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Abstract. A semi-analytical model is developed to predict the acoustic response of thin-

walled, orthogonally stiffened cylinders. The free vibration model is solved by the approximate 

assumed-modes method. The excitation of the normal modes is considered in terms of the Joint 

Acceptance Function (JAF) for incident acoustic harmonic plane waves. The surface pressure 

distribution is obtained by the shallow shell approximation, where the blocked excitation 

pressure is double the incident pressure, and by the 2-D rigid cylinder approximation 

considering the sound scattering. The acoustic response is then compared with that of a fully 

coupled FE-BE model. An efficient estimation of the response can be obtained by the two 

models over a certain range of accuracy. Numerical results for different structural 

configurations are then given. The effect of the stiffeners on the modal characteristics is 

discussed. It also illustrates the modal contribution to the total displacement response and 

addresses both circumferential and axial orthogonally stiffened cylinder arrangements. 

1. Introduction 

Thin-walled, stiffened cylinders are representative of widely used aerospace structures. When 

subjected to high-level acoustic loading, typically from rocket or jet engines, such structures are likely 

to experience considerable vibration and stress reversals, which may lead to fatigue failure. An 

efficient and accurate prediction of acoustically induced vibration (AIV) is thus required. 

Much progress has been made in the past to predict the dynamic response of stiffened structures 

subjected to sound pressure. Often, flat structures are considered, and this significantly simplifies the 

structural modelling and acoustic response prediction [1-3]. The acoustically excited modes can be 

characterized by a structure-acoustic coupling ratio, the Joint Acceptance Function (JAF), which 

effectively relates the modal forces to the spatial matching between the acoustic field and the 

structural mode [4]. The acoustic response of stiffened plates has been analysed in a recent  study by 

the authors [5]. However, these assumptions are not necessary applicable for curved structures. In 

comparison to stiffened flat plates, the stiffeners produce different effects on the modal characteristics 

of the cylinders due to the coupling of extension/bending motion around the circumference [6,7]. In 

addition, scattering effects must be considered for cylinders; for flat structures modelling of the 

excitation assumes that the blocked pressure is the twice that of the incident pressure and it is even 

appropriate for panels with small curvatures [8], but this assumption is invalid for a structure with 

significant curvature, whose dimension is comparable to the acoustic wavelength [9]. The JAFs of 

diffuse field has been investigated for cylindrical geometries based on a suitable spatial correlation 

function [10]. To the best of authors’ knowledge, the acoustic scattering has not been explicitly 

addressed in the AIV within the aerospace domain. An exact solution for this problem requires a fully 



coupled vibroacoustic analysis, usually provided using a model that combines the structural model 

(FEM) and the acoustic domain (BEM). However, this approach requires high computational 

resources and it is not always practical for preliminary investigation and parametric study. 

Alternatively, the vibroacoustic response can be predicted by developing pre-processing tools 

compatible with commercial FE codes to reduce the computational cost. In this sense, Seon and Roy 

[11] developed a pre-processing tool to perform vibroacoustic analysis in Nastran for the Thermal 

Protection Panels (TPS) in a launch vehicle. For more generalized structures, like stiffened cylinders, 

an efficient model incorporating features like stiffener configurations and scattering is necessary for 

the preliminary studies. 

This paper presents a semi-analytical approach to predict the linear response of stiffened cylinders 

to harmonic plane wave excitation. The free vibration problem is formulated by the assumed-modes 

method. The subsequent modal forces are derived based on two approximations for the pressure 

distribution: (i) blocked pressure around the cylinder and (ii) 2-D scattered pressure. These approaches 

are then compared with the results of a fully coupled vibroacoustic analysis from a FE/BE model. 

