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Abstract 

A common way to detect and locate leaks in buried water pipes is to use leak noise correlators. 

Vibration or acoustic signals are measured on the pipe using sensors placed either side of the 

leak, and the difference in the leak noise arrival times (time delay) at the sensors is estimated 

from the peak in the cross-correlation function of these signals. Over many years, much effort 

has been spent on improving the quality of the leak noise signals with the aim of improving the 

time delay estimate. In this paper it is shown that even if the signals suffer from severe 

amplitude distortion through either clipping or quantization, then an accurate time delay 

estimate can be obtained provided that the zero crossings in the noise data are preserved. This 

is demonstrated by using polarity co-incidence correlation on simulated and measured data. 

The use of random telegraph theory is also used as an approximation to allow the derivation of 

approximate analytical solutions for the cross-correlation function and cross spectral density 

of clipped noise to facilitate further insight into the effects of severe clipping.  
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1.  Introduction 

Since the early 1980’s leak noise correlators have been used to determine the existence and 

location of leaks in buried water pipes [1]. This method involves making leak noise measure-

ments using two sensors that bracket the suspected leak position, sensing either acoustic pres-

sure inside the pipe, or the velocity, or acceleration of a fitting on the pipe. The cross-correla-

tion function of the two measured signals is then calculated, and the peak in this function indi-

cates the difference in propagation times between the leak and the sensors. By combining this 

with knowledge of the speed at which the leak noise propagates, the location of the leak can be 

determined. The instrumentation (both hardware and software) has improved enormously since 

the first correlator was employed, and many contemporary leak noise correlators use the latest 

technology.     

 

Although leak noise correlation has been extremely successful when used on metal pipes, since 

the widespread introduction of plastic pipes, a number of difficulties have emerged [2]. These 

include the relatively high rates of attenuation experienced by waves propagating along the 

pipes and the variability in the speed at which they propagate along the pipe, see for example 

[3-7], and the references therein. The poor performance of correlators for plastic pipes moti-

vated some fundamental modelling work to determine the way in which a plastic pipe affects 

the cross-correlation function of leak noise signals [8,9]. Furthermore, the choice of sensor type 

for this type of pipe was also studied [10]. Using the model, and by comparing the results with 

several data sets from different countries, it was found that if the leak is close to one of the 

measurement positions, then the signal level at this position can be very large and is prone to 

clipping by the correlator instrumentation. At the other measurement position the signal can be 

very small and is prone to quantization in the analogue to digital conversion process. This poses 
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the question as to what the effects of clipping and quantization, which cause amplitude distor-

tion of the signals, are on the cross-correlation function and hence time delay estimation.  

 

A seminal piece of work on the effects of clipping on a correlation function was carried out by 

Van Vleck during World War II [11]. The research involved the jamming of radar and com-

munication systems, and was therefore classified. It was not until 1966 that the work appeared 

in the public domain [12]. In this paper they derived a key result which became known as the 

arcsine law. It was shown that provided the two signals to be correlated have a Gaussian dis-

tribution, then if there is severe clipping, such that the normalised signals 1x  and 2x  have a 

value of either 1 or -1 at any instant in time, then ( )
1 2 1 2

1

clipped
( ) 2 sin ( )x x x x    −=  , where 

1 2
( )x x   is the cross-correlation coefficient of the unclipped signals and 

1 2 clipped
( )x x   is the 

cross-correlation coefficient of the clipped signals. This important result shows that the cross-

correlation of the actual signals can be reconstructed from the cross-correlation function of the 

severely clipped signals.  

 

In the early 1960’s, much work was conducted on the effects of quantization on correlation 

functions, for example [13-16]. In [13] Weiseb discussed the case of a one-bit quantizer (po-

larity co-incidence correlator), which has the same mathematical form as for the severe clipping 

case discussed by Van Vleck. Using Van Vleck’s result, Weiseb showed that for Gaussian 

random signals, the upper bound on the rms deviation of the cross-correlation coefficient of 

data passed through the one-bit quantizer is only 2  times that of the corresponding cross-

correlation co-efficient of the unclipped data. Although this is small, it can be improved by 
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increasing the sampling frequency and asymptotes to a value of 1.252 as the sampling fre-

quency increases [17]. Thus, it can be seen that the effect of severe clipping has only a small 

effect on the cross-correlation function, and by sampling at a high frequency, the additional 

random noise added to the cross-correlation function by severe clipping can be reduced.  

