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The ability of optical Whispering Gallery Mode (WGM) resonators to store energy in a very small vol-
ume for a long time enables their use in practical applications as low threshold lasers, high sensitivity
sensors and tunable add-drop filters. In this paper, we express in detail the tapered fiber asymmetric
coupling mechanism to multimode microsphere resonators in order to selectively-excite or collect WGMs.
It is shown that due to close effective refractive indices of degenerate spherical WGMs, depending on
the amount of phase-matching and overlap of fiber and resonator modes, a combination of WGMs with
certain intrinsic losses are excited. By precisely designing the taper dimensions, critical-coupling to one
or a group of modes can be satisfied. This paper, provides a general figure of merit for designing taper-
coupled microresonators which can be employed in nonlinear optics and lasers in which the intra-cavity
field distribution determines the characteristics of the device. © 2019 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Spherical resonators are among the fundamental resonator struc-
tures from which the concept of optical WGMs originated [1–3].
Their shape is simple, and can be naturally found in the form
of liquid droplets, bubbles and biological microparticles [4–7].
In addition, straightforward fabrication methods have been de-
veloped to controllably fabricate microspheres from common
optical telecom devices and materials [8–10]. Hence, the study
of such structures is especially important. Furthermore, the most
experimentally-common means of couplling light into and out of
such resonators are tapered fibers [11–14]. Microtapers provide
an effective coupling mechanism, and can be tuned (which is
necessary for efficient coupling) by both their diameter [15, 16]
and the air-gap with the resonator [12, 17, 18]. Thus, a systematic
study of taper-coupled resonators is of interest from a practical
point of view.

The ability of precisely controlling the coupling in microres-
onators is extremely important in Cavity Quantum Electrody-
namics (CQED), linear and nonlinear photonics. On the other
hand, under experimental conditions, in most cases, it is pre-
ferred to contact the tapered fiber to the resonator (zero air-gap)
[13, 19, 20] which makes the fundamental mode operate usually
in the over-coupling regime where the taper-induced losses are
dominant, and consequently, the internal power is weak. Hence,
in nonlinear processes where higher intensity is required, exci-
tation of higher order modes, that can be less affected by the
cavity loading, may provide more efficiency. On the other hand,
proper selection or suppression of specific modes, is extremely

important in designing WGM microlaser systems [21, 22]. Since,
multimode lasing, gain competition and temporal instability are
major ongoing problems with WGM microlasers.

We show that the loaded cavity Q factor is not only deter-
mined by the amount of the modal overlap, but also affected by
the phase-matching condition. Controlling the phase-matching
can help with excitation of low order modes for which the loaded
Q is usually low due to high modal overlap when the taper di-
ameter is small. In other words, phase-mismatching can be
beneficial as it can increase the loaded Q, and thus, can provide
higher internal power. In [11, 23], it is hinted that using tapered
fibers, excitation of different radial order WGMs of microspheres
is possible. In general, higher radial order WGMs have larger
effective refractive index differences with a certain taper mode
(large phase-mismatch), and for such modes changing the modal
overlap may significantly affect their excitation. In perfect mi-
crospheres, on the other hand, the degenerate angular order
modes have small effective index differences, and this can be
problematic if excitation of a certain mode is desired.

We extensively discuss the effects of the tapered fiber cou-
pling and the intrinsic microcavity losses on the critical cou-
pling condition for different (degenerate) angular order modes.
This provides a parametric map in terms of the cavity intrin-
sic losses and taper dimensions, which can be used to selec-
tively excite/collect a specific WGM or a group of WGMs in a
microsphere resonator. To the best of our knowledge, there
has not been any study about total internal field of micro-
sphere resonators considering simultaneously-excited degen-
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Fig. 1. Spherical field intensity corresponding to a) fundamental
mode (` = m, n = 1), and b) N + 1 = `−m + 1 = 5 and n = 3
mode numbers. Schematic illustration of c) coupled sphere-
fiber system showing the coupling region is tapered to Nc small
sections, and d) equivalent asymmetric directional coupler cor-
responding to separation Si along the coupled tapered fiber and
microsphere.

erate (frequency-coherent) modes. All the experimental and
theoretical reports so far consider deformed microspheres to
map the internal non-degenerate fields [24, 25]. Due to broken
degeneracy in prolate/oblate spheroidal resonators, WGMs are
separated in frequency, hence, well-defined single spherical har-
monics have been observed using taper-fiber-axial-scanning of
the transmission spectra [25] or collection through sharp fiber
tips [24, 26]. In this paper, the total internal field in terms of
taper diameter and the simultaneous excitation of degenerate
WGMs is studied.

