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1 Introduction

The tracking of the stochastic behavior of a partial sum process is an impor-
tant problem with many applications. In general, calculations of the proba-
bilistic properties of such a partial sum process require an ability to compute
high-dimensional multivariate probabilities of partial sum variables. Comput-
ing these multivariate probabilities is in fact a high-dimensional integration
problem which in general cannot be performed efficiently by any numerical
method presently available.

Computing the multivariate probability of an event in high dimensions,
in its most general form, is an intractable problem. An efficient solution may
possibly be devised by exploiting any special structures of the problem under
consideration. For example, with a general high dimensional density function, if
the event is a convex set, a Markov chain Monte Carlo approach can be devised
to efficiently approximate the probability of the event (Smith, 1984; Bélisle
et al, 1993; Lovdsz, 1999; Kiatsupaibul et al, 2011). On the other hand, if the
probability distribution is a multivariate standard normal or ¢-distribution
with some special correlation structure, an efficient numerical integration may
be constructed to compute a rectangular event, say (Dunnett and Sobel, 1955;
Soong and Hsu, 1997), or an event based on a complete ordering (Kiatsupaibul
et al, 2017).

The partial sums of independent random variables have a nice structure
that can be exploited to devise an efficient numerical algorithm for the calcula-
tion of their probabilistic properties. The objective of this paper is to illustrate
how such probability calculations for the stochastic behavior of a partial sum
process of independent variables can be performed efficiently based upon the
adoption of recursive numerical integration techniques.

The specific problem considered in this paper can be described as follows.
Let X;, 1 < i < n be independent random variables. In general, we consider
probabilities of the form

P((Xy,...,X,) €A =
P((X1,X2,X3) € A1, (X1 + X2, X3, Xy) € Ay, ...,
(Xl +...+ Xn72aXn717Xn) € An72) (1)

for sets A; € R3, 1 < i < n—2. The methodologies discussed in this paper are
applicable to the evaluation of this general expression.

However, a special and important case of equation (1) is the sole consider-
ation of the sum of the random variables

P(Xi+...+ X, € B) (2)

for a set B € R which has many varied applications. When the sum of the
random variables does not have an identifiable distribution, the evaluation of
this probability is ostensibly challenging, although it is shown in this paper
how its evaluation is in fact straightforward for any value of n.
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More generally, probabilities concerning the stochastic behavior of the par-
tial sum process of the random variables of the form

P(X1EBl,X1+X2EBQ,...,X1+...+XnGBn) (3)

for sets B; C R, 1 < i < n, are also a special case of equation (1). In this
paper it is also shown how the evaluation of this expression is in fact also
straightforward for any value of n.

The key result of this paper is that the n-dimensional integral expression

hi(x1) - hp(xy,) day -+ - day, (4)
(181,.4.,:1;71)65

can be evaluated recursively as a series of 2-dimensional integral calculations
when the set S C R" is defined by the conditions

(T1+ ..o+ @, i1, Tig2) € [; T R®

for 1 <14 < n — 2. This is an application of the general discussion of recur-
sive integration given in Hayter (2006) with d = 2. Recursive computational
techniques similar to the ones developed in this paper have been applied to
the problem of confidence band construction for a distribution function in
Kiatsupaibul and Hayter (2015), and to ranked constrained computations in
Kiatsupaibul et al (2017).

Of course, the probability in equation (1) can be put in this form for contin-
uous random variables with the sets I; equal to the sets A; and the functions
h;(x;) equal to the probability density functions f;(z;). In addition, if the
random variables X; have discrete distributions then the results of this paper
are still valid with the integrals replaced by sums and the probability density
functions replaced by the probability mass functions (see Hayter (2014), for
example).

General discussions of stochastic control can be found in Fleming and
Rishel (1975) and Oksendal (2014), for example. Moreover, in finance the
problem of option pricing is also considered a stochastic control problem. Fu-
sai and Meucci (2008) discuss pricing discretely monitored Asian options, and
recursive integration techniques in pricing barrier options have been discussed
in Aitsahlia and Lai (1997), Sullivan (2000), Andricopoulos et al (2003) and
Fusai and Recchioni (2007).

