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Abstract

Uncertainty quantification (UQ) due to seismic ground motions variability is an important task in risk-
informed condition assessment of infrastructures. Since performing multiple dynamic analyses is computa-
tionally expensive, it is valuable to develop a series of forecasting models based on the unique ground motion
characteristics.

This paper discusses the application of six different machine learning techniques on forecasting the struc-
tural behavior of gravity dams. Various time-, frequency-, and intensity-dependent characteristics are ex-
tracted from ground motion signals and used in machine learning. A large set of about 2,000 real ground
motions are used, each includes about 35 meta-features. The major outcome of this study is to show the
applicability of meta-modeling-based UQ in seismic safety evaluation of dams. As an intermediary result, the
advantages of different machine learning algorithms, as well as meta-feature selection possibility is discussed
for the current dataset. This paper proposes a feasibility study to reduce the computational costs in UQ of
large-scale infra-structural systems.
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1. Introduction1

Risk-based performance assessment of structures and infrastructures has become a vital task in the last2

three decades. More specifically, the growing interest in performance based earthquake engineering (PBEE)3

[1] has made the risk-informed condition assessment a systematic method. Developing accurate material4

constitutive models, smart and fast solution algorithms, verification and validation, and finally quantifying5

the existing uncertainties are only some of the challenges that engineers and scientists face.6

Many different, and sometimes diverse, techniques have been proposed for uncertainty quantification (UQ)7

of engineering structures. Most of them, at least for the problems with implicit limit state (LS) functions,8

recommend a variation of the Monte Carlo Simulation (MCS) family (i.e. Latin Hypercube Sampling (LHS),9

Importance Sampling, etc.). Although this technique is promising in general, a large number of required10

simulations (to result in a stable solution) makes its application limited to simple cases, or very important11

projects.12

Machine learning techniques (and surrogate meta-models in general) are effective ways to reduce the13

computational burden, and bring UQ to daily engineering practice. Application of the surrogate meta-14

models in dam engineering can be summarized in two categories: 1) Structural health monitoring to compile15

and post-process the measured data from instrumentation and use them for future predictions [2], and 2)16

Machine learning-based methods to be applied on the outcome of numerical simulations to develop further17

surrogate models. The focus of this paper will be on the second part, and thus, the existing literature about18

this concept is reviewed.19
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1.1. Literature Review20

Chen et al. [3] proposed an improved response surface meta-model (RSM) for linear dam-foundation21

systems to evaluate the probability of sliding. Concrete and rock’s modulus of elasticity are assumed to be22

random variables (RVs). Karimi et al. [4] proposed an artificial neural network (ANN) procedure for system23

identification of concrete gravity dams which is coupled by a hybrid finite element (FE)-boundary element24

analysis. This technique is used to predict the dynamic characteristics of an empty dam. The foundation25

is assumed to be rigid, and the analyses are all performed in a linear elastic range. The conjugate gradient26

and the Levenberg-Marquardt algorithms are used to train the ANNs. Fan et al. [5] combined the RSM with27

a finite-step method to compute the explicit performance function of the system and reliability index. The28

failure path and the functionality failure mode were computed for a roller compact concrete (RCC) dam.29

Gu et al. [6] used the least-squares support vector machine (LS-SVM) in back analysis of RCC dams,30

and determined the complex mechanical properties. First, the initial samples are uniformly designed and31

then, a transversely isotropic model is established to train the samples. Next, the complex nonlinear rela-32

tionship between relative values of hydraulic components of dam displacements and mechanical parameters33

is established. Moreover, Su et al. [7] applied a similar idea on gravity dams with the extension of a criterion34

for optimal selection of parameters in back analysis. In this technique, the key index of optimal selection is35

the parameter sensitivity. The uniform design method was combined with an ANN and SVM to build the36

mapping relationship between multiple material parameters and dam responses at different positions.37

Gaspar et al. [8] proposed a probabilistic thermal model to propagate uncertainties on some RCC’s38

physical properties where a thermo-chemo-mechanical model was used to describe the dam behavior. A global39

sensitivity analysis was performed considering a bi-dimensional random field heterogeneity. Cheng et al. [9]40

adopted a kernel principle component analysis (KPCA) method to eliminate the effect of environmental41

variables and monitor the health of the dam under varying conditions. Gu et al. [10] developed a new42

method based on the chaos genetic optimization algorithm to inverse the actual initial zoning deformation43

modulus and to determine the inversion objective function using the dam displacement measured data and44

the FE method.45

Rezaiee-Pajand and Tavakoli [11] introduced an efficient method for crack detection in concrete gravity46

dams using a hybrid genetic algorithm (GA) and FE methods. The GA identifies the location and magnitude47

of cracks in dams by minimizing the difference between the analytical responses and the measured ones. Xin48

and Chongshi [12] applied credibility theory into the stability failure analysis of a gravity dam. Stability49

was evaluated as a hybrid quantity considering both the fuzziness and randomness of the failure criterion,50

design parameters and measured data. Furthermore, Cao et al. [13] studied the stability of high arch dam51

abutments as a fuzzy random event. The instability risk ratio models were proposed based on credibility52

theory and were calculated using the MCS and fuzzy random post-processing.53

In a series of papers, Hariri-Ardebili and Pourkamali-Anaraki [14, 15] showed the application of several54

machine learning techniques in multi-hazard (i.e. seismic, hydrologic, and aging) reliability analysis of55

gravity dams. Both simplified linear elastic and nonlinear damage-based models were used. They showed the56

capability of machine learning techniques in classification and regression analysis with the specific application57

on gravity dams. Moreover, Hariri-Ardebili [16], Hariri-Ardebili and Boodagh [17] proposed a set of design58

of experiment (DOE) techniques in order to develop a polynomial-based surrogate model to quantify the59

material uncertainty in coupled dam-reservoir-foundation systems. DOEs such as two-level and three-level60

factorial designs, central composite design, Teguchi design, etc. were discussed in detail and the meta-models61

were validated by a large MCS-based dataset.62

1.2. Contributions and Organization63

In this paper, the application of different machine learning techniques is discussed on forecasting the64

structural responses of gravity dams subjected to the impact of multiple ground motions. Various futures of65

ground motion signals are extracted, and used in data forecasting and prediction. To the best of the authors’66

knowledge, this problem has not been addressed yet in the field of structural and earthquake engineering.67

