Frequency of heavy vehicle traffic and association with DNA methylation at age 18 years in a subset of the Isle of Wight Birth Cohort
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Abstract
Background. Assessment of changes in DNA methylation has the potential to identify adverse environmental exposures. 
Objectives. To examine DNA methylation (DNA-m) among a subset of participants (n=369) in the Isle of Wight (IoW) Birth Cohort who reported variable near resident traffic frequencies. 
Methods. We used self-reported frequencies of heavy vehicles passing by the homes of study subjects as a proxy measure for TRAP, which were: never, seldom, 10 per day, 1-9 per hour and >10 per hour. Methylation of cytosine-phosphate-guanine (CpG) dinucleotide sequences in the DNA was assessed from blood samples collected at age 18 years (n=369) in the F1 generation. We conducted an epigenome wide association study to examine CpGs related to the frequency of heavy vehicles passing by subjects’ homes, and employed multiple linear regression models to assess potential associations. We repeated some of these analysis in the F2 generation (n=140).
Results. Thirty five CpG sites were associated with heavy vehicular traffic. After adjusting for confounders, we found 23 CpGs that were more methylated, and 11 CpGs that were less methylated with increasing heavy vehicular traffic frequency among all subjects. In the F2 generation, 2/31 CpGs were associated with traffic frequencies and the direction of the effect was the same as in the F1 subset while differential methylation of 7/31 CpG sites correlated with gene expression.
Conclusions. Our findings reveal differences in DNA methylation in participants who reported higher heavy vehicular traffic frequencies when compared to participants who reported lower frequencies. 






Introduction
Evidence for the health impacts of air pollution has been mounting up for several decades.1-3 Exposure to ambient air pollutants is associated with both acute and chronic health effects and the impacts are felt on global and local scales.4 Interestingly, the observed adverse health effects are seen even at very low levels of air pollution exposure, and it is unclear whether any threshold exists (i.e. a concentration below which there are no effects on health).5 The concentration of air pollutants can differ in a small geographic area depending on local ambient conditions.6 Key environmental factors that significantly affect local air quality includes proximity to traffic, wood burning, coal burning, dry cleaning, motor vehicle exhaust, and industrial emissions, among others.7-15  Exposures to such environmental factors are associated with asthma exacerbation,16 although their contribution to the development of the disease is uncertain.17

For an environmental factor such as traffic, it is often necessary to investigate simple proxies such as distance to roadways and traffic estimates or counts, to help assign individual exposures and account for spatial variability. For instance, there is increasing evidence that living near heavy traffic is associated with increased rates of asthma, cardiovascular disease and dementia,18-22 and chronic air pollution exposure gradients at such small scales are associated with adverse cardiorespiratory effects.23 In the absence of neighborhood level air pollution measurements, proximity to traffic, traffic volume, among other methods, can be employed.6, 24-32 Such substitutes facilitate the characterization of smaller-scale air pollution exposures, and have been operative in some health studies.33-35

Recent evidence indicates that epigenetics may play an important role in mediating the health effects of air pollution.36 Indeed, it has been suggested that the extent of epigenetic markers can change progressively and help construct cumulative exposure patterns over time.37  Interestingly, changes in epigenetic markers can result from exposure to a risk factor such as air pollution, and such changes can potentially serve as predictive biomarkers of susceptibility to adverse health. 38 The epigenetic marker of DNA methylation (DNA-m), which is the addition of a methyl group to cysteine in cytosine-phosphate-guanine (CpG) dinucleotides sequences in the DNA, is reported to be related to air pollution exposures,39, 40 and adverse respiratory health,41 including asthma.42, 43 

Changes in the epigenome and gene expression may be induced by exposure to air pollution44, 45 and this is relevant to the development of several pathophysiological processes. Diﬀerential blood DNA-m in response to air pollution exposure from sources such as traffic has been reported.46-48 We cannot or rarely can directly assess DNA-m in target tissues, such as the lung. However, for many biomarkers, blood changes are considered to constitute a window through which specific processes in other tissues can be assessed. In addition, during development, blood and airways stem from the mesoderm and may represent to have a similar development and susceptibility.49 For these reasons, the effects of TRAP on epigenome in blood samples represents informative biomarkers of change in the airways.

Given that 1) TRAP exerts its greatest impact on local scales, particularly near roadways,50 and 2) the mechanistic basis for the effects of TRAP on the epigenome is not well delineated,51 additional studies can provide further evidence and advance the current state of the science.52 Accordingly, we used the self-reported frequencies of heavy vehicles passing by the homes of study subjects as a proxy measure for TRAP and evaluated their associations with the methylation of CpG sites  among 18-year old participants in the Isle of Wight birth cohort, UK (n=369). Our motivating questions were:
1. Which specific CpG sites are associated with heavy vehicular traffic in the birth cohort? 
2. Are there any trends in the association between differential DNA methylation (both higher and lower) and the frequency of exposure to heavy vehicular traffic?
Results 
Characteristics of study population
Eighteen percent of the subjects (n=67) reported never having any heavy vehicles passing by their homes while 82% reported some heavy vehicular traffic outside their homes (Table 1). About 20% had a history of maternal smoking and nearly 50% were exposed to tobacco smoke outside their homes and before age four (Table 1). About a quarter of the subjects were current smokers who started smoking at an average of 14.5 (sd: 1.5) years. A vast majority of the subjects present a middle class status (72%) with over 90% still living at home with their parents and 70% living in a private residential property The average BMI was 23.6 (sd: 4.3). In this subset with DNA-m, there were more females than males (66% vs 34%) due to the study design (following until pregnancy) (Table 1). 
Which specific CpG sites are associated with heavy vehicular traffic in the Isle of Wight cohort? 
There were a total of 371 CpG sites that were associated with heavy vehicular traffic frequency based on ttscreening results. However, we chose the top CpGs with a cutoff percentage of 70 (m = 70 across 100 total iterations (i = 100)) was used to determine the final pool of potentially important CpG sites (in our case 35/371 had a cut off percentage between 70 and 94). Therefore, a final group of 35 CpGs was selected in step 1 (Tables 2 and 3). The 35 CpG sites are listed in the order of significance based on the EWAS results. Over 30% of these CpGs were located on Chromosome 1. The identified CpG sites were associated with 34 different genes (two CpG sites – cg11156891 and cg12407057 – mapped to one gene ANKRD65). A majority of the CpG sites were located in the body of the identified gene (24/35); four were 200–1500 bases upstream of the transcriptional start site (TSS), while two were 0-200 of the TSS; three were within the 5' untranslated region, and two were over 50kb from the nearest gene (Table 3). 

[bookmark: _GoBack]We also assessed answers to other traffic related questions such as “How often do cars pass your house or on the street less than 100 meters away?” and “How frequently are you annoyed by outdoor air pollution (from traffic industry, etc) in your home if you keep the window open?”. However, these did not did not have much variability nor did they yield any significant results with the ttScreening package. The CpG by CpG analysis also did not show any statistically significant results for Any vs Never reports of heavy vehicular traffic frequency after adjusting for false discovery rate (all adjusted p-values were ≥0.4). There was no association between heavy vehicular traffic frequency and cg05575921, located in the aryl hydrocarbon receptor repressor (AHRR) gene. However, there appeared to be an association with self-reported smoking status (among current smokers), tobacco smoke exposure assessed through a questionnaire administered at 10 years and environmental tobacco smoke exposure (Table 8).
Gene set enrichment analysis
Using the bioinformatic resource ToppGene Suite,53 we performed a gene enrichment analysis to determine the pathway(s) associated with genes of the significant CpG sites (the respective genes that had the exact CpG coordinates, or if the CpG was located between two genes (i.e. intergenic CpGs), we selected the gene with the closest proximity to the intergenic CpG.). Input parameters for the gene enrichment analysis were as follows: All thirty-four genes were included in the training set, the hypergeometric probability mass function was used to calculate p-values, and the false discovery rate (FDR) was controlled at 0.05 using the Benjamini-Hochberg method.
Two genes, RASA3 and JPH3, were associated with both ligand-gated calcium channel activity and calcium-release channel activity (Fig 1). Four genes (CRISPLD2, CDCP2, VWA1 and LGI2) were identified in the biological pathway for encoding structural extra-cellular matrix (ECM) glycoproteins (all FDR-adjusted p <0.05, Fig 1). Additionally, a total of nine genes (CRISPLD2, ANKRD65, FBXO25, VWA1, C1QTNF12, UNC5B, SEPT9, ACAP3 and JPH3) came up as having a co-expression association with genes that are up-regulated in the human microvascular endothelial cells (HMEC). 
When the analysis is separated into the 23 more methylated and 11 less methylated CpG sites, the latter is identified in the following gene families: Zinc fingers (p=5.3E-3, FDR-adjusted p=1.7E-2), Synaptotagmins (p=5.6E-3, FDR-adjusted p=1.7-E-2), and A-kinase anchoring proteins (p=9.9E-3, FDR-adjusted p=2.0E-2) but no molecular functions are identified. On the other hand, the former is associated with five different molecular functions:
I. calcium-release channel activity (p=1.7E-4, FDR-adjusted p=1.2E-2), 
II. ligand-gated calcium channel activity (p=1.7E-4, FDR-adjusted p=1.2E-2), 
III. intracellular ligand-gated ion channel activity (p=6.E-4, FDR-adjusted p=2.9E-2), 
IV. succinyl-CoA hydrolase activity (p=1.2E-3, FDR-adjusted p=4.3E-2) and, 
V. metal ion transmembrane transporter activity (p=1.7E-3, FDR-adjusted p=4.7E-2). 
Additionally, 17 gene families are identified with these 23 more methylated CpGs including CD molecules Type I classical cadherins and Peptidyl arginine deiminases (both: p=5.2E-3, FDR-adjusted p=3.4E-2).
Association with air pollutants in the Comparative Toxicogenomics Database
The analysis did not reveal any links to air pollutants, as there is currently not enough data on air pollution to factor into biological pathway analyses. However, a search of the description and page index of each gene provided information on reported chemicals related to air pollution in the Comparative Toxicogenomics Database.54  All but three genes were associated with chemical(s) found in air pollution e.g. “Benzo(a)pyrene”, “7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide”, “smoke” and even “particulate matter” (Table 2). 
Diseases for which the identified genes are enriched
The gene enrichment analysis also identified the following diseases that associated with six of the genes identified with the significant CpG sites in this study
· SEPT9 is associated with Orbital separation diminished, hereditary neuralgic amyotrophy (HNA), Brachial Plexus Neuritis, Epiphyses, hemoglobinopathies.
· NIN is associated with Orbital separation diminished, Seckel syndrome, HNA, Spondyloepimetaphyseal dysplasia with multiple dislocations, Lumbar scoliosis.
· JPH3 is associated with Huntington disease-like 2, Akinetic rigid syndrome, Brachial Plexus Neuropathies
· MYOM2 is associated with IgA myeloma, Osteosclerotic Myeloma
· BCL11A is associated with Amyotrophy, HNA, hemoglobinopathies, F-cell distribution, fetal hemoglobin levels
· PADI3 is associated with Uncombable hair, generalized trichodysplasia	
Are there any trends in the association between the frequencies of heavy vehicular traffic on the Isle of Wight and DNA methylation?
An initial ANOVA revealed a total of 24/35 CpGs with significantly different DNA-m (p<0.05) when those who reported no heavy vehicles (never) were compared with those who reported any heavy vehicular traffic (Table 4). Further evaluations (using never, seldom, 10 per day, 1-9 per hour, or >10 per hour levels) showed all 35 CpGs had significantly different DNA-m for at least one of the five categories of heavy vehicle traffic p≤0.01 (Table 4).
After adjusting for history of maternal smoking, environmental tobacco smoke exposure (0-4 yrs and/or at 10 yrs), SES, gender, BMI, current smoking status and/or exposure to smoke outside the home, 34 CpGs remained statistically significant depending on the category of heavy vehicle traffic frequency reported (p≤0.05, range for n=329 to 369) (Table 5). We also present results for linear models for the top 35 CpG sites identified with the ttscreening method after adjusting for all confounding factors considered a priori in this study, and the results are similar to Table 5 where associations are still present in 34/35 CpG sites for at least one category of the exposure variable (Table S1). 
In particular, we found 23 CpGs that were more differentially methylated (Fig 2). Nineteen of these 23 CpG sites are found in the body of the associated genes while the remaining four are located in promoter regions (TSS1500 and TSS200) (Table 3). Conversely of the 11 CpGs that were less methylated with increasing heavy vehicle traffic frequency (Fig 2), five are located in the body of the gene, an additional five are found in promoter regions and the last one is ~50kb upstream of TMEM161B (Table 3). Among subjects reporting the two highest heavy vehicle traffic frequencies: 1-9 per hour or >10 per hour, statistical significance was consistently reached for the differential methylation observed at these CpG sites (p≤0.05, Table 5). 
Stratification by current smoking status, revealed similar trends among smokers and nonsmokers. Although statistically significant differences were only detected for 12 CpGs among smokers and 26 CpGs among nonsmokers, mainly for those reporting >10 heavy vehicles per hour (Supplementary Tables S2 and S3 respectively). Regression results for males only revealed only 10 statistically significant CpG sites with differential methylation: seven were more methylated and three were less methylated (Table S4). Results for females indicated 31 significant CpGs with 22 more methylated and nine less methylated (Table S5).  The direction of methylation remained the same and the smaller number of significant CpG sites among male subjects is probably due to their smaller sample size in this birth cohort (n=124).