The results obtained in this paper can also be used to calculate conditional
probabilistic expressions and moments for the stochastic behavior of these
partial sum processes. For example, probabilities for the independent random
variables X; conditioned on an event A can also be tractable since

P((Xy,.... X,) €CN4)
P((X1,..., Xn) € A) (5)

where the numerator is tractable for certain sets C. In particular, if the set
C C R™ can also be defined in terms of the partial sums as

(X1+...+Xi, Xiv1, Xip2) € C; TR

P((X1,...,Xn) € C|(Xy,...,X,) € A) =
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for 1 < ¢ < mn — 2, then both the numerator and denominator of equation (5)
are of the form of equation (4) with the sets I; equal to the sets A; N C; or A;
and the functions h;(x;) equal to the probability density functions f;(z;).

Furthermore, it can be noted that the moments and covariances of the
independent random variables X; conditioned on an event A are also tractable
since

D

BIXT X [ (X, Xn) € Al = pre o

where D is of the form of equation (4) with the sets I; equal to the sets A;
and the functions h;(z;) equal to x}* fi(z;).

The layout of this paper is as follows. In section 2 it is shown how the
integral in equation (4) can be evaluated recursively as a series of 2-dimensional
integral calculations. Recursive formulas are given for the general case, and
also for the special case of equation (2). In section 3 a discussion is provided of
the implementation details of the methodology. The adoption of Fast Fourier
Transforms is illustrated as a way to improve the computational efficiency
of the methodology, and an error analysis of the numerical integrations is
provided. Some illustrations of the implementation of the methodology are
provided in section 4, with examples in the fields of reliability, product quality
assessment, and stochastic control. Finally, a summary is provided in section
5.

2 Recursive Integration Methodology

In this section the recursive integration of the integral in equation (4) is dis-
cussed. First a change of variables is used to put the expression into a more
convenient form, and then the general recursive formulas are provided. The
special case of equation (2) is then considered separately. It should be re-
membered that if the random variables X; have discrete distributions, then
the results of this section are still applicable with the integrals replaced by
sums, and the probability density functions replaced by the probability mass
functions (see Hayter (2014), for example).

2.1 Change of Variables

If the change of variables y; = z1 + ...+ z;, 1 < i < n, is employed, then
equation (4) becomes

/ / P (22— 91) - (g — Ynr) - dg (6)

(Y1,--3Yyn) EW

where the set ¥ C R" is defined by the conditions

(Yi> Yir1, Yir2) € J; C R
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for 1 <1i <n — 2, and where the set J; is derived from the set I; through the
relationship

(1 + .o+ T, i1, Tine) € Li & (Yis Yiv1, Yive) € Jie

Notice that in equation (6) the integrand is the product of terms that only
involve two adjacent y;, while the integration region is defined by conditions
on only three adjacent y;. Consequently, equation (6) is of the form given in
section 1 of Hayter (2006) with d = 2, which implies that it can be evaluated
recursively by a series of 2-dimensional integral calculations. Specific formulas
for this recursive integration are now provided.

2.2 General Recursive Formulas

Let
Jr(u,v) ={z eR: (z,u,v) € Ji}.

We assume that Ji(-,u,v) can always be represented by a finite union of
disjoint closed intervals, so that

Je (5 u,v) = Uglak,; (u, v), bi s (u, v)]. (7)
In addition, let
T2 ={(z,y) eR?: Tz e N> (z,y,2) € Jp},

and
I3 ={(y,2) €eR*: Jx e N> (x,y,2) € Jp}.
To compute equation (6), at each (u,v) € J3? first evaluate
G1(a,u) = / (@) — ) e, (8)
—00

for all a € U, U; [a1 4(u,v),b1;(u,v)], and then compute

g1(u,v) = / o) hi(x)ha(u — ) dx
Ji(-u,v

= Z[Gl(bu(u,v), u) — Gi(aq,;i(u,v),u)]. (9)

Next, for k = 2,...,n — 3, at each (u,v) € J,ﬁl, and for Kk = n — 2 at each

(u,v) € J?3, evaluate

Gr(a,u) = /a gr—1(x, uw)hpi1(u — ) dz, (10)

—00
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for all @ € U, U; [ag,i(u,v), by i (u,v)], and letting gx(u,v) = 0 for (u,v) € J
but (u,v) ¢ Ji3,,k =2,...,n— 3. Then compute

gr(u,v) = / Jr—1(z, w)hger (v — x) de
Ji(u,v)

= Z[Gk(bk,i(u,v),u) — Gi(ag,i(u,v),u)]. (11)

Finally, the evaluation of equation (6), and hence of equation (4), is obtained
as

P((X1,...,X,) €A = //gn,g(u,v)hn(v —u) dudv. (12)

