

and the total number required is m, + m;. The total number required by Approaches 1, 2,

and 3 are referred to as m,, m,, and ms, respectively.

The simulations in Zhu and Lakkis’s paper showed that the sample sizes calculated using
equation (6-26) generally achieved empirical power close to the nominal level 80%. The
authors found that m, and m; reached the target 80% power in both the Wald and LR test

in most scenarios, whilst m; underestimated the sample sizes in some scenarios.

Approximate sample size for NB-logged and NB-offset

Tango (2009) proposed a conditional score test for 8 given the baseline count y;,. The test
is derived from the same joint distribution, in equations (6-5) and (6-6), as used to derive
the CNB (6-9). Unlike the CNB and NB models, the conditional score test does not requires
specification of the distribution of the random subject effect s;. A formula for sample size

calculation of the two-tailed conditional score test is given by:

_ 1 2(exp (B) + 1)(1 + k6)(1 + kBexp (B))
M etokf(exp (B) — D) | 2o/ 2+ k0B + 1)
2 (6-32)

B(1+ k6)3 + (1 + kbexp (B))3
%o T + k6)(1 + kbexp (B)

for power 1 — ¢, where k = t, /t, is the ratio of duration and 8 = 4, /A, is the ratio of falls

rates (that is, a period effect).

Tango showed that the conditional score test and CNB model resulted in almost identical
estimates and Cls when fitted to a dataset from a trial of epileptic patients. As NB-logged

and NB-offset had similar empirical power to the CNB model (see Figure 6-5a), Tango’s
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sample size calculation may be useful as an approximation to the sample size required for

NB-logged and NB-offset. A simulations study was conducted to check this.

We set 4, =1, =4 and t; =t, = 1. Twelve scenarios were considered spanning the
combinations of B (-0.3, -0.2, and -0.1), « (0.5 and 3), and 4 (15 and 30). The required m
for each of the 12 scenarios was calculated by Tango's formula to achieve a power 80% in
aa” = 5% level test. For each scenario 2000 datasets were simulated from the mixed
Poisson distribution described in section 6.2.1, with balanced group size. The empirical
power of the Wald test from each model was calculated to examine whether m from

Tango’s formula was sufficient to achieve 80% power.

Table 6-5 Sample size calculated from Tango’s conditional score test and Zhu and Lakkis’s
formulae with1 — ¢ = 80% and a*=5% (t = 1)

Calculated sample size

Tango Zhu and Lakkis”
Scenario ID a A B FRR: exp (B) m m; m, ms
1 3 15 -0.1 0.905 430 9632 9640 9640
2 3 15 -0.2 0.819 112 2410 2414 2414
3 3 15 -0.3 0.741 52 1072 1074 1074
4 3 30 -0.1 0.905 216 9526 9530 9530
5 3 30 -0.2 0.819 56 2382 2384 2384
6 3 30 -0.3 0.741 26 1060 1062 1060
7 0.5 15 -0.1 0.905 430 1784 1792 1790
8 0.5 15 -0.2 0.819 112 448 452 452
9 0.5 15 -0.3 0.741 52 200 202 202
10 0.5 30 -0.1 0.905 216 1678 1680 1680
11 0.5 30 -0.2 0.819 56 420 422 422
12 0.5 30 -0.3 0.741 26 188 190 188

* The sample size was calculated for a trial with balanced group size (p = 1)
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Figure 6-10 Empirical power of the Wald test based on NB-logged, NB-offset, and CNB models
with the sample size calculated from the formula for Tango’s score test with 80% power and a 5%
significance level.

The sample sizes for the twelve simulation scenarios calculated from Tango’s formula are
displayed in Table 6-5. In the same table we also present the sample sizes m;, m,, and m;
for NB-null, calculated by the Zhu and Lakkis formulae, for comparison. The three
approaches from the Zhu and Lakkis formula result in similar sample sizes for NB-null, but
the sample sizes are typically very large. Conditioning on the baseline count results in a
remarkable reduction in the required sample size, especially when the outcome count (At)

is large, the intervention effect is small, or heterogeneity is great.

The empirical powers of the NB-logged, NB-offset, and CNB models obtained from
simulations of size equal to m from Tango’s formula to achieve power 80% are summarized
in Figure 6-10. When a = 0.5, the empirical power for all three models were relatively
close to 80%. When a = 3, the empirical powers for the CNB model was relatively close to

139



CHAPTER 6 — INCLUDING THE BASELINE COUNT IN NB REGRESSION

80% for A = 15 but lower than 80% for A = 30; while the empirical power for NB-logged
and NB-offset was between 70% and 75%. This shows that Tango’s equation (6-32) can be
used to approximate the required sample size for smaller levels of heterogeneity, but the

number could be inflated when a considerable heterogeneity is anticipated.

6.7 Discussion

NB regression has been widely used for analysing falls data. It is common to collect the falls
count during a baseline period in a falls prevention trial, but it remains a question as how
to incorporate a baseline count in statistical modelling. One approach is Cook and Wei’s
(2003) CNB model. The simulations in this chapter showed that CNB resulted in the highest
power for the Wald test of the intervention effect among the compared models, and the
tests had type | error rates closer to nominal level even for the smallest sample sizes
considered in simulations. However, CNB is not currently supported in any statistical
package. Another approach is to incorporate the baseline count using NB regression, which

is supported in most popular statistical packages and commonly used in practice.

NB models ignoring the baseline count (NB-null) were examined. The empirical power from
NB-null was noticeably lower than those from other NB and CNB models in simulations.
NB-unlogged including the baseline count as a covariate without any transformation, was
more powerful than NB-null, even though the scaling of the baseline count is not
appropriate. However, NB-unlogged is conservative when a = 3, even for the largest

sample sizes (m = 500) examined in the simulations.

In the simulations in section 6.5, NB-logged and NB-offset, the NB models incorporating
the log-transformed baseline count, had satisfying performance. They yielded ,63 with
smaller bias and variability than the estimates from NB-unlogged. The two models also
produced more accurate SE estimates for ,[? They were more powerful in testing the
intervention effect than NB-unlogged, and they typically resulted in small HPs. Compared
to the benchmark model (CNB) NB-logged and NB-offset were only slightly less powerful,
and the disparity in power diminished as the sample size increased. Overall, NB-logged and
NB-offset produced similar results: their estimates of § were similar, and cf) in NB-logged

was generally close to one. This suggests that the logged baseline count, when included as
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an explanatory variable in NB regression, appropriately accounts for the relationship with

the outcome.

The difference between HP and @ has been previously discussed in section 6.2.1. Loosely
speaking, HP shows how much variability in the outcome count remains unexplained by
the covariates in the model, while @ reflects how much heterogeneity in the outcome
count can be accounted for by the baseline count. The HP from NB-null were similar to the
a from CNB in simulations, which suggests that the heterogeneity was accounted for in the
model solely by the random subject effects. This conforms to the data generating
mechanism underlying the simulations. NB-unlogged, which is essentially NB-null with an
additional covariate (the untransformed baseline count) achieved a reduction in HP
compared to NB-null. The HP were further reduced in NB-logged and NB-offset, which
reflects the fact that the log-transformation yields a more appropriate scale for the baseline
count as a covariate in NB regression. Poisson models do not accommodate overdispersion
and hence are too liberal. Some might wonder: since the subject effect is shared in the
baseline and outcome count, shouldn’t including the logged baseline count as a covariate
obviate overdispersion so that it is unnecessary to use NB models rather than a Poisson?
The simulations showed this not to be the case: the type | errors of Poi-logged and
Poi-offset were still too high (around 0.16); also, in the Goodwin et al. dataset, the AIC of
these two Poisson models were higher than the AIC of NB-null, which does not even

incorporate the baseline count.

For NB-logged and NB-offset, the empirical type | error rates of the Wald test were higher
than the nominal level (0.05) for small sample sizes. As the sample size increases, the rates
converged to 0.05. Aban et al. (2009) conducted a simulation study to compare the two
types of hypothesis tests in two-group NB comparisons. They reported that the type | error
rates for the Wald test were higher than 0.05 when the sample size was small (<200), as
also shown in Figure 6-5b. Aeberhard et al. (2017) conducted a similar simulation study and
reached the same conclusion. They recommended using the robust TETT (Tilted
Exponential Tilting Test) for analysing small samples. To my knowledge, this test is only
available in the R package robNB provided by the authors (Aeberhard, 2016). This chapter
focused on the Wald test because it is the default hypothesis test in many statistical

packages with functionality for NB modelling. When the sample size reached 200, the type
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| error rates of the Wald test were only slightly higher than 0.05. Datasets were simulated
with sample size 50, 100, 200, and 500, the range encompasses 80% of falls prevention
trials included in a Cochrane interview (Gillespie et al., 2012). The simulations regarding
the score test showed it to be more reliable than the Wald test when sample size is small:
the type | error rates of the score test were closer to the nominal level than those of Wald

test. However, NB-based score tests are not widely supported in statistical packages.

The results of the models fitted to the Goodwin et al. dataset substantiated the conclusions
from the simulation study. The AIC of NB-unlogged was smaller than that of NB-null.
NB-logged and NB-offset resulted in smaller AIC than NB-unlogged, and the Wald test did
not indicate significance for the intervention effect (P=0.098) in NB-unlogged, while
significance was shown in NB-logged (P=0.021) and NB-offset (P=0.032). This is in line with
the simulation results that NB-unlogged has low power and is overly conservative. The
model diagnostics showed that NB-unlogged cannot accommodate the large outcome
counts in the Goodwin et al. dataset: they typically had large Cook’s distances, but the issue

does not appear to occur for NB-logged and NB-offset.

Because zero baseline counts cannot be logged, the pragmatic approach of adding 0.5 to
the baseline counts before the log-transformation was used in this chapter. There is a
trade-off in choosing the value for addition: if a smaller value, say 10719, is added to a
baseline count n (n > 0), the value of log (n + 1071%) would be closer to log (n) than
log (n + 0.5), but log (0 + 1071%) would become —23, a large negative value. The choice
of 0.05 is a standard continuity correction in practice and the simulations showed the

results not to be sensitive to the choice between 0.01 and 1.

Tango (2009) proposed a formula for calculating the sample size for the conditional score
test. The simulations in section 6.6 showed that this formula can also be used to calculate
the required sample size of NB-logged and NB-offset when the degree of heterogeneity is
low. For higher heterogeneity, the sample size calculated from the formula tend to be
underestimated, so the number should be inflated to reach a required power. Alternatively,
the sample size can be calculated using simulation-based methods, and the Tango formula
can be used to provide a starting value for sample size. Compare the sample size calculated
from the Tango formula and the Zhu and Lakkis (2014) formulae (which estimate the

sample size required for NB-null), it is apparent that conditioning on the baseline count
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considerably reduce the required sample size for a falls prevention trial. The sample size
calculated using the Zhu and Lakkis formulae are generally too large for falls prevention

trials in PwP.

In conclusion, this chapter showed that NB models including logged baseline count as a
covariate/offset is a viable alternative to the CNB model. A baseline falls count has great
value when analysing a falls outcome count. It is generally recognized that a pre-
randomisation baseline value of the outcome should be collected when designing an RCT
(Assmann et al., 2000), and this also holds true when the outcome is a count in a falls
prevention trial. NB-logged and NB-offset can be fitted in all statistical packages that
support NB modelling. For medium to large sample sizes, NB-logged and NB-offset are
almost as powerful as CNB, and the type | error rates of the Wald and score test are close
to the nominal level. They have great practicality and are easily accessible for applied

statisticians.
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Chapter 7

Comparison of NB-based and CNB-based
methods when the underlying assumption does
not hold

7.1 Introduction

The previous chapter showed that when the CNB model is correctly specified, including the
log-transformed baseline count in NB regression as a covariate (NB-logged) or offset
(NB-offset) achieves comparable power to CNB in many circumstances. In this chapter, the
NB-logged and NB-offset models are compared to CNB when the assumption underlying

the CNB model does not hold.

A core assumption of CNB in modelling the outcome count is that the heterogeneity is
introduced by a gamma-distributed subject effect that is shared with the baseline count for
the same subject, so that heterogeneity is fully accounted for by incorporating the baseline
count in the CNB model. The underlying counting process was referred to by Cook et al.
(2005) as the time-homogeneous Poisson process, in which that heterogeneity is
subject-specific and constant over time, but this may not be the case for falls prevention
trials. For example, if a latent variable, such as progression in disease severity, increases
the risk of falling, the variable may introduce different heterogeneity into the falls counts
during the baseline and outcome periods, so that the heterogeneity cannot be treated as

fixed if there is a relatively long interval between the baseline and outcome periods.

Another possibility is that the outcome and baseline falls counts may be collected using
different methods. It is not uncommon to encounter a trial in which the outcome count is
recorded prospectively in a falls diary, while the baseline count is obtained via a single
retrospective question. As discussed in section 2.2.1, the logic behind this trial design is

that although the prospective method is thought to be more accurate than the
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retrospective method, following up participants prospectively is more expensive and time-
consuming. When designing falls prevention trials, researchers may choose to use the
prospective method to collect the falls count during the outcome period, but use the less
expensive retrospective method to collect a baseline count. However, for trials with this
design, the falls counts collected during the baseline and outcome periods are subject to
different measurement error processes, resulting in a discrepancy between the two

variables, which is not accommodated in the subject effect underlying the CNB model.
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Figure 7-1 Distributions of falls counts in in the EXSart dataset (n=129, Spearman p=0.558,
P<0.001). (a) Intervention falls count versus baseline falls count on the linear scale; (b)
Intervention falls rate (per month) versus baseline falls rate (per month) on a logarithmic scale.
The line is the LoFE that indicates the falls count/rate if the outcome rate is the same as the
baseline rate.

The motivating dataset for this chapter, from the EXSart (Ashburn et al., 2007) trial, is an
example of a falls prevention trial with a prospectively collected outcome count and
retrospectively collected baseline count. The baseline and outcome counts show weaker
correlation (Figure 7-1), in contrast to the high consistency between the corresponding
variables in the Goodwin et al. dataset (see Figure 6-1), in which both the baseline and

outcome counts were collected prospectively.

For the sake of simplification, the assumption that the outcome and baseline counts are
generated from a time-homogeneous Poisson process is referred to as the assumption of
subject-specific heterogeneity in the thesis. The question addressed in this chapter is

whether the NB-logged, NB-offset, and CNB models are robust when the assumption of
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subject-specific heterogeneity is violated, such as when different methodologies for

collecting falls counts are used in the baseline and outcome periods.

7.2 NB-logged and NB-offset models when the assumption of
subject-specific heterogeneity is violated

Following the notation of Chapter 6, suppose a trial comprises of a pre-randomisation
baseline period of duration t;, and a post-randomisation outcome period of duration t;;.
The participants are randomised either to an intervention group (x; = 1) or a control group
(x; = 0). For each participant the duration t;; may vary due to drop out, assumed to occur

at random.

Let y;o and y;; denote the baseline and outcome falls counts for trial participant i. As
shown in equation (6-18), when y;, is included in the linear predictor of NB regression, it
should be log transformed to account for the log link-function, and the parameter for the
logged baseline count is 1 if the assumption underlying CNB holds true. This is the basis of
NB-offset, which fixes the coefficient of the logged baseline count to be 1 and the linear

predictor is given by:

g(i1) = ¢ + Bx; +1og(yio) + log(t;y). (7-1)

where u;; = E(Y;41), B is the regression coefficient of the intervention effect, and { is the

intercept.

Another approach considered in Section 6.2.2 is the NB-logged model, which relaxes the
restriction and allows the coefficient of logged baseline count (denoted as ¢) to vary. The

linear predictor of NB-logged is given by:

9Wi) = ¢+ Bx; + Plog(yio) + log(tir), (7-2)

As a result, the linear predictor of NB-logged has one more parameter ¢ (and degree-of-

freedom) than the linear predictor of NB-offset.

The simulations in section 6.5 compared NB-logged and NB-offset in various scenarios, and
the results showed that <,13 was generally close to one, and the estimates from the two

models were generally similar. This indicates that when data are generated from the
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time-homogeneous Poisson process underlying the CNB model, the results of NB-logged
and NB-offset are almost indistinguishable as expected, which prompts the question: will
the performance of the two models differ when the assumption of subject-specific
heterogeneity is violated by using different methods to collect the baseline and outcome
falls counts. By letting ¢ vary, this parameter in NB-logged may partially accommodate
violations of the assumption, and for this reason, NB-logged is anticipated to perform

better than NB-offset and CNB.

In the following sections, the NB-logged model is compared to NB-null, NB-offset and CNB
using the EXSart dataset, and in datasets simulated to resemble prospectively collected
outcome falls counts and retrospectively collected baseline counts. The NB-null model does
not incorporate the baseline count and thus is not affected by the discrepancy in collection

methods, but is included for comparison.

7.3 Methods

NB-null, NB-logged, NB-offset, and CNB were first fitted to the actual dataset of falls counts
during the intervention (first 8 weeks) and outcome (week 9 to month 6) periods from the

EXSart trial.

Because an eligibility criterion of the EXSart trial was that the participants must have fallen
at least twice during the baseline period, there are no zero baseline counts in this dataset.
Therefore, the logged baseline count was included in NB-logged and NB-offset without
adding 0.5, which is different to the approach in section 6.4. The CNB model conditional on
y; = 2 was fitted to account for the eligibility criterion; see Cook and Wei (2003) for the

detail of the implementation.

The analysis was conducted in R (version 3.3.0) using the same packages and functions
described in section 6.3. From each model, the estimate of the intervention effect 3, the
model-based and robust SE (using the sandwich package) of ,[? and the corresponding FRR
with 95% Cls are reported. For the three NB models specifically, HP and AIC are reported.

Furthermore, the estimate of ¢ is reported for NB-logged, and & is reported for CNB.
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The BOE plots described in Chapter 5 are presented for NB-null and NB-logged models for

the four diagnostic statistics: Cook’s distance, leverage, Anscombe residual, and DFBETA of

B (see section 6.5.1).

7.4 NB/CNB models fitted to the EXSart dataset

Results from the NB-null, NB-logged, and NB-offset, and CNB models fitted to the EXSart
dataset are shown in Table 7-1. Although the CNB model performed the best in simulations
in section 6.5.2 and in only a few scenarios were there any simulated datasets where it did
not achieve convergence, it did not converge when fitted to either the intervention or

follow-up periods.