Results of replication and gene expression analysis
We replicated the findings for 31/35 CpG sites identified in a smaller sample of 140 newborns in the F2 generation. Two CpG sites: cg25895913 (LGI2) and cg00347824 (NSMAF) were associated with traffic frequencies and the direction of the effect was the same as in the F1 subset. The former CpG site had less methylation, while the latter had more methylation, with increasing vehicular traffic frequency respectively (Table 6). Then, the Spearman rank correlation analysis revealed seven CpG sites: cg24843003 (DAZAP1), cg03476673 (CRISPLD2), cg12417992 (SLC6A9), cg04154465 (WNT2B), cg24361098 (BCL11A), cg16668397 (JPH3) and cg17053854 (SEPT9) whose differential methylation were significantly correlated with gene expression (Table 7, partial r≤0.27, p-value≤0.05). For an additional three of these CpG sites: cg14162906 (TMEM222) and cg17053854 (SEPT9), there were marginal correlations with expression data from their associated genes (Table 7, 0.05> p-value≤0.06). 

Discussion
We aimed to answer two questions: (1) Which specific CpG sites are associated with heavy vehicular traffic in the birth cohort? (2) Are there any trends in the association between differential DNA methylation and the frequency of heavy vehicular traffic? Regarding the first question, we found 35 CpG sites to be associated with heavy vehicular traffic. These CpG sites were associated with 34 different genes (two CpG sites – cg11156891 and cg12407057 mapped to the same gene: ANKRD65). Additionally, 31 of these genes have been reported to be associated with air pollution related chemicals such as Benzo(a)pyrene in the Comparative Toxicogenomics Database. In adopting an epigenome-wide approach, as opposed to a candidate gene approach, our analysis adds novel information on epigenetic markers for traffic-related air pollution exposure. These exposure-associated changes in the epigenome could be used to identify exposure to air pollutants, particularly those from incomplete combustion of fuels such as diesel which is often used in buses and trucks.  With further research, it can also guide the development of effective clinical and public health interventions and reduce the burden of air pollution related health outcomes.
For the second question on assessing the association between differential DNA methylation and traffic-related air pollution, we found 23 CpGs that were more methylated, and 11 CpGs that were less methylated with increasing heavy vehicular traffic frequency for all subjects after adjusting for confounders. These associations between heavy vehicular traffic frequency and DNA-m measurements persisted after stratification by current smoking status for 26 and 12 CpG sites among nonsmokers and smokers respectively. Among subjects reporting the two highest heavy vehicular frequency levels: 1-9 per hour or >10 per hour, statistical significance was consistently reached for the differential methylation observed at these CpG sites (p≤0.05, Table 5). This exploratory study highlights the fact that epigenetic differences can be observed among subjects exposed to varying frequencies of local traffic. 
Our results suggest that exposure to emissions, presumably from the exhaust of heavy vehicles passing by the residences of study subjects, may have an impact on DNA methylation. It has been suggested that epigenetic states can convey susceptibility to air pollution, which can lead to biological changes, and ultimately, adverse health.47, 55 DNA methylation profiles can provide insight into aspects of biology such as gene activity and regulation, and our gene enrichment analysis offers examples of how the genes associated with the CpG sites are related to various molecular functions, pathways and some rare diseases. Based on the location of the CpG site such as promoter or body, altered methylation may lead to increased transcription, silencing, or altered splicing.56-59 Hence, a differential transcription level is only one of the consequences of DNA-m. For instance, it has been considered that methylation in promoter regions may lead to changes in  gene expression, i.e. gene silencing;60 and such changes can serve as putative markers or risk factors for altered susceptibility and/or disease states. Additionally, DNA-m can help in identifying CpG sites, and possibly genes, that are more susceptible to environmental exposures.61 
In a replication and gene expression analysis study among 140 newborns from the F2 generation, six out of the seven CpG sites that correlated with expression: cg24843003 (DAZAP1), cg12417992 (SLC6A9) cg04154465 (WNT2B), cg24361098 (BCL11A), cg16668397 (JPH3) and cg17053854 (SEPT9), are located in the bodies of the associated genes. The seventh, cg03476673, is found in the 5’UTR region of CRISPLD2. Of the remaining 23 CpG sites with corresponding expression data but no statistically significant correlations, three are located in the TSS1500 region including cg14162906 (TMEM222) which achieved a marginal significance. The rest are in the following regions: body of the associated gene (n=14), TSS200 region (n=2), 5’UTR region (n=2), ~50kb upstream of TMEM161B (n=1) and ~200kb upstream of SYT16 (n=1). The association of 31 out of 34 genes (identified from CpG sites in this study) to air pollution related chemicals adds plausibility to potential environment-gene interactions, and can contribute to emerging data that provide a more complete view of environmental exposures. We posit that traffic-related air pollution may be a plausible environmental exposure of interest on the Isle of Wight.
With increasing evidence that exposure to air pollution is associated with adverse health outcomes, biologically plausible mechanistic pathways of air pollution's effects such as oxidative stress, inflammation, coagulation, endothelial function and hemodynamic response, have been implicated. 62 Exposure to ambient particulate matter, which is known to be emitted from diesel truck traffic, is associated with decreased lung function and increases in respiratory disease and symptoms such as asthma exacerbation.8,46-61 Exposure to gaseous air pollutants, including nitrogen species (eg NO2, NO and NOx) are also associated with deleterious effects such as bronchial reactivity, airway oxidative stress, pulmonary and systemic inflammation. 63-66 Several epidemiologic studies have reported that short-term increases in ambient pollutants such as PM2.5 and nitrogen dioxide (NO2) are associated with increases in airway inflammation in children and adults.67-73 
A recent epigenome-wide meta-analysis by Gruzieva et al. provides evidence on the association between prenatal air pollution exposures and differences in the methylation of several genes in cord blood.74 In particular, the authors found significant associations between NO2 exposures and DNA methylation for CpG sites that mapped to genes in the solute carrier family (SLC), Family With Sequence Similarity (FAM), and Transmembrane proteins (TMEM). Five CpG sites [associated gene in square brackets]: cg12417992 [SLC6A9], cg14162906 [TMEM222], cg16147794 [SLC16A10], cg20747739 [FAM132A], cg21775675 [TMEM161B]) related to three gene superfamilies from the Gruzieva et al. meta-analysis were associated with heavy vehicular traffic frequency and DNA methylation in our study. The association of one of the CpG sites with FAM132A (codes for an important anti-inflammatory adipokine75), strengthens the hypothesis that inflammation may be a possible mechanism though which ambient air pollution affects human health.76
While underlying molecular alterations of air pollution mediated adverse health remain to be further investigated, another recent study with two European cohorts identified decreasing DNA-m on CpG island shores, shelves and gene bodies with increasing concentrations of nitrogen oxide (NO) species.77 NO species are currently the best available indicators of spatial variation and mixtures of outdoor urban air pollution such as traffic.78 Our analysis did not reveal CpG sites associated with the inflammatory genes mentioned in the above study, and to the best of our knowledge, the significant CpG sites reported in our study have not been reported in previous air pollution studies. This may be due to differences in (1) study populations, (2) exposure assessment and concentrations, (3) complex multiple biological pathways or (4) a combination of any of the previous three reasons. These newly identified CpG sites and associated genes are certainly worth exploring in larger cohorts.
In our study, the two CpG sites that were associated with vehicular traffic in both the F1 and F2 generation may be reflective of the effects of TRAP exposures at these two loci. It also suggests possible prenatal exposures to traffic-related air pollutants in the F2 generation. Secondly, correlation between DNA-m and gene expression at 7/31 CpG sites (and three marginal correlations) supports the hypothesis that DNA methylation is a potential mechanism through which traffic-related air pollutants can affect gene expression. Three of these seven CpG sites are associated with genes previously identified in the literature to be related to inhalation. For instance, CRISPLD2 has been identified as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells.79 WNT2B has been reported to be associated with embryonic origins of the lung since the inactivation of WNT2A and WNT2B, resulted in complete absence of lung development.80 Methylation of JPH3 from sputum samples is a sensitive and specific predictor of chronic mucous hypersecretion in former male smokers.81 The lack of 100% replication and correlation in our analysis may be due to small sample sizes and exposure misclassification from the use of questionnaire data rather than air pollution data (for instance the questionnaire administered at 18 years specified ‘heavy vehicle’ while the questionnaire during pregnancy only mentioned ‘vehicle’. While our results must be interpreted with caution, there are additional studies that add to the evidence that adverse effects of air pollution that can occur when one is exposed. A recent study, which did not replicate its results in a separate independent cohort, found that living close to major roadways at birth was associated with differential cord blood methylation.82 Another study, which was also not replicated in an independent cohort found signiﬁcant associations between long term air pollution exposure (NO2) and DNA methylation for seven CpG sites (Bonferroni corrected threshold p<1.2E-7).83
With continuing indication that exposure to ambient air pollutants may contribute to adverse public health,3, 84 further research is needed to identify the components of air pollution that determine  its toxicity and a pristine environment such as the Isle of Wight could offer a suitable environment to study ambient air pollutant toxicity. The constituents of the pollution potentially generated by heavy vehicles may need to be identified so that early preventative and possible control strategies can be targeted efficiently. Whether these findings raise the risk for future cellular malfunction and disease is unknown. One main reason for the persistence (or the lack thereof) of such findings, could be attributed to small sample sizes. In our case, the nonsmokers were consistently between 248 and 270 while smokers were between 78 and 95 subjects. Another reason could be due to the small magnitude effect sizes that are common with environmental epigenetic research.85 Profiling of the epigenome over time in this population will help improve understanding of TRAP exposures and how the epigenome responds to this stimuli. Additionally, we found that secondhand smoke exposure is represented by the questions posed to subjects about tobacco smoke exposures since these variables were associated with the methylation of cg07555921 (AHRR), while the exposure variable was not. Therefore, these observed effects of heavy vehicular traffic on DNA-m may be without the contribution of this type of air pollution. Further studies in the future may be needed to examine this in depth.