23
Jn72

Notice that the steps in this evaluation each have the computational inten-
sity of a two-dimensional numerical integration. In general, given k and (u,v),
the evaluation of gx(u,v) in (11) may be difficult and time consuming if the
disjoint closed intevals that form Ji(-,u,v) in (7) generate a combination of
end points ay ;(u,v) and by ;(u,v) that is not relatively simple. Whether this
issue arises depends upon the specific problem under consideration. For the
problems considered in this paper the Ji(-,u,v) are straightforward enough
to prevent the number of end points ay, ;(u,v) and by ;(u,v) from blowing up
over k. For example, in Section 4.3 this methodology is applied to a stochastic
control problem where it is demonstrated how to obtain the end points in such
a problem and it is shown that Jj is a single connected interval with only one
pair of end points for all k.

2.3 Recursive Formulas for the Sum of Independent Random Variables
Now consider the special case where the X,..., X,, are independent random
variables with probability density functions fi, ..., f,, respectively. Recursive

formulas are now provided for evaluating some probabilistic properties of T =
X1+ -+ X, First, notice that it follows from equation (6) that

P(TST):/"‘/fl(yl)f2(y2*y1)"'fn(yn*yn—l)dyl"'dym (13)

Yn<T

This expression can be computed simply by first evaluating

q1(u) = /:)O fi(@) fa(u — z) dex

at each u € . Then, sequentially, for £k = 2,...,n — 1, evaluate

atw) = | " e (@) fors (u — @) da

—00
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at each u € R. Again, notice that the steps in this evaluation each have the
computational intensity of a two-dimensional numerical integration. Finally,
the required expression is obtained as

PT<T1)= /T gn—1(z) dx.

— 00

To compute the expectation of w(X;) conditional on T < 7, or T > 7, first

evaluate
oo

gH(u) = / w(@) f1(2) folu — 2) da.

Then, sequentially, for Kk =2,...,n — 1, evaluate
s = [ ghs@ (a0 do

for each u € R. The expectation of w(X;) conditional on T' < 7 can then be

obtained as )
T ogt (x)dx
E[w(X1)|T§T}:—f_°°g 1)

PT<t) ’
while the expectation of X; conditional on T > 7 can be obtained as
f gn 1 dl’
FEwX)|T>T1 Jr TRheoh 7

Notice that expectations for w(X;) can be obtained from these expressions by
reordering the indices of the Xj.

To compute the expectation of w;(X;)ws(Xz) conditional on T < 7, or
T > 7, first evaluate

) = [ " wn(@)wn(u — 2) () folu — ) da.

— 00

Then, sequentially, for £ =2,...,n — 1, evaluate

= [ g @il
for each u € R. The expectation of w(X;)ws(Xz) conditional on T' < 7 can
then be obtained as

fzoo 9721—1(95) dz

Elwi (X1)we(X2) | T < 7] = PT<r)

while the expectation of wy(X7)ws(X2) conditional on T' > 7 can be obtained
as
f gn 1 dx

Elw (X1)wa(Xo) | T > 7] = P(T > 7_)
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Again, expectations for w;(X;)w;(X;) can be obtained from these expressions
by reordering the indices of the X;.
Finally, notice that the expectation of T' conditional on either T' < 7 or
T>rT11is
ET|T<7]=> E[X;|T<7] and E[T|T>7]=Y E[X;|T>7],

i=1 i=1
which becomes
ET|T<7|=nE[X;|T<7] and E[T|T>7]=nE[X;|T > 1]

when the X; are identically distributed.

3 Implementation details

In this section a discussion is provided of the implementation details of the
methodology. The adoption of Fast Fourier Transforms (see Carverhill and
Clewlow (1990), for example) is illustrated as a way to improve the compu-
tational efficiency of the methodology, and an error analysis of the numerical
integrations is provided.

With n variables X; a direct implementation of the methodology requires a
calculation with a computational intensity that is equivalent to a sequence of
n two-dimensional numerical integrations. This is already efficient considering
that the original problem is ostensibly an n-dimensional numerical integration.
However, in the case when the limits of integration U;{a ;(u, v), by ;(u,v)} in
section 2.2 are invariant over pairs (u,v),the computation can be accelerated
even further using a Fast Fourier Transform convolution.

3.1 Fast Fourier Transform Convolution

It can be observed that the recursive integration formulas given in section
2 involve the convolution of two functions. Consequently, in some cases the
speed of the computation can be increased with a Fast Fourier Transform
technique (FFT). As the well-known Convolution Theorem states (see, for
example, Smith (2007)), a convolution with respect to the variable in the
original domain is equivalent to multiplication with respect to the variable in
the transformed domain.