2. COUPLED-MODE FORMULAS

The resonance wavelengths and the propagation constant of
the spherical WGMs and the fiber modes are calculated from
the microsphere and the tapered fiber characteristics equations
given in [27]. Figure 1(a) illustrates a typical fundamental WGM
for which the azimuthal (`) and angular (m) mode orders are
identical. The sphere radius is R0 = 30µm with refractive index
of 1.45 surrounded by air. The number of the field intensity
maxima in the angular direction is equal to N + 1 where N is
the order of the Hermite polynomials, and N = `−m. As an
example, Fig. 1(b) plots a typical higher order WGM with radial
order of three (n = 3) and N + 1 = 5.

Stemming from the Coupled Mode Theory (CMT)
[28], the coupling coefficient between two normalized
modes of waveguides i and j with an air-gap of Sn is
κij (Sn) = k2(2βi)

−1 ∫∫
Ai

(
n2

i − n2
0
)

EiE∗j dxdy where βi and
Ei respectively denote the propagation constant and the
electric-field of the unperturbed mode i. k, ni and n0 are
the wave-number, waveguide i and air refractive indices,
accordingly. Integration over the microsphere cross-section
(indicated by As) results in coupling coefficient of κs f (Sn)
showing the rate of increase of the sphere mode power at air-gap
Sn due to the fiber mode coupling. Similarly, if the overlap

integral is calculated over the fiber cross-section (indicated
by A f ), we obtain κ f s (Sn) which yields the rate of increase of
the fiber mode power at air-gap Sn due to the sphere mode
coupling-out and tunnelling into the fiber.

In order to evaluate the total coupling between the fiber and
the sphere, the region where fiber mode and WGM have strong
interaction is considered as the coupler length denoted by Lc
(see Fig. 1(c)). The coupler length is divided into Nc sections
with a fixed length of ∆z, and the separation is assumed constant
within each subsection defined by Si (where |i| 6 Nc/2 for even
Nc). The solution of the general coupled mode equations for an
asymmetric directional coupler is given as [29] bi

1

bi
2

 = Ti

 ai
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ai
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 (1)

where (ai
1, ai

2) and (bi
1, bi

2) are the input and output mode am-
plitudes of the coupler section i as shown in Fig. 1(d), and for a
lossless coupler, entries of transfer matrix Ti are given as

Ti
11 =

[
cos (γi∆z) + j ∆β

γi
sin (γi∆z)

]
exp{j(β f − ∆β)∆z}

Ti
12 = j κ f s(Si)

γi
sin (γi∆z) exp{j(β f − ∆β)∆z}

Ti
21 = j κs f (Si)

γi
sin (γi∆z) exp {j (βs + ∆β)∆z}

Ti
22 =

[
cos (γi∆z)− j ∆β

γi
sin (γi∆z)

]
exp {j (βs + ∆β)∆z}

(2)
where γi =

[
∆β2 + κs f (Si)κ f s(Si)

]1/2
and phase-mismatching

is evaluated by ∆β = (β f − βs)/2. Then, from the well-known
transfer matrix method for fiber gratings [30, 31], the total trans-
fer matrix of the coupler is calculated as

T =

 T11 T12

T21 T22

 =
Nc/2

∏
i=−Nc/2

Ti. (3)

To derive the total transmission of the fiber-sphere system, we
assume that the optical mode circulating in the resonator experi-
ences a transformation of TFB in one round-trip, hence, the input
(a2) and the output (b2) WGMs of the coupler are related by
a2 = TFBb2 where TFB = exp (− (2πR0 − Lc) αint + jϕrt). Here,
ϕrt is the total round-trip phase change experienced by the
WGM, and αint is the total intrinsic loss coefficient per unit
length due to losses such as Rayleigh (residual surface in-
homogeneity) and radiation (due to curvature) and is evalu-
ated by αint = 2πne f f /(Qintλ) where ne f f , λ and Qint are ef-
fective index, wavelength and intrinsic quality factor of the
WGM, respectively. The coupler-induced (∆ϕc) and the round-
trip phase shifts are related through the resonance condition
for each WGM such that ϕrt + ∆ϕc = 2πm where ∆ϕc = ∠T22.
Finally, using Eq. 3, the intra-cavity and transmitted pow-
ers of the resonator in terms of the input power, Pin, are
accordingly evaluated by Pintra = |T21/(1− TFBT22)|2Pin and
Pout = |T11 + T12T21(1/TFB − T22)|2Pin.