Various researchers’ work on the concept of so-called optimal intensity measure (IM) selection for specific68

structural systems has been discussed [18, 19, 20, 21, 22, 23, 24, 25]; however, none of these used a very large69

dataset of as-recorded ground motions (e.g. ∼2,000 as of this paper) to correlate the quantity of interest70

(QoI) and IM parameters. Therefore, the novelty of this paper can be summarized as follows:71
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� It is one of the few applications of machine learning techniques in concrete dam engineering. The72

majority of the current applications are limited to monitoring data and not FE-based data.73

� It contains one of the largest datasets used in seismic analysis of an engineering structure (more74

specifically dams). None of the previous applications in dam engineering exceeded the use of 100-20075

ground motion signals.76

� It compares and contrasts up to six machine learning techniques on an identical engineering problem77

with aleatory uncertainty.78

� It determines the efficient and optimal ground motion IM parameters using forecasting techniques. The79

traditional technique to identify an optimal IM uses concepts like efficiency, practicality, sufficiency,80

proficiency, and hazard compatibility [25].81

� It contains a discussion on meta-feature selection in machine learning, and its direct application in82

engineering problems with aleatory uncertainty.83

The rest of the paper is organized as follows: first, a list of unique ground motion signatures is provided84

in Sec. 2, followed by the machine learning techniques used in this paper, Sec. 3. The case study FE model85

is explained in Sec. 4, data preparation and specific treatments are discussed in Sec. 5, and finally the results86

are presented in Sec. 6. The paper concludes with the major findings and also proposes for the future works87

in Sec. 7.88

2. Identification of the Unique Ground Motion Signatures89

Biometric recognition is an acceptable tool for identification and authentication in computer science.90

Biometrics refers to an automatic recognition of individuals using their physiological and/or behavioral91

specifications. Characteristics, such as eye scan, finger print, DNA test, and voice recognition are unique for92

each person. Having some or all these data, different persons can be distinguished/identified.93

Similarly, a recorded (i.e. real) earthquake ground motion has unique characteristics, mainly because it94

is generated from a specific fault rupture source at a unique location and time period, and is recorded at95

the specific location by a seismograph [26]. Therefore, the time- and frequency-dependent characteristics96

are also unique. Vector quantities, such as acceleration time history, Fourier amplitude, response spectrum,97

Arias intensity time history etc. are unique for a recorded ground motion. Figure 1 compares some of the98

human biometric characteristics and the ground motion identifiers.99

Earthquake 

Identity  

Biometric 

Identity  

Figure 1: Comparison between the human biometric characteristics and the earthquake ground motion identities

These unique characteristics of the ground motion records make the seismic response of the structural100

system very complicated (and unique). Thus, the dynamic response (i.e. QoI) of an engineered structure (e.g.101

displacements, stresses, damage pattern) highly depends on the input ground motion signal. To establish a102

one-by-one relationship between the input signal and the output QoI, it is important to present the ground103
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motion records with one or several scalar IM parameters. A wide range of time-, frequency-, spectral- and104

intensity-dependent IM parameters are summarized in Table 1. This list will be used to correlate the QoIs105

with the recorded ground motions. For each single ground motion signal, all NIM = 35 IM parameters can106

be extracted. Therefore, having Ngm ground motions, a matrix of XNgm×NIM
constructs the input domain.107

Table 1: A comprehensive list of ground motion IM parameters [25]

No. Description of IM Symbol Mathematical model
1 Total duration ttot t1.00IA − t0.00IA
2 Significant duration tsig t0.95IA − t0.05IA
3 Seismological duration D5−75 t0.75IA − t0.05IA
4 Peak ground acceleration PGA max (|ü(t)|)
5 Peak ground velocity PGV max (|u̇(t)|)
6 Peak ground displacement PGD max (|u(t)|)
7 Root-mean-square of acceleration aRMS

√
1
ttot

∫ ttot
0 (ü(t))2dt

8 Root-mean-square of velocity vRMS

√
1
ttot

∫ ttot
0 (u̇(t))2dt

9 Root-mean-square of displacement uRMS

√
1
ttot

∫ ttot
0 (u(t))2dt

10 Root-square of acceleration ars

√∫ ttot
0 (ü(t))2dt

11 Root-square of velocity vrs

√∫ ttot
0 (u̇(t))2dt

12 Root-square of displacement urs

√∫ ttot
0 (u(t))2dt

13 Arias intensity IA
π
2g

∫ ttot
0 (ü(t))2dt

14 Specific energy density SED
∫ ttot
0 (u̇(t))2dt

15 Cumulative absolute velocity CAV
∫ ttot
0 |ü(t)| dt

16 Cumulative absolute displacement CAD
∫ ttot
0 |u̇(t)| dt

17 Shaking intensity rate SIR (IA5−75)(D5−75)−1

18 Acceleration spectrum intensity ASI
∫ 0.5
0.1 Sa (T, ξ = 5%) dT

19 Velocity spectrum intensity V SI
∫ 2.5
0.1 Sv (T, ξ = 5%) dT

20 Displacement spectrum intensity DSI
∫ 5.0
2.0 Sd (T, ξ = 5%) dT

21 Effective peak acceleration EPA 1
2.5×0.4

×
∫ 0.5
0.1 Sa (T, ξ = 5%) dT

22 Effective peak velocity EPV 1
2.5×0.4

×
∫ 1.2
0.8 Sv (T, ξ = 5%) dT

23 Improved effective peak acceleration IEPA 1
2.5×0.4

×
∫ Ta

p +0.2

Ta
p −0.2 Sa (T, ξ = 5%) dT

24 Improved effective peak velocity IEPV 1
2.5×0.4

×
∫ Tv

p +0.2

Tv
p −0.2 Sv (T, ξ = 5%) dT

25 First-mode spectral acceleration Sa(T1) Sa(T1, ξ = 5%)
26 First-mode spectral velocity Sv(T1) Sv(T1, ξ = 5%)
27 First-mode spectral displacement Sd(T1) Sd(T1, ξ = 5%)

28-31 Higher-mode spectral acceleration Sa(Ti) Sa(Ti, ξ = 5%), i = 2, ..., 5
32 Spectral acceleration at predominant period Sa(Taccelp ) -

33 Spectral velocity at predominant period Sv(T velp ) -
34 Sustained maximum acceleration SMA Abs max ü(t) sustained for 3 cycles
35 Sustained maximum velocity SMV Abs max u̇(t) sustained for 3 cycles

Note: ü(t), u̇(t) and u(t) are acceleration, velocity and displacement time histories, respectively.