There are some limitations to this study. First in this study, our exposure variable of interest, heavy vehicular traffic frequency, was ascertained by questionnaire responses from study subjects and we did not attempt to conduct exposure assessment inside or outside their residences, and these analyses were based on current residences (at the time of the blood draw at 18 years old in the F generation) as opposed to conditions in former places of residence. Secondly, the associations observed in this study are informative. However, further analysis may be needed to assess other self-reported exposures such as tobacco exposures, particularly on a cumulative scale. Given that the data in this pilot study are from a birth cohort to which a third generation follow-up has been added, further investigation of the DNA-m of the same subset of this population at earlier time points or in their offspring could address some of these limitations. Thirdly, methylation data were obtained from whole blood but not from specific cell subgroups, due to cost, but while differential methylation may or may not be present in all cell subsets, we believe that important biological insights still may be gained from studying DNA methylation in whole blood.86 Moreover, we did adjust for the cell types in the screening step of the analysis, thereby overcoming this limitation. Additionally, multiple studies have validated the 450K DNA methylation array from Illumina87-89 and this assay is generally accepted in the scientific literature. Hence we did not see a necessity to additionally test the results of specific CpGs from the 450K DNA methylation array with methyl-specific qPCR. The use of bisulfite sequencing can be challenging, since it reduces genome complexity and some of the methods may not differentiate between methylcytosine and hydroxymethylcytosine. The incorporation of appropriate controls for bisulfite reactions and careful interpretation of DNA methylation level after accounting for cell types can overcome some of these challenges. 90 An overview of major difficulties related to bisulfite sequencing and how to overcome them are presented in the review by Li et al. 91 Although the correlations between CpG sites and expression data reached statistical significance, the coefficients were weak. One may consider this as a limitation of our study; however, gene expression is influenced by multiple factors and our analysis only focus on the role of DNA-m on gene expression. Future studies with large sample sizes need to further investigate associations between traffic-related DNA-m and gene expression, taking other factors such as genetic polymorphisms and network of related genes, into consideration. Finally, since this is the first study that shows an effect of varying heavy vehicular traffic frequency on DNA-m among residents on the Isle, further replication of these associations in an independent cohort is needed.

Conclusions 
Our findings reveal differences in DNA methylation in participants who reported higher heavy vehicular traffic frequencies when compared to participants who reported lower frequencies. Such findings may be attributed to TRAP exposure and suggest that further studies are needed. 

Materials and Methods
Study Population
Subjects in this study are from a whole population birth cohort established in 1989 on the Isle of Wight, UK, to prospectively study the natural history of allergies and asthma. This cohort has been previously described in detail elsewhere.92  Informed consents and detailed information from questionnaires were obtained from participants at recruitment and at each follow up year: 1, 2, 4, 10, and 18 years.93 The questionnaires for the entire birth cohort study are for study-specific objectives, while asthma and allergy symptom questions are from the validated International Study of Asthma and Allergies in Childhood (ISAAC).92 Local Research Ethics Committees approved of the parent study, and the Institutional Review Board at the Medical University of South Carolina approved the current study. In this exploratory analysis, we focus on 369 individuals (245 women and 124 men) with DNA methylation (DNA-m) measurements at age 18 years. Due to the original study question of inheritance via females, we included more females than males at 18 years.
DNA methylation analysis
DNA was extracted from peripheral blood samples and its concentration was determined by Qubit quantitation, as described previously.94 Genome-wide DNA methylation was assessed using the Illumina Infinium Human Methylation 450 beadchip (Illumina, Inc., CA, USA), which interrogates >484,000 CpG sites associated with approximately 24,000 genes. Arrays were processed and imaged using the manufacturer’s recommendations, as described elsewhere.95 Multiple identical control samples were assigned to each bisulfite conversion batch, and the samples were randomly distributed on microarrays to assess assay variability and to control batch effects respectively.  

Methylation levels (β values) were calculated for queried CpG loci using the methylation module of GenomeStudio software.96 DNA methylation levels for each CpG were estimated as the proportion of intensity of methylated (M) over the sum of methylated (M) and unmethylated (U) probes, β=M/[c+M+U] with c being a constant to prevent dividing by zero.97 DNA methylation levels were corrected for batch effect using ‘IMA’ and ‘ComBat’ packages in R.98  M-values were calculated as log2 ratio of the intensities of methylated probe versus unmethylated probe, and used in subsequent analysis.99 The detection p-value for each CpG site was used as a quality control measure of probe performance and CpG sites with: 1) detection p-value>0.01 in >10% of the samples, and 2) probe- single-nucleotide polymorphism (SNPs) excluded from all analyses.
We estimated the proportion of cell types in adult peripheral blood using the estimateCellCounts() function in minfi package following the Housman approach100 using the adult reference panel.101
Exposure Assessment
The exposure variable of interest, the frequency of heavy vehicular traffic, was determined through questionnaire responses from the subjects to the question: How often do heavy vehicles (e.g. trucks/buses) pass your house or on the street less than 100 meters away? The five-point response included: never, seldom, 10 per day, 1-9 per hour or >10 per hour. We also assessed answers to other air pollution related questions such as “How often do cars pass your house or on the street less than 100 meters away?” and “How frequently are you annoyed by outdoor air pollution (from traffic industry, etc) in your home if you keep the window open?”. All subjects were approximately 18 years old when the questionnaire containing these questions were administered. While we have not seen of any study in the literature that has used the same question to assess exposure to TRAP, others have used questionnaire-derived assessments as air pollution exposure variables. 102, 103 Others have used such questions along with proximity to roadways, air pollution measurements, land use regressions together with the validated and widely used  International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire to successfully characterize health effects of interest.104-106
Covariates of interest 
For this exploratory study, the covariates of interest obtained from the subjects’ mothers were as follows: 1) gender 2) maternal smoking status during pregnancy obtained from questionnaires at birth of the subject; 3) tobacco smoke exposure obtained through questionnaires completed at birth and at ages 1, 2, 4 and 10 years. Other covariates were obtained from the questionnaire administered to the subjects at age 18: 4) socio-economic status (SES) ascertained from the question “what is your family’s annual income (estimate)?” 5) current smoking status, and age subject started to smoke if applicable, 6) exposure to smoke outside the home ascertained by the question “are you regularly exposed to smoking outside the home?” 7) body mass index (BMI) calculated from height and weight measurements obtained during the 18 year follow-up, using the following formula: weight (kg)/height (m)^2. In addition, we considered the type of residential property the subjects lived in (rented privately, rented council/housing association, owned privately or other), whether the subjects were still living with their parents, and the duration of living in the present house (obtained in the course of the 4 year follow-up).
Statistical analysis
Descriptive statistics and chi square tests were employed to assess whether the 369 subjects in this study were representative of the total birth cohort. Then we conducted statistical analyses in two main steps: 
Step 1: Epigenome-wide association analysis (EWAS)
Screening tool. We employed ttScreening package (an epigenome-wide DNA methylation sites screening tool) to examine CpGs that are potentially associated with the frequency of heavy vehicles passing by subjects’ homes at age 18 years. This approach to screen epigenome-wide data was used since it generally performs better and has the potential to control both types I and II errors.107 Specifically, the ttScreening package conducts surrogate variable analysis, unexplained variation in the data is removed, prior to an iterative training-testing procedure. This training-testing method performs better than methods such as the false discovery rate (FDR) and the Bonferroni in reducing false positive and false negative results. In addition to providing internal validation, the use of training-testing builds more generalized models than those constructed by traditional methods, and can detect additional loci undetectable using traditional methods. 107
The analytical methods implemented in the package employed a screening process that filtered non-informative CpGs through 100 iterations of a training-and-testing (TT) process with robust regressions. We followed the default settings for the ttScreening method: a) 2/3 of the data for training , b) the “two-step” method for surrogate variable analysis  (sva.method),108 c) 100 iterations for the total number of screenings (iterations), d) 50% as the cutoff proportion of those 100 iterations (cv.cutoff), and e) 0.05 significance level for the training (train.alpha) and testing data (test.alpha). The 100 iterations are recommended by the authors of the ttScreening package to create a balance between computing efficiency and adequate resampling to arrive at true associations. Also 50% is the default for the cutoff proportion since the informative CpGs are usually sparse in comparison to the candidate CpG sites, and the authors’ simulations identified 50% cutoff percentage as suitable for small and large sample sizes.107 
The independent and dependent variables were heavy vehicular traffic frequency and DNA-m respectively. A CpG was selected as an informative site if it showed statistical significance in at least 70% of iterations. The ttScreening() function automatically adjusts for multiple testing using three methods, including FDR, Bonferroni, and the TT method.109 
CpG by CpG analysis. As an alternative to the ttscreening method, we also conducted multiple linear regressions with the M values of each CpG while adjusting for all covariates selected apriori and calculated adjusted p-values for the multiple comparisons (p.adjust( ) command in base R). The exposure variable in this case was classified as “Any” vs “No” heavy vehicular traffic frequency. All procedures in Step 1 were conducted with R (version 3.4.2).110
Tobacco smoke exposure. Prior epigenome-wide association studies have shown that the methylation of cg05575921 located in the aryl hydrocarbon receptor repressor (AHRR) gene is a robust indicator of tobacco smoke exposure.111, 112 Even in different demographics, smoking histories, and rates of false-negative self-report of smoking behavior, this CpG site can reliably detect smoking status.113 Additionally, a recent study revealed that high levels of recent secondhand smoke exposure was inversely associated with DNA methylation of cg05575921 in monocytes from nonsmokers, although the effects were weaker when compared to active smokers.114 Hence we conducted linear regression models with self-reported smoking status and secondhand smoke exposures to examine the relationships between this CpG site and tobacco smoke exposure, as well as our exposure variable: heavy vehicular traffic frequency.
Step 2: Associations between the frequency of heavy vehicular traffic and DNA-m 
To investigate preliminary associations with heavy vehicular traffic frequency, we assessed differences in unadjusted DNA-m of the CpGs identified in the ttscreening method in Step 1 using analysis of variance (ANOVA) on only heavy vehicular frequency. Then the CpGs were further tested in multiple linear models that included potential confounders to assess their association with the heavy vehicular traffic frequency. A general form of the model is seen in Equation (1):
 		(Equation 1) 
 refers to the DNA-m for the ith subject reporting vth category of heavy vehicular frequency, α is the intercept and ε is the error term. The coefficient  is the deviation of grand mean for vth category of heavy vehicle traffic frequency (Seldom, 10 per day, 1-9 per hour and >10 per hour) compared to never.  The lsmeans statement was used to derive model adjusted means. 
Modeling and variable selection 
For a covariate to be considered a confounder, the estimate of the regression coefficient for heavy vehicle traffic frequency in the reduced model (that excluded the confounder of interest), had to fall outside the range of 10% of the estimate of the full model (the full model includes all covariates considered apriori in this study).115 The final models for each CpG site included gender and any identified confounders. Models were assessed for all subjects and then stratified by gender and current smoking status since exposure to tobacco can lead to extensive genome-wide changes in DNA-m.116
Adjusted DNA-m means and trend test
We performed Dunnett’s tests to compare model adjusted (marginal) means from four heavy vehicle traffic frequency categories (seldom, 10 per day, 1-9 per hour or >10 per hour) against a control group mean (never) to check for statistically significant differences. We also used PROC IML's ORPOL function in SAS117 to obtain appropriate coefficients for contrast statements to test for linear trends in increasing heavy vehicular frequency with increasing or decreasing DNA-m measurements, only when marginal means were significantly different from the control mean (never category). When marginal means did not significantly differ from the control category, the results were not provided. P values <0.1 were considered statistically significant for the trend tests. Finally, marginal means for DNA-m were plotted by category of reported heavy vehicle traffic frequency. Step 2 was performed with the SAS statistical package (version 9.4; SAS Institute, Cary, NC, USA). All plots were derived using ‘ggplot’ function in R.