In order to understand the importance of the asymmetric cou-
pler model incorporated in our design, let us evaluate the model
of the taper-resonator system considering both symmetric and
asymmetric cases. For the symmetric coupler model, κ f s = κs f
condition applies. Assuming the fundamental WGM and LP01
fiber mode, the transmission and internal-to-input power ratio
for two different taper diameters (1.2µm and 2µm) coupled to
a microsphere with R0 = 30µm are shown in Fig. 2 (here, ∆z
= 40nm which is well below the value obtained from a con-
vergence test on matrix T). The critical coupling point (where
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Fig. 2. Transmission and internal power of fiber taper coupled
resonator as function of intrinsic Q for taper diameters of 1.2µm
and 2µm considering both symmetric and asymmetric coupler
model (for fundamental taper and resonator modes).

transmission is zero) determined by the relative amounts of κ f s
and intrinsic losses (this will be discussed later in details), hap-
pens at smaller intrinsic Q’s in the case of symmetric coupler.
This is due to the greater amount of power coupled-out from
the resonator into the fiber mode when considering symmetric
coupler. While, the rate of the internal power coupled out into
the fiber mode is smaller when the asymmetric coupler model is
employed, compared to the symmetric case. The plotted inter-
nal/input power ratio shows the fact that in asymmetric coupler
case, due to smaller out-coupling rate the power inside the res-
onator is accumulated to higher levels. This is important when
nonlinear and lasing effects are estimated, as the internal inten-
sity defines the nonlinearity strength and the gain saturation.
When the taper diameter increases, the effect of asymmetric cou-
pling coefficients decreases due to the larger cross-section area
of the taper, and hence, closer modal overlaps.

3. WGM PHASE-MATCHING AND Q FACTOR

The Transverse Electric (TE) resonance wavelengths within the
1530-1580nm range for each angular mode number, m, up to
the third radial order (n = 1, 2, 3), are plotted in Fig. 3(a). Here,
we consider the first 15 angular modes for each WGM group
having the same azimuthal order (constant `). Each set of points,
which have equal `, and hence, same resonance wavelength,
represents all the degenerate modes with different m (angular)
mode numbers. The first angular mode number of each set of
the degenerate modes with the same azimuthal order is called
the fundamental mode for which m = ` (connected with lines in
Fig. 3(a)).

Figure 3(b) shows the calculated effective refractive index
spectra of all the WGMs and the tapered fiber with various
diameters. The effective refractive index of each WGM is given
by βm/k where βm = m/R0 [27] . Propagation constant of a
tapered fiber with a fixed diameter and refractive index is only
dependent on the wavelength. While, the propagation constant
of a WGM circulating in the microsphere is proportional to
the angular mode number, m. Therefore, the phase mismatch
between the propagating fiber mode and a WGM is a function of

1530 1540 1550 1560 1570 1580
Wavelength (nm)

1.15

1.2

1.25

1.3

1.35

1.4

1.45

E
ff

ec
tiv

e 
R

ef
ra

ct
iv

e 
In

de
x

WGM
Fiber Mode

0.8µm

1.2µm

1.6µm

2.0µm
2.4µm

2.8µm
3.2µm

Fiber Diameter

Fiber Index, nf

135

b)

1st Radial
2nd Radial
3rd Radial

140

145

150

155

160

165

170

A
ng

ul
ar

 M
od

e 
N

um
be

r,
 m

a)

1st

2nd 

3rd

Fig. 3. a) Spectra of TE resonances of a 30µm-radius sphere for
various angular mode numbers (N 6 14) for the first three radial
order (n 6 3) WGMs, and b) corresponding effective refractive
indices of WGMs, and tapered fibers with various diameters.

both wavelength and angular mode number. By decreasing the
m value, or in other words, increasing the number of intensity
maxima in angular direction (N + 1 = `−m + 1), the phase-
mismatch can vary depending on the effective refractive index
of the tapered fiber which is a function of the taper diameter.
Figure 3(b) is important in designing a suitable tapered fiber-
resonator system in order to phase-match to a desired set of
modes. This provides a map from which conditions to couple
to different WGMs can be drawn as a function of the taper
diameter.