So, ideally, having these meta-features a ground motion record can be isolated, and the structural re-108

sponses associated with it can be identified. This is one of the objectives of this paper, and thus, a series of109

forecasting techniques are adopted to achieve this goal.110

3. Forecasting Techniques: A Brief Overview111

Forecasting techniques can be used effectively to predict the dam response, and reduce the total number112

of required simulations. Six forecasting techniques are used in this paper. They are briefly reviewed in113

this section for those engineers (and not the data scientists) who are not familiar with the fundamentals of114

forecasting.115

3.1. Decision Tree Regression (DTR)116

Decision tree regression (DTR) is a non-parametric and nonlinear machine learning technique. It takes117

advantage of a hierarchical structure for recursively segmenting training data, and therefore, it has great118
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flexibility and interpretability in data analysis. The most common strategy to induct a decision tree is119

greedy top-down construction which recursively partitions the data into subsets until the stopping criterion120

has been met. The stopping criterion is crucial so that it can prevent growing branches that does not affect121

the tree quality [27]. Some of the stopping rules are:122

1. The number of observations in a node is less than a pre-specified threshold.123

2. All observations assigned to a node belong to the same class.124

3. Depth of the node is more than some pre-specified limit.125

4. Nodes’ purity is more than a specified threshold [28].126

Decision trees are often prone to over-fitting according to high variance, and hence, methods are proposed127

to find the right sized tree. The most famous method is pruning trees [29], so in order to have a high quality128

tree, first a complete tree is built, and then inefficient sub-trees, that do not influence the cost function129

significantly, are removed.130

The evaluation function used for splitting classification trees in the CART (classification and regression
tree) method is Gini index, which describes the chance of coming up with a false node for the data if the
node was chosen randomly from the nodes’ distribution. The Gini index can be stated as:

Gini(t) = 1−
∑

[P (K|t)]2 (1)

where P (K|t) is the proportion of finding the data class K in the node t (node purity). The objective is to131

minimize Gini index. From the formula it can be inferred that if the classification is done in a perfect way,132

the Gini index would be zero [30, 31].133

3.2. Random Forest (RF)134

A random forest (RF) is a kind of ensemble classifier, made by a combination of decision trees which are135

created by recursive partitioning. The idea behind RF is to combine the results of many different decision136

trees to overcome the vulnerabilities of the individual one. In order to construct a RF model, with the help137

of bootstrapping, new sets of training data are created, and then, RF randomly chooses the variable for each138

set (for better diversity in results). Next, RF starts creating decision trees for each group with respective139

variables. Finally, the outcome forest of trees is combined and the average of the predictions is considered140

as the result [32].141

For testing the accuracy of a RF Out-of-Bag (OOB) data, which are the samples that were not selected
in bootstrapping in the RF procedure, can be used. An error will be assigned by applying the RF model to
the OOB data, and hence, the performance of the RF model can be examined. One key parameter in a RF
algorithm is the importance score (IS) which is described as:

IS =
1

Ntree

B∑
i=1

(Erri − Err∗i ) (2)

Where Ntree is the number of trees in RF model, and Erri and Err∗i are the errors of each tree applied on142

OOB and perturbed OOB data, respectively. More details can be found in Thakur and Kumar [33]. The143

benefit of using RF is to have a reduced variance in comparison to a single tree so that over-fitting will not144

happen [30].145

3.3. Tree Bagging (TB)146

Bagging, a short term for “Bootstrap Aggregation”, is an ensemble technique that uses bootstraps to147

generate samples of the original data. In prediction problems, this algorithm averages the prediction over148

a collection of bootstrap samples and the class of a new observation is the most selected class among the149

number of trees constructed on bootstrap samples [34]. In this algorithm, trees are grown deep without150

pruning. However, by building sufficient trees, over-fitting is less probable. A pseudo-code for tree bagging151

is shown in algorithm 1. In this method, similar to the RF data, the OOB data can be used to justify the152

performance of the model [35].153
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Algorithm 1 Tree Bagging pseudo-code

1: for i = 1:Ntree do
2: Generate bootstrapped sample of the data
3: Create un-pruned decision trees on the samples
4: Average on all the outcomes
5: end for

3.4. Extreme Gradient Boosting (XGBoost)154

XGBoost is a statistical nonlinear machine learning algorithm used for functions such as, classification,155

regression and ranking [36]. Scalability and speed of XGBoost in comparison to other solutions has made156

it very popular among most successful algorithms used by data scientists [37]. It is an implementation of157

the gradient boosted trees algorithm [38]. In order to combine a set of weak learners to develop a strong158

learner, two ways are proposed, either first build a set of learners and then, average the result like the RF159

and TB methods; or sequentially add learners in order to optimize the cost function in a step-wise manner160

as in boosting methods [39].161

In additive learning of XGBoost, the first learner is fitted on the whole data, and the next learners are
fitted to the residuals of the former ones. In fact, each learner is fitted using information from previously
fitted learners. The general function for the prediction at each step is presented as follows:

f̂ tj =

t∑
i=1

f i(xj) = f̂ t−1j + f t(xj) (3)

where f i(xj) is the learner at step i, f̂ tj is prediction at step t, and xj is the input variable.162

Unlike the RF and TB, gradient boosting methods are prone to over-fitting, if the number of trees is too163

large. A computation procedure for preventing over-fitting can be found in Fan et al. [40]. More information164

about computation of XGBoost in R Statistical [41] can be found in Chen and Guestrin [37].165

3.5. Artificial Neural Networks (ANN)166

ANNs are used to map an input to a desired output like a mathematical function. They are inspired by167

the behavior of neurons located in the brain [42]. ANNs are non-parametric estimators that can be used for168

several kinds of tasks, such as forecasting, clustering, function approximation and optimization [43]. The169

inputs for a neural network are vectors of variables corresponding to an observation. These vectors are170

weighted and combined by linear filters and become the inputs of the hidden layers where the nonlinear171

computation is performed on the inputs. Network output will be calculated by an activation function which172

receives outputs of hidden layers and calculates the output of the network [44].173