 

Using the expression for the error due to Gaussian random noise in time delay estimation cal-

culated using the cross-correlation function [18,19], Cusani [20] showed that the error due to 

the polarity co-incidence correlator is also very small compared to the same correlation carried 

out with no quantization error. As the error for time delay estimation due to Gaussian random 

noise for leak detection using cross-correlation technique is likely to be small [9], the additional 

error due to severe clipping or extreme quantization is also likely to be small. 

 

Motivated by the literature discussed above, the aim of this paper is to investigate the effects 

of the amplitude distortion of leak noise signals, through either severe clipping or extreme 

quantization caused by instrumentation, on time delay estimation for leak location in buried 

plastic water pipes. Both acoustic signals from hydrophones and vibration signals for accel-

erometers are considered. The physical causes of leak noise and the factors that affect its spec-

tral content are not considered. Using the analytical model in [8,10] and the Van Vleck Model 

[11,12] some simulations are carried out to investigate the effects of severe clipping on the 

cross-correlation coefficient. An alternative approach to the analysis for heavily clipped signals 

is also considered using random telegraph theory [21,22]. Although this approach gives ap-

proximate results, it allows some closed-form expressions to be derived for both the cross-

correlation function (CCF) and Cross Power Spectral density (CPSD), which facilitates some 

physical insight into the effects of severe clipping in both simulations and experimental results.  
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The paper is organised as follows.  An overview of leak detection is given in Section 2. This is 

followed in Section 3, with a short discussion on the effects of signal distortion. Section 4 

describes the analytical model of the plastic water pipe, and is followed by some simulations 

presented in Section 5, which uses the analytical model to generate measured leak noise signals. 

Section 6 investigates the effects of clipping on some experimental data, and Section 7 presents 

the alternative analysis using random telegraph signal theory. Finally, the paper is closed with 

some conclusions in Section 8. 

  

2. Overview of Leak Detection using Acoustic Correlation 

Figure 1 depicts a typical arrangement for water leak detection based on the cross-correlation 

of leak noise.  Acoustic or vibration sensors are attached to convenient access points, either 

side of the suspected leak. The leak generates broadband noise, which propagates along the 

pipe, and the difference in the arrival times of the noise at the sensors (time delay) is used to 

determine the position of the leak. This is given by [8] ( )1 0 2d d cT= − , where c  is the 

propagation speed of the leak noise (wave speed), which is mainly estimated from tables, but 

can also be measured in-situ [23] and d is the distance between the sensors. The time delay T0 

is estimated from the peak in the CCF between the two measured signals 1( )x t  and 2 ( )x t , which 

is given by [8] 

 

 
1 2 1 2

1
( ) ( )

2

j

x x x xR S e d  


+

−
=  ,  (1) 
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where 1j = − , 1 2

1 2 1 2

( )
( ) ( ) x xj

x x x xS S e
 

 =  is the CPSD,  in which 
1 2

( )x xS   and 
1 2

( )x x   are 

the modulus and phase spectra between the signals 1( )x t  and 2 ( )x t  respectively, and   is 

circular frequency. In the case when there is a pure time delay, then ( )
1 2 0x x T  = − .  

 

3.  Signal Distortion – clipping and quantization 

As mentioned in the Introduction, at a measurement position, the amplitude of the leak noise 

can vary enormously, depending on the size of the leak and the distance of the measurement 

position from the leak. If a fixed gain measurement system is used, then two extreme situations 

are possible. The first is when the leak noise signal is larger than the dynamic range of the 

measurement system. In this case, clipping will occur. The second case is when the signal is 

very small compared to the dynamic range of the measurement system. In this case, the signal 

will be heavily quantized. If the most extreme case of clipping occurs, all amplitude 

information is lost, and the signal appears like a random telegraph signal [21,22], oscillating 

between two values corresponding to the maximum and minimum voltage levels of the 

instrumentation system. If the most extreme case of quantization occurs, then the signal will 

be represented by a single bit. In both these cases, the signal is only represented by two values. 

