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The analysis of falls counts from falls prevention trials in people with Parkinson’s  

by Han Zheng 

Falls are a common recurrent event for People with Parkinson’s (PwP) and may result in injuries 

and loss of independence in daily activities. Falls prevention trials evaluate whether an intervention 

is effective in reducing falls. The traditional analysis is the logistic regression, but Negative Binomial 

(NB) models have become widely used recently. The distribution of the falls count is usually heavily 

skewed, with a relatively small mean and a few outlying large numbers. These large counts are a 

challenge in modelling falls count because they may have great influence in model estimation, 

especially when there is imbalance between groups.  

This thesis focuses on examining the statistical methods used in analysing falls counts, especially 

the NB model. Diagnostic plots specifically designed to assessing the influence of outliers on NB 

modelling are developed in this context, so that the outliers can be easily identified.  

The falls counts during a pre-randomisation baseline period is usually strongly correlated with the 

falls counts during an outcome period. Approaches to incorporating the baseline count in modelling 

outcome falls counts are examined in three motivating datasets and simulations carried out 

generating data resembling the characteristics of real data with respect to the methods used to 

collect the falls count. Data from trials with prospectively collected outcome counts and 

retrospectively collected baseline counts are examined using an actual dataset and simulations to 

check whether this design impacts on model estimation. Overall, including the logged baseline 

count as a covariate in NB regression was shown to have satisfying power and to be robust when 

the underlying assumption does not hold. 

Some alternative count response models to the standard NB model are also considered: Poisson 

Inverse Gaussian models for heavily skewed data; zero-inflated NB to check for potential 

zero-inflation in falls counts; right-censored/right-truncated NB to reduce the influence of large 

falls counts; finite mixture Poisson model to accommodate the frequent fallers as a subpopulation; 

and random-effects NB models to explore the possibility of modelling longitudinal falls counts. They 

all show potential in dealing with specific issues in analysing falls data. 
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Chapter 1  
 
Introduction 

Falls are common events for people with Parkinson’s (PwP) and often result in injuries (Gray 

and Hildebrand, 2000; Nyström et al., 2016; Pickering et al., 2007; Wang et al., 2014). 

Frequent fallers may develop psychological difficulties, such as loss of confidence in daily 

activities due to fear of falling, which greatly affects their quality of life (Jørstad et al., 2005; 

Yardley and Smith, 2002). 

Randomised Control Trials (RCTs) have been conducted to evaluate the potential of 

treatments for preventing falls, and they are usually referred to as falls prevention trials. 

Typically, after randomisation, participants in an intervention group receive an intervention 

while participants in a control group receive usual care. The number of falls experienced by 

each person during a follow-up period is recorded as the outcome, and then compared 

between groups to evaluate whether the intervention reduces the occurrence of falls. The 

falls count may be collected prospectively via a falls dairy, or retrospectively by asking 

participants to recall the number of falls that occurred during a period in the past. In 

addition to the outcome falls count, it is common to also obtain the number of falls during 

a pre-randomisation baseline period, which is referred to as the baseline falls count in this 

thesis. 

In general, the distribution of a falls count is positively skewed and heavy tailed, with a 

relatively small mean and a few large outliers. Various methods are available for analysing 

data from falls prevention trials. A common approach is to dichotomise falls counts into a 

binary variable and fit a logistic model, which yields an Odds Ratio (OR) to estimate the size 

of the intervention effect. However, valuable information is lost in the process, resulting in 

low statistical power. In contrast to the logistic model, a count response model yields an 

Incidence Rate Ratio (IRR) to estimate the risk of falling based on all falls. The IRR is called 

a Falls Rate Ratio (FRR) in the context of a falls prevention trial, and the 95% Confidence 
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Interval (CI) of the FRR is often reported. Poisson regression is the standard and most 

commonly used count response model. It has an underlying assumption of equidispersion, 

which means that the response variance is equal to the mean. However, this assumption 

rarely holds for falls data due to heterogeneity, which arises when important dependent 

variables are not included in models or not observed in trials. This was described by 

Winkelmann (2008) as “the explanatory variables do not account for the full amount of 

individual heterogeneity in the conditional mean of the dependent variable.” Failing to 

account for heterogeneity in a model results in overdispersion, defined as the variance 

being greater than the mean (Hilbe, 2011). This is a major challenge in the analysis of falls 

counts, as overdispersion leads to inflated type I error rates in model-based hypothesis 

tests. 

In recent years, Negative binomial (NB) regression has grown popular and become the 

recommended statistical model for falls data (Gillespie et al., 2012). It can be regarded as 

an extension of Poisson regression—fundamentally, NB regression is a Poisson model with 

a gamma-distributed random subject effect in the model to accommodate overdispersion. 

Compared to Poisson regression, NB is more robust to heterogeneity: the model-based 

standard errors (SEs) of regression coefficients are not underestimated to the same extent, 

and the type I error rates of the model-based tests are closer to the nominal level. 

1.1 Research objectives 

Despite the growing popularity of NB models for falls data, there are a few challenges in 

practice. The aim of this thesis is to address the issues in analysing falls counts from falls 

prevention trials in PwP, especially for NB and NB-related models. In particular, the thesis 

seeks to address the following topics: 

• Utilising the baseline count in statistical analysis: Incorporating the baseline falls 

count in an NB model is expected to improve the statistical power in the testing of 

intervention effect, because the falls count during a baseline period is usually 

strongly correlated to the outcome count. Some trials collect outcome counts 

prospectively but baseline counts retrospectively. In such trials there is a 

discrepancy in the collection methods between the two counts, which would be 

anticipated to affect the relationship between them. The thesis seeks to examine 
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how best to incorporate the baseline count in NB modelling, and how a discrepancy 

in methods of collecting the counts impacts on modelling. 

• Large outcome falls counts: One of the challenge in modelling falls counts is the 

presence of outliers. Most people record only a few falls during trial follow-up, but 

occasionally some record massive numbers. Although NB models are based on a 

long-tailed distribution, large counts may still be influential in model estimation, but 

it is not straightforward to identify whether a large count is indeed influential and 

how it impacts on the estimation of the intervention effect. The study aims to 

develop diagnostics plots in the context of a falls prevention trial where a baseline 

count has been collected, develop software to automate the production of the plots, 

and explore statistical approaches to reduce the influence of the large outcome 

counts. 

• NB functionality in statistical packages: An aim of the thesis is to review statistical 

packages regarding their functionality in NB modelling to facilitate researchers in 

selecting a package that best meet their requirements.  

• Alternative count response modes: In addition to NB models, alternative count 

response models are studied in the context of modelling falls count. 

1.2 Motivating datasets from falls prevention trials 

Three motivating datasets from falls prevention trials for PwP were made available to this 

project. Each of the three trials is comprised of a baseline period, and one, two, or more 

post-randomisation follow-up periods of falls collection. 

1.2.1 Goodwin et al. dataset 

The Goodwin et al. (2011) trial is an RCT carried out in the South West of England. One 

hundred and thirty PwP meeting the following eligibility criteria were recruited: with a 

diagnosis of Parkinson’s, with a history of at least two falls in the year prior to enrolment 

(the number was obtained via a retrospective question at the screening interview but not 

recorded other than for checking eligibility), with mobilising ability, and resident in or 

registered with a general practitioner in Devon. 
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The recruited PwP were randomised to either an intervention (n=64) or a control group 

(n=66), but not informed of group allocation until they had finished a 10-week baseline 

prospective falls collection period. During 20 weeks of follow-up, each participant 

prospectively recorded the number of falls they experienced in diaries; the number 

recorded during the baseline period is referred to as the baseline falls count. Note that this 

number is different to the retrospective falls count, which was only used to check eligibility. 

After the baseline period (weeks 1-10), the participants in the intervention group received 

one strength and balance group exercise session and two home exercises in each week. 

The intervention sessions lasted for 10 weeks (weeks 11-20), and the participants were 

followed up for another 10 weeks (weeks 21-30). Throughout the trial period, both the 

intervention and control groups received usual care that was delivered by a clinical team 

blind to group allocation. The number of falls recorded during the two outcome periods, 

weeks 11-20 and 21-30, are referred to as the intervention and outcome falls counts 

respectively. 

The following baseline characteristics were made available to this project: sex, age, the 

number of years since diagnosis of Parkinson’s, the Hoehn and Yahr stage, and living status. 

1.2.2 Martin et al. dataset 

The Martin et al. (2015) trial is a parallel delayed-start RCT carried out in New Zealand. The 

aim of the study was to investigate whether cueing could reduce the risk of falling. Cueing 

improves gait for PwP (Nieuwboer, 2008; Spaulding et al., 2013) and may alleviate Freezing 

of Gait (FOG), which is a symptom associated with PwP, but there is currently no evidence 

that a cueing program reduces the risk of falling (Rocha et al., 2014). 

Twenty-one participants with diagnosis of Parkinson’s, over 65 years old, with FOG, 

independently mobile, and with stable Parkinson’s medication were recruited and 

randomized to an Immediate-Start (IS, n=12) or a 6-month Delayed-Start (DS, n=9) group. 

The delayed-start design is an alternative to the standard parallel-group RCT, aiming to 

increase the recruitment rate (Spineli et al., 2017). All participants received the same 

intervention four weeks (IS) or six months (DS) after entering the trial. The intervention 

was a home-based exercise and education program, which provided instruction on cued 

exercises using a metronome. Participants were instructed to record falls in a daily diary. 
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The dataset made available to this project included the count of falls in each of the 30 

weeks, but no baseline characteristics were available in the dataset. 

To make the dataset comparable with the other two, only the first 24 weeks are included 

in the analysis (see Table 1-1). Within these weeks, the IS group has records of falls counts 

after the intervention starts (at week 5), while the DS group is regarded as a control group. 

The reduced dataset thus follows the form of a standard RCT with four weeks of baseline 

and twenty weeks of follow-up falls collection. In the following text, IS and DS are referred 

to as the intervention and control groups respectively. 

Table 1-1 Structure and included weeks in the Martin et al. dataset. 

Group Included data set Excluded data set 

Weeks 1-4 Weeks 5-24 Weeks 24-30 

IS (intervention group) Waiting Receiving intervention Receiving intervention 

DS (control group) Waiting Waiting Receiving intervention 

 

The Martin et al. trial has a limitation compared with the other two trials discussed in this 

section: its sample size of 21 is too small to detect even a large intervention effect.  

1.2.3 EXSart dataset 

The EXSart trial (Ashburn et al., 2007) is an RCT carried out in the UK between October 2002 

and April 2005. The eligibility criteria were: with a diagnosis of Parkinson’s, independently 

mobile, community dwelling, with a history of at least two falls in the previous year (the 

number was obtained via a retrospective question and referred to as the baseline falls 

count), and having passed a gross cognitive impairment test. One hundred and forty-two 

people were enrolled and randomised to an intervention (n=70) or control (n=72) group. 

The participants in the control group received usual care while the intervention group 

received a 6-week home based exercise programme. After the programme the participants 

in the intervention group were telephoned monthly to encourage them to continue the 

exercises. Baseline characteristics that were collected included sex, age, the number of 

years since diagnosis of Parkinson’s, the Hoehn and Yahr stage, UPDRS (defined in section 

2.1), and living status (alone, with partner, and with family/friends/other). 
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The design of the EXSart trial is similar to the other two, but with one major difference—

the baseline and outcome falls were recorded using different methods. The baseline falls 

count was obtained retrospectively, by asking the participants how many falls they had 

experienced in the previous year in the screening interview. After the randomisation, the 

participants were instructed to prospectively record the number of falls they experienced 

in diaries with telephone reminders to do so. The falls count was analysed for the first 8 

weeks and from 8 weeks to 6 months periods, they are referred to as the intervention and 

follow-up counts, respectively. 

1.3 Structure of the thesis 

The rest of the thesis is presented in the following structure: 

• Chapter 2 is a review of the literature, background to falls prevention trials for PwP, 

and the statistical methods used in the thesis. In section 2.1, the diagnosis, 

treatment, and measures of severity for Parkinson’s are introduced, and the 

intervention on falls in PwP are summarised. The designs for falls prevention trials 

are described in section 2.2, especially relating to the baseline count of falls and the 

two methods commonly used to collect the counts in falls prevention trials. In 

section 2.3, we introduce the statistical analyses that can be used for modelling falls, 

focussing on the NB model and NB-related models. Diagnostics for assessing and 

validating NB models are also described in this section. 

• In Chapter 3, NB models are fitted to the three datasets, and compared to the 

Poisson model. The goal of this chapter is to 1) help understand the characteristic 

of the data, and 2) highlight the limitation of the NB modelling when the baseline 

count is not included in the model. 

• Chapter 4 and Chapter 5 aim to provide tools to facilitate applied statisticians in 

analysing falls counts using NB models. 

o In Chapter 4, five statistical packages (Stata, SAS, SPSS, R, and Python) 

are reviewed regarding their functionality for fitting the NB and NB-related 

models. Some models can be fitted using several different modules in a 

package, each supporting different post-estimation commands for 
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producing diagnostics, and the parameterisation of the models may differ 

across modules and packages. The difference between these options are 

discussed to assist in selecting a statistical package that best meets the 

specific goals of modelling.  

o Chapter 5 covers the application of diagnostic plots for NB models and a new 

plot is introduced in section 5.2. It is designed specifically for falls prevention 

trials where an outcome and baseline count are available but can also be 

used for other trials with similar features. An existing diagnostic plot, the 

covariate-adjusted probability plot, is described and examined in section 5.3. 

The possibility of using this plot to provide a visual inspection of 

overdispersion is discussed. In section 5.4, these plots are produced to show 

diagnostic statistics from the Poisson and NB models fitted to the three 

datasets. 

• In Chapter 6 and Chapter 7, a number of approaches to incorporating the baseline 

count in NB or Conditional NB (CNB) models are compared based on the analysis of 

data from the motivating trials, and simulation studies. 

o Chapter 6 is motivated by the Goodwin et al. dataset and focuses on 

scenarios where the outcome and baseline counts are highly correlated, and 

heterogeneity in the outcome count is controlled by incorporating the 

baseline count in modelling. 

o Chapter 7 is motivated by the EXSart dataset, where the outcome was 

collected prospectively but the baseline count retrospectively, which 

introduces greater discrepancy between the two counts, violating the 

assumption underlying the CNB model. The goal of this chapter is to 

examine the robustness of the models to this discrepancy. 

• Chapter 8 describes some other count response models. In section 8.1, the Poisson 

Inverse Gaussian model, which can model heavily skewed count data, were fitted 

to the EXSart dataset. The issue of zero-inflation was examined in the Goodwin et 

al. dataset in section 8.2. The possibility of using the right-censored or 

right-truncated NB model to reduce the influence of large counts is considered in 

section 8.3. Section 8.4 examines whether a finite mixture model could outperform 
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an NB model in accommodating heterogeneity and large counts. Section 8.5 

explores the benefits of fitting the random-effects NB model to a longitudinal count 

dataset. 

• In Chapter 9, the contribution and the limitations of the study are summarised and 

discussed. Potential future research is suggested. 
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Chapter 2  
 
Background 

2.1 Falls among people with Parkinson’s 

In 1817, an English doctor named James Parkinson published an essay (Parkinson, 1817) 

describing a neurological condition that led to “involuntary tremulous motion, with 

lessened muscular power, in parts not in action and even when supported; with a 

propensity to bend the trunk forwards, and to pass from a walking to a running pace: the 

senses and intellects being uninjured.” Parkinson named this condition “Shaking Palsy”, but 

today it is better known as Parkinson’s disease, or now just Parkinson’s. In his essay, 

Parkinson reported some cases who were afraid of falling forwards, and chose to either 

walk “on toes and forepart of the feet” or “take much quicker and shorter steps” to avoid 

falling. Since then, the condition is recognised as a risk factor of falling world-wide. While 

one third of elderly people experience at least one fall every year (Tinetti et al., 1988), for 

People with Parkinson’s (PwP), the proportion is doubled (Wood et al., 2002). 

Guidance from the National Collaborating Centre for Chronic Conditions (National 

Collaborating Centre for Chronic Conditions, 2006) defined Parkinson’s as “a progressive 

neurodegenerative condition resulting from the death of the dopamine containing cells of 

the substantial nigra”. It is the second most common neurodegenerative disorder, with a 

prevalence of about 0.3% in the general population of industrialised countries (Goetz and 

Pal, 2014). As the average age of the global population is increasing, and Parkinson’s is 

becoming more recognized, the number of PwP is anticipated to further increase in the 

future (Rubenis, 2007). 

To this date, the physiological mechanism for the high risk of falling among PwP is unclear. 

Freezing of gait (FOG) was found to be related to falling (Latt et al., 2009). Another possible 

reason causing PwP to fall is activities involving switching from one movement to another. 
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Foongsathaporn et al. (2016) found that switching movement, especially in the vertical 

direction (such as getting out of a car), is correlated to falling. 

Pickering et al. (2007) conducted a meta-analysis of six prospective studies of falling in 

Parkinson’s. The authors found 213 of 461 participants (46%, 95% CI: 38 to 54%) fell within 

3 months, and even amongst those with no history of falling in the previous year the rate 

was 21%. A systematic review conducted by Deandrea et al. (2010) showed that PwP had 

a significantly higher risk of falling (OR: 2.71, 95% CI: 1.08 to 6.84) and recurrent falling (OR: 

2.84, 95% CI: 1.77 to 4.58) than community-dwelling older people without Parkinson’s. 

A prospective cohort (Paul et al., 2017) conducted in Australia studied Fall-Related Hospital 

Admissions (FRHA) and injuries in the general elderly (≥ 60 years). The authors found that 

2.5% of FRHAs were for people with a diagnosis of Parkinson’s, while PwP only comprised 

1.7% of the population in the same age group. PwP had a higher rate ratio for FRHAs (1.63, 

95% CI: 1.59-1.67) than people without Parkinson’s, as well as having longer hospital length 

of stay (median: 9 days versus 6 days). Another finding of the study was that PwP had a 

higher risk of injury (rate ratio: 1.47, 95% CI: 1.43-1.51). Around 67% and 35% of fall-related 

Parkinson’s admissions in the study were related to injury and fracture, respectively. 

Injury and fracture are common consequences of falls (Cumming et al., 1990). Genever et 

al. (2005) reported in a retrospective cohort study that the risk of injury for PwP is about 

twice that of a control group. A study conducted by Melton et al. (2006) showed a similar 

result: the risk of sustaining a fracture is 2.2 times higher in PwP than in non-Parkinson’s 

community dwellers, and the risk of hip fracture specifically is 3.2 times higher for PwP. A 

number of studies indicated that the higher risk of injury for PwP is associated with falling. 

Allcock et al. (2009) reported from a prospective study that 32% and 1.2% of falls 

experienced by PwP resulted in injury and fracture respectively. Nyström et al. (2016) 

found an increased risk of fall-related injury (OR: 1.19) for PwP up to ten years before 

Parkinson’s diagnosis, and an increased risk of fall-related hip fracture (OR: 1.36) more than 

15 years before diagnosis, which suggests that injurious falls are likely to be related to the 

progress of Parkinson’s from an early stage.  

There may be psychological consequences of falls, including fear of falling, avoidance of 

daily activities, as well as loss of confidence and independence (Foongsathaporn et al., 2016; 
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Jørstad et al., 2005). The quality of life for PwP is considerably affected. In a falls study for 

elderly community dwellers, Tinetti et al. (1988) reported that 48% people who fell were 

afraid of falling, and 26% restrained their daily activities (e.g. shopping) to avoid falling.  

The standard medication for Parkinson’s is levodopa (Rascol et al., 2002), which is used as 

a dopamine-replacement therapy (Fahn et al., 2004). Although dopaminergic medicine is 

effective in decreasing bradykinesia and rigidity, it has less effect on falling (Keus et al., 

2004). Despite using medicine or neurosurgery, PwP typically experience worsening body 

function and deteriorated daily activities as their condition progresses (Nijkrake et al., 

2007). 

A potential intervention to prevent falling is physiotherapy, which provides exercises, aids, 

education, and advice to PwP (Deane et al., 2002). It has been shown to improve the 

strength, postural balance, and motor co-ordination (Keus et al., 2004). 

In clinical trials, the severity of Parkinson’s is commonly measured by the Unified 

Parkinson’s Disease Rating Scale (UPDRS) (Tomlinson et al., 2014), which comprises six 

sections (Wade, 1992): I. Mentation, behaviour, and mood; II. Activities of daily living; III. 

the Motor examination; IV. Complications of therapy; and two stand-alone scales V. the 

Modified Hoehn and Yahr staging; and VI. the Schwab and England Activities of Daily Living 

Scale. In 2008, the Movement Disorder Society (MDS) published a revision of this scale 

known as the MDS-UPDRS (Goetz et al., 2008), consisting of revisions to the first four parts 

of the original scale, and excluding Parts V and VI. The Section III Motor Examination is 

similar in both versions of the UPDRS and includes questions regarding: speech, facial 

expression, rigidity, finger tapping, hand movements, pronation/supination of hands, toe 

tapping, leg agility, arising from chair, gait, freezing of gait, postural stability, posture, 

global spontaneity of movement, postural tremor of hands, kinetic tremor of hands, rest 

tremor amplitude, and constancy of rest tremor. Because the questions of motor 

examination are most relevant to falling, Section III is often the only section of the UPDRS 

included in falls prevention trials in Parkinson’s. Although participants should, ideally, rate 

their own disability (Goetz et al., 2008), the motor examination has to be assessed by a 

qualified clinician such as a physiotherapist. 
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The Hoehn and Yahr scale (Hoehn and Yahr, 1967) is a commonly used assessment of 

severity of Parkinson’s for clinical use and research in its own right. The scale classifies 

Parkinson’s into five stages: “1. Unilateral involvement only usually with minimal or no 

functional disability; 2. Bilateral or midline involvement without impairment of balance; 3. 

Bilateral disease: mild to moderate disability with impaired postural reflexes; 4. Severely 

disabling disease; the patient is still able to walk and stand unassisted but is markedly 

incapacitated; 5. Confinement to bed or wheelchair unless aided”. Goetz et al. (2004) 

questioned the reliability of this scale, and proposed a modified Hoehn and Yahr scale, 

which is more specific for intermediate disease stages. The modified version consists of: 

“1.0 - Unilateral involvement only; 1.5 - Unilateral and axial involvement; 2.0 - Bilateral 

involvement without impairment of balance; 2.5 - Mild bilateral disease with recovery on 

pull test; 3.0 - Mild to moderate bilateral disease; some postural instability; physically 

independent; 4.0 -Severe disability; still able to walk or stand unassisted; 5.0 - Wheelchair 

bound or bedridden unless aided.” 

One may anticipate that PwP with poor UPDRS motor examination or more severe Hoehn 

and Yahr stage would experience more falls than those with medium scores since 

maintaining postural balance is more challenging for them. However, Pickering et al. (2007) 

showed an inverse U-shaped curve in a plot of the falls count against the UPDRS motor 

examination score: PwP fell more frequently as the UPDRS rating increased to begin with, 

but the falling rate decreased as UPDRS further increased. PwP with serious balancing 

difficulties may restrict their daily activities to avoid falls and fall related injuries. 

2.2 Falls prevention trials 

In falls prevention trials, outcomes assessing falling may include the rate of falling (or near 

falling), number of fallers, time to first fall, or fall related fractures (Gillespie et al., 2012). 

In this study, we focus on the rate of falls, as it is both practical and has become increasingly 

popular in falls prevention trials. The rate of falls is the number of falls experienced by a 

participant in a certain period of time. The rate is interchangeable with the count of falls if 

the length of observation is the same for all trial participants. The length of observation is 

usually planned to be equal, but in practice participants may drop out of follow-up, usually 

assumed to be missing at random. 
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In addition to the outcome falls count collected during a post-randomisation period, it is 

not uncommon for falls prevention trials to collect the falls count during a 

pre-randomisation baseline period, which is typically planned to have equal duration for all 

participants. A meta-analysis (Pickering et al., 2007), which included six prospective studies 

of falling in Parkinson’s from 2000 to 2004, found that the strongest explanatory variable 

for falls is the number of falls in the previous year. 

2.2.1 Methods for collecting the count of falls 

In a falls prevention trial, there are two main approaches to collecting information on the 

occurrence of falls: the retrospective and prospective methods. 

For both methods the falls count is reported by the trial participants, so the reported 

number of falls depends on each participant’s subjective understanding of falling. It is 

essential to give a clear definition in order to exclude falls related to external reasons. Clark 

et al. (1993) defined a fall as “an event that resulted in a person coming to rest 

unintentionally on the ground or other lower level, not as a result of a major intrinsic event 

or overwhelming hazard”. This definition is strict and precise for falls prevention trials in 

PwP, but other versions have also been used, some of which are not clear and thus may be 

problematic. There are debates for categorizing falls in ambiguous settings. For example, if 

a person learns to collapse on chair or bed intentionally to avoid injury, does it count as a 

fall? 

The retrospective method is a one-off question, asking participants to recall the number of 

falls they experienced over a specified period of time in the past. This approach is easy to 

implement, and thus has become a standard question in trial screening interviews to obtain 

a history of falling, which is often used as an eligibility criterion—for example, a trial may 

only enrol PwP who have experienced at least two falls in the previous year. The reason for 

choosing a threshold on a retrospective falls count is to limit the study population to people 

with a higher risk of falling. If most of the participants experienced no falls during the trial, 

the statistical power for the analysis is anticipated to be low. People who have already 

experienced falls are more likely to have subsequent falls and thus setting the selection 

criterion on the history of falls should increase the power of a trial (Cook and Wei, 2003). 
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When the number of falls is collected using the prospective method, participants are 

instructed to record each occurrence of falling in diaries during a period of follow-up. Lamb 

et al. (2005) recommended recording falls in monthly or shorter diaries, and participants 

should be reminded to complete their diaries by telephone. The prospective approach is 

more time-consuming and expensive, but the advantage of better accuracy compensates 

its higher cost. 

It is not uncommon that participants of falls prevention trials record a large number of falls 

during a study period. This has been found in trials that collect the falls count prospectively 

or retrospectively. The mechanism under frequent falling is not clear for PwP. A possible 

reason is that the frequent fallers have a much higher risk of falling than average PwP; 

Another possibility is that when the falls count is collected retrospectively, participants may 

recall a large number because they had experienced frequent falling during a few weeks 

before the interview. The true reason that large falls counts occurred in falls prevention 

trials in PwP remains an open question. 

Over the years, concerns have arisen regarding the objectivity of the retrospective method 

(Tinetti et al., 1988). Several studies have been conducted to examine discrepancies 

between counts obtained from the retrospective and prospective approaches. Cummings 

et al. (1988) compared both methods in a prospective study. People (not necessarily PwP) 

over the age of 60 were instructed to record falls and were followed up weekly for 12 

months. At the end the study, they were asked to recall whether a fall had occurred within 

the trial period. There were 13% participants who failed to recall falls which were reported 

on their prospective diaries. The correlation between the number of falls recorded 

prospectively and retrospectively was only between 0.28 and 0.59 at 3, 6 and 12 months. 

The authors concluded that the number of falls recalled by elderly people has limited 

accuracy as they tend to forget falls. Because the memory of falling might be reinforced by 

the process of prospective recording, the true bias may be even larger than reported in the 

study.  

Peel (2000) conducted a similar study with a duration of 12 months and showed results in 

line with Cummings et al., but with falling categorised as having “fallen at least once” or 

not. A considerable disagreement was found between the two methods: kappa agreement 

coefficient of 0.7, sensitivity of 79.5%, and specificity of 91.4% for reports of falling. The 
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study further examined the accuracy of recalling the number of falls: over a third of the 

participants did not recall the number correctly, and the proportion of recalled falls became 

smaller as the number of falls increased. 

Mackenzie et al. (2006) found 4% of participants gave false positive self-reports of falling 

and 13% gave false-negatives in a 12-month study (kappa = 0.84). The sensitivity of the 

retrospective recall over six months was 56% (95% CI: 44.1 to 67.5). 

Although these three studies were targeted towards the general elderly rather than PwP, 

the conclusion is anticipated to hold for PwP for two reasons: 1) PwP are predominantly 

elderly people—the onset age of Parkinson’s is rarely before 50 (Tysnes and Storstein, 

2017); and 2) evidence suggests that Parkinson’s is related to memory loss (National 

Collaborating Centre for Chronic Conditions, 2006). Therefore, forgetting falls is likely to be 

an even more serious problem among PwP than among the general elderly population. 

Mackenzie et al. also suggested that the retrospective method may introduce bias into 

group comparisons. The participants in their intervention group were found to recall falls 

more accurately (sensitivity of 71.0%) than those in their control group (sensitivity of 

40.5%), suggesting that intervention may improve the recall of falling, which would make 

the estimate of effect smaller than, or in the opposite direction to, its true value.  A 

Cochrane review of falls prevention trials (Gillespie et al., 2012) described the methods of 

collecting outcome falls counts used in the trials and found that 55% adopted the 

prospective method while the rest either adopted the retrospective method or not clearly 

stated. The latter method was considered to be at high risk of introducing bias. The authors 

recommended that falls “should be recorded daily and monitored monthly.” 

McLennan et al. (1972) conducted a trial to investigate whether Parkinson’s affects the 

hand-writing, which is usually referred to as micrographia. They found micrographia 

occurred in 5% of participants as the first symptom recorded. Difficulty in hand-writing may 

discourage PwP from recording each fall in their diaries. Although they could ask a carer to 

record falls for them, this provides a reason that a prospectively reported number of falls 

might be lower than the true value.  
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2.3 Statistical methods for the analysis of falls counts data 

In falls prevention trials, the number of falls experienced by PwP is typically zero, one, or 

two, but in some cases very large numbers are reported. The distribution has the following 

pattern (an example is shown in Figure 2-1): 

• Positive skew: the mean number of falls in the example dataset is 5.93 and the 

median is 1. 

• With a few outliers: the maximum value in the example dataset is 499. 

 

Figure 2-1 Distribution of an outcome falls count from the EXSart (Ashburn et al., 2007) trial 
(n=125). 

 

Because of the skew, procedures that assume the normal distribution, such as the t-test, 

ANOVA, or linear regression, should not be used. The Mann-Whitney U test (also called 

Wilcoxon rank sum test) is a nonparametric approach and is widely used for skewed data. 

Aban et al. (2009) conducted a simulation study to compare the performance of models 

and tests in the analysis of NB-distributed count data. The study showed that the 

Mann-Whitney U test had lower statistical power than model-based tests, especially when 

the simulated data were closer to Poisson—that is, less overdispersed (see sections 2.3.1 
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and 2.3.3). The study also suggests that Mann-Whitney U test was conservative: its type I 

error rates were found to be lower than the nominal level 0.05 (minimum around 0.01) 

when the simulated data were closer to Poisson. Another drawback of the standard 

Mann-Whitney U test is that it cannot control for covariates, which is often needed in 

clinical trials. Two other nonparametric tests, the van Elteren and the TNONPI  tests, are 

capable of controlling for just one stratification variable, and they are limited to the 

comparison of only two groups (Jakobsen et al., 2015). The probabilistic index model (Thas 

et al., 2012; Vermeulen et al., 2015) can control for covariates and may be considered as a 

generalisation of the Mann-Whitney U test, it is a semiparametric model and its robustness 

to model misspecification has not yet been fully investigated for count data. 

A traditional method of analysing counts of falls is to set a threshold to dichotomise the 

outcome count and then fit a logistic model. In practice, people not falling or falling at least 

once are categorized as “non-fallers” and “fallers” respectively, and people falling less than 

twice and at least twice as “seldom fallers” and “frequent fallers”.  Donaldson et al. (2009) 

conducted a systematic review of fall prevention RCTs for community-dwelling older 

people. The review found that the most popular method of analysing falls data in trials 

reported during the period 1994 to November 2006 was reporting percentages and the 

Odds Ratios (OR) of people falling once or more (47 of 83 trials, 57%). Castañeda and 

Gerritse (2010) pointed out that ignoring the subsequent events results in a great loss of 

information. Cumming et al. (1990) argued that the proportion of participants with at least 

one fall within a time interval only focuses on the first fall. Since each fall has a risk of 

resulting in injury, subsequent falls should not be ignored. They further argued that the risk 

of the first fall is correlated to the length of the study. If a trial lasts a year, the proportion 

of people falling at least once would be much larger than a trial lasting ten weeks, assuming 

the average falls rate is the same in the two trials. 

The advantage of fitting a logistic model is that outliers do not have a large impact on the 

estimation, but information is lost during this process, resulting in low statistical power. 

The power loss may be negligible when analysing a rare event but falling is a common 

recurrent event for many PwP. The dichotomising approach not only ignores the higher risk 

of injuries for frequent fallers, but also discards valuable information that would otherwise 

have been incorporated in statistical analysis. 
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A similar approach is to categorise the outcome count into an ordinal outcome (for example, 

“not falling,” “1-5 falls,” “6-20 falls,” and “more than 20 falls”) and fit an ordinal response 

model. Similar to the dichotomisation approach, modelling the ordinal outcome is robust 

to outliers, and it is anticipated to have higher statistical power than the standard logistic 

model. However, the categorisation of count variable still involves the subjective decision 

of choosing cut-points, and the issue of wasting information persists, although less 

information is lost compared to the standard logistic models. 

A more appropriate approach for analysing falls data is to fit a count response regression 

model, which is based on the mean rate and results in an estimate of the effect size as an 

Incidence Rate Ratio (IRR), referred to as a Fall Rate Ratio (FRR) in this context. Because the 

FRR is based on all falls, it is easier to extrapolate to a wider population. An alternative 

model for a count outcome is based on the median of counts using quantile regression 

(Koenker and Bassett, 1978; Machado and Santos Silva, 2005). Although this model is 

robust to outliers, this study focuses on modelling the mean falls rate because 1) it usually 

requires a smaller sample size; 2) the estimated intervention effect on the mean rate may 

be easier to interpret by practitioners than the effect on the median; and 3) the effects of 

skewness/outliers on the estimation of a mean rate based model can be mitigated by using 

a suitable distribution for the outcome.  

In some cases, logistic models were used because the cut-points bear clinical meaning; 

however, Sroka and Nagaraja (2018) argued that this should not be invoked as a 

justification for dichotomising count data because count response models can also produce 

ORs. They proposed an approach of fitting geometric, Poisson, or NB models with a 

log-odds link function, where the odds are based on the probability of the outcome count 

being greater or equal to the cut-point divided by the probability of the complement. 

Because these models share the same log-odds link function, their estimates are 

comparable to those of logistic models. The authors provided a mathematical proof 

showing that ORs estimated from count response models were more efficient (with higher 

Fisher information and smaller variance) than those from logistic models, and that the 

power improvement increases exponentially (especially for NB models) as the mean of the 

count increases; these were confirmed by their simulation study: the 95% CIs of OR from 
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NB models were only 61-69% as wide as those from logistic models, and the MSEs of 

log	(OR) in NB were only 37.4-50.9% as high as those from logistic models. 

In addition to examining the performance of each model when they were correctly 

specified, Sroka and Nagaraja (2018) included simulations to check their performance 

under model-specification. They simulated data from NB model (with various level of 

extra-Poisson variance) and compared the estimates for a binary covariate between 

Poisson and logistic models. The results bore out the robustness of logistic models to 

outliers: the Poisson models yielded heavily biased estimates when they are overdispersed, 

while the logistic models consistently gave estimates with low bias. 

Though logistic models are robust to outliers, their power is generally low in the context of 

falls prevention trials and thus researchers are moving away from their use. Sroka and 

Nagaraja’s (2018) approach of calculating ORs from count response model will not be 

further investigated in this thesis, because preventing the first or second fall, which are 

commonly-used cut-points for the dichotomisation approach, is not the goal of falls 

prevention trials for PwP in most cases; instead, the thesis focuses on count response 

models, with the aim of attenuating the effects of outliers and overdispersion. 

2.3.1 Poisson regression model 

Poisson regression is the most widely used statistical model for count data (Cameron and 

Trivedi, 2013). It assumes that a discrete random variable 𝑌 follows a Poisson distribution 

with parameter 𝜇 (𝜇 > 0). The Probability Mass Function (PMF) of 𝑌 is given by 

𝑓(𝑦; 𝜇) = 	
exp(−𝜇) 𝜇\

𝑦! , (2-1) 

where 𝑦 ∈ {0, 1, … }. 

One possible derivation of the Poisson distribution is as the limit of the binomial 

distribution: 𝑓(𝑦; 𝑛, 𝑝) = ef\g 𝑝
\(1 − 𝑝)fh\, as the number of trials 𝑛 approaches infinity 

and the probability of success 𝑝  approaches zero, such that 𝑛𝑝  equals a constant 𝜇 

(McCullagh and Nelder, 1989). 
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As the Poisson model is a member of the Generalized Linear Models (GLM) family 

(McCullagh and Nelder, 1989), covariates can be introduced into the model via a linear 

predictor, linked to 𝜇 by the log function, in the form 

𝑔(𝜇)= log(𝜇)=𝒙k𝜷, (2-2) 

where 𝒙  is a vector of 𝑚  covariates 𝑥n, 𝑥I, … , 𝑥o  and with coefficients vector 

𝜷	=(𝛽n, 𝛽I, … , 𝛽o)k. Let 𝛽p  be the parameter for a group allocation variable 𝑥p  (𝑥p = 1 

for the intervention group and 𝑥p = 0 for the control group), then exp(𝛽p) is the FRR for 

the intervention effect. 

Essentially, in Poisson regression the rate of an event is analysed, but when all subjects 

have the same exposure, say, one year, a falls count is effectively the falls rate per year. 

The number of falls occurring during the same length of observation is referred to as a falls 

count in the thesis for the sake of simplification. If participants are lost to follow up due to 

reasons independent of the risk of falling and group allocation (such as administrative 

reasons), the counts of the falls they experience after dropping out are assumed to be 

missing at random and not informative to model estimation (Balakrishnan, 2014). In this 

case, the length of follow-up periods, termed exposure, is different across subjects because 

they are shorter for those who drop-out, and this needs to be accommodated in the model 

by including the exposure as an offset.  

An underlying property of the Poisson distribution is that the variance equals the mean; 

therefore, for Poisson regression: 

E(𝑌|𝒙) = Var(𝑌|𝒙). (2-3) 

which is termed equidispersion. 

In practice, when Poisson models are fitted to count data (including counts of falls), the 

response variance is often greater than the mean, and this problem is referred to as Poisson 

overdispersion, or overdispersion for short (Hilbe, 2011). Overdispersion results in inflated 

type I error rates in statistical tests based on Poisson models, leading to false positive test 

results (Breslow, 1990).  
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As overdispersion is common in falls data, the basic Poisson model is generally not suitable 

for analysing datasets from falls prevention trials. The reasons causing overdispersion and 

the alternative models are discussed in the following sections. 

2.3.2 Heterogeneity and mixed Poisson models 

Overdispersion may be caused for a number of reasons. In Poisson regression, each of the 

recurrent events is assumed to be independent of the others. If there are unobserved 

(latent) prognostic variables, the variance will exceed its mean. Overdispersion may also 

arise when there is positive correlation between events, which is termed positive 

occurrence dependence. If the explanatory variables in a model do not incorporate all the 

heterogeneity across individuals in a study, the problem is called unobserved heterogeneity, 

or heterogeneity for short (Winkelmann, 2008). 

Let 𝑌  denote a count variable that follows a Poisson distribution with a conditional 

expectation of 

E(𝑌|𝒙, 𝑠) = exp	(𝒙k𝜷)𝑠, (2-4) 

where 𝑌 ∈ {0, 1, … }, 𝒙 is a vector denoting the 𝑚 observed covariates 𝑥n, 𝑥I, … , 𝑥o, 𝜷 is a 

vector of the 𝑚 coefficients, and 𝑠 is a random variable representing the effects of the 

unobserved heterogeneity. Suppose that 𝑠 follows a distribution with density 𝑔(𝑠), then 

𝑓(𝑦|𝒙) = s 𝑓(𝑦|𝒙, 𝑠)𝑔(𝑠)𝑑𝑠
u

v
, (2-5) 

where 𝑠 > 0. Based on (2.5), we can construct a mixed Poisson model with a random 

subject effect 𝑠, in which the heterogeneity is accommodated (Lawless, 1987). To ensure 

identifiability of the regression parameters, without loss of generality, we choose that 𝑠 

satisfies that E(𝑠) = 1. There are three distributions that are commonly employed: the 

gamma, the inverse-Gaussian, and the log-normal distribution. They result in the following 

three mixed Poisson models: NB, Poisson Inverse Gaussian (PIG) (Dean et al., 1989), and 

Poisson log-normal (Winkelmann, 2008). The NB model is the only one with a closed form 

solution for likelihood function, while estimation of the other two models is based on 

simulation or quadrature (Hilbe, 2011). 
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There are alternative models based on the same underlying mixed Poisson distribution. 

Cook and Wei (2003) proposed the Conditional Negative Binomial (CNB) model, which is 

derived from the joint distribution of a baseline and outcome count, with a shared 

gamma-distributed random subject effect, by conditioning on the baseline count. The NB 

model can also be derived from the joint distribution by marginalising over 𝑠, as shown in 

equation (2-5). The CNB model is discussed in detail in section 6.2.1. 

The main focus of the thesis is the NB model, but the PIG model is investigated in section 

8.1. 

2.3.3 Negative binomial regression model 

The NB regression was first described by Glynn and Buring (1996) as a statistical model for 

analysing the rate of a recurrent event in medical studies. 

The NB regression model is a generalization of the standard Poisson model, allowing extra 

variation in the outcome count of falls by including a random subject effect that follows a 

gamma distribution with mean 1 and variance 𝛼. The variance function of NB model is 

derived as 

Var(𝑌) = 𝜇 + 𝛼𝜇I. (2-6) 

It is sometimes referred to as the NB2 model (Hilbe, 2011), as the extra variance over the 

mean is provided by the product of 𝛼 and the quadratic form of the mean (𝜇I). Another 

parameterization for the variance function is 

Var(𝑌) = 𝜇 +
𝜇I

𝜃,  
(2-7) 

where 𝜃 = 1/𝛼. The variance function in the (2-7) parameterisation is less straightforward 

but is the default in some statistical packages. 

The parameter 𝛼 reflects the amount of Poisson overdispersion: as 𝛼 approaches zero, the 

NB model tends to a Poisson model; a larger 𝛼  indicates greater overdispersion. Hilbe 

(2011) refers to 𝛼 as the Heterogeneity Parameter (HP), because it indicates how much 

heterogeneity has been accounted for in the gamma component. 
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The PMF of the NB distribution (Hilbe, 2014) is: 

𝑓(𝑦; 𝜇, 𝛼) = 	
Γ(𝑦 + 𝛼hn)

Γ(𝑦 + 1)	Γ(𝛼hn) x
1

1 + 𝛼𝜇y
z{|

x
𝛼𝜇

1 + 𝛼𝜇y
\
, (2-8) 

where 𝑦 ∈ 	 {0, 1, … }. 

A linear predictor for the parameter 𝜇 in the NB model can be set up in an identical way to 

that for a Poisson model. An FRR is again calculated by exponentiating the coefficient of 

the covariate in question. The difference between NB and Poisson regression is that, 

because overdispersion is accommodated in the subject effect, NB produces more accurate 

model-based SEs, and it also results in a type I error rate that is closer to the nominal level 

in significance testing of intervention effects (Lawless, 1987). 

Because NB is a GLM if 𝛼 is constrained to be constant  (Lawless, 1987), it can be estimated 

using an amended version of the Iteratively Reweighted Least Squares (IRLS) algorithm, 

which is used in the estimation of GLM models (Nelder and Wedderburn, 1972). The 

procedure for fitting the NB model as a GLM (Hilbe, 2011; Hilbe and Robinson, 2016) is to: 

1) estimate 𝛼 with a working 𝜇̂ extracted from an initial iteration of Poisson or the previous 

NB GLM fit, and 2) estimate the regression coefficients with 𝛼 fixed to 𝛼~ from the previous 

step. These steps are repeated iteratively until convergence is achieved. 

A factor for trial allocation may be included in an NB model, and then tested using the Wald, 

score, or Likelihood Ratio (LR) test. Aban et al. (2009) recommended using the score test 

when the sample size is small (less than 50) because its type I error is closer to the nominal 

level than other tests, and using the Wald and LR tests for trials with reasonably large 

sample sizes because of their higher power. They found that the power of the Wald and LR 

tests were almost identical. Because the Wald test is the default option for NB modelling 

in most statistical packages, it will be the focus of the analysis in the following chapters. 