Replication and gene expression
Study population
Thirty one out of 35 significant CpG sites found in the present study for the 369 subjects in the F1 generation were tested in the DNA-m and gene expression data from cord blood in  the newborn cohort, the F2 generation (n=155, born 2006-2013). This step constitutes a replication of the CpGs in a semi-independent cohort. In the F2 generation, there were 76 males and 79 females and the average birthweight was 3459.3 g (standard deviation: 504.6). The median birthweight was 3515 g (n=148). The exposure variable was obtained from the questionnaire administered to the mothers during pregnancy. The mothers’ answers to this question was used as the exposure (independent) variable of interest: How often do vehicles pass your house or on the street less than 100 meters away? The answers were never, seldom, 10 per day, 1-9 per hour or >10 per hour. When a mother answered the question once instead of three times, this answer was assigned as the frequency of vehicles that passed by the home during the entire pregnancy. If she answered two or three times, the lowest frequency was assumed to be her exposure. This was to be conservative on their exposures since this pregnancy questionnaire did not specify ‘heavy vehicles’, compared to the question posed to them (F1 generation) at age 18. It also allowed for a distribution of responses as follows: Never (2), seldom (8), 10 per day (26), 1-9 per hour (39) and >10 per hour (72). Eight mothers did not provide an answer to this question during any of the three trimesters and were excluded from the remaining analysis. Also there were 31 out of 35 top CpG sites available for the F2 newborn subset.
Gene expression array
At birth, IoW F2 cord blood samples were collected into PAXgene Bone Marrow RNA Tubes and RNA extracted using PAXgene RNA kits (PreAnalytiX GmbH, Switzerland). RNA integrity was verified with the Agilent 2100 Bioanalyzer system. Genome-wide mRNA expression was assessed via one color (Cy3) experiments with the Agilent (Agilent Technologies, Santa Clara, CA) SurePrint G3 Human Gene Expression 8x60k v2 microarray kits. Array content was sourced from RefSeq, Ensembl, UniGene, and GenBank databases and provides full coverage of the human transcriptome in 50,599 biological features (including replicate probes and control probes). The oligos were 60mer in length and each transcript was tagged at least once and some had multiple tagging oligos for genes with documented splice variants. Data QC indices and analyses were performed with Agilent GeneSpring software. These data were then percent shift normalized and log2-transformed.
Statistical analysis
DNA methylation data: Linear regression models, Dunnett’s multiple comparison tests and trend tests were used to assess the relationship between the frequency of vehicular traffic and DNA methylation, as previously described for the subset from the F1 generation. The models were adjusted for gender and birthweight. Successful replication was defined as having the same direction of differential methylation and a p-value of less than 0.05.
Gene expression data: We calculated partial Spearman's rank correlations between the DNA-m at 31/35 CpG sites and gene expression data for the associated genes while controlling for cell types (Bcell, CD4T, CD8T, gran, mono, NK, and nRBC). Since cord blood includes nucleated red blood cells (nRBC) we used the cell references provided by Bakulski and colleagues.118, 119
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Figure 1. Results of gene enrichment analysis identifying potential pathway(s) associated with the genes identified with the significant CpG sites in this study. Specific details on the gene enrichment analysis can be found in the supplementary material provided.
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Figure 2. Adjusted means (with 95% confidence limits) for DNA-M of 35 significant CpG sites associated with the frequency of heavy vehicles that passed by subjects’ homes for a subset of the Isle of Wight birth cohort, F1 generation (range of sample size:   336 – 369). Adjustments depended on CpG site under consideration and included: Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and/or at 10 yrs); SES; BMI; Gender; Current smoking status; Exposure to smoke outside the home.

***	p<0.001
**	p<0.01
*	p<0.05
◌	p<0.1
Once the Dunnett’ tests provided statistical evidence of differences in marginal means of the heavy vehicular traffic frequency, a second test for trend is performed to assess a ‘dose-response’ relationship.



Table 1. Characteristics of sample population, in comparison to entire study population
* Percentage has been rounded up to whole numbers, where applicable
	Table 1: Comparison of population characteristics of participants in the whole cohort and those with DNA methylation at age 18 years

	
	Whole cohort (n=1313)
	Sample with DNA-m (n=369)
	p-value

	
	N(%)
	N(%)
	

	Gender
	
	
	<.0001

	Female
	660  (50.27)
	245 (66.4)
	

	Male
	653 ( 49.73
	124 (33.6)
	

	Maternal smoking status
	
	
	0.24

	No
	1002 (76.31
	292 (79.1)
	

	Yes
	305 (23.23
	75 (20.3)
	

	Unanswered
	6 ( 0.46
	2 (0.5)
	

	Frequency of heavy vehicles passing by home
	
	
	0.783

	>10 /hr
	274 ( 20.87
	77 ( 20.9)
	

	1-9 /hr
	223 (16.98
	69 (18.7)
	

	10 /day
	119 ( 9.06
	36 (9.8)
	

	Seldom
	427 (32.52
	120 (32.5)
	

	Never
	241 (18.35
	67 (18.2)
	

	missing
	29 (2.21
	
	

	Exposure to smoking outside home
	
	
	0.41

	Yes
	598 (45.54
	180 (48.8)
	

	No
	663 (50.50
	181 (49.1)
	

	Unanswered
	52 (3.96
	8 ( 2.2)
	

	Current smoking status
	
	
	0.3

	No
	910 ( 69.31
	270 (73.2)
	

	Yes
	368 (28.03
	95 (25.8)
	

	Unanswered
	35 (2.67
	4 (1.1)
	

	Any exposure to environmental tobacco
smoke (at 10 yrs)
	
	
	0.23

	No
	716 (54.5)
	223 ( 60.4)
	

	Yes
	492 (37.5)
	132 (35.8)
	

	Unanswered
	105 (8.0)
	14 (3.8)
	

	Any exposure to environmental tobacco smoke (at birth, 1 yr,
2 yr or 4 yrs)
	
	
	0.11

	No
	602 (45.8)
	186 (50.4)
	

	Yes
	708 (53.9)
	182 (49.3)
	

	Unanswered
	   3 (0.23)
	1 (0.27)
	

	Socio-economic status
	
	
	0.73

	High
	103 (7.84)
	33 ( 8.9)
	

	Mid
	952 (72.51)
	267 (72.4)
	

	Low
	177 (13.48)
	58 (15.7)
	

	Unanswered
	81 (6.17)
	11 (2.9)
	

	Living with parents
	
	
	0.11

	Yes
	1158 (88.19)
	342 ( 92.7)
	

	No
	129 (9.82)
	27 (7.3)
	

	Missing
	26 (1.98)
	
	

	Type of residential property
	
	
	0.78

	Rented privately
	145 (11..0)
	28 (7.5)
	

	Rented council/housing association
	209 (15.9)
	65 (17.6)
	

	Owned privately
	908  (69.1)
	271 (73.4)
	

	Other
	18 (1.37)
	5 (1.4)
	

	Missing
	33 (2.51)
	
	

	Median (p5, p95)

	Body mass index (BMI)
	22.1  (18.2, 32.1)
	22.5 (18.7, 32.1)
	0.09

	Age subject started smoking
	 15 (12, 17)
	15 (12, 17)
	0.88

	Time living in present house
	48 (6, 48)
	48 (6, 48) 
	0.48





Table 2. Summary of (a) CpG sites found this is exploratory study, (b) genes associated with the CpGs, (c) list of chemicals documented in the comparative toxicogenomics database that are related to air pollution. This information were obtained from the UCSC GenomeBroswer (GRCh37/hg19). 