2. The free vibration 

The formulation adopted in this work to express the energy of the vibrating stiffened cylinder follows 

the procedures in reference [6]. Figure 1 shows the geometry of a thin-walled cylinder which is 

internally stiffened by a set of rings (around the circumference) and by a set of stringers (along the 

length). The flexure and extension of the cylindrical shell are considered. As a result of these 

deformations, the stiffeners are subjected to flexure (about two perpendicular axes), extension and 

torsion. From the linear strain-displacement relation [12] and the equation of state for the plane stress, 

the strain energy for the cylinder and the stiffeners can be formulated as a function of the 

displacement. The displacement of the stiffeners is uncoupled using the elastic axis and referenced to 

that of the line of attachment. Then, the compatibility conditions between the cylinder and the 

stiffeners are adopted to express the total energy in terms of the displacement of the cylinder middle 

surface. The detailed derivation can be found in reference [6]. The end boundary conditions of the 

cylinder are assumed to be shear diaphragms (S-D) [13]. The displacement of the middle surface of 

the cylinder can be expressed as, 

𝑢 = √2 ∑ ∑(𝑢̅𝑚𝑛 cos 𝑛𝜃 + 𝑢̅𝑚𝑛
′ sin 𝑛𝜃) cos 𝑚𝜋𝑥/𝑎

𝑛𝑚

 

(1) 𝑣 = √2 ∑ ∑(𝑣̅𝑚𝑛 sin 𝑛𝜃 − 𝑣̅𝑚𝑛
′ cos 𝑛𝜃) sin 𝑚𝜋𝑥/𝑎

𝑛𝑚

 

𝑤 = √2 ∑ ∑(𝑤̅𝑚𝑛 cos 𝑛𝜃 + 𝑤̅𝑚𝑛
′ sin 𝑛𝜃) sin 𝑚𝜋𝑥/𝑎

𝑛𝑚

 

where 𝑢̅𝑚𝑛, 𝑣̅𝑚𝑛 and 𝑤̅𝑚𝑛 are the generalized coordinates of the symmetric circumferential modes and 

𝑢̅𝑚𝑛
′ , 𝑣̅𝑚𝑛

′  and 𝑤̅𝑚𝑛
′  are those of the antisymmetric modes. 

The homogeneous equations of motion have been obtained by substituting the energy expression 

and equation (1) into Lagrange’s equation [14]. The resulting frequency equation have been 

numerically solved in MATLAB to obtain the natural frequencies and mode shapes of the stiffened 

cylinder.  

3. The acoustic response 

Figure 2 shows that an acoustic harmonic plane wave impinging on the outer surface of a cylinder 

with an incident angle 𝛽 to the 𝑥 axis. Without losing any generality, it is convenient to assume that 

the incident acoustic wave component in the 𝑦 − 𝑧 plane only travels along the 𝑦 axis. In this paper it 

is assumed that the two closed ends of the cylinder have no influence to the acoustic field, i.e., the 



diffraction and scattering due to the finite length of cylinder are neglected. To simplify the analysis, 

the 3-D incident plane wave is written in cylindrical coordinates as, 

𝑝𝑖(𝜃, 𝑠, 𝑡 ) = 𝑝0 ∑ (−𝑖)𝑞𝐽𝑞(𝑘𝑅 cos(𝛽))e𝑖𝑞𝜃e𝑖𝑘𝑅𝑠 sin 𝛽e𝑖𝜔𝑡

∞

𝑞=−∞

, (2) 

where 𝐽𝑞  is the Bessel function of first kind of order 𝑞  and 𝜖𝑞  is the Neumann factor. 𝑝0  is the 

amplitude of the free field incident pressure and 𝑠 = 𝑥/𝑅 is a normalized coordinate. 
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Figure 1. Geometry of a stiffened cylinder with 

the coordinate system.  
Figure 2. Diagram of an incident plane wave. 𝑘 

is the acoustic wavenumber and 𝑘𝑡𝑎 , 𝑘𝑡𝑐  are 

respectively the acoustic trace wavenumber 

(projection) along and normal to the shell axis. 

3.1. Joint acceptance function (JAF) for the shallow shell assumption 

In the blocked pressure assumption, the total pressure distribution can be represented as 

𝑝(𝜃, 𝑠, 𝑡 ) = 2𝑝𝑖(𝜃, 𝑠, 𝑡 ). (3) 

Note that this is only a rough approximation that maybe valid only for some points of the cylinder 

and in a frequency range where the acoustic wavelength is small compared to the radius of curvature 

of the cylinder. From the modal analysis [14], the modal forces are, 

𝐿𝑚𝑛(𝑡) = ∫ ∫ 𝑝(𝜃, 𝑠, 𝑡)𝜙𝑚𝑛(𝜃, 𝑠)d𝑠𝑅d𝜃
𝑙/𝑅

0

2𝜋

0

= 𝐹0𝑗𝑚𝑛(𝜔)e𝑖𝜔𝑡 (4) 

where 𝐹0 = 𝑝0𝑆  is defined as an equivalent static force acting on the cylinder surface with a 

normalized area 𝑆 = 2𝑅√𝜋𝑅𝑙. The area has been normalized to simplify the expression for the JAF. 