In this paper, to simulate these condtions, the leak noise signal is modified by the signum 

function, so that it takes a value of -1 if the signal is negative and +1 if the signal is positive. 

An example of a raw leak noise signal, and the same signal modified by the signum function 

is shown in Fig. 2. In the following sections, the effect of modifying a signal by the signum 

function on time delay estimation in plastic water pipes is discussed. 

 

4.  Cross-Correlation Functions for a Buried Water Pipe 

A model of the CCF for a buried, water-filled, plastic pipe was first described in [8]. The CCF 

is given by Eq. (1), and the CPSD for pressure measurements is given by 
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1 2

*

1 2( ) ( , ) ( , )x xS H d H d  = , where 
/

( , ) ,i i
d j d c

iH d e e
  

− −
=  in which   is a measure of the 

attenuation as the wave propagates along the pipe; i=1 or 2 depending on the measurement 

position, and the superscript * denotes the complex conjugate. Thus 

 

 0

1 2

( ) ( )
d j Tp

x xS e e
  

− −
=   (2) 

 

where the superscript (p) denotes pressure measurement,  0 2 1( )T d d c= − , and the 

corresponding CCF is given by [8] 

 

( ) ( )
1 2

( )

2 2

0

( )p

x x

d
R

d T




  
=

 + −
 

                                                  (3) 

 

In what follows, the superscript (p) is used when the expressions are related to pressure 

measurements and the superscript (a) is used to denote acceleration measurements. If there is 

no superscript, then the expression is valid for both sensor types. The autocorrelation function 

( ) ( )
i i

p

x xR   at distance id  from the leak position is given by 

 

( )

( )

2 2

2
( )

2
i i

p i
x x

i

d
R

d




  
=

 +
 

                                                  (4) 

 

Noting that the cross-correlation coefficient (CCC) is given by 

1 2 1 2 1 1 2 2
( ) ( ) (0) (0)x x x x x x x xR R R  = , Eqs. (3) and (4) can be combined to give [8] 
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( )

( ) ( )1 2

2

1 2( )

2 2

0

( ) 2p

x x

dd d

d d T


 

 
=

+ −
                                           (5) 

 

Applying the Fourier transform to the CCC, results in the normalised CPSD given by 

 

0

1 2

( )

1 2
ˆ ( ) 2

d j Tp

x xS d d e e
   

− −
= ,                                                  (6) 

 

which should be compared with Eq. (2).  

 

For a heavily clipped signal, or one where the Signum function has been applied, such as that 

shown in Fig. 2, there is a remarkably simple relationship between the cross-correlation 

coefficient and the cross-correlation coefficient of the unclipped signal. It is given by [11,12],  

 

( )
1 2 1 2

1

clipped

2
( ) sin ( )x x x x   



−=                                               (7) 

 

To visualise the effect that severe clipping has on the CCC, the quantity  

1 2 1 2clipped
( ) ( ) ,x x x x    = is plotted in Fig. 3(a). It can be seen that for values of 

1 2
( )x x   less 

than about 0.4, the effect of severe clipping to give 
1 2 clipped

( )x x  , is simply to multiply 
1 2

( )x x   

by 2  . For values greater than this, the multiplying factor varies between 2   and 1. Thus, 

the general effect of severe clipping on the CCC is to distort its shape, giving a sharper peak. 