	(a) CpG Site
	(b) Identified Gene in this study
	(c) Comparative Toxicogenomics Database Chemical (related to air pollution) 

	cg25895913
	CDH4
	Benzo(a)pyrene,7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

	cg11156891
	ANKRD65
	Benzo(a)pyrene

	cg12407057
	ANKRD65
	Benzo(a)pyrene

	cg20747739
	FAM132A
	Benzo(a)pyrene

	cg18565510
	ACAP3
	Benzo(a)pyrene

	cg24843003
	DAZAP1
	Benzo(a)pyrene, Air Pollutants, Occupational, 1-hydroxypyrene

	cg15730464
	LGI2
	Benzo(a)pyrene, Soot, Tobacco Smoke Pollution

	cg16196077
	RTKN2
	Benzo(a)pyrene, Ozone

	cg02707264
	MYRIP
	Benzo(a)pyrene

	cg03476673
	CRISPLD2
	7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

	cg07023532
	ACOT4
	Benzo(a)pyrene

	cg20255272
	VWA1
	None

	cg12417992
	SLC6A9
	Benzo(a)pyrene, Ozone, dibenzo(a,l)pyrene

	cg04154465
	WNT2B
	None

	cg12813768
	SYCP1
	None

	cg14162906
	TMEM222
	7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

	cg24361098
	BCL11A
	Benzo(a)pyrene

	cg16147794
	SLC16A10 
	Benzo(a)pyrene

	cg16668397
	JPH3
	None

	cg26419883
	TRPM5
	Benzo(a)pyrene

	cg21775675
	TMEM161B
	None

	cg04794690
	PADI3
	Benzo(a)pyrene, Particulate Matter

	cg06942649
	FBXO25
	Benzo(a)pyrene

	cg18459806
	NIN
	Benzo(a)pyrene, 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

	cg20631351
	PALM
	Smoke

	cg00347824
	NSMAF
	Benzo(a)pyrene

	cg17053854
	SEPT9
	Benzo(a)pyrene, 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

	cg25324786
	RASA3
	Benzo(a)pyrene, 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

	cg26720961
	TSNARE1
	None

	cg05575058
	FAM164A
	Benzo(a)pyrene

	cg15742605
	SAMD11
	Smoke

	cg26185508
	CDCP2
	None

	cg02378006
	UNC5B
	None

	cg08462127
	MYOM2
	Benzo(a)pyrene

	cg11017318
	SYT16
	None




Table 3. Descriptive statistics of the DNA-m of the significant CpG sites in whole blood samples at age 18 (n=369)
	Raw P-values from tt screening 
	Chromosome  (hg19)
	CpG site
	Location
	Coordinate (hg19)
	Minimum
	5th Pctl
	Median
	95th Pctl
	Maximum

	3.69E-06
	1
	cg25895913
	Body
	54619445
	-0.804
	-0.414
	0.025
	0.366
	0.612

	2.17E-06
	1
	cg11156891
	Body
	1373678
	-1.485
	-0.881
	-0.125
	1.191
	2.589

	6.84E-06
	1
	cg12407057
	Body
	44500834
	-0.971
	-0.517
	-0.087
	0.900
	2.540

	1.62E-06
	17
	cg20747739
	TSS1500
	75463180
	-0.812
	-0.358
	0.004
	0.335
	0.709

	8.53E-06
	14
	cg18565510
	Body
	51293793
	-0.897
	-0.500
	-0.002
	0.464
	0.844

	2.22E-05
	8
	cg24843003
	Body
	79578035
	-0.904
	-0.449
	0.003
	0.416
	1.093

	2.21E-05
	2
	cg15730464
	Body
	60748951
	-1.254
	-0.655
	0.016
	0.562
	0.825

	1.48E-05
	11
	cg16196077
	TSS200
	2434192
	-1.311
	-0.798
	-0.048
	0.880
	1.512

	7.14E-05
	1
	cg02707264
	5'UTR
	1366206
	-0.744
	-0.365
	0.005
	0.321
	0.634

	3.00E-05
	1
	cg03476673
	5'UTR
	1183257
	-1.149
	-0.598
	-0.015
	0.608
	1.208

	2.33E-04
	3
	cg07023532
	TSS1500
	39851931
	-0.968
	-0.505
	-0.013
	0.488
	1.229

	7.50E-05
	19
	cg20255272
	Body
	711001
	-1.700
	-1.046
	0.104
	0.460
	0.807

	5.26E-05
	1
	cg12417992
	Body
	113045271
	-0.572
	-0.347
	-0.025
	0.396
	0.716

	8.95E-05
	1
	cg04154465
	Body
	1238702
	-1.351
	-0.588
	0.004
	0.600
	1.390

	5.58E-05
	1
	cg12813768
	Body
	115398123
	-1.643
	-0.861
	0.002
	0.885
	1.441

	9.81E-05
	1
	cg14162906
	TSS1500
	27647606
	-0.713
	-0.392
	-0.004
	0.379
	0.803

	1.22E-04
	8
	cg24361098
	Body
	143386260
	-1.080
	-0.634
	0.015
	0.537
	0.996

	3.50E-05
	16
	cg16147794
	Body
	87720712
	-1.217
	-0.578
	-0.022
	0.660
	1.565

	1.20E-04
	5
	cg16668397
	Body
	87441487
	-0.565
	-0.386
	-0.008
	0.462
	0.785

	1.16E-04
	8
	cg26419883
	Body
	2017365
	-0.818
	-0.419
	-0.007
	0.418
	0.702

	1.52E-04
	13
	cg21775675
	~50kb upstream of TMEM161B
	114866221
	-0.987
	-0.460
	-0.005
	0.518
	1.296

	1.42E-04
	19
	cg04794690
	Body
	1409547
	-1.217
	-0.500
	0.002
	0.525
	0.719

	7.64E-05
	10
	cg06942649
	Body
	64028521
	-1.588
	-0.948
	0.016
	0.757
	1.066

	2.30E-04
	8
	cg18459806
	5'UTR
	436813
	-0.610
	-0.359
	0.002
	0.373
	0.807

	2.18E-04
	8
	cg20631351
	Body
	59571961
	-0.679
	-0.379
	-0.005
	0.362
	0.818

	2.01E-04
	20
	cg00347824
	Body
	60460465
	-1.267
	-0.538
	0.028
	0.458
	1.166

	4.21E-05
	1
	cg17053854
	Body
	17768059
	-0.474
	-0.289
	0.001
	0.277
	0.682

	2.55E-04
	1
	cg25324786
	Body
	879383
	-0.935
	-0.568
	0.021
	0.466
	0.985

	3.05E-04
	14
	cg26720961
	Body
	62279992
	-1.221
	-0.556
	-0.009
	0.583
	1.659

	4.63E-04
	4
	cg05575058
	TSS1500
	25087441
	-0.907
	-0.455
	-0.029
	0.459
	0.804

	3.39E-04
	6
	cg15742605
	Body
	111405660
	-0.645
	-0.417
	-0.023
	0.531
	1.064

	2.17E-04
	10
	cg26185508
	TSS200
	73026288
	-0.909
	-0.493
	-0.007
	0.487
	0.948

	1.12E-04
	1
	cg02378006
	Body
	1366274
	-1.212
	-0.576
	-0.015
	0.595
	1.240

	2.69E-04
	16
	cg08462127
	Body
	84870203
	-0.832
	-0.434
	0.004
	0.431
	0.724

	5.65E-04
	14
	cg11017318
	~200kb upstream of SYT16
	74057654
	-0.607
	-0.382
	0.004
	0.369
	0.772




Table 4. Analysis of variance for unadjusted DNA-M of CpG sites in whole blood samples at age 18 (n=369)
	CpG site
	Any (n=302) vs No (n=67) Heavy Vehicle Traffic Frequency
	 
	Five Categories of Heavy Vehicle Traffic Frequency: (1)Never (n=67), (2)Seldom (n=120), (3)10/day (n=36), (4)1-9/hr (n=69), (5)>10/hr (n=77)

	
	
	 
	