The goodness of fit of NB models can be examined using the Akaike Information Criterion 

(AIC) or Bayesian information criterion (BIC) statistics. AIC is defined as (Akaike, 1974): 

AIC = −2ℒ� + 2𝑚, (2-9) 
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where ℒ� is the maximised log likelihood of the model and 𝑚 is the number of estimated 

parameters; BIC is defined as (Schwarz, 1978): 

𝐵𝐼𝐶 = −2ℒ� + log(𝑛)𝑚. (2-10) 

where 𝑛 is the number of subjects. 

Although the NB model is recommended for analysing falls data (Gillespie et al., 2012; 

Robertson et al., 2005), it was found to be under-used (20/83, 24%) in a systematic review 

of falls prevention trials from 1994 to November 2006 (Donaldson et al., 2009).  

There are other types of NB models, but NB2 is the standard and most commonly used NB 

model (Hilbe, 2011). It is conventional to refer to NB2 as the NB model for simplification. 

We follow this terminology unless a different type of NB model is used, in which case we 

switch to the full name NB2. A review of statistical packages regarding their functionality 

for fitting other types of NB models is included in Chapter 4. These models are described 

below. 

Linear negative binomial model (NB1) 

In linear NB models, the variance function is parameterised as Var(𝑌) = 𝜇 + 𝛿𝜇 where 

𝛿 > 0  (Cameron and Trivedi, 1986). This model is usually referred to NB1 because, 

compared with the quadratic form of 𝜇 in the NB2 variance function, the linear NB model 

has a variance function with a linear form of 𝜇. 

The NB1 distribution is derived from 𝑌	∼	Poisson(𝜆�), where 𝜆�	∼	gamma(1/𝛿, 𝜇). The 

PMF of NB1 is 

𝑓(𝑦; 𝜇, 𝜔) = 	
Γ(𝑦 + 𝜇)

Γ(𝑦 + 1)	Γ(𝜇) x
1

1 + 𝛿y
�

x
𝛿

1 + 𝛿y
\

. (2-11) 

Truncated and censored negative binomial models 

A truncated distribution arises when the range of the outcome 𝑌 is a subset of the range 

of the original distribution (Rigby et al., 2017). For example, if in a falls trial all the 

participants reporting over 100 falls are excluded, the resultant distribution of the falls 

count is right-truncated, and if the participants who report less than 2 falls are excluded, 
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the distribution is left-truncated. A censored distribution occurs when the exact value of 

the observation 𝑦�  is unknown given 1) 𝑦� ≤ 𝑐n (left censoring), 2) 𝑦� ≥ 𝑐I (right censoring), 

or 3) 𝑐� ≤ 𝑦� ≤ 𝑐�  (interval censoring) where 𝑐n  to 𝑐�  are known positive integers 

(Cameron and Trivedi, 2013). When the outcome count is truncated or censored, it is 

necessary to adjust the PMF of the NB model to accommodate the censoring or truncation 

structure. 

Terza (1985) proposed the right-censored model as a solution to fit count response models 

to survey data, in which a common way to collect a count of an event is via a survey 

question, and one answer is commonly specified as “x times or more” where x stands for a 

positive integer. Cameron and Trivedi (2013) considered this model as a solution to 

attenuate the great influence of outliers.  

The estimation of right-censored NB models is similar to the survival models. Let 𝑑�  be a 

censoring indicator such that 𝑑� = 1 if 𝑦� ≤ 𝑐 and 𝑑� = 0 if 𝑦� > 𝑐, where 𝑐 is a cut-point. 

For 𝑛 independent observations, the log-likelihood function of a right-censored NB model 

is given by: 

ℒ(𝜇, 𝛼) =�[𝑑�log	(𝑓(𝑦�, 𝜇, 𝛼)) + (1 − 𝑑�)log	(1 − 𝐹(𝑐, 𝜇, 𝛼))]
f

��n

, (2-12) 

where 𝑓(𝑦�; 𝜇, 𝛼) are 𝐹(𝑦�; 𝜇, 𝛼) is the PMF and Cumulative Mass Function (CMF) of NB, 

respectively (Brännäs, 1992; Cameron and Trivedi, 2013). 

Grogger and Carson (1988a, 1988b) were the first to study truncated count response 

models: they proposed the zero-truncated Poisson and NB models to analyse count data 

with no zeros — a special case of left-truncation. Gurmu and Trivedi (1992) generalized the 

truncated models for left- and right-truncated distribution. The PMF of right-truncated NB 

model (Gurmu and Trivedi, 1992) can be written as: 

Pr(𝑌 = 𝑦	| 𝑌 ≤ 𝑐) =
𝑓(𝑦; 𝜇, 𝛼)
𝐹(𝑐; 𝜇, 𝛼) . (2-13) 

Cameron and Trivedi (2013) pointed out that the right-truncated and right-censored 

models can both be used to solve the issue of outliers, but less information is lost in the 
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right-censored model because large counts are revalued and labelled as right-censored, 

instead of dropped. 

Zero-Inflated Negative Binomial (ZINB) 

When there are excessive zero counts, it is possible that some zeros are generated from a 

process that is different to the count process. For example, if a participant of a falls 

prevention trials has fallen at least once during an observational period but has recorded 

no falls in the falls dairy, this zero count would be a different process to the zero count 

reported by another participant who has not experienced any falls during the period. It 

would be impossible to distinguish these two source of zeros, so the natural approach is to 

account for the excessive zeros in a model. 

To solve the issue of excessive zeros, Lambert (1992) proposed the Zero-Inflated Poisson 

(ZIP) model, which assumes the zeros are generated from a binary component and a count 

component: the binary component generates excessive zeros with probability 𝜋. The count 

component accounts for the remaining 1 − 𝜋  probability and is assumed to follow a 

Poisson distribution (including zeros). 

The Zero-Inflated NB (ZINB) model is an extension to the ZIP model by allowing both zero-

inflation and overdispersion (Yau et al., 2003). In ZINB models, the distribution of the 

response variable 𝑌 can be written as (Ridout et al., 2001) 

Pr(𝑌 = 0) = 𝜋 + (1 − 𝜋) x
1

1 + 𝛼𝜇y
z{|

 (2-14) 

for zero counts, and 

Pr(𝑌 = 𝑦) = (1 − 𝜋)
Γ(𝑦 + 𝛼hn)

Γ(𝑦 + 1)	Γ(𝛼hn) x
1

1 + 𝛼𝜇y
z{|

x
𝛼𝜇

1 + 𝛼𝜇y
\

 (2-15) 

for 𝑦 > 0; 𝜋 is usually parametrised with a logit link such that 

log e
𝜋

1 − 𝜋g = 𝒛k𝜸, (2-16) 
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where 𝒛 is the vector of inflation covariates and 𝜸 is the vector for the corresponding 

coefficients. 

The Vuong test (Vuong, 1989) compares two non-nested models fitted to the same data. It 

is regularly used to test zero-inflation by comparing the ZINB to the standard NB model, or 

ZIP to the standard Poisson model. The test statistic is asymptotically normally distributed, 

with positive test statistic values in favour of zero-inflated models while negative values in 

favour of standard NB or Poisson models. Desmarais and Harden (2013) showed that the 

Vuong test is biased in favour of choosing the ZINB model instead of the standard NB model. 

The authors proposed correcting the Vuong test statistic using the AIC or BIC statistic. They 

conducted a simulation study to compare the test results with corrections to that for the 

original test. The results confirmed that the Vuong test without corrections rarely rejects 

ZINB when the true model was NB but performed the best when the true model was ZINB. 

The simulations also showed that the AIC-based correction moderately favours ZINB, while 

the BIC-based correction favours NB. 

Heterogeneous NB (NB-H) model 

In the heterogeneous NB (NB-H) model, 𝛼  in equation (2.6) is modelled with a linear 

predictor (Hilbe, 2011; Venkataraman et al., 2016), taking the form of log(𝛼�) = exp(𝒛�k𝜸). 

2.3.4 Diagnostic statistics 

Anscombe Residual 

Residuals are informative for examining the fit of a model and the variability that remains 

unexplained by a model. McCullagh and Nelder (1989) described that an ideal residual “can 

be used to explore the adequacy of fit of a model, in respect of choice of variance function, 

link function and terms in the linear predictor.” Among the numerous types of standardised 

residuals available for NB regression, the Anscombe residuals (Anscombe, 1972) are 

reasonably normally distributed, and heterogeneity and outliers are easily identified (Hilbe, 

2011; McCullagh and Nelder, 1989). 

The Anscombe residual for the NB model (Hilbe, 2011) is defined as 
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𝑟�� =

3
𝛼~ �(1 +	𝛼~𝑦�)

I
� − (1 +	𝛼~𝜇̂�)

I
�� + 3�𝑦� −	 𝜇̂�

I
��

2(𝛼~𝜇̂�I +	 𝜇̂�)
n
�

. (2-17) 

For models in the exponential family, Anscombe residuals approximately follow the 

standard normal distribution (Cameron and Trivedi, 2013). However, the NB model is not 

a member of the exponential family and I have not found literature that discusses whether 

the Anscombe residuals for NB models approximate the standard normal distribution. Hilbe 

(2011) recommended the Anscombe residual for NB models because it generally achieves 

better normality than the other residuals. Because of this, the Anscombe residual is 

reported for model diagnostics throughout the thesis. 

Leverage 

The diagonal of the hat matrix, a vector, is called leverage, and is a measure of the overall 

extremeness of the values in the explanatory variables for each subject (Madsen and 

Thyregod, 2010).  

In NB regression, the hat matrix (Atkinson and Riani, 2012; Hilbe, 2011) is defined as: 

𝒉 = 𝑾
n
I𝑿(𝑿k𝑾𝑿)hn𝑿k𝑾

n
I, (2-18) 

where 𝑿 is an 𝑛 × 𝑚 matrix denoting 𝑚 explanatory variables for 𝑛 subjects, 𝜷 is a vector 

of the 𝑚 coefficients, 𝑾 is a diagonal matrix where the element in row 𝑖 and column 𝑖 is: 

𝑤�,� =
1

𝑉(𝜇̂�)
x
𝜕𝜇�
𝜕𝜂�

y
I

, (2-19) 

𝑉(. ) is the variance function for NB regression in equation (2-6), and 𝜂�  is the 𝑖©ª element 

of 𝜼 = 𝑿k𝜷. 

A high leverage suggests that the explanatory variables of this subject show low agreement 

with the other subjects, and this subject may potentially be influential in model estimation 

(Cook and Weisberg, 1982; Davison, 2003). 
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Cook’s distance 

In linear regression, the influence of each subject can be measured by Cook’s distance 

(Cook, 1977). The measure of influence of subject 𝑖 in a GLM (Williams, 1987) equivalent 

to Cook’s distance for linear regression is given by  

COOKD� =
ℎ�

𝑚(1 − ℎ�)
(𝑟�

¯)I, (2-20) 

where ℎ�  is the 𝑖©ª  element of the leverage vector, and 𝑟�
¯  is the standardised Pearson 

residual for subject 𝑖: 

𝑟�
¯ =

𝑦� − 𝜇̂�
°𝑉(𝜇̂�)(1 − ℎ�)

. (2-21) 

This measure is an approximation of 2𝑚hn[ℒ(𝜷±) −	ℒ(𝜷±(�))], where the 𝑚 × 1 vector 𝜷±(�) 

denotes the Maximum Likelihood Estimates (MLE) of 𝜷  after subject 𝑖  is deleted, and 

ℒ(𝜷±(�)) is the log likelihood evaluated at 𝜷±(�). Statistics based on assessing the effect of 

deletion are usually referred to as deletion diagnostics (Atkinson and Riani, 2012). 

Cook’s distance is a useful tool for detecting outliers. Because it is based on both the 

standardised Pearson residuals and the leverage, the Cook’s distance measures the overall 

influence of each subject on the goodness of fit of a model. It is especially useful if the 

leverage of a subject is large but the residual is small, or vice versa. 

DFBETA 

The DFBETA statistic (Belsley et al., 1980; Williams, 1987) is a deletion diagnostic that 

approximates the influence of removing subject 𝑖  on the estimation of a regression 

coefficient. The DFBETA of 𝛽²  (𝑗 = 1,… ,𝑚) for subject 𝑖 is defined as the 𝑗©ª element of 

	𝐃𝐅𝐁𝐄𝐓𝐀� = 𝑤�,�I (1 − ℎ�)
hnI	𝑟�

¯(𝑿k𝑾𝑿)hn𝒙� ≈ 𝜷±–𝜷±(�), (2-22) 

where vector 𝒙�k is the 𝑖©ª row of 𝑿. 
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2.3.5 Assessing overdispersion in Poisson and NB models 

Pearson dispersion statistic 

The Pearson dispersion statistic (Hilbe and Robinson, 2016) can be used to assess both 

Poisson and NB overdispersion. The statistic is defined as (Wood, 2017): 

Pearson	dispersion	statistic =�
(𝑦� − 𝜇̂�)I

𝑉(𝜇̂�)(𝑛 − 𝑚)

f

��n

	, (2-23) 

where 𝑉(𝜇̂�) is the variance function of the model, that is, 𝜇̂�  for Poisson and 𝜇̂� + 𝛼~𝜇̂�  for 

NB regression. 

If the dispersion statistic is close to 1, it suggests that the model is equidispersed; if the 

statistic is greater than 1, it suggests overdispersion. However, this statistic is associated 

with sample size, so that a model with dispersion statistic only slightly greater than 1 may 

indicate overdispersion if the sample size is large. Two formal tests for Poisson and NB 

models are introduced as follows. 

Testing Poisson overdispersion using the boundary likelihood ratio test 

Because Poisson can be regarded as a special case of NB regression as 𝛼 approaches 0, the 

two models are nested. A boundary likelihood ratio test with a boundary at 𝛼	=	0 can be 

conducted to assess whether there is overdispersion in the Poisson model (Cameron and 

Trivedi, 2013), with the deviance given by: 

LR = −2(ℒÀÁ� − ℒÂÃ) (2-24) 

where ℒÀÁ�  and ℒÂÃ denote the log-likelihood of a Poisson model and the NB model fitted 

to the same data and with the same linear predictor. The test statistic LR in equation (2-24) 

asymptotically follows one half chi-square distribution, so the P value from the chi-square 

statistic is divided by 2 (Schlattmann, 2009). 

Testing NB overdispersion using the Kim and Lee score test 

The NB model accommodates overdispersion in a gamma distributed subject effect. 

However, if overdispersion exceeds that from the NB variance, the NB model itself can also 

be overdispersed. 
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Xue and Deddens (1992) included the extra-variation in NB regression as a multiplicative 

random effect 𝑣�  

𝑌�|𝑣� ∼ 𝑁𝐵(𝜇�𝑣�, 𝛼), (2-25) 

such that in addition to the heterogeneity accommodated by the gamma component in the 

NB2 model, there is hidden heterogeneity 𝑣�  with mean 1 and variance 𝜎I  that is not 

controlled for in the NB model. The authors proposed a score test for 𝜎I as a means for 

testing for NB overdispersion. 

Kim and Lee (2018) pointed out that the Xue and Dedden test treated 𝛽 and 𝛼 as fixed, and 

showed it to be conservative in a simulation study. The authors proposed a score test that 

adjusts for the uncertainty of 𝛽�  and 𝛼~, and the test statistic is given by: 

𝑇 =
𝑆(𝛽�, 𝛼~)

É𝐼�(𝛽�, 𝛼~)
∼ 𝑁(0,1), (2-26) 

where 𝑆(. ) is the score function for 𝜎I = 0: 

𝑆(𝛽, 𝛼) =
𝜕 log 𝐿(𝛽, 𝛼, 𝜎I)

𝜕𝜎I Ë
ÌÍ�v

=
1
2�

(𝑦� − 𝜇)I − (𝜇� + 𝛼𝜇�𝑦�)
(1 + 𝛼𝜇�)I�

. (2-27) 

The formula for 𝐼�(𝛽�, 𝛼~) is not given here due to its length; see Kim and Lee (2018) for 

details. 

Kim and Lee showed that their score test had higher power than Xue and Deddens’s test 

and its type I error is closer to the nominal level 0.05. 

2.3.6 Robust standard errors 

Assume a model is fitted to a sample of 𝑛 observations and 𝛃± is the vector of MLEs of the 

model parameters, the robust variance estimator (also referred to as the sandwich 

estimator) for 𝛃± (Hardin, 2003; Huber, 1967; White, 1980) is defined as 

𝐕ÐÑÒÓ𝛃±Ô = 𝐇hn𝐌𝐇hk, (2-28) 

where 𝐇 is the Hessian of the log likelihood, and 
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𝐌 =
𝑛

𝑛 − 1�𝐮�k𝐮�

f

��n

, (2-29) 

where 𝐮�  is the score at the MLE 𝛃± for subject 𝑖. 

The robust standard errors for 𝛃± are given as 

𝐒𝐄ÐÑÒÓ𝛃±Ô = °diag(𝐌). (2-30) 

The robust standard error is a consistent estimator of the standard deviation of the 

sampling distribution of 𝛽�  even when the variance function is misspecified (Hardin and 

Hilbe, 2007), and they are robust when there is overdispersion and model misspecification 

(Hardin, 2003). 

2.3.7 Finite mixture models 

If a sample is drawn from a homogeneous population, the count outcome 𝑦  can be 

described using a PMF 𝑓(𝑦|𝜆) where 𝜆 is a parameter of population. However, if there are 

subpopulations such that for each sub-population 𝑗  there is a corresponding 𝜆² , this is 

referred to as unobserved population heterogeneity (Böhning, 1999; Böhning and Seidel, 

2003). 

A Finite Mixture Model (FMM) accommodates the population heterogeneity using a 

mixture model such that 

𝑓(𝑦, 𝑃) =�𝑝²𝑓(𝑦, 𝜆²)
p

²

, (2-31) 

where 𝑝²  is the proportion of the subpopulation (also known as component) 𝑗; the number 

of components 𝑘 may or may not be pre-specified (Schlattmann, 2009). 

2.3.8 Longitudinal negative binomial models 

Negative binomial models assume that observations are independent of each other 

(Breslow, 1996). This assumption is violated when observations are correlated within an 

observed data structure, which is usually termed panels (Cameron and Trivedi, 2013). Such 

data are called panel data, and often referred to as longitudinal data when “each of a 
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number of subjects or patients give rise to a vector of measurements representing the 

same variable observed at a number of different time points” (Everitt, 1995). 

When falls counts are recorded prospectively, they may be made available in the dataset 

as the number of falls recorded during, say, each week of an observation window. The 

datasets usually include an id variable to denote the subject and a time variable to indicate 

the weeks. 

In general, there are four approaches for analysing count panel data: Generalized 

Estimation Equations (GEE), unconditional/conditional fixed-effects, and random-effects 

models (Hilbe, 2011). In the thesis, only the random-effects NB model is used in the analysis 

(section 8.5), the GEE and fixed-effects NB models are described here because Chapter 4 

contains a review of software functionality for fitting NB related models. 

Generalized Estimation Equations NB models 

GEE models are an extension to GLMs that modify the variance function with a specified 

correlation matrix structure that parameterizes within-subject correlation (Liang and Zeger, 

1986). The goodness of fit of GEE models can be assessed using the AIC, QIC (Quasi-

likelihood Information Criteria), and CIC (Correlation Information Criteria) statistics; see Hin 

and Wang (2009) and Pan (2001) for details. Hin and Wang (2009) conducted a simulation 

study and showed that CIC had higher sensitivity and specificity in choosing the correct 

correlation structures than both QIC and AIC. The command to produce the QIC and CIC 

statistics in Stata is described in section 4.2. 

Fixed-effects NB models 

Unconditional fixed-effects NB models treat the subject effect as fixed, including a 

categorical subject indicator in the model linear predictor to estimate a different intercept 

for each participant of the trial, but it is only applicable when the number of participants 

(𝑛) is small: a large 𝑛 results in too many parameters in the linear predictor (Cameron and 

Trivedi, 2013). Hilbe (2011) suggested that 𝑛 should be “less than 20” as a guide. When 

there are a large number of subjects, it is preferable to use a conditional fixed-effects NB 

model, which conditions on the subject effect through a sufficient statistic ∑ 𝑦�©© , where 

𝑦�© denotes the number of counts for subject 𝑖 during the 𝑡©ª observation period (Hausman 

et al., 1984).  
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Although the fixed-effects model accounts for the subject effect, they are of little practical 

value for falls prevention trials. The reason is that the main goal of these trials is to study 

the effect of an intervention, estimated from the time-invariant regressor of group 

allocation, which is collinear with the fixed subject effect because it is also time-invariant 

(Hardin and Hilbe, 2002). 

Random-effects NB models 

Hausman et al. (1984) proposed the random-effects NB model for analysing longitudinal 

counts data. 

Let 𝑦�© be the falls count in the 𝑡©ª observation for subject 𝑖. Assume 𝑦�©|𝛾�©	∼	Poisson(𝛾�©), 

where 𝛾�©|𝛿� ∼ gamma(𝜇�©, 𝛿�) and 𝛿�  is the heterogeneity parameter for subject 𝑖. The 

PMF of 𝑌�© conditional on 𝜇�n and 𝛿�  is given by 

Pr(𝑌�© = 𝑦�©|	𝜇�n, 𝛿�) =
Γ(𝑦�© + 𝜇�©)

Γ(𝑦�n + 1)Γ(𝜇�©)
x

1
1 + 𝛿�

y
�ÝÞ
x

𝛿�
1 + 𝛿�

y
\Ý|
, (2-32) 

so that Var(𝑌�©) = 𝜇�© + 𝛿�𝜇�©. The PMF in (2-32) is similar to the PMF of an NB1 model as 

shown in equation (2-11), but 𝛿�  now varies across subjects such that 

1
1 + 𝛿�

∼ Beta(𝑟, 𝑠), (2-33) 

which yields a PMF (Hausman et al., 1984; Hilbe, 2011) given by 

Pr(𝑌�© = 𝑦�©; 𝜇, 𝑟, 𝑠)

=
Γ(𝑟 + 𝑠) + ΓÓ𝑟 + ∑ 𝜇�©

fÝ
©�n Ô + ΓÓ𝑠 + ∑ 𝑦�©

fÝ
©�n Ô

Γ(𝑟)Γ(𝑠)ΓÓ𝑟 + 𝑠 + ∑ 𝜇�©
fÝ
©�n + ∑ 𝑦�©

fÝ
©�n Ô

×ß
Γ(𝜇�© + 𝑦�©)

Γ(𝜇�©)Γ(𝑦�© + 1)
.

fÝ

©�n

 

(2-34) 

An advantage of the random-effects NB model over the fixed-effects NB model is that the 

time-invariant variables (including the intervention effect and baseline characteristics) can 

be included as covariates. 
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As shown in equations (2-11) and (2-32), the random-effects NB model is essentially an 

extension of the NB1 model: 𝛿�  is constant across subjects in NB1 but varies in the 

random-effects NB model. Therefore, an NB1 model fitted to the panel data is sometimes 

compared to the random-effects NB model in an LR test. 
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Chapter 3  
 
The characteristics of the three motivating 
datasets: exploratory analysis 

3.1 Introduction 

This chapter includes an exploratory analysis of the three datasets made available to this 

project. Each dataset is from a falls prevention trial aiming to investigate whether a 

physiotherapy or exercise intervention is effective in preventing falls among PwP.  

In general, participants in the three trials recorded or recalled the number of falls they had 

experienced during a baseline period. After the randomisation, they prospectively 

recorded falls during an intervention period, in which they received physiotherapy 

programmes. In two trials, they were followed up for a period of time after the programme 

had ended. Although all three datasets share a common structure, they have unique 

characteristics that are important to data analysis. 

Summary statistics for all the variables made available for each dataset are reported in 

section 3.2. Poisson and NB models are fitted to the falls counts during the outcome 

period(s) of each dataset. The models are compared and evaluated to provide an outline 

of how much Poisson overdispersion can be explained by observed baseline variables 

(excluding the baseline count).  

This chapter aims to answer the following questions:  

• If the baseline count is not collected in a falls prevention trial, would an NB model 

suffice to accommodate overdispersion for a small to medium sample size?  

• Do the baseline characteristics reduce heterogeneity, and which of these variables 

are most important in this respect?  

• Are outliers influential in the estimation and testing of the intervention effect?  
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3.2 Exploratory analysis for the three datasets 

To better understand the three datasets, especially for Poisson overdispersion and other 

issues in NB modelling, both Poisson and NB regression were fitted to the three datasets 

and referred to as: 

• basic models: including a Poisson (Poi-basic) and an NB (NB-basic) models that 

include only one covariate — the group allocation; 

• full models: including a Poisson (Poi-full) and an NB (NB-full) models that include 

the group allocation and the baseline characteristics that are commonly collected 

in falls prevention trials — such as age, sex, severity of Parkinson’s, and social status. 

The basic models yield an FRR to estimate the intervention effect, without controlling for 

other subject-specific variables; whilst the full models incorporate the baseline 

characteristics, which are anticipated to reduce the heterogeneity and improve the 

statistical power in testing intervention effects.  

The models are compared regarding the estimation of the intervention effect and goodness 

of fit. For each covariate included in a Poisson/NB model, the P value is reported from the 

likelihood ratio (LR) test to examine the explanatory power of the variable in modelling falls 

counts. For the categorical variables included in the full models, the largest category is 

chosen as the reference category. 

To examine overdispersion in each model, the Pearson dispersion statistic is produced. We 

test Poisson and NB overdispersion using the boundary overdispersion test and NB 

overdispersion score test, respectively. 

The statistical analysis was conducted in R (version 3.5.0). The Poisson and NB models are 

fitted using the glm() function in the stats package and the glm.nb() function in the 

MASS package, respectively. The P values from the NB overdispersion score test was 

produced using the code made available by the authors (Kim and Lee, 2018). 

Note that though the baseline falls count is by far the most important regression covariate 

for predicting future falls (Pickering et al., 2007), it is not included in the full models in this 

chapter. How to incorporate a baseline falls count in NB models will be discussed in Chapter 

6 and Chapter 7. 
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3.2.1 The Goodwin et al. dataset 

Figure 3-1 shows the distribution of the falls count during the baseline (weeks 1-10), 

intervention (weeks 11-20), and follow-up periods (weeks 21-30) in the Goodwin et al. 

(2011) dataset. Overall, the distributions during the three periods are similar: most 

participants reported only a few falls, but a small number of people recorded outlying large 

numbers. Figure 3-2 shows that the falls counts during the three periods are strongly 

correlated; also, the largest counts shown in Figure 3-1 were reported by the same 

participants. The trial participants, including the most frequent fallers, tended to report 

consistent falls rates. 

 

Figure 3-1 Goodwin et al. dataset: distribution of the falls count during baseline (weeks 1-10, 
n=124), intervention (weeks 11-20, n=125), and follow-up (weeks 21-30, n=126) periods. 
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As shown in Table 3-1, the average falls rate of the control group is around thirty falls per 

ten weeks across the baseline, intervention, and follow-up periods. Although the risk of 

falling may increase as the Parkinson’s progresses, the average falls rate of the control 

group is relatively stable during the whole trial, which may be explained by the short length 

of the study (30 weeks in total). The average count in the intervention group, in comparison, 

decreases from 26.48 per 10 weeks during the baseline period to 17.93 per 10 weeks during 

the intervention period, and is further reduced to 7.36 per 10 weeks during the follow-up 

period.  

The ranges of the reported falls counts are wide: the maximum is over five hundred falls 

within 10 weeks (this participant reported the largest counts for all three periods; see Table 

3-3). In both groups, the falls counts have much greater variances than the means, 

suggesting the presence of overdispersion if the heterogeneity is not sufficiently accounted 

for by covariates in a statistical model. 
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Figure 3-2 Scatter matrix plots of the baseline, intervention, and follow-up falls count in the 
Goodwin et al. dataset. The Spearman’s correlation coefficient 𝜌 and P value is shown in each 
subplot. 

 

𝜌 = 0.813	
𝑃 < 0.001 

𝜌 = 0.719	
𝑃 < 0.001 

𝜌 = 0.846	
𝑃 < 0.001 
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Table 3-1 Summary of the complete falls count during the baseline, intervention, and follow-up 
periods in the Goodwin et al. trial 

Period Group N Missing Mean Median SD (variance) Range 

Baseline period 
(weeks 1-10) 

 

Intervention 60 4 a 26.48 6.5 77.18 (5956.65) 0-531 

Control 64 2 29.08 6.5 78.13 (6103.53) 0-577 

Total 124 6 27.82 6.5 77.36 (5985.15) 0-577 

Intervention period 
(weeks 11-20) 

 

Intervention 61 3 17.93 3.0 56.44 (3185.60) 0-398 

Control 64 2 32.25 6.0 93.41 (8724.89) 0-677 

Total 125 5 25.26 5.0 77.63 (6025.84) 0-677 

Follow-up period 
(weeks 21-30) 

Intervention 56 8 b 7.36 2.5 11.17 (124.85) 0-49 

Control 60 6 c 31.88 4.0 94.32 (124.85) 0-678 

Total 116 14 20.04 3.0 69.11 (4775.87) 0-678 
a ID 1 has missing values during weeks 4-10 (baseline periods); 
b ID 18 and 97 from the intervention group dropped out at week 22; 
c ID 51 and 101 from the control group dropped out at weeks 23 and 21, respectively 

 

The extreme skew of the distribution suggests that Poisson models are likely to be 

overdispersed, but overdispersion cannot be verified unless a model is actually estimated. 

The Poisson and NB models are fitted to the intervention and follow-up falls counts. 

Following the nomenclature defined in section 3.1, the Poisson and NB models are referred 

to as: Poi-basic and NB-basic when the group allocation is the sole covariate; Poi-full and 

NB-full when group allocation, gender, age, years since diagnosed with Parkinson’s, Hoehn 
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and Yahr stage, living status are included in the models. The baseline characteristics that 

are included as covariates in the full models are summarized in Table 3-2. 

Table 3-2 Goodwin et al. trial: characteristics of the participants at baseline 

 
Intervention group 
(n=64) 

Control group  
(n=66) 

Total 
(n=130) 

Sex    

Male 39 (61%) 35 (53%) 74 (57%) 

Female 25 (29%) 31 (47%) 56 (43%) 

Age (years)    

Mean (SD) 72.0 (8.6) 70.1 (8.3) 71.0 (8.5) 

Range 50-87 53-89 50-89 

Years since diagnosis    

Mean (SD) 9.1 (6.4) 8.2 (6.4) 8.7 (6.4) 

Range 1-26 1-30 1-30 

Hoehn and Yahr    

Stage 1   4 (6%)   9 (14%) 13 (10%) 

Stage 2 31 (48%) 28 (42%) 59 (45%) 

Stage 3 16 (25%) 21 (32%) 37 (28%) 

Stage 4 13 (20%)   8 (12%) 21 (16%) 

Living status    

Alone 14 (22%) 19 (29%) 33 (25%) 

With partner 48 (75%) 44 (67%) 92 (71%) 

With family/friends   1 (2%)   2 (3%)   3 (2%) 

Other   1 (2%)   1 (2%)   2 (2%) 

 

Table 3-3 lists the ten most frequently falling participants during each of the baseline, 

intervention, and follow-up periods. The two groups are reasonably balanced for large 

baseline counts. During the intervention period, eight out of ten most frequently falling 

participants were in the control group, possibly because the intervention has reduced the 

falls rate. Because two frequently falling participants in the intervention group dropped out 

before the follow-up period started, only one of the ten most frequently falling participants 

during the follow-up periods was in the intervention group. The baseline characteristics of 

the participants shown in Table 3-3 are listed in Table 3-4, and no clear pattern could be 

seen.  
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Table 3-3 Ten largest falls counts during each of the baseline, intervention, and follow-up 
periods of the Goodwin et al. trial 

Period ID Group Baseline count Intervention count Follow-up count 

Baseline 75 Control 577.0 677 678 

97 Intervention 531.0 398 - 

18 Intervention 267.0 197 - 

95 Control 177.0 245 187 

9 Control 150.0 98 98 

108 Intervention 149.0 50 33 

45 Control 148.0 236 154 

7 Intervention 64.0 8 3 

101 Control 64.0 94 - 

112 Control 61.5 20 25 

Intervention 75 Control 577 677 678 

97 Intervention 531 398 - 

95 Control 177 245 187 

45 Control 148 236 154 

18 Intervention 267 197 - 

9 Control 150 98 98 

101 Control 64 94 - 

12 Control 60 59 50 

44 Control 38 57 48 

22 Control 56 56 97 

Follow-up 75 Control 577 677 678 

95 Control 177 245 187 

116 Control 36 41 173 

45 Control 148 236 154 

9 Control 150 98 98 

22 Control 56 56 97 

99 Control 34 47 65 

11 Control 21 35 50 

12 Control 60 59 50 

96 Intervention 21 39 49 

For each period, the rows are sorted by the grey column 
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Table 3-4 Baseline characteristics of the frequent fallers listed in Table 3-3. 

 ID Group Sex Age Years since diagnosis Hoehn & Yahr Living status 

7 Intervention Male 73 10 Stage 3 With partner 

9 Control Male 71 30 Stage 4 With partner 

11 Control Female 69 20 Stage 3 With partner 

12 Control Male 81 5 Stage 3 With partner 

18 Intervention Male 79 13 Stage 3 With partner 

22 Control Female 72 12 Stage 2 With partner 

44 Control Male 64 6 Stage 2 Alone 

45 Control Male 55 21 Stage 3 With partner 

75 Control Male 71 2 Stage 3 Alone 

95 Control Male 62 7 Stage 4 With partner 

96 Intervention Female 78 5 Stage 1 Alone 

97 Intervention Male 74 10 Stage 4 With partner 

99 Control Male 78 8 Stage 2 With partner 

101 Control Male 70 14 Stage 3 With partner 

108 Intervention Male 55 2 Stage 2 With partner 

112 Control Female 75 5 Stage 3 With partner 

116 Control Male 67 1 Stage 1 With partner 

 

We shall first look at the models fitted to the falls count during the intervention period. 

Intervention period  

As shown in Table 3-5,  the Poi-basic model yields an FRR of 0.556 for the intervention 

effect, which indicates that during weeks 11-20 the fall rate was 44% lower for people 

received the intervention than those received the usual care. 

There is evidence of overdispersion in the Poi-basic model. Firstly, the AIC of Poi-basic is 

more than ten times higher than the AIC of NB-basic. Secondly, Poi-basic results in an 

enormous dispersion statistic (225.215). In addition, the boundary LR overdispersion test 

yields a significant result (P<0.001). Although the LR test of the intervention effect is 

significant (P<0.001) in Poi-basic, it has little meaning since overdispersion often leads to 
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false positives in model-based hypothesis testing, especially when NB-basic yields a 

non-significant (P=0.072) test result. 

The estimates of the intervention effect in the NB-basic and Poi-basic models are almost 

identical, but the SE of the estimate is much larger in NB-basic. This is because SEs in 

overdispersed Poisson regression are typically underestimated. 

The large dispersion statistics and significant NB overdispersion score test result (P<0.001) 

suggests that the NB-basic may also be overdispersed. Consequently, the test of the 

intervention effect based on NB-basic is likely to be liberal. 

Table 3-5 Goodwin et al. dataset: Poi-basic and NB-basic models fitted to the intervention 
count (n=125) 

 Poi-basic NB-basic 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -0.587 0.037 0.556 (0.517, 0.599) < 0.001 -0.587 0.322 0.556 (0.294, 1.051) 0.072 

HP  3.187 

Dispersion 225.215 2.825 

AIC 10026.4 936.7 

Overdispersion test P < 0.001a P < 0.001b 

a Boundary LR overdispersion test; b NB overdispersion score test. 

 

A solution to remedying overdispersion is to include more regression covariates, because 

they may explain heterogeneity at the subject level. This approach also increases the 

statistical power of the model. 

As shown in Table 3-6, the FRRs of the intervention effect from Poi-full (0.513) and NB-full 

(0.538) are close to the FRRs from the basic models. During weeks 11-20, the risk of falling 

for people who received the intervention was expected to be halved compared to those 

who received the usual care, with the remaining covariates held constant. The Poi-full 

model is less overdispersed than Poi-basic, but the dispersion statistic is still large (90.624). 

This is also borne out by the significant boundary LR overdispersion test (P<0.001), and the 

SEs that are an order of magnitude smaller than the SEs from NB-full. 

The LR test of the intervention effect in the NB-full model is significant (P=0.044), but this 

may be caused by the imbalance of large falls count between the two trial arms. Eight out 

of the ten most frequently falling participants during the intervention period, including ID 
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75 who recorded the largest falls count in all three periods, were in the control group (see 

Table 3-3), which may lead to an overestimated intervention effect in preventing falls. 

Table 3-6 Goodwin et al. dataset: Poi-full and NB-full models fitted to the intervention count 
(n=125) 

 Poi-full NB-full 

 Est. SE FRR (95% CI) P Est. SE IRR (95% CI) P 

Intervention -0.667 0.038 0.513 
(0.476, 0.553) 

< 0.001 -0.619 0.289 0.538 
(0.303, 0.955) 

0.044 

Female -1.557 0.055 0.211 
(0.189, 0.235) 

< 0.001 -1.194 0.300 0.303 
(0.167, 0.550) 

0.001 

Age -0.020 0.002 0.980 
(0.976, 0.985) 

< 0.001 -0.015 0.018 0.985 
(0.950, 1.022) 

0.469 

Years since diagnosis -0.017 0.003 0.984 
(0.977, 0.990) 

< 0.001  0.011 0.027 1.011 
(0.958, 1.066) 

0.710 

Hoehn & Yahr    < 0.001    0.003 

Stage 1 -0.148 0.102 0.863 
(0.706, 1.055) 

 0.543 0.513 1.722 
(0.623, 4.755) 

 

Stage 2   1    1  

Stage 3 1.534 0.051 4.635 
(4.190, 5.126) 

 1.104 0.353 3.015 
(1.497, 6.072) 

 

Stage 4 1.752 0.058 5.767 
(5.139, 6.473) 

 1.485 0.469 4.413 
(1.742, 11.180) 

 

Living status    < 0.001    0.458 

With partner   1    1  

Alone 0.373 0.043 1.452 
(1.332, 1.583) 

 0.263 0.354 1.301 
(0.645, 2.624) 

 

With family/friends 0.882 0.253 2.416 
(1.463, 3.989) 

 0.264 1.194 1.302 
(0.122, 13.871) 

 

Residential home -2.904 1.002 0.055 
(0.008, 0.399) 

 -2.410 1.434 0.090 
(0.005, 1.538) 

 

HP      2.365 

Dispersion  90.624     1.459    

AIC  6918.6  914.5 

Overdispersion test P < 0.001a P = 0.038b 

a Boundary LR overdispersion test; b NB overdispersion score test. 

 

Among the baseline characteristics that are included in NB-full as covariates, sex and Hoehn 

and Yahr scale were significant (P = 0.001 and 0.003 respectively). A female PwP has 69.7% 

lower falls rate than a male PwP with the same baseline characteristics and in the same 

group. The CIs of FRR for Stage 3 and 4 Hoehn and Yahr scale both do not contain 1, which 

indicate significant higher risk of falling for PwP with Hoehn and Yahr Stage 3 and 4 than 

with Stage 2 (the reference level). 
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Although NB-full has a smaller dispersion statistic (1.459) than NB-basic (2.825), the NB 

overdispersion score test indicates that it is also overdispersed (P=0.038). 

Follow-up period 

As shown in Table 3-1, four participants dropped out within the first four weeks of the 

intervention period. With the assumption that this was due to missing at random, the 

number of weeks available for the follow-up counts was considered as the exposure of the 

follow-up count, and the logged exposure was included in the models as an offset. 

As shown in Table 3-7 and Table 3-8, the Poi-basic and Poi-full models fitted to the follow-

up count are both significantly overdispersed (P<0.001). Similar to the Poisson models 

fitted to the intervention count, they yield large dispersion statistics and AICs. 

Table 3-7 Goodwin et al. dataset: Poi-basic and NB-basic models fitted to the follow-up count 
(n=120) 

 Poi-basic NB-basic 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -1.378 0.052 0.252 (0.227, 0.279) <0.001 -1.247 0.347 0.287 (0.144, 0.572) 0.001 

HP  3.511 

Dispersion 148.8 1.5 

AIC 7342.1 817.3 

Overdisperison test P < 0.001a P = 0.018b 

a Boundary LR overdispersion test; b NB overdispersion score test. 

 

The AIC of the NB-basic model is considerably smaller than Poi-basic. The FRR of the 

intervention effect is estimated by NB-basic to be 0.287 (P<0.001) without controlling for 

the baseline characteristics, which indicates an astonishing 71% lower falls rate during the 

follow-up period experienced by people who received the intervention, compared to those 

receiving the usual care.  

Table 3-8 shows the estimation of the Poi-full and NB-full models. The estimated 

intervention effect from NB-full (FRR=0.361, P=0.004) is relatively close to that from 

NB-basic (FRR=0.287, P<0.001), suggesting the intervention reduced falls rate by more than 

60%. The large estimated effect was possibly due to the group imbalance regarding 

frequent fallers. As shown in Table 3-3, the nine most frequently falling participants during 

the follow-up period were all in the control group. Although the NB-basic and NB-full 
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models yielded remarkably large intervention effect during the follow-up period, the 

estimates may be influenced by the large counts in the control group (see Figure 5-9 in 

Chapter 5). 

The NB overdispersion score test suggests that NB-basic is significantly overdispersed 

(P=0.018) but NB-full is not (P=0.191). Sex is the only baseline characteristic with a 

significant LR test result (P=0.010). The LR test of Hoehn and Yahr scale was significant 

when modelling the intervention falls count but not the follow-up count. 

Table 3-8 Goodwin et al. dataset: Poi-full and NB-full models fitted to the follow-up count 
(n=120) 

 Poi-full NB-full 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -1.361 0.053 0.256 
(0.231, 0.285) 

< 0.001 -1.020 0.330 0.361 
(0.188, 0.693) 

0.004 

Female -1.245 0.055 0.288 
(0.258, 0.321) 

< 0.001 -0.987 0.344 0.373 
(0.188, 0.737) 

0.010 

Age -0.028 0.003 0.972 
(0.967, 0.977) 

< 0.001 -0.027 0.021 0.973 
(0.933, 1.014) 

0.273 

Years since diagnosis -0.015 0.004 0.985 
(0.977, 0.992) 

< 0.001 0.023 0.030 1.023 
(0.963, 1.087) 

0.499 

Hoehn & Yahr    < 0.001    0.053 

Stage 1  0.376 0.082 1.457 
(1.239, 1.713) 

 1.098 0.569 2.997 
(0.970, 9.262) 

 

Stage 2   1    1  

Stage 3  1.433 0.055 4.192 
(3.760, 4.673) 

 0.956 0.406 2.601 
(1.163, 5.815) 

 

Stage 4  1.172 0.070 3.228 
(2.810, 3.708) 

 0.997 0.527 2.710 
(0.953, 7.709) 

 

Living status    < 0.001    0.586 

With partner   1    1  

Alone  0.588 0.047 1.800 
(1.639, 1.976) 

 0.412 0.404 1.510 
(0.678, 3.360) 

 

With family/friends  0.378 0.267 1.460 
(0.859, 2.480) 

 -0.343 1.336 0.709 
(0.050, 10.026) 

 

Residential home -1.502 0.583 0.223 
(0.070, 0.707) 

 -1.449 1.430 0.235 
(0.014, 3.994) 

 

HP     2.963 

Dispersion  76.2    1.3    

AIC  5529.2 814.4 

Overdispersion test P < 0.001a P = 0.191b 

a Boundary LR overdispersion test; b NB overdispersion score test. 
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3.2.2 The Martin et al. dataset 

Figure 3-3 shows the distributions of the falls rates (per week) during the 4-week baseline 

and 20-week follow-up periods in Martin et al. (2015) dataset. Note that the falls rates are 

reported instead of the counts, because a large proportion of subjects missed at least one 

week of records in falls diaries (assumed to occur at random and not informative), and thus 

have varying lengths of observation time. No baseline covariates were made available to 

the project, so only Poi-basic and NB-basic are examined in this section. 

The sample size of the Martin et al. dataset is only 21, but the distributions of the falls 

counts are nevertheless heavily skewed (Figure 3-3). Similar to the Goodwin et al. dataset, 

the follow-up falls rate is correlated to the baseline rate (see Figure 3-4). 

 

Figure 3-3 Martin et al. dataset: distribution of the falls counts during baseline (4 weeks, n=21) 
and follow-up (20 weeks, n=21) periods 
. 
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Figure 3-4 Martin et al. dataset: scatter matrix plots of the baseline and follow-up falls rate (per 
week) The Spearman’s correlation coefficient 𝜌 and P value is shown in each subplot. 
 