The mathematical explanation of a multilayer perception, which is one of the most preferred models of
ANN, can be presented as [45]:

Ft = β0 +

N∑
n=1

βnW

θ0i +

m∑
j=1

θnjxj

 (4)

Where m is the number of input parameters (xj), N is the number of nodes in the hidden layer, θnj is the174

weight of the output layer, and βn is the weight of the hidden layer. Here the zeroth indices in the weight175

coefficients refer to the bias nodes in each layer.176

One may use either sigmoid or hyperbolic tangent functions as a transfer function, W . The whole process177

of learning is achieved by adjusting the weight parameters and the network is updated each time it has been178

fed by a new dataset. After the parameters are updated, the desired outcome will be the classification of179

data. More on this can be found in Ragg et al. [46].180

3.6. Support Vector Regression (SVR)181

Originally, this method was proposed to handle the forecasting problems [47] in a set of data
{(x1, y1) , (x2, y2) , ..., (xn, yn)} where (xi, yi) ∈ R2 are the respective input and output. In this algorithm,
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with the help of Kernel functions, the input data is mapped to a new higher dimensional space which is
called the feature space [14]. In the feature space, an estimated function is considered as:

g(x) = αx+ β (5)

which is, in fact, the equation for a hyper-plane.182

Then, the cost function can be described as:

C(λ) =
λ

n

n∑
j=1

Er (fj , yj) +
1

2
‖η‖2

Er (fj , yj) = |f − y| − r |f − y| ≥ r or 0 otherwise

(6)

where λ is the penalty parameter, 1
2 ‖η‖

2
is the regularization, r is the tube size for the error function Er,183

and f is the desired quantity.184

Finally, with the help of Lagrange multipliers, the equation for the hyper-plane can be rewritten as:

g (x, βi, β
∗
i ) =

n∑
i=1

(βi − β∗i )K (x, xi) + c (7)

where K (x, xi) is the Kernel function. Further details on SVR can be found in Vapnik [48].185

4. Case Study Description186

In this paper, Pine Flat gravity dam, Figure 2(a), is selected as a case study. This dam is often used187

as a test-bed in the literature [49]. The dam height is 121.92 m and its length (cross-stream direction) is188

560.83 m. The thickness at the base and the crest are 95.81 and 9.75 m, respectively. Figure 2(b) shows189

the cross-section of the tallest non-overflow monolith including the mesh in Figure 2(c). The finite element190

program EAGD [50] is used to analyze the dam, including the reservoir water and foundation effects. The191

updated version of the code includes new compliance data for the dam-foundation interaction (DFI). The192

foundation rock is idealized as a homogeneous, isotropic, viscoelastic half-plane. The DFI effects are included193

by adding the dynamic stiffness matrix for the rock region in the dam’s equation of motion [51]. The reservoir194

water is idealized by a fluid domain of constant depth and infinite length in the upstream direction. The195

dissipation of hydrodynamic pressure waves by the reservoir bottom materials is accounted for by applying196

a boundary condition which partially absorbs the incident waves. Since the system is analyzed in a linear197

elastic condition, a relatively coarse mesh of 450 four-node plane strain elements are used for the dam domain.198

Applied loads on the system are: 1) self-weight, 2) hydrostatic pressure, and 3) seismic loads.199

One may notice this is a relatively simple yet accurate enough procedure to obtain the dynamic response200

of a concrete dam. The modern analysis techniques adopt fine mesh for the concrete dam specially in the201

vicinity of the neck and heel. The Eulerian or Lagrangian fluid elements might be used for the reservoir, and202

a massed foundation with absorbing boundary conditions (e.g. infinite elements, perfectly matching layers)203

is required. The authors have already implemented all those advanced techniques in several publications204

[52, 25]. All of these techniques affect the dynamic response; however, their relative importance is kept205

nearly constant. This is the reason to adopt a simplified technique in this paper to present a framework206

(and not the exact results) for statistical analysis of dam response.207

Standard material properties are assumed for the mass concrete and the foundation rock. Concrete208

properties are: modulus of elasticity, Ec = 24 GPa, Poisson’s ratio, νc = 0.2, mass density, ρc = 2470 kg/m3,209

and constant hysteretic damping, ηc = 0.06. On the other hand, for the foundation rock the following210

material properties are considered: Ef = 21.5 GPa, νf = 0.33, ρf = 2680 kg/m3, and ηf = 0.05. Moreover,211

the wave reflection coefficient for the reservoir bottom materials, αw, is assumed to be 0.50. Investigation212

of the material uncertainty is not within the scope of this paper, and studied elsewhere [16].213

Since the main objective in this paper is to establish a model for the ground motion record-to-record214

(RTR) variability, only the horizontal component of the seismic excitations is applied at the foundation base215

(whereas the recorded earthquake signal is on the free-field). Therefore, a de-convolution process is required216

to determine the motion at the rigid base boundary.217
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(a) Dam and its surrendering environment
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(b) Geometry and dimensions
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(c) Mesh, index points, and QoIs

Figure 2: Pin Flat gravity dam

Displacement and stress responses are local QoIs and easy to process for the structural systems. Therefore,218

in this paper, crest horizontal displacement and vertical stress at the vicinity of the dam’s heel are used.219

Based on Figure 2(c), there is a stress concentration at the dam-foundation interface which might affect the220

forecasting analysis. Thus, one level (or element) higher than the heel is considered as an index point for the221

stress response. This figure also shows the displacement time history at the crest, and the non-concurrent222

envelope of the vertical stresses within the dam body. Note that in the context of linear elastic analyses, crest223

displacement and the non-concurrent stress envelope are the most representative quantifiers for performance224

evaluation [53].225

5. Data Preparation226

5.1. Inputs and Outputs Data Mining227

The applied ground motions are downloaded from PEER [54] website (only the NGA-West2). A total228

of 1,929 ground motion records are used. These signals are directly obtained from the first 2,000 records in229

the PEER database (the remaining 71 records are either unavailable or numerically did not converge for this230

example). Since a very large dataset of input ground motions are used for the simulations, no ground motion231

selection or scaling technique is required. This allows investigation of different ground motions with various232

time- and frequency-domain signatures. This type of wide-range analysis technique is usually referred to as233