Assuming that the effective refractive index of WGMs does
not change significantly around the resonance wavelength, the
propagation constant of a resonance mode can be evaluated at
various wavelengths such that βWGM(m, λ) = 2πne f f ,WGM/λ,
where the dependence on m comes from the fact that distinct an-
gular WGMs have different ne f f ’s. Figure 4(a) shows examples
of calculated first order radial mode fields with varying angular
orders. The calculated transmission spectra and the intra-cavity
powers for the fundamental mode of the taper (LP01) correspond-
ing to each WGM are plotted in Figs. 4(b) and (c), respectively.
The taper diameter is chosen to be 2µm and touching the res-
onator surface from the top (zero air-gap), and the intrinsic Q
for all the modes is fixed at 106. For the modes with even N + 1
value, the internal power is very low such that the input power
is transmitted with no coupling. This is due to the symmetry of
WGM fields at the center where the total fiber-resonator modal
overlap integral is close to zero. The strength of resonance for
each specific mode depends on the phase-matching and cou-
pling condition to that mode which is determined by the cavity
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fiber modes of various diameters around 1548.65nm wavelength,
b) external Q, and c) resonator-fiber-mode phase-mismatch as
function of taper diameter for the first order radial WGMs with
various angular orders.

loading induced by the taper coupling and intrinsic losses. Load-
ing of the tapered fiber can be evaluated in terms of the external
Q factor which is defined by the ratio of the stored energy over
the lost energy per cycle such that Qext = 2πm/|T12|2. The ex-
ternal Q is derived considering only forward propagating wave.
The backward waves are neglected since the intra-cavity back-
reflections are considered zero. The external Q calculated from
[32] in which both forward and backward waves are considered,
is half of the above value. It should be noted that T12 is calcu-
lated form Eq. (3), and includes the phase-matching information
between WGM and fiber mode.

Figure 5(a) shows the calculated effective index of the first
radial order WGMs (n = 1) at 1548.65nm wavelength, with the
ones calculated for different taper diameters. As the taper di-
ameter varies, depending on the angular order of the WGM the
phase-mismatch value changes due to the difference between
the effective indices. As the number of field intensity maxima
(N + 1) of the WGMs increases (or m decreases), their effective
index decreases. Similarly, decreasing the taper diameter ex-
pands the mode into the air cladding, and lowers the effective
index of the fiber mode. Combination of these two effects de-
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Fig. 6. a) Transmission of the taper-resonator system at reso-
nance wavelength as function of intrinsic Q for each angular
order of WGMs at various taper diameters, and b) critical Q as
function of fiber diameter and number of mode field maxima
(N + 1), showing various coupling regimes under which a WGM
operates.

termines the modal overlap between the WGMs and the fiber
mode. As the taper diameter increases, the evanescent tail of the
fiber mode drops, which decreases the fiber and WGM overlap.
In addition, expansion of higher N WGMs along the resonator,
decreases the evanescent field amplitude, and hence, lowers the
modal overlap strength. Generally, for large taper diameters
as well as high N’s, the external Q is high due to small modal
overlaps. While, at small taper diameters, if N of the WGMs is
small, the phase-mismatch between the fiber mode and WGM
significantly affects the external Q.

In order to discriminate the effects of phase-mismatch and
modal overlap, the external Q as a function of taper diameter for
fixed angular mode numbers is plotted in Fig. 5(b). For small
taper diameters (< 1.5µm) and small N’s (N < 6) where there
is a relatively large phase-mismatch (see Fig. 5(c)), the effect of
the taper diameter on the WGM is small, and phase-mismatch
effectively increases the external Q factor. While, by gradu-
ally enlarging the taper diameter (up to the phase-matched line
shown in Fig. 5), phase-mismatch decreases and the external Q
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drops. For large N’s (N > 6), the effects of the modal overlap
are dominant since the WGM intensity is lower comparing to
WGMs with small N. The phase-matched lines in Figs. 5(b)
and (c) show where the phase-matching (∆β = 0) happens for
a specific WGM order. Note that, the external Q increases in
an exponential fashion above the phase-matched line, due to
the dominant effect of the modal overlap and the exponential
drop of the evanescent field. Furthermore, the external Q can be
varied by changing the air-gap such that increasing the air-gap
will exponentially decrease the coupling coefficients. Whereas,
the phase-matching condition will stay unaffected. The effects
of varying the air-gap on coupling to WGMs for various applica-
tions are well-studied [12, 18, 33–35].