NB-null has the largest AIC among the three fitted NB models for both the intervention and
follow-up counts, and it shows similar HPs when fitted to the intervention (3.593) and
follow-up (3.865) counts. Compared with NB-null, the NB-logged models have much lower
AICs (the intervention period: 491.5 versus 577.3; the follow-up period: 604.2 versus 674.1).
NB-null and NB-logged also result in very different estimates for the intervention effects:
the FRRs from NB-null are 0.181 and 0.147 for the intervention and follow-up periods
respectively, whilst in NB-logged the respective FRRs are 0.780 and 0.686. The FRR
estimated from NB-null suggests that the intervention reduced the falls rates by more than
80%, which contradicts the pattern shown in the corresponding BOE plots: the red symbols
(intervention) in both Figure 7-2 and Figure 7-6 do not show an apparent trend of falling
under the blue symbols, as suggested by the FRRs from NB-null. As the estimated
intervention effect is probably overestimated, the significant test result (P<0.001) is likely

to be a false positive.

In section 6.4, NB-logged and NB-offset were fitted to the Goodwin et al. dataset, they
resulted in almost identical AlICs and very similar estimates for the intervention effect.
However, the two models show obvious differences when fitted to the EXSart dataset: 1)
for both the intervention and follow-up periods, NB-logged and NB-offset yield noticeably
different estimates of the intervention effect; 2) the AICs of the NB-logged models are
smaller than that of NB-offset by a sizeable margin (the intervention period: 491.5 versus
504.0; the follow-up period: 604.2 versus 614.1); 3) NB-logged results in smaller HP than

NB-offset (the intervention period: 1.310 versus 1.597; the follow-up period: 1.958 versus
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2.220); and, 4) the estimate of ¢ from NB-logged was 0.724 for the intervention counts
and 0.710 for the follow-up counts, whilst the estimates were close to 1 for NB-logged

fitted the Goodwin et al. dataset.

As shown in Table 7-1, the robust SEs ofﬁ3 are bigger than the model-based SEs in NB-null

by a considerable margin, but the former is only slightly larger in NB-logged and NB-offset.

Table 7-1 NB and CNB models fitted to the EXSart dataset.

SE
Period Model AIC B (SE) (Robust FRR(95% Cl) P ¢ (SE)  HP
SE)
Intervention NB-null 577.3 -1.710 0.348 0.181 <0.001 3.593
(n=129) (0.803) (0.091, 0.358)
NB-logged 491.5 -0.248 0.254 0.780 0.328 0.724 1.310
(0.271) (0.475, 1.283) (0.074)
NB-offset 504.0 -0.039 0.277 0.962 0.888 1.597
(0.273) (0.559, 1.656)
a
CNB Did not converge -
Follow-up NB-null 674.1 -1.916 0.357 0.147 <0.001 3.865
(n=127) (0.851) (0.073, 0.296)
NB-logged 604.2 -0.377 0.275 0.686 0.170 0.710 1.958
(0.279) (0.400, 1.175) (0.085)
NB-offset 614.1 -0.162 0.291 0.851 0.578 2.220
(0.292) (0.480, 1.506)
a
CNB Did not converge -

The BOE plots for NB-null and NB-logged models are presented in Figure 7-2 to Figure 7-5
for the intervention period and Figure 7-6 to Figure 7-9 for the follow-up period. A
participant (ID 28) reported the highest fall rate during both outcome periods (see also
Table 3-14), and has the largest Cook’s distance, Anscombe residual, and DFBETA in all
NB-null and NB-logged models, but this subject is less influential in NB-logged than in
NB-null as indicated by the smaller plotting symbols in the corresponding plots for the three
diagnostic statistics. In particular, the ID 28 has large negative DFBETA from NB-null (see
Figure 7-5 and Figure 7-9), which indicates that excluding the subject from NB-null would
increase the regression coefficient, that is, if ID 28 is omitted the FRR would be closer to 1.
This is in line with the extreme FRR (Table 7-1) from NB-null. Although the DFBETA of ID 28
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is also negative in NB-logged, this participant’s influence on the estimation of intervention
effect is smaller in NB-logged than in NB-null. This suggests that both models may not
sufficiently accommodate the largest outcome counts, but including the baseline count

reduces their influence.

Figure 7-4 and Figure 7-8 compare the Anscombe residuals from NB-null and NB-logged.
Apart from ID 28, the largest residuals from NB-null (ID 217 and 242 in Figure 7-4a and 242
and 251 in Figure 7-8a) were shown in the plots to be close to the LoFE, and the residuals
are typically positive for large outcome counts and negative for small outcome counts,
irrespective of whether the falls rate is consistent between the baseline and outcome
periods. For the NB-logged models, the largest falls residuals (ID 232 and 204 in Figure 7-4b
and 23 and 48 in Figure 7-8b) were cases far from the LoFE, that is, the subjects with

inconsistent outcome and baseline rates, not necessarily with large counts.

Figure 7-5 and Figure 7-9 show the DFBETA from NB-null and NB-logged. These two plots
indicate that in the NB-null models the estimation of the intervention effect was dominated
by the large falls counts. One participant (ID 242) reported a relatively consistent falls rate
across the baseline, intervention, and follow-up periods, but has large positive DFBETA in
NB-null. A similar case is ID 251 in Figure 7-9: the plotting symbol for this subject lies exactly
on the LoFE, that is, the follow-up falls rate is perfectly consistent with the baseline rate,
but ID 251 also has a large positive DFBETA in NB-null. Although the outcome rates for the
two subjects are consistent with the baseline rates, they are nevertheless influential in the
estimation of the intervention effect and deleting either of them would result in a smaller
intervention effect. These two subjects have small DFBETA in NB-logged. Furthermore,
similar to the Anscombe residual plots, apart from ID 28 the two points that are far away
from the LoFE have the largest DFBETA (ID 239 and 204 in Figure 7-5; ID 63 and 239 in
Figure 7-9). This pattern indicates that the intervention effect estimated from the NB-null
model was influenced for both the intervention and follow-up periods by a few large counts,
whilst the estimator of intervention effect from NB-logged is more influenced by the
participants reporting inconsistent falls rate across periods, which is anticipated since the

baseline count is incorporated in NB-logged.
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7.5 Simulation study
7.5.1 Simulation datasets

A simulation study was conducted to compare the performance of NB-null, NB-logged,
NB-offset, and CNB models when the assumption of subject-specific heterogeneity

underlying CNB does not hold (an example code is given in Appendix B).

Suppose m subjects are recruited in a falls prevention trial, and then randomized to an
intervention (denoted by x; = 1 for subject i) or control group (denoted by x; = 0), with
each group comprising m/2 subjects. The falls count during a baseline period (with
constant length t;) is denoted by y;, and the count during an outcome period (with length

t;) is denoted by y;;. The two counts were generated from:
YiolSi ~ Poisson(s;v;uy) (7-3)
Yi1lsi ~ Poisson(s;u;y), (7-4)

where py = Aty and p;; = Aty exp (fx;). The average falls rate during the baseline
period is denoted by 4 and assumed to be the same as the average falls rate in the

control group during the follow-up period.

The subject-specific heterogeneity s; was simulated from a gamma distribution with mean
1 andvariance a, where a is a measure of the severity of the subject-specific heterogeneity.
The first m/2 simulated subjects were assigned to the control group and the rest
intervention group, without loss of generality. A perturbation v; is introduced in (7-3) to
create the inconsistency observed in the EXSart dataset, where v; is simulated from a
gamma distribution with mean 1 and variance €, where € is the level of perturbation. The
v; is included to increase the variability of Y;, to mimic the lower precision expected from
the retrospective method. Unlike the EXSart dataset, the baseline count was not truncated

to be = 2.

The simulation study was based on the falls counts during the intervention period of the

EXSart dataset:
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e As shown in Table 3-12, the average falls rate in the control group was relatively
stable during the baseline (5.1 falls/month), intervention (5.1 falls/month), and
follow-up (5.3 falls/month) periods, so the datasets were generated with falls rate
A=5.

e Toresemble the lengths of the baseline and intervention periods in the EXSart trial,
we setty, = 12 and t; = 2. When a baseline count is collected retrospectively, the
length of the baseline period is usually chosen to be relatively long because 1) the
accuracy of the recalled falls rate would be higher, and 2) choosing a long
retrospective baseline period does not increase the cost of trial.

e Because the CNB model did not converge when fitted to the EXSart dataset (see
Table 7-1), the HP of NB-null in the intervention period (3.593) was used as an

approximate to the degree of heterogeneity («) in the dataset.

A total of 72 scenarios spanning all combinations of:

e Sample sizes: m = 50,100,200, and 500;

¢ Intervention effects: § = —0.4 for a large effect, § = —0.2 for a small effect, and
B = 0 for no effect;

e Degree of heterogeneity: @ = 3.5 to resemble the HP of NB-null, and a = 0.5 for a
smaller heterogeneity;

e Degree of perturbation in the baseline count: € = 0 for no perturbation, € = 0.25

for a small degree of perturbation, and € = 0.5 for a large degree of perturbation.

For each scenario, 2000 datasets were simulated. Three datasets were simulated with
A=5=-02,t,=12,t; =2,a = 3.5, = 0.5, and m = 130, a scenario closest to

EXSart, for visually checking that the simulated datasets resembled the EXSart dataset.

NB-null, NB-logged, NB-offset, and the CNB models were fitted to each dataset, and the
same simulation-based statistics for the estimator of f and the model-based Wald tests

included in section 6.5.1 were reported.

7.5.2 Simulation results

As shown in Figure 7-10, the three simulated datasets for visual check broadly resemble

the pattern of the EXSart dataset during the intervention period as shown in Figure 7-1.
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Figure 7-10 Three simulated datasets (n=130). Outcome rate versus baseline rate on the linear
scale (left column) and the log scale (right column).

As shown in Table C-2 (see Appendix C), the four models converged successfully in most

cases (including CNB). The estimated bias for B, that is, Bias = av([?) — B, is displayed in
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Figure 7-11 to Figure 7-14 for m = 50,100,200, and 500. In general, [? from NB-null,
NB-logged and CNB are close to the underlying value (. In contrast, ,63 from NB-offset are
consistently lower than the underlying value, especially for a large intervention effect
(= —0.4) and small degree of subject-specific heterogeneity (@=0.5). The Bias in
NB-offset becomes larger as the level of perturbation € increases, and it persists even for
the largest sample size (m=500). The error bars (calculated from MCError; see equation
(6-24) in section 6.5.1) of NB-null are generally wider than NB-logged and CNB, especially
when the subject-specific heterogeneity is high (a = 3.5) and the sample size is less than
200, as shown in Figure 7-11 and Figure 7-12. The error bars of NB-logged, NB-offset, and
CNB become wider as € increases, but this does not affect NB-null because the baseline

count is not included in the model.

Figure 7-15 to Figure 7-18 report the relative errors, defined in equation (6-25), in the
model-based SE of £ : a positive relative error indicates the model-based SE is
overestimated. As the baseline count is not included in NB-null, the SEs estimated from this
model have low relative errors regardless of the level of € as expected. The model-based
SEs under NB-offset and CNB are considerably underestimated in all scenarios with
perturbations (¢ > 0), and the relative errors for CNB are remarkably large even compared
to NB-offset. In general, the NB-logged model has low relative errors when a = 0.5, but the
model-based SEs are smaller than the empirical SEs when a = 3.5, especially for higher
perturbation levels (€). Compared to NB-offset and CNB, the NB-logged model has much

smaller relative errors though, even for scenarios where a=3.5.

Figure 7-19 and Figure 7-20 show the empirical power and type | error rates of Wald tests
of . In accordance with the results of the previous simulations, the CNB model performed
the best when there is no perturbation (¢ = 0), with higher power than the other models
and type | error rates closer to the nominal level 0.05 (including the small sample size
scenarios). However, CNB shows markedly inflated type | errors when € > 0. For scenarios
with a = 0.5 (Figure 7-19), the empirical type | error rates are around 0.30 for € = 0.25 and
0.45 for € = 0.5; for scenarios with a = 3.5 (Figure 7-20), the empirical type | error rates
are higher than 0.5: approximately 0.55 and 0.65 for € = 0.25 and € = 0.5, respectively.

Though the type | error rates produced by NB-offset are also inflated, they are considerably
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closer to the nominal level. Similar to CNB, the empirical type | error rates for Wald tests

based on NB-offset are inflated when € > 0, and the inflation rises as € increases.

As shown in Figure 7-19b, NB-logged is more robust to perturbations than NB-offset and
CNB — when a = 0.5 the empirical type | error rates for NB-logged are generally close to
0.05. The empirical type | error rates for NB-logged are inflated when a = 3.5 (Figure
7-20b), though still only one fifth of those for CNB. The empirical type | error rates are in
line with the relative error plots in Figure 7-15 to Figure 7-18, which show NB-logged to

have smaller relative errors than those from NB-offset and CNB.

Considering the enormous type | error rates of CNB when € > 0, its highest empirical power
in all scenarios has little practical value. NB-offset has lower empirical power than
NB-logged by a small to medium margin, and even yields lower empirical power than
NB-null when € = 0.5, and a = 0.5 (Figure 7-19). In comparison, NB-logged has higher
empirical power than NB-null in all scenarios. The empirical power from NB-logged is
considerably higher than that from NB-null, but the power gain from including y;, is not as

greatfore > 0asfore = 0.

As shown in Table 7-2 to Table 7-4, the & from CNB are generally larger than the underlying
values when there is perturbation (e > 0), especially when € = 0.5. As the level of
perturbation becomes higher, the regression coefficient of the logged baseline count in
NB-logged (¢) decreases. When the subject-specific heterogeneity is higher (@ = 3.5), ¢

are closer to 1.
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Figure 7-11 Bias plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of
perturbation (m = 50). The Bias of ,[? are shown as the points with error bars (the 95% CI

calculated from the MCError of Bias).
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Figure 7-12 Bias plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of
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calculated from the MCError of Bias).
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Figure 7-13 Bias plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of
perturbation (m = 200). The Bias of ﬁ are shown as the points with error bars (the 95% ClI
calculated from the MCError of Bias).
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perturbation (m = 500) The Bias of B are shown as the points with error bars (the 95% ClI
calculated from the MCError of Bias).

164



0.0

Relative Error of beta

CHAPTER 7 — VIOLATION OF CNB ASSUMPTIONS

a=0.5

a=35

1

.

0=9

]

T

z0-=9

O

B

0.25

05 0
Perturbation level : ¢

ro-=4

0.25 05

Model

B NB-nui
B NB-logged
B vB-offset

Bcns

Figure 7-15 Relative error plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of
perturbation (m = 50).

165



CHAPTER 7 — VIOLATION OF CNB ASSUMPTIONS

a=05

a=35

0.0 T - cppar—- - - -
-0.24
-0.44

B i - 1
=
'
o
-0.64
- 0.0 T - cuppem- - - -1 - - -
s
S 0.2+
- =
< i
w.04- (=}
[ N
2
©
® -0.6+
(4
0.0T - mppmar - - {1~ -
-0.21
=
'
1
-0.41 g

-0.6

O

0.25

05 0
Perturbation level : ¢

0.25 05

Model

B NB-nui
B NB-logged
B vB-offset

Bcns

Figure 7-16 Relative error plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of
perturbation (m = 100).

166



CHAPTER 7 — VIOLATION OF CNB ASSUMPTIONS

a=0.5

a=35

0.0+ = ~mmmmm - - - :
-0.24
0.4+
-0.61

e

1

-
]
o
-0.8
0-0"-“-'-- - - ———— . - -
g
'06 -0.2+
[ =
2 [l
W -0.4+ <
P N
2
.06
)
o
-0.8+
0'0._----——__ - --- -4--.,4—--- - -d
-0.21
-
]
-0.4- e
=
-0.6
'0.8 Y T T T Al L )
0 0.25 0.5 0 0.25 0.5

Perturbation level : ¢

Model

B NB-nui
B NB-logged
B vB-offset

Bcns

Figure 7-17 Relative error plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of

perturbation (m = 200).

167



CHAPTER 7 — VIOLATION OF CNB ASSUMPTIONS

a=0.5 a=3.5
0.0 T - ar———-- - =1 F = e - -
-0.24
=
-0.4- e
-0.64
-0.8
- 0.0+ = "nmmen- - - P
3
% -0.21
[ =
2 []
Wi -0.4- o
[ N
2
5 .0.6-
[F]
14
-0.8-
0'0...-__- - B -
-0.2+4
=
L}
-0.4 o
'
-0.64
‘0.8‘ v v v v T v
0 0.25 0.5 0 0.25 0.5

Perturbation level : ¢

Model

B NB-nui
B NB-logged
B vB-offset

Bcns

Figure 7-18 Relative error plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of
perturbation (m = 500).

168



CHAPTER 7 — VIOLATION OF CNB ASSUMPTIONS

a g=0
1.0-
0.8
0.61 't.;b
I
o
. 04 o
2 02
50
§ 00‘
:E 1.0 ~— B— -
£ 0.8 /
w
0.61 / ?
)
o
0.4 2
0.2
0'0. ¥ Ll T T T T L\d T T T T T
50100 200 500 50100 200 500 50100 200 500
Sample size
b e=0 £e=0.25 £e=05
2 ——— —e
m
g 0.4
=
o o )
- 03
i
E 0.2'
o
- ﬁw—'—""‘_\‘
g 0.1 R
IE i L= =—— S—— - .W
50100 200 500 50100 200 500 50100 200 500

Sample size

Model - NB-null = NB-logged - NB-offset <+ CNB

Figure 7-19 Performance of the Wald tests from NB-null, NB-logged, NB-offset and CNB in
simulations with varying degrees of perturbation (&« = 0.5). (a) Empirical Power; (b) Empirical
type | error rates.