“Cloud Analysis” [55]. For each input ground motion, the resulted QoI parameters are recorded in an array.234

It is noteworthy that one may use a smaller ground motion database which is specifically selected for the site235

and according to structural characteristics [56, 57]. This may reduce the variance and improve the machine236

learning algorithms.237

Figure 3 illustrates the general trend for some of the selective IM parameters resulted from 1,929 ground238

motions. In most of the cases, there exists a decaying trend for the observed parameters by increasing the239

value of the quantity. Although it seems that a log-normal distribution [25] can be fitted to these data, it is240

beyond the scope of this paper.241

In addition, Figure 4 illustrates the correlation among the IM parameters (Note: DSI and EPV are not242

shown since the precision of the initial Matlab code to extract this information was not enough).243

Furthermore, Figure 5(a) compares two QoIs (i.e. displacement and stress) at the index points. There244

exists a linear relationship between them; however, the dispersion is still considerable. A statistical summary245

of the response parameters (from all data) is as follows:246

� ∆H
max: minimum = 1.08, lower adjacent = 1.08, 25th percentile = 7.14, median = 14.82, mean = 23.50,247

75th percentile = 28.74, upper adjacent = 61.04, maximum = 224.74.248

� σyy
max: minimum = -0.09, lower adjacent = -0.09, 25th percentile = 0.15, median = 0.45, mean = 0.77,249

75th percentile = 0.99, upper adjacent = 2.24, maximum = 8.70.250
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Figure 3: Distribution of the selective input parameters for 1929 ground motion signals

Figure 4: Correlation map between input IM parameters

For each response quantity, two sets of boxplots are shown in Figures 5(b) and 5(c). The left one (labeled251

as “all data”) is based on all the observations. For a more accurate prediction, some of the large data are252
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eliminated and thus, updated boxplots (the right plots specified with a limit) are also prepared in each case.253

The truncation values are shown along the vertical axis.254
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Figure 5: Relationship between two response quantities resulted from 1929 ground motion signals

5.2. Error Functions255

Regression error functions are essential to calculate the prediction error of the meta-methods. Although
there are many metrics, the root-mean-square-error (RMSE) and the symmetric mean absolute percent error
(SMAPE) functions are adopted in this paper:

RMSE =

√∑N
i=1 (ŷi − yi)2

N
(8)

SMAPE =
1

N

N∑
i=1

|ŷi − yi|
|ŷi|+|yi|

2

=
2

N

N∑
i=1

|ŷi − yi|
|ŷi|+ |yi|

(9)

where the yi and ŷi are real and predicted response parameters, and N is the number of observations.256

5.3. Cross Validation257

To improve the training models, a particular sample of train-dataset is reserved with the aim of validating258

the trained model before finalizing it. By cross validation which validates the model on different subsets259

of data, its effectiveness is improved to predict the target value for test-dataset. In order to add the cross260

validation, the “traincontrol” function [58] is used with method of “cv” for 10 different divisions of the261

train-dataset (this method is called “10-fold” cross validation).262

In the k-fold cross validation, the train data set is partitioned randomly into k equal size subsets. For263

tuning model parameters k − 1 subsamples are used as training data, and the remaining one is adopted for264

validation. This process is continued until each of the k parts are used exactly once as a validation set. The265

final estimation could be an average of k produced estimation. Figure 6 illustrates a scheme of a 10-fold266

cross validation process.267

5.4. Applied Forecasting Models268

To predict the QoIs, the machine learning techniques in Sec. 3 are applied on the dataset. Following is269

a short description on the applied methods for those want to reproduce the results. Note that the raw data270

can be provided by the first author upon request.271

DTR: In this method, a simple DTR is used to divide the data into subgroups based on different exogenous272

variables. As a regression model, predicting value will be the average target value of each subgroup.273

For implementing this method, an “rpart” function [59] with 10-fold cross-validation, and a maximum274

depth of 10 for the tree is used.275
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Figure 6: Cross validation with 10 folds

RF: In the RF method, the prediction is based on the bagging simple decision trees with the difference that276

in each splitting section just a subset of predicting variables are used. Randomly choosing a subset of277

predicting variables helps the model to have less computation and to avoid the over-fitting problem.278

For implementing this method, the “randomForest” function [60] with “ntree = 500” (number of trees)279

is used (which indicates the number of trees to be grown).280

TB: In the tree bagging, some of the weak CART models are aggregated to create a more accurate predictor.281

Besides, this method helps to reduce variance and avoid over-fitting. The bagging function from “ipred”282

library [61], with “nbag = 25” (number of bag) tuning parameters are used (which indicates the number283

of bootstrap replications). Also, the 10-fold cross validation is used as a training control.284

XGBoost: The extreme gradient boosting model is an optimized implementation of a boosting method285

which has a good performance with fast calculation. This model is implemented by the “xgboost”286

function [36] with “nround = 100” that indicates the maximum number of iterations and for this287

number the learning rate is set to 0.2.288

ANN: In this part, a common neural network is used to predict the target value. The predicting variables’289

values feed into the neural network, then by passing through two hidden layers the predicted values are290

estimated. For this method, an “H2O” deep learning function [62] with a rectifier activation function291

is used. For the number of hidden layer nodes, a convenient rule is used which is based on the mean292

value of input and output variables. Therefore, two hidden layers are used in which the first one has293

15 nodes and the second one includes 7 nodes. Besides, the number of epochs (iterations) is set to 200.294

SVR: In support vector regression model, each sample is mapped into a higher dimensional space with295

predicting features, and then a hyperplane is found which divides the samples into two subsets. For296

this method, “SVM” function from “e1071” library [63] is used. In this function, the “type = eps-297

regression” parameter is adopted to indicate that the problem is regression with a default radial kernel298

function. With the aim of better differentiation, the “epsilon” tuning parameter is set to 0.01.299

6. Results and Discussion300

So far, all the fundamental background information as well as the data preparation and post-processing301

techniques are explained. In this section, the results are presented in two groups: 1) using all the ground302

motion meta-features in Table 1 (See Sec. 6.1), and 2) using only a subset of selective meta-features (See303

Sec. 6.2). Detailed information about meta-feature selection is presented in Appendix A.304