4. WGM TRANSMISSION AND INTERNAL POWER

Transmitted power through the taper fiber is a function of the
intrinsic and external Q’s of the resonator. Such parameters de-
termine the coupling states under which a WGM operates such
that: 1) If Qext > Q0, then, the resonance is in "Under-coupling"

regime, and 0 < Transmission < 1, 2) If Qext = Q0, then, the res-
onance is in "Critical-coupling" regime, and Transmission = 0, 3)
If Qext < Q0, then, the resonance is in "Over-coupling" regime,
and 0 < Transmission < 1.

An important parameter in excitation of WGMs is the critical
coupling point where the total intrinsic loss is equal to the exter-
nal one induced by the coupling. At this point the transmitted
power at the taper output is equal to zero. Let us consider the
aforementioned set of first radial order mode group (n = 1) at
1548.65nm wavelength. We will investigate the effects of angular
order (m) of WGMs and the condition of excitation/collection of
such modes in terms of the taper diameter and the intrinsic Q
factor of the resonator. Figure 6(a) depicts the transmission of
the taper-resonator system as a function of intrinsic Q for each
angular order of WGMs at various taper diameters. The critical
Q for each WGM is dependent on the chosen taper diameter
such that for small diameters (e.g. D f = 1.1µm) due to high
external loading, all the WGMs have fairly similar critical Q.
As the taper diameter increases, the critical-coupling condition
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mode order with various taper diameters, and b) the corresponding total weighted internal field real values with intrinsic Q’s of 104,
105 and 106 for both azimuthal (XY plane) and angular (XZ plane) directions.
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for higher order modes shifts to greater intrinsic Q values, due
to the lower external loading (high external Q) of such modes.
Figure 6(b) summarizes the critical Q value for all the WGMs
as a function of the fiber diameter. Each constant-N curve de-
termines the critical-coupling condition for that specific WGM.
Below and above the critical-coupling curve, taper-resonator
system operates in under- and over-coupling regimes, respec-
tively. This gives a figure of merit to selectively-excite/collect a
specific WGM with a given intrinsic Q by only changing the ta-
per diameter. Note that changing the sphere size will affect both
the Q-factor and phase-matching conditions, and thus, alters the
critical coupling Q. The effects of resonator size on external Q
and phase-matching are studied in [11, 27]. Providing selective-
WGM-excitation is significantly important in nonlinear optical
processes where the spatial distribution and power intensity of
the mode determines the nonlinear gain/loss of the system.

Figure 7(a) plots the calculated internal-to-input power-ratio
at the resonance wavelength as a function of intrinsic Q factor
for each individual angular mode order with various taper diam-
eters. For each considered taper diameter, the total "weighted"
internal fields, bT ’s, at three different intrinsic Q’s is estimated by
bT = (∑m2

m=m1 Pm
intrabm)/ ∑m2

i=m1
Pi

intra where Pm
intra is the internal

power of the mode with angular order of m, bm is the internal
field, and Pm

intra/ ∑m2
i=m1

Pi
intra is the contribution of mode m to

the total accumulated internal power of distinct WGMs (with
angular mode numbers between m1 and m2). Modes with even
N + 1 are not plotted in Fig. 7(a), since they have close to zero
internal power due to symmetry of the field profile around the
center of the microsphere resonator. Figure 7(b) plots the calcu-
lated total field of the microsphere shown for both azimuthal
and angular directions. The results are plotted for various taper

diameters and intrinsic Q’s of 104, 105 and 106. For very large
taper diameters (e.g. D f = 4µm) where the external Q factor is
relatively high, the total internal field is mostly constructed by
the WGMs with small N orders (≤ 5). Only by increasing the
intrinsic Q factor higher order modes will be closer to critical
coupling, and hence, their internal power increases. Whereas,
at smaller taper diameters (i.e. 2.6µm, 2.2µm, and 1.6µm), the
internal power can be distributed between various higher order
modes. At very small taper diameters (e.g. 1.1µm), most of the
modes are in the over-coupling regime, and the modes that have
closer Q to critical coupling will be predominantly excited. The
interference patterns along the resonator profile in XY plane
correspond to the beating of excited WGMs with different β’s.