169



CHAPTER 7 — VIOLATION OF CNB ASSUMPTIONS

e=0.5

© ©o O o =
N B @ ©
A A r
\
\

zo-=4d

- O
o o
P

Empirical power
o o
T 2

©
F

o
N
\

o
=}

yo-=49

50100 200

500 50100 200
Sample size

500 50100 200

500

e=0

£=0.25

£e=0.5

lerrorrate T

o o 9o
A OO0 D

0.3+

Empirical type
© ©
- N

& e

-

e & & 3 o e —

—

50100 200

500 50100 200

Sample size

500 50100 200

Model - NB-null - NB-logged — NB-offset —+ CNB

Figure 7-20 Performance of the Wald tests from NB-null, NB-logged, NB-offset and CNB in
simulations with varying degrees of perturbation (&« = 3.5). (a) Empirical Power; (b) Empirical
type | error rates. Note that the range of y-axis in subplot (b) is different to that in Figure 7-19

170




CHAPTER 7 — VIOLATION OF CNB ASSUMPTIONS

Table 7-2  Estimates of HP from NB models, & from CNB, and qﬁ from NB-logged for e = 0.

av(HP) av(@) av($)
a B m NB-null NB-logged NB-offset CNB NB-logged
3.5 -0.4 50 3.433 0.006 0.008 3.507 1.014
100 3.436 0.005 0.006 3.478 1.012
200 3.470 0.005 0.005 3.495 1.011
500 3.488 0.004 0.005 3.494 1.010
-0.2 50 3.428 0.006 0.006 3.511 1.014
100 3.454 0.005 0.006 3.494 1.011
200 3.482 0.005 0.005 3.482 1.011
500 3.491 0.005 0.005 3.498 1.010
0 50 3.395 0.005 0.006 3.48 1.013
100 3.461 0.005 0.006 3.494 1.012
200 3.486 0.005 0.005 3.495 1.011
500 3.481 0.004 0.005 3.489 1.010
0.5 -0.4 50 0.470 0.011 0.013 0.487 0.965
100 0.487 0.012 0.013 0.495 0.968
200 0.498 0.011 0.012 0.500 0.970
500 0.498 0.011 0.012 0.499 0.968
-0.2 50 0.475 0.012 0.014 0.486 0.972
100 0.491 0.011 0.012 0.495 0.968
200 0.493 0.011 0.012 0.497 0.967
500 0.499 0.011 0.012 0.500 0.968
0 50 0.479 0.011 0.013 0.490 0.970
100 0.489 0.011 0.011 0.494 0.969
200 0.495 0.011 0.012 0.498 0.968
500 0.498 0.012 0.012 0.499 0.968
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Table 7-3  Estimates of HP from NB models, & from CNB, and ¢ from NB-logged for € = 0.25.

av(HP) av(@) av($)
a B m NB-null NB-logged NB-offset CNB NB-logged
3.5 -0.4 50 3.359 0.225 0.256 3.622 0.927
100 3.451 0.250 0.276 3.652 0.924
200 3.476 0.260 0.284 3.661 0.920
500 3.498 0.266 0.289 3.667 0.920
-0.2 50 3.432 0.234 0.262 3.640 0.933
100 3.460 0.251 0.277 3.660 0.924
200 3.486 0.261 0.284 3.663 0.923
500 3.488 0.267 0.289 3.658 0.921
0 50 3.401 0.239 0.267 3.617 0.935
100 3.449 0.259 0.283 3.647 0.927
200 3.495 0.266 0.288 3.658 0.927
500 3.490 0.269 0.291 3.657 0.924
0.5 -0.4 50 0.479 0.162 0.267 0.655 0.618
100 0.489 0.172 0.273 0.661 0.615
200 0.495 0.175 0.277 0.665 0.614
500 0.497 0.179 0.281 0.666 0.611
-0.2 50 0.479 0.163 0.268 0.652 0.619
100 0.492 0.172 0.275 0.659 0.615
200 0.495 0.176 0.278 0.661 0.614
500 0.498 0.179 0.281 0.662 0.612
0 50 0.477 0.165 0.27 0.644 0.615
100 0.489 0.174 0.277 0.651 0.615
200 0.492 0.176 0.279 0.654 0.612
500 0.498 0.181 0.281 0.655 0.613
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Table 7-4  Estimates of HP from NB models, & from CNB, and qﬁ from NB-logged for € = 0.5.

av(HP) av(@) av($)
a B m NB-null NB-logged NB-offset CNB NB-logged
3.5 -0.4 50 3.396 0.479 0.573 3.785 0.857
100 3.439 0.514 0.607 3.790 0.847
200 3.480 0.531 0.623 3.819 0.843
500 3.485 0.543 0.634 3.813 0.839
-0.2 50 3.391 0.501 0.600 3.767 0.856
100 3.445 0.518 0.610 3.793 0.850
200 3.462 0.540 0.633 3.803 0.844
500 3.496 0.549 0.639 3.816 0.842
0 50 3.389 0.493 0.585 3.746 0.863
100 3.452 0.533 0.624 3.779 0.854
200 3.482 0.556 0.645 3.797 0.849
500 3.498 0.555 0.644 3.809 0.845
0.5 -0.4 50 0.482 0.255 0.575 0.806 0.429
100 0.486 0.264 0.581 0.807 0.422
200 0.495 0.271 0.586 0.814 0.421
500 0.497 0.274 0.591 0.818 0.418
-0.2 50 0.479 0.252 0.574 0.796 0.429
100 0.490 0.269 0.588 0.798 0.422
200 0.496 0.274 0.595 0.809 0.420
500 0.498 0.277 0.597 0.810 0.417
0 50 0.480 0.257 0.582 0.784 0.429
100 0.490 0.269 0.597 0.794 0.421
200 0.494 0.275 0.600 0.796 0.418
500 0.497 0.279 0.603 0.798 0.416

7.6 Discussion

In this chapter, the NB-null, NB-logged, NB-offset, and CNB models are examined in
situations where the baseline and follow-up falls counts are collected using different
methods. The four models were fitted to the EXSart dataset and compared in a simulation
study, in which a perturbation was introduced into the baseline count to mimic datasets

arising from the data collection methods in the EXSart dataset.

The CNB model assumes that the outcome and baseline counts are generated by a
time-homogeneous Poisson process, that is, heterogeneity is subject-specific and does not
change across periods. In Chapter 6, CNB models were shown to have great power and
their type | error rates were close to target when correctly specified. However, if the
baseline count is collected using a different method to the outcome count, this assumption
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does not hold and the CNB model performed poorly in Chapter 7. Firstly, it did not converge
when fitted to either the intervention or follow-up falls count in the actual EXSart dataset.
Secondly, it showed vastly inflated type | error rates in the simulation study, 50% higher

than nominal levels when subject-specific heterogeneity was large.

The empirical type | error rates for NB-offset were closer to the nominal level 0.05 than for
CNB but were still too high in all scenarios. Although the type | error rate from NB-logged
model was also shown to be inflated for high subject-specific heterogeneity (that is, large

a), it was close to 0.05 when a = 0.5 irrespective of the level of perturbation (€).

Because the baseline count is not included in NB-null, this model is not affected by the
inconsistency between methods of collecting baseline and outcome counts. Although
retrospective baseline counts are considered to have lower precision than prospectively
collected baseline counts, it is still of value to incorporate the retrospective baseline counts
in NB models. NB-logged showed higher power than NB-null in all scenarios and achieved
better goodness of fit when fitted to the EXSart dataset. Another justification for including
a retrospective baseline count is that the estimation of the intervention effect may be less
influenced by very large outcome counts, as indicated by the DFBETA plots in Figure 7-5
and Figure 7-9, and the intervention effect estimated by NB-logged appeared more in line

with the pattern shown in the BOE plots than the effect estimated in NB-null.

The simulations included scenarios resembling the EXSart dataset, and these results
suggested that the Wald test of the intervention effect from the NB-logged in the actual
data in Table 7-1 may be moderately liberal. However, in the actual data: 1) the Wald test
did not indicate a significant intervention effect; 2) the simulations suggested that the
effect estimated by NB-logged was unbiased; and 3) the model-based SE in NB-logged was
only slightly smaller than the robust SE, which is a consistent SE estimator even when the

model is incorrect (see section 2.3.7).

In conclusion, NB-logged is almost as powerful as CNB when CNB is correctly specified.
When the baseline falls counts are collected retrospectively, NB-logged is likely to be
preferable to CNB and NB-offset because it is more robust to increasing levels of

perturbation in the baseline count. Though NB-logged accommodates the discrepancy to
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some extent, its type | error rate is inflated when the outcome counts are greatly

overdispersed.
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Chapter 8

Other count response models

In this chapter, alternative count response models to NB regression are fitted to the
Goodwin et al. (2011) or EXSart (Ashburn et al., 2007) datasets, to examine their potential

in modelling falls counts.

8.1 Poisson Inverse Gaussian model

Just as the NB model as a Poisson-gamma mixture, the Poisson Inverse Gaussian (PIG)
model deals with overdispersion in a Poisson-inverse-Gaussian mixture. It is considered to
have better performance for heavily skewed count data than NB models (Dean et al., 1989;
Hilbe, 2014). The PIG model has previously been used by Canning et al. (2014) and Hauser

et al. (2016) to analyse falls data from falls prevention trials in PwP.

Guo and Trivedi (2002) provided a parameterisation of the PIG model that is comparable

to NB regression. The outcome Y is assumed to follow a distribution of:

Pr(Y =y) = fooPr(Y = yl|v)f(v)dv, (8-1)

0

such that Y|v ~ Poisson(v), where the non-negative random variable v follows an inverse

Gaussian distribution. The PDF of the inverse Gaussian is given by:

_ _ 2
exp (%) (8-2)

N[ =

T
fw;t,pw) = (ng,)
where T > 0 is the shape parameter and u > 0 is the mean of v.

The mean and variance of the PIG model are u and u + u3/7 respectively. As with the NB
model, the PIG variance may be parameterised with the reciprocal of 7, which yields the

variance as u + ku3 where k = 1/7. In this section, k is referred to as the Heterogeneity
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Parameter (HP) of the PIG model. Because of the cubic form in the PIG variance function,
the PIG model can accommodate more skewed data than the NB model (which has a
variance u + au?). If the distribution of the outcome falls count has a small mean but a

long tail, the PIG method is potentially more suitable (Hilbe, 2014).

As in the NB model, the link function in the PIG model is the log function, therefore the
approach of including a log-transformed baseline count as a covariate is appropriate for
PIG models as well. Following the nomenclature earlier in Chapter 6, the PIG model ignoring
the baseline count is referred to as PIG-null, and PIG including the logged baseline count is

referred to as PIG-logged.

This section compares the performance of NB-null versus PIG-null, and NB-logged versus
PIG-logged using the falls counts during the follow-up period of the EXSart trial (Ashburn
et al., 2007). The EXSart dataset was chosen because the outcome count is heavily skewed,
it was collected during a relatively long period (four months) so that the outliers have larger

values.

The baseline count has no missing values, and the other baseline characteristics are not
considered as covariates here because there are missing values in those variables for
people reporting large follow-up counts. The statistical analysis was conducted in Stata

using the pigreg command (Hardin and Hilbe, 2012).

Table 8-1 and Table 8-2 summaries the comparisons of NB-null versus PIG-null and
NB-logged versus PIG-logged, respectively. The NB-null model is significantly overdispersed
(P <0.001), whilst no overdispersion test is available for PIG models. PIG-null has much
smaller AIC than NB-null (627.7 versus 674.1). The HP from PIG-null (k) is greater than the
HP (a) from NB-null. Because of the cubic form of its variance function, a PIG model tends
to give a smaller estimate of u (as indicated by the mean of predicted values), and a larger

estimate of HP than the corresponding NB model.

As discussed in section 7.4, the intervention effect estimated from NB-null is too extreme
(FRR =0.147) and does not conform to the pattern shown in the BOE plots. In comparison,
the FRR estimated from PIG-null (0.653) is closer to the effect size estimated from the

NB-logged and PIG-logged models (see Table 8-2), both of which incorporate the baseline
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counts and are anticipated to yield more reliable estimates for the intervention effect. This

indicates that the PIG-null model is less influenced by the outliers than NB-null.

As shown in Table 8-2, PIG-logged has smaller AIC than NB-logged (594.9 versus 604.2), but
the difference is smaller than that between PIG-null and NB-null. Also, the intervention
effect estimated from NB-logged and PIG-logged (FRR = 0.686 and 0.869) are also closer
than the effect estimated from NB-null and PIG-null. This is because incorporating the
baseline count reduces heterogeneity (NB-logged is not significantly overdispersed;

P=0.079), and the advantage of the PIG model thus becomes smaller.

Table 8-1  EXSart dataset: NB-null and PIG-null models (follow-up period, n=127)

NB-null PIG-null
Est. SE FRR (95% Cl) P Est. SE FRR (95% Cl) P
Intervention -1.916 0.357 0.147(0.073,0.296) <0.001 -0.426 0.387 0.653(0.306,1.393) 0.270
HP @ =3.865 k=15.803
Mean(Predicted) 12.165 10.732
NB overdispersion test  <0.001
AIC 674.1 627.7

Table 8-2  EXSart dataset: NB-logged and PIG-logged models (follow-up period, n=127)

NB-logged PIG-logged
Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P

Intervention -0.377 0.286 0.686 (0.391, 1.202) 0.188 -0.140 0.305 0.869 (0.478,1.580) 0.646
Log(baseline count) 0.685 0.078 1.984(1.701,2.313) <0.001 0.530 0.074 1.699 (1.470,1.963) <0.001
HP 1.958 4.110

Mean(Predicted) 8.857 6.231

NB overdispersion test  0.079

AIC 604.2 594.9

In conclusion, the PIG model may be an alternative of the NB model when outcome counts
are heavily skewed, especially when a baseline count is not available, or NB model is

significantly overdispersed.

8.2 Zero-inflated NB models

In this section Zero-Inflated NB (ZINB) models are considered in relation to the falls data

from the Goodwin et al. (2011) trial. When there are excessive zero counts, some of them
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may be generated from a different process to the count process. In the context of falls
prevention trials, zero-inflation may arise if participants fail to complete their falls diaries

but still hand them in.

It is difficult to assess whether a large proportion of zeros is due to zero-inflation by
inspecting the distribution of the outcome count. The ZINB model is compared with the
standard NB model using the Goodwin et al. dataset. The baseline characteristics are
included as covariates to improve the explanatory power of the model. One participant (ID

1) is not included in the models due to missing value in the baseline count.

The Vuong test was used to test for zero-inflation, and the AIC- and BIC-based corrections
also carried out (section 2.3.3). In addition, the covariate-adjusted probability plot (Holling
et al., 2016) was used to provide a graphical comparison of the fitted ZINB and NB models
to assess whether zero-inflated models could be beneficial in modelling this dataset. The
NB and ZINB models were fitted in R using the MASS and pscl packages (described in
section 4.5). The results of the standard and AIC-/BIC- corrected Vuong tests were

calculated using the vuong () function in the pscl package.

Table 8-3 and Table 8-4 display the results of ZINB and NB models. No inflation covariates
(section 2.3.3) are included for the ZINB models (the ZINB models with inflation covariates
were fitted but did not converge). The inflated zeros accounts for 3.1% and 7.8% of all zeros

in the intervention and follow-up count, respectively.

In general, ZINB and NB models result in similar estimates. Although the NB models have
marginally higher AIC than the ZINB models, the Vuong test of zero-inflation is not
significant for either the intervention (P=0.239) or the follow-up counts (P=0.245). For the
models fitted to the intervention count, the Vuong test with the AlC-based correction does
not suggest significant zero-inflation (P=0.413), while the test with the BIC-based
correction suggests that the standard NB model fits the data better (Z = -0.470), but the
test result is also not significant (P = 0.319). For the models fitted to the follow-up count,
the Vuong tests with both the AIC- and BIC- based correction suggests that the standard
NB model fits the data significantly better than the ZINB model (AlC-based test: Z =-3.033,
P = 0.001; BIC-based test: Z = -8.415, P < 0.001). As the Vuong test without correction is

considered biased in favour of the zero-inflated models (see section 2.3.3), the results
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suggest that there is no evidence of zero-inflation for either the intervention or follow-up

count.