6.1. Employing All the Meta-Features305

This section investigates the quality of prediction based on different techniques. All the ground motion-306

dependent meta-features are employed. First, the raw correlation among the input IMs and two QoIs is307

shown in Figure 7. This is a simple direct correlation among each of 35 IM parameters and one of the system308

outputs (i.e. displacement or stress) which varies [−1,+1]. The major observations are:309
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� There is a high similarity between the displacement- and stress-based correlations.310

� First-mode spectral ordinates have the highest correlation with response quantities. This is also con-311

firmed with traditional structural dynamics [64].312

� Sd(T1) and Sa(T1) have the highest positive correlation (> 0.95).313

� Total and effective durations have the lowest (and negative) correlation with QoIs. This is consistent314

with the physics of the linear dynamic analysis, where the ground motion duration does not directly315

play an important role. Its effect is dominant in nonlinear analysis of brittle materials.316

(a) Displacements boxplots

(b) Stresses boxplots

Figure 7: Features correlation with two response quantities

Table 2: GOF for the displacement with all the meta-features

Train Test
RMSE SMAPE RMSE SMAPE

Decision Tree Regression 34.45 0.198 36.72 0.209
Tree Bagging 30.25 0.188 32.48 0.194
Random Forest 11.22 0.052 26.51 0.121
XG-Boost 1.72 0.014 27.88 0.126
Neural Network 23.35 0.143 25.53 0.139
SVR 21.58 0.103 29.02 0.128

Table 3: GOF for the stress with all the meta-features

Train Test
RMSE SMAPE RMSE SMAPE

Decision Tree Regression 1.306 0.614 1.513 0.540
Tree Bagging 1.119 0.497 1.229 0.430
Random Forest 0.434 0.125 1.115 0.237
XG-Boost 0.068 0.062 1.199 0.249
Neural Network 0.933 0.278 1.202 0.278
SVR 0.893 0.243 1.241 0.274
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Tables 2 and 3 provide a general overview on the Goodness-of-fit (GOF) by comparing the error functions317

resulted from six techniques used in this paper. For each response, the GOF is provided for the train and318

test data separately. The major observations are:319

� For displacement response:320

– For training data set the order of models from lowest to highest error functions is:321

* Based on RMSE (or SMAPE): XGB, RF, SVR, ANN, TB, DTR.322

– For test data set the order of models from lowest to highest error functions is:323

* Based on RMSE: ANN, RF, XGB, SVR, TB, DTR.324

* Based on SMAPE: RF, XGB, SVR, ANN, TB, DTR.325

� For stress response:326

– For training data set the order of models from lowest to highest error functions is:327

* Based on RMSE (or SMAPE): identical to the displacement.328

– For test data set the order of models from lowest to highest error functions is:329

* Based on RMSE: RF, XGB, ANN, TB, SVR, DTR.330

* Based on SMAPE: RF, XGB, SVR, ANN, TB, DTR.331

� The order of models for the training dataset is identical for displacement and stress (either RMSE or332

SMAPE).333

� For all the data sets and error functions, the DTR provides the worst prediction.334

� For the training data set and any error function, XGBoost is the best model.335

� For the test date set, the RF is the best model. Again, the second rank belongs to XGBoost.336

� Figure 8 illustrates the quality of the prediction for all six models and two QoIs. Deficiency of DTR337

and to some extent Tree Bagging is obvious. On the other hand, RF has a uniform trend along the338

equality axis.339

In addition to the above mentioned general discussion, the following model-based intermediary findings340

are important from the engineering and scientific points of view:341

� DTR charts for the displacement and stress responses are shown in Figure 9. In a decision tree, several342

nodes are connected until a result is reached. Each leaf node is presented as an if/then rule. Cases343

that satisfy the if/then statement are placed in the node. In a DTR, the output of each node is binary344

(i.e. yes/no) with a specific probability. The probabilities are narrowed down until the lowest level.345

Summation of all information gain at each level should be equal to 100%.346

Displacement and stress-based trees, in this example, have four levels with 8 final leafs. First of all,347

Figure 9 shows that among many meta-features Sd(T1), Sv(T1), Sa(T1) and SMA contribute to form348

a model with a major probability of occurrence. Second, the lighter color of a box/leaf shows the349

importance of that rule. Finally, these 8 leafs correspond to 8 layers of data available in Figure 8(a).350

Clearly, DTR provides a discrete prediction of the results.351

� Decision tree-based importance factors are obtained as:352

– For displacement: Sd(T1) = 3.015, Sa(T1) = 2.843, SMA = 1.872, Sv(T1) = 1.864, ...353

– For stress: Sv(T1) = 2.657, Sd(T1) = 2.648, Sa(T1) = 2.636, SMA = 2.418, PGA = 1.252, ...354

� Figures 10(a) and 10(b) present the evolution of the error function (RMSE) with respect to number of355

trees incorporated in the RF method. As seen, for any practical purposes, 100 trees for displacement356

response and 200 for the stress might be enough. The displacement response is converged earlier than357

the stress one.358
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(a) Decision tree regression (b) Tree bagging method

(c) Random forest method (d) XG-Boost model

(e) Neural Network model (f) Support vector regression

Figure 8: Quality of prediction based on different forecasting techniques and QoIs. In each sub-figure the left plot belongs to
the displacement and the right one shows the stress variation. In each plot, the horizontal axis is the computed finite element
model (i.e. true value) and the vertical axis is the predicted one based on machine learning. The solid black line presents the
equality line.

(a) Displacements (b) Stresses

Figure 9: Decision Tree regression chart with two response quantities

� Figures 10(c) and 10(d) illustrate the RMSE error function with respect to a number of iterations in359
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the XGBoost model. Again, it seems that for any practical purposes, using 100 iterations is enough to360

get a stable result. The optimal number of iterations is important to minimize the computational cost361

in a forecasting problem.362

(a) RF; Displacements (b) RF; Stresses (c) XGBoost; Displacements (d) XGBoost; Stresses

Figure 10: RMSE in train section for Random Forest and XGBoost models with two response quantities