	
	Mean square
	F Value (df=1)
	P value
	 
	Mean square
	F Value (df=4)
	P value

	cg25895913
	0.53
	9.4
	0.002
	
	0.33
	6.1
	<.0001

	cg11156891
	4.55
	9.7
	0.002
	
	2.61
	5.7
	0.0002

	cg12407057
	4.55
	9.7
	0.002
	
	1.37
	5.2
	0.0004

	cg20747739
	0.30
	6.6
	0.01
	
	0.27
	6.2
	<.0001

	cg18565510
	0.84
	9.7
	0.002
	
	0.44
	5.2
	0.0005

	cg24843003
	0.97
	12.3
	0.0005
	
	0.40
	5.1
	0.0005

	cg15730464
	1.59
	13.0
	0.0004
	
	0.78
	6.6
	<.0001

	cg16196077
	1.32
	5.0
	0.03
	
	1.39
	5.5
	0.0003

	cg02707264
	0.06
	1.3
	0.3
	
	0.22
	5.1
	0.0006

	cg03476673
	1.38
	9.5
	0.002
	
	0.71
	5.0
	0.0007

	cg07023532
	1.62
	17.6
	<.0001
	
	0.51
	5.6
	0.0002

	cg20255272
	0.66
	3.6
	0.06
	
	0.73
	4.1
	0.003

	cg12417992
	0.37
	8.2
	0.0046
	
	0.20
	4.5
	0.001

	cg04154465
	0.48
	3.4
	0.07
	
	0.56
	4.0
	0.003

	cg12813768
	1.08
	4.3
	0.04
	
	1.13
	4.7
	0.001

	cg14162906
	0.49
	8.9
	0.003
	
	0.26
	4.7
	0.001

	cg24361098
	1.38
	11.1
	0.0009
	
	0.56
	4.6
	0.001

	cg16147794
	0.27
	1.8
	0.2
	
	0.81
	5.6
	0.0002

	cg16668397
	0.42
	6.8
	0.01
	
	0.24
	3.9
	0.004

	cg26419883
	0.25
	4.1
	0.05
	
	0.26
	4.4
	0.002

	cg21775675
	0.33
	3.7
	0.06
	
	0.36
	4.1
	0.003

	cg04794690
	1.31
	14.8
	0.0001
	
	0.49
	5.5
	0.0003

	cg06942649
	2.04
	8.2
	0.004
	
	1.06
	4.3
	0.002

	cg18459806
	0.29
	5.7
	0.02
	
	0.20
	4.1
	0.003

	cg20631351
	0.29
	5.5
	0.02
	
	0.18
	3.5
	0.008

	cg00347824
	0.62
	6.4
	0.01
	
	0.37
	3.9
	0.004

	cg17053854
	0.18
	5.9
	0.02
	
	0.13
	4.6
	0.001

	cg25324786
	0.15
	1.6
	0.2
	
	0.36
	4.0
	0.004

	cg26720961
	0.01
	0.1
	0.7
	
	0.61
	5.0
	0.0006

	cg05575058
	0.64
	8.6
	0.004
	
	0.27
	3.7
	0.006

	cg15742605
	0.21
	2.5
	0.1
	
	0.28
	3.5
	0.008

	cg26185508
	0.82
	9.4
	0.002
	
	0.39
	4.5
	0.002

	cg02378006
	0.39
	3.1
	0.08
	
	0.54
	4.5
	0.001

	cg08462127
	0.15
	2.2
	0.1
	
	0.30
	4.4
	0.002

	cg11017318
	0.28
	5.3
	0.02
	
	0.18
	3.5
	0.008




Table 5. Results for multiple linear regression models for CpG sites associated with the frequency of heavy vehicles passing by all subjects’ homes
	CpG
	Associated Gene
	Heavy Vehicle Frequency (ref=Never)
	Estimate
	Standard Error
	P value
	Significant covariates in final model
	Dunnett's test  (LSMEAN = Never)
	Linear trend test (F value, df=1)         p value
	Direction of Methylation

	cg25895913 (n=355)
	CDH4
	 
	 
	 
	 
	 
	 
	 
	↑

	
	
	 >10 /hr
	0.15
	0.04
	0.0002
	 Tobacco Smoke Exposure (at 10 yrs); Gender
	***
	18.16
	

	
	
	1-9 /hr
	0.17
	0.04
	<.0001
	
	***
	<.0001
	

	
	
	10 /day
	0.06
	0.05
	0.2
	
	
	
	

	
	
	Seldom
	0.05
	0.04
	0.2
	
	
	
	

	cg11156891 (n=329)
	ANKRD65
	
	
	
	
	
	
	
	↓

	
	
	 >10 /hr
	-0.48
	0.13
	0.0002
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	***
	14.49
	

	
	
	1-9 /hr
	-0.29
	0.13
	0.03
	
	*
	0.0002
	

	
	
	10 /day
	-0.19
	0.15
	0.2
	
	
	
	

	
	
	Seldom
	-0.12
	0.11
	0.3
	
	
	
	

	cg12407057 (n=329)
	ANKRD65
	
	
	
	
	
	
	
	↓

	
	
	 >10 /hr
	-0.33
	0.10
	0.0006
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	***
	15.51
	

	
	
	1-9 /hr
	-0.24
	0.10
	0.01
	
	*
	0.0001
	

	
	
	10 /day
	-0.08
	0.12
	0.5
	
	
	
	

	
	
	Seldom
	-0.07
	0.09
	0.4
	
	
	
	

	cg20747739 (n=362)
	FAM132A
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.14
	0.04
	<.0001
	Gender;  BMI
	***
	19.7
	

	
	
	1-9 /hr
	0.11
	0.04
	0.002
	
	**
	<.0001
	

	
	
	10 /day
	0.04
	0.04
	0.3
	
	
	
	

	
	
	Seldom
	0.03
	0.03
	0.4
	
	
	
	

	cg18565510 (n=362)
	ACAP3
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.20
	0.05
	<.0001
	Gender;  BMI
	***
	15.33
	

	
	
	1-9 /hr
	0.14
	0.05
	0.008
	
	**
	0.0001
	

	
	
	10 /day
	0.09
	0.06
	0.1
	
	
	
	

	
	
	Seldom
	0.07
	0.05
	0.1
	
	
	
	

	cg24843003 (n=369)
	DAZAP1
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.19
	0.05
	<.0001
	Gender
	***
	14.73
	

	
	
	1-9 /hr
	0.15
	0.05
	0.002
	
	**
	0.0001
	

	
	
	10 /day
	0.07
	0.06
	0.2
	
	
	
	

	
	
	Seldom
	0.09
	0.04
	0.03
	
	*
	
	

	cg15730464 (n=348)
	LGI2
	
	
	
	
	
	
	
	↓

	
	
	 >10 /hr
	0.28
	0.06
	<.0001
	Tobacco Smoke Exposure ( at 10 yrs); SES; Gender;  
	***
	20.56
	

	
	
	1-9 /hr
	0.17
	0.06
	0.006
	
	**
	<.0001
	

	
	
	10 /day
	0.03
	0.07
	0.7
	
	
	
	

	
	
	Seldom
	0.16
	0.05
	0.004
	
	**
	
	

	cg16196077 (n=336)
	RTKN2
	
	
	
	
	
	
	
	↓

	
	
	 >10 /hr
	-0.27
	0.09
	0.003
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  Current smoking status; Exposure to smoke outside the home
	**
	12.62
	

	
	
	1-9 /hr
	-0.25
	0.09
	0.007
	
	**
	0.0004
	

	
	
	10 /day
	-0.14
	0.11
	0.2
	
	
	
	

	
	
	Seldom
	0.02
	0.08
	0.8
	
	
	
	

	cg02707264 (n=329)
	MYRIP
	
	
	
	
	
	
	
	↓

	
	
	 >10 /hr
	-0.11
	0.04
	0.005
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	**
	14.16
	

	
	
	1-9 /hr
	-0.02
	0.04
	0.6
	
	
	0.0002
	

	
	
	10 /day
	0.01
	0.05
	0.7
	
	
	
	

	
	
	Seldom
	0.02
	0.03
	0.5
	
	
	
	

	cg03476673 (n=329)
	CRISPLD2
	
	
	
	
	
	
	
	↓

	
	
	 >10 /hr
	-0.23
	0.07
	0.0009
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	***
	9.07
	

	
	
	1-9 /hr
	-0.12
	0.07
	0.09
	
	◌
	0.003
	

	
	
	10 /day
	-0.11
	0.08
	0.2
	
	
	
	

	
	
	Seldom
	-0.08
	0.06
	0.2
	
	
	
	

	cg07023532 (n=362)
	ACOT4
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.18
	0.05
	0.0006
	Gender; BMI
	***
	4.39
	

	
	
	1-9 /hr
	0.23
	0.05
	<.0001
	
	***
	0.04
	

	
	
	10 /day
	0.21
	0.06
	0.0008
	
	***
	
	

	
	
	Seldom
	0.14
	0.05
	0.003
	
	**
	
	

	cg20255272 (n=348)
	VWA1
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.24
	0.07
	0.0009
	Tobacco Smoke Exposure (0-4 yrs only); Gender; BMI; SES; Current smoking status
	**
	13.83
	

	
	
	1-9 /hr
	0.13
	0.07
	0.08
	
	
	0.0002
	

	
	
	10 /day
	0.08
	0.09
	0.3
	
	
	
	

	
	
	Seldom
	0.001
	0.06
	1.0
	
	
	
	

	cg12417992 (n=362)
	SLC6A9
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.12
	0.04
	0.001
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs only); SES; Gender
	**
	7.91
	

	
	
	1-9 /hr
	0.11
	0.04
	0.003
	
	*
	0.005
	

	
	
	10 /day
	0.10
	0.04
	0.02
	
	◌
	
	

	
	
	Seldom
	0.04
	0.03
	0.2
	
	
	
	

	cg04154465 (n=351)
	WNT2B
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.23
	0.06
	0.0003
	SES; Gender;  BMI
	***
	16.12
	

	
	
	1-9 /hr
	0.17
	0.06
	0.008
	
	**
	<.0001
	

	
	
	10 /day
	0.11
	0.08
	0.2
	
	
	
	

	
	
	Seldom
	0.02
	0.06
	0.7
	
	
	
	

	cg12813768 (n=336)
	SYCP1
	
	
	
	
	
	
	
	↓

	
	
	 >10 /hr
	-0.34
	0.09
	0.0001
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  Current smoking status; Exposure to smoke outside the home
	***
	16.56
	

	
	
	1-9 /hr
	-0.18
	0.09
	0.04
	
	*
	<.0001
	

	
	
	10 /day
	-0.08
	0.11
	0.5
	
	
	
	

	
	
	Seldom
	-0.08
	0.08
	0.3
	
	
	
	

	cg14162906 (n=362)
	TMEM222
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.11
	0.04
	0.004
	BMI; Gender
	**
	5.45
	

	
	
	1-9 /hr
	0.13
	0.04
	0.002
	
	**
	0.02
	

	
	
	10 /day
	0.12
	0.05
	0.01
	
	*
	
	

	
	
	Seldom
	0.04
	0.04
	0.2
	
	
	
	

	cg24361098 (n=362)
	BCL11A
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.25
	0.06
	<.0001
	BMI; Gender
	***
	10.56
	

	
	
	1-9 /hr
	0.15
	0.06
	0.02
	
	*
	0.001
	

	
	
	10 /day
	0.15
	0.07
	0.04
	
	*
	
	

	
	
	Seldom
	0.13
	0.05
	0.02
	
	*
	
	

	cg16147794 (n=329)
	SLC16A10 
	
	
	
	
	
	
	
	↓

	
	
	 >10 /hr
	-0.19
	0.07
	0.006
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	**
	8.91
	

	
	
	1-9 /hr
	-0.07
	0.07
	0.3
	
	
	0.003
	

	
	
	10 /day
	-0.13
	0.08
	0.1
	
	
	
	

	
	
	Seldom
	0.06
	0.06
	0.4
	
	
	
	

	cg16668397 (n=362)
	JPH3
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.13
	0.04
	0.002
	BMI; Gender
	**
	10.56
	

	
	
	1-9 /hr
	0.13
	0.04
	0.003
	
	**
	0.001
	

	
	