Figure 8-1 and Figure 8-2 show the covariate-adjusted probabilities of the ZINB and NB
models that are fitted to the intervention and follow-up counts, respectively. The plots
suggest that the covariate-adjusted probability of NB models is close to the observed
probability for zeros falls, and the ZINB models only have marginal improvements over the

NB models.
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(AIC-corrected)

Vuong test
(BIC-corrected)

Z=-0.470,P=0.319

Table 8-3  ZINB versus NB model fitted to the Goodwin et al. data: intervention period (n=124)
ZINB NB
Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P
Intervention -0.416 0.151 0.660 (0.123, 3.105) 0.006 -0.441 0.155 0.643(0.473,0.874) 0.004
Log(baseline 0.933 0.054 2.542 (0.489, 0.890) <0.001 0.946 0.056  2.574(2.303, 2.878) 0.000
count+0.5)
Female -0.128 0.165 0.880 (2.284, 2.830) 0.438 -0.062 0.167 0.940(0.675, 1.307) 0.708
Age 0.008 0.011 1.008 (0.634, 1.221) 0.476 0.012 0.010 1.012(0.992,1.033) 0.243
Years since 0.033 0.014 1.034 (0.986, 1.029) 0.022 0.027 0.014 1.028(1.000, 1.056) 0.046
diagnosis
Hoehn & Yahr
Stagel 0.040 0.262 1.041 (1.005, 1.064) 0.878 0.019 0.285 1.019(0.580, 1.791) 0.947
Stage 2 1 1
Stage3 -0.279 0.190 0.756 (0.619, 1.751) 0.142 -0.233 0.191 0.792(0.543, 1.155) 0.221
Stage4 -0.096 0.250 0.909 (0.519, 1.103) 0.701 -0.070 0.249  0.932(0.569, 1.526) 0.777
Living status
With partner 1
Alone  0.307 0.186 1.360 (0.554, 1.491) 0.099 0.284 0.194 1.328(0.905, 1.948) 0.143
With family/friends  1.306 0.635 3.693 (0.940, 1.968) 0.040 1.421 0.629 4.141(1.191, 14.392) 0.024
Residential home  -1.307 1.147 0.271 (1.050, 12.994) 0.254 -1.373 1.107 0.253(0.028, 2.272) 0.215
Percentage
Zero-inflation  -3.432 0.862 3.1%
(intercept)
HP 0.384 0.468
AIC 749.8 750.7
Vuong test Z=0.710,P =0.239
Vuong test Z2=0.221,P=0.413
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Figure 8-1 Covariate-adjusted probability plot: NB versus ZINB models fitted to the Goodwin et

al. dataset (intervention period, n=124)

183



CHAPTER 8 — OTHER COUNT RESPONSE MODELS

Table 8-4  ZINB versus NB model fitted to the Goodwin et al. data: follow-up period (n=115)
ZINB NB
Est. SE FRR (95% Cl) P Est. SE FRR (95% Cl) P
Intervention -0.249 0.228 0.780 (0.496, 1.226) 0.275 -0.297 0.227 0.743 (0.474, 1.165) 0.190
Log(baseline count+0.5) 0.955 0.077 2.599 (2.231, 3.029) <0.001 0.968 0.082 2.632(2.236, 3.099) 0.000
Female 0.110 0.231 1.116 (0.706, 1.765) 0.633 0.071 0.239 1.073(0.668, 1.724) 0.768
Age 0.002 0.017 1.002 (0.970, 1.036) 0.897 0.007 0.015 1.007 (0.978, 1.038) 0.630
Years since diagnosis 0.023 0.020 1.023 (0.983, 1.065) 0.253 0.023 0.020 1.024 (0.985, 1.064) 0.233
Hoehn & Yahr
Stage 1 0.518 0.351 1.679 (0.837, 3.370) 0.140 0.525 0.385 1.691(0.789, 3.626) 0.172
Stage 2 1 1
Stage3 -0.180 0.277 0.835 (0.482, 1.446) 0.515 -0.163 0.286 0.850 (0.482, 1.498) 0.569
Stage 4 0.147 0.346 1.159 (0.583, 2.300) 0.670 0.148 0.360 1.160 (0.568, 2.369) 0.681
Living status
With partner 1
Alone 0.040 0.278 1.041 (0.599, 1.808) 0.885 0.014 0.279 1.014(0.583, 1.764) 0.959
With family/friends 0.746 0.907 2.108 (0.349, 0.411 1.008 0.905 2.740 (0.455, 0.265
12.752) 16.499)
Residential home  -0.569 0.938 0.566 (0.088, 3.642) 0.544 -0.500 0.991 0.606 (0.085, 4.326) 0.614
Percentage
Zero-inflation (intercept) -2.465 0.701 7.8%
HP 0.789 1.065
AIC 678.7 678.9
Vuong test Z=0.889, P=0.245
Vuong test Z=-3.033,P=0.001

(AIC-corrected)

Vuong test
(BIC-corrected)

Z=-8.415,P<0.001
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Figure 8-2 Covariate-adjusted probability plot: NB versus ZINB models fitted to the Goodwin et
al. dataset (follow-up period, n=115)

In conclusion, the results showed that zero-inflation was not a major issue for the Goodwin
et al. dataset. A possible reason is that, although the trial participants may skip recording
falls when falling frequently, this is not considered a great issue for people who seldom fall,
so the participants are not likely to skip recording falls altogether during an observation

period. It is possible that ZINB might be useful for other datasets.

8.3 Right-censored and right-truncated NB models

As discussed in section 3.2.1 and Chapter 6, the Goodwin et al. (2011) dataset has
consistent falls rates across periods, but some frequently falling participants in the
intervention group dropped out after the intervention period, which resulted in group
imbalance of frequent fallers during the follow-up period: among the ten participants who
record the most falls during the follow-up period, only one was from the intervention group

(see Table 3-3). Therefore, the NB model without including the baseline count yielded a
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large intervention effect for the follow-up period (see Table 3-7), but it was largely due to
the group imbalance (the frequent fallers resulting in a higher average falls rate in the
control group). Although the NB-logged model controls for the group imbalance of
frequent fallers by adjusting for the baseline fall rate, a baseline count may not be available

for some trials.

An approach for coping with the influential outliers is to choose a cut-point, drop the
outliers that are greater than the cut-point, and then fit a standard NB model. This
approach was adopted in a number of studies. A falls prevention trial in elderly people (Liu-
Ambrose et al., 2008) reported that “a falls histogram revealed two outliers,” and the NB
model was fitted to the falls count with “these cases removed.” Gill et al. (2009) compared
regression models (including NB regression) for analysing the risk of falling using a dataset
from a falls trial, in which one subject was excluded from analysis because the falls count
recorded by him was too large. Another falls study (Stanaway et al., 2011) reported that
“participants with a fall rate of 10 or more falls per year were excluded,” and “next, a
negative binomial multivariate analysis was carried out.” A falls prevention trial (Cumming
et al., 1999) fitted the NB model to the falls count, but three participants were excluded
because they “reported more than 50 falls during follow-up.” In a trial in PwP (Henderson
et al., 2016), where falls were collected as a secondary outcome, the standard NB model
was fitted to the falls count with an outlier excluded from the analysis, because this

participant reported a large falls count (1122 falls) during the treatment period.

The concern about excluding large counts from modelling is that it results in a
right-truncated distribution for the outcome count, and thus it would be more appropriate

to fit a right-truncated NB model (see section 2.3.3), but in practice this is ignored.

Cameron and Trivedi (2013) mentioned another approach to the issue of outliers, that is to
“downweight” the influence of the large counts by 1) reducing large counts by right-
censoring at a chosen cut-point if the count is greater or equal to the cut-point, and 2)
fitting a right-censored NB model (see section 2.3.3). This method keeps the individuals
with large counts in the analysis, so that outliers are still included in the analysis but less

influential than in a standard NB model.
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An incorrect approach would be to revalue the large counts to the cut-point and then fit a
standard NB model, but this has been done in practice. In a falls prevention trial for elderly
people (Nikolaus and Bach, 2003), “the first five falls for each participant were used in this
analysis rather than all falls (maximum 22) to avoid over-weighting by subjects who fell
more than five times.” In another falls prevention trial (Ryan et al., 2010), the NB model
was fitted to the dataset in which “the number of falls by each person was truncated to an
arbitrary threshold of 15, chosen as it corresponds to one fall per diary.” In addition, the
authors conducted “post-hoc sensitivity analyses to account for exclusion of the outlier
from the calculation of fall rate,” in which they “repeated the negative binomial regression
model but including the outlier, who was assigned the next highest value of falls (number
of falls plus one of next highest participant in that group).” It would be appropriate to use
the right-censored NB model in these trials, but in practice the standard NB model was

fitted.

In this section, right-censored and right-truncated models are fitted in the scenario where
large outcome counts are not balanced between groups and a baseline falls count is not

considered. Five models were fitted to the Goodwin et al. dataset for comparison:

e NB-null: the standard NB model fitted to the complete dataset with only one
covariate—group allocation. NB-null is included as a baseline model, as it was
shown to be subject to group imbalance in section 3.2.1.

e NB-logged: the standard NB model fitted to the complete dataset with two
covariates—group allocation, and the logged baseline count (0.5 was added to
include zero baseline counts). This model is included as a benchmark model,
because it incorporates the baseline count, which controls for the group imbalance
of large outcome counts. As the frequent fallers had consistent falls rates across
periods, this model is anticipated to have a more reliable estimate of the
intervention effect than NB-null.

e NB-reduced: the standard NB-null model fitted to a reduced dataset: the outcome
counts that are greater than the cut-point are dropped,;

e NB-rt: the right-truncated NB model with the same covariate as NB-null and fitted
to the same reduced dataset as NB-reduced. The distribution of the outcome count

in NB-rt is specified as right-truncated at the cut-point.
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e NB-rc: the right-censored NB model with the same covariate as NB-null. The
outcome counts that are greater than the cut-point are regarded as right-censored

at the cut-point.

To make NB-logged comparable to the other models, one participant (ID 1) with missing

value in the baseline count was not included in the five models.

A cut-point was chosen as 200, based on the BOE plots of NB-null as shown in Figure 5-6 to
Figure 5-9: the participants reporting more than 200 falls (20 falls/week) during the
intervention/follow-up period were generally the most influential subjects to the
estimation of NB-null, as indicated by their high Cook’s distances; also, their large DFBETA
for the intervention effect suggests that these large counts may have a considerable
influence in the estimation of the intervention effect. Another cut-point 60 was considered

to show the difference between choosing a large and a small value for cut-points.

The statistical analysis was conducted in R (version 3.5.0), using the MASS package to fit
the NB models, the gamlss.cens package to fit the right-censored NB models, and the
gamlss.tr package to fit the right-truncated NB models (the three packages are described

in section 4.5).

Table 8-5 and Table 8-6 summarise the comparisons of the models fitted to the
intervention and follow-up falls counts in the Goodwin et al. dataset. As anticipated, the
NB-logged models have smaller AIC than NB-null. For the same dataset and cut-point, the
NB-rt models have smaller AIC than NB-reduced: the difference in AIC is only marginal for
cut-point 200 but is larger for cut-point 60. This indicates that, by correctly specifying the
distribution underlying the response variable, the NB-rt model achieves better goodness of

fit than NB-reduced, which ignores the right-truncation.

For the intervention period, four participants reported a larger outcome count than the
cut-point 200 (see Table 8-5). FRRs estimated by both NB-rc and NB-rt are closer to the FRR
from NB-logged than that from NB-null, with NB-rt being closer than NB-rc. Both models

also resultin smaller HPs than NB-null, because the outliers are either censored or dropped.
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Table 8-5  NB-null, NB-logged, NB-reduced, NB-rt, and NB-rc fitted to the intervention count in
the Goodwin et al. dataset

Cut-point  Model n  AIC* B (SE) FRR (95% Cl) p @ (SE) HP
Original  NB-null 124 9318 -0.571 0.565 0.077 3.188
(0.323) (0.298, 1.071)
NB-logged 124 7443 -0.359 0.698 <0.001 0911 0511
(0.155) (0.946, 0.515) (0.051)
200 NB-reduced 120  826.7 -0.232 0.793 0.414 2.339
(0.284) (0.452, 1.391)
NB-rt 120 826.6 -0.238 0.788 0.400 2.347
(0.284) (1.375, 0.452)
NB-rc 124 8755 -0.536 0.585 0.085 2.898
(0.309) (1.072, 0.319)
60 NB-reduced 117  767.6 -0.343 0.710 0.200 2.001
(0.268) (0.417, 1.206)
NB-rt 117  761.0 -0.638 0.528 0.026 2.257
(0.282) (0.304, 0.918)
NB-rc 124 814.4 -0.525 0.592 0.061 2.314
(0.278) (0.343, 1.020)

* Note: the AIC of NB-rc cannot be compared with the AIC of NB-reduced and NB-rt models

For the smaller cut-point 60, more subjects (seven participants) are regarded as
right-censored or right-truncated in modelling the interventon count. Compared to the
NB-rc model with cut-point 200, NB-rc with cut-point 60 yields an FRR that is closer to that
estimated from NB-logged. However, NB-rt with cut-point 60 yields an FRR of 0.528, which
is further away from the FRR estiamted from NB-logged (0.698) compared to the FRR from
NB-null (0.565). This may because dropping the seven participant results in loss of

information in NB-rt.

As shown in Table 8-6, the models fitted to the follow-up falls counts show similar results.
Compared to the intervention period, there is a greater disparity between the FRRs
estimated from NB-null and NB-logged (0.235 and 0.770, respectively). Only one
participant has a greater follow-up count than the cut-point 200, and seven participants
reported more follow-up falls than the cut-point 60. The FRR estimated from NB-rt are
closer to the estimate from NB-logged than to that from NB-rc, while the FRRs from both

NB-rc and NB-rt are less extreme than that from NB-null. For cut-point 60, the FRR from
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the NB-rt model (0.776, 95% Cl: 0.405 to 1.487) is remarkably close to the FRR from
NB-logged (0.770, 95% Cl: 0.493, 1.201), with the 95% Cl from NB-rt wider than NB-logged.
This is different to the finding in Table 8-5: the cut-point 60 results in a more extreme FRR
than the cut-point 200 when NB-rt is fitted the intervention count. A possible explanation
is that the large falls counts during the follow-up periods are not balanced between groups,
which results in an extreme FRR in NB-null (0.235), but the large counts are not included in

NB-rt, which may remedy the issue of losing information.

Table 8-6  NB-null, NB-logged, NB-reduced, NB-rt, and NB-rc fitted to the follow-up count in the
Goodwin et al. dataset

Cut-point Model n AIC* B(SE) FRR(95% Cl) P ¢ (SE) HP
Original  NB-null 115 7716 -1.448 0.235 <0.001 3.468
(0.352)  (0.117,0.472)
NB-logged 115 666.5 -0.262 0.770 0.249 0943 1.142
(0.227)  (0.493,1.201) (0.075)
200 NB-reduced 114 7419 -1.028 0.358 0.002 3.110

(0.335)  (0.184, 0.696)

NB-rt 114 7409 -1.143 0.319 0.001 2.875
(0.339) (0.164, 0.620)

NB-rc 115 751.2 -1.208 0.299 <0.001 3.034
(0.340) (0.153, 0.582)

60 NB-reduced 108 640.0 -0.149 0.861 0.639 2.622
(0.319) (0.458,1.621)

NB-rt 108 636.0 -0.254 0.776 0.446 2.622
(0.332) (0.405, 1.487)

NB-rc 115 682.7 -0.995 0.370 0.003 1.142
(0.330) (0.194, 0.706)

* Note: the AIC of NB-rc cannot be compared with the AIC of NB-reduced and NB-rt models

The results indicate that the right-censored and right-truncated NB models may be useful
when the baseline count is not available, especially when the frequent fallers are not

balanced between groups.

An advantage of the right-censored model is that choosing a smaller cut-point does not
result in reduced sample size. However, if large outcome counts are not balanced between

two groups (such as the follow-up periods in Goodwin et al. dataset), the right-censored
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model would only extenuate the effect. If there are a large number of influential outliers,

censoring will not provide a complete remedy.

The right-truncated model obviates the effect of outliers by dropping them, thus would
solve the issue of group imbalance. However, if the value of the cut-point is too small, many

observations are dropped, which results in a loss of power.

8.4 Finite mixture Poisson models

A common assumption in statistical modelling is to describe the distribution of the outcome
y in a sample using a distribution f(y|1) where 14 is the parameter of the population. In
practice, the assumption is often too strict because of unobserved population
heterogeneity — the population of interest may consist of multiple subpopulations, each
of which has a different parameter A (see section 2.3.7). For example, subpopulations may
respond to an intervention differently. The same intervention may have a different effect
for a subgroup of PwP who fall frequently and a subgroup who seldomly fall. If the
intervention effect is large for one subpopulation and mild for another, the marginal
intervention effect may be moderate, but this estimated effect is misleading. Finite mixture
models aim to estimate the proportion of each component in the population, and the effect

of interest for each subpopulation (Schlattmann, 2009).

Finite mixture models are relevant to falls prevention trials for two reasons: first, the falls
counts data may be heterogeneous in nature. The finite mixture model resembles the NB
model in that they both aim to accommodate heterogeneity. The difference between them
is that, unlike the NB model, the finite mixture model does not assume a continuous
distribution for the heterogeneity, instead it uses a discrete unobserved structure for
heterogeneity (Schlattmann, 2009), which may potentially make the finite mixture model
useful for dealing with outliers. In this section a finite mixture Poisson model is fitted to the
intervention falls count in the Goodwin et al. (2011) dataset to examine whether it could

accommodate the frequent fallers as a subpopulation.
Three models are fitted and compared:

e Poi-logged: the standard Poi-logged model (see section 6.2.2) is fitted (using the

poisson command in Stata) as a baseline model;
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e NB-logged: the standard NB-logged model is fitted (using the nbreg command in
Stata) as a Poisson mixture model with a continuous random subject effect to
accommodate the subject heterogeneity;

e Poi-logged FMM: the finite mixture Poi-logged model is fitted to the dataset (using
the fmm command in Stata). Two components were specified to examine
whether the large counts could be accommodated in a component. The linear
predictor of each component includes the same covariates: the group allocation

and Log(baseline count + 0.5).

The estimates from the three models are summarised in Table 8-7. The Poi-logged FMM
yields a much smaller AIC (855.3) than Poi-logged, but still larger than that of NB-logged
(744.3). This suggests that the FMM partially controls for the heterogeneity in two
components, but NB-logged better accommodates the heterogeneity in the gamma
distributed subject effect. The Poi-logged FMM results in an estimate of the intervention

effect for each subpopulation: FRR 0.411 for component 1 and FRR 0.633 for component 2.

Table 8-7  Estimates of Poi-logged, NB-logged, and Poi-logged FMM (n=124).

Estimate SE FRR (95% ClI) P

Poi-logged Intervention -0.480 0.037 0.619(0.575, 0.666) <0.001
Log(baseline count + 0.5) 1.030 0.012  2.801 (2.735, 2.868) <0.001
AIC 1131.5

NB-logged Intervention -0.359 0.156  0.698 (0.514, 0.948) 0.022

Log(baseline count + 0.5) 0.911 0.048 2.487(2.263,2.733) <0.001

HP
AIC 744.3
Poi-logged FMM
Comp 1l Intervention -0.890 0.121  0.411(0.324, 0.520) <0.001
Log(baseline count + 0.5) 1.025 0.070  2.787(2.430, 3.200) <0.001
Comp 2 Intervention -0.457 0.045 0.633(0.579, 0.691) <0.001

Log(baseline count + 0.5) 0.894 0.027  2.445(2.316, 2.581) <0.001

AlC 835.3
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As shown in Table 8-8, the proportions of components 1 and 2 are estimated to be 56.1%
and 43.9%. This was not anticipated as 1) the component with a larger marginal mean (that
is, component 2) accounts for more than forty percent of all participants, while there are
only a few frequent fallers in the dataset; 2) the marginal mean of component 2 (33.251) is

not as large as expected.

Table 8-8  Estimated proportions and marginal means for components 1 and 2 from the
Poi-logged FMM (n=124).

Proportion Marginal mean

Estimate SE 95% CI Estimate SE 95% ClI
Comp 1 0.561 0.100 (0.366, 0.738) 14.895 0.884 (13.162, 16.627)
Comp 2 0.439 0.100 (0.262, 0.634) 33.251 0.464 (30.382, 36.120)

Figure 8-3 shows a density histogram of the predicted values from components 1 and 2 of
Poi-logged FMM. Although component 2 has a larger marginal mean than component 1

(see Table 8-8), it is mostly made up of falls counts between 0 and 50.