If the maximum value of  
1 2

( )x x   is less than about 0.4 then there is negligible distortion of 

the CCC when severe clipping occurs.  
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The maximum value of  
1 2

( )x x   is dependent upon background noise and the position of the 

leak. In the noise-free case, if the leak is equidistant from the two measurement points, i.e., 

when 1 2,d d=  then the peak in the CCC is 1. If the leak occurs at a measurement position so 

that 1 0d =  or 2 0d =  then the peak in the CCC is 0. If 10 d d  , then 

  ( )
1 2

( )

1 1
ˆ ˆmax ( ) 2 1p

x x d d  = − , where 1 1d̂ d d= , which is plotted in Fig. 3(b) as a solid green 

line. The reason for this behaviour is because of the low-pass filtering effect of the sections of 

pipe either side of the leak. Thus, unless the leak is equidistant between the two measurement 

positions then the spectral characteristics of 1( )x t  and 2 ( )x t  are different. For a pressure 

measurement, it is clear that if the leak is very close to one of the measurement positions for 

example 1
ˆ 0.05d   or 1

ˆ 0.95d  , then  
1 2

( )max ( ) 0.4p

x x    and so severe clipping practically 

has no effect on the shape of the CCC. The dashed red line in Fig. 3(b) is related to acceleration 

measurements which is discussed next. 

 

The cross-correlation function between two accelerometer signals can be determined by 

multiplying Eq. (2) by 
4  to give 

 

 0

1 2

( ) 4( )
d j Ta

x xS A e e
   

− −
=   (8) 

 

where A is a constant related to the properties of the pipe. Here it is arbitrarily set to 1 without 

loss of generalisation. The corresponding CCF can be determined by calculating the fourth 

derivative of Eq. (3) with respect to   to give 
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( ) ( ) ( ) ( )

( ) ( )( )
1 2

4 2 2 4

0 0( )

5
2 2

0

5 1024
( )a

x x

T d T dd
R

d T

   


  

 
− − − + 

=  
 + −
 

   ,                              (9) 

 

The resulting CCC is given by  

 

( )
( ) ( ) ( ) ( )

( ) ( )( )
1 2

5 4 2 2 4

6 0 01 2( )

5
2 2

0

5 10
( ) 2a

x x

T d T dd d
d

d d T

   
  

 

 
  − − − + 

=     
 + − 
 

                        (10) 

 

Applying the Fourier transform to Eq. (10) results in the normalised CPSD, which is given by 

 

( ) 0

1 2

5
( ) 4

1 2

4ˆ ( )
3

d j Ta

x xS d d e e
     

− −
=                                 (11) 

 

To determine the CCC for heavily clipped acceleration signals, Eq. (7) can be applied in the 

same way as for pressure signals. The relationship between the severely clipped and the 

unclipped signal is thus the same as for the pressure signal. However, the relationship between 

the maximum value of 
1 2

( )x x   and the position of the leak, is different for the two types of 

signals. It is given by   ( )
1 2

5

( )

1 1
ˆ ˆmax ( ) 2 1a

x x d d   
= − 
 

 for acceleration signals, which is 

plotted in Fig. 3(b) as a dashed red line. It is clear that when the leak is close to one of the 

measurement positions  
1 2

( )max ( )a

x x   is much smaller than  
1 2

( )max ( )p

x x  . This is because 

the similarity between the sensor signals is less for acceleration signals than for pressure 

signals, which occurs because an accelerometer acts as a filter effectively amplifying the high 

frequency content and diminishing the low frequency leak noise energy at the measurement 
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positions [10]. As discussed above, the effect of severe clipping on the CCC is greater when 

the  
1 2

( )max ( )p

x x   is closer to unity. For most leak positions, the maximum of the CCC is much 

less for an acceleration signal compared to a pressure signal as shown in Fig. 3(b), and hence 

the effect of severe clipping will generally have less of an effect on the shape of the CCC of 

acceleration measured signals compared to pressure signals. 

 

5.  Alternative representation of a clipped signal using random telegraph signal theory 

An alternative analysis of the clipped signals to treat them as random telegraph signals [21,22]. 

This analysis is useful, because some approximate analytical expressions can be derived for 

both the normalised CPSD and CCF. In this analysis, however, the CCF is normalised by its 

maximum value when 0T = . so that its maximum value is 1. It is also only valid when the 

leak is close to the mid-point between the measurement positions. Thus, this analysis can be 

used to study the shape of the CCF, which is significantly changed when the two leak noise 

signals are similar, but not the actual value of the CCF for severely clipped data. 