	10 /day
	0.07
	0.05
	0.2
	
	
	
	

	
	
	Seldom
	0.03
	0.04
	0.4
	
	
	
	

	cg26419883 (n=362)
	TRPM5
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.15
	0.04
	0.0003
	BMI; Gender
	***
	13.64
	

	
	
	1-9 /hr
	0.06
	0.04
	0.2
	
	
	0.0003
	

	
	
	10 /day
	0.05
	0.05
	0.3
	
	
	
	

	
	
	Seldom
	0.03
	0.04
	0.5
	
	
	
	

	cg21775675 (n=329)
	TMEM161B
	
	
	
	
	
	
	
	↓

	
	
	 >10 /hr
	-0.17
	0.05
	0.001
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	**
	10.07
	

	
	
	1-9 /hr
	-0.05
	0.05
	0.3
	
	
	0.002
	

	
	
	10 /day
	-0.09
	0.06
	0.2
	
	
	
	

	
	
	Seldom
	0.002
	0.05
	1.0
	
	
	
	

	cg04794690 (n=362)
	PADI3
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.18
	0.05
	0.0005
	BMI; Gender
	***
	11.27
	

	
	
	1-9 /hr
	0.22
	0.05
	<.0001
	
	***
	0.0009
	

	
	
	10 /day
	0.08
	0.06
	0.2
	
	
	
	

	
	
	Seldom
	0.12
	0.05
	0.008
	
	**
	
	

	cg06942649 (n=362)
	FBXO25
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.26
	0.08
	0.002
	BMI; Gender
	**
	7.5
	

	
	
	1-9 /hr
	0.26
	0.09
	0.002
	
	**
	0.007
	

	
	
	10 /day
	0.22
	0.10
	0.03
	
	*
	
	

	
	
	Seldom
	0.09
	0.08
	0.2
	
	
	
	

	cg18459806 (n=329)
	NIN
	
	
	
	
	
	
	
	↓

	
	
	 >10 /hr
	-0.16
	0.04
	<.0001
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	***
	13.46
	

	
	
	1-9 /hr
	-0.07
	0.04
	0.07
	
	*
	0.0003
	

	
	
	10 /day
	-0.10
	0.05
	0.04
	
	*
	
	

	
	
	Seldom
	-0.03
	0.04
	0.4
	
	
	
	

	cg20631351 (n=362)
	PALM
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.12
	0.04
	0.001
	BMI; Gender
	**
	10.25
	

	
	
	1-9 /hr
	0.10
	0.04
	0.01
	
	*
	0.002
	

	
	
	10 /day
	0.07
	0.05
	0.2
	
	
	
	

	
	
	Seldom
	0.03
	0.04
	0.3
	
	
	
	

	cg00347824 (n=362)
	NSMAF
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.19
	0.05
	0.0003
	BMI; Gender
	***
	8.63
	

	
	
	1-9 /hr
	0.09
	0.05
	0.09
	
	◌
	0.004
	

	
	
	10 /day
	0.12
	0.06
	0.05
	
	◌
	
	

	
	
	Seldom
	0.06
	0.05
	0.2
	
	
	
	

	cg17053854 (n=348)
	SEPT9
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.09
	0.03
	0.003
	Tobacco Smoke Exposure (at 10 yrs ); BMI; Gender
	**
	13.15
	

	
	
	1-9 /hr
	0.09
	0.03
	0.003
	
	**
	0.0003
	

	
	
	10 /day
	0.04
	0.04
	0.3
	
	
	
	

	
	
	Seldom
	0.01
	0.03
	0.8
	
	
	
	

	cg25324786 (n=336)
	RASA3
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.15
	0.05
	0.005
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  Current smoking status; Exposure to smoke outside the home
	**
	17.15
	

	
	
	1-9 /hr
	0.09
	0.05
	0.09
	
	◌
	<.0001
	

	
	
	10 /day
	-0.03
	0.06
	0.7
	
	
	
	

	
	
	Seldom
	-0.03
	0.05
	0.5
	
	
	
	

	cg26720961 (n=336)
	TSNARE1
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.12
	0.06
	0.05
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  Current smoking status; Exposure to smoke outside the home
	◌
	9.55
	

	
	
	1-9 /hr
	0.03
	0.06
	0.7
	
	
	0.002
	

	
	
	10 /day
	-0.01
	0.08
	0.9
	
	
	
	

	
	
	Seldom
	-0.10
	0.06
	0.09
	
	◌
	
	

	cg05575058 (n=329)
		FAM164A



	
	
	
	
	
	
	
	

	
	
	 >10 /hr
	-0.16
	0.05
	0.001
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	**
	7.77
	↓

	
	
	1-9 /hr
	-0.08
	0.05
	0.09
	
	◌
	0.006
	

	
	
	10 /day
	-0.10
	0.06
	0.1
	
	
	
	

	
	
	Seldom
	-0.06
	0.04
	0.2
	
	
	
	

	cg15742605 (n=329)
	SAMD11
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.19
	0.05
	0.0003
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	***
	18.74
	

	
	
	1-9 /hr
	0.08
	0.05
	0.1
	
	
	<.0001
	

	
	
	10 /day
	0.04
	0.06
	0.5
	
	
	
	

	
	
	Seldom
	-0.01
	0.05
	0.9
	
	
	
	

	cg26185508 (n=362)
	CDCP2
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.15
	0.05
	0.002
	BMI; Gender
	**
	5.48
	

	
	
	1-9 /hr
	0.18
	0.05
	0.0005
	
	***
	0.02
	

	
	
	10 /day
	0.17
	0.06
	0.005
	
	**
	
	

	
	
	Seldom
	0.07
	0.04
	0.1
	
	
	
	

	cg02378006 (n=329)
	UNC5B
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.19
	0.06
	0.001
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	**
	15.56
	

	
	
	1-9 /hr
	0.07
	0.06
	0.2
	
	
	<.0001
	

	
	
	10 /day
	0.001
	0.07
	1.0
	
	
	
	

	
	
	Seldom
	-0.0001
	0.05
	1.0
	
	
	
	

	cg08462127 (n=329)
	MYOM2
	
	
	
	
	
	
	
	↑

	
	
	 >10 /hr
	0.13
	0.05
	0.006
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	**
	6.48
	

	
	
	1-9 /hr
	0.04
	0.05
	0.4
	
	
	0.01
	

	
	
	10 /day
	0.11
	0.06
	0.06
	
	◌
	
	

	
	
	Seldom
	-0.02
	0.04
	0.7
	
	
	
	

	cg11017318 (n=329)
	SYT16
	
	
	
	
	
	
	
	NA

	
	
	 >10 /hr
	-0.06
	0.04
	0.1
	Maternal Smoking; Tobacco Smoke Exposure (0-4 yrs and at 10 yrs); SES; Gender;  BMI; Current smoking status; Exposure to smoke outside the home
	
	1.37
	

	
	
	1-9 /hr
	-0.05
	0.04
	0.2
	
	
	0.2
	

	
	
	10 /day
	-0.08
	0.05
	0.1
	
	
	
	

	
	
	Seldom
	0.0001
	0.04
	1.0
	
	 
	 
	



***	p<0.001
**	p<0.01
*	p<0.05
◌	p<0.1
Once the Dunnett’ tests provided statistical evidence of differences in marginal means of the heavy vehicular traffic frequency, a second test for trend is performed to assess a ‘dose-response’ relationship.


	Table 6. Results for linear models for CpG sites associated with the frequency of vehicles passing by homes of study subject during pregnancy
	

	CpG
	Associated Gene
	Heavy Vehicle Frequency (ref=Never)
	Estimate
	Standard Error
	P value
	Significant covariates in final model
	Dunnett's test  (LSMEAN = Never)
	Linear trend test (F value, df=1)         p value
	Direction of Methylation in F2 generation
	Direction of Methylation in F1 generation

	cg15730464 (n=140)
	LGI2
	
	
	
	
	
	
	
	↓
	↓

	
	
	 >10 /hr
	-0.02
	0.01
	0.072
	Gender; Birthweight
	
	3.22
	
	

	
	
	1-9 /hr
	-0.02
	0.01
	0.040
	
	0
	0.07
	
	

	
	
	10 /day
	-0.02
	0.01
	0.095
	
	
	
	
	

	
	
	Seldom
	-0.02
	0.01
	0.118
	
	
	
	
	

	cg00347824 (n=140)
	NSMAF
	
	
	
	
	
	
	
	↑
 
	↑
 

	
	
	 >10 /hr
	0.02
	0.01
	0.018
	Gender; Birthweight
	*
	7.36
	
	

	
	
	1-9 /hr
	0.02
	0.01
	0.017
	
	*
	0.008
	
	

	
	
	10 /day
	0.01
	0.01
	0.032
	
	0
	
	
	

	
	
	Seldom
	0.01
	0.01
	0.120
	
	 
	 
	
	


***	p<0.001
**	p<0.01
*	p<0.05
◌	p<0.1
Once the Dunnett’ tests provided statistical evidence of differences in marginal means of the heavy vehicular traffic frequency, a second test for trend is performed to assess a ‘dose-response’ relationship.