Density
04

.02
|
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Comp 1 Comp 2

Figure 8-3 Density histogram of the predicted values from components 1 and 2 of Poi-logged
FMM (n=124).
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In summary, Poi-logged FMM did not appear to outperform NB-logged in the Goodwin et
al. dataset. However, this may be due to the scarcity of large counts. If the frequent fallers
indeed belong to a subpopulation, it is possible that an FMM could capture the large counts
in a component when the sample size is large. In such case, it would be interesting to
examine whether this subpopulation of frequent fallers respond to the same intervention

differently compared to other subpopulation.

8.5 Analysis of longitudinal falls data with random-effects NB models

Datasets from falls prevention trials are often longitudinal in nature. When the falls counts
are collected prospectively using falls diaries, they may be made available as a longitudinal
dataset, with each row containing the falls counts per week recorded by a participant, for
example. The participant and the week are usually indicated by the variables id and time

respectively.

The random-effects NB model, which assumes observations are independent between
participants within a week but allowed to be correlated over time within a participant
(Cameron and Trivedi, 2013; Hausman et al., 1984) and introduced in section 2.3.8, is
considered in this section to examine the longitudinal structure of the Goodwin et al. (2011)

data (2011) in more detail.

This section focuses on the estimates of intervention and time effects, as well as their
interactions. In addition to the logged baseline count, the same baseline characteristics
such as demographic characteristics and severity rating of Parkinson’s that were
considered in section 3.2.1 are included in all the models in this chapter to improve
statistical power and control for heterogeneity, but we shall forego discussing the

estimates and test results of the baseline characteristics in detail.

As introduced in section 1.2.1, the falls count in the Goodwin et al. trial was recorded
prospectively by each participant in a falls diary, and made available to this project as the
number of falls experienced by each participant during each of the 30 weeks of observation
window, which comprises 10 weeks for each of the baseline, intervention, and follow-up

periods. Previously weekly count data were aggregated to the period level. The random-
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effects NB model is considered in this section for analysing the longitudinal dataset of

weekly falls counts.

A random-effects NB model (see section 2.3.8) was fitted to the 10 weekly falls counts
during the intervention and follow-up periods separately. The models were fitted in Stata
(version 15) using the xtnbreg, re command (described in section 4.2). The group
allocation was included in the model as a factor giving an estimate of the intervention effect.
The logged baseline count (the aggregated falls counts during the baseline period + 0.5)
was also included. Time (counted in weeks) from the beginning of week 11, when the
intervention started, was included in the model as a regressor to examine whether the falls
rate changed linearly over time in the control group. The same baseline characteristics as
in section 3.2.1 were also included. The P values from the Wald test for each covariate were

reported. This model is referred to as the Linear Time (LT) model in the following text.

Another goal of this section is to see whether there is an interaction effect between the
intervention and time, by 1) fitting a model including the interaction term between
intervention and linear time in addition to the two main effects and baseline characteristics;
and 2) testing the interaction effect using the LR test. This model is referred to as the Linear

Time Interaction (LTl) model.

To check the linearity assumptions in the LT and LTI models, the following random-effects

NB models were examined:

e Factorial Time (FT) model: The FT model includes the same covariates as the LT
model, except that time is included as a factor instead of as a continuous variable.
The FT model does not assume a linear time effect, and it gives an estimate of the
time effect specific to each week compared to the first week. This model was
examined to check the assumption of a linear time effect in the LT models.

e Factorial Time Interaction (FTI) model: The FTI model includes the same covariates
as the LTI model, except that time is included as a factor in both the main effect and
the interaction between interventions and time. The FTI model does not assume
the intervention effect changes linearly with time, and it gives an estimate of the
intervention effect specific to each week. This model was examined to check the

linear assumption in the LTI models.
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For both the FT and FTI models, the first week of the intervention/follow-up period was

specified as the reference level for the factor variable time.

All the fitted random-effects NB models were tested against the NB1 models (which were
fitted to the panel data but the panel structure is ignored; see section 2.3.8) using the
default LR test produced in Stata to examine if accounting for the panel structure

significantly improves the goodness of fit of the random-effects NB model.

The matrix of correlation coefficients between outcome weekly counts were examined.
Because the distribution of falls count is typically skewed, the Spearman correlation

coefficient p was used.

Figure 8-4 and Figure 8-5 present Spearman correlation coefficients between falls counts
recorded by the same participant during each week within the intervention and follow-up
periods respectively. The weekly falls counts show strong correlation at the subject-level,
with the Spearman p lying between 0.549 and 0.797 for the intervention period, and
between 0.538 and 0.817 for the follow-up period (the majority of p being over 0.6). No

clear pattern of autocorrelation over time is found in either period.
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Figure 8-4 Correlation of the number of falls occurred each week (weeks 11-20)
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Figure 8-5 Correlation of the number of falls occurred each week (weeks 21-30)

The random-effects NB models fitted to the falls count during each week of the
intervention (weeks 11-20) and follow-up (weeks 21-30) periods are summarized in Table
8-9to Table 8-14. The LR tests indicate that all the random-effects models have significantly

better goodness of fit than the NB1 model fitted to the same weekly dataset (P < 0.001).

As shown in Table 8-9, during the intervention period the intervention significantly
(P <0.001) reduced the falls rate by half (FRR: 0.505, 95% Cl: 0.360 to 0.710), and the effect
of time is not significant (P = 0.805). The FRRs for the time effect were examined in the FT
model (Table 8-11), and they do not show patterns contraindicating the assumption of

linear time effect.
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Table 8-9  Goodwin et al. dataset: LT model (intervention period: weeks 11-20; n=124;
obs=1240)

Estimate SE FRR (95% Cl) P
Intervention -0.683 0.173 0.505 (0.360, 0.710) <0.001
Time (weeks) -0.002 0.009 0.998 (0.981, 1.015) 0.805
Log(baseline count + 0.5) 0.632 0.065 1.882 (1.658, 2.136) <0.001
Female -0.542 0.203 0.582 (0.391, 0.866) 0.008
Age -0.017 0.012 0.983 (0.959, 1.007) 0.166
Years since diagnosis 0.068 0.018 1.070 (1.034, 1.108) 0.000
Hoehn & Yahr
Stagel 0.296 0.330 1.344 (0.704, 2.565) 0.370
Stage 2 1
Stage3 -0.148 0.230 0.863 (0.550, 1.353) 0.520
Stage4 -1.059 0.277 0.347 (0.202, 0.597) <0.001
Living status
With partner 1
Alone 0.751 0.233 2.120(1.344, 3.343) 0.001
With family/friends  1.147 0.690 3.150(0.815, 12.175) 0.096
Residential home -0.616 1.188 0.540 (0.053, 5.539) 0.604
r 3.966
s 1.613
AIC 3093.3

LR test: random-effects NB versus NB1: P < 0.001

Table 8-10 shows that the interaction of intervention and linear time is not significant
(P=0.971) inthe LTI model. The FTI model was examined and compared with the LTI model
(both interaction terms are summarised in Table 8-11). The interaction of intervention and
factorial time is also not significant (P = 0.069). The pattern of weekly specific FRRs in Table
8-11 does not suggest an obvious alternative to the LTI model, and the FTI model has a

larger AIC than the LTI model (3107.6 versus 3095.3).

Because the interaction of intervention and time is not significant for the intervention
counts, we drop the interaction term and conclude that during the intervention period, the
intervention reduced the risk of falling by half and the effect was reasonably constant over

time.
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Table 8-10 Goodwin et al. dataset: LTI model (intervention period: weeks 11-20; n=124;
0bs=1240)

Estimate SE FRR (95% Cl) P
Intervention -0.679 0.204 0.507 (0.340, 0.757) 0.001
Time (weeks) -0.002 0.010 0.998 (0.978, 1.019) 0.847
Intervention x Time (weeks) -0.001 0.020 0.999 (0.961, 1.039) 0.971
Log(baseline count + 0.5) 0.632 0.065 1.882 (1.657, 2.137) <0.001
Female -0.541 0.203 0.582 (0.391, 0.866) 0.008
Age -0.017 0.013 0.983 (0.959, 1.007) 0.166
Years since diagnosis 0.068 0.018 1.070 (1.034, 1.108) 0.000
Hoehn & Yahr
Stagel 0.296 0.330 1.344 (0.704, 2.566) 0.370
Stage 2 1
Stage 3 -0.148 0.230 0.863 (0.550, 1.353) 0.520
Stage4 -1.060 0.279 0.347 (0.201, 0.598) <0.001
Living status
With partner 1
Alone 0.752 0.233 2.121(1.343, 3.348) 0.001
With family/friends  1.147 0.690 3.148 (0.814, 12.179) 0.097
Residential home -0.616 1.188 0.540 (0.053, 5.543) 0.604
r 3.964
S 1.612
AlC 3095.3
LR test: random-effects NB versus NB1 P <0.001
LR test: the interaction between the intervention and time P=0.971
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Table 8-11 Time and intervention effect and during each week of intervention periods of
Goodwin et al. dataset (weeks 11-20; n=124; obs=1240)

Time effect Intervention effect
Week LT: FT: LTI: FTI:
FRR FRR (95% Cl) FRR FRR (95% Cl)
11 1 1 0.551 0.510
(0.324, 0.802)
12 0.998 1.026 0.550 0.945
(0.829, 1.27) (0.596, 1.500)
13 0.996 0.889 0.550 0.974
(0.712, 1.11) (0.604, 1.568)
14 0.994 0.948 0.549 0.724
(0.762, 1.18) (0.442,1.186)
15 0.992 1.012 0.549 1.409
(0.814, 1.258) (0.892, 2.225)
16 0.990 0.997 0.548 1.247
(0.800, 1.243) (0.779, 1.995)
17 0.988 0.980 0.548 1.166
(0.784, 1.223) (0.719, 1.892)
18 0.986 0.886 0.547 0.614
(0.709, 1.107) (0.371, 1.018)
19 0.984 0.972 0.547 1.145
(0.780, 1.211) (0.713, 1.840)
20 0.982 1.005 0.546 1.078
(0.808, 1.249) (0.674, 1.726)
AIC (df) 3093.3 3105.6 3095.3 3107.7
(15) (23) (16) (32)
LR test of interaction: - - P=0.971 P=0.069
Intervention x Time (df=1) (df=9)

Table 8-12 shows the estimates from the random-effects NB models fitted to the falls count
during the follow-up period. The intervention effect is still significant (P = 0.010), and its
estimate (FRR: 0.551, 95% Cl: 0.351 to 0.866) is similar to that during the intervention
periods (FRR: 0.505, 95% Cl: 0.360 to 0.710). Again, the effect of time is not statistically
significant, and the FT model does not indicate obvious alternative to the assumption of

linear time effect (see Table 8-14).
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Table 8-12 Goodwin et al. dataset: LT model (follow-up period: week 21-30; n=119; obs=1160)

Estimate SE FRR (95% Cl) P
Intervention -0.595 0.230 0.551 (0.351, 0.866) 0.010
Time (weeks) -0.001 0.009 0.999 (0.982, 1.017) 0.946
Log(baseline count + 0.5) 0.901 0.076 2.462 (2.122, 2.857) 0.000
Female 0.265 0.236 1.304 (0.821, 2.070) 0.260
Age 0.016 0.015 1.016 (0.985, 1.047) 0.315
Years since diagnosis 0.031 0.020 1.032 (0.993, 1.072) 0.110
Hoehn & Yahr
Stage1l -0.025 0.359 0.975 (0.482, 1.970) 0.944
Stage 2 1
Stage3 -0.289 0.280 0.749 (0.432, 1.298) 0.303
Stage4 0.303 0.351 1.354 (0.681, 2.694) 0.388
Living status
With partner 1
Alone 0.621 0.284 1.862 (1.068, 3.246) 0.028
With family/friends  1.683 0.833 5.383 (1.053, 27.524) 0.043
Residential home -0.060 1.001 0.942 (0.132, 6.707) 0.953
r 4.562
S 1.160
AIC 2544.9
LR test: random-effects NB versus NB1 P <0.001

Table 8-13 shows results from the LTI model for the follow-up period. Now the interaction
between intervention and time is statistically significant (LR test: P = 0.002), with the FRR
of the interaction estimated to be 0.930 (95% Cl: 0.890 to 0.972), that is, the intervention
effect in preventing falls increases over weeks. The FTI model was fitted to check the
linearity assumption and the week specific FRRs are shown in Table 8-14 from both models.
Basically speaking, they show a pattern of declining FRR (reduced from approximately 1.00
to approximately 0.50) supporting modelling the interaction with a linear time. The weekly
FRRs calculated from LTI decreases by 7% per week and falls from 0.798 to 0.417 (Table
8-14). In accordance with the results in the LTI model, the interaction between the
intervention and time is statistically significant (P = 0.001) in FTI model. The FTI model again

results in larger AIC than LTI.
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Note that although the FRR for the main effect of intervention is estimated to be 1.760,
this estimates the intervention effect for week 0, which falls outside the timeline of weeks

11-20.

In summary, during the follow-up period the time did not have a significant effect on falls
rates; the intervention reduced the falls rate increasingly by 7% per week, with the overall

intervention estimated to reduce falls rate by 45% during the follow-up period.

Table 8-13 Goodwin et al. dataset: LTI model (follow-up period: week 21-30; n=119; obs=1160)

Estimate SE FRR (95% Cl) P
Intervention 0.566 0.418 1.760 (0.775, 3.998) 0.177
Time (weeks) 0.012 0.010 1.013 (0.994, 1.032) 0.194
Intervention x Time (weeks) -0.072 0.023 0.930 (0.890, 0.972) 0.001
Log(baseline count + 0.5) 0.920 0.077 2.509 (2.160, 2.915) <0.001
Female 0.258 0.238 1.294 (0.811, 2.063) 0.279
Age 0.015 0.016 1.015 (0.985, 1.047) 0.333
Years since diagnosis 0.033 0.020 1.033 (0.993, 1.075) 0.104
Hoehn & Yahr
Stage1l 0.024 0.364 1.024 (0.502, 2.089) 0.948
Stage 2 1
Stage3 -0.248 0.282 0.781 (0.449, 1.357) 0.380
Stage4 0.277 0.353 1.320(0.661, 2.636) 0.432
Living status
With partner 1
Alone 0.577 0.284 1.780 (1.020, 3.106) 0.042
With family/friends  1.637 0.847 5.141 (0.978, 27.021) 0.053
Residential home -0.069 0.999 0.933 (0.132, 6.607) 0.945
r 4.979
S 1.144
AlC 2536.9
LR test: random-effects NB versus NB1 P <0.001
LR test: the interaction between the intervention and time P =0.002
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Table 8-14 Time and intervention effect and during each week of follow-up periods of Goodwin
et al. dataset (weeks 21-30; n=119; obs=1160)

Time effect Intervention effect
Week LT: FT: LTI: FTI:
FRR FRR (95% Cl) FRR FRR (95% Cl)
21 1 1 0.798 1.035
(0.601, 1.780)
22 0.999 0.911 0.742 1.151
(0.74,1.122) (0.755, 1.755)
23 0.998 0.933 0.691 0.443
(0.755, 1.155) (0.268, 0.732)
24 0.997 0.921 0.643 0.515
(0.744, 1.141) (0.316, 0.839)
25 0.996 1.003 0.598 0.561
(0.812, 1.239) (0.342,0.919)
26 0.995 0.968 0.557 0.487
(0.781, 1.2) (0.291, 0.814)
27 0.994 0.964 0.518 0.511
(0.779, 1.194) (0.307, 0.850)
28 0.993 0.947 0.482 0.507
(0.764, 1.174) (0.304, 0.845)
29 0.992 0.825 0.448 0.485
(0.659, 1.034) (0.282, 0.834)
30 0.991 1.042 0.417 0.581
(0.844, 1.287) (0.357,0.947)
AIC (df) 25449 2555.1 2536.9 25449
(15) (23) (16) (32)
LR test of interaction: - - P=0.002 P=0.001
Intervention x Time (df=1) (df=9)

NB models have become widely used for analysing data from falls prevention trials, but few
studies have considered longitudinal NB models. In this section, random-effects models
were fitted to the Goodwin et al. dataset, to explore how to model falls data in longitudinal

format.

An advantage of random-effects NB models is that a time variable can be included as a
covariate, so that the model allows a check on the assumptions of a constant falls rate and
a constant intervention effect. Compared to studies with outcomes measured repeatedly

during a short period, falls prevention trials are different in two aspects: first, when falls
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counts are collected prospectively, data collection takes weeks or even months to complete,
and each record has a relatively long gap with the previous record (in the Goodwin et al.
trial the gap was one week); second, participants may experience worsening ability to
maintain body balance during the observation period due to disease progression, which
results in higher falls rates as time goes on; another possibility is that participants may start
restricting their activities to avoid falling, which results in lower falls rates as time goes on.
For these two reasons, the time effect should be checked for falls prevention trials and
modelling this effect might be desirable. In the Goodwin et al. dataset, the time effect was

not significant, which is possibly due to the short length of each period (10 weeks).

A step forward from modelling a constant intervention effect is to include a two-way
interaction between the intervention and time. This enables checking whether the
intervention effect is constant over time. The intervention did not have a significant
interaction with time during the intervention period. However, during the follow-up period,
the interaction between interventions and time was significant, and the estimated
interaction effect suggest that during each week of the follow-up period the FRR of the
intervention effect deceased by 7% (that is, the falls rate in the intervention group deviated

further from the rate in the control group as time passes).
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Chapter 9

Discussion

In this chapter, the main findings of the project are summarised and discussed. We also
address limitations and suggest future directions for research concerning the analysis of

data from falls prevention trials and counts of falls more generally.

9.1 General discussion

Falling is a common and often recurrent event for PwP. The quality of life for PwP is
compromised due to their high risk of falling, as falls may lead to injuries and loss of
independence in daily activities. Falls prevention trials aim to find an effective treatment
to prevent or reduce falling, but the interventions rarely show statistically significant effect
in published trials. This is possibly due to the low power of the statistical methods for

analysing falls counts, which hinders the adoption of potentially effective treatments.