Table 3-9 shows the summary statistics of the baseline and follow-up fall rates. It is 

interesting that for a trial with such a small sample size, one participant (ID CU21) reported 

eighty falls per week (see Table 3-10) and 1599 falls in total during the follow-up period. 

Because ID CU21 was randomised to the intervention group, the average falls rates of the 

intervention group are higher than those of the control group. Outliers in a small dataset 

are anticipated to be influential in the model estimation. 

Table 3-9 Martin et al. dataset: summary of the falls rate (per week) during the baseline and 
intervention periods 

  N Mean Median SD (variance) Range 

Baseline period 
(weeks 1-4) 
 

Intervention 12 6.69 1.5 11.68 (136.46) 0-33.75 

Control 9 2.83 2.3 3.17 (10.06) 0-9.50 

Total 21 5.04 1.75 9.11 (82.90) 0-33.75 

Follow-up period 
(weeks 5-24) 

Intervention 12 8.60 0.3 22.80 (519.82) 0-79.95 

Control 9 3.04 1.0 4.78 (22.84) 0-14.55 

Total 21 6.22 9.0 17.41 (303.00) 0-79.95 

 

The most frequently falling participants during each of the baseline and follow-up period 

are listed in Table 3-10. The falls rate reported by ID CU21 is outlying large compared to 

the other participants. 

𝜌 = 0.864	
𝑃 < 0.001 
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Table 3-10 Ten largest falls rates during the baseline and intervention periods of the Martin et 
al. trial. 

Period ID Group Baseline rate Intervention rate 

Baseline CU21 Intervention 33.8 80.0 

CU11 Intervention 28.8 13.2 

CU02 Control 9.5 14.6 

CU01 Intervention 7.0 5.9 

CU09 Control 6.2 6.7 

CU06 Intervention 3.2 1.6 

CU20 Control 3.0 1.6 

CU14 Control 2.5 0.9 

CU18 Intervention 2.5 0.0 

CU03 Control 2.2 2.1 

Intervention CU21 Intervention 33.8 80.0 

CU02 Control 9.5 14.6 

CU11 Intervention 28.8 13.2 

CU09 Control 6.2 6.7 

CU01 Intervention 7.0 5.9 

CU03 Control 2.2 2.1 

CU06 Intervention 3.2 1.6 

CU20 Control 3.0 1.6 

CU10 Intervention 1.8 1.5 

CU12 Control 1.8 1.0 

For each period, the rows are sorted by the grey column 

 

Table 3-11 presents the results of the Poi-basic and NB-basic model. The boundary LR 

overdispersion test indicates significant Poisson overdispersion (P<0.001), which is 

confirmed by the large dispersion statistic and AIC of the Poi-basic model, compared with 

those of NB-basic. 
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Table 3-11 Martin et al. dataset: Poi-basic and NB-basic models (n=21) 

 Poi-basic NB-basic 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention 1.156 0.050 3.178 (2.864, 3.526) < 0.001 1.041 0.856 2.833 (0.472, 16.993) 0.250 

HP  3.753 

Dispersion. 660.3 1.4 

AIC 7482.9 204.2 

Overdisperison test P < 0.001a P = 0.353b 

a Boundary LR overdispersion test; b NB overdispersion score test. 

 

The NB-basic model yields an FRR of 2.833 for the intervention effect, which indicates that 

the risk of falling for people who received the intervention increased by 183% (P=0.250). 

The reason the FRR is greater than 1 is that participant CU21 recorded 1599 falls during the 

follow-up period, which is more than five times of the second largest number, and this 

participant was in the intervention group (see Table 3-10). This result indicates that, when 

the sample size is small, the estimation of the intervention effect is extremely susceptible 

to the influence of outliers, which are unlikely to be balanced between groups. 

The NB overdispersion score test suggests that the NB-basic model is not significantly 

overdispersed (P=0.353). 

3.2.3 The EXSart dataset 

Figure 3-5 shows the distributions of the falls counts in the EXSart dataset (Ashburn et al., 

2007) during the baseline (1 year prior to the screening interview), intervention (first 6 

weeks), and follow-up (between 8 weeks and 6 months) periods. As shown in Figure 3-5, 

the distribution of the baseline count is more skewed than the intervention and follow-up 

counts, because 1) the baseline period lasts for one year, longer than the other two periods; 

and 2) the falls count during the baseline period was obtained retrospectively, which has 

lower precision than the prospective method, especially when a person falls frequently. 
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Figure 3-5 EXSart dataset: distribution of the count of falls during the baseline (1 year, n=142), 
intervention (first 8 weeks, n=129), and follow-up (between 8 weeks and 6 months, n=127) 
periods. 
 
Compared to the other two datasets, the baseline falls rates in the EXSart dataset are less 

consistent with the rates during the intervention and follow-up periods (see Figure 3-6). 

The baseline rates for the frequent fallers in the Goodwin et al. dataset are close to the 

intervention and follow-up rates; even the frequent fallers in the Martin et al. dataset, 

which has a very small sample size, have consistent baseline and follow-up falls rates. The 

participants in the EXSart trial reporting large baseline falls counts did not record as many 

falls during the intervention and follow-up periods. 
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Figure 3-6 EXSart dataset: scatter matrix plots of the baseline, intervention, and follow-up falls 
count The Spearman’s correlation coefficient 𝜌 and P value is shown in each subplot. 

 

As shown in Table 3-12, outlying large counts were reported during the baseline, 

intervention, and follow-up periods, with the maximums of 1820, 499, and 1099 

respectively. A difference to the other two datasets is that there were no zero or single falls 

during the baseline period, because only PwP who had fallen twice or more were recruited 

to the trial. Therefore, the distribution of the baseline count is left-truncated. 

𝜌 = 0.558	
𝑃 < 0.001 

𝜌 = 0.442	
𝑃 < 0.001 

𝜌 = 0.640	
𝑃 < 0.001 
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Table 3-12 EXSart dataset: summary of falls counts during the baseline, intervention, and follow-
up periods 

Period Group N Missing Mean Median SD (variance) Range 

Baseline period 
(12 months) 

Intervention 70 0 49.90 6.0 225.30 (50761.51) 2-1820 

Control 72 0 61.21 5.0 154.17 (23768.17) 2-900 

Total 142 0 55.63 5.5 191.94 (36841.30) 2-1820 

Intervention period 
(first 8 weeks) 

Intervention 65 5 1.83 1.0 3.18 (10.11) 0-19 

Control 64 8 10.12 1.0 62.16 (3863.76) 1-499 

Total 129 13 5.93 1.0 44 (1969.38) 0-499 

Follow-up period 
(8 weeks to 6 months) 

Intervention 64 6 3.14 1.0 5.39 (29.01) 0-29 

Control 63 9 21.33 1.0 138.19 (19095.55) 0-1099 

Total 127 15 12.17 1.0 97.44 (9494.12) 0-1099 

 

Similar to section 3.2.1 (the Goodwin et al. dataset), the Poi-basic and NB-basic models are 

fitted to the falls count during the intervention (first 8 weeks), and follow-up (between 8 

weeks and 6 months) periods. Also, Poi-full and NB-full are fitted, and they include the 

group allocation and the following baseline characteristics as covariates: gender, age, years 

since diagnosed with Parkinson’s, Hoehn and Yahr stage, UPDRS rating, and living status 

(the baseline characteristics are summarised in Table 3-13). 
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Table 3-13 EXSart trial: characteristics of the participants at baseline 

 Intervention group 
(n=70) 

Control group 
(n=72) 

Total 
(n=142) 

Sex    

Male 38 (54%) 48 (67%) 86 (61%) 

Female 32 (46%) 24 (33%) 56 (39%) 

Age    

Mean (SD) 72.7 (9.6) 71.6 (8.8) 72.2 (9.2) 

Range 44-91 52-90 44-91 

Years since diagnosis    

Mean (SD) 7.7 (5.8) 9.0 (5.8) 8.3 (5.8) 

Range 1-31 1-30 1-31 

Hoehn and Yahr    

Stage 2   8 (11%)   8 (11%) 16 (11%) 

Stage 3 44 (63%) 48 (67%) 92 (65%) 

Stage 4 18 (18%) 16 (22%) 34 (24%) 

UPDRS    

Mean (SD) 19.77 (8.82) 22.17 (11.90) 20.98 (10.32) 

Range 3-41 4-74 3-74 

No. of missing 1 2 3 

Living status    

Alone 18 (26%) 16 (22%) 34 (24%) 

With partner 43 (61%) 52 (72%) 95 (67%) 

With family/friends / other   9 (13%)   4 (6%) 13 (9%) 

 

Table 3-14 show the most frequently falling participants during the baseline, intervention, 

and follow-up periods. An interesting finding is that some participants who had recalled a 

large baseline falls count only reported a few falls during the intervention and follow-up 

periods. A typical example is ID 71, who recalled 1820 falls during the baseline period and 

only 7 and 13 falls during the intervention and follow-up periods. 
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Table 3-14 Ten largest falls rates during the baseline, intervention, and follow-up periods of the 
EXSart trial. 

Period ID Group Baseline count Intervention count Follow-up count 

Baseline 71 Intervention 1820 7 13 

28 Control 900 499 1099 

23 Control 700 11 3 

99 Control 366 1 3 

68 Control 365 9 7 

106 Intervention 365 1 2 

113 Intervention 365 2 8 

126 Control 365 6 7 

30 Control 360 11 8 

109 Intervention 260 19 28 

Intervention 28 Control 900 499 1099 

109 Intervention 260 19 28 

114 Control 220 15 Na 

23 Control 700 11 3 

30 Control 360 11 8 

84 Intervention 20 11 8 

63 Intervention 100 9 0 

68 Control 365 9 7 

118 Intervention 52 8 29 

69 Control 120 7 5 

Follow-up 28 Control 900 499 1099 

48 Control 30 1 55 

118 Intervention 52 8 29 

109 Intervention 260 19 28 

1 Control 15 6 25 

102 Control 100 5 14 

71 Intervention 1820 7 13 

100 Control 3 6 13 

86 Control 8 4 11 

10 Control 6 1 9 

For each period, the rows are sorted by the grey column 
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Table 3-15 Baseline characteristics of the frequent fallers listed in Table 3-14. 

 ID Group Sex Age Years since diagnosis Hoehn & Yahr UPDRS Living status 

1 Control Male 90 15 Stage 4 31 With partner 

10 Control Male 80 17 Stage 3 22 With partner 

23 Control Female 78 30 Stage 4 46 With partner 

28 Control Male 60 11 Stage 4 - With partner 

30 Control Male 53 20 Stage 4 74 With partner 

48 Control Male 56 12 Stage 3 6 With partner 

63 Intervention Female 69 5 Stage 3 16 With partner 

68 Control Male 67 5 Stage 4 30 With partner 

69 Control Female 86 6 Stage 4 26 With partner 

71 Intervention Male 67 16 Stage 4 23 With partner 

84 Intervention Male 59 10 Stage 3 16 With partner 

86 Control Female 75 8 Stage 3 27 With partner 

99 Control Male 76 5 Stage 3 12 With partner 

100 Control Male 71 10 Stage 3 16 With partner 

102 Control Male 84 4 Stage 4 36 With partner 

106 Intervention Male 74 5 Stage 4 27 With partner 

109 Intervention Male 76 31 Stage 4 18 With partner 

113 Intervention Female 76 7 Stage 4 41 Alone 

114 Control Female 60 15 Stage 3 22 Alone 

118 Intervention Female 57 10 Stage 4 30 With partner 

126 Control Female 63 1 Stage 4 33 With partner 

 

The baseline characteristics of the participants listed in Table 3-14 are shown in Table 3-15, 

which indicates that the frequent falling participants were all rated Stage 3-4 on the Hoehn 

and Yahr scale (more severe Parkinson’s), and no other pattern can be seen. 

First, we compare the models on the falls count during the first 6 weeks, during which the 

participants received the home-based exercise and strategy programme. 
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Intervention period 

Table 3-16 and Table 3-17 present the basic and full models, respectively. Note that the 

number of participants included in the full models is smaller than the number in the basic 

models, because three participants have missing values for the covariate UPDRS. Both the 

Poi-basic and Poi-full models are significantly (P<0.001) overdispersed. The dispersion 

statistic in Poi-full model (3.100) is much smaller than that in Poi-basic (660.328), which 

bears out that incorporating baseline characteristics can be effective in adjusting for 

heterogeneity when modelling falls counts. Besides, there is a much larger difference in AIC 

between Poi-basic and NB-basic, than between Poi-full and NB-full. 

Table 3-16 EXSart dataset: Poi-basic and NB-basic models fitted to the intervention count 
(n=129) 

 Poi-basic NB-basic 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -1.710 0.100 0.181 (0.148, 0.220) < 0.001 -1.710 0.348 0.181 (0.091, 0.360) < 0.001 

HP  3.753 

Dispersion. 660.3 1.4 

AIC 7482.9 204.2 

Overdisperison P < 0.001a P < 0.001b 

a Boundary LR overdispersion test; b NB overdispersion score test. 

 

The FRR of the intervention estimated from NB-basic is 0.181 (P<0.001), which indicates a 

more than eighty percent reduction in the falls rate for people who received the 

intervention. The estimated effect has a marked difference to that from the NB-full model 

(FRR=0.763, P=0.253). The reason for this great discrepancy is that one participant (ID 28) 

in the control group reported an outlying large falls count during the intervention period 

(see Table 3-14). Because the UPDRS rating of this participant was missing, this outlier is 

not included in NB-full. The huge impact of one subject on the model estimation highlights 

the danger of outliers. 

The NB overdispersion score test indicates significant NB overdispersion in NB-basic 

(P<0.001) but not in NB-full (P=0.396). The dispersion statistic of NB-full (1.1) is closer to 

one than that of NB-basic (1.4), and it also has a smaller HP (1.002) compared to NB-basic 

(3.753). The NB-full model accommodates overdispersion better than NB-basic, not only 
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because heterogeneity is to some extent controlled by the baseline characteristics, but also 

because ID 28 is not included in NB-full. 

The number of years since Parkinson’s diagnosis and Hoehn and Yahr scale are significant 

in the NB-full model (P=0.025 and 0.019 respectively). Participants who were rated Hoehn 

and Yahr Stage 4 had significantly higher falls rate (FRR: 2.040, 95% CI: 1.103 to 3.772) than 

those rated Stage 3. The trend that people with more severe Hoehn and Yahr rating have 

higher risk of falling is in line with the finding in the Goodwin et al. trial (see Table 3-6) 

Table 3-17 EXSart dataset: Poi-full and NB-full models fitted to the intervention count (n=126) 
 Poi-full NB-full 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -0.180 0.130 0.835 
(0.645, 1.081) 

0.166 -0.270 0.234 0.763 
(0.480, 1.213) 

0.253 

Female -0.022 0.133 0.979 
(0.752, 1.273) 

0.870 -0.098 0.246 0.907 
(0.557, 1.475) 

0.694 

Age -0.015 0.008 0.985 
(0.970, 1.000) 

0.049 -0.011 0.014 0.989 
(0.962, 1.018) 

0.442 

Years since diagnosis  0.051 0.009 1.052 
(1.034, 1.071) 

< 0.001  0.041 0.020 1.042 
(1.001, 1.084) 

0.025 

Hoehn & Yahr    < 0.001    0.019 

Stage 2 -0.847 0.325 0.429 
(0.225, 0.816) 

 -0.829 0.453 0.437 
(0.178, 1.071) 

 

Stage 3   1    1  

Stage 4 0.698 0.160 2.010 
(1.464, 2.759) 

 0.713 0.310 2.040 
(1.103, 3.772) 

 

UPDRS -0.002 0.006 0.998 
(0.986, 1.010) 

0.752  0.000 0.013 1.000 
(0.975, 1.027) 

0.973 

Living status    0.015    0.274 

With partner    1    1  

Alone -0.323 0.188 0.724 
(0.499, 1.050) 

 -0.396 0.306 0.673 
(0.367, 1.234) 

 

With family/friends /others -0.817 0.366 0.442 
(0.214, 0.913) 

 -0.635 0.535 0.530 
(0.184, 1.529) 

 

HP       1.002    

Dispersion  3.1     1.1    
AIC  570.4     478.7    

Overdispersion test P < 0.001a P = 0.396b 
a Boundary LR overdispersion test; b NB overdispersion score test. 

 

Follow-up period 

The basic and full models are presented in Table 3-18 and Table 3-19, respectively. The 

Poisson models are significantly overdispersed (P<0.001), and again with much larger 

dispersion statistics and AIC than the NB models. 
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The FRR from the NB-basic model is 0.147, close to the FRR from NB-basic during the 

intervention period. The model estimation is again influenced by the outlier ID 28, who 

reported 1099 falls between 6 weeks and 8 months. The NB-full model, which does not 

include this subject, yields an FRR of 0.724 (P=0.189), which is also close to that from NB-full 

fitted to the intervention count. 

Table 3-18 EXSart dataset: Poi-basic and NB-basic models fitted to the follow-up count (n=127) 

 Poi-basic NB-basic 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -1.916 0.076 0.147 (0.127, 0.171) < 0.001 -1.916 0.357 0.147 (0.073, 0.298) < 0.001 

HP  3.865 

Dispersion. 448.6 5.7 

AIC 8975.6 674.1 

Overdispersion test P < 0.001a P < 0.001b 

a Boundary LR overdispersion test; b NB overdispersion score test. 

 

The NB overdispersion score test suggests that the NB-basic model is significantly 

overdispersed (P<0.001) but NB-full is not (P=0.296). 

The Hoehn and Yahr scale is the only significant covariate in the NB-full model. During the 

follow-up period, the falls rate was higher for people with a more severe Hoehn and Yahr 

rating at the baseline — the same pattern also shows in the intervention period. Compared 

with the participants with a Hoehn and Yahr rating of Stage 3, the falls rate for those with 

a rating of Stage 2 was eighty-five percent lower (FRR: 0.149, CI: 0.052 to 0.426), whilst for 

the participants with a rating of Stage 4 the rate was more than three times higher (FRR: 

3.049, 95% CI: 1.618 to 5.748). 
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Table 3-19 EXSart dataset: Poi-full and NB-full models fitted to the follow-up count (n=124) 
 Poi-full NB-full 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -0.305 0.102 0.737 
(0.603, 0.901) 

0.003 -0.323 0.241 0.724 
(0.450, 1.167) 

0.189 

Female -0.250 0.108 0.779 
(0.629, 0.965) 

0.019 -0.330 0.251 0.719 
(0.437, 1.182) 

0.200 

Age -0.032 0.006 0.968 
(0.956, 0.980) 

< 0.001 -0.016 0.015 0.984 
(0.955, 1.014) 

0.234 

Years since diagnosis  0.045 0.007 1.046 
(1.032, 1.061) 

< 0.001  0.035 0.021 1.036 
(0.994, 1.079) 

0.087 

Hoehn & Yahr    < 0.001    < 0.001 

Stage 2 -2.155 0.388 0.116 
(0.054, 0.250) 

 -1.901 0.529 0.149 
(0.052, 0.426) 

 

Stage 3   1    1  

Stage 4 1.044 0.125 2.842 
(2.218, 3.640) 

 1.115 0.320 3.049 
(1.618, 5.748) 

 

UPDRS -0.031 0.005 0.970 
(0.960, 0.980) 

< 0.001 -0.017 0.014 0.983 
(0.956, 1.010) 

0.199 

Living status    < 0.001    0.325 

With partner         

Alone -0.461 0.157 0.630 
(0.462, 0.860) 

 -0.421 0.312 0.656 
(0.354, 1.217) 

 

With family/friends 
 /others 

-0.728 0.298 0.483 
(0.268, 0.871) 

 -0.522 0.554 0.594 
(0.198, 1.778) 

 

HP       1.219    

Dispersion  6.0     1.1    
AIC  857.2     554.5    

Overdispersion test P < 0.001a P = 0.296b 
a Boundary LR overdispersion test; b NB overdispersion score test. 

 

3.3 Summary 

In this chapter, the three datasets made available to this project were explored and 

described regarding the distribution of falls counts and other variables. 

The Poisson and NB models were compared using the three datasets, with two scenarios 

considered to resemble the procedure of analysis in practice: the basic models that 

compare the falls rates between the two trial arms without controlling for other variables, 

and the full models that in addition include the baseline characteristics as covariates. The 

baseline falls count, which is the main topic of Chapter 6 and Chapter 7, has not been 

considered as a covariate for the NB models in this chapter. 
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The three trials share a similar trial design (after the transformation of the Martin et al. 

dataset) — falls are collected during a pre-randomisation baseline period and one or more 

follow-up periods after the randomisation. In general, the falls counts have heavily skewed 

distributions. Typically, a small proportion of subjects recorded considerably more falls 

than the others, and they are influential in model estimation. 

All the fitted Poisson models were significantly overdispersed. For this reason, the 

covariates in all the fitted Poisson models were significant. The AICs of Poisson models were 

an order of magnitude higher than those of the NB models with the same covariates. 

The dispersion statistics in Poi-full models were smaller than the Poi-basic models, and the 

AIC disparities between Poi-full and NB-full were not as large as between Poi-basic and NB-

basic. This suggests that incorporating baseline characteristics in models explains the 

heterogeneity to some extent and reduces overdispersion. 

The NB models accommodate the overdispersion, and thus fitted the three datasets better 

than the Poisson models: they not only had lower AIC values, but also resulted in smaller 

dispersion statistics than the Poisson models. In addition, the boundary LR overdispersion 

tests, which directly compares the goodness of fit of NB and Poisson models, produce small 

P values (<0.001). 

The NB-basic models showed lower statistical power than the NB-full models, as indicated 

by their dispersion statistics. The Hoehn and Yahr scale was a significant covariate in the 

NB-full models fitted to the EXSart dataset and the intervention counts in the Goodwin et 

al. dataset, suggesting the risk of falling is associated with the severity of Parkinson’s. Sex 

was found to be significant in the Goodwin et al. dataset, but not in the EXSart dataset. The 

number of years since Parkinson’s diagnosis was significant only when modelling the 

intervention falls in the EXSart dataset. 

Large outcome falls counts were found to be a crucial issue in modelling falls. They appear 

in all three datasets, including the Martin et al. dataset (with the smallest sample of only 

21 people): one participant recorded 1599 falls within 20 weeks. How to cope with the 

large counts has been a great challenge in statistical modelling. The estimation of the fitted 

NB models is influenced by outliers, especially when the sample size is small, and when 

large falls counts are not balanced between two groups. 
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NB overdispersion, which is rarely addressed in falls prevention trials, was examined in the 

fitted NB models. Most of the NB-basic models reported in this chapter are significantly 

overdispersed, including covariates reduces the dispersion statistic and may control for 

overdispersion in NB-full (compare Table 3-7 and Table 3-8 for example). 

In conclusion, falls data often result in Poisson overdispersion, which leads to false positives 

if it is not controlled in a model. Including the baseline characteristics as model covariates 

is effective in reducing heterogeneity. The NB models fit the falls data better than the 

Poisson models, but the model estimation is not robust to outliers. 
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Chapter 4  
 
A review of NB functionality in five statistical 
packages 

4.1 Introduction 

Over the years, NB regression has become the standard statistical model for analysing falls 

counts from falls prevention trials. Because of their increasing popularity, NB models are 

supported in various statistical packages. 

Five packages—Stata, SAS, SPSS, R, and Python—are reviewed regarding their 

functionality for NB modelling. Among the five packages, Stata, SAS, and SPSS are 

commercial software, while R and Python are open-source statistical/general-purpose 

programming languages that support NB modelling.  

In each package, the NB functionality is generally provided in a module, which is named 

differently across packages. For example, a module is called a “procedure” in SAS and a 

“command” in Stata. Note that a module in the R language is referred to as an “R 

package,” which may be confused with a statistical package. For clarity, the name of a 

module is shown in bold font. We discuss the pros and cons of the five statistical packages 

in general and review the NB modules within each package. 

The NB2 model is considered as the standard and most commonly-used version of NB 

models. It is referred to as the NB model throughout the thesis, but the full name NB2 is 

used in this chapter to distinguish from the other types of NB models. 

Table 4-1 summarizes the modules that provide functionality for fitting NB2 and other 

types of NB models in each of the five packages. The NB2 model can be fitted using all the 

five packages, but the options and post-estimation commands from each module provide 

different model-based statistics. These are also reviewed in this chapter. 
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Table 4-1 Functionality of NB models in Stata, SAS, SPSS, R, and Python 

Stats. packages Version NB2 Modules Other NB models and modules 

Stata v. 15 nbreg 
glm 
countfit 

§ NB1: nbreg 
§ ZINB: zinb, countfit 
§ NB-H: gnbreg 
§ NB GEE: xtnbreg, xtgee, qic 
§ Random-/fixed-effects NB: xtnbreg 

SAS 9.4 x64 GENMOD § ZINB: GENMOD 
§ NB GEE: GENMOD 

SPSS v.22 GENLIN § NB GEE: GENLIN 

R 3.5.0 MASS 
msme 
COUNT 
aod 
mgcv 
gamlss 

§ NB1: gamlss, COUNT 
§ ZINB: gamlss, pscl 
§ NB-H: msme, aod 
§ Zero-hurdle NB: gamlss, pscl 
§ Censored/truncated NB: gamlss.cens, 

gamlss.tr 

Python 3.6.4 statsmodels § NB GEE: statsmodels 

4.2 NB modelling in Stata 

Stata is a commercial statistical package that is widely used in medical research, public 

health in particular (Dembe et al., 2011). Stata not only supports a wide range of 

statistical models, but also provides a navigation menu making a user-friendly software 

interface (see Figure 4-1). In addition, Statas supports community-contributed 

commands so that professional users can implement functions that are missing in the 

original package, and upload the commands to the Stata Journal, the Statistical Software 

Component (Boston College Department of Economics, n.d.) archive, or other websites to 

make them easily accessible by other users (StataCorp, 2015). 
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Figure 4-1 User interface of Stata/SE 15.1 on macOS 10.14 
 

Two commonly used Stata modules for fitting NB2 models are the nbreg and glm 

commands. They produce almost identical regression coefficients but different diagnostic 

statistics. Stata also provides commands to fit other types of NB models. These 

commands are introduced and compared in this section.  

The nbreg and glm commands 

The most straightforward way to fit an NB2 model is using the nbreg command (which 

stands for NB regression). An alternative to nbreg is to use the GLM command (glm) and 

specify the distribution family as negative binomial, that is, family(nbinomial ml) 

in the Stata syntax.  

In practice, these two commands result in close but not identical estimates. A more 

substantial difference lies in the range of post-estimation statistics. For example, only the 

glm command provides the Pearson dispersion statistic, which is useful to assess whether 

there is model overdispersion (see section 2.3.5). Another difference is that the glm 

command reports 𝛼 in the form of a variance function, while it is listed along with other 

Navigation menu 

Commands 
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estimates in the output of nbreg, with SEs and CIs reported. There are also minor 

differences in the syntax between the two commands. The option for reporting the IRR for 

each covariate is irr in nbreg and eform in glm. 

A dilemma is that only nbreg provides the boundary likelihood ratio test to test 

overdispersion while only glm produces diagnostic statistics for examining the influence of 

outliers, which is especially needed in the case of falls prevention trials as subjects 

reporting large falls counts are suspected to be overly influential in model estimation, so 

both need to be run. 

The zinb command 

The zinb command fits an ZINB model with the inflation covariates specified using the 

option inflate(), and the zip command for ZIP models uses the same syntax. 

In the previous versions of Stata, the zinb and zip commands reported the result of the 

Vuong test for zero-inflation when the option vuong is specified, but this option has been 

removed from Stata 15. If the option is specified in Stata 15, a warning message is 

shown to remind users that the standard Vuong test may result in biased result for testing 

zero-inflation. Desmarais (2013) provided two community-contributed commands zinbcv 

and zipcv to support AIC- and BIC-based corrections of the Vuong tests for zero-inflation in 

ZINB and ZIP models (see section 2.3.3). 

The xtnbreg and xtgee commands 

The xtnbreg command supports conditional fixed-effects NB models in the fe option, 

random-effects NB models in the re option, and NB GEE models in the pa option. 

The xtgee command fits an NB GEE model when family(nbinomial) is specified. The 

syntax of xtgee is similar to xtnbreg but with a few minor differences: 

• Before running the xtnbreg command, the dataset must be specified as a panel 

data using the xtset command; in xtgee the subject and time variables of a 

longitudinal dataset can be specified in the options i() and t(), respectively. 

• xtnbreg uses the irr option (same as nbreg) to report IRRs from the fitted GEE 

models, while xtgee uses the eform option (same as glm). 
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Stata does not support estimating HPs from GEE models. Instead, the common approach 

is to 1) fit a standard NB2 model using nbreg or glm and store the estimate of HP, and 2) 

fit a GEE model with HP fixed to the stored value. In xtgee this is done by specifying HP in 

the family(nbinomial[HP]) option. For example, if the estimate of HP from nbreg 

is 1.5, the option should be specified as family(nbinomial 1.5)in xtgee. Note that 

xtnbreg, pa estimates the model with HP fixed to 1 and no option is available to change 

this value, thus xtgee is preferable than xtnbreg for fitting NB GEE models. 

The qic command 

When GEE models are used in practice, it is often desired to examine the goodness of fit 

statistics to facilitate decision making in choosing correlation structures, but these statistics 

are not reported in either xtnbreg or xtgee. 

The qic command (Cui, 2007) is a community-contributed command that fits GEE models 

using the same syntax as xtgee and reports the QIC and CIC statistics (see section 2.3.8). 

The qic command does not support specifying a covariate as a factor—users have to create 

dummy variables manually. 

The countfit command 

The countfit command is included in a community-contributed commands combo 

spost13_ado (Long and Freese, 2006). It compares four different count models (Poisson, 

NB2, ZIP, and ZINB), showing the corresponding regression coefficients, BIC/AIC, and the 

difference in the predicted and observed probabilities. This command is very useful in 

model selection. 

Others 

Some other varieties of NB models described in section 2.3.3 are also supported in Stata. 

NB1 models can be fitted by specifying the option dispersion(constant) in the 

nbreg command; the default option for dispersion() is mean, which is the NB2 model. 

NB-H models can be fitted using the gnbreg command, where the predictor for estimating 

𝛼 is specified in the lnalpha() option. 
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4.3 NB modelling in SAS 

SAS (SAS Institute Inc., 2013) supports NB2 and ZINB in its generalized linear modelling 

procedure (GENMOD) by specifying DIST=NEGBIN and DIST=ZINB, respectively. The 

GENMOD procedure produces the following diagnostic statistics: Cook’s distance, leverage, 

and DFBETA. In addition, the GENMOD procedure has an option PLOTS=ALL for 

producing various residual and diagnostic plots. 

It is straightforward to fit an NB GEE model in SAS—by specifying the option REPEATED 

in the GENMOD procedure. The subject ID and the correlation structure are specified using 

the subject and TYPE options, respectively. Unlike Stata, fitting NB GEE models in 

SAS does not require providing a value for HP. 

4.4 NB modelling in SPSS 

Similar to Stata, statistical analysis can be conducted in SPSS (IBM Corp., 2017) using 

the syntax, or the menus and graphical user interface (see Figure 4-2). 

NB2 modelling is supported in the GLM command (GENLIN) by specifying the options 

DISTRIBUTION=NEGBIN(1) and LINK=LOG. If the /REPEATED option is specified, 

the GENLIN command fits an NB GEE model. 
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Figure 4-2 User interface of SPSS 24 on macOS 10.14 
 

4.5 NB modelling in R 

R (R Core Team, 2016) is an open-source programming language for statistical analysis. The 

R language is free, powerful, and widely used in academia. It is distributed as a set of R 

core packages, which provide support for standard statistical analyses, numerical 

computations, and constitute the foundation of the R language. The R core packages were 

written and maintained by the R Foundation (R-Foundation, 2015). In addition, statistical 

models and methods are implemented as user-programmed packages, which are written 

and maintained by R users and made accessible to others. 

Navigation menu 

Commands 
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For commercial packages such as Stata, SAS, and SPSS, the company that owns the 

intellectual property of a package is responsible for validating and maintaining the package 

to make sure it conducts the analyses correctly (not for user-submitted commands), and it 

also provides technical support to consumers who purchased a license. The source code is 

compiled and thus the models are essentially fitted in verified “black boxes”. By contrary, 

R as well as the other open-source languages such as Python, distribute their source code 

freely so any programming bug or error could be found by users. The online community for 

R (such as the Stack Overflow website and the R-help mailing list) is blooming and friendly. 

When facing difficulties in using R, users can raise questions on the online forums and 

usually get prompt replies. 

Another advantage of the R language is that making a package is easy and straightforward. 

When an author publishes a paper to propose a new statistical method or model, it has 

become standard to also publish an R package, so that readers can try it on their own 

datasets. This approach has greatly accelerated the promotion of new statistical methods. 

Although it is also common to publish papers with community-contributed commands in 

Stata, the R language is more popular due to its modern language features such as 

object-oriented programming and functional programming. While Stata is a powerful 

scriptable software, it is not a programming language and its customisability is limited 

compared to R. As a result, algorithms to fit cutting-edge models are mostly produced in R 

exclusively. 

In the following sections, the available R packages that can be used to fit NB models are 

introduced. 

The MASS package 

A popular R function for NB2 modelling is glm.nb() in the MASS package (Venables and 

Ripley, 2002). As glm.nb() was developed as an extension of the glm() function in the 

stats package (the NB2 model can be considered as a GLM model when 𝛼 or 𝜃 is fixed, as 

discussed in section 2.3.3; stats is a core package), most of the post-estimation generic 

functions in glm can be directly applied to a glm.nb() model fit. 

The glm.nb() function yields an estimate of 𝜃 in equation (2-7), while most of the other 

software parameterises via 𝛼 in equation (2-6). As discussed in 2.3.3, the parameterisation 
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using 𝜃 may be counter intuitive, because a smaller 𝜃 indicates greater overdispersion, and 

the NB2 model tends to a Poisson model as 𝜃 approaches infinity. 

Note that if the MASS package is used for NB2 modelling, the generic function confit() 

is linked to the confit.glm() function in the MASS package, which reports the profile 

CI instead of the standard model-based CI (which assumes that each parameter estimator 

is approximately normally distributed). If standard model-based CIs are preferred to profile 

CIs, the confit.lm() function should be used. 

The msme package 

A less well-known R function for NB2 modelling is nbinomial() in the msme package 

(Hilbe and Robinson, 2014). This package was written to include the functions and datasets 

used in Hilbe and Robinson’s (2016) book Methods of Statistical Model Estimation. 

The output of nbinomial() function is generally similar to the glm.nb() function 

except for a few enhancements: 

• The parameterization of overdispersion can be specified either via 𝛼 (when the 

option family is specified as the default "nb2") or 𝜃 (when family is specified 

as "negBinomial"). 

• The CIs for the estimates of parameters are reported in the output of the 

summary() function. 

• HP can be parameterized as a linear predictor via a log link-function, that is the 

NB-H model described in section 2.3.3. 

• The dispersion statistic is produced. 

• The alrt() function in the msme package can be used for testing Poisson 

overdispersion using the boundary LR test. The support of the boundary LR test is 

missing in the MASS package. 

The limitations of the msme package is that it does not support as many diagnostic options 

as MASS. While the leverage of each subject can be calculated with the hatvalues() 

function in msme, the Cook’s distances cannot be produced. 



CHAPTER 4 – REVIEW OF SOFTWARE FUNCTIONALITY FOR NB MODELS 

 76 

A useful feature of the msme package is that the P__disp() function produces the 

dispersion statistic for a fitted glm() Poisson model or a glm.nb() model. This is a 

useful tool that is missing in the stats and MASS packages. 

The COUNT package 

The COUNT package was written for a book, Negative Binomial Regression (Hilbe, 2011). 

This package includes the data and code used in the book, including the ml.nb2() and 

ml.nb1() functions, which support the NB2 and NB1 models, respectively. 

The aod package 

The aod package (Lesnoff et al., 2012) includes various functions for overdispersed count 

data or proportions, including the negbin() function for NB modelling. 

Similar to the nbinomial() function in the msme package, negbin()supports both 

the NB2 and NB-H models: a linear predictor can be specified in the random option to 

estimate 𝛼. 

The mgcv package 

The mgcv package (Wood, 2017) is designed for Generalized Additive Models (GAMs). As 

GAMs are a generalization of GLMs, this package can also be used for fitting the NB2 model. 

This is done by specifying the option family=nb() in the gam() function. Similar to 

glm.nb() in MASS, gam() parameterises NB2 with 𝜃. Although another mgcv function 

named negbin() also supports NB2 modelling, a value of 𝜃  has to be given as an 

argument. 

The gamlss package 

The gamlss package is an R package for fitting the Generalised Additive Models for Location, 

Scale and Shape (GAMLSS) model, which is a very flexible framework that can be used to 

model more than a hundred discrete, continuous and mixed distributions, and it is also a 

generalization of the GLM family (Stasinopoulos and Rigby, 2007). The NB2 model is 

supported in the gamlss package via the NBI() function, which returns a 

gamlss.family object that is passed to the gamlss() function as an argument 

(family) to specify the distribution of the response variable. 
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It should be noted that there is a confusion in the nomenclature of the distributions in the 

gamlss package: NBI refers to the distribution that is conventionally named NB2, and 

NBII refers to NB1. 

A feature of the gamlss package is that it supports right-, left-, and interval-

censoring/truncation for any model that is a member of the gamlss family, in the 

gamlss.cens and gamlss.tr packages respectively (Hilbe, 2011; Stasinopoulos et al., 2017). 

These two packages provide functionality for fitting right-censored or right-truncated NB 

models. 

The pscl package 

Although the pscl package (Jackman et al., 2007) does not include functions for fitting the 

NB2 model, it includes a number of useful tools for a glm.nb() fit and other types of NB 

models. For example, the odTest() function can be used to examine overdispersion 

using the boundary likelihood rate test. In addition, the zero-inflated NB model can be 

fitted using the zeroinfl()function. 

The pscl package supports the Vuong test in the vuong() function, as well as the 

corrections based on AIC and BIC (see section 2.3.3). 

4.6 NB modelling in Python 

Python (Python Core Team, 2015) is a general-purpose programming language. Over the 

past decade, Python has become increasingly popular in data science and statistics. 

Although Python is not as commonly used in medical statistics as in machine learning, a 

Python module statsmodels (Seabold and Perktold, 2010) is available for fitting statistical 

models. The statsmodels module is based on NumPy arrays (Oliphant, 2006), which is 

numeric computing package, and pandas data frames (McKinney, 2010), which is a 

counterpart of the R dataframe in the base package. The NumPy and pandas modules also 

have good performance in terms of speed due to Python incorporating very fast 

optimisation methods. 
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NB2 models can be fitted using the GLM function GLM() in statsmodels, by specifying the 

argument family= families.NegativeBinomial(). NB GEE models can be fitted 

using the gee() function with the same option for the family argument as in GLM(). 

4.7 Discussion 

In this chapter, five statistical packages were reviewed regarding the functionality for NB 

modelling. All the packages support the widely-used NB2 models and some other types of 

NB models. Different modules also result in different model-based statistics, even for 

modules within the same package. There are a few practical points worth mentioning here: 

Stata provides a very complete set of NB commands, but only a few post-estimation 

diagnostic statistics are supported. As Stata is widely used in public health, learning to fit 

an NB model would be relatively straightforward for an applied researcher. In terms of the 

cost, the price of Stata is lower than SPSS or SAS. 

SAS is a popular statistical package for medical studies, especially in the pharmaceutical 

industry. Although SAS only supports three types of NB models (NB2, ZINB, and NB GEE) 

in PROC GENMOD, it produces a number of diagnostic statistics and plots. However, SAS 

is more expensive than the other four packages. 

Among the five reviewed packages, SPSS is most user-friendly. Its graphical user-face is 

well designed and straightforward, especially for people with no prior knowledge of 

programming. Data input in SPSS is convenient, but the functionality for NB modelling is 

limited.  

R is a free and powerful programming language for statistics and computation. Although 

rarely used in medical research a few years ago, R is now a fast-growing language, and is 

used more and more by medical researchers. R is distributed freely, but there is a drawback: 

users often have to seek help from the online community. This is particularly tricky if a 

package is rarely used or no longer maintained. Although the authors of R packages are 

usually responsible for maintaining the projects and answering technical questions, they 

are not obliged to. Therefore, the questions or bugs may not be dealt with promptly—most 

authors only contribute to the projects in their free time. Conducting a statistical analysis 
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in R requires more advanced programming skills than the commercial packages, but it 

provides greater flexibility. 

Python is a programming language commonly used in data science, and it has become 

increasingly popular for data analysis. Given Python’s rising popularity, more Python 

modules are expected to support NB models in the future. 
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Chapter 5  
 
Diagnostic plots for NB modelling of falls data 

5.1 Introduction 

The distribution of a falls count reported by PwP is usually positively skewed, with most 

participants reporting relatively small counts whilst a few participants report large counts, 

and when a count response model is fitted, these large counts are generally highly 

influential in model estimation. Because NB regression can fit a more heavily skewed 

distribution to count data than Poisson regression, it copes with large falls counts better 

than Poisson models. However, if a falls count is extremely large, it may exceed the capacity 

of the NB model to accommodate outliers. The results presented in Chapter 3 suggest that 

large outcome counts greatly influence model estimation, and the estimation of the 

intervention effect was sensitive to outliers. Even a single large count may substantially 

change the estimated intervention effect. 

Large counts are a great challenge in NB modelling. Although they may have a major impact 

on model estimation, large counts are not always influential: if the covariates have good 

predictive power, they may be fitted very well. Hence, pinpointing outliers, quantifying 

their influence on model estimation, and understanding how individual counts impact on 

model estimation is essential to statistical analysis of falls counts. 

The diagnostic statistics introduced in section 2.3.4 are useful in model checking, as they 

assess the influence of each subject from a quantitative perspective, but they may not be 

straightforward to use in practice. Sifting through the diagnostics for each participant is 

time-consuming and error-prone, especially for a large dataset. A visual inspection of a 

diagnostic plot, in comparison, should be intuitive and easy to interpret. 

In this chapter, a new diagnostic plot specifically designed for modelling falls counts from 

falls prevention trials is introduced, and it is produced for the NB models presented in 
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Chapter 3, that is, without the baseline count included. An existing diagnostic plot is 

examined in the context of NB modelling. These diagnostic plots are discussed regarding 

the traits of each model and dataset. An R package (see Appendix A) was written to 

automate the production of NB diagnostic plots.  

This chapter provides a tool for examining NB model diagnostics graphically in the context 

of falls prevention trials, and other trials with recurrent events as the outcome and also 

collected at baseline. 

5.2 Baseline/Outcome Event plot 

Standard diagnostic plots for NB regression are not generally helpful in relation to analysing 

data from a falls prevention trial, specifically, the core requirement of assessing diagnostic 

statistics relating to the participants reporting high falls rates. Therefore, a diagnostic plot 

for falls data should present both the diagnostic statistic and the corresponding falls rate 

at the subject level. Ideally, the plots should not only be useful in identifying the influential 

subjects, but also help in inspecting patterns of diagnostic statistics in the context of their 

baseline/outcome fall rates. They should facilitate the examination of whether the 

estimated intervention effect, which is usually the main research question, is substantially 

influenced by a few outliers. 

Four new diagnostic plots are proposed to present the following statistics: Cook’s distance, 

leverage, Anscombe residual, and DFBETA. The collective set of plots are referred to as 

Baseline/Outcome Event (BOE) plots in the thesis, and each plot is referred to by the name 

of the model diagnostic presented. 

For the sake of demonstration, two examples — a Cook’s distance plot and a DFBETA plot 

— are shown in Figure 5-1 and Figure 5-2, respectively. Both plots are based on an NB 

model fitted to a simulated two-arm trial dataset (n=200). Assume the falls count is 

collected during a baseline and a follow-up period, both lasting for one month. Let the NB 

distribution be denoted by NB(𝜇, 𝛼) . The baseline count in both groups follows the 

distribution NB(30,1), while the outcome count follows the distribution NB(20,1) in the 

intervention group and NB(30,1) in the control group, so that on average the outcome 

falls count is 33% lower in the intervention group. The same gamma-distributed subject 
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effect is used in generating the outcome and baseline counts for the same subject (more 

details of the simulation are given in section 6.2.1). The fitted NB model includes only one 

covariate: the group allocation. 