	

Table 7. Partial Spearman rank correlation coefficients between DNA-m and gene expression in the cord blood of 155 newborns born to a subset of the 369 subjects from the Isle of Wight Cohort 

	CpG
	Direction of Methylation
	Associated Gene
	Gene expression
	Partial correlation coefficient (Spearman)
	p value

	cg25895913
	↑
	CDH4
	A_21_P0009987
	-0.09
	0.29

	cg25895913
	↑
	CDH4
	A_23_P17593
	0.01
	0.92

	cg25895913
	↑
	CDH4
	A_33_P3310976
	-0.07
	0.40

	cg20747739
	↑
	FAM132A
	A_32_P75792
	-0.01
	0.91

	cg18565510
	↑
	ACAP3
	A_33_P3230290
	0.01
	0.93

	cg18565510
	↑
	ACAP3
	A_33_P3398564
	0.04
	0.61

	cg24843003
	↑
	DAZAP1
	A_23_P165247
	0.19
	0.021

	cg24843003
	↑
	DAZAP1
	A_33_P3359590
	-0.18
	0.028

	cg15730464
	↓
	LGI2
	A_33_P3358397
	-0.04
	0.59

	cg15730464
	↓
	LGI2
	A_33_P3393655
	0.03
	0.70

	cg16196077
	↓
	RTKN2
	A_21_P0007001
	0.02
	0.78

	cg16196077
	↓
	RTKN2
	A_21_P0007002
	-0.09
	0.30

	cg16196077
	↓
	RTKN2
	A_24_P13041
	0.06
	0.45

	cg16196077
	↓
	RTKN2
	A_32_P471485
	-0.04
	0.61

	cg16196077
	↓
	RTKN2
	A_33_P3219527
	-0.09
	0.25

	cg02707264
	↓
	MYRIP
	A_23_P326760
	0.05
	0.58

	cg03476673
	↓
	CRISPLD2
	A_23_P106602
	-0.20
	0.015

	cg12417992
	↑
	SLC6A9
	A_21_P0001726
	-0.02
	0.85

	cg12417992
	↑
	SLC6A9
	A_21_P0001727
	-0.04
	0.61

	cg12417992
	↑
	SLC6A9
	A_23_P11984
	0.27
	0.0011

	cg12417992
	↑
	SLC6A9
	A_33_P3402615
	0.06
	0.45

	cg04154465
	↑
	WNT2B
	A_23_P138352
	0.16
	0.0495

	cg12813768
	↓
	SYCP1
	A_23_P722
	-0.02
	0.83

	cg14162906
	↑
	TMEM222
	A_23_P97442
	0.09
	0.30

	cg14162906
	↑
	TMEM222
	A_33_P3259722
	0.15
	0.0622

	cg24361098
	↑
	BCL11A
	A_21_P0002443
	0.08
	0.33

	cg24361098
	↑
	BCL11A
	A_21_P0002444
	-0.10
	0.24

	cg24361098
	↑
	BCL11A
	A_21_P0002445
	-0.10
	0.22

	cg24361098
	↑
	BCL11A
	A_24_P402588
	0.11
	0.17

	cg24361098
	↑
	BCL11A
	A_24_P411186
	0.26
	0.0012

	cg24361098
	↑
	BCL11A
	A_33_P3249589
	-0.01
	0.91

	cg24361098
	↑
	BCL11A
	A_33_P3249595
	-0.06
	0.44

	cg16147794
	↓
	SLC16A10
	A_24_P98047
	0.08
	0.31

	cg16147794
	↓
	SLC16A10
	A_33_P3308512
	0.07
	0.43

	cg16668397
	↑
	JPH3
	A_21_P0008991
	0.07
	0.37

	cg16668397
	↑
	JPH3
	A_21_P0008992
	0.16
	0.05

	cg16668397
	↑
	JPH3
	A_21_P0008993
	0.20
	0.015

	cg16668397
	↑
	JPH3
	A_21_P0008994
	-0.01
	0.88

	cg16668397
	↑
	JPH3
	A_24_P150791
	0.16
	0.048

	cg16668397
	↑
	JPH3
	A_33_P3423721
	-0.20
	0.016

	cg26419883
	
	TRPM5
	A_23_P87279
	-0.03
	0.71

	cg21775675
	↓
	TMEM161B
	A_21_P0000876
	-0.02
	0.83

	cg21775675
	↓
	TMEM161B
	A_21_P0004517
	-0.05
	0.54

	cg21775675
	↓
	TMEM161B
	A_23_P156355
	-0.04
	0.60

	cg04794690
	↑
	PADI3
	A_23_P126869
	0.00
	0.97

	cg06942649
	↑
	FBXO25
	A_21_P0005641
	-0.06
	0.49

	cg06942649
	↑
	FBXO25
	A_21_P0005919
	-0.01
	0.92

	cg06942649
	↑
	FBXO25
	A_21_P0010595
	0.07
	0.40

	cg06942649
	↑
	FBXO25
	A_21_P0012049
	0.09
	0.30

	cg06942649
	↑
	FBXO25
	A_21_P0013463
	0.09
	0.30

	cg06942649
	↑
	FBXO25
	A_21_P0013464
	-0.01
	0.93

	cg06942649
	↑
	FBXO25
	A_21_P0013530
	0.07
	0.42

	cg06942649
	↑
	FBXO25
	A_21_P0013531
	0.01
	0.92

	cg06942649
	↑
	FBXO25
	A_23_P94159
	0.04
	0.65

	cg06942649
	↑
	FBXO25
	A_33_P3841368
	0.04
	0.60

	cg18459806
	↓
	NIN
	A_23_P396353
	0.06
	0.47

	cg18459806
	↓
	NIN
	A_24_P412512
	0.02
	0.84

	cg00347824
	↑
	NSMAF
	A_23_P134809
	0.01
	0.88

	cg17053854
	↑
	SEPT9-
	A_21_P0009276
	-0.11
	0.17

	cg17053854
	↑
	SEPT9-
	A_21_P0009277
	-0.15
	0.06

	cg17053854
	↑
	SEPT9-
	A_21_P0009278
	-0.07
	0.37

	cg17053854
	↑
	SEPT9-
	A_21_P0009279
	-0.20
	0.014

	cg17053854
	↑
	SEPT9-
	A_21_P0009280
	-0.01
	0.92

	cg17053854
	↑
	SEPT9-
	A_21_P0009396
	-0.13
	0.13

	cg25324786
	↑
	RASA3
	A_21_P0008023
	-0.01
	0.89

	cg25324786
	↑
	RASA3
	A_33_P3262515
	-0.05
	0.56

	cg26720961
	↑
	TSNARE1
	A_21_P0005916
	0.00
	0.96

	cg26720961
	↑
	TSNARE1
	A_33_P3291567
	-0.06
	0.44

	cg26720961
	↑
	TSNARE1
	A_33_P3297126
	-0.09
	0.30

	cg15742605
	↑
	SAMD11
	A_21_P0001250
	-0.06
	0.45

	cg15742605
	↑
	SAMD11
	A_33_P3818959
	-0.02
	0.77

	cg26185508
	↑
	CDCP2
	A_33_P3259522
	-0.05
	0.51

	cg02378006
	↑
	UNC5B
	A_23_P52336
	0.04
	0.61

	cg02378006
	↑
	UNC5B
	A_32_P52153
	0.13
	0.11

	cg08462127
	↑
	MYOM2
	A_21_P0005646
	-0.07
	0.39

	cg08462127
	↑
	MYOM2
	A_23_P258912
	0.04
	0.64

	cg11017318
	↓
	SYT16
	A_24_P143324
	0.02
	0.85




	Table 8. Results for linear models for methylation of cg07555921 (AHRR), considered to be a marker for smoking

	Parameter
	Estimate
	Standard Error
	P-value

	Model 1: Exposure variable only: Frequency of heavy vehicular traffic (ref=Never) n=369
	
	

	Heavy vehicular traffic frequency: >10 /hr
	-0.10
	0.11
	0.4

	Heavy vehicular traffic frequency: 1-9 /hr
	0.13
	0.11
	0.2

	Heavy vehicular traffic frequency: 10 /day
	-0.05
	0.13
	0.7

	Heavy vehicular traffic frequency:  Seldom
	0.08
	0.10
	0.4

	
	
	
	

	Model 2: Smoking related variables only n=342
	
	

	Maternal smoking
	-0.07
	0.09
	0.4

	Current smoking status
	0.77
	0.08
	<.0001

	Smoking outside the home
	0.09
	0.07
	0.2

	Any environmental tobacco smoke exposure
	-0.16
	0.08
	0.05

	Tobacco smoke exposure at 0-4 years
	0.09
	0.06
	0.2

	Tobacco smoke exposure at 10 years 
	0.15
	0.09
	0.09

	
	
	
	

	Model 3: All variables considered apriori among all subjects n=329
	
	
	

	Heavy vehicular traffic frequency: >10 /hr
	-0.14
	0.10
	0.2

	Heavy vehicular traffic frequency: 1-9 /hr
	-0.04
	0.10
	0.7

	Heavy vehicular traffic frequency: 10 /day
	-0.08
	0.13
	0.5

	Heavy vehicular traffic frequency:  Seldom
	-0.04
	0.09
	0.7

	Maternal smoking
	-0.10
	0.10
	0.3

	Current smoking status
	0.75
	0.08
	<.0001

	Smoking outside the home
	0.11
	0.07
	0.1

	Any environmental tobacco smoke exposure
	-0.18
	0.09
	0.04

	Tobacco smoke exposure at 0-4 years
	0.09
	0.07
	0.2

	Tobacco smoke exposure at 10 years 
	0.17
	0.09
	0.06

	High SES (ref=Low SES)
	-0.22
	0.13
	0.1

	Mid SES  (ref=Low SES)
	-0.04
	0.09
	0.6

	BMI
	0.02
	0.01
	0.007

	Gender
	0.04
	0.07
	0.5

	
	
	
	

	Model 4: All variables considered apriori among current smokers n=77
	
	

	Heavy vehicular traffic frequency: >10 /hr
	-0.13
	0.30
	0.7

	Heavy vehicular traffic frequency: 1-9 /hr
	0.48
	0.34
	0.2

	Heavy vehicular traffic frequency: 10 /day
	0.41
	0.37
	0.3

	Heavy vehicular traffic frequency:  Seldom
	0.20
	0.31
	0.5

	Maternal smoking
	-0.07
	0.26
	0.8

	Age subject started smoking
	0.20
	0.06
	0.002

	Smoking outside the home
	0.79
	0.32
	0.02

	Any environmental tobacco smoke exposure
	-0.33
	0.23
	0.2

	Tobacco smoke exposure at 0-4 years
	0.14
	0.20
	0.5

	Tobacco smoke exposure at 10 years 
	0.32
	0.25
	0.2

	High SES (ref=Low SES)
	-0.68
	0.44
	0.1

	Mid SES  (ref=Low SES)
	-0.04
	0.24
	0.9

	BMI
	0.03
	0.02
	0.1

	Gender
	0.04
	0.21
	0.9





RASA3 and JPH3


CRISPLD2. CDCP2, VWA1 and LGI2


(p=2.9E-4, FDR-adjusted p=4.0E-2).


DAZAP1, TMEM222 and ACAP3


(p=1.3E-5, FDR-adjusted p=2.8E-2). 


CRISPLD2, ANKRD65, FBXO25, VWA1, C1QTNF12, UNC5B, SEPT9, ACAP3 and JPH3


co-expression association with genes that are up-regulated in the human microvascular endothelial cells (HMEC) upon expression of TP53 off adenoviral vector


associated with both ligand-gated calcium channel activity and calcium-release channel activity


identified in the biological pathway for encoding structural extra-cellular matrix (ECM) glycoproteins


showed a co-expression relationship with Human pancreas Kim 07 34 genes 


(p=3.5E-5, FDR-adjusted p=4.0E-2).


(p=3.8E-4, FDR-adjusted p=3.1E-2 for both molecular functions)
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