Fundamentally, falls prevention trials aim to answer two questions. First, is the intervention
effective in reducing falls rate? Second, what is the size of the intervention effect? A natural
approach to answering the two questions is to fit a count response model, which yields an
effect size as an FRR and a P value from a model-based hypothesis test of the intervention
effect (such as the Wald, LR, and score test). However, there are two major challenges

faced by researchers.

The first challenge is outliers in the outcome count. Some participants with Parkinson’s in
falls prevention trials report very large falls count—this was found in all three motivating
datasets used in this project, including the Martin et al. (2015) dataset, which consists of
only 21 participants, among whom one participant reported 1599 falls during the 20-week
outcome period. Large outcome counts often have great influence in model estimation and
may considerably influence the estimated intervention effect, especially when a baseline

count is not included in the model. The reason that outliers influence estimation is that if
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the large counts are not balanced between groups, the group with more large counts, or
even just one extremely large count, may substantially increase the group mean, and
consequently, the group difference in falls rates could be dominated by a few large counts.
For example, suppose a trial is conducted to study the effect of an intervention, which is
assumed to moderately reduce the falls rate. By chance if there are more frequent fallers
in the intervention group, the large falls counts may increase the average falls rate in the
intervention group, so that the estimated intervention effect is smaller than the true effect
and is less likely to achieve statistical significance in the analysis of outcome counts alone,
that is, ignoring the baseline count. In a more extreme case, the average falls rate in the
intervention group may surpass the rate in the control group due to the imbalance in large
counts, so that the model yields a positive FRR for the intervention effect, suggesting that
the intervention increases the risk of falling. Conversely, if there are more large counts in
the control group, the model may yield an overestimate of the intervention effect. Because
of the skewed distribution of falls counts, large counts only account for a small proportion
of the sample. Therefore, a very large sample size is required to achieve group balance in

frequent fallers via randomisation.

Another challenge in analysing falls counts using count response models is overdispersion,
which arises when heterogeneity is not fully accommodated in the model. The risk of falling
is usually considered to be related to multiple risk factors, and as a result the mechanism
of Parkinson’s induced falling is not thoroughly understood by researchers, so it is likely
that important prognostic variables are not observed, not observable, or not incorporated
in the model. Thus, unobserved heterogeneity is common in falls data and is expected to

result in model overdispersion.

Overdispersion leads to underestimation of the model-based SEs, especially for Poisson
regression, which assumes equidispersion and does not accommodate any degree of
overdispersion. The SE of the estimated intervention effect provides a measure of the
precision of the estimator and is as important as the estimator itself, because an estimate
has little value if its precision is not given (Fisher, 1956). When the SE of an estimator is

underestimated, the corresponding hypothesis test generally has inflated type | error rates.

The main goal of a falls prevention trial is to study whether an intervention is effective in

preventing falls, but unobserved prognostic variables, though their effects may not be
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among the research questions, perturb the model-based test of the intervention effect via
overdispersion. Therefore, unless the effects of the unobserved variables or heterogeneity
are sufficiently accounted for in the model, researchers cannot give credence to the P
values from the model-based hypothesis tests. Poisson regression is almost always
overdispersed in modelling falls counts, and for this reason widely understood to be

unsuitable for analysing data from falls prevention trials.

The two challenges in analysing falls counts are intertwined rather than distinct. If large
counts cannot be sufficiently accommodated in a count response model, they may result
in overdispersion. A model that better controls for overdispersion may also better
accommodate outliers reducing their influence on the model fit. For the analysis of falls
prevention trials, the NB model has become a standard approach in modelling falls counts,
because it has better performance in coping with outliers and overdispersion than Poisson

models.

NB regression is an extension of Poisson regression that aims to accommodate
heterogeneity in a gamma-distributed subject effect. As Box (1979) put it, “all models are

I”

wrong but some are useful.” NB regression fits this description perfectly in that the
distribution of heterogeneity is unknown, but the gamma distributed subject effect may be
flexible enough to accommodate heterogeneity, if adequate prognostic variables are
included in the model linear predictor as covariates. Another advantage of NB regression
is that the underlying NB distribution is more skewed than the Poisson distribution given
the same mean, so that it fits count data better than Poisson regression when there are

outliers.

Although NB regression mitigates the effects of outliers and overdispersion, it is not a
panacea in all cases. NB models are still subject to the influence of outliers, and NB models
themselves can be overdispersed if the gamma-distributed subject effect does not
sufficiently accommodate the heterogeneity. The dissertation focuses on models and
diagnostic plots to address the issues of outliers and overdispersion, especially for NB

models.
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Incorporating a baseline count in the NB-based models

It is not uncommon in a falls prevention trial to collect a falls count during a pre-
randomisation baseline period, but researchers do not seem to be fully aware of the benefit
of incorporating it in analysis. In previous studies, a baseline count was sometimes used

only as an eligibility criterion and excluded from further analysis; or, in some trials
dichotomised into a history of falling (< 1 versus = 1) or a history of frequent falling (< n

versus = n where n > 1) indicator before inclusion in the model. These two approaches

both result in a great loss of power.

Despite being overlooked in practice, the baseline count is actually essential to the analysis
of falls counts. A primary goal of the thesis is to investigate how to incorporate the baseline
count into the analysis of a falls prevention trial using count response models. As discussed
above, there may be latent variables related to the risk of falling that are not observed in a
trial. Although collecting more covariates and including them in the analysis may control

for heterogeneity, it is impossible to capture everything.

A possible solution to the problem heterogeneity is to control for the latent variables via a
proxy variable — the baseline count. The logic of this approach is as follows. If
heterogeneity is brought about by subject-level latent variables, the variables should be
correlated with both the outcome and baseline counts. Thus, incorporating the baseline
count in modelling should at least partially control for the heterogeneity. Cook and Wei
(2003) accommodated heterogeneity in the joint distribution by assuming both baseline
and outcome falls counts follow a Poisson distribution with a gamma-distributed random
subject effect shared in the two count variables. By conditioning on the baseline count, the
authors derived the Conditional NB (CNB) model from the joint distribution accounting for
heterogeneity in the outcome. In Chapter 6, the CNB model was fitted to datasets
simulated from the underlying joint distribution. The results showed that CNB indeed had
good performance when it was correctly specified: the empirical power was high regardless
of varying degrees of heterogeneity, and the type | error rate was close to the nominal level
0.05 even for small sample sizes. Compared with the NB model without including the
baseline count (referred to as NB-null), CNB achieved much higher empirical power, and

the power gain increased as the heterogeneity became greater. This demonstrates that
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conditioning on the baseline count improves statistical power and makes the model less

subject to heterogeneity.

An alternative to the CNB model is to include the logged baseline count in an NB regression
model as a covariate (referred to as the NB-logged model in the thesis), or as an offset
(referred to as NB-offset). These two models are based on the same joint distribution
underlying CNB. The log-transformation is applied to the baseline count because of the log
link-function in NB models, so that the baseline count is on the same scale as the outcome,
but this may be neglected in practice. Only one study (Aeberhard et al., 2017) was found
to include the logged pre-randomisation count in NB modelling. The simulations in Chapter
6 showed that NB-logged and NB-offset had similar empirical power to CNB when data met
the assumption of subject-specific heterogeneity underlying CNB. Though the type | error
rates from NB-logged and NB-offset were modestly inflated for small sample sizes (total
number in trial = 50 or 100), the rates converged to the nominal level 0.05 as the sample

size increased.

Incorporating the baseline count is also a solution to group imbalance in relation to large
outcome counts, as participants tend to report a consistent falls rate across baseline and
outcome periods. For the NB-null model, the large outcome counts may have a great
influence on the estimation of intervention effect. This was shown in the diagnostic plots
in Chapter 5: take the Goodwin et al. dataset as an example (see Figure 5-9), most of the
frequent fallers during the follow-up period were in the control group, they all showed
relatively large negative DFBETA for the intervention effect. This resulted in an extreme
intervention effect (FRR=0.287; Table 3-7) not in line with the general pattern shown in the
plot. In comparison, the large counts were not influential in NB-logged, which yielded an
FRR of 0.716 (see Table C-2 in Appendix C). The simulations in section 6.5.2 showed that,
when the distribution of the outcome count is skewed, incorporating the baseline count

reduced the influence of the large counts on the estimation of the intervention effect.

In practice the untransformed baseline count may be included as a covariate, ignoring the
underlying scaling of these variables. This is referred to as the NB-unlogged model in the
thesis. The simulations in Chapter 6 showed that NB-unlogged considerably overestimated
the SE of the regression coefficient across simulated datasets. The tendency for

NB-unlogged to overestimate SEs is in line with its deflated empirical type | error rate,
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which was lower than the nominal level even for large sample sizes. The description of the
statistical analysis from published falls studies suggests that the baseline count is often
treated as an untransformed regressor, though it is often unclear exactly what has been
done. As the test of intervention effect based on NB-unlogged is conservative, it is possible
that the analysis used in previous falls studies missed effects that might have proved

significant had the baseline count been appropriately incorporated in analysis.

When the baseline and outcome counts are both collected prospectively, they are likely to
be strongly correlated. However, in some trials the baseline count was obtained via a
retrospective question, while the outcome count was collected prospectively because this
method is thought to have a better precision. A retrospective baseline count and
prospective outcome count would be expected to be correlated, but to a lesser extent
because of the different data collection methods. A typical example of this is the EXSart
trial (Ashburn et al., 2007), with weaker correlation between the baseline and outcome
rates than the Goodwin et al. (2011) or Martin et al. (2015) trials (both with prospective
baseline counts). This design violates the assumption underlying CNB because each count
is obtained subject to a different measurement error, which is not accommodated in the

shared gamma component.

In addition to the baseline counts being collected retrospectively, there may be other
reasons leading to violation of the CNB assumption. For example, the risk of falling may be
correlated with the progression of Parkinson’s. Parkinson’s is an irreversible progressive
neurological disease, and if there is a wide gap between the baseline and outcome periods,
the assumption underlying CNB that heterogeneity is at the subject-level may not hold. The
rate of disease progression may differ across participants, also resulting in a discrepancy

between the baseline and outcome counts within subjects.

To introduce a discrepancy between baseline and outcome counts, the simulations in
Chapter 7 added a perturbation term when generating the baseline count. The NB-logged
model allows the coefficient of the logged baseline count to vary and so it was more robust
to perturbations than the CNB or NB-offset models, while the CNB model performed very
poorly, with type | error rates greater than 0.5. The estimates of the intervention effect

from NB-logged were generally close to the underlying value. Unlike the simulations in
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Chapter 6, the regression coefficient of the logged baseline count was generally lower than

1, possibly tuning down the influence of the baseline count to remedy the discrepancy.

When the subject-specific heterogeneity is large, the hypothesis test of the intervention
effect based on NB-logged is liberal, but to a lesser extent than CNB and NB-offset, thus
the NB-logged is still preferable to these two models. However, researchers should be
cautious with the result from the test of intervention effect from NB-logged when 1)
different methods are used to collect the baseline and outcome counts, and 2) the HP of
NB-null indicates great heterogeneity. A potential solution to the inflated type | error rate
is to perform a test of the intervention based on the robust SE instead of on the model-
based SE. A number of authors (Hardin, 2003; Hardin and Hilbe, 2007; White, 1980) have
shown that the robust SE produces a consistent SE estimator even when the model is
misspecified. Freedman (2006) argued that although the robust SE may “help on the
variance side”, the estimator of interested may be biased if the model is incorrect. King and
Roberts (2015) expressed a similar opinion: if the robust SE considerably differs from the
model-based SE, this should be considered as an indicator that the model is inappropriate
and that the estimate of the effect of interest could be biased. Although these points are
valid, this is not an issue in our case because the simulations in section 7.5 showed that the
estimator of the intervention effect was unbiased, and so the robust standard SE might be

a useful approach to investigate.

One might argue that, since a difference in methodologies for collecting the baseline and
outcome counts may lead to inflated type | error rate, a retrospectively collected baseline
count should be dropped altogether and NB-null should be preferred over the other models.
This may be fair if the discrepancy is so great that the baseline and outcome counts are
virtually uncorrelated, so that including the baseline count has little benefit. However,
including the retrospective falls count in modelling can be justified on two counts: first, the
simulations showed a great power gain; and second, as discussed before, NB-null may
result in an extreme estimate of the intervention effect when large outcome counts are
not balanced between groups, which may be a bigger issue than the inflated type | error

rate.

The CNB and NB-offset models both showed poor performance in simulations when a

perturbation violates the underlying assumption. This issue of CNB and NB-offset has a
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striking parallel with the issue of overdispersion for Poisson regression: the variance is
restricted to be equal to the mean in Poisson regression, so the model is not flexible enough
to accommodate overdispersion. When the assumption of equidispersion is violated, the
type | error rate of the model-based hypothesis test becomes inflated. Similarly, the CNB
model assumes that all heterogeneity is at the subject-level, so it is not flexible enough to
accommodate discrepancy between the baseline and outcome counts, which also results

in inflated type | error rates.

To summarise the results from Chapter 6 and 7, NB-logged appears to be a better way of
incorporating baseline counts in analysis than CNB and NB-offset: 1) when CNB is correctly
specified, NB-logged has comparable performance to CNB; and 2) NB-logged is more robust
to perturbations in the simulation than CNB or NB-offset. Another advantage of NB-logged
over CNB is that it is widely supported in statistical packages (as listed in Chapter 4), while

the CNB model, at the time of writing, is not currently supported in any package.

Benefit of collecting a baseline count for designing a falls prevention trial

Zhu and Lakkis (2014) proposed three formulae for power calculations related to NB-null,
and their simulations showed them to have good performance. The simulations in section
6.6 showed that Tango’s (2009) formula for calculating the sample size for the conditional
score test may be used as an approximation of the sample size required for NB-logged.
When data have mild heterogeneity, the sample size calculated using Tango’s formula
achieved the specified power level of 80% for NB-logged in the scenarios examined, but
when the degree of heterogeneity is large, the empirical power from NB-logged at sample
sizes suggested by the formula to achieve 80% power is moderately lower than the nominal

level.

The sample sizes calculated from Zhu and Lakkis’s formulae and Tango’s formula were
compared in Table 6-5, and show the NB-logged model to require a much smaller sample
size than NB-null, especially for small intervention effects, where average outcome count
is large, and there is great heterogeneity. In order to discuss the benefit of collecting the
baseline count in the context of designing a falls prevention trial in PwP, we now consider

a representative trial setting.
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In the Goodwin et al. trial, the participants in the control group reported 32.25 falls on
average during the 10-week intervention period and 31.88 during the 10-week follow-up
periods (Table 3-1). In the EXSart trial, the average falls count in the control group was
10.12 during the 8-week intervention period and 21.33 during the 18-week follow-up
period (Table 3-12). These numbers are reasonable for a prospectively collected falls count
in a falls prevention trial, because if the observation period is longer, the falls count will be
larger, but the drop-out rate is anticipated to increase. As shown in sections 3.2.1 and 3.2.3,
HP in NB-null fitted to outcome falls count in Goodwin et al. and EXSart dataset were
generally larger than 3. Based on these results, if we suppose planning a trial that the
average outcome count in the control group is 30, the intervention has a relatively large
effect in reducing falls rate (say, by 26%), and we assume a = 3, to achieve 80% power,
the required sample size is over 1000 for NB-null but only 26 from NB-logged and NB-offset
(see Scenario 6 in Table 6-5). Considering that the number 26 was an approximation from
the Tango (2009) formula, the actual sample size required is larger than this, but even
doubling the number to 52 results in a reasonable trial size. A Cochrane review (Gillespie
et al.,, 2012) included 159 falls prevention trials in the general elderly living in the
community, and among them only five trials (Day et al., 2002; Hornbrook et al., 1994; Reid
et al., 2006; Sanders et al., 2010; Stevens et al., 2001) have both prospectively collected
outcome falls counts and a sample size greater than 1000. For trials in PwP the recruitment
of participants is more difficult than recruiting to trials in the general elderly, so it would

be very challenging indeed to recruit 1000 PwP into a falls prevention trial in PwP.

If the intervention effect is smaller, say, reducing falls rate by 9%, the sample size would be
somewhat over 216 for NB-logged or NB-offset, and 9526 to 9530 for NB-null (see Scenario
4 in Table 6-5). The largest RCT (Smith et al., 2007) in Gillespie et al.’s (2012) Cochrane
review recruited 9440 people, which is still smaller than the required sample size for
NB-null with a small intervention effect and 80% power. In the Smith et al. (2007) trial,
outcome falls were collected retrospectively as a binary outcome (falling or not),
considerably less expensive than collecting falls prospectively. Such a large trial with

prospectively collected fall counts is unlikely to be carried out.
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NB Diagnostic plots in the context of falls prevention trials

Because of the potential for outliers to be greatly influential in NB models, assessing the

diagnostic statistics for each observation is essential for NB modelling.

Large counts may be deemed to be outliers because of their anticipated impact on model
fit. Nevertheless, a large response count per se does not warrant labelling a count as an
outlier without examination of model diagnostics. The reason is that large counts are
ubiquitous in falls data in Parkinson’s and should be accommodated by heavily skewed
distribution in modelling so that they are well fitted. The great influence of the large counts
underscores the importance of the diagnostic plots for NB models, especially in the context

of falls prevention trials.

A set of diagnostic plots were described in Chapter 5 and referred to as the
Baseline/Outcome Event (BOE) plots in the thesis. BOE plots present the diagnostic
statistics from NB models where a baseline count is available (though not necessarily
included in the model) in a scatter plot, with y-axis of the logged outcome falls rate and
x-axis of the logged baseline rate. Where the length of the periods of data collection for
the counts do not differ over participants, counts can be used instead of rates. The size of
a plotting symbol is proportional to the chosen diagnostic statistic. A Line of Falls Equity
(LoFE) is plotted in the BOE plot as a reference line, which shows whether the falls rate is
constant across periods. It also shows whether a participant reported a lower, higher, or

similar outcome falls rate compared to their baseline rate.

The baseline rate can be seen in the BOE plots and provides valuable information on each
subject as well as the whole trial. At the subject level, the plot shows whether a large
outcome rate is consistent with a similarly large baseline rate, in which case, the large
outcome is anticipated to be successfully accommodated by a model appropriately

including the baseline count.