Figure 8 (top) depicts the internal/input power ratios of the
excited WGMs with specific angular order for a given intrin-
sic Q factor. If the intrinsic Q of the resonator is too low (i.e.
Qint = 104) all modes are in under-coupling regime. The maxi-
mum power for a particular angular order mode happens at a
taper diameter that has the smallest distance to the Qint = Qext
line. Furthermore, the internal power at small intrinsic Q’s for
the taper diameters below the phase-matched line is a function
of both phase-matching and modal overlap. While, at large taper
diameters, since the total Q is dominated by the intrinsic one,
the internal power drops dramatically (i.e. very lossy cavity).
As the intrinsic Q factor gradually increases, the taper diameter
corresponding to the dominantly-excited mode can be shifted
to larger values. At Qint = 105, most of the modes still operate
in the under-coupling regime, and the maximum achievable
internal power is at very small taper diameters (generally below
2µm). Further increasing Qint will force the WGMs to go from
under-coupling to critically-coupling and over-coupling regimes.
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For instance, at Qint = 106 for N = 0, regardless of taper di-
ameter, WGMs generally operate at under-coupling regime,
while for N > 2 depending on the taper diameter, a particu-
lar WGM may operate under either of the three aforementioned
coupling regimes. At very high Q of Qint = 107, WGMs close
to Qint = Qext line which have high N orders (N > 4) see a sig-
nificant power rise, when compared to lower order modes and
those at small taper diameters, which are dramatically under-
coupled. In general, increasing the intrinsic Q weakens the
phase-matching effects, and shifts the critical coupling point to
larger taper diameters.

It should be noted that, the internal power for each WGM is
determined by the total Q factor equal to QintQext/(Qint + Qext).
Figure 8 (bottom), plots the calculated total Q as a function of
fiber diameter corresponding to the considered intrinsic Q’s. For
large taper diameters for which the external Q is much higher
than the intrinsic one, the total Q clamps to the intrinsic Q. At
the clamping region where the total losses are constant, further
increasing the taper diameter will decrease the amount of input
power into the resonator due to the low coupling efficiency.
This drops the internal power as the taper diameter increases,
while the total loss is dominated by the intrinsic losses which no
longer depends on the taper diameter. The findings shown in
Figs. 7 and 8 can be used to a large extend to define criterions
for designing the coupling conditions in spherical lasers and
nonlinear devices, since they can be used to decide suitable
pumping and modal characteristics for optimum performance
[36–38]. Note that, such formulation and analysis method can be
applied to optimize coupling to any type of degenerate WGMs
including the transverse magnetic ones.

In order to show that simultaneous excitation of degenerate
WGMs in perfect microspheres is possible, 3D Finite Difference
Time Domain (FDTD) simulations of Maxwell’s equations are
conducted (in RSOFT, fullwave). In this model, due to hard-
ware limitations, a microsphere with 12µm diameter and spatial
computational grid-size of 100×100×100nm3 is chosen. Since the
purpose of these simulations is to demonstrate the possibility
of existing such degenerate WGMs, here, the accuracy of the
calculated transmission spectra and field values is not impor-
tant. However, it is tried to keep the grid-size ∼1/10 of the
width of the smallest part in the design. Figure 9(a) shows the
calculated transmission spectra of the coupled-taper-resonator
system for various taper diameters (0.8µm ≤ D f ≤ 1.5µm). The
transmission spectra are calculated from the impulse response of
the resonator by taking the spectral ratio of the input LP01 fiber
mode and the output of the fiber at the other side of the coupling
region. Simulations are carried out temporally long enough (∼27
round-trips) so that the output power is stabilized. The trans-
mission spectra show dips separated in the wavelength range
matching the FSR of the resonator (which is ∼ λ2/2πne f f R0).
The off-resonance drop in the transmission is mostly due to light
scattering into the microsphere owing to the strong index per-
turbation at the coupling point. As the taper diameter decreases
the amount of the off-resonance loss increases since the fiber
mode has stronger overlap with the resonator. This effect is
experimentally shown in [16] for microbottle resonators. Here,
the material losses are considered zero, therefore, the radiation
losses due to curvature and index perturbation (of the taper) are
the only loss mechanisms.