� Finally, according to the ANN model, the most important relative meta-features can be summarized363

as:364

– For displacement: SMA > Sv(T vel
p ) > PGV > PGA > Sd(T1).365

– For stress: PGV > Sa(T1) > vrs > CAV > SED.366

As seen, nearly all the meta-features in the stress response, and the top ones in the displacement367

response are velocity-dependent IMs.368

6.2. Employing the Selective Meta-Features369

So far, all the existing meta-features (from Table 1) were used as input parameters of the meta-models370

to predict the target values. In this section, by implementing feature weighting methods, a subset of meta-371

features are selected which are labeled to be more significant than others. Six filtering methods have been372

applied from “FSelector” library [65] including: 1) Information Gain, 2) Information Gain Ratio, 3) Chi-373

square, 4) OneR, 5) Relief, and 6) Symmetrical Uncertainty. A brief summary of these techniques is presented374

in Appendix A for those readers interested in mathematical theories behind those names [66].375

The outcome of the meta-feature selection is shown in Figure 11 in which three subsets with 28, 19 and376

12 meta-features are chosen for displacement, and three subsets of 29, 19 and 11 meta-features are defined377

for stress response. The authors simply selected N top meta-features where there was a sudden slope change378

in the weight factors between the meta-feature N and N + 1. This can be easily visualized from Figure 11379

in which the selected meta-features have a darker color.380

Tables 4 and 5 compare the error function for different numbers of effective meta-features. Only the test381

dataset is used, and the discussion on the train dataset is ignored. Major observations are:382

� Comparing three subsets among each other, it reveals that subset 2 is slightly better compared to383

subset 1, while subset 3 has the highest error terms (in an average sense). Thus, one may conclude384

that reducing the initial meta-features to 2/3 might be an effective way to reduce computational efforts.385

� DTR is not sensitive at all to the subset selection.386

� Tree Bagging also shows a negligible reaction to the subset selection.387

� The general trend based on RMSE and SMAPE is not fully consistent.388

� Variation of the displacement-based error function is higher than the stress-based one for different389

subsets.390
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(a) Displacements

(b) Stress

Figure 11: Feature selection using different subsets for two response quantities; black bars (all IMs left to the black line) =
subset 3; black + red bars (all the IMs left to the red line) = subset 2; green + red + black bars (all IMs left to the green line)
= subset 1

Table 4: Error function for the displacement QoI with selective meta-features; only test dataset

RMSE SMAPE
Subset 1:
28 meta-
features

Subset 2:
19 meta-
features

Subset 3:
12 meta-
features

Subset 1:
29 meta-
features

Subset 2:
19 meta-
features

Subset 3:
11 meta-
features

Decision Tree Regression 36.72 36.72 36.72 0.2095 0.2095 0.2095
Tree Bagging 32.55 32.55 32.74 0.1939 0.1939 0.1940
Random Forest 26.55 26.33 29.18 0.1207 0.1198 0.1314
XG-Boost 27.65 27.48 30.49 0.1262 0.1270 0.1366
Neural Network 28.96 29.36 28.90 0.1447 0.1603 0.1639
SVR 28.81 27.99 30.03 0.1264 0.1282 0.1308

Table 5: Error function for the stress QoI with selective meta-features; only test dataset

RMSE SMAPE
Subset 1:
28 meta-
features

Subset 2:
19 meta-
features

Subset 3:
12 meta-
features

Subset 1:
28 meta-
features

Subset 2:
19 meta-
features

Subset 3:
12 meta-
features

Decision Tree Regression 1.51 1.51 1.51 0.5402 0.5402 0.5402
Tree Bagging 1.23 1.23 1.24 0.4303 0.4303 0.4310
Random Forest 1.11 1.12 1.16 0.2403 0.2378 0.2426
XG-Boost 1.19 1.17 1.24 0.2538 0.2531 0.2575
Neural Network 1.36 1.33 1.20 0.3071 0.3239 0.2558
SVR 1.16 1.17 1.17 0.2549 0.2547 0.2488

However, the most interesting findings might be related to the comparison of feature selection subsets391

with the references one (i.e. full model without feature selection). To achieve this goal, the error parameters392

in Tables 4 and 5 are normalized with the corresponding values in Tables 2 and 3, respectively. Again, the393

results are only presented for the test dataset using three subset selection groups. Findings are summarized394

in Figure 12 with the following major observations:395

� The closer the normalized error values to the unit, means that the feature selection does not have any396
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impact on the accuracy of forecasting.397

� Those normalized errors with values less than unit (shown with blue dashed line) represent the cases398

in which the feature selection is succeeded in overall error reduction.399

� Among six forecasting techniques, four of them (i.e. DTR, TB, RF and XGB) are tree-based techniques400

and have a sort of inherent feature selection capability. In these techniques, the meta-features are401

automatically pruning the results to make them condense. As seen, those forecasting techniques are402

somehow neutral to feature selection. On the other hand, ANN and SVR do not have such an inherent403

feature selection capability and their results are highly affected.404

� Among the tree-based methods:405

– DTR and tree bagging are completely neutral to feature selection using any of three subsets.406

– RF and XGBoost are neutral to feature selection in subsets 1 and 2 (i.e. large and medium size407

features), while in subset 3 (i.e. small size subset) they always reduce the accuracy.408

� Among the none tree-based methods:409

– A neural network reduces the accuracy.410

– In general, support vector regression improves the accuracy.411

� In the case of SVR (which is so far the most successful model):412

– The stress-based prediction is better than the displacement-based one.413

– There is no meaningful differences between the RMSE- and SMAPE-based evaluations.414

– The displacement-based evaluation with the smallest subset (i.e. subset 3) increases the normal-415

ized error by about 4%, all the other subsets, and also stress-based values show a positive reaction416

to feature selection.417

� Last but not least, even for the cases in which feature selection does not improve the accuracy, this418

technique is promising because it shows that the same accuracy can be achieved with a smaller set of419

meta-features. This is important especially for the practitioners who want to run simpler models with420

less computational time to achieve more or less good accuracy.421

7. Summary422

The current research is only targeted at the ground motion record-to-record variability. Since a compre-423

hensive seismic uncertainty assessment would require many dynamic analyses, one of the objectives in this424

paper is to reduce the number of simulations using forecasting tools. These machine learning techniques425

provide an interesting environment to train a meta-model and use it to predict the other potential cases.426

To achieve this goal, it is necessary to present the stochastic nature of the ground motion signals in the427

form of several scalar quantities. Thus, in this paper, the concept of “unique ground motion signatures” is428

introduced, which acts similarly to the biometric recognition in human beings. Each ground motion can then429

be distinguished by these unique identifiers. In total, 35 characteristics (intensity measures in earthquake430

engineering or meta-features in computer science) are extracted and applied in forecasting models.431