𝑗𝑚𝑛(𝜔) = 𝑗𝑅𝑛(𝑘𝑡𝑟𝑅)𝑗𝐴𝑚(𝑘𝑡𝑎𝑙) can be regarded as the JAF for the (𝑚, 𝑛)𝑡ℎ mode of the cylinder for 

this type of incident pressure field. 𝑗𝑅𝑛 and 𝑗𝐴𝑚 are therefore its circumferential and axial components 

respectively. They are given by the expressions  

𝑗𝐶𝑛(𝑘𝑡𝑐𝑅) = (−𝑖)𝑛𝐽
𝑛

(𝑘𝑡𝑐𝑅) (5) 

𝑗𝐴𝑚(𝑘𝑡𝑎𝑙) =
(−1)𝑚𝑒−𝑖𝑘𝑡𝑎𝑙 − 1

(𝑘𝑡𝑎𝑙)2 − (𝑚𝜋)2
𝑚𝜋, (6) 

where 𝑘𝑡𝑐 and 𝑘𝑡𝑎 are the trace wavenumbers in the circumferential and axial directions, namely 

𝑘𝑡𝑐 = 𝑘 cos 𝛽 , 𝑘𝑡𝑎 = 𝑘 sin 𝛽. 



3.2. JAF using a 2-D rigid cylinder assumption for the scattered pressure 

When the radius of the cylinder is comparable to the acoustic wavelength, the sound scattering due to 

the curvature will be significant. Assuming a rigid cylinder, the total pressure is in this case [15]:  

𝑝𝑡(𝜃, 𝑠, 𝑡 ) = 𝑝0 ∑ (−𝑖)𝑞(𝐽𝑞(𝑘𝑡𝑐𝑅) − 𝑅𝑞(𝑘𝑡𝑐𝑅))e𝑖𝑞𝜃e𝑖𝑘𝑡𝑎𝑅𝑠e𝑖𝜔𝑡

∞

𝑞=−∞

. (7) 

𝑤ℎ𝑒𝑟𝑒 𝑅𝑞(𝑘𝑡𝑐𝑅) = (
𝐽𝑞−1(𝑘𝑡𝑐𝑅) − 𝐽𝑞+1(𝑘𝑡𝑐𝑅)

𝐻𝑞−1
(2)

(𝑘𝑡𝑐𝑅) − 𝐻𝑞+1
(2)

(𝑘𝑡𝑐𝑅)
) 𝐻𝑞

(2)
(𝑘𝑡𝑐𝑅). (8) 

𝐻𝑛
(2)

(𝑘𝑅) are Hankel functions of the second kind.  

It can be seen that only the pressure distribution in the circumferential direction is influenced by the 

scattering effect. The axial JAF remains the same to equation (6). The circumferential JAF becomes 

𝑗𝐶𝑛
𝑡 (𝑘𝑡𝑐𝑅) = (−1)𝑛[𝐽𝑛(𝑘𝑡𝑐𝑅) − 𝑅𝑛(𝑘𝑡𝑐𝑅)]. (9) 

4. Numerical results and discussion 

Four types of structural configurations are considered for the aluminium cylinders. They are a bare 

cylinder, a cylinder stiffened by 9 equally spaced rings, a cylinder stiffened by 8 equally spaced 

stringers and a cylinder stiffened by both rings and stringers of the same number and positions. The 

dimensions and the material properties are given in table 1. Stringers and rings have rectangular cross 

section. In the numerical calculation, hysteric damping is assumed by using a damping loss factor of 

1%. The numerical simulation is performed in the MATLAB. 

 

Table 1. Parameters for numerical simulation of an aluminium cylinder. 