As shown in Figure 5-1 and Figure 5-2, the BOE plots are based on a scatter plot with the 

outcome rate plotted against the baseline rate, both axes on a logarithmic scale. The 

diagnostic statistic for each subject is indicated by the size of the plotting symbol. In order 

to include zero falls, 0.5 is added to both rates before log-transformation. A vertical and a 

horizontal dashed line are plotted at the location of log(0.5) to indicate zero counts. In 

order to compare the two groups, the plotting symbols from different groups are shown in 

different colours. Because Anscombe residuals and DFBETAS may be negative, they are 

plotted with triangular symbols, with upside-down triangles indicating negative values (see 

Figure 5-2). 

 

Figure 5-1 Demonstration of the Cook’s distance plot (n=200). The IDs of the subjects with the 
largest Cook’s distance are shown as labels. 
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Figure 5-2 Demonstration of the DFBETA plot (n=200). The IDs of the subjects with the largest 
absolute values in DFBETA are shown as labels. 
 

The reason that the rates are plotted on a logarithmic scale is to cope with the skewed 

distribution of the falls rate. The x- and y-axes are labelled with the untransformed falls 

rates to improve readability (example Figure 5-1 and Figure 5-2). Compared to the original 

scale, the plotting symbols under a logarithmic scale are more evenly distributed, so that it 

is easier to compare different diagnostic statistics for the same subject across plots based 

on the location of the plotting symbol on different plots. For example, one may be 

interested in examining the Cook’s distance and residual for the participant with the 

highest falls rate during the outcome period. It is straightforward to compare the two 

statistics in the corresponding BOE plots, because the plotting symbols lie at the top of the 

body of points.  

To provide a reference line for comparing the outcome and baseline rate, the BOE plots 

include a Line of Falls Equity (LoFE), defined as a line with the slope 1 and intercept 0. The 

x- and y-axes have the same range so that the LoFE is the diagonal of the plot. If an outcome 

rate is exactly the same as the baseline rate, the plotting symbol would perfectly lie on the 

LoFE, which is shown as the diagonal in the plots (for example see Figure 5-1 and Figure 

5-2). 
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If the intervention effect is effective in preventing falls, the red symbols for the intervention 

group are anticipated to be below the blue symbols for the control group (this pattern is 

clear in Figure 5-1 and Figure 5-2). This is especially useful for examining the estimated 

intervention effect: if an intervention has no effect in reducing falls rate, the estimated 

intervention effect may still be significant because of a few outliers, but this would be 

apparent from the BOE plot. 

Another function of the LoFE is to show the period effect. If the plotting symbols in the 

control group are symmetric around the line (for example see Figure 5-1 and Figure 5-2), it 

shows that the falls rate in the control group is relatively constant across periods, 

suggesting at most a mild period effect. If the symbols are generally above the LoFE, it 

indicates that the outcome falls rate is higher than the baseline level, possibly due to the 

worsening of body balance or progress of Parkinson’s. Although most plotting symbols 

from the control group may also be below the LoFE, this should be relatively rare if the 

outcome and baseline falls counts are obtained using the same collection method, because 

the falls rate is not anticipated to decrease if a participant is not given an intervention. 

However, the pattern is possible when the outcome count is collected prospectively but 

the baseline count is collected retrospectively, because trial participants may overestimate 

how many falls they experienced when asked to recall the number at baseline. For example, 

a participant who falls twice per week on average but by chance falls more frequently in 

the few weeks prior to the screening interview, say, 5 times per week, this participant may 

give an approximate baseline count by multiplying 5 by 52 (to arrive at the falls count in 

the previous year), so that the number would be greater than the actual falls count. 

Another possibility is that frequent fallers may stop recording falls because of the 

continued effort of recording every fall event in diaries, and if only the outcome count was 

collected prospectively, this would result in a lower than anticipated outcome rate. The 

average falls rate in the control group may also be lower during the follow-up period due 

to regression to the mean, especially when the eligibility criteria include a threshold for the 

baseline count (for example, “falling at least twice in the previous year”). 

The four diagnostic statistics are chosen for the following reasons. The Cook’s distance is a 

deletion diagnostic that approximates the effect of deleting a subject on the goodness of 

fit of the model. The Cook’s distance shows the overall influence of each subject on model 
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estimation, but it does not indicate why a subject is influential. The leverage and Anscombe 

residual, however, measure respectively how extreme are the covariates from the typical 

values in the sample and whether the subject conforms to the fitted model. Comparing the 

leverage and residual for a subject shows whether a large Cook’s distance is due to outlying 

covariates, or poor model fit for the subject. The DFBETA shows the influence of each 

subject on the estimate of the intervention effect, the focus of a falls prevention trial. 

The four statistics, when compared with each other, provide valuable diagnostic 

information on the outliers. For instance, the combination of a large Cook’s distance and a 

large residual indicates a poor agreement between an outcome count and the model fit. If 

this pattern is found for all frequent fallers, it suggests that the fitted model cannot 

accommodate the outliers. It would then be of interest to know to what extent they have 

altered the estimate of the intervention effect using the DFBETA plot. Another example is 

when the Cook’s distance and leverage are large, but the residual is small. This suggests 

that the subject is so influential that reducing the residual of this subject becomes a priority 

of model estimation, and the case would not be identified in a residual analysis alone (Hilbe, 

2011). 

The BOE plots are supported in the R package NBDiagnostics. The package includes a 

function nbdiagnostic() to fit an NB model, and the fitted model is then passed into 

the boeplot() function as an argument to produce the BOE plots (for details see 

Appendix A). 

5.3 The covariate-adjusted probability plot for NB models 

Holling et al. (2016) proposed a covariate-adjusted probability plot as a diagnostic plot for 

a fitted count response model. Suppose there are 𝑛 subjects in a sample. Let the outcome 

count for each subject 𝑖 be 𝑦�  (𝑖 = 1,… , 𝑛) and the vector of covariates be denoted by 𝒙�. 

Let 𝑓\ denote the frequency of counts in the sample 𝑦n, … , 𝑦f with a range from 0 to the 

maximum of 𝑦�. Assume that the variable 𝑌�  follows a distribution 𝑝\(𝜆(𝜽, 𝜼�)), where 𝜽 is 

a vector of unknown parameters, 𝜼�  is a vector of known parameters, and 𝜆(. , . ) is a known 

function that links 𝜽 and 𝜼�  to 𝑝\. In the case of NB model: 
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𝑝\Ó𝜆(𝜽, 𝜼�)Ô = NB(𝑦| exp(𝒙𝑖𝑇𝜷) , 𝛼)

=
Γ(𝑦 + 𝛼−1)

Γ(𝑦 + 1)	Γ(𝛼−1) �
1

1 + 𝛼 exp(𝒙𝑖𝑇𝜷)
�
𝛼−1

�
𝛼 exp(𝒙𝑖𝑇𝜷)

1 + 𝛼 exp(𝒙𝑖𝑇𝜷)
�
𝑦

. 
(5-1) 

where 𝜽 = (𝜷, 𝛼)k and 𝜼� = 𝒙�. The authors defined the covariate-adjusted probability as: 

𝑝̂\Ó𝜽±fÔ =
1
𝑛�𝑝\(𝜆��)

f

��n

, (5-2) 

where 𝜽±f  is a consistent estimator for 𝜽  and 𝜆�� = 𝜆(𝜽±f, 𝜼�) . For a fitted NB model 

𝜽±f=Ó𝜷±, 𝛼~Ô
k

.  

The authors proved that the covariate-adjusted probability 𝑝̂\ and 𝑓\/𝑛 converges if the 

model is correctly specified. Therefore, the covariate-adjusted probability plot enables 

comparison of the estimated probability marginalising over the distribution of the 

covariates to the observed probability (that is, the relative frequency 𝑓\/𝑛).  

If a Poisson and an NB model include identical covariates, their covariate-adjusted 

probabilities can be shown in one plot to compare their goodness of fit. This plot could be 

used to show 1) whether Poisson overdispersion is present, and, 2) is the NB model a good 

fit to the dataset?  

Figure 5-3 show the covariate-adjusted probabilities of Poisson and NB models from six 

simulated datasets. Each set of data comprised of 500 subjects in group 1 with group mean 

of exp(1), and 500 subjects in group 2 with group mean of exp(1.2). When the dataset is 

equidispersed (Figure 5-3 a), the covariate-adjusted probabilities of the Poisson and NB 

models are indistinguishable from the observed probabilities. For this subplot, the Poisson 

model is anticipated to fit well because the dataset is simulated from a Poisson distribution, 

while the NB model yields a small HP and thus its estimation is close to Poisson. As datasets 

become more overdispersed, indicated by greater 𝛼, the Poisson models show much worse 

goodness of fit, while the NB models remain close to the observed probabilities. 
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Figure 5-3 Covariate-adjusted probability of NB and Poisson models on simulated data with two 
groups (small difference in group means). For each subplot 500 counts (𝑦�) are generated from 
NB(exp(0.2𝑥� + 1) , 𝛼), where 𝑖 = 1,… , 1000; the binary group indicator 𝑥� = 0 for 𝑖 ≤ 500 and 
𝑥� = 1 from the rest. The NB and Poisson models include the same covariate 𝑥�. 
 

Another example is shown in Figure 5-4. The simulation settings are same as in Figure 5-3, 

except for the group means, which are exp(1) in in group 1 and exp(2.2) in group 2. 

Because the difference between group means is bigger than in Figure 5-3, the observed 

probabilities show a bimodal pattern, especially for small 𝛼. Again, the covariate-adjusted 

probabilities from the NB models are indistinguishable from the observed probabilities. The 

Poisson models yield much worse goodness of fit than the NB models, except when 𝛼 = 0. 
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Figure 5-4 Covariate-adjusted probability of NB and Poisson models on simulated data with two 
groups (large difference in group means). For each subplot 1000 counts are generated from 
NB(exp(1.2𝑥� + 1) , 𝛼), where 𝑖 = 1,… , 1000; the binary group indicator 𝑥� = 0 for 𝑖 ≤ 500 and 
𝑥� = 1 from the rest. The NB and Poisson models include the same covariate 𝑥�. 
 

The two examples demonstrate that the covariate-adjusted probability plot is a practical 

tool for graphically illustrating whether NB should be used instead of Poisson regression. 

This plot is also produced by the R package NBDiagnostics. 

5.4 Application of NB diagnostics plots to three falls datasets 

The diagnostic plots described in this chapter are produced for the NB models included in 

Chapter 3, using the Goodwin et al. (2011), Martin et al. (2015), and EXSart (Ashburn et al., 

2001) datasets. 

The NB models included in Chapter 3 are: 1) NB-basic, which includes only one covariate—

the group allocation; and 2) NB-full, which includes both the group allocation and baseline 

characteristics as covariates (the baseline count is not included in both models). The 

covariate-adjusted probabilities from Poi-basic and Poi-full are compared with those from 

NB-basic and NB-full in plots for visualisation of Poisson overdispersion.  
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5.4.1 Goodwin et al. dataset 

Figure 5-5 presents the comparison of the Poisson and NB models in section 3.2.1 regarding 

goodness of fit, by plotting their covariate-adjusted probabilities and the observed 

probabilities. In each subplot, the covariate-adjusted probabilities from NB model are 

closer to the observed probabilities than those from Poisson model, indicating that the NB 

models fit the data better than the Poisson models. 

a 

 

b 

 
c 

 
 

d 

 

Figure 5-5 Covariate-adjusted probability plots for model comparisons in the Goodwin et al. 
dataset. (a) intervention falls count: Poi-basic versus NB-basic (n=116); (b) intervention falls count: 
Poi-full versus NB-full (n=116); (c) follow-up falls count: Poi-basic versus NB-basic (n=130); (d) 
follow-up falls count: Poi-full versus NB-full (n=130). 

 

Figure 5-6 shows the Cook’s distance plots of the NB-basic and NB-full models for counts 

from the intervention and follow-up periods. Overall, most plotting symbols are close to 

the LoFEs. The blue plotting symbols (control group) are symmetric with respect to the LoFE, 

indicating that the period effect is small, and the falls rates during both the intervention 

and follow-up periods are consistent with the baseline rate. There is a tendency for the red 

symbols to fall mostly below the LoFE, suggesting that the participants in the intervention 

group had lower outcome falls rates. 
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The plotting symbols at the top of Figure 5-6 a) and c) are bigger than those in b) and d), 

suggesting that the frequent fallers are more influential in the NB-basic models than in the 

NB-full models. Participant ID 18 (from the intervention group) reporting around 30 

falls/week during both the baseline and intervention period, yields the third largest Cook’s 

distance in the NB-basic model on intervention falls (Figure 5-6 a). The great influence of 

this subject does not persist in the NB-full model (Figure 5-6 b). The participant ID 75 had 

reported the largest falls count during all three periods. Even though the plotting symbol 

of ID 75 lies on the LoFE of all four subplots, the corresponding Cook’s distance from 

NB-basic is large (around 0.6). In comparison, the Cook’s distance of ID 75 from NB-full is 

around 0.2, though this value is still higher than the Cook’s distances for most participants. 

The pattern shown in the Cook’s distance plots implies that NB-full better accounts for large 

counts than NB-basic, but it is still limited when an outcome count is very large and the 

baseline count is not included in the model. 
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Figure 5-6 Cook’s distance plots for the models fitted to the Goodwin et al. dataset. (a) NB-basic 
fitted to the intervention falls count (n=116); (b) NB-full fitted to the intervention falls count 
(n=116); (c) NB-basic fitted to the follow-up falls count (n=130); (d) NB-full fitted to the follow-up 
falls count (n=130). In each subplot, the three subjects with the largest Cook’s distances are labelled 
with their ID. 
 

Having identified the influential subjects in each model, we examine the leverage and 

Anscombe residuals (shown in Figure 5-7 and Figure 5-8 respectively) of the subjects with 

large Cook’s distances. 

The leverage plots have little diagnostic value for the NB-basic model, because it includes 

only one binary covariate — group allocation. The leverage plots for the NB-full models 
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does not indicate that the participants with high Cook’s distance have unusual covariate 

values.  

The Anscombe residuals show a similar pattern in all four models: the residuals are negative 

when the outcome rate is small and positive when the outcome rate is large, that is, large 

outcome counts are underestimated by the model and small counts overestimated. This 

indicates that the models do not sufficiently accommodate the variance of the data, and 

they fit poorly for the large numbers (indicated by the large sizes of the plotting symbols at 

the top-right corners in Figure 5-8). This result shows that the large Cook’s distances for 

the frequently falling participants are not because of peculiar values in the covariates, but 

because the residuals are large. 
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Figure 5-7 Leverage plots for the models fitted to the Goodwin et al. dataset. (a) NB-basic fitted 
to the intervention falls count (n=116); (b) NB-full fitted to the intervention falls count (n=116); (c) 
NB-basic fitted to the follow-up falls count (n=130); (d) NB-full fitted to the follow-up falls count 
(n=130). In each subplot, the three subjects with the largest leverage are labelled with their ID. 
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Figure 5-8 Anscombe residuals plots for the models fitted to the Goodwin et al. dataset. (a) 
NB-basic fitted to the intervention falls count (n=116); (b) NB-full fitted to the intervention falls 
count (n=116); (c) NB-basic fitted to the follow-up falls count (n=130); (d) NB-full fitted to the 
follow-up falls count (n=130). In each subplot, the three subjects with the largest absolute values 
of Anscombe residuals are labelled with their ID. 

 

The DFBETA of the intervention effect is shown in Figure 5-9. As discussed in section 3.2.1, 

the nine most frequently falling participants during the follow-up period were all in the 

control group. They are shown at the top-right corner of subplots c) and d), and they all 

have negative DFBETA, which indicate that excluding these subjects from the model would 

result in a larger regression coefficient, that is, the FRR for the intervention effect would 

be closer to 1. This is in line with the extreme intervention effects estimated from NB-basic 

(FRR: 0.287; Table 3-7) and NB-full (FRR: 0.361; Table 3-8). The plotting symbols of these 

participants are generally close to the LoFE, indicating that they had a consistent falls rate 
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during the baseline, intervention, and follow-up periods. Thus, it is anticipated that they 

will be less influential if the baseline count is incorporated in the models. 

 

 

Figure 5-9 Intervention DFBETA plots for the models fitted to the Goodwin et al. dataset. (a) 
NB-basic fitted to the intervention falls count (n=116); (b) NB-full fitted to the intervention falls 
count (n=116); (c) NB-basic fitted to the follow-up falls count (n=130); (d) NB-full fitted to the 
follow-up falls count (n=130). In each subplot, the three subjects with the largest absolute values 
of DFBETA are labelled with their ID. 
 

5.4.2 Martin et al. dataset 

Figure 5-10 compares the covariate-adjusted probabilities from the Poi-basic and NB-basic 

for the Martin et al. dataset, from which it is clear that the NB-basic model has a better fit 

than Poi-basic. The covariate-adjusted probabilities from the NB model (the green curve in 
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the figure) are reasonably close to the observed probabilities (the blue curve), considering 

the sample size is only 21. 

 

Figure 5-10 Covariate-adjusted probability plots for model comparisons in the Martin et al. dataset: 
Poi-basic versus NB-basic (n=21). 
 

BOE plots from NB-basic fitted to the Martin et al. dataset are shown in Figure 5-11 to 

Figure 5-14. Similar to the plots for the Goodwin et al. dataset, the plotting symbols are 

close to the LoFE, which implies that the falls rate is stable across the baseline and follow-

up periods. There are two reasons for the strong correlation between the baseline and 

intervention rates: 1) falls counts were collected prospectively during both periods; 2) the 

baseline and follow-up periods were relatively short (4 and 20 weeks respectively) and 

there is no gap in between, so the risk of falling during the intervention period was not 

considerably different from the baseline risk. 

Figure 5-11 shows that participant CU21 recorded the highest falls rate during both the 

baseline and intervention periods, and this participant also showed the greatest Cook’s 

distance in the NB model. The three participants with the largest Cook’s distance had fallen 

more frequently than the others.  
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Figure 5-11 Cook’s distance plot for NB-basic fitted to the Martin et al. dataset (n=21). The three 
subjects with the largest Cook’s distances are labelled with their ID. 
 

 

 

Figure 5-12 Leverage plots for NB-basic fitted to the Martin et al. dataset (n=21). The three 
subjects with the largest leverage are labelled with their ID. 
 

As shown in Figure 5-12, all subjects have small leverage, again because the model has only 

one covariate—group. 
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In addition to the large Cook’s distances, CU21 and CU02 show large Anscombe residuals 

(Figure 5-13). The small outcome rates typically yielded negative residuals, while the large 

outcome rates yielded positive residuals, suggesting the model has not fully 

accommodated the skewness of the data. 

 

Figure 5-13 Anscombe residual plots for NB-basic fitted to the Martin et al. dataset (n=21). The 
three subjects with the largest absolute values of Anscombe residuals are labelled with their ID. 

 

Figure 5-14 shows the DFBETA for the intervention effect from NB-basic. Because of the 

small sample size, the subjects with the largest or smallest outcome counts have 

remarkably large DFBETA, suggesting that these subjects have large impacts on the 

estimation of the intervention effect. NB-basic yields an FRR of 2.833 (see Table 3-11) for 

intervention effect, which is not in line with the pattern shown in the BOE plots: the blue 

symbols (control group) do not show a trend of falling under the red dots. This suggest that 

the extreme FRR is likely to be influenced by the outliers. 
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Figure 5-14 Intervention DFBETA plots for NB-basic fitted to the Martin et al. dataset (n=21). The 
three subjects with the largest absolute values of DFBETA are labelled with their ID. 
 

5.4.3 EXSart dataset 

Figure 5-15 compares the covariate-adjusted probabilities from Poisson and NB models for 

the EXSart dataset. The NB models again fit the dataset better than the Poisson models, 

and the covariate-adjusted probabilities from the NB-full models are closer to the observed 

probabilities than those from NB-basic. 
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a 

 

b 

 
c 

 
 

d 

 

Figure 5-15 Covariate-adjusted probability plots for model comparisons in the EXSart dataset. (a) 
intervention falls count: Poi-basic versus NB-basic (n=129); (b) intervention falls count: Poi-full 
versus NB-full (n=126); (c) follow-up falls count: Poi-basic versus NB-basic (n=127); (d) follow-up 
falls count: Poi-full versus NB-full (n=124).  
 

The EXSart trial is different to the other two in that the baseline falls count was obtained 

by asking the participants to retrospectively recall how many falls they had experienced 

during the year prior to the screening interview. The correlation between a retrospective 

and a prospective falls count would be expected to be weaker than that between two 

prospectively collected counts. 

As shown in Figure 5-16, the plotting symbols deviate from the LoFE to a greater extent 

than those in the other two datasets, confirming the weaker correlation between 

retrospective baseline and prospective follow-up counts. The most frequently falling 

participants during the intervention and follow-up periods, ID 28, has the largest Cook’s 

distances (around 5) from NB-basic for both the intervention and follow-up counts. ID 28 

does not appear in Figure 5-16 b) and d) because this participant was excluded from the 

NB-full models due to missing data in UPDRS. 
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Figure 5-16 Cook’s distance plots for the models fitted to the EXSart dataset. (a) NB-basic fitted 
to the intervention falls count (n=129); (b) NB-full fitted to the intervention falls count (n=126); (c) 
NB-basic fitted to the follow-up falls count (n=127); (d) NB-full fitted to the follow-up falls count 
(n=124). In each subplot, the three subjects with the largest Cook’s distances are labelled with 
their ID. 
 

Figure 5-17 shows the leverage plots. The participant with the largest Cook’s distance did 

not have large leverage, indicating that the large influence is not due to the particular 

values in covariates. 



CHAPTER 5 – DIAGNOSTIC PLOTS FOR NB MODELS 

 103 

 

Figure 5-17 Leverage plots for the models fitted to the EXSart dataset. (a) NB-basic fitted to the 
intervention falls count (n=129); (b) NB-full fitted to the intervention falls count (n=126); (c) 
NB-basic fitted to the follow-up falls count (n=127); (d) NB-full fitted to the follow-up falls count 
(n=124). In each subplot, the three subjects with the largest leverage are labelled with their ID. 
 

Figure 5-18 shows the Anscombe residuals from each NB model. Similar to the other two 

datasets, the small outcome rates have negative residuals while the large outcome rates 

have positive residuals. ID 28 has a massive positive Anscombe residual of around 70. This 

suggests that the large counts have not been fully accommodated in any of the models. 
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Figure 5-18 Anscombe residual plots for the models fitted to the EXSart dataset. (a) NB-basic 
fitted to the intervention falls count (n=129); (b) NB-full fitted to the intervention falls count 
(n=126); (c) NB-basic fitted to the follow-up falls count (n=127); (d) NB-full fitted to the follow-up 
falls count (n=124). In each subplot, the three subjects with the largest absolute values of 
Anscombe residuals are labelled with their ID. 

 

Figure 5-19 shows that ID 28 is influential in the estimation of the intervention effect, 

shown by the large negative DFBETA values (around −0.15  for both the intervention 

counts and follow-up counts).  



CHAPTER 5 – DIAGNOSTIC PLOTS FOR NB MODELS 

 105 

 

Figure 5-19 Intervention DFBETA plots for the models fitted to the EXSart dataset. (a) NB-basic 
fitted to the intervention falls count (n=129); (b) NB-full fitted to the intervention falls count 
(n=126); (c) NB-basic fitted to the follow-up falls count (n=127); (d) NB-full fitted to the follow-up 
falls count (n=124). In each subplot, the three subjects with the largest absolute values of DFBETA 
are labelled with their ID. 

 

5.5 Discussion 

Outlying large outcome counts are a major challenge for modelling falls data, as they often 

result in model overdispersion and are influential in the estimation of the intervention 

effect. Diagnostic plots of the model diagnostic statistics assist in pinpointing influential 

subjects, but existing plots are limited for analysing data from falls prevention trials. Four 

BOE plots were described in this chapter to present the following diagnostic statistics: 

Cook’s distance, leverage, Anscombe residual, and DFBETA for intervention effect. These 

plots provide useful diagnostic information and are straightforward to interpret. 
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BOE plots show whether the outcome falls rate is consistent with the baseline rate. An LoFE 

is included in the BOE plot to provide a reference line of constant falls rate across periods. 

Because the falls rate may change over time due to disease progression, it would be 

desirable to assess the possibility of a period effect, and this can be done by examining 

whether the plotting symbols from the control group are symmetrical around the LoFE. The 

BOE plots also provide a visualisation of the intervention effect, and the estimate of the 

effect from an NB model can be examined in the DFBETA plot regarding whether it could 

be due to just a few influential outliers. 

Plotting covariate-adjusted probabilities from NB models is also discussed in this chapter. 

By overlaying the observed probabilities with the covariate-adjusted probabilities from the 

NB and Poisson models with the same covariates, this plot proves to be an effective 

diagnostic tool for examining Poisson overdispersion. 

The diagnostic plots described above were produced for the NB models in Chapter 3. The 

covariate-adjusted probability plots show that all the NB models resulted in a much better 

fit to the falls data than the Poisson models, which conforms to the LR overdispersion tests 

in Chapter 3. Overall, the large outcome counts are highly influential when baseline counts 

are not included in the model, as shown in the Cook’s distance plots. The Anscombe 

residuals are mostly negative for small outcome counts and positive for large counts. This 

indicates that the variance of the outcome count exceeds the NB variances (𝜇 + 𝛼𝜇I). 

The three datasets each has its own characteristics that result in different patterns in the 

BOE plots. During the follow-up period of the Goodwin et al. trial, most of the participants 

who recorded the largest falls counts were in the control group. The BOE plots showed that 

the frequently falling participants during the follow-up period are influential in model 

estimation, especially for the estimation of the intervention effect. The Martin et al. 

dataset has a small sample size, and therefore each participant has great influence on the 

estimation of the intervention effect, as indicated by the DFBETA plot. EXSart is the only 

dataset in which the baseline falls were collected retrospectively, while the method of 

collecting the outcome falls rate was consistent with that for the baseline rate in the 

Goodwin et al. and Martin et al. datasets. As a result, the outcome and baseline rates have 

much weaker correlation in the EXSart dataset (the plotting symbols deviate from the LoFEs 

to a greater extent in the BOE plots).  
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By comparing the four BOE plots, a reader gains a full picture of the influential subjects. An 

R package was written to produce the diagnostic plots for NB models for dataset from falls 

prevention trials, as well as trials for other recurrent events with a baseline count. 

 

 





 

109 

Chapter 6  
 
Comparison of approaches to incorporating the 
baseline count in NB-related models 

Most of this chapter has been published in Biometrical Journal (Zheng et al., 2018). An 

exception is section 6.6, which is presented for the first time here. The author of this thesis 

(HZ) is the first author and the main contributor to the publication and conducted the 

analysis as well as the simulation study. The formulae and tables in section 6.2 to 6.5 are 

the same as used in the published paper. The chapter has been rewritten slightly to fit the 

formatting of the thesis and examines models for the falls count in the Goodwin et al. (2011) 

dataset during the intervention period, including the intervention effect and baseline count. 

Other baseline characteristics are not considered.  

6.1 Introduction 

A common design for falls prevention trials is to collect the number of falls experienced by 

each participant during a baseline period (prior to randomisation) as the baseline falls 

count, and during a follow-up period (after randomisation and the onset of the intervention) 

as the outcome count. Outcome falls counts are often analysed using count response 

models to calculate an FRR as the estimate of the intervention effect, but how best to 

incorporate baseline counts in modelling remains a question. 

Vickers and Altman (2001) discussed methods for analysing RCTs with a continuous variable 

measured at the baseline and as an outcome at follow up. They commented that the most 

straightforward method, basing analysis solely on the outcomes in each trial group, does 

not cope with the potential imbalance of the baseline measurements between groups. The 

authors recommended including the baseline measurement as a regressor instead, 

because it copes with the baseline measurement regardless of whether they are balanced 
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between groups. Although Vickers and Altman demonstrated the issue using normally 

distributed data, their argument is applicable to falls counts as well. 

Including a baseline falls count in NB models is expected to increase the statistical power, 

and in addition, control for overdispersion. If the heterogeneity of a model is primarily due 

to unobserved latent subject-specific prognostic variables, the outcome and baseline 

counts are anticipated to be correlated as they measure the same person. Because the 

baseline period of a trial is prior to the randomisation, the number of falls during the period 

is not confounded with the intervention. Therefore, including a baseline count in a model 

accounts for the latent variables. 

Despite the great benefit of including baseline falls counts in models, few Parkinson’s 

researchers have recognized the importance of utilising this information in statistical 

analysis. Whether the baseline count was incorporated in modelling and how it was done 

is often not explicitly described in papers. In a Cochrane review of falls prevention trials 

(Gillespie et al., 2012), the authors recommend using NB regression for analysing falls data, 

but did not provide guidance on incorporating baseline counts in the model, nor did they 

review how this was done in practice: the baseline count may be ignored, categorised into 

a discrete covariate, or included after transformation. The lack of description implies that 

the baseline count has been largely overlooked. 

Cook and Wei (2003) proposed the Conditional Negative Binomial (CNB) model to 

incorporate the baseline count. Similar to the NB model, the heterogeneity is modelled in 

CNB as a gamma distributed random subject effect. The difference is that the CNB model 

is based on a mixed Poisson distribution in which a baseline count shares the same random 

subject effect as the outcome. This enables modelling the outcome count conditioning on 

the baseline count; while an NB model ignoring the baseline count can be deemed a model 

marginalising over the random effect. 

To ensure that only PwP with high risk of falling could enter the study, some trials restricted 

participation to those with baseline counts greater than a threshold. This design increases 

statistical power, but it also results in a truncated distribution for the baseline count, which 

violates the mixed Poisson distribution underlying the CNB model. For a trial with this 

design, the threshold value must be specified in the CNB model to accommodate the 
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truncation. A problem of this design is that it is expensive, because it requires recruiting 

more PwP during the baseline period, many of whom may not fall. An alternative approach 

is to, 1) ask the interviewees at the screening interview to recall the number of falls they 

had experienced during a period of time in the past, 2) only recruit people who recalled 

more falls than the eligibility criterion, and 3) obtain a baseline count during a baseline 

period using the prospective method. This approach is more cost-effective, as only the PwP 

who are likely to fall enter the prospective study. Because this approach does not result in 

a truncated baseline count, the CNB model does not need to be adjusted based on the 

eligibility criterion. 

The motivating dataset of this chapter was that reported by Goodwin et al. (2011). An 

eligibility criterion was that participants had to report having fallen at least twice in the 

previous year, obtained by a retrospective question asked at a screening interview prior to 

enrolment and baseline. As discussed above, this did not result in a truncated count during 

the prospective baseline diary collection period, and thus the CNB model does not need to 

account for the truncation in the baseline count.  

 

Figure 6-1 Goodwin et al. dataset: follow-up falls counts against baseline falls counts (n=124, 
Spearman 𝜌=0.813, P<0.001). The diagonal line is the LoFE described in section 5.2. In subplot b, 
0.5 is added to both counts before log-transformation to include zero counts.  
 

Figure 6-1 shows the falls counts in the Goodwin et al. dataset. The outcome counts are 

plotted against the baseline counts, on the linear (Figure 6-1a) and logarithmic (Figure 6-1b) 

scale. The falls counts have a relatively small mean and a few outlying large numbers. The 
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figure indicates that the outcome counts, in a broad sense, follow a linear relationship with 

the baseline counts. In isolation, the large outcome counts may be classified as outliers 

because they are far from the body of cases in Figure 6-1, but overall they show a strong 

agreement with the corresponding baseline counts in the scatter plots. 

Although CNB can be used to model the relationship between the outcome and baseline 

counts, it is not widely supported in statistical packages, which raises a question—how to 

incorporate the baseline count in an NB model so that the model reflects the underlying 

mixed Poisson distribution? 

In this chapter, different approaches are compared to incorporating the baseline falls count 

in NB and Poisson models. Their performance is compared to that of CNB, which is 

considered as the benchmark model. The models are fitted to the Goodwin et al. dataset, 

and model diagnostic statistics are further examined. A simulation study is conducted to 

compare the models regarding bias, power, type I error rate, and the standard error of the 

intervention effect, under scenarios reflecting our motivating dataset. Statistical 

significance of the intervention effect was assessed using the Wald test, because it is 

typically the default model-based test in statistical packages. P values from score tests were 

also calculated and compared to those from Wald tests. 

6.2 Models incorporating the baseline count  

6.2.1 Mixed Poisson distribution with subject-specific heterogeneity 

Suppose 𝑚  subjects are enrolled in a trial, which is comprised of a baseline period 

(indicated by 𝑗 = 0; prior to randomisation) and an outcome period (indicated by 𝑗 = 1; 

post randomisation). Let 𝑡v denote the duration of the baseline period, which is assumed 

to be the same for all subjects (common in falls prevention trials), and 𝑡�n the duration of 

the outcome period for subject 𝑖, where 𝑖 = 1,… ,𝑚. The subjects may have varying length 

of the outcome period due to dropout, assumed to occur at random. At randomisation, 

subject 𝑖 is allocated either to an intervention (denoted by 𝑥� = 1) or a control group (𝑥� =

0). Let 𝑦�v and 𝑦�n denote the number of falls experienced by subject 𝑖 during the baseline 

and outcome periods respectively. If variables 𝑌�v and 𝑌�n both follow Poisson distribution, 
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Pr(𝑌�v = 𝑦�v; 𝜆v, 𝑡v) =
(𝜆v𝑡v)\Ýç exp(−𝜆v𝑡v)

𝑦�v!
 (6-1) 

and 

Pr(𝑌�n = 𝑦�n; 𝜆n, 𝑡�n) =
(𝜆n exp(𝛽𝑥�) 𝑡�n)\Ý| exp(−𝜆n exp(𝛽𝑥�) 𝑡�n)

𝑦�n!
, (6-2) 

where 𝜆v is the average falls rate during the baseline period, 𝜆n is the average rate for the 

control group during the outcome period, and 𝛽  is the logarithm of the FRR for the 

intervention effect.  

Let 𝜇v = 𝜆v𝑡v and 𝜇�n= 𝜆nexp(𝛽𝑥�) 𝑡�n, the expectation and variance of 𝑌�v and 𝑌�n are 

E(𝑌�v) = Var(𝑌�v) = 𝜇�v (6-3) 

E(𝑌�n) = Var(𝑌�n) = 𝜇�n. (6-4) 

If there is heterogeneity in the baseline and outcome counts, they will both be 

overdispersed, that is, the variance of 𝑌�²  will be greater than the expectation 𝜇�², which 

violates the assumption of equidispersion in Poisson regression. 

We further assume that the heterogeneity is brought about by a gamma distributed 

random subject effect 𝑠�  with mean 1 and variance 𝛼 . The conditional probability 

distributions of 𝑌�v and 𝑌�n given 𝑠�  is a mixed Poisson distribution (Cook and Wei, 2003) 

given by 

𝑌�v|𝑠�	~	Poisson(𝑠�𝜇�v) (6-5) 

𝑌�n|𝑠� ∼ Poisson(𝑠�𝜇�n). (6-6) 

The counting process underlying 𝑌�v  and 𝑌�n  was described by Cook et al. (2005) as a 

time-homogeneous Poisson process, because heterogeneity is introduced by a latent 

subject-specific effect, such that 𝑌�v and 𝑌�n are conditionally independent given 𝑠�. 

Marginalising over 𝑠�  yields the PMF of NB regression: 
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Pr(𝑌�n = 𝑦�n; 𝜇�n, 𝛼) =
Γ(𝑦�n + 𝛼hn)

Γ(𝑦�n + 1)Γ(𝛼hn)
x

1
1 + 𝛼𝜇�n

y
z{|

x
𝛼𝜇�n

1 + 𝛼𝜇�n
y
\Ý|
. (6-7) 

The variance of 𝑌�n in (6-7) is 

Var(𝑌�n) = 𝜇�n + 𝛼𝜇�nI , (6-8) 

where 𝛼𝜇�nI  accommodates the extra variance exceeding that in Poisson regression, which 

can be regarded as an NB model with 𝛼 approaching zero. Conversely, NB regression is a 

generalisation of the Poisson model, with the same log link function 

g(E(𝑌�n)) = log(𝜇�n) = 𝜂�n, where 𝜂�n is the linear predictor of the model. 

From the mixed Poisson distribution described in equations (6-5) and (6-6), Cook and Wei 

(2003) derived the conditional distribution of 𝑌�n given the baseline 𝑦�v as: 

Pr(𝑌�n = 𝑦�n|𝑦�v; 𝜆v, 𝜆n, 𝛽, 𝛼) =
Γ(𝑦�v + 𝑦�n + 𝛼hn)

Γ(𝛼hn + 𝑦�v)Γ(𝑦�n + 1)
	
(1 + 𝛼𝜇�v)z

{|é\Ýç(𝛼𝜇�n)\Ý|
(1 + 𝛼(𝜇�v + 𝜇�n))z

{|é\Ýçé\Ý|
, (6-9) 

and their Conditional Negative Binomial (CNB) model fits this distribution to data. 

As introduced in section 2.3.3, the estimate of 𝛼 from NB regression is referred to as the 

Heterogeneous Parameter (HP) by Hilbe (2011). It shows the degree of heterogeneity 

remaining unaccounted for by the model covariates. Therefore, including more covariates 

in an NB model may, to some degree, explain heterogeneity, and would be expected to 

result in a smaller HP. In contrast, the 𝛼~ from a CNB model is the variance of the underlying 

random subject effects and is estimated from both the baseline and the outcome counts. 

Larger 𝛼~  indicates stronger association between the outcome and baseline counts. 

Because of the distinct interpretations of the two estimates, the estimate of 𝛼 is referred 

to as HP for NB model and as 𝛼~ for CNB model. 

6.2.2 Including the baseline count as a covariate in NB models 

Although CNB model is a direct derivation from the mixed Poisson distribution put forward 

in (6-5) and (6-6), a commonly seen alternative is to include the baseline count as a 

covariate in NB regression. In this section some alternative approaches to incorporating 
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the baseline count in an NB regression are described so that it captures the correlation of 

𝑌�v and 𝑌�n. 

Given the random subject effect 𝑠�, the conditional expectations of 𝑌�v and 𝑌�n given 𝑠�  in 

(6-5) and (6-6) are 

E(𝑌�v|𝑠�) = 𝜆v𝑠�𝑡v (6-10) 

E(𝑌�n|𝑠�, 𝑥�, 𝑡�n) = 𝜆n𝑠� exp(𝛽𝑥�) 𝑡�n. (6-11) 

Hence 

E(𝑌�n|𝑠�, 𝑥�, 𝑡�n) =
𝜆n
𝜆v𝑡v

exp(𝛽𝑥�)E(𝑌�v|𝑠�)𝑡�n. (6-12) 

Marginalising over 𝑠�  in (6-10) and (6-11) gives 

E(𝑌�v) = s E(𝑌�v|𝑠�)𝑓ê(𝑠�)𝑑𝑠�
∞

v
 (6-13) 

E(𝑌�n|𝑥�, 𝑡�n) = s E(𝑌�n|𝑠�, 𝑥�, 𝑡�n)𝑔ê(𝑠�)𝑑𝑠�
∞

v
, (6-14) 

where 𝑔ê(. ) is the PDF of 𝑠�. Based on equation (6-11), equation (6-14) can be written as 

E(𝑌�n|𝑥�, 𝑡�n) = s
𝜆n
𝜆v𝑡v

exp(𝛽𝑥�) E(𝑌�v|𝑠�)𝑡�n𝑔ê(𝑠�)𝑑𝑠�
∞

v
	

=
𝜆n
𝜆v𝑡v

exp(𝛽𝑥�) 𝑡�n s E(𝑌�v|𝑠�)𝑔ê(𝑠�)𝑑𝑠�
∞

v
	

=
𝜆n
𝜆v𝑡v

exp(𝛽𝑥�) E(𝑌�v)𝑡�n 

(6-15) 

Taking the logarithm of both sides of (6-15) yields 

logÓE(𝑌�n|𝑥�, 𝑡�n)Ô = 	log x
𝜆n
𝜆v𝑡v

y + 𝛽𝑥� + logÓE(𝑌�v)Ô + log(𝑡�n). (6-16) 

Putting the moment estimator of 𝑌�v, that is, 𝑦�v/1 = 𝑦�v, instead of E(𝑌�v) gives 
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logÓE(𝑌�n|	𝑥�, 𝑡�n)Ô = 	log x
𝜆n
𝜆v𝑡v

y + 𝛽𝑥� + log(𝑦�v) + log(𝑡�n). (6-17) 

Equation (6-17) suggests a Poisson/NB regression model for 𝑌�n of the following form: 

logÓE(𝑌�n|𝑦�v, 𝑥�, 𝑡�n)Ô = 𝑔(𝜇�n) = 𝜁 + 𝛽𝑥� + log(𝑦�v) + log(𝑡�n), (6-18) 

where the constant term log(𝜆n/(𝜆v𝑡v)) in (6-17) is absorbed in the intercept 𝜁. 

This suggests that, compared to including the baseline count 𝑦�v  as an untransformed 

regressor, it is more appropriate to include log	(𝑦�v) as an offset. If the exposure 𝑡�n varies 

across subjects, the offset in the model is the combined term log(𝑦�v) + 	 log(𝑡�n),  which 

can be reduced to log	(𝑦�v) if 𝑡�n is the same over 𝑖. 

The performance of NB regression with the following four linear predictors are compared: 

1) ignoring the baseline count 𝑦�v; 2) including the untransformed 𝑦�v as a covariate; 3) 

including log	(𝑦�v) as a covariate; and 4) including log	(𝑦�v) as an offset. The results of 

Poisson models with the same four linear predictors are produced for comparison, and the 

CNB model is included as the benchmark model. 

The NB / Poisson Models with the four linear predictors described above are referred to as 

NB-null / Poi-null, NB-unlogged / Poi-unlogged, NB-logged / Poi-logged, and NB-offset / 

Poi-offset respectively in Zheng et al. (2018). They are introduced and described below.  

Ignoring the baseline count (NB-null/Poi-null) 

As discussed earlier, the HP in NB regression shows how much variability relative to Poisson 

has been introduced by 𝑠�, and remains unexplained by any explanatory variables in the 

model. When the baseline count is ignored, the intervention indicator 𝑥�  and the exposure 

log	(𝑡�n) are the only explanatory variables in the linear predictor: 

𝑔(𝜇�n) = 	𝜁 + 𝛽𝑥� + log(𝑡�n). (6-19) 

The HP from NB-null is estimated based on the outcome count only, thus its value is 

anticipated to be close to 𝛼~ from CNB model.  
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Including the unlogged baseline count as a covariate 
(NB-unlogged/Poi-unlogged) 

In the NB-unlogged and Poi-unlogged models, the baseline count 𝑦�v  is included as a 

covariate, with no transformation. The HP from an NB-unlogged model is anticipated to be 

smaller than that from NB-null, because the included covariate 𝑦�v may partially reduce 

heterogeneity. 

The linear predictor in either NB-unlogged or Poi-unlogged is: 

𝑔(𝜇�n) = 𝜁 + 𝛽𝑥� + 𝜓𝑦�v + log(𝑡�n), (6-20) 

where 𝜓 is the regression coefficient for the baseline count. 

Including the logged baseline count as a covariate (NB-logged/Poi-logged) 

In the NB-logged and Poi-logged models, the log-transformed baseline count is included as 

a covariate to conform to the scaling of 𝑦�v in (6-18). The linear predictor including the 

logged baseline count is given by: 

𝑔(𝜇�n) = 𝜁 + 𝛽𝑥� + 𝜙log(𝑦�v) + log(𝑡�n), (6-21) 

where 𝜙 is the regression coefficient for the logged baseline count. It is anticipated to be 

close to one when the data are in accordance with the mixed Poisson distribution. 

If including logged baseline counts better accounts for the correlation between 𝑦�v and the 

outcome 𝑦�n than including the untransformed baseline counts, the HP from NB-logged is 

anticipated to be smaller than that from NB-unlogged. To include the subjects with 𝑦�v =

	0  (which cannot be logged), 0.5 was added to all the baseline counts before 

log-transformation. 

Including the logged baseline count as an offset (NB-offset/Poi-offset) 

Now we consider the NB-offset and Poi-offset models. Compared with the NB-logged and 

Poi-logged models, they are a closer match to the form of (6-18)—the baseline count is 

included as an offset, so the regression coefficient is constrained to be one. The linear 

predictor with baseline count as an offset term is: 
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𝑔(𝜇�n) = 𝜁 + 𝛽𝑥� + log(𝑦�v) + log(𝑡�n). (6-22) 

Again, 0.5 is added to the baseline count to ensure that zero baseline counts can be 

log-transformed. If the approach of including logged baseline counts is more appropriate 

than including the untransformed value, the HP from NB-offset is anticipated to be lower 

than that of NB-unlogged. 