The Ex intensity of the system at the wavelength of 1461.6nm
is depicted in Fig. 9(b) for various taper diameters. The results
show that for taper diameter of 1.5µm only the fundamental
(N = 0) WGM is excited. As the taper diameter is decreased, the
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Fig. 9. FDTD simulations showing a) transmission spectra, and
resonance field intensities at 1461.6nm for various taper diame-
ters in a) X-Z, b) X-Y planes, and c) magnetic field around the
coupling region showing phase-matching conditions.

next angular order (N = 2) WGM starts building up inside the
resonator with different strengths resulting in more discernible
interference (see Fig. 9(c)). At taper diameter of 0.8µm, the total
intra-cavity electric field intensity is constructed by both the first
and the higher order WGMs, which due to different propaga-
tion constants interfere along the resonator length (see Fig. 9(c)).
Figures 9(c) and (d) plot the Hz intensity and real value for each
taper diameter. At larger taper diameters (i.e 1.5µm) for which
only the fundamental WGM is excited (see Fig. 9(b), top panel),
it is clear that the fiber mode and the WGM are totally out of
phase over the coupling region (see Fig. 9(d), top panel). This
shows that due to large diameter of the fiber, and hence, smaller
evanescent field, only the fundamental mode has adequate over-
lap with the fiber mode to be excited/collected. By gradually
decreasing the fiber diameter, the total intra-cavity field at cou-
pling region starts to phase-match and synchronize with the
fiber mode. At 0.8µm fiber diameter, two distinct WGMs with
different propagation constants beat along the azimuthal direc-
tion of the resonator (see Fig. 9(c), bottom panel). The obtained
total fields are qualitatively in good agreement with the results
of the coupled-mode analyses in Fig. 7. It should be noted
that identification of such modes from the transmission spectra
is not generally straightforward since the output field of the
tapered fiber is a result of the interefernce of the out-coupled
WGMs and the incoming taper mode. It is worth mentioning
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that, at larger taper diameters LP11 fiber mode is slightly excited
in addition to the LP01 mode in the out-coupling process [16, 39].
Further along the taper, two LP01 and LP11 modes beat together
causing fluctuations in the fiber field intensity. At smaller taper
diameters, higher order modes are cut-off, and not excited.

5. CONCLUSION

A model is developed to elucidate the coupling mechanism to
the spherical WGMs using tapered fibers. The effect of the ta-
per fiber on the transmission and internal power of WGMs, is
investigated in terms of external Q factor and phase-mismatch
between fiber and resonator modes. The excitation condition can
be determined by the regime under which the WGM is excited.
Depending on the fiber diameter, specific WGMs can be forced
to operate in either under-, or over-coupling regimes, as well
as, under critical-coupling regime. It is also shown that due
to small differences in the effective refractive index of degener-
ate (coherent in frequency) WGMs with distinct angular orders,
depending on the coupling coefficient and phase-matching of
such modes, a combination of WGMs contribute to the actual
total transmission spectra and the internal field accumulation.
We show that, by precisely varying the taper diameter, critical
coupling condition to such modes can be well-discriminated.
This helps in designing a cavity system where specific modes
are desired to be present. Note that, various taper diameters
can be experimentally accessible by either fabrication of tapers
with different diameters [16] or translating the resonator along
the taper profile. Performing 3D FDTD simulations show that
such simultaneous excitation of degenerate WGMs is possible,
and varying the taper diameter provides a degree of freedom
to selectively excite/collect such different order modes. Results
presented here are very useful in designing lasers and resonators
for nonlinear light generation, in which intensity and Spatial
distribution of optical fields are important factors in determining
the gain/loss of the system. On the other hand, due to experi-
mental difficulties in accurate positioning of reflective mirrors
in Fabry-Perot microcavities, and the fact that WGMs can pro-
vide ultra-high Q factors, such resonators are great candidates
for CQED applications. Moreover, such analyses are useful to
predict the effects of the fabrication errors in the taper diam-
eter and the coupling mechanism on the performance of the
taper-coupled resonators. Our approach can be employed to
precisely and selectively design cavity-atom systems that pro-
vide sufficient intra-cavity fields by critical coupling to a specific
WGM.
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