Parameters Symbol Value Parameters   Symbol Value 

Cylinder radius (m) 𝑟 0.9 ring width (m) 𝑟𝑤 0.002 

Cylinder length (m) 𝑙 0.3 ring depth (m) 𝑟𝑑 0.004 

Cylinder thickness (m) 𝑡 0.002 Stringer width (m) 𝑠𝑤  0.002 

Density (kg/m3) 𝜌 2.7 × 103 Stringer depth (m) 𝑠𝑑 0.004 

Poisson’s ratio 𝜈 0.3 Elastic modulus (N/m2) 𝐸 71 × 109 

Incident angle (rad) 𝛽 𝜋/4 Pressure amplitude (Pa) 𝑝0 1 

 

Figure 3 gives the natural frequencies of the lowest 20 modes for each structural configurations 

denoted by different types of symbols. The natural frequencies of adjacent modes appear in pairs for 

each structural configuration. This is because all the cylinders are symmetric. Each pair of frequencies 

corresponds to the symmetric/anti-symmetric modes. They are equal for the bare cylinder and slightly 

different for the stiffened ones. Compared to the bare cylinder, the rings increase the natural 

frequencies in each mode while the stringers decrease them slightly. This is because these modes are 

dominated by the circumferential deformation. The rings constrain the extensional or the flexural 

motions for these modes, which effectively stiffens the cylinder. The stringers put no constraint but 

apply mass to these modes. The natural frequencies of ring-stiffened cylinders also tend to occur in 

clusters over a small frequency range. This is because the stiffness effect of the rings makes the 

cylinder more like a finite periodic structure characterized by the ‘frequency passband’. 

Figure 4 plots the absolute values of the circumferential and the axial JAFs against the non-

dimensional parameters, 𝑘𝑡𝑐𝑅 and 𝑘𝑡𝑎𝑙. These are for the bare cylinder and are based on the blocked 

pressure approximation. The results show a series of maxima for each mode. The maximum value 

occurs in the mode with the lowest order, corresponding to the ‘breathing’ mode for the 

circumferential direction and to the ‘beam’ bending mode in the axial direction. However, these modes 

occur at relatively high frequency for this geometry, being at 907 Hz (breathing mode) and 897 Hz 



(beam bending mode) and corresponding to mode number 135 and 131. For the other modes, the 

maxima in the axial JAF occur when the acoustic trace wavenumber matches the structural bending 

wavenumber, which is known as coincidence phenomenon. The maxima of the circumferential JAF 

results from the combination of pressure distribution around the circumference and the mode shapes. 

The pressure distribution around the circumference due to the incident plane waves does not result in a 

constant acoustic wavelength. It is therefore not straightforward to associate maxima in the 

circumferential JAF to the same coincidence phenomena found in the axial direction (or in flat plates). 

The dips in the JAFs correspond to the zero modal force, which occur when the integrations of the 

production of pressure and mode shape on the cylinder surface equal to zero in equation (4). 

 

 

Figure 3. The natural frequencies of the lowest 

20 modes for each case, plotted versus non-

dimensional frequency Ω = 𝜔/𝜔𝑅 where 𝜔𝑅 =

√𝜌(1 − 𝜈2)/𝐸/𝑅  is the ring frequency for a 

cylindrical bare shell. 

 

  
(a) (b) 

Figure 4. The circumferential (a) JAFs for lowest order axial modes and (b) JAFs for 

breathing modes (𝑛 = 0) against the non-dimensional parameters equal to the Helmholtz 

number (𝑘𝑅 or 𝑘𝐿) and 𝑘𝑡 is the trace wavenumber in the normal to the shell axis (𝑘𝑡𝑐) or 

axial (𝑘𝑡𝑎) directions. 

 

Figures 5(a) to 5(d) present the spectra for the displacements predicted at a reference point for each 

cylinder. The assumptions of blocked pressure is compared with 2-D scattering. Point A depicted in 

figure 2 is chosen as an example point. Scattering is significant at this position and the point is always 

located away from stringers and rings. The frequency range is from 200 Hz to 1000 Hz and all the 



modes up to 1200 Hz have been included in the calculations. For all the different structures, figure 

5(a) to 5(d), three distinct frequency ranges can be observed. Below 300 Hz the response is mostly 

constant and this is due to the absence of vibration modes. Between 300 and 500 Hz the structures 

start to show response with peaks corresponding to the first few vibration modes. Above 500 Hz the 

response increases even further showing a broad peak superimposed by various other peaks.  