More formally, letting F' denote the Discrete Fourier Transform (DFT) and
F~1 its inverse, convolutions between two functions f and g can be computed
as

frg=F71(F(f) F(g))

The functions are decomposed into the transformed domain using the DFT,
multiplied in the transformed domain, and then transformed back into the
original domain using the inverse DFT.
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Notice that the DFT and its inverse can be calculated by the FFT algo-
rithm. With a fixed grid size A and the corresponding number of grid points
N, the overall computational intensity of conducting the convolution in this
way using the FFT is O(N log N) (see, for example, Smith (2007)), which is
lower than the computational intensity O(N?) obtained with the direct com-
putation of the convolution in the time domain. The comparative accuracies
and efficiencies of the two methods are now demonstrated.

3.2 Accuracy and Efficiency

In order to illustrate and compare the accuracies and efliciencies of the imple-
mentations of the recursive integration formula introduced in section 2.2, the
formula is applied to the calculation of the cumulative distribution function,
the conditional cumulative distribution function, and the conditional expecta-
tion of the sum of 10 independent identically distributed exponential random
variables with parameter A = 1. In this case the sum of these random variables
has a known gamma distribution, so that the exact values of the calculated
quantities are known.

The formulas in section 2.2 are implemented with a truncation of the sup-
port at 30. In specific, referring to (7), here we have Ji(-,u,v) as a single
interval [ay(u,v), bk (u,v)] = [0,30] which is invariant over k and (u,v). Ta-
ble 1 shows the computed values and the errors of the required quantities,
together with their computational times, obtained from implementations with
the direct convolution and the FFT convolution. Different grid sizes are used,
and both methods are implemented with SciPy’s Python library (see Jones
et al (2001)) with an Intel Core i5 CPU.

Table 1 Comparisons of the implementation methods for the methodology for a sum of 10
independent identically distributed exponential random variables with parameter A = 1.

Direct Convolution FFT Convolution

Grid size A Value Error Time (sec) Value Error Time (sec)
0.01 P(T >12) 0.24275  0.00036 0.030 0.24275  0.00036 0.017
P(T>12|T >10) 0.52945 0.00013 0.028 0.52945  0.00013 0.017
E[X,|T > 10] 1.27289  0.00032 0.055 1.27289  0.00032 0.033
0.001 P(T >12) 0.24239  0.00000 2.376 0.24239  0.00000 0.098
P(T>12|T >10) 0.52932 0.00000 2.342 0.52932  0.00000 0.092
E[X1|T >10] 1.27320  0.00001 4.719 1.27320  0.00001 0.185
0.0001  P(T >12) 0.24240  0.00000 388.769 0.24240  0.00000 1.235
P(T>12|T >10) 0.52932 0.00000 408.467 0.52932  0.00000 1.191
E[X1|T >10] 1.27320  0.00001 838.920 1.27320  0.00001 2.285
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It can be seen from Table 1 that the two implementations have similar er-
rors, but the implementation with the FFT convolution is significantly faster.
Consequently, it is useful to apply the FFT technique to the evaluation of
the recursive formulas given in section 2.2 when the limits of integration
Ui{ak,i(u, v), b :(u,v)} are invariant over pairs (u, v).

4 Examples and Illustrations

In this section the methodology presented in this paper is illustrated through
applications to problems in the fields of reliability, product quality assessment,
and stochastic control that require probability calculations for partial sums of
independent random variables. The first example concerns a reliability problem
where failed components are successively replaced with new components, while
the second example concerns a product quality assessment problem where
batches are evaluated based on a measurement of the sum of their individual
items. Finally, the third problem concerns discrete time stochastic control.

4.1 Reliability Example

Suppose that a machine contains n “identical” components which are deployed
successively. Thus, the first component is deployed until it fails, whereupon the
second component is deployed, and so on. The machine operates until the nth
component has failed. Furthermore, suppose that an observer can tell whether
or not the machine is operating, but not how many components have failed if
the machine is still operating.

If the component lifetimes are taken to be independent with specified dis-
tributions, then the methodology presented in this paper can be used to in-
vestigate the probabilistic properties of the lifetime of the machine. Some
illustrative calculations are provided when the component lifetimes are taken
to be independent identically distributed Weibull distributions. Without the
methodologies presented here, calculations on the sum of Weibull distributions
are generally intractable and would usually be assessed with simulations.