About 2,000 real ground motion records are used to evaluate the applicability of the proposed idea. A432

tall gravity dam is used as a vehicle for numerical simulations. Two widely used responses of the dam under433

seismic motions are extracted as output parameters (i.e. displacement and stress).434
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Figure 12: Normalized GOF for different subsets of feature selection compared to all features assumption

7.1. Concluding Remarks435

Six forecasting models, i.e. DTR, tree bagging, RF, XGBoost, artificial neural network, and support436

vector regression are applied to the dataset (which is divided into train and test groups). Detailed results can437

be found in the paper under different sections and sub-sections; however, in general, the authors can confirm438

that these forecasting models are successfully implemented in the dam engineering problem. However, not439

all those six techniques have provided a similar accuracy. DTR was the worst model, while XGBoost was440

the most promising one. XGboost is an ensemble method, which builds on a big number of weak classifiers441

(i.e. high bias, low variance models). Decision trees are individual weak learners and sometimes even as442

small as trees with two leaves. The idea of boosting is to add a classifier (e.g. a decision tree) at a time, so443

that the next classifier is trained to improve the already trained ensemble. This idea reduces error, mainly444

by reducing bias (and also to some extent variance) by means of aggregating the output from many models.445

Therefore, it provides better results than a weak learner like a decision tree.446

The authors also examined the concept of feature selection to forecast the dam responses. The idea is447

to use an initial subset of 35 ground motion meta-features (and not all of them) for regression analysis.448

Two major findings are: 1) apart from the ANN and SVR, other tree-based models are practically neutral449

to feature selection; and 2) the SVR provides very good performance with a small set of features. Even450

for those meta-models which do not affect the accuracy, employing a smaller set of input meta-features is451

beneficial from a computational point of view.452

7.2. Directions to Future Work453

Last but not least, this paper proposed a general idea of employing ground motion unique signatures in454

meta-modeling and advanced forecasting of the dam responses from finite element simulation. The extension455

of this work can be directed in the following major scopes:456

� Employing the proposed idea for 3D dynamic analysis of dams including different “dam classes”.457

� Extending this work for embankment/rockfill dams.458

� Forecasting the nonlinear response of the dams.459

� Applying the multi-component ground motion records, and combining the signal meta-features in460

three-dimensions.461
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� Introducing the material/modeling uncertainty and performing a hybrid uncertainty quantification462

problem.463

� Combining this idea with ground motion selection techniques to be used only for a particular seismic464

hazard level.465
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Appendix A. Feature Selection Techniques599

Appendix A.1. Information Gain600

One popular feature selection technique is to calculate the information gain (IG) of features. The IG
of a feature indicates the amount of information that can be obtained with regards to the target value of
classification of the feature. Entropy as a measure of uncertainty of a RV (which is the basis of IG) can be
written as:

H(X) = −
∑
i

P (xi). logP (xi) (A.1)

Where X is RV and P (x) is probability mass function.601

Similarly, the conditional entropy of X after observation of Y is defined as:

H(X|Y ) = −
∑
j

P (yj).
∑
i

P (xi|yj). logP (xi|yj) (A.2)

Information gain is defined as a decrease in uncertainty of X after observing Y :

IG(X;Y ) = H(X)−H(X|Y ) (A.3)

The attributes which contribute more information are then selected, and the rest, with lower IG scores,602

are removed.603

Appendix A.2. Information Gain Ratio604

Information gain has a bias on attributes that have a large number of values. In a subset, as the number
of the attributes increased, the entropy may be boosted. To reduce this bias, an information gain ratio (IGR)
is introduced as a normalized IG. The IGR is formulated as:

IGR(X;Y ) =
H(X)−H(X|Y )

H(X)
(A.4)

Appendix A.3. Symmetrical Uncertainty605

Similar to the IGR, and based on the concept of uncertainty, symmetrical uncertainty (SU) is a symmet-
rical normalized version of IG which is formulated as:

SU(X|Y ) =
2× IG(X;Y )

H(X) +H(Y )
(A.5)

The features with a larger SU value, get a higher weight. Those with a lower weight can be dropped from606

the feature’s list, and marked as unnecessary attributes.607

Appendix A.4. Chi-Square608

The chi-square, χ2, is a statistical measure to identify the dependency of two variables. This dependency
of feature x and target value y could be calculated from a two-way contingency table of them. The χ2 could
be written as:

χ2(x; y) =
N × (AD − CB)2

(A+ C)(B +D)× (A+B)(C +D)
(A.6)

where A the number of co-occurrence of x and y; B the number of x occurrence without y; C the number609

of y occurrence without x; D the number of times neither x nor y occurs.610

The average χ2 score of each feature x among target values yi can be obtained with the following formula:

χ2
avg(x) =

∑
j

P (yj)χ
2(x; yj) (A.7)

The higher value of χ2 implies that the independence hypothesis will be rejected more significantly, and611

also shows a stronger relationship between the feature and target values.612
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Appendix A.5. OneR613

OneR determines the weights of the features based on a simple rule in the process that just one feature614

is considered in the conditional situation. A simple pseudo-code of OneR is shown in algorithm 2. More615

details about OneR can be found in Holte [67].616

Algorithm 2 OneR pseudo-code

1: for each feature x do
2: for each value v of x do
3: Compute class distribution based on feature value
4: Set C = the most frequent class
5: Create a rule regards to: if x = v then class = C
6: end for
7: Calculate the error rate of the rule based on whole data set
8: end for
9: Select the rule with highest accuracy

Appendix A.6. Relief617

Kira and Rendell [68] introduced the relief filtering method to estimate the relevance weight for features.618

The weight estimation is based on the ability to distinguish differences between instances which belong to619

separate classes. Features’ initial weights are set to zero, and then are updated iteratively. A pseudo-code620

for the relief is shown algorithm in 3.621

Algorithm 3 Relief pseudo-code

1: Set weights for all features to zero
2: for all instances do
3: Find k nearest hits (closest neighbors in the same class)
4: Find k nearest miss (nearest neighbors on the dissimilar class)
5: for For all features do
6: Update weight according to the distance of the instances to its Hit and Nearest Miss
7: end for
8: end for
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