At the trial level, the plots show the correlation between the outcome and baseline rates,
and they facilitate a visual evaluation of the discrepancy between the two. In addition, the
LoFE provides a visual check for the period effect. If the plotting symbols from the control

group are symmetric around the LoFE, the falls rate is relatively stable across periods. If the
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symbols are above the line, the falls rate increases over time, possibly because of disease

progression.

The estimator of the intervention effect is often dominated by large counts, but because
they account for only a small proportion of a dataset, a trial requires a large sample size to
achieve group balance with respect to large outcome counts via randomisation. In order to
check the influence of the subjects with large outcome counts or inconsistent falls rates,
DFBETA corresponding to the outcome and baseline rates may be examined in a BOE plot.
In addition, because the trial groups are indicated by different colours, we obtain a visual
impression of the size of the intervention effect, so that if the estimation is influenced by a

few outliers, we can see that clearly.

Another useful aspect of the BOE plots is that they are based on scatter plots on a
logarithmic scale so that the positioning of each plotting symbol is evenly scattered. Hence,
the diagnostic statistics of each subject can be easily compared, especially for the large

counts.

Poisson Inverse Gaussian model

The Poisson Inverse Gaussian (PIG) model is an alternative way of dealing with Poisson
overdispersion to the NB model. It fits counts with highly skewed distribution better than
the NB model, because the PIG variance function (u + ku3) is parameterised is based on a

cubic form of u, compared with the quadratic form in the NB variance function (u + au?).

The PIG model was fitted to the follow-up falls count in EXSart dataset and compared to
the NB models. The follow-up period of the EXSart trial was relatively long (four months),
so there were a few very large outcome counts (maximum 1099), which results in the falls
count being particularly skewed. The fitted NB-null model was significantly overdispersed
(P < 0.001 from the NB overdispersion score test). For such trials the PIG model may be
more suitable. As the PIG model has the same log link function as the NB model, the
approach of including the logged baseline count as a covariate is transferable to PIG models

(referred to as PIG-logged).

Compared with NB-null, which yielded an intervention effect that was not in line with the

BOE plot, the estimation of the intervention effect from PIG-null model appeared to be less
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influenced by the large counts and was closer to that from the NB-logged model. This
indicates that the NB-logged model is probably not overdispersed if a baseline count is
available and correctly included, because it may adequately account for heterogeneity. If a
baseline count is not available, the PIG model may be more suitable because it copes with

large counts better and may accommodate NB overdispersion.

A limitation of PIG model is that it is not as widely supported in statistical packages. This is
possibly why it is rarely used in falls prevention trials. Canning et al. (2014) used the PIG

model because

“a blind review of the falls data revealed that the negative binomial model was not
flexible enough to capture both the nonfallers and the large number of multiple fallers.

In contrast, the Poisson inverse gaussian (PIG) distribution gave a good fit.”

However, they included the baseline count after dichotomising it to multiple baseline

fallers (= 10 or < 10 in the previous 12 months, retrospective question), not logged as a

regressor, and so had not adequately accommodated heterogeneity.

Right-censored versus right-truncated models

Although including the baseline count may control for large outcome counts, the baseline
count is not necessarily consistent with the outcome count, or in some trials, a baseline
count may not be collected. In these situations, a cut-point may be used and participants
who report a greater outcome count than the cut-point are either excluded from the NB
model, or revalued to the cut-point. Both methods are problematic, because the
distribution underlying the standard NB regression has a range from zero to infinity. If the
outcome counts are excluded at a chosen cut-point, the underlying distribution of the
outcome is right-truncated at the cut-point. Revaluing the outcome count to a small value

the cut-point is also inappropriate.

The right-censored NB model has an advantage over the right-truncated NB model — the
individuals reporting large outcome counts are not excluded, preserving sample size, but
their influence on model estimation is reduced. In some trials, the large counts remain
influential on the model estimation even when censored. In this case the right-truncated

NB model may perform better, but power is lost because the large counts are excluded.
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An issue for the right-censored and right-truncated models is that the model estimation is
based on the chosen cut-point. Therefore, it may be difficult to justify the chosen value.
The results from the follow-up period of the Goodwin et al. dataset indicates a trade-off in
choosing the cut-point: with a smaller cut-point, the large counts were less influential in
the estimation of the right-censored NB model, and the right-truncated model gave an
estimate of the intervention effect that was closer to the estimate from NB-logged,
however, during the process more outcome counts were labelled as right-censored, or

dropped from the truncated model.

For falls prevention trials without a baseline count, a sensible approach for examining the

sensitivity of the estimated intervention effect from an NB models might be to:

1. Fitan NB model;

2. Check the diagnostic statistics for the NB model, especially the DFBETA and Cook’s
distance;

3. Choose a cut-point based on the diagnostic statistics, and fit a right-censored and
right-truncated NB model;

4. Consider the PIG model if the large counts are overly influential.

If the FRRs from the right-censored and right-truncated model are very different to that

from NB model, the estimator of the intervention effect is probably sensitive to the outliers.

ZINB

In some falls prevention trials there are a large proportion of zero outcome counts, which
raises the question as to whether there could be zero-inflation in the dataset. Excessive
zeros may result from an additional process to the count process, that is, some trial

participants may report zero counts while actually experiencing one or more falls.

Because the distribution of falls count is usually skewed, a considerable number of zeros
are anticipated even when there is no zero-inflation, especially when the average falls
count is small. Hence, a histogram of the outcome count may show a large proportion of

zeros, but this does not necessarily mean that there is zero-inflation.

A possible approach dealing with potential zero-inflation is to fit a Zero-Inflated Negative

Binomial (ZINB) model, which accounts for the process of excessive zeros in a binary
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component. To examine the issue of zero-inflation in real falls data, the ZINB model was
fitted to the intervention and follow-up counts from the Goodwin el al. trial, and compared

with the NB models to examine zero-inflation.

A strength of this study is that the zero-inflation was examined using two diagnostic tools
—the Vuong test and the covariate-adjusted probability plot. The original Vuong test is
commonly used for testing zero-inflation via comparing the goodness of fit of a ZINB model
and an NB model, but it is biased in favour of ZINB models. Desmarais and Harden (2013)
proposed AIC- and BIC-based corrections for the Vuong test. However, neither the original
Vuong test nor the tests with AIC/BIC corrections provide an unbiased test result of zero-
inflation in NB models. Therefore, the P values from all three tests were produced for the
Goodwin et al. dataset. The results showed reasonable agreement: none of the tests
suggested that the ZINB model had significantly better fit than the NB model for either the

intervention or follow-up count.

The covariate-adjusted probability plot proposed by Holling et al. (2016) was considered in
section 8.2 as a diagnostic plot for zero-inflation. It proved to be a valuable tool to visualise
possible zero-inflation, by inspecting whether the covariate-adjusted probability of zero
from the NB model was considerably different from the observed probability. In addition,
the plot provides a graphical comparison of the NB and ZINB models regarding the fit to
zeros, which can be used to double check for zero-inflation. The plots for the intervention
and follow-up counts were in line with the test results from the Vuong test: the NB models
provided a reasonable fit to the zero counts, and the covariate-adjusted probabilities from

the ZINB models were very close to those from the NB models.

No evidence of zero-inflation was found for the Goodwin et al. dataset, and this might be
related to the prospective falls collection method in the trial. If the outcome falls count was
obtained retrospectively in a trial, it is possible that the participants do not recall the exact
time of each fall, and therefore, not certain whether a fall they experienced occurred was
within the study period, so that they may report no falls whilst actually haven fallen during
the period. Although zero-inflation is not significant in the Goodwin et al. dataset, this issue

should be checked in future trials.
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Random-effects NB model for the longitudinal dataset

The random-effects NB model provides a new dimension for studying the intervention
effect: the interaction between an intervention and time can be included in the model so
that the intervention effect can be checked to see whether it is constant over time or not.
This is particularly relevant to falls studies in Parkinson’s. The intervention in such trials is
usually a physiotherapy program that aims to enhance strength or body balance. It is
reasonable to assume that the intervention requires some time to work, and it may take
some time for the trial participants to master the physiotherapy program. In both cases the
intervention may have an increasing intervention effect over time in reducing falls rate.
Another possibility is that the participants may become less willing to carry on with the

intervention, especially after the intervention program has ended.

The Goodwin et al. dataset is available in longitudinal form with weekly counts. An
interesting finding is that, during the follow-up period after the intervention had ended,
there was a significant interaction between intervention and time, with the intervention
effect increasing over weeks in preventing falls, while the intervention effect did not
materially change during the intervention period. This pattern is the opposite to that

anticipated.

Strategies for analysing falls counts

To address the common issues in analysing falls counts, the findings presented in the thesis
can be combined as a set of strategies for analysing falls counts from a falls prevention trial

in PwP:

1. When a baseline count is available, fit an NB-logged model, because it has satisfying
statistical power and is relatively robust to discrepancy between the outcome and
baseline count (especially when mixed collection methods are used for the two

counts).

2. Produce the BOE plots to check
a. whether the estimated intervention effect might be overly influenced by a
few outliers;

b. whether there is a peculiar pattern suggesting model inadequacy.
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3. Check for zero-inflation by fitting an ZINB model and compare it to the standard NB
model. This can be done using the Vuong test and corrected versions. Because the
Vuong-based tests may still be biased, the covariate-adjusted probability plot can

be used to check the result from the Vuong test.

4. If abaseline count is not available, the large counts are likely to be highly influential.
If this is indicated by model diagnostics, two approaches may be used:
a. PIG models: they are less subject to the influence of the large counts;
b. Right-truncated/-censored NB model: a cut-point may be chosen to drop
outcome counts that are greater than the cut-point, or reduce the influence

of the large counts.

5. If the falls counts are available in a longitudinal dataset, the random-effects NB

model may be fitted to study the trend of intervention effect over time.

9.2 Strengths
The dissertation has the following strengths:

First, current and widely used statistical methods for analysing counts from falls prevention
trials are examined. A broad range of work has been done examining the characteristics of
the data, statistical modelling, diagnostic plots and software available in facilitating the

analysis of falls counts.

Second, statistical models were compared using actual datasets from falls prevention trials,

as well as simulated data based on features found in real-life falls prevention trials.

9.3 Limitations
There are a number of limitations to the research.

Firstly, although NB-logged utilises the baseline count in modelling and is relatively robust
to discrepancy in methods for collecting the baseline and outcome counts, there is
currently no formula to calculate the exact sample size required to achieve a given power
in the model. In section 6.6, the formula for calculating the sample size of the conditional

score test (Tango, 2009) was assessed as an approximation for the NB-logged and NB-offset
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models, but the simulation suggested that when there is great heterogeneity in the dataset,
the formula underestimates the sample size required. Tango’s formula may be used in
planning a trial where the outcome is a count and little heterogeneity is anticipated (based
on previous studies of the same event). For data with greater heterogeneity,
simulation-based methods may be used to obtain the sample size required to achieve a

specified power.

Secondly, for all the datasets considered in this thesis, the participants who dropped out of
trials were assumed to be missing at random, but this may not be the case in practice. It is
possible that frequent fallers may drop out because recording falls in dairies is gruelling
and time-consuming for them. For the Goodwin et al. trial, among the ten participants who
reported the largest falls counts during the intervention period, only two were in the
intervention group. This is possibly because the intervention effectively reduced falls rate
in this group, as the large counts were balanced between groups during the baseline period
and no one dropped out of the trial before the intervention period. However, the two
frequent fallers in the intervention group dropped out at the end of the intervention period,
which resulted in a group imbalance of large falls count: the nine most frequent fallers
during the follow-up period were all in the control group. The largest follow-up count was
49 in the intervention group, but 678 in the control group. This may happen by pure chance,
but the possibility of informative missingness cannot be ruled out, and this should be

considered in relation to falls prevention trials.

Thirdly, the right-censored and right-truncated NB models were evaluated using the
Goodwin el al. dataset in section 9.3. They both appeared to be good solutions for reducing
the influence of outliers, but there are two limitations for this study: 1) the potential benefit
over standard NB modelling has not been examined in simulation studies; and, 2) the two
models are conditional on a cut-point, and different cut-points result in different estimates.
In this study, the cut-point was chosen based on the BOE plots in section 5.4.1, by
inspecting the diagnostic statistics and the corresponding outcome counts. However, the
chosen cut-point nevertheless involves subjectivity and may be hard to justify. This is the
reason the two models may be more appropriate considered as sensitivity analysis. Two

cut-points were compared and the results demonstrated the trade-off in choosing a smaller
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value. Further investigation is required regarding an objective approach in choosing a

cut-point for the right-censored and right-truncated NB models.

Fourthly, the PIG model showed good performance in the EXSart dataset when the baseline
count is ignored, but it was only compared with the NB model regarding the goodness of
fit for this single dataset. Work remains to be done to compare the two models more

systematically.

Finally, findings from modelling falls counts in the three motivating datasets may not be
extrapolated to other studies, because they may be influenced by the design or other
aspects of each trial, for example, the ZINB model did not show evidence of zero-inflation
in the Goodwin et al. dataset, but it would be interesting to re-examine this issue for a
study with retrospectively collected outcome counts. Another limitation is that data from

only three trials were examined in detail.

9.4 Future research

In addition to the models considered in the thesis, the Generalised Additive Model (GAM)
merits further investigations in modelling falls counts. GAM is an extension to GLM, with a
sum of smoothing functions for some covariates included in the linear predictor (Wood,
2017). The smoothing functions are used in GAMs to span the space of transformation for
the covariate. The idea of GAMs is that in a GLM, a relationship is assumed between the
response variable and the covariates, via the link function and/or transformation of the
covariates, while for GAMs the relationship is dictated by the data. Despite the greater
flexibility, there are two issues for GAMs regarding statistical inference: 1) A more flexible
model is generally less interpretable; and 2) As Wood (2017) pointed out, for a model with
higher flexibility, “the methods for inference become less well founded,” and generalising
from GLMs to GAMs, “penalization lowers the convergence rates of estimators, hypothesis
testing is only approximate, and satisfactory interval estimation seems to require the
adoption of a Bayesian approach.” Falls prevention trials generally aim to study whether
an intervention reduces the incidence of falling, thus the issue of inference limits the
application of the GAM in this context. However, for future falls studies GAMs could be
valuable in predicting the patient-specific risk of falling for PwP based on a model fitted to

a training dataset. The discussion of GAMs regarding the issue of inference and the
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potential in predicting future falls extends to the Generalized Additive Model for Location,
Scale and Shape (GAMLSS) model, which fits a predictor (with or without smoothing terms)
for each of the expectation, location, scale, and shape parameters (Stasinopoulos et al.,
2017). The flexibility may improve the prediction accuracy of a model, but too much
flexibility leads to overfit in the training dataset and leads to lower accuracy in prediction

(James et al., 2013).

The falls rate is commonly used as the outcome in falls prevention trials (Gillespie et al.,
2012), and it is collected as the falls count during a study period, either via the retrospective
or prospective methods. As discussed in section 2.2.1, both methods have intrinsic
characteristics that potentially result in underreporting or overreporting. New technologies
have been developed to record falls using wearable sensors or other devices, and they have
the potential to solve the issues around self-reporting. An example of such a device is the
smart watch, which has become increasingly popular and affordable in recent years. With
multiple activity sensors integrated into a compact and portable device, the smart watch
has drawn interest from the research community for use in recording falls (Ghayvat et al.,
2015). In 2018, Apple released the Apple Watch Series 4, and provided a fall detection
function (Apple Inc., 2018): If the watch detects a fall, it shows a notification asking if the
person has just fallen. The person will also be asked if emergency services should be
contacted. If the person isirresponsive to the query and has been immobile for one minute,
the watch automatically makes an emergency call. Falls are recorded unless the person
chooses the option “I'm OK” provided in the prompt notification after detection of a
possible fall. Such procedures are expected to reduce misclassification of falls. Also, using
this device may make recruiting trial participants easier because 1) wearing an Apple Watch
has safety benefits, such as calling for medical help when participants are unconscious due
to a fall-related injury; and 2) recording falls using sensors considerably alleviates the

burden on participants compared to recording falls in diaries.

Another benefit of smart devices is that they may record different measurements of health
data multiple times a day. The high dimensional data improve modelling and enable
predicting disease progression and falls rate in the future. For example, the mPower study
(Bot et al., 2016) collected data from a total of 9520 participants using an iPhone app, which

makes it the largest Parkinson’s study so far, and the accessibility of the app and smart
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phones contributed to the large sample size. The app notified the study participants to
complete a walking activity three times daily during which gait and balance were evaluated.
Although the mPower app did not record falls, it set a precedent for using mobile/wearable

devices to collect data in PwP.

In addition, wearable devices may record the sedentary and in-bed time (this is already
possible for the Apple Watch by measuring movements and pulse), and this time could be
excluded from exposure time (that is, the length of time during which a fall may occur)
because it is impossible to fall when a person is sitting in a chair or lying in bed. A caveat is
the misclassification of the lying and sedentary stages. An alternative is to track the activity
time using wearable sensors. Srulijes et al. (2019) tracked Physical Activity (PA) of 88 people
who had been diagnosed with a neurodegenerative disease (amongst them 14 were PwP)
and proposed the measurement of “falls per individual PA exposure time.” The benefit of
this measurement is that for people who restrict their physical activity to avoid falling (for
example people with more severe Parkinson’s), their falls rate is usually low, but after
adjusting for the PA exposure time, the falls rate better reflects their risk of falling. This is
confirmed by the authors’ finding that PwP with low walking PA had higher falls per

individual PA exposure time, suggesting that PwP tend to walk less to avoid falling.

Wearable devices typically record each fall at the exact time of occurrence. This enables
modelling falls based on time between each fall event. Cox regression is sometimes used
to analyse the time between the start of an intervention to the occurrence of the first fall.
A similar approach is to analyse the time of each fall using the Andersen-Gill model
(Andersen and Gill, 1982). This model has an interesting link to the Poisson and NB models
in that they are all derived from the Poisson process, which assumes falls occur randomly
such that the falls counts during nonoverlapping intervals are independent within subjects
(Cook and Lawless, 2007). The Andersen-Gill model is anticipated to perform better than
the Poisson and NB models when the falls are generated from a time-dependent Poisson
process, though Jahn-Eimermacher (2008) compared the three models in simulations and
concluded that the NB model performed better when data were generated from this

process.