The following are examples of the kinds of probability calculations that
can be performed using the recursive integration methodology presented in
this paper. If the component lifetimes are X; with distributions f;(x;), so that
the machine lifetime is T' = X; +. ..+ X,,, then an obvious quantity of interest
is the machine survival function

P(T > t).

If the machine is observed at time 7, then if the machine is still operating the
conditional survival function is

P(T>t|T>7)=
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If the machine has failed at time 7 then the conditional survival function is
Pt<T<rT)

PT2t|T<7)=—pa—"

The expected failure time of the machine is simply n times the individual
expected component failure time, but if the machine is observed to be still
operating at time 7, then the conditional expected failure time is

= G
/t:th(t 02 7t =

where f(t|t > 7) is the conditional distribution of the failure time and

G:/ /(:El+...+xn)f1(x1)...fn(xn)dxl...dxn.
1+ ... +x, >T

This can be evaluated as the sum of n separate integrals which are identical if
the component lifetimes are identically distributed. The variance of the condi-
tional failure time can be obtained by having ¢2 in place of ¢ in the integrand,
so that G can be found from terms with 2? and x;z; in the integrand.

Finally, if the machine is observed to be still operating at time 7, then the
distribution of the number of failed components at time 7 can be obtained,
for1<i<n-—1,as

P(no more than ¢ — 1 components have failed by time 7) =

P(T>r)
Table 2 shows the computed results (with computation times using the
Fast Fourier Transform technique) of these probabilities when Xi,..., X

are independent, identically distributed Weibull random variables with shape
parameter equal to 2 and scale parameter equal to 1. These random variables
have an expectation of 0.886 and a standard deviation of 0.463.

Table 2 Computed results and computation times for reliability example.

Computed value  Computational time (sec)

P(T > 8) 0.7139490 1.876
P(T > 10) 0.2154629 2.040
P(T >12) 0.0206421 1.926
P(T > 12| T > 10) 0.0958036 1.701
P(8<T < 10| T <10) 0.6353888 1.617
P(X1+---+X7>10| T > 10) 0.0104016 1.776
E[T) 8.8627912 1.797
E[T|T > 10 12.3020396 3.664

TE[T] the exact value is equal to 10I'(1.5)
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4.2 Product Quality Example

Consider a product quality assessment problem where a measurable property
of an item is satisfactory if it is no smaller than a specified level c. Let X,
1 < i < n, represent the values of these properties for a batch of n items,
and suppose that they can be modeled as being independent with an identical
probability density function f(x).

Suppose that instead of the costly approach of testing each item in the
batch, it is possible and simple to obtain information about the sum T =
X1 4 ...+ X,. This is the case, say, if the weight of the item is of interest or
the radiation emitted from the item. It is useful to be able to make probability
statements about the number of satisfactory items in the batch based upon
the information obtained about T. In practice, the exact value of T" may be
observed, or a lower or an upper bound may be obtained.

If the exact value of T is observed then

P(exactly i items are satisfactory | T') =

H
(7>P(X1 >e X > e Xip1 <6y Xn < o|T) = (’?)1

i 1) Ho
HQ:/

T

where
/f(xl)f(xn) dzy ...dx,
+...+x, =T

and

H1:/ /f(xl)f(xn) dzy ...dz,,.
1+ ...+x, =T
T12>C...,Ti > C
Tig1 <Cyo..yTp <C

As an illustration, some calculations are shown when n = 10, ¢ = 1 and
f(z) is taken to be a Laplace (double exponential) distribution with parameter
A =1, so that

flx) = %e*m,x eR.

Table 3 shows the computed values of P(exactly ¢ items are satisfactory | T)
at different i = 0,1,...,10 and T = 0,5, 10, 15, 20. The computational time of
each entry using the Fast Fourier Transform technique was about 0.3 seconds.

If the bounds 7" < ¢t or T > t are observed rather than the exact value of
T, then the expressions for H; and Hs can be modified so that the integration
regions depend on the conditions 1 + ... +z, < torxy +...+x, > t. In
either case H; and Hs can be again be evaluated using the recursive integration
methodologies presented in this paper.
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Table 3 The probability of exactly ¢ items having a satisfactory weight (weight greater
than ¢ = 1) given an observed total weight T' of n = 10 items. The items are assumed
to have independent and identically distributed weights with a Laplace distribution with
parameter A\ = 1. The computational time of each entry using the Fast Fourier Transform
technique was about 0.7 seconds.