 

 

Figure 5. The radial displacement FRF (per unit pressure 

harmonic excitation) solid lines for blocked pressure results 

and dotted lines for scattering pressure results in upper 

figures) at a reference point on the furthermost side of the bare 

cylinder (a), the stiffened cylinder with 9 rings (b), with 8 

stringers (c) and with both rings and stringers (d). 

 

 

Figure 6. The acoustically excited modes (the predominant modes 

which corresponds to the peaks in figure 5 are marked by solid 

circles) at a reference point on the furthermost side for the bare 

cylinder (a), the stiffened cylinder with 9 rings (b), with 8 stringers 

(c) and with both rings and stringers (d). 

 

Figures 6(a) to 6(d) show the acoustically excited modes and their frequency response dependency 

corresponding to the displacement responses in figures 5(a) to 5(d) for each cylinder. The marked 

solid circles which are the pronounced dominant modes corresponding to the resonant peaks in figure 



5. These figures confirm the absence of modes below 300 Hz and show that below 500 Hz the order 

around the circumference (𝑛) is relatively high. From equation (4) it was found that high order 𝑛 

results in smaller JAF (see figure 4). The response of the structure becomes larger for 𝑛 <  8, which 

occurs at frequencies above 500 Hz. In this instance and for all the four structures considered, the 

highest peak in the response correspond to mode 𝑚 = 1, 𝑛 = 6. Additionally, all the figures show that 

blocked pressure gives a more conservative prediction of the response compared to the scattering 

pressure. The difference between the two decreases at the higher frequencies, when the acoustic 

wavelength is much smaller than the circumferential dimension of the cylinder. For this chosen 

response point, and for these geometries, the effect of stiffeners is limited. 

 

 

Figure 7. Displacement of the reference point for the 

bare cylinder: blocked pressure (solid line), 2-D scattered 

pressure (dotted line), FE blocked pressure (dashed line) 

and the FE-BE fully coupled pressure (dash - dot line). 

This shows the effect of the assumed acoustic pressure 

excitation on the bare cylinder response. 

 

Figure 7 compares analytical predictions with those from a numerical model. This is calculated 

with both a blocked pressure assumption and with a full FE-BE coupling. Both have been developed 

in COMSOL and only the case of a bare cylinder has been analysed. The size of structural and 

acoustic mesh guarantees at least six elements per wavelength in each domain. The prediction based 

on blocked pressure overlaps completely with that in the FE model and for this reason it is not visible 

in the figure. In the FE-BE model, two finite cylinders longer than the longest acoustic wavelength in 

the simulation approximate the semi-infinite rigid cylinders at the ends of the structures. The result 

shows that in the frequency range away from the pronounced resonances (≤ 400 Hz), the result of the 

2-D scattering pressure approximation agrees well with that of the fully coupled analysis, while the 

prediction of the response based on the blocked pressure approximation is higher. This is because at 

low frequency the structural vibration is so small that it has negligible re-radiation effect, but the 

interaction between the sound and the structure geometry is significant in this case. At high 

frequencies, where resonances occur, the fully coupled model response is lower than the two 

approximate models. This is likely to be due to radiation damping, the effect of which appears above 

400 Hz. The resonant frequencies in the fully coupled response are slightly lower than those in the two 

approximate models, which is likely to be due to the mass effect of the fluid loading from the 

surrounded air. The run time for the FE-BE model of the bare cylinder is about 40 hours on a standard 

desktop computer, while that of the two approximate models is about 5 minutes. For the other 

stiffened cylinders, the fully coupled FE-BE simulation can be more demanding and has not yet been 



addressed by the authors.  

5. Conclusions 

This paper presented an analytical model to predict the response of cylinders with and without 

stiffeners due to acoustic plane wave excitation. Results are produced to show the effect of stiffeners 

on the vibration modes, the modal contribution in the JAFs and acoustic response based on two 

different incident pressure approximations. The natural frequency grouped behaviour is introduced by 

the stiffeners, making the cylinder behave like a finite periodic structure. The modes with lower 

circumference mode order give a larger contribution to the total response. Both of the two approximate 

pressure assumptions lead to an overestimate of the response. They can significantly reduce the 

computational time at the cost of sacrificing some accuracy but are still conservative predictions. The 

analytical model could in the future be improved by including the effect of radiation damping. 
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