6.3 Methods 

Simulations and analysis were conducted using R (version 3.5.0). NB models were fitted 

using the negbin() function from the aod package, and Poisson models were fitted using 

the glm() function. CNB models were fitted using the nlm() function for non-linear 

minimisation (using code from the authors) . 

P values were obtained from Wald tests, and reported along with estimates, 95% CI, and 

the AIC. Cook’s distances were obtained from the glm.nb() function in the MASS 

package (described in section 4.5). 

The models were fitted to the falls counts collected during the intervention period of the 

Goodwin et al. trial. To ensure that NB-null and Poi-null are comparable to the other models, 

one participant (ID 1) was excluded from analysis due to missing value in the baseline count. 

6.4 Poisson/NB/CNB models fitted to the Goodwin et al. dataset 

The models described in section 6.2 are fitted to the Goodwin et al. dataset and the 

estimates are shown in Table 6-1. Poi-null, which ignores both the baseline count and 

overdispersion, yields the largest AIC among all the fitted models as expected. By 

accounting for overdispersion, NB-null achieved a marked reduction in AIC (931.8 versus 

9996.1 in Poi-null). Although the baseline count is not incorporated in NB-null, the model 

results in a lower AIC than any of the fitted Poisson models. 

NB-unlogged results in a smaller AIC (844.2) than NB-null, and its HP is smaller as well, with 

𝜓  estimated to be 0.019. By including the logged baseline count instead of the 

untransformed count, the resultant model, NB-logged, further deceases AIC to 744.3, with 

𝜙ì estimated to be 0.911. NB-offset yields a marginally higher AIC (745.5) than NB-logged, 
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and a similar estimate of the intervention effect (FRR=0.698 in NB-logged and 0.707 in 

NB-offset). Both NB-logged and NB-offset yield significant intervention effects, with P 

values of 0.021 and 0.032 respectively. Their HPs are also much smaller than that of 

NB-unlogged. 

The Poisson models show a similar pattern to the NB models. Poi-unlogged yields a smaller 

AIC than Poi-null. The AIC is further decreased in Poi-logged and Poi-offset, and the two 

models also give similar estimates for the intervention effect. The estimate of 𝜓  from 

Poi-unlogged is 7.02 × 10h� (close to zero), while 𝜙ì from NB-logged is 1.030 (close to one). 

The CNB model yields smaller SE for 𝛽�  than the four NB models, as well as smaller P value 

from the Wald test. The estimate of 𝛼 is 2.873 in CNB. 

Table 6-1 Poisson/NB/CNB models fitted to the Goodwin et al. dataset (n=124). 

Model AIC 𝜷± (SE) FRR (95% CI) P 𝝍±  (SE) 𝝓±  (SE) HP 

Poi-null          9996.1 -0.571  
(0.037) 

0.565  
(0.525, 0.608) 

< 0.001 
   

Poi-unlogged      3247.6 -0.472  
(0.038) 

0.624  
(0.580, 0.672) 

< 0.001 7.02×10h� 
(6.78×10hï) 

  

Poi-logged        1131.5 -0.480  
(0.037) 

0.619  
(0.575, 0.666) 

< 0.001 
 

1.030 
(0.012) 

 

Poi-offset        1135.6 -0.479  
(0.037) 

0.619  
(0.577, 0.666) 

< 0.001 
   

NB-null           931.8 -0.572  
(0.323) 

0.565  
(0.300, 1.064) 

0.077 
  

3.189 

NB-unlogged       844.2 -0.391 
 (0.236) 

0.677  
(0.426, 1.074) 

0.098 0.019 
(0.004) 

 
1.541 

NB-logged         744.3 -0.359  
(0.156) 

0.698  
(0.514, 0.948) 

0.021 
 

0.911 
(0.048) 

0.511 

NB-offset         745.5 -0.346  
(0.161) 

0.707  
(0.516, 0.970) 

0.032 
  

0.519 

       𝛼~ 

CNB                -0.479  
(0.051) 

0.619  
(0.561, 0.684) 

< 0.001 
  

2.873 

 

Figure 6-2 displays diagnostic plots for NB-unlogged and NB-logged as a means of 

examining graphically whether the baseline count should be logged. The Anscombe 

residuals of NB-unlogged show a curvilinear pattern in Figure 6-2a—the residuals of the 

subjects with the largest fitted values deviating remarkably downwards from 𝑦	=	0, which 
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indicates that they are considerably overestimated by NB-unlogged. The pattern is 

confirmed by the Q-Q normal plot of the Anscombe residuals (Figure 6-2c). Although the 

Anscombe residuals in Figure 6-2d show satisfying normality, in Figure 6-2b it is clearly not 

a standard normal distribution (this was addressed in section 2.3.4). Figure 6-2e shows the 

Cook’s distances from NB-unlogged in a BOE plot. The subjects who reported the largest 

baseline and outcome counts, the plotting symbols at the top-right corner of the plot, have 

the largest Cook’s distances. 

In contrast, for NB-logged the points in the residual-versus-fitted plot (Figure 6-2b) are 

reasonably symmetric around zero, and the residuals show satisfying normality in the Q-Q 

normal plot (Figure 6-2d). Comparing Figure 6-2 f) to e), the large outcome counts in 

NB-logged are not as influential as in NB-unlogged. The two subjects with the largest 

baseline and outcome counts are highly influential in NB-unlogged, but not in NB-logged. 

The subjects with inconsistent falls rates between the baseline and outcome periods, that 

is, those whose plotting symbols deviate furthest from the LoFE in Figure 6-2f, had the 

largest Cook’s distances in NB-logged. 
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Figure 6-2 Goodwin et al. (2011) dataset: diagnostic plots from NB-unlogged versus NB-logged 
(n=124). (a-b) Anscombe residuals versus fitted values. (c-d) Normal Q-Q plot of Anscombe 
residuals. (e-f) The BOE plot presenting Cook’s distance with x- and y- axes on a logarithmic scale 
(the diagonal line is the LoFE). 
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6.5 Simulation study and model comparison 

6.5.1 Simulation datasets 

The simulations were based on the Goodwin et al. dataset with some simplifications. For 

each simulation scenario 2000 trials were simulated from the mixed Poisson distribution 

(see section 6.3), with each trial comprised of 𝑚 subjects (an example code is given in 

Appendix B). The first 𝑛 subjects (𝑛 = 𝑚/2) were allocated to the control group and the 

rest to the intervention group. The length of baseline and outcome periods was assumed 

to be the same for all subjects (𝑡v	=	𝑡�n	=	1). The average baseline count (𝜇�v) was set to 

30, which is close to the number (around 28) reported in the Goodwin et al. dataset (see 

Table 3-1). We further assume that 𝜆n = 𝜆v so that for participants in the control group 

𝜇�n = 𝜇�v = 30. A few sets of data were simulated and examined, and found to show a 

similar pattern to the Goodwin et al. data (not shown). 

Twenty-four scenarios were considered expanding three factors: 𝛼, 𝛽, and sample sizes 𝑚:  

• The variance of the gamma-distributed subject effect (𝛼) was set at 3 to resemble 

𝛼~ from the CNB model fitted to the Goodwin et al. dataset (Table 6-1), and at 0.5 

for less overdispersed data. 

• An intervention effect close to that estimated from CNB in the Goodwin et al. 

dataset, 𝛽 = −0.4 (FRR: 0.670), and a smaller intervention effect, 𝛽 = −0.2 (FRR: 

0.819), were considered for examining the power of the Wald test, while 𝛽 = 0 

(FRR: 1) was considered for examining the type I error rate. 

• The datasets were simulated with total size (𝑚) of 50, 100, 200, and 500, typical of 

small to medium sized falls prevention trials. 

The NB, Poisson, and CNB models were fitted to each simulated dataset using R as 

described in section 6.3. From each fitted model, 𝛽�  and SE(𝛽�) were extracted, and the 

following statistics suggested by White (2010) to show the properties of the model 

estimators are reported: 

Bıasò	 = avÓ𝛽�Ô − 𝛽, (6-23) 
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where av(βì) is the average value (denoted as av) of the estimates of 𝛽  from the 2000 

datasets in a scenario. The Monte Carlo error (MCError) is reported to show certainty 

concerning Bıasò	: 

MCErrorÓBıasòÔ =
EmpSE
°nôõö

,	 (6-24) 

where 𝑛ôõö  and EmpSE are the number of estimates and the empirical SE (that is, the 

standard deviation of 𝛽� ), that is the standard deviation of 𝛽�  within the scenario. The 

ModSE is defined as the average of SEÓ𝛽�Ô, that is, the average of the model-based SEs. 

White also suggested examining the model-based SEs from each model using the relative 

error, which is defined as: 

Relative	Error =
ModSE
EmpSE − 1,	

(6-25) 

such that a positive relative error suggests that the model-based SE is overestimated, and 

vice versa for a negative relative error. 

The following statistics were also computed across datasets within each scenario: av(HP), 

av(𝛼~), avÓ𝜓ìÔ, and avÓ𝜙ìÔ. The datasets where the algorithm did not converge or yielded 

incorrect estimates (judged by ÷𝛽� − 𝛽÷ > 5  or SEÓ𝛽�Ô > 1  were excluded, the selection 

criteria were chosen by inspecting the respective distributions of 𝛽�  and its SE). The 

proportion of simulated trials in which the null hypothesis of the Wald test of intervention 

effect was rejected was reported as the empirical power when 𝛽≠0, and the empirical 

type I error rate when 𝛽 = 0. The empirical power and type I error rate of the score test 

for 𝛽 were further examined. The P value of the score test was obtained from the st.ml() 

function in the robNB package (Aeberhard, 2016) in R. 

To inspect the appropriateness of adding 0.5 in the log-transformation of the baseline 

count, separate simulations were carried out, with the same levels of 𝛼, 𝛽, and 𝑚 as the 

main simulation, for NB-logged and NB-offset only, to compare their performance when 

different values (0.01, 0.1, and 1) are added. 
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6.5.2 Simulation results 

In most cases, the algorithms of the models converged without raising errors (the number 

of successful convergences out of the 2000 repeats within each scenario are shown in 

Appendix C Table C-1).  

As shown in Table 6-2, NB-null yielded the largest HPs in every scenario, with averages of 

HPs close to 𝛼~ from the CNB model. The HPs from NB-unlogged are smaller than those from 

NB-null, but much larger than the HPs from NB-logged and NB-offset (the HPs of the latter 

two models are typically close). The estimates of 𝜓  (the regression coefficient for the 

unlogged baseline count from NB-unlogged) and 𝜙 (the coefficient for the logged baseline 

count from NB-logged) are close to zero and one respectively. 

Figure 6-3 shows the Bıasò of 𝛽�  from the NB and CNB models, with the error bars showing 

the 95% CI calculated from MCError. Generally, 𝛽�  yielded by the NB and CNB models are 

close to the underlying value. The wide error bars for NB-null show that its estimates of the 

intervention effect have a higher variability than the other fitted models. Although the 

estimates of 𝛽  from NB-unlogged have smaller variance than those from NB-null. The 

empirical SEs of 𝛽�  from NB-unlogged are larger than those from the NB-logged, NB-offset, 

and CNB models, which suggests that these three models are more efficient in estimating 

intervention effects. Also, the error bars from the NB-logged, NB-offset, and CNB models 

have similar widths when 𝛼 = 3 and 𝛼 = 0.5. In contrast, the error bars from NB-null were 

much wider when 𝛼	=	3, which suggests that 𝛽�  from NB-null has higher variability when 

the underlying distribution is more skewed (with more outliers), while the effect of outliers 

on the estimate of the intervention effect is mitigated by incorporating the baseline count. 

The relative errors from each model are compared in Figure 6-4. Overall, the relative errors 

are small when 𝛼 = 0.5. The model-based SEs from NB-null, NB-logged, and NB-offset are 

typically lower than the empirical standard errors when the sample size is small, but the 

relative errors of the three models are generally low, especially for large sample sizes. 

When 𝛼	=	3, the model-based SEs from NB-unlogged are considerably larger than the 

corresponding empirical SEs, which agrees with the low type I error rate in the Wald test 

based on this model (Figure 6-5b). 
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The empirical power and type I error rates of the Wald test in NB and CNB models are 

presented in Figure 6-5. NB-null has the lowest empirical power, although its empirical type 

I error rates are relatively close to the nominal level (0.05). Because of the extra 

information from including the untransformed baseline count, NB-unlogged achieved 

greater power than NB-null, but the improvement when 𝛼=3 is not as large as when 𝛼=0.5. 

NB-logged and NB-offset result in almost identical power, which are substantially higher 

than the power for NB-unlogged in all scenarios, and they are only marginally less powerful 

than CNB. Similar to the CNB model, the power of the Wald test in NB-logged and NB-offset 

are less affected by change of 𝛼 than that of NB-unlogged. 

The CNB model not only has the greatest power, its type I error rates are also more stable 

than the other models—they are typically close to the nominal level regardless of the 

sample size. The type I error rates of NB-null, NB-logged, and NB-offset are moderately 

higher than the nominal level of 0.05 for small sample sizes (the maximum rate for 

NB-logged is 0.071 when 𝑚=50 and 𝛼=3), but approach 0.05 as the sample size increases; 

while the type I error rate for NB-unlogged is consistently deflated when 𝛼=3, without 

showing any trend of convergence towards 0.05, even when 𝑚=500. Type I error rates in 

NB-offset are closer to 0.05 than NB-logged, but the difference is small. 

The simulations were repeated to assess the performance of the score test for the four NB 

models. For NB-null, NB-logged, and NB-offset, the empirical type I error rates of the score 

test are closer to the nominal level than the Wald test when the sample size is small (Figure 

6-6b). The type I error rates of the score test in NB-unlogged deviate further from 0.05 than 

for the Wald test. For the scenarios with 𝛼 = 3, the test shifts from being liberal when the 

sample size is small (50 and 100) to being conservative when the sample size is large (200 

and 500). 

Different values (0.01, 0.1, 0.5, and 1) were added to the baseline count before log-

transformation and the resultant NB-logged/NB-offset models were compared in 

simulations regarding the estimation and hypothesis testing of intervention effects. The 

results of the simulations show that the values examined do not have a large impact on the 

estimation of 𝛽  (Table 6-3) or the Wald test (Table 6-4). The results show that adding 

different values (between 0.01 and 1) does not substantially change the model estimation. 
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As shown in Figure 6-7, 𝛽�  are generally close to the underlying values in Poisson models, 

except when 𝛽 = −0.4 and 𝛼 = 3, in which Poi-unlogged underestimated 𝛽� . The relative 

error plot (Figure 6-8) illustrates that SE(𝛽�) are underestimated in every Poisson model, 

leading to the extremely inflated type I error rates (Figure 6-9b). Note that Poi-logged and 

Poi-offset have lower type I error rates than the other two Poisson models, and they also 

have higher power (Figure 6-9a). 

Table 6-2 Estimates of HP from NB models, 𝛼~ from CNB, 𝜓ì from NB-unlogged, and 𝜙ì from 
NB-logged 

   av(HP) av(𝛼~) av(𝜓ì) av(𝜙ì) 
𝛼 𝛽 𝑚 NB-null NB-unlogged NB-logged NB-offset CNB NB-unlogged NB-logged 

3      -0.4 50 2.931 1.152 0.018 0.019 2.988 0.033 1.017 
                100 2.951 1.192 0.019 0.019 2.981 0.032 1.018 
                200 2.982 1.223 0.018 0.019 2.994 0.031 1.018 
                500 2.989 1.233 0.019 0.019 2.997 0.031 1.018 
       -0.2 50 2.954 1.195 0.019 0.020 3.012 0.033 1.021 
                100 2.969 1.225 0.019 0.020 3.000 0.032 1.019 
                200 2.980 1.244 0.019 0.019 2.997 0.031 1.018 
                500 2.989 1.257 0.020 0.020 2.996 0.031 1.018 
       0 50 2.918 1.204 0.020 0.021 2.971 0.033 1.020 
                100 2.972 1.250 0.020 0.021 2.999 0.032 1.019 
                200 2.988 1.271 0.021 0.021 2.998 0.031 1.019 
                500 2.994 1.284 0.021 0.021 3.000 0.031 1.018 

0.5    -0.4 50 0.479 0.087 0.027 0.029 0.488 0.029 0.930 
                100 0.491 0.093 0.027 0.029 0.496 0.028 0.929 
                200 0.497 0.096 0.029 0.030 0.499 0.028 0.928 
                500 0.499 0.098 0.029 0.030 0.500 0.028 0.929 
       -0.2 50 0.484 0.089 0.026 0.029 0.493 0.029 0.930 
                100 0.490 0.093 0.027 0.029 0.495 0.028 0.931 
                200 0.496 0.097 0.029 0.030 0.498 0.028 0.929 
                500 0.497 0.098 0.029 0.031 0.498 0.028 0.927 
       0 50 0.483 0.090 0.027 0.030 0.491 0.029 0.928 
                100 0.489 0.094 0.028 0.030 0.494 0.029 0.927 
                200 0.494 0.098 0.030 0.031 0.497 0.028 0.926 
                500 0.498 0.100 0.030 0.031 0.499 0.028 0.928 
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Figure 6-3 Bias plot of NB-null, NB-unlogged, NB-logged, NB-offset, and CNB. The Bıas	òof 𝛽�  are 
shown as the points with error bars (the 95% CI calculated from the MCError of Bıasò). 
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Figure 6-4 Relative error plot of NB-null, NB-unlogged, NB-logged, NB-offset, and CNB.  
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Figure 6-5 Performance of the Wald test from NB-null, NB-unlogged, NB-logged, NB-offset, and 
CNB in simulations. (a) Empirical Power; (b) Empirical type I error rates. 
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Figure 6-6 Performance of the score test from NB-null, NB-unlogged, NB-logged, and NB-offset 
in simulations. (a) Empirical power; (b) Empirical type I error rates. (Note that the scaling of y-axis 
is different to that in Figure 6-5b). 
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Table 6-3 The av(𝛽�) from NB-logged and NB-offset in each simulation scenario, with different 
values (0.001, 0.1, 0.5, and 1) added before log-transformation.

   NB-logged  NB-offset 

𝛼 𝛽 𝑚 +0.01 +0.1 +0.5 +1  +0.01 +0.1 +0.5 +1 

3 -0.4 50 -0.401 -0.401 -0.402 -0.403  -0.407 -0.404 -0.401 -0.398 

                100 -0.397 -0.398 -0.400 -0.401  -0.402 -0.401 -0.398 -0.395 

                200 -0.397 -0.398 -0.400 -0.401  -0.402 -0.401 -0.398 -0.395 

                500 -0.398 -0.400 -0.402 -0.403  -0.403 -0.403 -0.400 -0.397 

       -0.2 50 -0.201 -0.201 -0.202 -0.202  -0.203 -0.202 -0.200 -0.198 

                100 -0.198 -0.199 -0.200 -0.201  -0.201 -0.201 -0.199 -0.197 

                200 -0.199 -0.200 -0.201 -0.202  -0.202 -0.202 -0.200 -0.198 

                500 -0.199 -0.200 -0.201 -0.201  -0.202 -0.201 -0.200 -0.198 

       0 50 -0.001 0.000 0.001 0.001  0.000 0.000 0.000 0.000 

                100 0.003 0.003 0.004 0.004  0.003 0.003 0.004 0.004 

                200 -0.001 -0.001 -0.001 -0.001  -0.001 -0.001 -0.001 -0.001 

                500 0.001 0.001 0.001 0.001  0.001 0.001 0.001 0.001 

0.5 -0.4 50 -0.398 -0.398 -0.398 -0.399  -0.403 -0.402 -0.401 -0.401 

                100 -0.398 -0.399 -0.399 -0.399  -0.403 -0.403 -0.402 -0.401 

                200 -0.400 -0.400 -0.400 -0.400  -0.404 -0.404 -0.403 -0.402 

                500 -0.401 -0.401 -0.401 -0.401  -0.405 -0.405 -0.404 -0.403 

       -0.2 50 -0.200 -0.200 -0.200 -0.200  -0.201 -0.201 -0.201 -0.200 

                100 -0.200 -0.200 -0.200 -0.200  -0.201 -0.201 -0.201 -0.200 

                200 -0.198 -0.198 -0.199 -0.199  -0.201 -0.201 -0.200 -0.200 

                500 -0.200 -0.200 -0.200 -0.200  -0.202 -0.201 -0.201 -0.201 

       0 50 -0.002 -0.002 -0.002 -0.002  -0.003 -0.003 -0.003 -0.003 

                100 0.001 0.001 0.001 0.001  0.001 0.001 0.001 0.001 

                200 0.001 0.001 0.001 0.001  0.001 0.001 0.001 0.001 

                500 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 
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Table 6-4 Positive rate of the Wald test from NB-logged and NB-offset within each simulation 
scenario, with different values (0.001, 0.1, 0.5, and 1) added before log-transformation. The table 
presents the empirical Power when 𝛽 ≠ 0 and the empirical type I error rate when 𝛽 = 0. 

   NB-logged  NB-offset 

𝛼 𝛽 𝑚 +0.01 +0.1 +0.5 +1  +0.01 +0.1 +0.5 +1 

3 -0.4 50 0.963 0.982 0.985 0.981  0.985 0.986 0.988 0.980 

                100 0.998 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

                200 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

                500 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

       -0.2 50 0.627 0.660 0.674 0.658  0.668 0.668 0.666 0.654 

                100 0.869 0.894 0.906 0.886  0.896 0.900 0.904 0.892 

                200 0.990 0.994 0.996 0.995  0.997 0.996 0.997 0.994 

                500 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

       0 50 0.075 0.073 0.071 0.074  0.072 0.072 0.074 0.074 

                100 0.060 0.059 0.062 0.060  0.058 0.057 0.056 0.061 

                200 0.051 0.055 0.052 0.051  0.053 0.052 0.050 0.048 

                500 0.054 0.053 0.056 0.060  0.061 0.057 0.052 0.054 

0.5 -0.4 50 0.996 0.998 0.998 0.998  0.998 0.998 0.998 0.999 

                100 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

                200 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

                500 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

       -0.2 50 0.738 0.742 0.746 0.746  0.722 0.722 0.730 0.738 

                100 0.952 0.954 0.954 0.953  0.947 0.948 0.950 0.954 

                200 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

                500 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

       0 50 0.068 0.068 0.070 0.074  0.072 0.071 0.073 0.072 

                100 0.062 0.060 0.062 0.064  0.057 0.056 0.057 0.058 

                200 0.049 0.048 0.048 0.050  0.052 0.052 0.053 0.053 

                500 0.052 0.052 0.048 0.049  0.052 0.053 0.052 0.052 
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Figure 6-7 Bias plot of Poi-null, Poi-unlogged, Poi-logged, and Poi-offset. The Bıas	òof 𝛽�  are 
shown as the points with error bars (the 95% CI calculated from the MCError of Bıasò). 
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Figure 6-8 Relative error plot of Poi-null, Poi-unlogged, Poi-logged, and Poi-offset. (Note that 
the scaling of y-axis is different to that in Figure 6-4). 
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Figure 6-9 Performance of the Wald tests from Poi-null, Poi-unlogged, Poi-logged, and Poi-offset 
in simulations. (a) Empirical power; (b) Empirical type I error rates. (Note that the scaling in y-axis 
is different to those in Figure 6-5b and Figure 6-6b). 
 

6.6 Sample size calculation for NB-null, NB-logged, and NB-offset 

Sample size for NB-null 

Zhu and Lakkis (2014) proposed a sample size formula for the LR test based on NB model, 

without a baseline count, that is, the NB-null model.  
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Let the ratio of the size of intervention group to that of control group be denoted by 𝜌. Let 

the average outcome falls rate for the control group be denoted by 𝜆ù = 𝜆 and let the 

corresponding falls rate for the intervention group be 𝜆ú = 𝜆	exp	(𝛽). The null hypothesis 

for the test of 𝛽 = 0 is: 

𝐻v: 𝜆ú 𝜆ù⁄ = 1 

And the alternative: 

𝐻n: 𝜆ú 𝜆ù⁄ ≠ 1 

To distinguish it from 𝛼 in the CNB model, the level of significance for the test is denoted 

by 𝛼∗. To achieve the power of 1 − 𝜑, Zhu and Lakkis show the number required in the 

control group to be: 

𝑚ù =
Ó𝓏𝛼∗ 2⁄ °𝑉0 + 𝓏𝜑√𝑉1Ô

2

𝛽I , (6-26) 

where 𝓏z∗ I⁄ = Φhn(𝛼∗ 2⁄ ) and 𝓏" = Φhn(𝜑); Φ(. ) is the cumulative density function of 

the standard normal distribution; 𝑉n  is the estimate of 𝑚ùVar(𝛽�) under the alternative 

hypothesis and is given by: 

𝑉n =
1
𝑡n
x
1
𝜆 +

1
𝜌𝜆 exp(𝛽)y +

(1 + 𝜌)𝛼
𝜌 , (6-27) 

and 𝑉v is the estimate of 𝑚ùVar(𝛽�) under the null hypothesis. 𝑉v can be estimated using 

three approaches: 

• Approach 1: because 𝜆ù = 𝜆ú = 𝜆 under 𝐻v, 𝑉v can be based on the rate in the 

control group, giving: 

𝑉vn =
1 + 𝜌
𝑡n𝜌𝜆

+
(1 + 𝜌)𝛼

𝜌 . (6-28) 

• Approach 2: 𝑉v can be based on the rates of both groups (𝜆ù and 𝜆ú), so that: 

𝑉vI = 𝑉n. (6-29) 
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• Approach 3: maximizing the log-likelihood function underlying the LR test with 

𝜆ù 𝜆ú⁄  constrained to be 1 yields an MLE of the overall events rate, and based on 

this 𝑉v can be estimated by: 

𝑉v� =
(1 + 𝜌)I

𝑡n𝜌(𝜆 + 𝜌𝜆 exp(𝛽))
+
(1 + 𝜌)𝛼

𝜌 . (6-30) 

The number required to achieve power of 1 − 𝜑 in the intervention group is: 

𝑚ú = 𝜌𝑚ù, (6-31) 

and the total number required is 𝑚ù +𝑚ú. The total number required by Approaches 1, 2, 

and 3 are referred to as 𝑚n, 𝑚I, and 𝑚�, respectively. 

The simulations in Zhu and Lakkis’s paper showed that the sample sizes calculated using 

equation (6-26) generally achieved empirical power close to the nominal level 80%. The 

authors found that 𝑚I and 𝑚� reached the target 80% power in both the Wald and LR test 

in most scenarios, whilst 𝑚n underestimated the sample sizes in some scenarios. 

Approximate sample size for NB-logged and NB-offset 

Tango (2009) proposed a conditional score test for 𝛽 given the baseline count 𝑦�v. The test 

is derived from the same joint distribution, in equations (6-5) and (6-6), as used to derive 

the CNB (6-9). Unlike the CNB and NB models, the conditional score test does not requires 

specification of the distribution of the random subject effect 𝑠�. A formula for sample size 

calculation of the two-tailed conditional score test is given by: 

𝑚 =
1

𝜇v𝑡v𝑘𝜃(exp	(𝛽) − 1)
#𝓏z∗ I⁄ $

2(exp	(𝛽) + 1)(1 + 𝑘𝜃)(1 + 𝑘𝜃exp	(𝛽))
2 + 𝑘𝜃(𝛽 + 1)

+ 𝓏"$
𝛽(1 + 𝑘𝜃)� + (1 + 𝑘𝜃exp	(𝛽))�

(1 + 𝑘𝜃)(1 + 𝑘𝜃exp	(𝛽)) %

I

 

(6-32) 

for power 1 − 𝜑, where 𝑘 = 𝑡n/𝑡v is the ratio of duration and 𝜃 = 𝜆n/𝜆v is the ratio of falls 

rates (that is, a period effect). 

Tango showed that the conditional score test and CNB model resulted in almost identical 

estimates and CIs when fitted to a dataset from a trial of epileptic patients. As NB-logged 

and NB-offset had similar empirical power to the CNB model (see Figure 6-5a), Tango’s 
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sample size calculation may be useful as an approximation to the sample size required for 

NB-logged and NB-offset. A simulations study was conducted to check this.  

We set 𝜆n = 𝜆v = 𝜆  and 𝑡n = 𝑡v = 1 . Twelve scenarios were considered spanning the 

combinations of 𝛽 (-0.3, -0.2, and -0.1), 𝛼 (0.5 and 3), and 𝜆 (15 and 30). The required 𝑚 

for each of the 12 scenarios was calculated by Tango's formula to achieve a power 80% in 

a 𝛼∗ = 5% level test. For each scenario 2000 datasets were simulated from the mixed 

Poisson distribution described in section 6.2.1, with balanced group size. The empirical 

power of the Wald test from each model was calculated to examine whether 𝑚  from 

Tango’s formula was sufficient to achieve 80% power. 

Table 6-5 Sample size calculated from Tango’s conditional score test and Zhu and Lakkis’s 
formulae with 1 − 𝜑 = 80% and 𝛼∗=5% (𝑡 = 1) 

     Calculated sample size 
     Tango Zhu and Lakkis* 

Scenario ID 𝛼 𝜆 𝛽 FRR: exp	(𝛽) 𝑚 𝑚n 𝑚I 𝑚� 
1 3 15 -0.1 0.905 430 9632 9640 9640 
2 3 15 -0.2 0.819 112 2410 2414 2414 
3 3 15 -0.3 0.741 52 1072 1074 1074 
4 3 30 -0.1 0.905 216 9526 9530 9530 
5 3 30 -0.2 0.819 56 2382 2384 2384 
6 3 30 -0.3 0.741 26 1060 1062 1060 
7 0.5 15 -0.1 0.905 430 1784 1792 1790 
8 0.5 15 -0.2 0.819 112 448 452 452 
9 0.5 15 -0.3 0.741 52 200 202 202 

10 0.5 30 -0.1 0.905 216 1678 1680 1680 
11 0.5 30 -0.2 0.819 56 420 422 422 
12 0.5 30 -0.3 0.741 26 188 190 188 

* The sample size was calculated for a trial with balanced group size (𝜌 = 1) 
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Figure 6-10 Empirical power of the Wald test based on NB-logged, NB-offset, and CNB models 
with the sample size calculated from the formula for Tango’s score test with 80% power and a 5% 
significance level. 

 

The sample sizes for the twelve simulation scenarios calculated from Tango’s formula are 

displayed in Table 6-5. In the same table we also present the sample sizes 𝑚n,𝑚I,	and	𝑚� 

for NB-null, calculated by the Zhu and Lakkis formulae, for comparison. The three 

approaches from the Zhu and Lakkis formula result in similar sample sizes for NB-null, but 

the sample sizes are typically very large. Conditioning on the baseline count results in a 

remarkable reduction in the required sample size, especially when the outcome count (𝜆𝑡) 

is large, the intervention effect is small, or heterogeneity is great. 

The empirical powers of the NB-logged, NB-offset, and CNB models obtained from 

simulations of size equal to 𝑚 from Tango’s formula to achieve power 80% are summarized 

in Figure 6-10. When 𝛼 = 0.5, the empirical power for all three models were relatively 

close to 80%. When 𝛼 = 3, the empirical powers for the CNB model was relatively close to 
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80% for 𝜆 = 15 but lower than 80% for 𝜆 = 30; while the empirical power for NB-logged 

and NB-offset was between 70% and 75%. This shows that Tango’s equation (6-32) can be 

used to approximate the required sample size for smaller levels of heterogeneity, but the 

number could be inflated when a considerable heterogeneity is anticipated. 

6.7 Discussion 

NB regression has been widely used for analysing falls data. It is common to collect the falls 

count during a baseline period in a falls prevention trial, but it remains a question as how 

to incorporate a baseline count in statistical modelling. One approach is Cook and Wei’s 

(2003) CNB model. The simulations in this chapter showed that CNB resulted in the highest 

power for the Wald test of the intervention effect among the compared models, and the 

tests had type I error rates closer to nominal level even for the smallest sample sizes 

considered in simulations. However, CNB is not currently supported in any statistical 

package. Another approach is to incorporate the baseline count using NB regression, which 

is supported in most popular statistical packages and commonly used in practice. 

NB models ignoring the baseline count (NB-null) were examined. The empirical power from 

NB-null was noticeably lower than those from other NB and CNB models in simulations. 

NB-unlogged including the baseline count as a covariate without any transformation, was 

more powerful than NB-null, even though the scaling of the baseline count is not 

appropriate. However, NB-unlogged is conservative when 𝛼 = 3 , even for the largest 

sample sizes (𝑚 = 500) examined in the simulations. 

In the simulations in section 6.5, NB-logged and NB-offset, the NB models incorporating 

the log-transformed baseline count, had satisfying performance. They yielded 𝛽�  with 

smaller bias and variability than the estimates from NB-unlogged. The two models also 

produced more accurate SE estimates for 𝛽� . They were more powerful in testing the 

intervention effect than NB-unlogged, and they typically resulted in small HPs. Compared 

to the benchmark model (CNB) NB-logged and NB-offset were only slightly less powerful, 

and the disparity in power diminished as the sample size increased. Overall, NB-logged and 

NB-offset produced similar results: their estimates of 𝛽 were similar, and 𝜙ì in NB-logged 

was generally close to one. This suggests that the logged baseline count, when included as 
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an explanatory variable in NB regression, appropriately accounts for the relationship with 

the outcome. 

The difference between HP and 𝛼~ has been previously discussed in section 6.2.1. Loosely 

speaking, HP shows how much variability in the outcome count remains unexplained by 

the covariates in the model, while 𝛼~  reflects how much heterogeneity in the outcome 

count can be accounted for by the baseline count. The HP from NB-null were similar to the 

𝛼~ from CNB in simulations, which suggests that the heterogeneity was accounted for in the 

model solely by the random subject effects. This conforms to the data generating 

mechanism underlying the simulations. NB-unlogged, which is essentially NB-null with an 

additional covariate (the untransformed baseline count) achieved a reduction in HP 

compared to NB-null. The HP were further reduced in NB-logged and NB-offset, which 

reflects the fact that the log-transformation yields a more appropriate scale for the baseline 

count as a covariate in NB regression. Poisson models do not accommodate overdispersion 

and hence are too liberal. Some might wonder: since the subject effect is shared in the 

baseline and outcome count, shouldn’t including the logged baseline count as a covariate 

obviate overdispersion so that it is unnecessary to use NB models rather than a Poisson? 

The simulations showed this not to be the case: the type I errors of Poi-logged and 

Poi-offset were still too high (around 0.16); also, in the Goodwin et al. dataset, the AIC of 

these two Poisson models were higher than the AIC of NB-null, which does not even 

incorporate the baseline count. 

For NB-logged and NB-offset, the empirical type I error rates of the Wald test were higher 

than the nominal level (0.05) for small sample sizes. As the sample size increases, the rates 

converged to 0.05. Aban et al. (2009) conducted a simulation study to compare the two 

types of hypothesis tests in two-group NB comparisons. They reported that the type I error 

rates for the Wald test were higher than 0.05 when the sample size was small (<200), as 

also shown in Figure 6-5b. Aeberhard et al. (2017) conducted a similar simulation study and 

reached the same conclusion. They recommended using the robust TETT (Tilted 

Exponential Tilting Test) for analysing small samples. To my knowledge, this test is only 

available in the R package robNB provided by the authors (Aeberhard, 2016). This chapter 

focused on the Wald test because it is the default hypothesis test in many statistical 

packages with functionality for NB modelling. When the sample size reached 200, the type 
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I error rates of the Wald test were only slightly higher than 0.05. Datasets were simulated 

with sample size 50, 100, 200, and 500, the range encompasses 80% of falls prevention 

trials included in a Cochrane interview (Gillespie et al., 2012). The simulations regarding 

the score test showed it to be more reliable than the Wald test when sample size is small: 

the type I error rates of the score test were closer to the nominal level than those of Wald 

test. However, NB-based score tests are not widely supported in statistical packages. 

The results of the models fitted to the Goodwin et al. dataset substantiated the conclusions 

from the simulation study. The AIC of NB-unlogged was smaller than that of NB-null. 

NB-logged and NB-offset resulted in smaller AIC than NB-unlogged, and the Wald test did 

not indicate significance for the intervention effect (P=0.098) in NB-unlogged, while 

significance was shown in NB-logged (P=0.021) and NB-offset (P=0.032). This is in line with 

the simulation results that NB-unlogged has low power and is overly conservative. The 

model diagnostics showed that NB-unlogged cannot accommodate the large outcome 

counts in the Goodwin et al. dataset: they typically had large Cook’s distances, but the issue 

does not appear to occur for NB-logged and NB-offset. 

Because zero baseline counts cannot be logged, the pragmatic approach of adding 0.5 to 

the baseline counts before the log-transformation was used in this chapter. There is a 

trade-off in choosing the value for addition: if a smaller value, say 10hnv, is added to a 

baseline count 𝑛	(𝑛 > 0), the value of log	(𝑛 + 10hnv) would be closer to log	(𝑛) than 

log	(𝑛 + 0.5), but log	(0 + 10hnv) would become −23, a large negative value. The choice 

of 0.05 is a standard continuity correction in practice and the simulations showed the 

results not to be sensitive to the choice between 0.01 and 1. 

Tango (2009) proposed a formula for calculating the sample size for the conditional score 

test. The simulations in section 6.6 showed that this formula can also be used to calculate 

the required sample size of NB-logged and NB-offset when the degree of heterogeneity is 

low. For higher heterogeneity, the sample size calculated from the formula tend to be 

underestimated, so the number should be inflated to reach a required power. Alternatively, 

the sample size can be calculated using simulation-based methods, and the Tango formula 

can be used to provide a starting value for sample size. Compare the sample size calculated 

from the Tango formula and the Zhu and Lakkis (2014) formulae (which estimate the 

sample size required for NB-null), it is apparent that conditioning on the baseline count 
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considerably reduce the required sample size for a falls prevention trial. The sample size 

calculated using the Zhu and Lakkis formulae are generally too large for falls prevention 

trials in PwP. 

In conclusion, this chapter showed that NB models including logged baseline count as a 

covariate/offset is a viable alternative to the CNB model. A baseline falls count has great 

value when analysing a falls outcome count. It is generally recognized that a pre-

randomisation baseline value of the outcome should be collected when designing an RCT 

(Assmann et al., 2000), and this also holds true when the outcome is a count in a falls 

prevention trial. NB-logged and NB-offset can be fitted in all statistical packages that 

support NB modelling. For medium to large sample sizes, NB-logged and NB-offset are 

almost as powerful as CNB, and the type I error rates of the Wald and score test are close 

to the nominal level. They have great practicality and are easily accessible for applied 

statisticians.  
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Chapter 7  
 
Comparison of NB-based and CNB-based 
methods when the underlying assumption does 
not hold 

7.1 Introduction 

The previous chapter showed that when the CNB model is correctly specified, including the 

log-transformed baseline count in NB regression as a covariate (NB-logged) or offset 

(NB-offset) achieves comparable power to CNB in many circumstances. In this chapter, the 

NB-logged and NB-offset models are compared to CNB when the assumption underlying 

the CNB model does not hold. 

A core assumption of CNB in modelling the outcome count is that the heterogeneity is 

introduced by a gamma-distributed subject effect that is shared with the baseline count for 

the same subject, so that heterogeneity is fully accounted for by incorporating the baseline 

count in the CNB model. The underlying counting process was referred to by Cook et al. 

(2005) as the time-homogeneous Poisson process, in which that heterogeneity is 

subject-specific and constant over time, but this may not be the case for falls prevention 

trials. For example, if a latent variable, such as progression in disease severity, increases 

the risk of falling, the variable may introduce different heterogeneity into the falls counts 

during the baseline and outcome periods, so that the heterogeneity cannot be treated as 

fixed if there is a relatively long interval between the baseline and outcome periods. 

Another possibility is that the outcome and baseline falls counts may be collected using 

different methods. It is not uncommon to encounter a trial in which the outcome count is 

recorded prospectively in a falls diary, while the baseline count is obtained via a single 

retrospective question. As discussed in section 2.2.1, the logic behind this trial design is 

that although the prospective method is thought to be more accurate than the 
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retrospective method, following up participants prospectively is more expensive and time-

consuming. When designing falls prevention trials, researchers may choose to use the 

prospective method to collect the falls count during the outcome period, but use the less 

expensive retrospective method to collect a baseline count. However, for trials with this 

design, the falls counts collected during the baseline and outcome periods are subject to 

different measurement error processes, resulting in a discrepancy between the two 

variables, which is not accommodated in the subject effect underlying the CNB model. 

 

Figure 7-1 Distributions of falls counts in in the EXSart dataset (n=129, Spearman 𝜌=0.558, 
P<0.001). (a) Intervention falls count versus baseline falls count on the linear scale; (b) 
Intervention falls rate (per month) versus baseline falls rate (per month) on a logarithmic scale. 
The line is the LoFE that indicates the falls count/rate if the outcome rate is the same as the 
baseline rate. 

 

The motivating dataset for this chapter, from the EXSart (Ashburn et al., 2007) trial, is an 

example of a falls prevention trial with a prospectively collected outcome count and 

retrospectively collected baseline count. The baseline and outcome counts show weaker 

correlation (Figure 7-1), in contrast to the high consistency between the corresponding 

variables in the Goodwin et al. dataset (see Figure 6-1), in which both the baseline and 

outcome counts were collected prospectively.  

For the sake of simplification, the assumption that the outcome and baseline counts are 

generated from a time-homogeneous Poisson process is referred to as the assumption of 

subject-specific heterogeneity in the thesis. The question addressed in this chapter is 

whether the NB-logged, NB-offset, and CNB models are robust when the assumption of 
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subject-specific heterogeneity is violated, such as when different methodologies for 

collecting falls counts are used in the baseline and outcome periods. 

7.2 NB-logged and NB-offset models when the assumption of 
subject-specific heterogeneity is violated 

Following the notation of Chapter 6, suppose a trial comprises of a pre-randomisation 

baseline period of duration 𝑡v, and a post-randomisation outcome period of duration 𝑡�n. 

The participants are randomised either to an intervention group (𝑥�	=	1) or a control group 

(𝑥�	=	0). For each participant the duration 𝑡�n may vary due to drop out, assumed to occur 

at random. 

Let 𝑦�v  and 𝑦�n  denote the baseline and outcome falls counts for trial participant 𝑖 . As 

shown in equation (6-18), when 𝑦�v is included in the linear predictor of NB regression, it 

should be log transformed to account for the log link-function, and the parameter for the 

logged baseline count is 1 if the assumption underlying CNB holds true. This is the basis of 

NB-offset, which fixes the coefficient of the logged baseline count to be 1 and the linear 

predictor is given by: 

where 𝜇�n = 𝐸(𝑌�n), 𝛽 is the regression coefficient of the intervention effect, and 𝜁 is the 

intercept. 

Another approach considered in Section 6.2.2 is the NB-logged model, which relaxes the 

restriction and allows the coefficient of logged baseline count (denoted as 𝜙) to vary. The 

linear predictor of NB-logged is given by: 

𝑔(𝜇�n) = 𝜁 + 𝛽𝑥� + 𝜙log(𝑦�v) + log(𝑡�n), (7-2) 

As a result, the linear predictor of NB-logged has one more parameter 𝜙 (and degree-of-

freedom) than the linear predictor of NB-offset. 

The simulations in section 6.5 compared NB-logged and NB-offset in various scenarios, and 

the results showed that 𝜙ì  was generally close to one, and the estimates from the two 

models were generally similar. This indicates that when data are generated from the 

𝑔(𝜇�n) = 𝜁 + 𝛽𝑥� + log(𝑦�v) + log(𝑡�n). (7-1) 
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time-homogeneous Poisson process underlying the CNB model, the results of NB-logged 

and NB-offset are almost indistinguishable as expected, which prompts the question: will 

the performance of the two models differ when the assumption of subject-specific 

heterogeneity is violated by using different methods to collect the baseline and outcome 

falls counts. By letting 𝜙 vary, this parameter in NB-logged may partially accommodate 

violations of the assumption, and for this reason, NB-logged is anticipated to perform 

better than NB-offset and CNB. 

In the following sections, the NB-logged model is compared to NB-null, NB-offset and CNB 

using the EXSart dataset, and in datasets simulated to resemble prospectively collected 

outcome falls counts and retrospectively collected baseline counts. The NB-null model does 

not incorporate the baseline count and thus is not affected by the discrepancy in collection 

methods, but is included for comparison. 

7.3 Methods 

NB-null, NB-logged, NB-offset, and CNB were first fitted to the actual dataset of falls counts 

during the intervention (first 8 weeks) and outcome (week 9 to month 6) periods from the 

EXSart trial. 

Because an eligibility criterion of the EXSart trial was that the participants must have fallen 

at least twice during the baseline period, there are no zero baseline counts in this dataset. 