T

i 0 5 10 15 20

0 0.0774 0.0004 0.0000 0.0000 0.0000
1 0.3629 0.0518 0.0024 0.0002  0.0000
2 03896 0.2960 0.0477 0.0076 0.0016
3 0.1461 0.4176 0.2315 0.0688  0.0213
4 0.0225 0.1971  0.3905 0.2374 0.1135
5 0.0015 0.0347 0.2560 0.3568 0.2771
6 0.0000 0.0023 0.0656 0.2443 0.3310
7 0.0000 0.0001 0.0061 0.0751 0.1948
8 0.0000 0.0000 0.0002 0.0094 0.0542
9 0.0000 0.0000 0.0000 0.0004 0.0063
10  0.0000  0.0000 0.0000 0.0000 0.0002

4.3 Discrete Time Stochastic Control Example.

This section illustrates the application of the methodology developed in this
paper to a discrete time stochastic control problem. Let X;, i =1,..., N, be
the performance measurement of a process at discrete times i, where the X;
are non-negative and assumed to be independent and identically distributed
when the process is operating correctly. The objective is to dynamically track
the partial means of the X; over time, and to detect any increase in the mean
of the X; by a certain decision rule.
For n =1,..., N, denote the partial means up to n by

X, = Zi=
n

Suppose that for each n = 3, ..., N, the process is stopped when both X,, and
X,,_1 are greater than X,, o + c(a, N), for a certain control limit c(a, N). If
the process is not stopped prior to N, then the process is deemed to have been
operating correctly throughout the time horizon V. For a specified distribution
of the X;, it is required to calculate the value of ¢(a, N) that provides a
probability of 1 — « of not incorrectly stopping the process within the horizon
N.

The control limit ¢(a, N) can be obtained by searching for the value of ¢*
that is the solution to the equation

PXpp1 < Xp+ctor Xpo < Xp+c, fork=1,...,N—2)=1—a. (14)

The event in equation (14) is the event that the process is not terminated
within the time horizon. This event is in the form of equation (1), which can
be computed by the formula in equation (6).
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In order to compute equation (6), the Jy (-, u,v) in equation(7) have v and
v as the transformed variables

k+1 k+2
Yk+1 = ZXi and Y;H_g = ZXi'
i=1 i=1

Furthermore, given Y; 11 = w and Yj42 = v, the process is in control at time
k if
Y, >

or
Ye > k(v—u—c").

In addition, since the X; are non-negative random variables it follows that

Y, <wu, fork=1,...,N—1.

Therefore,
Tk (-, u,v) = [ag(u, v), by (u, v)],
where
k
ap(u,v) = min{k+ l(u —c), k(v—u-— c*)}
and

bi(u,v) = u.

Notice that in this case the Fast Fourier Transform technique cannot be used
because the limits of the integrals ag(u,v) and bg(u, v) vary over u and v.

To obtain the required control limit ¢(«, N), the probability in equation
(14) has to be computed at several values of ¢* in order to search for the solu-
tion. Consequently, for a large time horizon N it is essential that an efficient
computation methodology, as developed in this paper, is available in order to
obtain ¢(«, N) in practice.

Table 4 shows the control limit for different values of o and NV, together
with computational times using the recursive integration methodology devel-
oped in this paper, for the case where the X; are independent, identically
distributed exponential random variables with scale parameter equal to 1.

Table 4 The control limit ¢(a, N) at & = 0.05,0.10 and N = 8,10, 12.

N
o 8 Time (sec) 10  Time (sec) 12 Time (sec)
0.10 1.96 2300 2.28 2402 2.55 3980
0.05 2.65 1964 3.08 2339 3.47 2804
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5 Summary

The tracking of the stochastic behavior of a partial sum process is an important
problem. There are many applications of partial sum processes, and in this
paper examples have been provided in the fields of reliability, product quality
assessment, and stochastic control.

It has been shown how calculations of the probabilistic properties of such
a partial sum process, which ostensibly require an ability to compute high-
dimensional multivariate probabilities, and so are consequently intractable in
general, can in fact be solved as a sequence of two dimensional computations,
with each computation being the convolution of two functions.

Finally, it has been shown how the Fast Fourier Transform technique can
be utilized for the evaluation of these convolutions in some cases. The results
of this paper allow the efficient computation of the probabilistic properties of
many important partial sum processes.
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