In addition to modelling falls, there are alternative directions to pursue in the future to

widen the scope of falls prevention trials. One possibility is to study fall-related injuries,
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which are usually reported as adverse events in falls prevention trials and a serious safety
issue for PwP, but the current studies in this field are limited: in RCTs the fall-related injury
is usually not the main outcome so that the sample size may not provide sufficient power
for analysing the rate of injuries (Gardner et al., 2000; Province et al., 1995). A challenge
for conducting an RCT of fall-related injuries is that each fall only has a small chance of
leading to an injury, so a fall-rated injury is an event with lower incidence than a fall. If the
eligibility criterion is set to PwP with a history of fall-related hospitalisation, the participants
could be recruited from hospitals, but the participants may restrict their daily activity
because of their history of serious injuries, resulting in few injuries during a follow-up
period. Another issue with the low incidence is that participants need to be followed up for

a longer periods and the sample size has to be much bigger as well.

To solve these problems, a possible approach is to differentiate falls into causing injury and
not causing injury. This was referred to as the multitype recurrent event by Cook and
Lawless (2007), and a parametric model (Ng and Cook, 1999), or a semiparametric model
in which the baseline mean function is unspecified (Cai and Schaubel, 2004), can be used
to analyse the risk of fall-related injury. These models may also be used to study different
types of fall-related injuries that were found to be related to Parkinson’s (Cook and Lawless,
2002), such as hip and Colles fractures (O. et al., 1992; Vestergaard et al., 2007). Because a
fall-related injury is conditional on a fall, modelling falls as a multitype recurrent event
should improve the statistical power, compared with modelling the fall-related injury only,

so that the required sample size would be smaller.

9.5 Summary and main findings
The main findings and contributions of the research can be summarised as follows:

e The baseline count is essential in falls modelling, but applied researchers may not
be aware of its central role. Incorporating the baseline count was found to have two
benefits: 1) correctly including the baseline count in an NB or CNB model largely
accounts for heterogeneity and considerably increases the statistical power of the
model to detect an intervention effect, as indicted by the simulations in Chapter 6
and 7; and 2) adjusting for the baseline rate controls for group imbalance in large

outcome counts, which is likely to happen for small to medium sized trials and even
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trials considered in the area to be of large size, and may result in a misleading
estimate of the intervention effect. Another finding is that, if the logged baseline
count is included as a covariate in NB regression, the model is relatively robust to
the differences in methodologies used to collect the outcome and baseline counts,
for example, the baseline count being obtained retrospectively while the outcome
count is obtained prospectively. Though examined in the context of falls prevention
trials, the lessons carry over to counts of other events and to study designs other
than RCTs where initial and subsequent counts are available, especially where

counts can extend to large values.

e Five commonly used statistical packages were reviewed regarding their
functionality for fitting NB and NB-related models. This work facilitates researchers
in choosing a statistical package that best meets the analysis planed for a particular

dataset, as each package supports different post-estimation statistics.

e A set of diagnostic plots for the NB model in the context of falls count data from a
falls prevention trial were developed so that patterns in diagnostic statistics related
to the distribution of the outcome and baseline counts can be easily identified. An
R package named NBDiagnostics was written to automate the production of the
diagnostic plots for an NB model, specifically for situations where the count of a
recurring event is available during both an outcome and a baseline period. The
covariate-adjusted probability plot, an existing diagnostic plot, was studied in the
context of falls data focusing on the visual presentation of overdispersion in the

fitted model.

e Zero-inflation was examined in the Goodwin et al. dataset and found not to be an
issue. The Zero Inflated NB (ZINB) model was compared with the standard NB model
using multiple statistical tools, which appeared effective in testing and visualising

zero-inflation in count data.

e The Poisson Inverse Gaussian (PIG) model fitted the extremely skewed data from
the EXSart trial better than the NB model. The PIG model was less subject to the
influence of outliers than the NB model when the baseline count is not included in
both models. This highlights the potential of the model, especially for extremely

skewed counts or when important covariates are unobserved.
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e The right-censored and right-truncated NB models were considered for reducing
the influence of large counts. These two models were shown to be potentially useful

ways of coping with the large counts in the Goodwin et al. dataset.

e The finite mixture models have the potential to model the frequent fallers as a
subpopulation, but this requires further examinations for trials with larger sample

sizes

e The random-effects NB model was fitted to the Goodwin et al. dataset, which

showed the potential of longitudinal modelling.
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The NBDiagnostics R package

The NBDiagnostics package introduced in Chapter 5 can be installed from its GitHub
repository (https://github.com/AlexZHENGH/NBDiagnostics). This can be done in R using

the following commands:

install.packages ("devtools")
library(devtools)
install github ("AlexZHENGH/NBDiagnostics")

The package contains a function nbdiagnostics () that 1) fits an NB model using the
glm.nb () function in the MASS package (Venables and Ripley, 2002) with the same
syntax, and 2) specify the names of the following four variables: the outcome event rate
(outcome varname), the baseline event rate (baseline varname), the group

allocation (group varname),and ID (1d varname).

The nbdiagnostics () function returns an “NBDiagnostics” object, which is an NB
model fitted to the dataset. An “NBDiagnostics” object can be passed into the model
argument in the boeplot () function to produce the BOE plots introduced in section 5.2.
In boeplot (), the diagnostic stat argument can be specified as “cookd”,
“leverage”, “anscombe_resid”, or “dfbeta” to present the Cook’s distance, leverage,

Anscombe residuals, and DFBETA, respectively.

The caprob nb () and caprob nb poi () functions produce the covariate-adjusted
probability plots (Holling et al., 2016) for an NB model, and NB versus Poisson models,

respectively.
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Example R code for simulating mixed Poisson
distribution

Core code for simulations in section 6.5

The following R code demonstrates the data generating mechanism (time-homogeneous

Poisson process) for simulating the baseline and outcome falls counts in section 6.5.

N <- 500
alpha <- 3

## Simulate the gamma-distributed subject-specific
heterogeneity

s <- rgamma (N, shape = 1/alpha, scale = alpha)

## Simulate the baseline counts
mu <- 20

mu 0 <- mu * s

y 0 <- rpois(n=N, lambda=mu 0)

## Allocate subjects to two group
group <- c(rep(l, N/2), rep(0, N/2))
beta <- -0.2

## Simulate the outcome counts
mu 1 <- exp(beta * group) * mu * s
y 1 <- rpois(n=N, lambda=mu 1)

Core code for simulations in section 7.5

The following R code demonstrates the simulations of the baseline and outcome falls
counts in section 7.5. Because a gamma-distributed perturbation is introduced in the

baseline count, the assumption of the subject-specific heterogeneity does not hold.

N <- 500
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alpha <- 3.5
epsilon <- 0.5
lambda <- 5

t0 <= 12

tl <= 2

## Simulate the gamma-distributed subject-specific
heterogeneity

s <- rgamma (N, shape = 1/alpha, scale = alpha)

## Simulate the gamma-distributed perturbation
v <- rgamma (N, shape = 1/epsilon, scale = epsilon)

## Simulate the baseline counts

mu 0 <- lambda * s * v * tO
y 0 <- rpois(n=N, lambda=mu 0)

## Allocate subjects to two group
group <- c(rep(l, N/2), rep(0, N/2))
beta <- -0.2

## Simulate the outcome counts

mu 1 <- exp(beta * group) * lambda * s * tl
y 1 <- rpois(n=N, lambda=mu 1)
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Additional results

Table C-1  Number of successful replicates for the simulation study in section 6.5

Number of included replicates

a B m  NB-null NB-unlogged NB-logged NB-offset CNB

3 -04 50 2000 2000 1999 2000 1999
100 2000 2000 2000 2000 2000

200 2000 2000 2000 2000 2000

500 2000 2000 2000 2000 2000

-0.2 50 2000 2000 2000 2000 1990
100 2000 2000 2000 2000 2000

200 2000 2000 2000 2000 2000

500 2000 2000 2000 2000 2000

0 50 2000 2000 1998 1999 1996
100 2000 2000 2000 2000 1999

200 2000 2000 2000 2000 2000

500 2000 2000 2000 2000 2000

05 -04 50 2000 2000 2000 2000 2000
100 2000 2000 2000 2000 2000

200 2000 2000 2000 2000 2000

500 2000 2000 2000 2000 2000

-0.2 50 2000 2000 2000 2000 1990
100 2000 2000 2000 2000 1995

200 2000 2000 2000 2000 1999

500 2000 2000 2000 2000 2000

0 50 2000 2000 2000 1999 1991
100 2000 2000 2000 2000 1998

200 2000 2000 2000 2000 2000

500 2000 2000 2000 2000 2000

Table C-2  Number of successful replicates for the simulation study in section 7.5.

Number of included replicates (2000 in total)

€ a B m NB-null NB-logged NB-offset CNB
0.5 3.5 -0.4 50 2000 2000 2000 2000
0.5 3.5 -0.4 100 2000 2000 2000 2000
0.5 3.5 -0.4 200 2000 2000 2000 2000
0.5 3.5 -0.4 500 2000 2000 2000 2000
0.5 3.5 -0.2 50 2000 2000 2000 2000
0.5 3.5 -0.2 100 2000 2000 2000 2000
0.5 3.5 -0.2 200 2000 2000 2000 2000
0.5 3.5 -0.2 500 2000 2000 2000 2000
0.5 3.5 0 50 2000 2000 2000 2000
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0.5 3.5 0 100 2000 2000 2000 2000
0.5 3.5 0 200 2000 2000 2000 2000
0.5 3.5 0 500 2000 2000 2000 2000
0.5 0.5 -0.4 50 2000 2000 2000 2000
0.5 0.5 -0.4 100 2000 2000 2000 2000
0.5 0.5 -0.4 200 2000 2000 2000 2000
0.5 0.5 -0.4 500 2000 2000 2000 2000
0.5 0.5 -0.2 50 2000 2000 2000 2000
0.5 0.5 -0.2 100 2000 2000 2000 2000
0.5 0.5 -0.2 200 2000 2000 2000 2000
0.5 0.5 -0.2 500 2000 2000 2000 2000
0.5 0.5 0 50 2000 2000 2000 2000
0.5 0.5 0 100 2000 2000 2000 2000
0.5 0.5 0 200 2000 2000 2000 2000
05 05 0 500 2000 2000 _______: 2000 2000
0.25 3.5 -0.4 50 2000 2000 2000 2000
0.25 3.5 -0.4 100 2000 2000 2000 2000
0.25 3.5 -0.4 200 2000 2000 2000 2000
0.25 3.5 -0.4 500 2000 2000 2000 2000
0.25 3.5 -0.2 50 2000 2000 2000 2000
0.25 3.5 -0.2 100 2000 2000 2000 2000
0.25 3.5 -0.2 200 2000 2000 2000 2000
0.25 3.5 -0.2 500 2000 2000 2000 2000
0.25 3.5 0 50 2000 2000 2000 2000
0.25 3.5 0 100 2000 2000 2000 2000
0.25 3.5 0 200 2000 2000 2000 2000
0.25 3.5 0 500 2000 2000 2000 2000
0.25 0.5 -0.4 50 2000 2000 2000 2000
0.25 0.5 -0.4 100 2000 2000 2000 2000
0.25 0.5 -0.4 200 2000 2000 2000 2000
0.25 0.5 -0.4 500 2000 2000 2000 2000
0.25 0.5 -0.2 50 2000 2000 2000 2000
0.25 0.5 -0.2 100 2000 2000 2000 2000
0.25 0.5 -0.2 200 2000 2000 2000 2000
0.25 0.5 -0.2 500 2000 2000 2000 2000
0.25 0.5 0 50 2000 2000 2000 2000
0.25 0.5 0 100 2000 2000 2000 2000
0.25 0.5 0 200 2000 2000 2000 2000
025 05 0 500 2000 2000 _______: 2000 2000
0 3.5 -0.4 50 2000 1996 1999 2000
0 3.5 -0.4 100 2000 1999 1998 2000
0 3.5 -0.4 200 2000 2000 2000 2000
0 3.5 -0.4 500 2000 2000 2000 2000
0 3.5 -0.2 50 2000 1999 1996 2000
0 3.5 -0.2 100 2000 1999 1999 2000
0 3.5 -0.2 200 2000 1997 1998 2000
0 3.5 -0.2 500 2000 2000 2000 2000
0 3.5 0 50 2000 1993 1999 2000
0 3.5 0 100 2000 1998 1996 2000
0 3.5 0 200 2000 1999 1999 2000
0 3.5 0 500 2000 1999 1999 2000
0 0.5 -0.4 50 2000 2000 1998 2000
0 0.5 -0.4 100 2000 1999 1998 2000
0 0.5 -0.4 200 2000 2000 1998 2000
0 0.5 -0.4 500 2000 2000 2000 2000
0 0.5 -0.2 50 2000 2000 1999 2000
0 0.5 -0.2 100 2000 2000 1999 2000
0 0.5 -0.2 200 2000 2000 2000 2000
0 0.5 -0.2 500 2000 2000 2000 2000
0 0.5 0 50 2000 1998 1998 2000
0 0.5 0 100 2000 1999 2000 2000
0 0.5 0 200 2000 2000 2000 2000
0 0.5 0 500 2000 2000 2000 2000
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Table C-3  Goodwin et al. dataset: NB-logged including baseline characteristics fitted to the
intervention count (n=125)

Estimate SE FRR (95% ClI) P
Intervention -0.441 0.155 0.643(0.473, 0.874) 0.004
Log(baseline count + 0.5)  0.946 0.056 2.574(2.303,2.878) <0.001
Female -0.062 0.167 0.940(0.675, 1.307) 0.708
Age 0.012 0.010 1.012(0.992,1.033) 0.243
Years since diagnosis 0.027 0.014 1.028(1.000, 1.056) 0.046

Hoehn & Yahr
Stagel 0.019 0.285 1.019(0.580, 1.791) 0.947
Stage 2 1
Stage3 -0.233 0.191 0.792(0.543, 1.155) 0.221
Stage4 -0.070 0.249 0.932(0.569, 1.526) 0.777
Living status
With partner
Alone 0.284 0.194 1.328(0.905, 1.948) 0.143
With family/friends  1.421 0.629 4.141(1.191, 14.392) 0.024
Residential home -1.373 1.107 0.253(0.028, 2.272) 0.215

HP 0.468
Dispersion 11

AIC 750.7
Overdispersion test 0.641

Table C-4  Goodwin et al. dataset: NB-logged fitted to the follow-up count (n=120)

Estimate SE FRR (95% Cl) P
Intervention -0.335 0.219 0.716 (0.464, 1.103) 0.126
Log(baseline count + 0.5)  0.927 0.068 2.528(2.208, 2.894) <0.001
HP 1.105
Dispersion 11
AIC 700.4
Overdispersion test 0.305
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Table C-5 Goodwin et al. dataset: NB-logged including baseline characteristics fitted to the
follow-up count (n=120)

Est. SE FRR (95% Cl) P
Intervention -0.369 0.220 0.691 (0.447, 1.070) 0.094
Log(baseline count + 0.5) 0.942 0.076 2.566 (2.206,2.984) <0.001
Female 0.028 0.234 1.029 (0.646, 1.638) 0.903

Age 0.003 0.014 1.003(0.975, 1.032) 0.840
Years since diagnosis 0.026 0.019 1.026(0.988, 1.066) 0.183
Hoehn & Yahr

(
(
(
(

Stagel 0.525 0.379 1.690 (0.798, 3.581) 0.166
Stage 2
Stage3 -0.109 0.277 0.896(0.517,1.553) 0.693
Stage4 0.103 0.349 1.109 (0.554, 2.216) 0.768
Living status
With partner
Alone 0.048 0.274 1.049 (0.609, 1.806) 0.862
With family/friends  0.917 0.893 2.501 (0.426, 14.677) 0.304
Residential home -0.418 0.981 0.658 (0.094, 4.602) 0.670

HP 1.040
Dispersion 11

AIC 7134
Overdispersion test 0.510

Table C-6  EXSart dataset: NB-logged including baseline characteristics fitted to the intervention
count (n=126)

Est. SE FRR (95% Cl) P
Intervention -0.091 0.209 0.913(0.603,1.381) 0.663
Log(baseline count) 0.415 0.065 1.514(1.332,1.721) 0.000
Female -0.279 0.224 0.756 (0.485,1.179) 0.213
Age 0.010 0.013 1.010(0.985,1.036) 0.431
Years since diagnosis 0.022 0.017 1.022(0.989,1.057) 0.189

Hoehn & Yahr
Stage2 -0.837 0.427 0.433(0.186,1.009) 0.050

Stage 3 1
Stage4 0.165 0.286 1.179(0.669,2.076) 0.565
UPDRS -0.007 0.012 0.993(0.970,1.016) 0.540

Living status
With partner
Alone -0.350 0.278 0.704(0.406,1.222) 0.208
With family/friends /others -0.232 0.487 0.793(0.302,2.083) 0.635

HP 0.587
Dispersion 1.0

AIC 450.1
Overdispersion test P =0.552
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Table C-7  EXSart dataset: NB-logged including baseline characteristics fitted to the follow-up
count (n=126)

Est. SE FRR (95% Cl) P
Intervention -0.254 0.236 0.776(0.486,1.239) 0.283
Log(baseline count) 0.240 0.078 1.271(1.089, 1.484) 0.002
Female -0.341 0.247 0.711(0.436,1.159) 0.167

(
(
Age -0.006 0.015 0.994(0.965,1.023) 0.675
Years since diagnosis 0.030 0.020 1.031(0.990,1.073) 0.136
Hoehn & Yahr
Stage2 -1.910 0.532 0.148(0.052,0.425) 0.000

Stage 3
Stage4 0.754 0.325 2.125(1.116,4.045) 0.020
UPDRS -0.022 0.014 0.978(0.952,1.005) 0.101
Living status
With partner 1

Alone -0.416 0.307 0.659(0.359,1.211) 0.175
With family/friends /others -0.192 0.537 0.826(0.285,2.393) 0.721

HP 1.132
Dispersion 11

AIC 550.1
Overdispersion test P=0.283
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