Therefore, the logged baseline count was included in NB-logged and NB-offset without 

adding 0.5, which is different to the approach in section 6.4. The CNB model conditional on 

𝑦� ≥ 2 was fitted to account for the eligibility criterion; see Cook and Wei (2003) for the 

detail of the implementation. 

The analysis was conducted in R (version 3.3.0) using the same packages and functions 

described in section 6.3. From each model, the estimate of the intervention effect 𝛽, the 

model-based and robust SE (using the sandwich package) of 𝛽� , and the corresponding FRR 

with 95% CIs are reported. For the three NB models specifically, HP and AIC are reported. 

Furthermore, the estimate of 𝜙 is reported for NB-logged, and 𝛼~ is reported for CNB. 
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The BOE plots described in Chapter 5 are presented for NB-null and NB-logged models for 

the four diagnostic statistics: Cook’s distance, leverage, Anscombe residual, and DFBETA of 

𝛽�  (see section 6.5.1). 

7.4 NB/CNB models fitted to the EXSart dataset 

Results from the NB-null, NB-logged, and NB-offset, and CNB models fitted to the EXSart 

dataset are shown in Table 7-1. Although the CNB model performed the best in simulations 

in section 6.5.2 and in only a few scenarios were there any simulated datasets where it did 

not achieve convergence, it did not converge when fitted to either the intervention or 

follow-up periods. 

NB-null has the largest AIC among the three fitted NB models for both the intervention and 

follow-up counts, and it shows similar HPs when fitted to the intervention (3.593) and 

follow-up (3.865) counts. Compared with NB-null, the NB-logged models have much lower 

AICs (the intervention period: 491.5 versus 577.3; the follow-up period: 604.2 versus 674.1). 

NB-null and NB-logged also result in very different estimates for the intervention effects: 

the FRRs from NB-null are 0.181 and 0.147 for the intervention and follow-up periods 

respectively, whilst in NB-logged the respective FRRs are 0.780 and 0.686. The FRR 

estimated from NB-null suggests that the intervention reduced the falls rates by more than 

80%, which contradicts the pattern shown in the corresponding BOE plots: the red symbols 

(intervention) in both Figure 7-2 and Figure 7-6 do not show an apparent trend of falling 

under the blue symbols, as suggested by the FRRs from NB-null. As the estimated 

intervention effect is probably overestimated, the significant test result (P<0.001) is likely 

to be a false positive. 

In section 6.4, NB-logged and NB-offset were fitted to the Goodwin et al. dataset, they 

resulted in almost identical AICs and very similar estimates for the intervention effect. 

However, the two models show obvious differences when fitted to the EXSart dataset: 1) 

for both the intervention and follow-up periods, NB-logged and NB-offset yield noticeably 

different estimates of the intervention effect; 2) the AICs of the NB-logged models are 

smaller than that of NB-offset by a sizeable margin (the intervention period: 491.5 versus 

504.0; the follow-up period: 604.2 versus 614.1); 3) NB-logged results in smaller HP than 

NB-offset (the intervention period: 1.310 versus 1.597; the follow-up period: 1.958 versus 
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2.220); and, 4) the estimate of 𝜙 from NB-logged was 0.724 for the intervention counts 

and 0.710 for the follow-up counts, whilst the estimates were close to 1 for NB-logged 

fitted the Goodwin et al. dataset. 

As shown in Table 7-1, the robust SEs of 𝛽�  are bigger than the model-based SEs in NB-null 

by a considerable margin, but the former is only slightly larger in NB-logged and NB-offset. 

Table 7-1 NB and CNB models fitted to the EXSart dataset. 

Period Model AIC 𝜷± (SE) 
SE 

(Robust 
SE) 

FRR (95% CI) P 𝝓±  (SE) HP 

Intervention  
(n=129) 

NB-null 577.3 -1.710 0.348 
(0.803) 

0.181 
(0.091, 0.358) 

< 0.001  3.593 

NB-logged  491.5 -0.248 0.254 
(0.271) 

0.780 
(0.475, 1.283) 

0.328 0.724 
(0.074) 

1.310 

NB-offset  504.0 -0.039 0.277 
(0.273) 

0.962 
(0.559, 1.656) 

0.888  1.597 

       𝛼~ 

CNB  Did not converge - 

Follow-up  
(n=127) 

NB-null 674.1 -1.916 0.357 
(0.851) 

0.147 
(0.073, 0.296) 

< 0.001  3.865 

NB-logged  604.2 -0.377 0.275 
(0.279) 

0.686 
(0.400, 1.175) 

0.170 0.710 
(0.085) 

1.958 

NB-offset  614.1 -0.162 0.291 
(0.292) 

0.851 
(0.480, 1.506) 

0.578  2.220 

       𝛼~ 

CNB  Did not converge              - 

 

The BOE plots for NB-null and NB-logged models are presented in Figure 7-2 to Figure 7-5 

for the intervention period and Figure 7-6 to Figure 7-9 for the follow-up period. A 

participant (ID 28) reported the highest fall rate during both outcome periods (see also 

Table 3-14), and has the largest Cook’s distance, Anscombe residual, and DFBETA in all 

NB-null and NB-logged models, but this subject is less influential in NB-logged than in 

NB-null as indicated by the smaller plotting symbols in the corresponding plots for the three 

diagnostic statistics. In particular, the ID 28 has large negative DFBETA from NB-null (see 

Figure 7-5 and Figure 7-9), which indicates that excluding the subject from NB-null would 

increase the regression coefficient, that is, if ID 28 is omitted the FRR would be closer to 1. 

This is in line with the extreme FRR (Table 7-1) from NB-null. Although the DFBETA of ID 28 
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is also negative in NB-logged, this participant’s influence on the estimation of intervention 

effect is smaller in NB-logged than in NB-null. This suggests that both models may not 

sufficiently accommodate the largest outcome counts, but including the baseline count 

reduces their influence. 

Figure 7-4 and Figure 7-8 compare the Anscombe residuals from NB-null and NB-logged. 

Apart from ID 28, the largest residuals from NB-null (ID 217 and 242 in Figure 7-4a and 242 

and 251 in Figure 7-8a) were shown in the plots to be close to the LoFE, and the residuals 

are typically positive for large outcome counts and negative for small outcome counts, 

irrespective of whether the falls rate is consistent between the baseline and outcome 

periods. For the NB-logged models, the largest falls residuals (ID 232 and 204 in Figure 7-4b 

and 23 and 48 in Figure 7-8b) were cases far from the LoFE, that is, the subjects with 

inconsistent outcome and baseline rates, not necessarily with large counts.  

Figure 7-5 and Figure 7-9 show the DFBETA from NB-null and NB-logged. These two plots 

indicate that in the NB-null models the estimation of the intervention effect was dominated 

by the large falls counts. One participant (ID 242) reported a relatively consistent falls rate 

across the baseline, intervention, and follow-up periods, but has large positive DFBETA in 

NB-null. A similar case is ID 251 in Figure 7-9: the plotting symbol for this subject lies exactly 

on the LoFE, that is, the follow-up falls rate is perfectly consistent with the baseline rate, 

but ID 251 also has a large positive DFBETA in NB-null. Although the outcome rates for the 

two subjects are consistent with the baseline rates, they are nevertheless influential in the 

estimation of the intervention effect and deleting either of them would result in a smaller 

intervention effect. These two subjects have small DFBETA in NB-logged. Furthermore, 

similar to the Anscombe residual plots, apart from ID 28 the two points that are far away 

from the LoFE have the largest DFBETA (ID 239 and 204 in Figure 7-5; ID 63 and 239 in 

Figure 7-9). This pattern indicates that the intervention effect estimated from the NB-null 

model was influenced for both the intervention and follow-up periods by a few large counts, 

whilst the estimator of intervention effect from NB-logged is more influenced by the 

participants reporting inconsistent falls rate across periods, which is anticipated since the 

baseline count is incorporated in NB-logged. 
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Figure 7-2 Cook’s distance from (a) NB-null versus (b) NB-logged fitted to the intervention count 
from the EXSart dataset (n=129). 

 

Figure 7-3 Leverage from (a) NB-null versus (b) NB-logged fitted to the intervention count from 
the EXSart dataset (n=129). 
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Figure 7-4 Anscombe residuals from (a) NB-null versus (b) NB-logged fitted to the intervention 
count from the EXSart dataset (n=129). 
 

 

Figure 7-5 DFBETA for the intervention effect from (a) NB-null versus (b) NB-logged fitted to the 
intervention count from the EXSart dataset (n=129). 
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Figure 7-6 Cook’s distance from (a) NB-null versus (b) NB-logged fitted to the follow-up count 
from the EXSart dataset (n=127). 
 

 

Figure 7-7 Leverage from (a) NB-null versus (b) NB-logged fitted to the follow-up count from the 
EXSart dataset (n=127). 
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Figure 7-8 Anscombe residuals from (a) NB-null versus (b) NB-logged fitted to the follow-up count 
from the EXSart dataset (n=127). 
 

 

Figure 7-9 DFBETA for intervention effect from (a) NB-null versus (b) NB-logged fitted to the 
follow-up count from the EXSart dataset (n=127). 
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7.5 Simulation study 

7.5.1 Simulation datasets 

A simulation study was conducted to compare the performance of NB-null, NB-logged, 

NB-offset, and CNB models when the assumption of subject-specific heterogeneity 

underlying CNB does not hold (an example code is given in Appendix B). 

Suppose 𝑚 subjects are recruited in a falls prevention trial, and then randomized to an 

intervention (denoted by 𝑥� = 1 for subject 𝑖) or control group (denoted by 𝑥� = 0), with 

each group comprising 𝑚/2  subjects. The falls count during a baseline period (with 

constant length 𝑡v) is denoted by 𝑦�v and the count during an outcome period (with length 

𝑡n) is denoted by 𝑦�n. The two counts were generated from: 

𝑦�v|𝑠�	~	Poisson(𝑠�𝑣�𝜇v) (7-3) 

𝑦�n|𝑠� ∼ Poisson(𝑠�𝜇�n), (7-4) 

where 𝜇v = 𝜆𝑡v  and 𝜇�n = 𝜆𝑡n	exp	(𝛽𝑥�) .	 The	 average	 falls	 rate	 during	 the	 baseline	

period	 is	denoted	by	𝜆	and	assumed	 to	be	 the	 same	as	 the	 average	 falls	 rate	 in	 the	

control	group	during	the	follow-up	period. 

The subject-specific heterogeneity 𝑠�  was simulated from a gamma distribution with mean 

1 and variance 𝛼, where 𝛼 is a measure of the severity of the subject-specific heterogeneity. 

The first 𝑚/2  simulated subjects were assigned to the control group and the rest 

intervention group, without loss of generality. A perturbation 𝑣�  is introduced in (7-3) to 

create the inconsistency observed in the EXSart dataset, where 𝑣�  is simulated from a 

gamma distribution with mean 1 and variance ϵ, where 𝜖 is the level of perturbation.	The 

𝑣�  is included to increase the variability of 𝑌�v to mimic the lower precision expected from 

the retrospective method. Unlike the EXSart dataset, the baseline count was not truncated 

to be ≥ 2.	

The simulation study was based on the falls counts during the intervention period of the 

EXSart dataset: 
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• As shown in Table 3-12, the average falls rate in the control group was relatively 

stable during the baseline (5.1 falls/month), intervention (5.1 falls/month), and 

follow-up (5.3 falls/month) periods, so the datasets were generated with falls rate 

𝜆=5. 

• To resemble the lengths of the baseline and intervention periods in the EXSart trial, 

we set 𝑡v = 12 and 𝑡n = 2. When a baseline count is collected retrospectively, the 

length of the baseline period is usually chosen to be relatively long because 1) the 

accuracy of the recalled falls rate would be higher, and 2) choosing a long 

retrospective baseline period does not increase the cost of trial.  

• Because the CNB model did not converge when fitted to the EXSart dataset (see 

Table 7-1), the HP of NB-null in the intervention period (3.593) was used as an 

approximate to the degree of heterogeneity (𝛼) in the dataset.  

A total of 72 scenarios spanning all combinations of: 

• Sample sizes: 𝑚 = 50, 100, 200,	and	500; 

• Intervention effects: 𝛽 = −0.4 for a large effect, 𝛽 = −0.2 for a small effect, and 

𝛽	=	0 for no effect; 

• Degree of heterogeneity: 𝛼 = 3.5 to resemble the HP of NB-null, and α	=	0.5 for a 

smaller heterogeneity; 

• Degree of perturbation in the baseline count: 𝜖	=	0 for no perturbation, 𝜖	=	0.25 

for a small degree of perturbation, and 𝜖	=	0.5 for a large degree of perturbation.  

For each scenario, 2000 datasets were simulated. Three datasets were simulated with 

λ	=	5, 𝛽 = −0.2, 𝑡v = 12, 𝑡n = 2, 𝛼 = 3.5, 𝜖 = 0.5, and 𝑚 = 130, a scenario closest to 

EXSart, for visually checking that the simulated datasets resembled the EXSart dataset. 

NB-null, NB-logged, NB-offset, and the CNB models were fitted to each dataset, and the 

same simulation-based statistics for the estimator of 𝛽 and the model-based Wald tests 

included in section 6.5.1 were reported. 

7.5.2 Simulation results 

As shown in Figure 7-10, the three simulated datasets for visual check broadly resemble 

the pattern of the EXSart dataset during the intervention period as shown in Figure 7-1. 
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Figure 7-10 Three simulated datasets (n=130). Outcome rate versus baseline rate on the linear 
scale (left column) and the log scale (right column). 

 

As shown in Table C-2 (see Appendix C), the four models converged successfully in most 

cases (including CNB). The estimated bias for 𝛽� , that is, Bıasò= avÓ𝛽�Ô − 𝛽, is displayed in 
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Figure 7-11 to Figure 7-14 for 𝑚 = 50, 100, 200,	and	500 . In general, 𝛽�  from NB-null, 

NB-logged and CNB are close to the underlying value 𝛽. In contrast, 𝛽�  from NB-offset are 

consistently lower than the underlying value, especially for a large intervention effect 

(𝛽= − 0.4 ) and small degree of subject-specific heterogeneity (𝛼=0.5 ). The Bıasò  in 

NB-offset becomes larger as the level of perturbation 𝜖 increases, and it persists even for 

the largest sample size (𝑚=500). The error bars (calculated from MCError; see equation 

(6-24) in section 6.5.1) of NB-null are generally wider than NB-logged and CNB, especially 

when the subject-specific heterogeneity is high (𝛼	=	3.5) and the sample size is less than 

200, as shown in Figure 7-11 and Figure 7-12. The error bars of NB-logged, NB-offset, and 

CNB become wider as 𝜖 increases, but this does not affect NB-null because the baseline 

count is not included in the model. 

Figure 7-15 to Figure 7-18 report the relative errors, defined in equation (6-25), in the 

model-based SE of 𝛽� : a positive relative error indicates the model-based SE is 

overestimated. As the baseline count is not included in NB-null, the SEs estimated from this 

model have low relative errors regardless of the level of 𝜖 as expected. The model-based 

SEs under NB-offset and CNB are considerably underestimated in all scenarios with 

perturbations (𝜖 > 0), and the relative errors for CNB are remarkably large even compared 

to NB-offset. In general, the NB-logged model has low relative errors when 𝛼	=	0.5, but the 

model-based SEs are smaller than the empirical SEs when 𝛼	=	3.5, especially for higher 

perturbation levels (𝜖). Compared to NB-offset and CNB, the NB-logged model has much 

smaller relative errors though, even for scenarios where 𝛼=3.5. 

Figure 7-19 and Figure 7-20 show the empirical power and type I error rates of Wald tests 

of 𝛽. In accordance with the results of the previous simulations, the CNB model performed 

the best when there is no perturbation (𝜖	=	0), with higher power than the other models 

and type I error rates closer to the nominal level 0.05 (including the small sample size 

scenarios). However, CNB shows markedly inflated type I errors when 𝜖 > 0. For scenarios 

with 𝛼	=	0.5 (Figure 7-19), the empirical type I error rates are around 0.30 for 𝜖	=	0.25 and 

0.45 for 𝜖	=	0.5; for scenarios with 𝛼	=	3.5 (Figure 7-20), the empirical type I error rates 

are higher than 0.5: approximately 0.55 and 0.65 for 𝜖	=	0.25 and 𝜖	=	0.5, respectively. 

Though the type I error rates produced by NB-offset are also inflated, they are considerably 
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closer to the nominal level. Similar to CNB, the empirical type I error rates for Wald tests 

based on NB-offset are inflated when 𝜖	>	0, and the inflation rises as 𝜖 increases. 

As shown in Figure 7-19b, NB-logged is more robust to perturbations than NB-offset and 

CNB — when 𝛼	=	0.5 the empirical type I error rates for NB-logged are generally close to 

0.05. The empirical type I error rates for NB-logged are inflated when 𝛼	=	3.5  (Figure 

7-20b), though still only one fifth of those for CNB. The empirical type I error rates are in 

line with the relative error plots in Figure 7-15 to Figure 7-18, which show NB-logged to 

have smaller relative errors than those from NB-offset and CNB. 

Considering the enormous type I error rates of CNB when 𝜖	>	0, its highest empirical power 

in all scenarios has little practical value. NB-offset has lower empirical power than 

NB-logged by a small to medium margin, and even yields lower empirical power than 

NB-null when 𝜖 = 0.5, and 𝛼 = 0.5 (Figure 7-19). In comparison, NB-logged has higher 

empirical power than NB-null in all scenarios. The empirical power from NB-logged is 

considerably higher than that from NB-null, but the power gain from including 𝑦�v is not as 

great for 𝜖	>	0 as for 𝜖 = 0. 

As shown in Table 7-2 to Table 7-4, the 𝛼~ from CNB are generally larger than the underlying 

values when there is perturbation (𝜖 > 0 ), especially when 𝜖 = 0.5 . As the level of 

perturbation becomes higher, the regression coefficient of the logged baseline count in 

NB-logged (𝜙ì) decreases. When the subject-specific heterogeneity is higher (𝛼 = 3.5), 𝜙ì 

are closer to 1. 
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Figure 7-11 Bias plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of 
perturbation (𝑚 = 50 ). The Bıas	ò of 𝛽�  are shown as the points with error bars (the 95% CI 
calculated from the MCError of Bıasò). 
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Figure 7-12 Bias plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of 
perturbation (𝑚 = 100 ). The Bıas	ò of 𝛽�  are shown as the points with error bars (the 95% CI 
calculated from the MCError of Bıasò). 
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Figure 7-13 Bias plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of 
perturbation (𝑚 = 200 ). The Bıas	ò of 𝛽�  are shown as the points with error bars (the 95% CI 
calculated from the MCError of Bıasò). 
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Figure 7-14 Bias plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of 
perturbation (𝑚 = 500 ) The Bıas	ò of 𝛽�  are shown as the points with error bars (the 95% CI 
calculated from the MCError of Bıasò). 
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Figure 7-15 Relative error plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of 
perturbation (𝑚 = 50). 
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Figure 7-16 Relative error plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of 
perturbation (𝑚 = 100). 
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Figure 7-17 Relative error plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of 
perturbation (𝑚 = 200). 
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Figure 7-18 Relative error plots of NB-null, NB-logged, NB-offset and CNB with varying degrees of 
perturbation (𝑚 = 500). 
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Figure 7-19 Performance of the Wald tests from NB-null, NB-logged, NB-offset and CNB in 
simulations with varying degrees of perturbation (𝛼 = 0.5). (a) Empirical Power; (b) Empirical 
type I error rates. 
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Figure 7-20 Performance of the Wald tests from NB-null, NB-logged, NB-offset and CNB in 
simulations with varying degrees of perturbation (𝛼 = 3.5). (a) Empirical Power; (b) Empirical 
type I error rates. Note that the range of y-axis in subplot (b) is different to that in Figure 7-19 
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Table 7-2 Estimates of HP from NB models, 𝛼~ from CNB, and 𝜙ì from NB-logged for 𝜖 = 0. 
   av(HP) av(𝛼~) av(𝜙ì) 
𝛼 𝛽 𝑚 NB-null NB-logged NB-offset CNB NB-logged 

3.5      -0.4 50 3.433 0.006 0.008 3.507 1.014 

                100 3.436 0.005 0.006 3.478 1.012 

                200 3.470 0.005 0.005 3.495 1.011 

                500 3.488 0.004 0.005 3.494 1.010 

       -0.2 50 3.428 0.006 0.006 3.511 1.014 

                100 3.454 0.005 0.006 3.494 1.011 

                200 3.482 0.005 0.005 3.482 1.011 

                500 3.491 0.005 0.005 3.498 1.010 

       0 50 3.395 0.005 0.006 3.48 1.013 

                100 3.461 0.005 0.006 3.494 1.012 

                200 3.486 0.005 0.005 3.495 1.011 

                500 3.481 0.004 0.005 3.489 1.010 

0.5    -0.4 50 0.470 0.011 0.013 0.487 0.965 

                100 0.487 0.012 0.013 0.495 0.968 

                200 0.498 0.011 0.012 0.500 0.970 

                500 0.498 0.011 0.012 0.499 0.968 

       -0.2 50 0.475 0.012 0.014 0.486 0.972 

                100 0.491 0.011 0.012 0.495 0.968 

                200 0.493 0.011 0.012 0.497 0.967 

                500 0.499 0.011 0.012 0.500 0.968 

       0 50 0.479 0.011 0.013 0.490 0.970 

                100 0.489 0.011 0.011 0.494 0.969 

                200 0.495 0.011 0.012 0.498 0.968 

                500 0.498 0.012 0.012 0.499 0.968 
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Table 7-3 Estimates of HP from NB models, 𝛼~ from CNB, and 𝜙ì from NB-logged for 𝜖 = 0.25. 
   av(HP) av(𝛼~) av(𝜙ì) 
𝛼 𝛽 𝑚 NB-null NB-logged NB-offset CNB NB-logged 

3.5      -0.4 50 3.359 0.225 0.256 3.622 0.927 

                100 3.451 0.250 0.276 3.652 0.924 

                200 3.476 0.260 0.284 3.661 0.920 

                500 3.498 0.266 0.289 3.667 0.920 

       -0.2 50 3.432 0.234 0.262 3.640 0.933 

                100 3.460 0.251 0.277 3.660 0.924 

                200 3.486 0.261 0.284 3.663 0.923 

                500 3.488 0.267 0.289 3.658 0.921 

       0 50 3.401 0.239 0.267 3.617 0.935 

                100 3.449 0.259 0.283 3.647 0.927 

                200 3.495 0.266 0.288 3.658 0.927 

                500 3.490 0.269 0.291 3.657 0.924 

0.5    -0.4 50 0.479 0.162 0.267 0.655 0.618 

                100 0.489 0.172 0.273 0.661 0.615 

                200 0.495 0.175 0.277 0.665 0.614 

                500 0.497 0.179 0.281 0.666 0.611 

       -0.2 50 0.479 0.163 0.268 0.652 0.619 

                100 0.492 0.172 0.275 0.659 0.615 

                200 0.495 0.176 0.278 0.661 0.614 

                500 0.498 0.179 0.281 0.662 0.612 

       0 50 0.477 0.165 0.27 0.644 0.615 

                100 0.489 0.174 0.277 0.651 0.615 

                200 0.492 0.176 0.279 0.654 0.612 

                500 0.498 0.181 0.281 0.655 0.613 
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Table 7-4 Estimates of HP from NB models, 𝛼~ from CNB, and 𝜙ì from NB-logged for 𝜖 = 0.5. 
   av(HP) av(𝛼~) av(𝜙ì) 
𝛼 𝛽 𝑚 NB-null NB-logged NB-offset CNB NB-logged 

3.5      -0.4 50 3.396 0.479 0.573 3.785 0.857 

                100 3.439 0.514 0.607 3.790 0.847 

                200 3.480 0.531 0.623 3.819 0.843 

                500 3.485 0.543 0.634 3.813 0.839 

       -0.2 50 3.391 0.501 0.600 3.767 0.856 

                100 3.445 0.518 0.610 3.793 0.850 

                200 3.462 0.540 0.633 3.803 0.844 

                500 3.496 0.549 0.639 3.816 0.842 

       0 50 3.389 0.493 0.585 3.746 0.863 

                100 3.452 0.533 0.624 3.779 0.854 

                200 3.482 0.556 0.645 3.797 0.849 

                500 3.498 0.555 0.644 3.809 0.845 

0.5    -0.4 50 0.482 0.255 0.575 0.806 0.429 

                100 0.486 0.264 0.581 0.807 0.422 

                200 0.495 0.271 0.586 0.814 0.421 

                500 0.497 0.274 0.591 0.818 0.418 

       -0.2 50 0.479 0.252 0.574 0.796 0.429 

                100 0.490 0.269 0.588 0.798 0.422 

                200 0.496 0.274 0.595 0.809 0.420 

                500 0.498 0.277 0.597 0.810 0.417 

       0 50 0.480 0.257 0.582 0.784 0.429 

                100 0.490 0.269 0.597 0.794 0.421 

                200 0.494 0.275 0.600 0.796 0.418 

                500 0.497 0.279 0.603 0.798 0.416 

 

7.6 Discussion 

In this chapter, the NB-null, NB-logged, NB-offset, and CNB models are examined in 

situations where the baseline and follow-up falls counts are collected using different 

methods. The four models were fitted to the EXSart dataset and compared in a simulation 

study, in which a perturbation was introduced into the baseline count to mimic datasets 

arising from the data collection methods in the EXSart dataset.  

The CNB model assumes that the outcome and baseline counts are generated by a 

time-homogeneous Poisson process, that is, heterogeneity is subject-specific and does not 

change across periods. In Chapter 6, CNB models were shown to have great power and 

their type I error rates were close to target when correctly specified. However, if the 

baseline count is collected using a different method to the outcome count, this assumption 
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does not hold and the CNB model performed poorly in Chapter 7. Firstly, it did not converge 

when fitted to either the intervention or follow-up falls count in the actual EXSart dataset. 

Secondly, it showed vastly inflated type I error rates in the simulation study, 50% higher 

than nominal levels when subject-specific heterogeneity was large.  

The empirical type I error rates for NB-offset were closer to the nominal level 0.05 than for 

CNB but were still too high in all scenarios. Although the type I error rate from NB-logged 

model was also shown to be inflated for high subject-specific heterogeneity (that is, large 

𝛼), it was close to 0.05 when 𝛼 = 0.5 irrespective of the level of perturbation (𝜖).  

Because the baseline count is not included in NB-null, this model is not affected by the 

inconsistency between methods of collecting baseline and outcome counts. Although 

retrospective baseline counts are considered to have lower precision than prospectively 

collected baseline counts, it is still of value to incorporate the retrospective baseline counts 

in NB models. NB-logged showed higher power than NB-null in all scenarios and achieved 

better goodness of fit when fitted to the EXSart dataset. Another justification for including 

a retrospective baseline count is that the estimation of the intervention effect may be less 

influenced by very large outcome counts, as indicated by the DFBETA plots in Figure 7-5 

and Figure 7-9, and the intervention effect estimated by NB-logged appeared more in line 

with the pattern shown in the BOE plots than the effect estimated in NB-null. 

The simulations included scenarios resembling the EXSart dataset, and these results 

suggested that the Wald test of the intervention effect from the NB-logged in the actual 

data in Table 7-1 may be moderately liberal. However, in the actual data: 1) the Wald test 

did not indicate a significant intervention effect; 2) the simulations suggested that the 

effect estimated by NB-logged was unbiased; and 3) the model-based SE in NB-logged was 

only slightly smaller than the robust SE, which is a consistent SE estimator even when the 

model is incorrect (see section 2.3.7). 

In conclusion, NB-logged is almost as powerful as CNB when CNB is correctly specified. 

When the baseline falls counts are collected retrospectively, NB-logged is likely to be 

preferable to CNB and NB-offset because it is more robust to increasing levels of 

perturbation in the baseline count. Though NB-logged accommodates the discrepancy to 
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some extent, its type I error rate is inflated when the outcome counts are greatly 

overdispersed. 
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Chapter 8  
 
Other count response models 

In this chapter, alternative count response models to NB regression are fitted to the 

Goodwin et al. (2011) or EXSart (Ashburn et al., 2007) datasets, to examine their potential 

in modelling falls counts. 

8.1 Poisson Inverse Gaussian model 

Just as the NB model as a Poisson-gamma mixture, the Poisson Inverse Gaussian (PIG) 

model deals with overdispersion in a Poisson-inverse-Gaussian mixture. It is considered to 

have better performance for heavily skewed count data than NB models (Dean et al., 1989; 

Hilbe, 2014). The PIG model has previously been used by Canning et al. (2014) and Hauser 

et al. (2016) to analyse falls data from falls prevention trials in PwP. 

Guo and Trivedi (2002) provided a parameterisation of the PIG model that is comparable 

to NB regression. The outcome 𝑌 is assumed to follow a distribution of: 

Pr(𝑌 = 𝑦) = s Pr(𝑌 = 𝑦|𝑣)𝑓(𝑣)𝑑𝑣
∞

v
, (8-1) 

such that 𝑌|𝑣 ∼ Poisson(𝑣), where the non-negative random variable 𝑣 follows an inverse 

Gaussian distribution. The PDF of the inverse Gaussian is given by: 

𝑓(𝑣; 𝜏, 𝜇) = e
𝜏

2𝜋𝑣�g
n
I exp�

−𝜏(𝑣 − 𝜇)I

2𝜇I𝑣 � , (8-2) 

where 𝜏 > 0 is the shape parameter and 𝜇 > 0 is the mean of 𝑣. 

The mean and variance of the PIG model are 𝜇 and 𝜇 + 𝜇�/𝜏 respectively. As with the NB 

model, the PIG variance may be parameterised with the reciprocal of 𝜏, which yields the 

variance as 𝜇	+	𝑘𝜇� where 𝑘 = 1/𝜏. In this section, 𝑘 is referred to as the Heterogeneity 
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Parameter (HP) of the PIG model. Because of the cubic form in the PIG variance function, 

the PIG model can accommodate more skewed data than the NB model (which has a 

variance 𝜇 + 𝛼𝜇I). If the distribution of the outcome falls count has a small mean but a 

long tail, the PIG method is potentially more suitable (Hilbe, 2014). 

As in the NB model, the link function in the PIG model is the log function, therefore the 

approach of including a log-transformed baseline count as a covariate is appropriate for 

PIG models as well. Following the nomenclature earlier in Chapter 6, the PIG model ignoring 

the baseline count is referred to as PIG-null, and PIG including the logged baseline count is 

referred to as PIG-logged. 

This section compares the performance of NB-null versus PIG-null, and NB-logged versus 

PIG-logged using the falls counts during the follow-up period of the EXSart trial (Ashburn 

et al., 2007). The EXSart dataset was chosen because the outcome count is heavily skewed, 

it was collected during a relatively long period (four months) so that the outliers have larger 

values.  

The baseline count has no missing values, and the other baseline characteristics are not 

considered as covariates here because there are missing values in those variables for 

people reporting large follow-up counts. The statistical analysis was conducted in Stata 

using the pigreg command (Hardin and Hilbe, 2012). 

Table 8-1 and Table 8-2 summaries the comparisons of NB-null versus PIG-null and 

NB-logged versus PIG-logged, respectively. The NB-null model is significantly overdispersed 

(P < 0.001), whilst no overdispersion test is available for PIG models. PIG-null has much 

smaller AIC than NB-null (627.7 versus 674.1). The HP from PIG-null (𝑘) is greater than the 

HP (𝛼) from NB-null. Because of the cubic form of its variance function, a PIG model tends 

to give a smaller estimate of 𝜇 (as indicated by the mean of predicted values), and a larger 

estimate of HP than the corresponding NB model. 

As discussed in section 7.4, the intervention effect estimated from NB-null is too extreme 

(FRR = 0.147) and does not conform to the pattern shown in the BOE plots. In comparison, 

the FRR estimated from PIG-null (0.653) is closer to the effect size estimated from the 

NB-logged and PIG-logged models (see Table 8-2), both of which incorporate the baseline 
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counts and are anticipated to yield more reliable estimates for the intervention effect. This 

indicates that the PIG-null model is less influenced by the outliers than NB-null. 

As shown in Table 8-2, PIG-logged has smaller AIC than NB-logged (594.9 versus 604.2), but 

the difference is smaller than that between PIG-null and NB-null. Also, the intervention 

effect estimated from NB-logged and PIG-logged (FRR = 0.686 and 0.869) are also closer 

than the effect estimated from NB-null and PIG-null. This is because incorporating the 

baseline count reduces heterogeneity (NB-logged is not significantly overdispersed; 

P=0.079), and the advantage of the PIG model thus becomes smaller. 

Table 8-1 EXSart dataset: NB-null and PIG-null models (follow-up period, n=127) 

 NB-null PIG-null 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -1.916 0.357 0.147 (0.073, 0.296) <0.001 -0.426 0.387 0.653 (0.306, 1.393) 0.270 

HP  𝛼~ = 3.865 𝑘ì  = 15.803 

Mean(Predicted)  12.165 10.732 

NB overdispersion test < 0.001 - 

AIC  674.1 627.7 

 

Table 8-2 EXSart dataset: NB-logged and PIG-logged models (follow-up period, n=127) 

 NB-logged PIG-logged 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -0.377 0.286 0.686 (0.391, 1.202) 0.188 -0.140 0.305 0.869 (0.478, 1.580) 0.646 

Log(baseline count)  0.685 0.078 1.984 (1.701, 2.313) <0.001 0.530 0.074 1.699 (1.470, 1.963) <0.001 

HP 1.958 4.110 

Mean(Predicted) 8.857 6.231 

NB overdispersion test 0.079 - 

AIC 604.2 594.9 

 

In conclusion, the PIG model may be an alternative of the NB model when outcome counts 

are heavily skewed, especially when a baseline count is not available, or NB model is 

significantly overdispersed. 

8.2 Zero-inflated NB models 

In this section Zero-Inflated NB (ZINB) models are considered in relation to the falls data 

from the Goodwin et al. (2011) trial. When there are excessive zero counts, some of them 
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may be generated from a different process to the count process. In the context of falls 

prevention trials, zero-inflation may arise if participants fail to complete their falls diaries 

but still hand them in. 

It is difficult to assess whether a large proportion of zeros is due to zero-inflation by 

inspecting the distribution of the outcome count. The ZINB model is compared with the 

standard NB model using the Goodwin et al. dataset. The baseline characteristics are 

included as covariates to improve the explanatory power of the model. One participant (ID 

1) is not included in the models due to missing value in the baseline count. 

The Vuong test was used to test for zero-inflation, and the AIC- and BIC-based corrections 

also carried out (section 2.3.3).  In addition, the covariate-adjusted probability plot (Holling 

et al., 2016) was used to provide a graphical comparison of the fitted ZINB and NB models 

to assess whether zero-inflated models could be beneficial in modelling this dataset. The 

NB and ZINB models were fitted in R using the MASS and pscl packages (described in 

section 4.5). The results of the standard and AIC-/BIC- corrected Vuong tests were 

calculated using the vuong() function in the pscl package.  

Table 8-3 and Table 8-4 display the results of ZINB and NB models. No inflation covariates 

(section 2.3.3) are included for the ZINB models (the ZINB models with inflation covariates 

were fitted but did not converge). The inflated zeros accounts for 3.1% and 7.8% of all zeros 

in the intervention and follow-up count, respectively. 

In general, ZINB and NB models result in similar estimates. Although the NB models have 

marginally higher AIC than the ZINB models, the Vuong test of zero-inflation is not 

significant for either the intervention (P=0.239) or the follow-up counts (P=0.245). For the 

models fitted to the intervention count, the Vuong test with the AIC-based correction does 

not suggest significant zero-inflation (P=0.413), while the test with the BIC-based 

correction suggests that the standard NB model fits the data better (Z = -0.470), but the 

test result is also not significant (P = 0.319). For the models fitted to the follow-up count, 

the Vuong tests with both the AIC- and BIC- based correction suggests that the standard 

NB model fits the data significantly better than the ZINB model (AIC-based test: Z = -3.033, 

P = 0.001; BIC-based test: Z = -8.415, P < 0.001). As the Vuong test without correction is 

considered biased in favour of the zero-inflated models (see section 2.3.3), the results 
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suggest that there is no evidence of zero-inflation for either the intervention or follow-up 

count. 

Figure 8-1 and Figure 8-2 show the covariate-adjusted probabilities of the ZINB and NB 

models that are fitted to the intervention and follow-up counts, respectively. The plots 

suggest that the covariate-adjusted probability of NB models is close to the observed 

probability for zeros falls, and the ZINB models only have marginal improvements over the 

NB models. 
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Table 8-3 ZINB versus NB model fitted to the Goodwin et al. data: intervention period (n=124) 

 

 ZINB NB 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -0.416 0.151 0.660 (0.123, 3.105) 0.006 -0.441 0.155 0.643 (0.473, 0.874) 0.004 

Log(baseline 
count+0.5) 

0.933 0.054 2.542 (0.489, 0.890) <0.001 0.946 0.056 2.574 (2.303, 2.878) 0.000 

Female -0.128 0.165 0.880 (2.284, 2.830) 0.438 -0.062 0.167 0.940 (0.675, 1.307) 0.708 

Age 0.008 0.011 1.008 (0.634, 1.221) 0.476 0.012 0.010 1.012 (0.992, 1.033) 0.243 

Years since 
diagnosis 

0.033 0.014 1.034 (0.986, 1.029) 0.022 0.027 0.014 1.028 (1.000, 1.056) 0.046 

Hoehn & Yahr         

Stage 1 0.040 0.262 1.041 (1.005, 1.064) 0.878 0.019 0.285 1.019 (0.580, 1.791) 0.947 

Stage 2   1    1  

Stage 3 -0.279 0.190 0.756 (0.619, 1.751) 0.142 -0.233 0.191 0.792 (0.543, 1.155) 0.221 

Stage 4 -0.096 0.250 0.909 (0.519, 1.103) 0.701 -0.070 0.249 0.932 (0.569, 1.526) 0.777 

Living status         

With partner   1      

Alone 0.307 0.186 1.360 (0.554, 1.491) 0.099 0.284 0.194 1.328 (0.905, 1.948) 0.143 

With family/friends 1.306 0.635 3.693 (0.940, 1.968) 0.040 1.421 0.629 4.141 (1.191, 14.392) 0.024 

Residential home -1.307 1.147 0.271 (1.050, 12.994) 0.254 -1.373 1.107 0.253 (0.028, 2.272) 0.215 

   Percentage     

Zero-inflation 
(intercept) 

-3.432 0.862 3.1%      

HP 0.384    0.468    

AIC 749.8    750.7    

Vuong test Z = 0.710, P = 0.239 

Vuong test  
(AIC-corrected) 

Z = 0.221, P = 0.413 

Vuong test 
(BIC-corrected) 

Z = -0.470, P = 0.319 
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Figure 8-1 Covariate-adjusted probability plot: NB versus ZINB models fitted to the Goodwin et 
al. dataset (intervention period, n=124) 
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Table 8-4 ZINB versus NB model fitted to the Goodwin et al. data: follow-up period (n=115) 

 

 ZINB NB 

 Est. SE FRR (95% CI) P Est. SE FRR (95% CI) P 

Intervention -0.249 0.228 0.780 (0.496, 1.226) 0.275 -0.297 0.227 0.743 (0.474, 1.165) 0.190 

Log(baseline count+0.5)  0.955 0.077 2.599 (2.231, 3.029) <0.001 0.968 0.082 2.632 (2.236, 3.099) 0.000 

Female  0.110 0.231 1.116 (0.706, 1.765) 0.633 0.071 0.239 1.073 (0.668, 1.724) 0.768 

Age  0.002 0.017 1.002 (0.970, 1.036) 0.897 0.007 0.015 1.007 (0.978, 1.038) 0.630 

Years since diagnosis  0.023 0.020 1.023 (0.983, 1.065) 0.253 0.023 0.020 1.024 (0.985, 1.064) 0.233 

Hoehn & Yahr         

Stage 1  0.518 0.351 1.679 (0.837, 3.370) 0.140 0.525 0.385 1.691 (0.789, 3.626) 0.172 

Stage 2   1    1  

Stage 3 -0.180 0.277 0.835 (0.482, 1.446) 0.515 -0.163 0.286 0.850 (0.482, 1.498) 0.569 

Stage 4  0.147 0.346 1.159 (0.583, 2.300) 0.670 0.148 0.360 1.160 (0.568, 2.369) 0.681 

Living status         

With partner   1      

Alone  0.040 0.278 1.041 (0.599, 1.808) 0.885 0.014 0.279 1.014 (0.583, 1.764) 0.959 

With family/friends  0.746 0.907 2.108 (0.349, 
12.752) 

0.411 1.008 0.905 2.740 (0.455, 
16.499) 

0.265 

Residential home -0.569 0.938 0.566 (0.088, 3.642) 0.544 -0.500 0.991 0.606 (0.085, 4.326) 0.614 

   Percentage     

Zero-inflation (intercept) -2.465 0.701 7.8%      

HP 0.789    1.065    

AIC 678.7    678.9    

Vuong test Z = 0.889, P = 0.245 

Vuong test  
(AIC-corrected) 

Z = -3.033, P = 0.001 

Vuong test 
(BIC-corrected) 

Z = -8.415, P < 0.001 
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Figure 8-2 Covariate-adjusted probability plot: NB versus ZINB models fitted to the Goodwin et 
al. dataset (follow-up period, n=115) 

 

In conclusion, the results showed that zero-inflation was not a major issue for the Goodwin 

et al. dataset. A possible reason is that, although the trial participants may skip recording 

falls when falling frequently, this is not considered a great issue for people who seldom fall, 

so the participants are not likely to skip recording falls altogether during an observation 

period. It is possible that ZINB might be useful for other datasets. 

8.3 Right-censored and right-truncated NB models 

As discussed in section 3.2.1 and Chapter 6, the Goodwin et al. (2011) dataset has 

consistent falls rates across periods, but some frequently falling participants in the 

intervention group dropped out after the intervention period, which resulted in group 

imbalance of frequent fallers during the follow-up period: among the ten participants who 

record the most falls during the follow-up period, only one was from the intervention group 

(see Table 3-3). Therefore, the NB model without including the baseline count yielded a 
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large intervention effect for the follow-up period (see Table 3-7), but it was largely due to 

the group imbalance (the frequent fallers resulting in a higher average falls rate in the 

control group). Although the NB-logged model controls for the group imbalance of 

frequent fallers by adjusting for the baseline fall rate, a baseline count may not be available 

for some trials.  

An approach for coping with the influential outliers is to choose a cut-point, drop the 

outliers that are greater than the cut-point, and then fit a standard NB model. This 

approach was adopted in a number of studies. A falls prevention trial in elderly people (Liu-

Ambrose et al., 2008) reported that “a falls histogram revealed two outliers,” and the NB 

model was fitted to the falls count with “these cases removed.” Gill et al. (2009) compared 

regression models (including NB regression) for analysing the risk of falling using a dataset 

from a falls trial, in which one subject was excluded from analysis because the falls count 

recorded by him was too large. Another falls study (Stanaway et al., 2011) reported that 

“participants with a fall rate of 10 or more falls per year were excluded,” and “next, a 

negative binomial multivariate analysis was carried out.” A falls prevention trial (Cumming 

et al., 1999) fitted the NB model to the falls count, but three participants were excluded 

because they “reported more than 50 falls during follow-up.” In a trial in PwP (Henderson 

et al., 2016), where falls were collected as a secondary outcome, the standard NB model 

was fitted to the falls count with an outlier excluded from the analysis, because this 

participant reported a large falls count (1122 falls) during the treatment period. 

The concern about excluding large counts from modelling is that it results in a 

right-truncated distribution for the outcome count, and thus it would be more appropriate 

to fit a right-truncated NB model (see section 2.3.3), but in practice this is ignored. 

Cameron and Trivedi (2013) mentioned another approach to the issue of outliers, that is to 

“downweight” the influence of the large counts by 1) reducing large counts by right-

censoring at a chosen cut-point if the count is greater or equal to the cut-point, and 2) 

fitting a right-censored NB model (see section 2.3.3). This method keeps the individuals 

with large counts in the analysis, so that outliers are still included in the analysis but less 

influential than in a standard NB model. 
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An incorrect approach would be to revalue the large counts to the cut-point and then fit a 

standard NB model, but this has been done in practice. In a falls prevention trial for elderly 

people (Nikolaus and Bach, 2003), “the first five falls for each participant were used in this 

analysis rather than all falls (maximum 22) to avoid over-weighting by subjects who fell 

more than five times.” In another falls prevention trial (Ryan et al., 2010), the NB model 

was fitted to the dataset in which “the number of falls by each person was truncated to an 

arbitrary threshold of 15, chosen as it corresponds to one fall per diary.” In addition, the 

authors conducted “post-hoc sensitivity analyses to account for exclusion of the outlier 

from the calculation of fall rate,” in which they “repeated the negative binomial regression 

model but including the outlier, who was assigned the next highest value of falls (number 

of falls plus one of next highest participant in that group).” It would be appropriate to use 

the right-censored NB model in these trials, but in practice the standard NB model was 

fitted. 

In this section, right-censored and right-truncated models are fitted in the scenario where 

large outcome counts are not balanced between groups and a baseline falls count is not 

considered. Five models were fitted to the Goodwin et al. dataset for comparison:  

• NB-null: the standard NB model fitted to the complete dataset with only one 

covariate—group allocation. NB-null is included as a baseline model, as it was 

shown to be subject to group imbalance in section 3.2.1. 

• NB-logged: the standard NB model fitted to the complete dataset with two 

covariates—group allocation, and the logged baseline count (0.5 was added to 

include zero baseline counts). This model is included as a benchmark model, 

because it incorporates the baseline count, which controls for the group imbalance 

of large outcome counts. As the frequent fallers had consistent falls rates across 

periods, this model is anticipated to have a more reliable estimate of the 

intervention effect than NB-null. 

• NB-reduced: the standard NB-null model fitted to a reduced dataset: the outcome 

counts that are greater than the cut-point are dropped; 

• NB-rt: the right-truncated NB model with the same covariate as NB-null and fitted 

to the same reduced dataset as NB-reduced. The distribution of the outcome count 

in NB-rt is specified as right-truncated at the cut-point. 
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• NB-rc: the right-censored NB model with the same covariate as NB-null. The 

outcome counts that are greater than the cut-point are regarded as right-censored 

at the cut-point. 

To make NB-logged comparable to the other models, one participant (ID 1) with missing 

value in the baseline count was not included in the five models. 

A cut-point was chosen as 200, based on the BOE plots of NB-null as shown in Figure 5-6 to 

Figure 5-9: the participants reporting more than 200 falls (20 falls/week) during the 

intervention/follow-up period were generally the most influential subjects to the 

estimation of NB-null, as indicated by their high Cook’s distances; also, their large DFBETA 

for the intervention effect suggests that these large counts may have a considerable 

influence in the estimation of the intervention effect. Another cut-point 60 was considered 

to show the difference between choosing a large and a small value for cut-points. 

The statistical analysis was conducted in R (version 3.5.0), using the MASS package to fit 

the NB models, the gamlss.cens package to fit the right-censored NB models, and the 

gamlss.tr package to fit the right-truncated NB models (the three packages are described 

in section 4.5). 

Table 8-5 and Table 8-6 summarise the comparisons of the models fitted to the 

intervention and follow-up falls counts in the Goodwin et al. dataset. As anticipated, the 

NB-logged models have smaller AIC than NB-null. For the same dataset and cut-point, the 

NB-rt models have smaller AIC than NB-reduced: the difference in AIC is only marginal for 

cut-point 200 but is larger for cut-point 60. This indicates that, by correctly specifying the 

distribution underlying the response variable, the NB-rt model achieves better goodness of 

fit than NB-reduced, which ignores the right-truncation. 

For the intervention period, four participants reported a larger outcome count than the 

cut-point 200 (see Table 8-5). FRRs estimated by both NB-rc and NB-rt are closer to the FRR 

from NB-logged than that from NB-null, with NB-rt being closer than NB-rc. Both models 

also result in smaller HPs than NB-null, because the outliers are either censored or dropped. 
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Table 8-5 NB-null, NB-logged, NB-reduced, NB-rt, and NB-rc fitted to the intervention count in 
the Goodwin et al. dataset 

Cut-point Model n AIC* 𝜷± (SE) FRR (95% CI) P 𝝓±  (SE) HP 

Original NB-null 124 931.8 -0.571 
(0.323) 

0.565 
(0.298, 1.071) 

0.077  3.188 

NB-logged 124 744.3 -0.359 
(0.155) 

0.698 
(0.946, 0.515) 

<0.001 0.911 
(0.051) 

0.511 

200 NB-reduced 120 826.7 -0.232 
(0.284) 

0.793 
(0.452, 1.391) 

0.414  2.339 

NB-rt 120 826.6 -0.238 
(0.284) 

0.788 
(1.375, 0.452) 

0.400  2.347 

NB-rc 124 875.5 -0.536 
(0.309) 

0.585 
(1.072, 0.319) 

0.085  2.898 

60 NB-reduced 117 767.6 -0.343 
(0.268) 

0.710 
(0.417, 1.206) 

0.200  2.001 

NB-rt 117 761.0 -0.638 
(0.282) 

0.528 
(0.304, 0.918) 

0.026  2.257 

NB-rc 124 814.4 -0.525 
(0.278) 

0.592 
(0.343, 1.020) 

0.061  2.314 

* Note: the AIC of NB-rc cannot be compared with the AIC of NB-reduced and NB-rt models 

 

For the smaller cut-point 60, more subjects (seven participants) are regarded as 

right-censored or right-truncated in modelling the interventon count. Compared to the 

NB-rc model with cut-point 200, NB-rc with cut-point 60 yields an FRR that is closer to that 

estimated from NB-logged. However, NB-rt with cut-point 60 yields an FRR of 0.528, which 

is further away from the FRR estiamted from NB-logged (0.698) compared to the FRR from 

NB-null (0.565). This may because dropping the seven participant results in loss of 

information in NB-rt. 

As shown in Table 8-6, the models fitted to the follow-up falls counts show similar results. 

Compared to the intervention period, there is a greater disparity between the FRRs 

estimated from NB-null and NB-logged (0.235 and 0.770, respectively). Only one 

participant has a greater follow-up count than the cut-point 200, and seven participants 

reported more follow-up falls than the cut-point 60. The FRR estimated from NB-rt are 

closer to the estimate from NB-logged than to that from NB-rc, while the FRRs from both 

NB-rc and NB-rt are less extreme than that from NB-null. For cut-point 60, the FRR from 
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the NB-rt model (0.776, 95% CI: 0.405 to 1.487) is remarkably close to the FRR from 

NB-logged (0.770, 95% CI: 0.493, 1.201), with the 95% CI from NB-rt wider than NB-logged. 

This is different to the finding in Table 8-5: the cut-point 60 results in a more extreme FRR 

than the cut-point 200 when NB-rt is fitted the intervention count. A possible explanation 

is that the large falls counts during the follow-up periods are not balanced between groups, 

which results in an extreme FRR in NB-null (0.235), but the large counts are not included in 

NB-rt, which may remedy the issue of losing information.  

Table 8-6 NB-null, NB-logged, NB-reduced, NB-rt, and NB-rc fitted to the follow-up count in the 
Goodwin et al. dataset 

Cut-point Model n AIC* 𝜷± (SE) FRR (95% CI) P 𝝓±  (SE) HP 

Original NB-null 115 771.6 -1.448 
(0.352) 

0.235 
(0.117, 0.472) 

<0.001  3.468 

NB-logged 115 666.5 -0.262 
(0.227) 

0.770 
(0.493, 1.201) 

0.249 0.943 
(0.075) 

1.142 

200 NB-reduced 114 741.9 -1.028 
(0.335) 

0.358 
(0.184, 0.696) 

0.002  3.110 

NB-rt 114 740.9 -1.143 
(0.339) 

0.319 
(0.164, 0.620) 

0.001  2.875 

NB-rc 115 751.2 -1.208 
(0.340) 

0.299 
(0.153, 0.582) 

<0.001  3.034 

60 NB-reduced 108 640.0 -0.149 
(0.319) 

0.861 
(0.458, 1.621) 

0.639  2.622 

NB-rt 108 636.0 -0.254 
(0.332) 

0.776 
(0.405, 1.487) 

0.446  2.622 

NB-rc 115 682.7 -0.995 
(0.330) 

0.370 
(0.194, 0.706) 

0.003  1.142 

* Note: the AIC of NB-rc cannot be compared with the AIC of NB-reduced and NB-rt models 

 

The results indicate that the right-censored and right-truncated NB models may be useful 

when the baseline count is not available, especially when the frequent fallers are not 

balanced between groups.  

An advantage of the right-censored model is that choosing a smaller cut-point does not 

result in reduced sample size. However, if large outcome counts are not balanced between 

two groups (such as the follow-up periods in Goodwin et al. dataset), the right-censored 
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model would only extenuate the effect. If there are a large number of influential outliers, 

censoring will not provide a complete remedy. 

The right-truncated model obviates the effect of outliers by dropping them, thus would 

solve the issue of group imbalance. However, if the value of the cut-point is too small, many 

observations are dropped, which results in a loss of power. 

8.4 Finite mixture Poisson models 

A common assumption in statistical modelling is to describe the distribution of the outcome 

𝑦 in a sample using a distribution 𝑓(𝑦|𝜆) where 𝜆 is the parameter of the population. In 

practice, the assumption is often too strict because of unobserved population 

heterogeneity — the population of interest may consist of multiple subpopulations, each 

of which has a different parameter 𝜆 (see section 2.3.7). For example, subpopulations may 

respond to an intervention differently. The same intervention may have a different effect 

for a subgroup of PwP who fall frequently and a subgroup who seldomly fall. If the 

intervention effect is large for one subpopulation and mild for another, the marginal 

intervention effect may be moderate, but this estimated effect is misleading. Finite mixture 

models aim to estimate the proportion of each component in the population, and the effect 

of interest for each subpopulation (Schlattmann, 2009). 

Finite mixture models are relevant to falls prevention trials for two reasons: first, the falls 

counts data may be heterogeneous in nature. The finite mixture model resembles the NB 

model in that they both aim to accommodate heterogeneity. The difference between them 

is that, unlike the NB model, the finite mixture model does not assume a continuous 

distribution for the heterogeneity, instead it uses a discrete unobserved structure for 

heterogeneity (Schlattmann, 2009), which may potentially make the finite mixture model 

useful for dealing with outliers. In this section a finite mixture Poisson model is fitted to the 

intervention falls count in the Goodwin et al. (2011) dataset to examine whether it could 

accommodate the frequent fallers as a subpopulation. 

Three models are fitted and compared: 

• Poi-logged: the standard Poi-logged model (see section 6.2.2) is fitted (using the 

poisson command in Stata) as a baseline model; 
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• NB-logged: the standard NB-logged model is fitted (using the nbreg command in 

Stata) as a Poisson mixture model with a continuous random subject effect to 

accommodate the subject heterogeneity; 

• Poi-logged FMM: the finite mixture Poi-logged model is fitted to the dataset (using 

the fmm command in Stata). Two components were specified to examine 

whether the large counts could be accommodated in a component. The linear 

predictor of each component includes the same covariates: the group allocation 

and Log(baseline count + 0.5). 

The estimates from the three models are summarised in Table 8-7. The Poi-logged FMM 

yields a much smaller AIC (855.3) than Poi-logged, but still larger than that of NB-logged 

(744.3). This suggests that the FMM partially controls for the heterogeneity in two 

components, but NB-logged better accommodates the heterogeneity in the gamma 

distributed subject effect. The Poi-logged FMM results in an estimate of the intervention 

effect for each subpopulation: FRR 0.411 for component 1 and FRR 0.633 for component 2. 

Table 8-7 Estimates of Poi-logged, NB-logged, and Poi-logged FMM (n=124). 

  Estimate SE FRR (95% CI) P 

Poi-logged Intervention -0.480 0.037 0.619 (0.575, 0.666) < 0.001 

 Log(baseline count + 0.5)  1.030 0.012 2.801 (2.735, 2.868) < 0.001 

 AIC 1131.5    

NB-logged Intervention -0.359 0.156 0.698 (0.514, 0.948) 0.022 

 Log(baseline count + 0.5)  0.911 0.048 2.487 (2.263, 2.733) < 0.001 

 HP     

 AIC 744.3    

Poi-logged FMM      

Comp 1 Intervention -0.890 0.121 0.411 (0.324, 0.520) < 0.001 

 Log(baseline count + 0.5) 1.025 0.070 2.787 (2.430, 3.200) < 0.001 

Comp 2 Intervention -0.457 0.045 0.633 (0.579, 0.691) < 0.001 

 Log(baseline count + 0.5)  0.894 0.027 2.445 (2.316, 2.581) < 0.001 

 AIC 835.3    
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As shown in Table 8-8, the proportions of components 1 and 2 are estimated to be 56.1% 

and 43.9%. This was not anticipated as 1) the component with a larger marginal mean (that 

is, component 2) accounts for more than forty percent of all participants, while there are 

only a few frequent fallers in the dataset; 2) the marginal mean of component 2 (33.251) is 

not as large as expected. 

Table 8-8 Estimated proportions and marginal means for components 1 and 2 from the 
Poi-logged FMM (n=124). 

 Proportion Marginal mean 

 Estimate SE 95% CI Estimate SE 95% CI 

Comp 1 0.561 0.100 (0.366, 0.738) 14.895 0.884 (13.162, 16.627) 

Comp 2 0.439 0.100 (0.262, 0.634) 33.251 0.464 (30.382, 36.120) 

 

Figure 8-3 shows a density histogram of the predicted values from components 1 and 2 of 

Poi-logged FMM. Although component 2 has a larger marginal mean than component 1 

(see Table 8-8), it is mostly made up of falls counts between 0 and 50. 

 

Figure 8-3 Density histogram of the predicted values from components 1 and 2 of Poi-logged 
FMM (n=124). 
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In summary, Poi-logged FMM did not appear to outperform NB-logged in the Goodwin et 

al. dataset. However, this may be due to the scarcity of large counts. If the frequent fallers 

indeed belong to a subpopulation, it is possible that an FMM could capture the large counts 

in a component when the sample size is large. In such case, it would be interesting to 

examine whether this subpopulation of frequent fallers respond to the same intervention 

differently compared to other subpopulation. 

8.5 Analysis of longitudinal falls data with random-effects NB models 

Datasets from falls prevention trials are often longitudinal in nature. When the falls counts 

are collected prospectively using falls diaries, they may be made available as a longitudinal 

dataset, with each row containing the falls counts per week recorded by a participant, for 

example. The participant and the week are usually indicated by the variables id and time 

respectively.  

The random-effects NB model, which assumes observations are independent between 

participants within a week but allowed to be correlated over time within a participant 

(Cameron and Trivedi, 2013; Hausman et al., 1984) and introduced in section 2.3.8, is 

considered in this section to examine the longitudinal structure of the Goodwin et al. (2011) 

data (2011) in more detail. 

This section focuses on the estimates of intervention and time effects, as well as their 

interactions. In addition to the logged baseline count, the same baseline characteristics 

such as demographic characteristics and severity rating of Parkinson’s that were 

considered in section 3.2.1 are included in all the models in this chapter to improve 

statistical power and control for heterogeneity, but we shall forego discussing the 

estimates and test results of the baseline characteristics in detail. 

As introduced in section 1.2.1, the falls count in the Goodwin et al. trial was recorded 

prospectively by each participant in a falls diary, and made available to this project as the 

number of falls experienced by each participant during each of the 30 weeks of observation 

window, which comprises 10 weeks for each of the baseline, intervention, and follow-up 

periods. Previously weekly count data were aggregated to the period level. The random-
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effects NB model is considered in this section for analysing the longitudinal dataset of 

weekly falls counts. 

A random-effects NB model (see section 2.3.8) was fitted to the 10 weekly falls counts 

during the intervention and follow-up periods separately. The models were fitted in Stata 

(version 15) using the xtnbreg, re command (described in section 4.2). The group 

allocation was included in the model as a factor giving an estimate of the intervention effect. 

The logged baseline count (the aggregated falls counts during the baseline period + 0.5) 

was also included. Time (counted in weeks) from the beginning of week 11, when the 

intervention started, was included in the model as a regressor to examine whether the falls 

rate changed linearly over time in the control group. The same baseline characteristics as 

in section 3.2.1 were also included. The P values from the Wald test for each covariate were 

reported. This model is referred to as the Linear Time (LT) model in the following text. 

Another goal of this section is to see whether there is an interaction effect between the 

intervention and time, by 1) fitting a model including the interaction term between 

intervention and linear time in addition to the two main effects and baseline characteristics; 

and 2) testing the interaction effect using the LR test. This model is referred to as the Linear 

Time Interaction (LTI) model. 

To check the linearity assumptions in the LT and LTI models, the following random-effects 

NB models were examined: 

• Factorial Time (FT) model: The FT model includes the same covariates as the LT 

model, except that time is included as a factor instead of as a continuous variable. 

The FT model does not assume a linear time effect, and it gives an estimate of the 

time effect specific to each week compared to the first week. This model was 

examined to check the assumption of a linear time effect in the LT models. 

• Factorial Time Interaction (FTI) model: The FTI model includes the same covariates 

as the LTI model, except that time is included as a factor in both the main effect and 

the interaction between interventions and time. The FTI model does not assume 

the intervention effect changes linearly with time, and it gives an estimate of the 

intervention effect specific to each week. This model was examined to check the 

linear assumption in the LTI models. 
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For both the FT and FTI models, the first week of the intervention/follow-up period was 

specified as the reference level for the factor variable time. 

All the fitted random-effects NB models were tested against the NB1 models (which were 

fitted to the panel data but the panel structure is ignored; see section 2.3.8) using the 

default LR test produced in Stata to examine if accounting for the panel structure 

significantly improves the goodness of fit of the random-effects NB model. 

The matrix of correlation coefficients between outcome weekly counts were examined. 

Because the distribution of falls count is typically skewed, the Spearman correlation 

coefficient 𝜌 was used.  

Figure 8-4 and Figure 8-5 present Spearman correlation coefficients between falls counts 

recorded by the same participant during each week within the intervention and follow-up 

periods respectively. The weekly falls counts show strong correlation at the subject-level, 

with the Spearman 𝜌  lying between 0.549 and 0.797 for the intervention period, and 

between 0.538 and 0.817 for the follow-up period (the majority of 𝜌 being over 0.6). No 

clear pattern of autocorrelation over time is found in either period. 
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Figure 8-4 Correlation of the number of falls occurred each week (weeks 11-20) 
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Figure 8-5 Correlation of the number of falls occurred each week (weeks 21-30) 

 

The random-effects NB models fitted to the falls count during each week of the 

intervention (weeks 11-20) and follow-up (weeks 21-30) periods are summarized in Table 

8-9 to Table 8-14. The LR tests indicate that all the random-effects models have significantly 

better goodness of fit than the NB1 model fitted to the same weekly dataset (P < 0.001). 

As shown in Table 8-9, during the intervention period the intervention significantly 

(P < 0.001) reduced the falls rate by half (FRR: 0.505, 95% CI: 0.360 to 0.710), and the effect 

of time is not significant (P = 0.805). The FRRs for the time effect were examined in the FT 

model (Table 8-11), and they do not show patterns contraindicating the assumption of 

linear time effect. 
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Table 8-9 Goodwin et al. dataset: LT model (intervention period: weeks 11-20; n=124; 
obs=1240) 

 

Table 8-10 shows that the interaction of intervention and linear time is not significant 

(P = 0.971) in the LTI model. The FTI model was examined and compared with the LTI model 

(both interaction terms are summarised in Table 8-11). The interaction of intervention and 

factorial time is also not significant (P = 0.069). The pattern of weekly specific FRRs in Table 

8-11 does not suggest an obvious alternative to the LTI model, and the FTI model has a 

larger AIC than the LTI model (3107.6 versus 3095.3). 

Because the interaction of intervention and time is not significant for the intervention 

counts, we drop the interaction term and conclude that during the intervention period, the 

intervention reduced the risk of falling by half and the effect was reasonably constant over 

time. 

  

 Estimate SE FRR (95% CI) P 

Intervention -0.683 0.173 0.505 (0.360, 0.710) < 0.001 

Time (weeks) -0.002 0.009 0.998 (0.981, 1.015) 0.805 

Log(baseline count + 0.5)  0.632 0.065 1.882 (1.658, 2.136) < 0.001 

Female -0.542 0.203 0.582 (0.391, 0.866) 0.008 

Age -0.017 0.012 0.983 (0.959, 1.007) 0.166 

Years since diagnosis  0.068 0.018 1.070 (1.034, 1.108) 0.000 

Hoehn & Yahr     

Stage 1  0.296 0.330 1.344 (0.704, 2.565) 0.370 

Stage 2   1  

Stage 3 -0.148 0.230 0.863 (0.550, 1.353) 0.520 

Stage 4 -1.059 0.277 0.347 (0.202, 0.597) < 0.001 

Living status     

With partner   1  

Alone  0.751 0.233 2.120 (1.344, 3.343) 0.001 

With family/friends  1.147 0.690 3.150 (0.815, 12.175) 0.096 

Residential home -0.616 1.188 0.540 (0.053, 5.539) 0.604 

r 3.966    

s 1.613    

AIC 3093.3    

LR test: random-effects NB versus NB1: P < 0.001 
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Table 8-10 Goodwin et al. dataset: LTI model (intervention period: weeks 11-20; n=124; 
obs=1240) 

 
 
  

 Estimate SE FRR (95% CI) P 

Intervention -0.679 0.204 0.507 (0.340, 0.757) 0.001 

Time (weeks) -0.002 0.010 0.998 (0.978, 1.019) 0.847 

Intervention x Time (weeks) -0.001 0.020 0.999 (0.961, 1.039) 0.971 

Log(baseline count + 0.5)  0.632 0.065 1.882 (1.657, 2.137) < 0.001 

Female -0.541 0.203 0.582 (0.391, 0.866) 0.008 

Age -0.017 0.013 0.983 (0.959, 1.007) 0.166 

Years since diagnosis  0.068 0.018 1.070 (1.034, 1.108) 0.000 

Hoehn & Yahr     

Stage 1  0.296 0.330 1.344 (0.704, 2.566) 0.370 

Stage 2   1  

Stage 3 -0.148 0.230 0.863 (0.550, 1.353) 0.520 

Stage 4 -1.060 0.279 0.347 (0.201, 0.598) < 0.001 

Living status     

With partner   1  

Alone  0.752 0.233 2.121 (1.343, 3.348) 0.001 

With family/friends  1.147 0.690 3.148 (0.814, 12.179) 0.097 

Residential home -0.616 1.188 0.540 (0.053, 5.543) 0.604 

r  3.964    

s  1.612    

AIC  3095.3    

LR test: random-effects NB versus NB1 P < 0.001 

LR test: the interaction between the intervention and time P = 0.971 
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Table 8-11 Time and intervention effect and during each week of intervention periods of 
Goodwin et al. dataset (weeks 11-20; n=124; obs=1240) 

 Time effect Intervention effect 

Week LT: 
FRR 

FT: 
FRR (95% CI) 

LTI: 
FRR 

FTI: 
FRR (95% CI) 

11 1 1 0.551 0.510 
(0.324, 0.802) 

12 0.998 1.026 
(0.829, 1.27) 

0.550 0.945 
(0.596, 1.500) 

13 0.996 0.889 
(0.712, 1.11) 

0.550 0.974 
(0.604, 1.568) 

14 0.994 0.948 
(0.762, 1.18) 

0.549 0.724 
(0.442, 1.186) 

15 0.992 1.012 
(0.814, 1.258) 

0.549 1.409 
(0.892, 2.225) 

16 0.990 0.997 
(0.800, 1.243) 

0.548 1.247 
(0.779, 1.995) 

17 0.988 0.980 
(0.784, 1.223) 

0.548 1.166 
(0.719, 1.892) 

18 0.986 0.886 
(0.709, 1.107) 

0.547 0.614 
(0.371, 1.018) 

19 0.984 0.972 
(0.780, 1.211) 

0.547 1.145 
(0.713, 1.840) 

20 0.982 1.005 
(0.808, 1.249) 

0.546 1.078 
(0.674, 1.726) 

AIC (df) 3093.3 
(15) 

3105.6 
(23) 

3095.3 
(16) 

3107.7 
(32) 

LR test of interaction: 
Intervention x Time 

- - P=0.971 
(df=1) 

P=0.069 
(df=9) 

 
Table 8-12 shows the estimates from the random-effects NB models fitted to the falls count 

during the follow-up period. The intervention effect is still significant (P = 0.010), and its 

estimate (FRR: 0.551, 95% CI: 0.351 to 0.866) is similar to that during the intervention 

periods (FRR: 0.505, 95% CI: 0.360 to 0.710). Again, the effect of time is not statistically 

significant, and the FT model does not indicate obvious alternative to the assumption of 

linear time effect (see Table 8-14). 
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Table 8-12 Goodwin et al. dataset: LT model (follow-up period: week 21-30; n=119; obs=1160) 

 

Table 8-13 shows results from the LTI model for the follow-up period. Now the interaction 

between intervention and time is statistically significant (LR test: P = 0.002), with the FRR 

of the interaction estimated to be 0.930 (95% CI: 0.890 to 0.972), that is, the intervention 

effect in preventing falls increases over weeks. The FTI model was fitted to check the 

linearity assumption and the week specific FRRs are shown in Table 8-14 from both models. 

Basically speaking, they show a pattern of declining FRR (reduced from approximately 1.00 

to approximately 0.50) supporting modelling the interaction with a linear time. The weekly 

FRRs calculated from LTI decreases by 7% per week and falls from 0.798 to 0.417 (Table 

8-14). In accordance with the results in the LTI model, the interaction between the 

intervention and time is statistically significant (P = 0.001) in FTI model. The FTI model again 

results in larger AIC than LTI. 

 Estimate SE FRR (95% CI) P 

Intervention -0.595 0.230 0.551 (0.351, 0.866) 0.010 

Time (weeks) -0.001 0.009 0.999 (0.982, 1.017) 0.946 

Log(baseline count + 0.5)  0.901 0.076 2.462 (2.122, 2.857) 0.000 

Female  0.265 0.236 1.304 (0.821, 2.070) 0.260 

Age  0.016 0.015 1.016 (0.985, 1.047) 0.315 

Years since diagnosis  0.031 0.020 1.032 (0.993, 1.072) 0.110 

Hoehn & Yahr     

Stage 1 -0.025 0.359 0.975 (0.482, 1.970) 0.944 

Stage 2   1  

Stage 3 -0.289 0.280 0.749 (0.432, 1.298) 0.303 

Stage 4  0.303 0.351 1.354 (0.681, 2.694) 0.388 

Living status     

With partner   1  

Alone  0.621 0.284 1.862 (1.068, 3.246) 0.028 

With family/friends  1.683 0.833 5.383 (1.053, 27.524) 0.043 

Residential home -0.060 1.001 0.942 (0.132, 6.707) 0.953 

r 4.562    

s 1.160    

AIC 2544.9    

LR test: random-effects NB versus NB1 P < 0.001 
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Note that although the FRR for the main effect of intervention is estimated to be 1.760, 

this estimates the intervention effect for week 0, which falls outside the timeline of weeks 

11-20. 

In summary, during the follow-up period the time did not have a significant effect on falls 

rates; the intervention reduced the falls rate increasingly by 7% per week, with the overall 

intervention estimated to reduce falls rate by 45% during the follow-up period.  

 

Table 8-13 Goodwin et al. dataset: LTI model (follow-up period: week 21-30; n=119; obs=1160) 

 

 

 Estimate SE FRR (95% CI) P 

Intervention  0.566 0.418 1.760 (0.775, 3.998) 0.177 

Time (weeks)  0.012 0.010 1.013 (0.994, 1.032) 0.194 

Intervention x Time (weeks) -0.072 0.023 0.930 (0.890, 0.972) 0.001 

Log(baseline count + 0.5)  0.920 0.077 2.509 (2.160, 2.915) < 0.001 

Female  0.258 0.238 1.294 (0.811, 2.063) 0.279 

Age  0.015 0.016 1.015 (0.985, 1.047) 0.333 

Years since diagnosis  0.033 0.020 1.033 (0.993, 1.075) 0.104 

Hoehn & Yahr     

Stage 1  0.024 0.364 1.024 (0.502, 2.089) 0.948 

Stage 2   1  

Stage 3 -0.248 0.282 0.781 (0.449, 1.357) 0.380 

Stage 4  0.277 0.353 1.320 (0.661, 2.636) 0.432 

Living status     

With partner   1  

Alone  0.577 0.284 1.780 (1.020, 3.106) 0.042 

With family/friends  1.637 0.847 5.141 (0.978, 27.021) 0.053 

Residential home -0.069 0.999 0.933 (0.132, 6.607) 0.945 

r  4.979    

s  1.144    

AIC  2536.9    

LR test: random-effects NB versus NB1 P < 0.001 

LR test: the interaction between the intervention and time P = 0.002 
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Table 8-14 Time and intervention effect and during each week of follow-up periods of Goodwin 
et al. dataset (weeks 21-30; n=119; obs=1160) 

 Time effect Intervention effect 

Week LT: 
FRR 

FT: 
FRR (95% CI) 

LTI: 
FRR 

FTI: 
FRR (95% CI) 

21 1 1 0.798 1.035 
(0.601, 1.780) 

22 0.999 0.911 
(0.74, 1.122) 

0.742 1.151 
(0.755, 1.755) 

23 0.998 0.933 
(0.755, 1.155) 

0.691 0.443 
(0.268, 0.732) 

24 0.997 0.921 
(0.744, 1.141) 

0.643 0.515 
(0.316, 0.839) 

25 0.996 1.003 
(0.812, 1.239) 

0.598 0.561 
(0.342, 0.919) 

26 0.995 0.968 
(0.781, 1.2) 

0.557 0.487 
(0.291, 0.814) 

27 0.994 0.964 
(0.779, 1.194) 

0.518 0.511 
(0.307, 0.850) 

28 0.993 0.947 
(0.764, 1.174) 

0.482 0.507 
(0.304, 0.845) 

29 0.992 0.825 
(0.659, 1.034) 

0.448 0.485 
(0.282, 0.834) 

30 0.991 1.042 
(0.844, 1.287) 

0.417 0.581 
(0.357, 0.947) 

AIC (df) 2544.9 
(15) 

2555.1 
(23) 

2536.9 
(16) 

2544.9 
(32) 

LR test of interaction: 
Intervention x Time 

- - P=0.002 
(df=1) 

P=0.001 
(df=9) 

 

NB models have become widely used for analysing data from falls prevention trials, but few 

studies have considered longitudinal NB models. In this section, random-effects models 

were fitted to the Goodwin et al. dataset, to explore how to model falls data in longitudinal 

format. 

An advantage of random-effects NB models is that a time variable can be included as a 

covariate, so that the model allows a check on the assumptions of a constant falls rate and 

a constant intervention effect. Compared to studies with outcomes measured repeatedly 

during a short period, falls prevention trials are different in two aspects: first, when falls 
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counts are collected prospectively, data collection takes weeks or even months to complete, 

and each record has a relatively long gap with the previous record (in the Goodwin et al. 

trial the gap was one week); second, participants may experience worsening ability to 

maintain body balance during the observation period due to disease progression, which 

results in higher falls rates as time goes on; another possibility is that participants may start 

restricting their activities to avoid falling, which results in lower falls rates as time goes on. 

For these two reasons, the time effect should be checked for falls prevention trials and 

modelling this effect might be desirable. In the Goodwin et al. dataset, the time effect was 

not significant, which is possibly due to the short length of each period (10 weeks). 

A step forward from modelling a constant intervention effect is to include a two-way 

interaction between the intervention and time. This enables checking whether the 

intervention effect is constant over time. The intervention did not have a significant 

interaction with time during the intervention period. However, during the follow-up period, 

the interaction between interventions and time was significant, and the estimated 

interaction effect suggest that during each week of the follow-up period the FRR of the 

intervention effect deceased by 7% (that is, the falls rate in the intervention group deviated 

further from the rate in the control group as time passes).
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Chapter 9  
 
Discussion 

In this chapter, the main findings of the project are summarised and discussed. We also 

address limitations and suggest future directions for research concerning the analysis of 

data from falls prevention trials and counts of falls more generally. 

9.1 General discussion 

Falling is a common and often recurrent event for PwP. The quality of life for PwP is 

compromised due to their high risk of falling, as falls may lead to injuries and loss of 

independence in daily activities. Falls prevention trials aim to find an effective treatment 

to prevent or reduce falling, but the interventions rarely show statistically significant effect 

in published trials. This is possibly due to the low power of the statistical methods for 

analysing falls counts, which hinders the adoption of potentially effective treatments. 

Fundamentally, falls prevention trials aim to answer two questions. First, is the intervention 

effective in reducing falls rate? Second, what is the size of the intervention effect? A natural 

approach to answering the two questions is to fit a count response model, which yields an 

effect size as an FRR and a P value from a model-based hypothesis test of the intervention 

effect (such as the Wald, LR, and score test). However, there are two major challenges 

faced by researchers.  

The first challenge is outliers in the outcome count. Some participants with Parkinson’s in 

falls prevention trials report very large falls count—this was found in all three motivating 

datasets used in this project, including the Martin et al. (2015) dataset, which consists of 

only 21 participants, among whom one participant reported 1599 falls during the 20-week 

outcome period. Large outcome counts often have great influence in model estimation and 

may considerably influence the estimated intervention effect, especially when a baseline 

count is not included in the model. The reason that outliers influence estimation is that if 
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the large counts are not balanced between groups, the group with more large counts, or 

even just one extremely large count, may substantially increase the group mean, and 

consequently, the group difference in falls rates could be dominated by a few large counts. 

For example, suppose a trial is conducted to study the effect of an intervention, which is 

assumed to moderately reduce the falls rate. By chance if there are more frequent fallers 

in the intervention group, the large falls counts may increase the average falls rate in the 

intervention group, so that the estimated intervention effect is smaller than the true effect 

and is less likely to achieve statistical significance in the analysis of outcome counts alone, 

that is, ignoring the baseline count. In a more extreme case, the average falls rate in the 

intervention group may surpass the rate in the control group due to the imbalance in large 

counts, so that the model yields a positive FRR for the intervention effect, suggesting that 

the intervention increases the risk of falling. Conversely, if there are more large counts in 

the control group, the model may yield an overestimate of the intervention effect. Because 

of the skewed distribution of falls counts, large counts only account for a small proportion 

of the sample. Therefore, a very large sample size is required to achieve group balance in 

frequent fallers via randomisation.  

Another challenge in analysing falls counts using count response models is overdispersion, 

which arises when heterogeneity is not fully accommodated in the model. The risk of falling 

is usually considered to be related to multiple risk factors, and as a result the mechanism 

of Parkinson’s induced falling is not thoroughly understood by researchers, so it is likely 

that important prognostic variables are not observed, not observable, or not incorporated 

in the model. Thus, unobserved heterogeneity is common in falls data and is expected to 

result in model overdispersion.  

Overdispersion leads to underestimation of the model-based SEs, especially for Poisson 

regression, which assumes equidispersion and does not accommodate any degree of 

overdispersion. The SE of the estimated intervention effect provides a measure of the 

precision of the estimator and is as important as the estimator itself, because an estimate 

has little value if its precision is not given (Fisher, 1956). When the SE of an estimator is 

underestimated, the corresponding hypothesis test generally has inflated type I error rates. 

The main goal of a falls prevention trial is to study whether an intervention is effective in 

preventing falls, but unobserved prognostic variables, though their effects may not be 
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among the research questions, perturb the model-based test of the intervention effect via 

overdispersion. Therefore, unless the effects of the unobserved variables or heterogeneity 

are sufficiently accounted for in the model, researchers cannot give credence to the P 

values from the model-based hypothesis tests. Poisson regression is almost always 

overdispersed in modelling falls counts, and for this reason widely understood to be 

unsuitable for analysing data from falls prevention trials. 

The two challenges in analysing falls counts are intertwined rather than distinct. If large 

counts cannot be sufficiently accommodated in a count response model, they may result 

in overdispersion. A model that better controls for overdispersion may also better 

accommodate outliers reducing their influence on the model fit. For the analysis of falls 

prevention trials, the NB model has become a standard approach in modelling falls counts, 

because it has better performance in coping with outliers and overdispersion than Poisson 

models. 

NB regression is an extension of Poisson regression that aims to accommodate 

heterogeneity in a gamma-distributed subject effect. As Box (1979) put it, “all models are 

wrong but some are useful.” NB regression fits this description perfectly in that the 

distribution of heterogeneity is unknown, but the gamma distributed subject effect may be 

flexible enough to accommodate heterogeneity, if adequate prognostic variables are 

included in the model linear predictor as covariates. Another advantage of NB regression 

is that the underlying NB distribution is more skewed than the Poisson distribution given 

the same mean, so that it fits count data better than Poisson regression when there are 

outliers. 

Although NB regression mitigates the effects of outliers and overdispersion, it is not a 

panacea in all cases. NB models are still subject to the influence of outliers, and NB models 

themselves can be overdispersed if the gamma-distributed subject effect does not 

sufficiently accommodate the heterogeneity. The dissertation focuses on models and 

diagnostic plots to address the issues of outliers and overdispersion, especially for NB 

models.  
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Incorporating a baseline count in the NB-based models 

It is not uncommon in a falls prevention trial to collect a falls count during a pre-

randomisation baseline period, but researchers do not seem to be fully aware of the benefit 

of incorporating it in analysis. In previous studies, a baseline count was sometimes used 

only as an eligibility criterion and excluded from further analysis; or, in some trials 

dichotomised into a history of falling (<	1 versus ≥	1) or a history of frequent falling (<	𝑛 

versus ≥	𝑛 where 𝑛	>	1) indicator before inclusion in the model. These two approaches 

both result in a great loss of power. 

Despite being overlooked in practice, the baseline count is actually essential to the analysis 

of falls counts. A primary goal of the thesis is to investigate how to incorporate the baseline 

count into the analysis of a falls prevention trial using count response models. As discussed 

above, there may be latent variables related to the risk of falling that are not observed in a 

trial. Although collecting more covariates and including them in the analysis may control 

for heterogeneity, it is impossible to capture everything. 

A possible solution to the problem heterogeneity is to control for the latent variables via a 

proxy variable — the baseline count. The logic of this approach is as follows. If 

heterogeneity is brought about by subject-level latent variables, the variables should be 

correlated with both the outcome and baseline counts. Thus, incorporating the baseline 

count in modelling should at least partially control for the heterogeneity. Cook and Wei 

(2003) accommodated heterogeneity in the joint distribution by assuming both baseline 

and outcome falls counts follow a Poisson distribution with a gamma-distributed random 

subject effect shared in the two count variables. By conditioning on the baseline count, the 

authors derived the Conditional NB (CNB) model from the joint distribution accounting for 

heterogeneity in the outcome. In Chapter 6, the CNB model was fitted to datasets 

simulated from the underlying joint distribution. The results showed that CNB indeed had 

good performance when it was correctly specified: the empirical power was high regardless 

of varying degrees of heterogeneity, and the type I error rate was close to the nominal level 

0.05 even for small sample sizes. Compared with the NB model without including the 

baseline count (referred to as NB-null), CNB achieved much higher empirical power, and 

the power gain increased as the heterogeneity became greater. This demonstrates that 
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conditioning on the baseline count improves statistical power and makes the model less 

subject to heterogeneity. 

An alternative to the CNB model is to include the logged baseline count in an NB regression 

model as a covariate (referred to as the NB-logged model in the thesis), or as an offset 

(referred to as NB-offset). These two models are based on the same joint distribution 

underlying CNB. The log-transformation is applied to the baseline count because of the log 

link-function in NB models, so that the baseline count is on the same scale as the outcome, 

but this may be neglected in practice. Only one study (Aeberhard et al., 2017) was found 

to include the logged pre-randomisation count in NB modelling. The simulations in Chapter 

6 showed that NB-logged and NB-offset had similar empirical power to CNB when data met 

the assumption of subject-specific heterogeneity underlying CNB. Though the type I error 

rates from NB-logged and NB-offset were modestly inflated for small sample sizes (total 

number in trial = 50 or 100), the rates converged to the nominal level 0.05 as the sample 

size increased. 

Incorporating the baseline count is also a solution to group imbalance in relation to large 

outcome counts, as participants tend to report a consistent falls rate across baseline and 

outcome periods. For the NB-null model, the large outcome counts may have a great 

influence on the estimation of intervention effect. This was shown in the diagnostic plots 

in Chapter 5: take the Goodwin et al. dataset as an example (see Figure 5-9), most of the 

frequent fallers during the follow-up period were in the control group, they all showed 

relatively large negative DFBETA for the intervention effect. This resulted in an extreme 

intervention effect (FRR=0.287; Table 3-7) not in line with the general pattern shown in the 

plot. In comparison, the large counts were not influential in NB-logged, which yielded an 

FRR of 0.716 (see Table C-2 in Appendix C). The simulations in section 6.5.2 showed that, 

when the distribution of the outcome count is skewed, incorporating the baseline count 

reduced the influence of the large counts on the estimation of the intervention effect. 

In practice the untransformed baseline count may be included as a covariate, ignoring the 

underlying scaling of these variables. This is referred to as the NB-unlogged model in the 

thesis. The simulations in Chapter 6 showed that NB-unlogged considerably overestimated 

the SE of the regression coefficient across simulated datasets. The tendency for 

NB-unlogged to overestimate SEs is in line with its deflated empirical type I error rate, 
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which was lower than the nominal level even for large sample sizes. The description of the 

statistical analysis from published falls studies suggests that the baseline count is often 

treated as an untransformed regressor, though it is often unclear exactly what has been 

done. As the test of intervention effect based on NB-unlogged is conservative, it is possible 

that the analysis used in previous falls studies missed effects that might have proved 

significant had the baseline count been appropriately incorporated in analysis. 

When the baseline and outcome counts are both collected prospectively, they are likely to 

be strongly correlated. However, in some trials the baseline count was obtained via a 

retrospective question, while the outcome count was collected prospectively because this 

method is thought to have a better precision. A retrospective baseline count and 

prospective outcome count would be expected to be correlated, but to a lesser extent 

because of the different data collection methods. A typical example of this is the EXSart 

trial (Ashburn et al., 2007), with weaker correlation between the baseline and outcome 

rates than the Goodwin et al. (2011) or Martin et al. (2015) trials (both with prospective 

baseline counts). This design violates the assumption underlying CNB because each count 

is obtained subject to a different measurement error, which is not accommodated in the 

shared gamma component. 

In addition to the baseline counts being collected retrospectively, there may be other 

reasons leading to violation of the CNB assumption. For example, the risk of falling may be 

correlated with the progression of Parkinson’s. Parkinson’s is an irreversible progressive 

neurological disease, and if there is a wide gap between the baseline and outcome periods, 

the assumption underlying CNB that heterogeneity is at the subject-level may not hold. The 

rate of disease progression may differ across participants, also resulting in a discrepancy 

between the baseline and outcome counts within subjects. 

To introduce a discrepancy between baseline and outcome counts, the simulations in 

Chapter 7 added a perturbation term when generating the baseline count. The NB-logged 

model allows the coefficient of the logged baseline count to vary and so it was more robust 

to perturbations than the CNB or NB-offset models, while the CNB model performed very 

poorly, with type I error rates greater than 0.5. The estimates of the intervention effect 

from NB-logged were generally close to the underlying value. Unlike the simulations in 
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Chapter 6, the regression coefficient of the logged baseline count was generally lower than 

1, possibly tuning down the influence of the baseline count to remedy the discrepancy.  

When the subject-specific heterogeneity is large, the hypothesis test of the intervention 

effect based on NB-logged is liberal, but to a lesser extent than CNB and NB-offset, thus 

the NB-logged is still preferable to these two models. However, researchers should be 

cautious with the result from the test of intervention effect from NB-logged when 1) 

different methods are used to collect the baseline and outcome counts, and 2) the HP of 

NB-null indicates great heterogeneity. A potential solution to the inflated type I error rate 

is to perform a test of the intervention based on the robust SE instead of on the model-

based SE. A number of authors (Hardin, 2003; Hardin and Hilbe, 2007; White, 1980) have 

shown that the robust SE produces a consistent SE estimator even when the model is 

misspecified. Freedman (2006) argued that although the robust SE may “help on the 

variance side”, the estimator of interested may be biased if the model is incorrect. King and 

Roberts (2015) expressed a similar opinion: if the robust SE considerably differs from the 

model-based SE, this should be considered as an indicator that the model is inappropriate 

and that the estimate of the effect of interest could be biased. Although these points are 

valid, this is not an issue in our case because the simulations in section 7.5 showed that the 

estimator of the intervention effect was unbiased, and so the robust standard SE might be 

a useful approach to investigate. 

One might argue that, since a difference in methodologies for collecting the baseline and 

outcome counts may lead to inflated type I error rate, a retrospectively collected baseline 

count should be dropped altogether and NB-null should be preferred over the other models. 

This may be fair if the discrepancy is so great that the baseline and outcome counts are 

virtually uncorrelated, so that including the baseline count has little benefit. However, 

including the retrospective falls count in modelling can be justified on two counts: first, the 

simulations showed a great power gain; and second, as discussed before, NB-null may 

result in an extreme estimate of the intervention effect when large outcome counts are 

not balanced between groups, which may be a bigger issue than the inflated type I error 

rate. 

The CNB and NB-offset models both showed poor performance in simulations when a 

perturbation violates the underlying assumption. This issue of CNB and NB-offset has a 
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striking parallel with the issue of overdispersion for Poisson regression: the variance is 

restricted to be equal to the mean in Poisson regression, so the model is not flexible enough 

to accommodate overdispersion. When the assumption of equidispersion is violated, the 

type I error rate of the model-based hypothesis test becomes inflated. Similarly, the CNB 

model assumes that all heterogeneity is at the subject-level, so it is not flexible enough to 

accommodate discrepancy between the baseline and outcome counts, which also results 

in inflated type I error rates. 

To summarise the results from Chapter 6 and 7, NB-logged appears to be a better way of 

incorporating baseline counts in analysis than CNB and NB-offset: 1) when CNB is correctly 

specified, NB-logged has comparable performance to CNB; and 2) NB-logged is more robust 

to perturbations in the simulation than CNB or NB-offset. Another advantage of NB-logged 

over CNB is that it is widely supported in statistical packages (as listed in Chapter 4), while 

the CNB model, at the time of writing, is not currently supported in any package. 

Benefit of collecting a baseline count for designing a falls prevention trial  

Zhu and Lakkis (2014) proposed three formulae for power calculations related to NB-null, 

and their simulations showed them to have good performance. The simulations in section 

6.6 showed that Tango’s (2009) formula for calculating the sample size for the conditional 

score test may be used as an approximation of the sample size required for NB-logged. 

When data have mild heterogeneity, the sample size calculated using Tango’s formula 

achieved the specified power level of 80% for NB-logged in the scenarios examined, but 

when the degree of heterogeneity is large, the empirical power from NB-logged at sample 

sizes suggested by the formula to achieve 80% power is moderately lower than the nominal 

level. 

The sample sizes calculated from Zhu and Lakkis’s formulae and Tango’s formula were 

compared in Table 6-5, and show the NB-logged model to require a much smaller sample 

size than NB-null, especially for small intervention effects, where average outcome count 

is large, and there is great heterogeneity. In order to discuss the benefit of collecting the 

baseline count in the context of designing a falls prevention trial in PwP, we now consider 

a representative trial setting. 
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In the Goodwin et al. trial, the participants in the control group reported 32.25 falls on 

average during the 10-week intervention period and 31.88 during the 10-week follow-up 

periods (Table 3-1). In the EXSart trial, the average falls count in the control group was 

10.12 during the 8-week intervention period and 21.33 during the 18-week follow-up 

period (Table 3-12). These numbers are reasonable for a prospectively collected falls count 

in a falls prevention trial, because if the observation period is longer, the falls count will be 

larger, but the drop-out rate is anticipated to increase. As shown in sections 3.2.1 and 3.2.3, 

HP in NB-null fitted to outcome falls count in Goodwin et al. and EXSart dataset were 

generally larger than 3. Based on these results, if we suppose planning a trial that the 

average outcome count in the control group is 30, the intervention has a relatively large 

effect in reducing falls rate (say, by 26%), and we assume 𝛼 = 3, to achieve 80% power, 

the required sample size is over 1000 for NB-null but only 26 from NB-logged and NB-offset 

(see Scenario 6 in Table 6-5). Considering that the number 26 was an approximation from 

the Tango (2009) formula, the actual sample size required is larger than this, but even 

doubling the number to 52 results in a reasonable trial size. A Cochrane review (Gillespie 

et al., 2012) included 159 falls prevention trials in the general elderly living in the 

community, and among them only five trials (Day et al., 2002; Hornbrook et al., 1994; Reid 

et al., 2006; Sanders et al., 2010; Stevens et al., 2001) have both prospectively collected 

outcome falls counts and a sample size greater than 1000. For trials in PwP the recruitment 

of participants is more difficult than recruiting to trials in the general elderly, so it would 

be very challenging indeed to recruit 1000 PwP into a falls prevention trial in PwP. 

If the intervention effect is smaller, say, reducing falls rate by 9%, the sample size would be 

somewhat over 216 for NB-logged or NB-offset, and 9526 to 9530 for NB-null (see Scenario 

4 in Table 6-5). The largest RCT (Smith et al., 2007) in Gillespie et al.’s (2012) Cochrane 

review recruited 9440 people, which is still smaller than the required sample size for 

NB-null with a small intervention effect and 80% power. In the Smith et al. (2007) trial, 

outcome falls were collected retrospectively as a binary outcome (falling or not), 

considerably less expensive than collecting falls prospectively. Such a large trial with 

prospectively collected fall counts is unlikely to be carried out. 
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NB Diagnostic plots in the context of falls prevention trials 

Because of the potential for outliers to be greatly influential in NB models, assessing the 

diagnostic statistics for each observation is essential for NB modelling. 

Large counts may be deemed to be outliers because of their anticipated impact on model 

fit. Nevertheless, a large response count per se does not warrant labelling a count as an 

outlier without examination of model diagnostics. The reason is that large counts are 

ubiquitous in falls data in Parkinson’s and should be accommodated by heavily skewed 

distribution in modelling so that they are well fitted. The great influence of the large counts 

underscores the importance of the diagnostic plots for NB models, especially in the context 

of falls prevention trials. 

A set of diagnostic plots were described in Chapter 5 and referred to as the 

Baseline/Outcome Event (BOE) plots in the thesis. BOE plots present the diagnostic 

statistics from NB models where a baseline count is available (though not necessarily 

included in the model) in a scatter plot, with y-axis of the logged outcome falls rate and 

x-axis of the logged baseline rate. Where the length of the periods of data collection for 

the counts do not differ over participants, counts can be used instead of rates. The size of 

a plotting symbol is proportional to the chosen diagnostic statistic. A Line of Falls Equity 

(LoFE) is plotted in the BOE plot as a reference line, which shows whether the falls rate is 

constant across periods. It also shows whether a participant reported a lower, higher, or 

similar outcome falls rate compared to their baseline rate. 

The baseline rate can be seen in the BOE plots and provides valuable information on each 

subject as well as the whole trial. At the subject level, the plot shows whether a large 

outcome rate is consistent with a similarly large baseline rate, in which case, the large 

outcome is anticipated to be successfully accommodated by a model appropriately 

including the baseline count. 

At the trial level, the plots show the correlation between the outcome and baseline rates, 

and they facilitate a visual evaluation of the discrepancy between the two. In addition, the 

LoFE provides a visual check for the period effect. If the plotting symbols from the control 

group are symmetric around the LoFE, the falls rate is relatively stable across periods. If the 
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symbols are above the line, the falls rate increases over time, possibly because of disease 

progression. 

The estimator of the intervention effect is often dominated by large counts, but because 

they account for only a small proportion of a dataset, a trial requires a large sample size to 

achieve group balance with respect to large outcome counts via randomisation. In order to 

check the influence of the subjects with large outcome counts or inconsistent falls rates, 

DFBETA corresponding to the outcome and baseline rates may be examined in a BOE plot. 

In addition, because the trial groups are indicated by different colours, we obtain a visual 

impression of the size of the intervention effect, so that if the estimation is influenced by a 

few outliers, we can see that clearly. 

Another useful aspect of the BOE plots is that they are based on scatter plots on a 

logarithmic scale so that the positioning of each plotting symbol is evenly scattered. Hence, 

the diagnostic statistics of each subject can be easily compared, especially for the large 

counts. 

Poisson Inverse Gaussian model 

The Poisson Inverse Gaussian (PIG) model is an alternative way of dealing with Poisson 

overdispersion to the NB model. It fits counts with highly skewed distribution better than 

the NB model, because the PIG variance function (𝜇 + 𝑘𝜇�) is parameterised is based on a 

cubic form of 𝜇, compared with the quadratic form in the NB variance function (𝜇 + 𝛼𝜇I). 

The PIG model was fitted to the follow-up falls count in EXSart dataset and compared to 

the NB models. The follow-up period of the EXSart trial was relatively long (four months), 

so there were a few very large outcome counts (maximum 1099), which results in the falls 

count being particularly skewed. The fitted NB-null model was significantly overdispersed 

(P	<	0.001 from the NB overdispersion score test). For such trials the PIG model may be 

more suitable. As the PIG model has the same log link function as the NB model, the 

approach of including the logged baseline count as a covariate is transferable to PIG models 

(referred to as PIG-logged). 

Compared with NB-null, which yielded an intervention effect that was not in line with the 

BOE plot, the estimation of the intervention effect from PIG-null model appeared to be less 
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influenced by the large counts and was closer to that from the NB-logged model. This 

indicates that the NB-logged model is probably not overdispersed if a baseline count is 

available and correctly included, because it may adequately account for heterogeneity. If a 

baseline count is not available, the PIG model may be more suitable because it copes with 

large counts better and may accommodate NB overdispersion. 

A limitation of PIG model is that it is not as widely supported in statistical packages. This is 

possibly why it is rarely used in falls prevention trials. Canning et al. (2014) used the PIG 

model because  

“a blind review of the falls data revealed that the negative binomial model was not 

flexible enough to capture both the nonfallers and the large number of multiple fallers. 

In contrast, the Poisson inverse gaussian (PIG) distribution gave a good fit.”  

However, they included the baseline count after dichotomising it to multiple baseline 

fallers (≥	10 or <	10 in the previous 12 months, retrospective question), not logged as a 

regressor, and so had not adequately accommodated heterogeneity. 

Right-censored versus right-truncated models 

Although including the baseline count may control for large outcome counts, the baseline 

count is not necessarily consistent with the outcome count, or in some trials, a baseline 

count may not be collected. In these situations, a cut-point may be used and participants 

who report a greater outcome count than the cut-point are either excluded from the NB 

model, or revalued to the cut-point. Both methods are problematic, because the 

distribution underlying the standard NB regression has a range from zero to infinity. If the 

outcome counts are excluded at a chosen cut-point, the underlying distribution of the 

outcome is right-truncated at the cut-point. Revaluing the outcome count to a small value 

the cut-point is also inappropriate. 

The right-censored NB model has an advantage over the right-truncated NB model — the 

individuals reporting large outcome counts are not excluded, preserving sample size, but 

their influence on model estimation is reduced. In some trials, the large counts remain 

influential on the model estimation even when censored. In this case the right-truncated 

NB model may perform better, but power is lost because the large counts are excluded. 
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An issue for the right-censored and right-truncated models is that the model estimation is 

based on the chosen cut-point. Therefore, it may be difficult to justify the chosen value. 

The results from the follow-up period of the Goodwin et al. dataset indicates a trade-off in 

choosing the cut-point: with a smaller cut-point, the large counts were less influential in 

the estimation of the right-censored NB model, and the right-truncated model gave an 

estimate of the intervention effect that was closer to the estimate from NB-logged; 

however, during the process more outcome counts were labelled as right-censored, or 

dropped from the truncated model. 

For falls prevention trials without a baseline count, a sensible approach for examining the 

sensitivity of the estimated intervention effect from an NB models might be to: 

1. Fit an NB model; 

2. Check the diagnostic statistics for the NB model, especially the DFBETA and Cook’s 

distance; 

3. Choose a cut-point based on the diagnostic statistics, and fit a right-censored and 

right-truncated NB model; 

4. Consider the PIG model if the large counts are overly influential. 

If the FRRs from the right-censored and right-truncated model are very different to that 

from NB model, the estimator of the intervention effect is probably sensitive to the outliers. 

ZINB 

In some falls prevention trials there are a large proportion of zero outcome counts, which 

raises the question as to whether there could be zero-inflation in the dataset. Excessive 

zeros may result from an additional process to the count process, that is, some trial 

participants may report zero counts while actually experiencing one or more falls. 

Because the distribution of falls count is usually skewed, a considerable number of zeros 

are anticipated even when there is no zero-inflation, especially when the average falls 

count is small. Hence, a histogram of the outcome count may show a large proportion of 

zeros, but this does not necessarily mean that there is zero-inflation. 

A possible approach dealing with potential zero-inflation is to fit a Zero-Inflated Negative 

Binomial (ZINB) model, which accounts for the process of excessive zeros in a binary 
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component. To examine the issue of zero-inflation in real falls data, the ZINB model was 

fitted to the intervention and follow-up counts from the Goodwin el al. trial, and compared 

with the NB models to examine zero-inflation. 

A strength of this study is that the zero-inflation was examined using two diagnostic tools 

—the Vuong test and the covariate-adjusted probability plot. The original Vuong test is 

commonly used for testing zero-inflation via comparing the goodness of fit of a ZINB model 

and an NB model, but it is biased in favour of ZINB models. Desmarais and Harden (2013) 

proposed AIC- and BIC-based corrections for the Vuong test. However, neither the original 

Vuong test nor the tests with AIC/BIC corrections provide an unbiased test result of zero-

inflation in NB models. Therefore, the P values from all three tests were produced for the 

Goodwin et al. dataset. The results showed reasonable agreement: none of the tests 

suggested that the ZINB model had significantly better fit than the NB model for either the 

intervention or follow-up count. 

The covariate-adjusted probability plot proposed by Holling et al. (2016) was considered in 

section 8.2 as a diagnostic plot for zero-inflation. It proved to be a valuable tool to visualise 

possible zero-inflation, by inspecting whether the covariate-adjusted probability of zero 

from the NB model was considerably different from the observed probability. In addition, 

the plot provides a graphical comparison of the NB and ZINB models regarding the fit to 

zeros, which can be used to double check for zero-inflation. The plots for the intervention 

and follow-up counts were in line with the test results from the Vuong test: the NB models 

provided a reasonable fit to the zero counts, and the covariate-adjusted probabilities from 

the ZINB models were very close to those from the NB models. 

No evidence of zero-inflation was found for the Goodwin et al. dataset, and this might be 

related to the prospective falls collection method in the trial. If the outcome falls count was 

obtained retrospectively in a trial, it is possible that the participants do not recall the exact 

time of each fall, and therefore, not certain whether a fall they experienced occurred was 

within the study period, so that they may report no falls whilst actually haven fallen during 

the period. Although zero-inflation is not significant in the Goodwin et al. dataset, this issue 

should be checked in future trials. 
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Random-effects NB model for the longitudinal dataset 

The random-effects NB model provides a new dimension for studying the intervention 

effect: the interaction between an intervention and time can be included in the model so 

that the intervention effect can be checked to see whether it is constant over time or not. 

This is particularly relevant to falls studies in Parkinson’s. The intervention in such trials is 

usually a physiotherapy program that aims to enhance strength or body balance. It is 

reasonable to assume that the intervention requires some time to work, and it may take 

some time for the trial participants to master the physiotherapy program. In both cases the 

intervention may have an increasing intervention effect over time in reducing falls rate. 

Another possibility is that the participants may become less willing to carry on with the 

intervention, especially after the intervention program has ended. 

The Goodwin et al. dataset is available in longitudinal form with weekly counts. An 

interesting finding is that, during the follow-up period after the intervention had ended, 

there was a significant interaction between intervention and time, with the intervention 

effect increasing over weeks in preventing falls, while the intervention effect did not 

materially change during the intervention period. This pattern is the opposite to that 

anticipated.  

Strategies for analysing falls counts 

To address the common issues in analysing falls counts, the findings presented in the thesis 

can be combined as a set of strategies for analysing falls counts from a falls prevention trial 

in PwP: 

1. When a baseline count is available, fit an NB-logged model, because it has satisfying 

statistical power and is relatively robust to discrepancy between the outcome and 

baseline count (especially when mixed collection methods are used for the two 

counts).  

2. Produce the BOE plots to check 

a. whether the estimated intervention effect might be overly influenced by a 

few outliers; 

b. whether there is a peculiar pattern suggesting model inadequacy. 



CHAPTER 9 – DISCUSSION 

 222 

3. Check for zero-inflation by fitting an ZINB model and compare it to the standard NB 

model. This can be done using the Vuong test and corrected versions. Because the 

Vuong-based tests may still be biased, the covariate-adjusted probability plot can 

be used to check the result from the Vuong test. 

4. If a baseline count is not available, the large counts are likely to be highly influential. 

If this is indicated by model diagnostics, two approaches may be used: 

a. PIG models: they are less subject to the influence of the large counts; 

b. Right-truncated/-censored NB model: a cut-point may be chosen to drop 

outcome counts that are greater than the cut-point, or reduce the influence 

of the large counts. 

5. If the falls counts are available in a longitudinal dataset, the random-effects NB 

model may be fitted to study the trend of intervention effect over time. 

9.2 Strengths 

The dissertation has the following strengths: 

First, current and widely used statistical methods for analysing counts from falls prevention 

trials are examined. A broad range of work has been done examining the characteristics of 

the data, statistical modelling, diagnostic plots and software available in facilitating the 

analysis of falls counts. 

Second, statistical models were compared using actual datasets from falls prevention trials, 

as well as simulated data based on features found in real-life falls prevention trials. 

9.3 Limitations 

There are a number of limitations to the research. 

Firstly, although NB-logged utilises the baseline count in modelling and is relatively robust 

to discrepancy in methods for collecting the baseline and outcome counts, there is 

currently no formula to calculate the exact sample size required to achieve a given power 

in the model. In section 6.6, the formula for calculating the sample size of the conditional 

score test (Tango, 2009) was assessed as an approximation for the NB-logged and NB-offset 
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models, but the simulation suggested that when there is great heterogeneity in the dataset, 

the formula underestimates the sample size required. Tango’s formula may be used in 

planning a trial where the outcome is a count and little heterogeneity is anticipated (based 

on previous studies of the same event). For data with greater heterogeneity, 

simulation-based methods may be used to obtain the sample size required to achieve a 

specified power. 

Secondly, for all the datasets considered in this thesis, the participants who dropped out of 

trials were assumed to be missing at random, but this may not be the case in practice. It is 

possible that frequent fallers may drop out because recording falls in dairies is gruelling 

and time-consuming for them. For the Goodwin et al. trial, among the ten participants who 

reported the largest falls counts during the intervention period, only two were in the 

intervention group. This is possibly because the intervention effectively reduced falls rate 

in this group, as the large counts were balanced between groups during the baseline period 

and no one dropped out of the trial before the intervention period. However, the two 

frequent fallers in the intervention group dropped out at the end of the intervention period, 

which resulted in a group imbalance of large falls count: the nine most frequent fallers 

during the follow-up period were all in the control group. The largest follow-up count was 

49 in the intervention group, but 678 in the control group. This may happen by pure chance, 

but the possibility of informative missingness cannot be ruled out, and this should be 

considered in relation to falls prevention trials. 

Thirdly, the right-censored and right-truncated NB models were evaluated using the 

Goodwin el al. dataset in section 9.3. They both appeared to be good solutions for reducing 

the influence of outliers, but there are two limitations for this study: 1) the potential benefit 

over standard NB modelling has not been examined in simulation studies; and, 2) the two 

models are conditional on a cut-point, and different cut-points result in different estimates. 

In this study, the cut-point was chosen based on the BOE plots in section 5.4.1, by 

inspecting the diagnostic statistics and the corresponding outcome counts. However, the 

chosen cut-point nevertheless involves subjectivity and may be hard to justify. This is the 

reason the two models may be more appropriate considered as sensitivity analysis. Two 

cut-points were compared and the results demonstrated the trade-off in choosing a smaller 
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value. Further investigation is required regarding an objective approach in choosing a 

cut-point for the right-censored and right-truncated NB models. 

Fourthly, the PIG model showed good performance in the EXSart dataset when the baseline 

count is ignored, but it was only compared with the NB model regarding the goodness of 

fit for this single dataset. Work remains to be done to compare the two models more 

systematically. 

Finally, findings from modelling falls counts in the three motivating datasets may not be 

extrapolated to other studies, because they may be influenced by the design or other 

aspects of each trial, for example, the ZINB model did not show evidence of zero-inflation 

in the Goodwin et al. dataset, but it would be interesting to re-examine this issue for a 

study with retrospectively collected outcome counts. Another limitation is that data from 

only three trials were examined in detail. 

9.4 Future research 

In addition to the models considered in the thesis, the Generalised Additive Model (GAM) 

merits further investigations in modelling falls counts. GAM is an extension to GLM, with a 

sum of smoothing functions for some covariates included in the linear predictor (Wood, 

2017). The smoothing functions are used in GAMs to span the space of transformation for 

the covariate. The idea of GAMs is that in a GLM, a relationship is assumed between the 

response variable and the covariates, via the link function and/or transformation of the 

covariates, while for GAMs the relationship is dictated by the data. Despite the greater 

flexibility, there are two issues for GAMs regarding statistical inference: 1) A more flexible 

model is generally less interpretable; and 2) As Wood (2017) pointed out, for a model with 

higher flexibility, “the methods for inference become less well founded,” and generalising 

from GLMs to GAMs, “penalization lowers the convergence rates of estimators, hypothesis 

testing is only approximate, and satisfactory interval estimation seems to require the 

adoption of a Bayesian approach.” Falls prevention trials generally aim to study whether 

an intervention reduces the incidence of falling, thus the issue of inference limits the 

application of the GAM in this context. However, for future falls studies GAMs could be 

valuable in predicting the patient-specific risk of falling for PwP based on a model fitted to 

a training dataset. The discussion of GAMs regarding the issue of inference and the 
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potential in predicting future falls extends to the Generalized Additive Model for Location, 

Scale and Shape (GAMLSS) model, which fits a predictor (with or without smoothing terms) 

for each of the expectation, location, scale, and shape parameters (Stasinopoulos et al., 

2017). The flexibility may improve the prediction accuracy of a model, but too much 

flexibility leads to overfit in the training dataset and leads to lower accuracy in prediction 

(James et al., 2013). 

The falls rate is commonly used as the outcome in falls prevention trials (Gillespie et al., 

2012), and it is collected as the falls count during a study period, either via the retrospective 

or prospective methods. As discussed in section 2.2.1, both methods have intrinsic 

characteristics that potentially result in underreporting or overreporting. New technologies 

have been developed to record falls using wearable sensors or other devices, and they have 

the potential to solve the issues around self-reporting. An example of such a device is the 

smart watch, which has become increasingly popular and affordable in recent years. With 

multiple activity sensors integrated into a compact and portable device, the smart watch 

has drawn interest from the research community for use in recording falls (Ghayvat et al., 

2015). In 2018, Apple released the Apple Watch Series 4, and provided a fall detection 

function (Apple Inc., 2018): If the watch detects a fall, it shows a notification asking if the 

person has just fallen. The person will also be asked if emergency services should be 

contacted. If the person is irresponsive to the query and has been immobile for one minute, 

the watch automatically makes an emergency call. Falls are recorded unless the person 

chooses the option “I’m OK” provided in the prompt notification after detection of a 

possible fall. Such procedures are expected to reduce misclassification of falls. Also, using 

this device may make recruiting trial participants easier because 1) wearing an Apple Watch 

has safety benefits, such as calling for medical help when participants are unconscious due 

to a fall-related injury; and 2) recording falls using sensors considerably alleviates the 

burden on participants compared to recording falls in diaries. 

Another benefit of smart devices is that they may record different measurements of health 

data multiple times a day. The high dimensional data improve modelling and enable 

predicting disease progression and falls rate in the future. For example, the mPower study 

(Bot et al., 2016) collected data from a total of 9520 participants using an iPhone app, which 

makes it the largest Parkinson’s study so far, and the accessibility of the app and smart 
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phones contributed to the large sample size. The app notified the study participants to 

complete a walking activity three times daily during which gait and balance were evaluated. 

Although the mPower app did not record falls, it set a precedent for using mobile/wearable 

devices to collect data in PwP. 

In addition, wearable devices may record the sedentary and in-bed time (this is already 

possible for the Apple Watch by measuring movements and pulse), and this time could be 

excluded from exposure time (that is, the length of time during which a fall may occur) 

because it is impossible to fall when a person is sitting in a chair or lying in bed. A caveat is 

the misclassification of the lying and sedentary stages. An alternative is to track the activity 

time using wearable sensors. Srulijes et al. (2019) tracked Physical Activity (PA) of 88 people 

who had been diagnosed with a neurodegenerative disease (amongst them 14 were PwP) 

and proposed the measurement of “falls per individual PA exposure time.” The benefit of 

this measurement is that for people who restrict their physical activity to avoid falling (for 

example people with more severe Parkinson’s), their falls rate is usually low, but after 

adjusting for the PA exposure time, the falls rate better reflects their risk of falling. This is 

confirmed by the authors’ finding that PwP with low walking PA had higher falls per 

individual PA exposure time, suggesting that PwP tend to walk less to avoid falling. 

Wearable devices typically record each fall at the exact time of occurrence. This enables 

modelling falls based on time between each fall event. Cox regression is sometimes used 

to analyse the time between the start of an intervention to the occurrence of the first fall. 

A similar approach is to analyse the time of each fall using the Andersen-Gill model 

(Andersen and Gill, 1982). This model has an interesting link to the Poisson and NB models 

in that they are all derived from the Poisson process, which assumes falls occur randomly 

such that the falls counts during nonoverlapping intervals are independent within subjects 

(Cook and Lawless, 2007). The Andersen-Gill model is anticipated to perform better than 

the Poisson and NB models when the falls are generated from a time-dependent Poisson 

process, though Jahn-Eimermacher (2008) compared the three models in simulations and 

concluded that the NB model performed better when data were generated from this 

process. 

In addition to modelling falls, there are alternative directions to pursue in the future to 

widen the scope of falls prevention trials. One possibility is to study fall-related injuries, 
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which are usually reported as adverse events in falls prevention trials and a serious safety 

issue for PwP, but the current studies in this field are limited: in RCTs the fall-related injury 

is usually not the main outcome so that the sample size may not provide sufficient power 

for analysing the rate of injuries (Gardner et al., 2000; Province et al., 1995). A challenge 

for conducting an RCT of fall-related injuries is that each fall only has a small chance of 

leading to an injury, so a fall-rated injury is an event with lower incidence than a fall. If the 

eligibility criterion is set to PwP with a history of fall-related hospitalisation, the participants 

could be recruited from hospitals, but the participants may restrict their daily activity 

because of their history of serious injuries, resulting in few injuries during a follow-up 

period. Another issue with the low incidence is that participants need to be followed up for 

a longer periods and the sample size has to be much bigger as well. 

To solve these problems, a possible approach is to differentiate falls into causing injury and 

not causing injury. This was referred to as the multitype recurrent event by Cook and 

Lawless (2007), and a parametric model (Ng and Cook, 1999), or a semiparametric model 

in which the baseline mean function is unspecified (Cai and Schaubel, 2004), can be used 

to analyse the risk of fall-related injury. These models may also be used to study different 

types of fall-related injuries that were found to be related to Parkinson’s (Cook and Lawless, 

2002), such as hip and Colles fractures (O. et al., 1992; Vestergaard et al., 2007). Because a 

fall-related injury is conditional on a fall, modelling falls as a multitype recurrent event 

should improve the statistical power, compared with modelling the fall-related injury only, 

so that the required sample size would be smaller. 

9.5 Summary and main findings 

The main findings and contributions of the research can be summarised as follows: 

• The baseline count is essential in falls modelling, but applied researchers may not 

be aware of its central role. Incorporating the baseline count was found to have two 

benefits: 1) correctly including the baseline count in an NB or CNB model largely 

accounts for heterogeneity and considerably increases the statistical power of the 

model to detect an intervention effect, as indicted by the simulations in Chapter 6 

and 7; and 2) adjusting for the baseline rate controls for group imbalance in large 

outcome counts, which is likely to happen for small to medium sized trials and even 
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trials considered in the area to be of large size, and may result in a misleading 

estimate of the intervention effect. Another finding is that, if the logged baseline 

count is included as a covariate in NB regression, the model is relatively robust to 

the differences in methodologies used to collect the outcome and baseline counts, 

for example, the baseline count being obtained retrospectively while the outcome 

count is obtained prospectively. Though examined in the context of falls prevention 

trials, the lessons carry over to counts of other events and to study designs other 

than RCTs where initial and subsequent counts are available, especially where 

counts can extend to large values. 

• Five commonly used statistical packages were reviewed regarding their 

functionality for fitting NB and NB-related models. This work facilitates researchers 

in choosing a statistical package that best meets the analysis planed for a particular 

dataset, as each package supports different post-estimation statistics. 

• A set of diagnostic plots for the NB model in the context of falls count data from a 

falls prevention trial were developed so that patterns in diagnostic statistics related 

to the distribution of the outcome and baseline counts can be easily identified. An 

R package named NBDiagnostics was written to automate the production of the 

diagnostic plots for an NB model, specifically for situations where the count of a 

recurring event is available during both an outcome and a baseline period. The 

covariate-adjusted probability plot, an existing diagnostic plot, was studied in the 

context of falls data focusing on the visual presentation of overdispersion in the 

fitted model. 

• Zero-inflation was examined in the Goodwin et al. dataset and found not to be an 

issue. The Zero Inflated NB (ZINB) model was compared with the standard NB model 

using multiple statistical tools, which appeared effective in testing and visualising 

zero-inflation in count data.  

• The Poisson Inverse Gaussian (PIG) model fitted the extremely skewed data from 

the EXSart trial better than the NB model. The PIG model was less subject to the 

influence of outliers than the NB model when the baseline count is not included in 

both models. This highlights the potential of the model, especially for extremely 

skewed counts or when important covariates are unobserved. 
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• The right-censored and right-truncated NB models were considered for reducing 

the influence of large counts. These two models were shown to be potentially useful 

ways of coping with the large counts in the Goodwin et al. dataset. 

• The finite mixture models have the potential to model the frequent fallers as a 

subpopulation, but this requires further examinations for trials with larger sample 

sizes 

• The random-effects NB model was fitted to the Goodwin et al. dataset, which 

showed the potential of longitudinal modelling. 
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Appendix A  
 
The NBDiagnostics R package 

The NBDiagnostics package introduced in Chapter 5 can be installed from its GitHub 

repository (https://github.com/AlexZHENGH/NBDiagnostics). This can be done in R using 

the following commands: 

install.packages("devtools") 
library(devtools) 
install_github("AlexZHENGH/NBDiagnostics") 

The package contains a function nbdiagnostics() that 1) fits an NB model using the 

glm.nb() function in the MASS package (Venables and Ripley, 2002) with the same 

syntax, and 2) specify the names of the following four variables: the outcome event rate 

(outcome_varname), the baseline event rate (baseline_varname), the group 

allocation (group_varname), and ID (id_varname). 

The nbdiagnostics() function returns an “NBDiagnostics” object, which is an NB 

model fitted to the dataset. An “NBDiagnostics” object can be passed into the model 

argument in the boeplot() function to produce the BOE plots introduced in section 5.2. 

In boeplot(), the diagnostic_stat argument can be specified as “cookd”, 

“leverage”, “anscombe_resid“, or “dfbeta” to present the Cook’s distance, leverage, 

Anscombe residuals, and DFBETA, respectively. 

The caprob_nb() and caprob_nb_poi() functions produce the covariate-adjusted 

probability plots (Holling et al., 2016) for an NB model, and NB versus Poisson models, 

respectively. 
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Appendix B  
 
Example R code for simulating mixed Poisson 
distribution 

Core code for simulations in section 6.5 

The following R code demonstrates the data generating mechanism (time-homogeneous 

Poisson process) for simulating the baseline and outcome falls counts in section 6.5. 

N <- 500 
alpha <- 3 
 
## Simulate the gamma-distributed subject-specific 
heterogeneity 
s <- rgamma(N, shape = 1/alpha, scale = alpha) 
 
## Simulate the baseline counts 
mu <- 20 
mu_0 <- mu * s 
y_0 <- rpois(n=N, lambda=mu_0) 
 
## Allocate subjects to two group 
group <- c(rep(1, N/2), rep(0, N/2)) 
beta <- -0.2 
 
## Simulate the outcome counts 
mu_1 <- exp(beta * group) * mu * s 
y_1 <- rpois(n=N, lambda=mu_1) 

 

Core code for simulations in section 7.5 

The following R code demonstrates the simulations of the baseline and outcome falls 

counts in section 7.5. Because a gamma-distributed perturbation is introduced in the 

baseline count, the assumption of the subject-specific heterogeneity does not hold. 

N <- 500 
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alpha <- 3.5 
epsilon <- 0.5 
lambda <- 5 
t0 <- 12 
t1 <- 2 
 
## Simulate the gamma-distributed subject-specific 
heterogeneity 
s <- rgamma(N, shape = 1/alpha, scale = alpha) 
 
## Simulate the gamma-distributed perturbation 
v <- rgamma(N, shape = 1/ epsilon, scale = epsilon) 
 
## Simulate the baseline counts 
 
mu_0 <- lambda * s * v * t0 
y_0 <- rpois(n=N, lambda=mu_0) 
 
## Allocate subjects to two group 
group <- c(rep(1, N/2), rep(0, N/2)) 
beta <- -0.2 
 
## Simulate the outcome counts 
mu_1 <- exp(beta * group) * lambda * s * t1 
y_1 <- rpois(n=N, lambda=mu_1) 
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Appendix C  
 
Additional results 

Table C-1 Number of successful replicates for the simulation study in section 6.5 
   Number	of	included	replicates	

𝛼 𝛽 𝑚 NB-null NB-unlogged NB-logged NB-offset CNB 

3      -0.4 50 2000 2000 1999 2000 1999 
                100 2000 2000 2000 2000 2000 
                200 2000 2000 2000 2000 2000 
                500 2000 2000 2000 2000 2000 
       -0.2 50 2000 2000 2000 2000 1990 
                100 2000 2000 2000 2000 2000 
                200 2000 2000 2000 2000 2000 
                500 2000 2000 2000 2000 2000 
       0 50 2000 2000 1998 1999 1996 
                100 2000 2000 2000 2000 1999 
                200 2000 2000 2000 2000 2000 
                500 2000 2000 2000 2000 2000 

0.5    -0.4 50 2000 2000 2000 2000 2000 
                100 2000 2000 2000 2000 2000 
                200 2000 2000 2000 2000 2000 
                500 2000 2000 2000 2000 2000 
       -0.2 50 2000 2000 2000 2000 1990 
                100 2000 2000 2000 2000 1995 
                200 2000 2000 2000 2000 1999 
                500 2000 2000 2000 2000 2000 
       0 50 2000 2000 2000 1999 1991 
                100 2000 2000 2000 2000 1998 
                200 2000 2000 2000 2000 2000 
                500 2000 2000 2000 2000 2000 

 
Table C-2 Number of successful replicates for the simulation study in section 7.5. 

    Number	of	included	replicates	(2000	in	total) 
𝜖 𝛼 𝛽 𝑚 NB-null NB-logged NB-offset CNB 
0.5 3.5 -0.4 50 2000 2000 2000 2000 
0.5 3.5 -0.4 100 2000 2000 2000 2000 
0.5 3.5 -0.4 200 2000 2000 2000 2000 
0.5 3.5 -0.4 500 2000 2000 2000 2000 
0.5 3.5 -0.2 50 2000 2000 2000 2000 
0.5 3.5 -0.2 100 2000 2000 2000 2000 
0.5 3.5 -0.2 200 2000 2000 2000 2000 
0.5 3.5 -0.2 500 2000 2000 2000 2000 
0.5 3.5 0 50 2000 2000 2000 2000 



APPENDIX C – ADDITIONAL RESULTS 

 236 

0.5 3.5 0 100 2000 2000 2000 2000 
0.5 3.5 0 200 2000 2000 2000 2000 
0.5 3.5 0 500 2000 2000 2000 2000 
0.5 0.5 -0.4 50 2000 2000 2000 2000 
0.5 0.5 -0.4 100 2000 2000 2000 2000 
0.5 0.5 -0.4 200 2000 2000 2000 2000 
0.5 0.5 -0.4 500 2000 2000 2000 2000 
0.5 0.5 -0.2 50 2000 2000 2000 2000 
0.5 0.5 -0.2 100 2000 2000 2000 2000 
0.5 0.5 -0.2 200 2000 2000 2000 2000 
0.5 0.5 -0.2 500 2000 2000 2000 2000 
0.5 0.5 0 50 2000 2000 2000 2000 
0.5 0.5 0 100 2000 2000 2000 2000 
0.5 0.5 0 200 2000 2000 2000 2000 
0.5 0.5 0 500 2000 2000 2000 2000 
0.25 3.5 -0.4 50 2000 2000 2000 2000 
0.25 3.5 -0.4 100 2000 2000 2000 2000 
0.25 3.5 -0.4 200 2000 2000 2000 2000 
0.25 3.5 -0.4 500 2000 2000 2000 2000 
0.25 3.5 -0.2 50 2000 2000 2000 2000 
0.25 3.5 -0.2 100 2000 2000 2000 2000 
0.25 3.5 -0.2 200 2000 2000 2000 2000 
0.25 3.5 -0.2 500 2000 2000 2000 2000 
0.25 3.5 0 50 2000 2000 2000 2000 
0.25 3.5 0 100 2000 2000 2000 2000 
0.25 3.5 0 200 2000 2000 2000 2000 
0.25 3.5 0 500 2000 2000 2000 2000 
0.25 0.5 -0.4 50 2000 2000 2000 2000 
0.25 0.5 -0.4 100 2000 2000 2000 2000 
0.25 0.5 -0.4 200 2000 2000 2000 2000 
0.25 0.5 -0.4 500 2000 2000 2000 2000 
0.25 0.5 -0.2 50 2000 2000 2000 2000 
0.25 0.5 -0.2 100 2000 2000 2000 2000 
0.25 0.5 -0.2 200 2000 2000 2000 2000 
0.25 0.5 -0.2 500 2000 2000 2000 2000 
0.25 0.5 0 50 2000 2000 2000 2000 
0.25 0.5 0 100 2000 2000 2000 2000 
0.25 0.5 0 200 2000 2000 2000 2000 
0.25 0.5 0 500 2000 2000 2000 2000 
0 3.5 -0.4 50 2000 1996 1999 2000 
0 3.5 -0.4 100 2000 1999 1998 2000 
0 3.5 -0.4 200 2000 2000 2000 2000 
0 3.5 -0.4 500 2000 2000 2000 2000 
0 3.5 -0.2 50 2000 1999 1996 2000 
0 3.5 -0.2 100 2000 1999 1999 2000 
0 3.5 -0.2 200 2000 1997 1998 2000 
0 3.5 -0.2 500 2000 2000 2000 2000 
0 3.5 0 50 2000 1993 1999 2000 
0 3.5 0 100 2000 1998 1996 2000 
0 3.5 0 200 2000 1999 1999 2000 
0 3.5 0 500 2000 1999 1999 2000 
0 0.5 -0.4 50 2000 2000 1998 2000 
0 0.5 -0.4 100 2000 1999 1998 2000 
0 0.5 -0.4 200 2000 2000 1998 2000 
0 0.5 -0.4 500 2000 2000 2000 2000 
0 0.5 -0.2 50 2000 2000 1999 2000 
0 0.5 -0.2 100 2000 2000 1999 2000 
0 0.5 -0.2 200 2000 2000 2000 2000 
0 0.5 -0.2 500 2000 2000 2000 2000 
0 0.5 0 50 2000 1998 1998 2000 
0 0.5 0 100 2000 1999 2000 2000 
0 0.5 0 200 2000 2000 2000 2000 
0 0.5 0 500 2000 2000 2000 2000 
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Table C-3 Goodwin et al. dataset: NB-logged including baseline characteristics fitted to the 
intervention count (n=125) 

 Estimate SE FRR (95% CI) P 

Intervention -0.441 0.155 0.643 (0.473, 0.874) 0.004 
Log(baseline count + 0.5)  0.946 0.056 2.574 (2.303, 2.878) < 0.001 
Female -0.062 0.167 0.940 (0.675, 1.307) 0.708 
Age  0.012 0.010 1.012 (0.992, 1.033) 0.243 
Years since diagnosis  0.027 0.014 1.028 (1.000, 1.056) 0.046 
Hoehn & Yahr     

Stage 1  0.019 0.285 1.019 (0.580, 1.791) 0.947 
Stage 2   1  
Stage 3 -0.233 0.191 0.792 (0.543, 1.155) 0.221 
Stage 4 -0.070 0.249 0.932 (0.569, 1.526) 0.777 

Living status     
With partner     

Alone  0.284 0.194 1.328 (0.905, 1.948) 0.143 
With family/friends  1.421 0.629 4.141 (1.191, 14.392) 0.024 

Residential home -1.373 1.107 0.253 (0.028, 2.272) 0.215 

HP  0.468    
Dispersion  1.1    
AIC  750.7    
Overdispersion test  0.641 

 

Table C-4 Goodwin et al. dataset: NB-logged fitted to the follow-up count (n=120) 

 Estimate SE FRR (95% CI) P 

Intervention -0.335 0.219 0.716 (0.464, 1.103) 0.126 
Log(baseline count + 0.5)  0.927 0.068 2.528 (2.208, 2.894) < 0.001 

HP  1.105    
Dispersion  1.1    
AIC  700.4    
Overdispersion test  0.305 
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Table C-5 Goodwin et al. dataset: NB-logged including baseline characteristics fitted to the 
follow-up count (n=120) 

 Est. SE FRR (95% CI) P 

Intervention -0.369 0.220 0.691 (0.447, 1.070) 0.094 
Log(baseline count + 0.5)  0.942 0.076 2.566 (2.206, 2.984) < 0.001 
Female  0.028 0.234 1.029 (0.646, 1.638) 0.903 
Age  0.003 0.014 1.003 (0.975, 1.032) 0.840 
Years since diagnosis  0.026 0.019 1.026 (0.988, 1.066) 0.183 
Hoehn & Yahr     

Stage 1  0.525 0.379 1.690 (0.798, 3.581) 0.166 
Stage 2     
Stage 3 -0.109 0.277 0.896 (0.517, 1.553) 0.693 
Stage 4  0.103 0.349 1.109 (0.554, 2.216) 0.768 

Living status     
With partner     

Alone  0.048 0.274 1.049 (0.609, 1.806) 0.862 
With family/friends  0.917 0.893 2.501 (0.426, 14.677) 0.304 

Residential home -0.418 0.981 0.658 (0.094, 4.602) 0.670 

HP 1.040    
Dispersion 1.1    
AIC 713.4    
Overdispersion test 0.510 

 

Table C-6 EXSart dataset: NB-logged including baseline characteristics fitted to the intervention 
count (n=126) 

 Est. SE FRR (95% CI) P 

Intervention -0.091 0.209 0.913 (0.603, 1.381) 0.663 
Log(baseline count)  0.415 0.065 1.514 (1.332, 1.721) 0.000 
Female -0.279 0.224 0.756 (0.485, 1.179) 0.213 
Age  0.010 0.013 1.010 (0.985, 1.036) 0.431 
Years since diagnosis  0.022 0.017 1.022 (0.989, 1.057) 0.189 
Hoehn & Yahr     

Stage 2 -0.837 0.427 0.433 (0.186, 1.009) 0.050 
Stage 3   1  
Stage 4  0.165 0.286 1.179 (0.669, 2.076) 0.565 

UPDRS -0.007 0.012 0.993 (0.970, 1.016) 0.540 
Living status     

With partner     
Alone -0.350 0.278 0.704 (0.406, 1.222) 0.208 

With family/friends /others -0.232 0.487 0.793 (0.302, 2.083) 0.635 

HP  0.587    
Dispersion  1.0    
AIC  450.1    
Overdispersion test  P = 0.552 
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Table C-7 EXSart dataset: NB-logged including baseline characteristics fitted to the follow-up 
count (n=126) 

 Est. SE FRR (95% CI) P 

Intervention -0.254 0.236 0.776 (0.486, 1.239) 0.283 
Log(baseline count)  0.240 0.078 1.271 (1.089, 1.484) 0.002 
Female -0.341 0.247 0.711 (0.436, 1.159) 0.167 
Age -0.006 0.015 0.994 (0.965, 1.023) 0.675 
Years since diagnosis  0.030 0.020 1.031 (0.990, 1.073) 0.136 
Hoehn & Yahr     

Stage 2 -1.910 0.532 0.148 (0.052, 0.425) 0.000 
Stage 3     
Stage 4  0.754 0.325 2.125 (1.116, 4.045) 0.020 

UPDRS -0.022 0.014 0.978 (0.952, 1.005) 0.101 
Living status     

With partner   1  
Alone -0.416 0.307 0.659 (0.359, 1.211) 0.175 

With family/friends /others -0.192 0.537 0.826 (0.285, 2.393) 0.721 

HP  1.132    
Dispersion  1.1    
AIC  550.1    
Overdispersion test  P = 0.283 
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