 

With random telegraph theory, the signals are assumed to be Poisson point processes, 

oscillating between two levels, similar to the heavily clipped signal shown in Fig. 2. In this 

case, provided that the average number of zero crossings per unit time are similar in each signal, 

given approximately by N, the normalised CCF can be written in a way similar to that for the 

Power Spectral Density (PSD) in [21,22] and is given by 

  

0

1 2

ˆˆ2

telegraph

ˆ ˆ( )
N T

x xR e



− −

=                                                  (12) 
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where ˆ d  =  and  0 0T̂ T d= . Now, the average number of zero crossings for two 

sufficiently similar severely clipped Gaussian leak noise signals per unit time, derived by 

applying the signum function to the original signals, is the same as for the original Gaussian 

noise signals, which is given by [28] 

 

( )
1 2

0

2

2

ˆˆ

ˆ( )1

ˆ

x x

T

d R
N

d




 
=

= −                                                    (13) 

 

where 
1 2

ˆ( )x xR   is the CCF of the measured signals.  

 

5.1 Pressure 

In Eq. (13), 
1 2

ˆ( )x xR   is set to 
1 2

( ) ( )p

x xR   for the unclipped pressure data from Eq. (3) with ˆ d =  

and then divided by the maximum value of 
1 2

( ) ( ) 1p

x xR d = , to give  

 

 

( )
1 2

( )

2

0

1
ˆ( )

ˆˆ1

p

x xR
T




=
+ −

                                                      (14) 

 

Differentiating Eq. (14) twice with respect to ̂ , evaluating the result at 0
ˆˆ T =  and substituting 

this into Eq. (13), gives 2N = . Combining this with Eq. (12) results in 

 

0

1 2

2 2 ˆˆ
( )

telegraph
ˆ( )

T
p

x xR e



− −

=                                                   (15) 
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The corresponding normalised CPSD can be determined by applying the Fourier transform to 

Eq. (15) to give 

 

0

1 2

ˆˆ( )

2 2telegraph

1
ˆ( )

ˆ
2 1

8

j Tp

x xS e


 

−
=

 
+ 

 

                                             (16) 

 

where ˆ d = . There is no explicit analytical solution for the normalised CCF of clipped 

data, but it can be determined by combining Eqs. (7) and (14) to give  

 

( )
1 2

( ) 1

2clipped

0

2 1
ˆ( ) sin

ˆˆ1

p

x xR
T


 

−

 
 =
 
 + −
 

                                            (17)  

  

The corresponding CPSD can be determined numerically by applying the Fourier transform to 

Eq. (17) to give 
1 2

( )

clipped
ˆ( )p

x xS   . To visualise the difference between 
1 2

( )

telegraph
ˆ( )p

x xS   and  

1 2

( )

clipped
ˆ( )p

x xS   they are plotted in Fig. 4(ai), setting 0
ˆ 0T = . Also overlaid in this plot is the exact 

normalised version of the CPSD for the unclipped data determined from Eq. (2) and given by 

1 2

ˆ( ) ˆ( )p

x xS e



−

= . It can be seen that the exact solution for the normalised CPSD for the clipped 

data, and that determined using telegraph signal theory are very similar. Examining the 

expression determined using telegraph signal theory given in Eq. (16), it can be seen that at 

high frequencies the CPSD is approximately

5

2 22 ˆ2   , which is much larger than 
ˆ

e
−

. The 

difference between these is the high frequency noise added to the data by severe clipping. 
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The normalised CCF determined using telegraph signal theory, given by Eq. (15), and the exact 

solution for the clipped data given in Eq. (17) are plotted in Fig. 4(bi). Also plotted in this 

figure is the normalised CCF for the unclipped data given by Eq. (14). It can be seen that there 

are differences between the approximate and exact solutions for the clipped data, but they have 

a similar characteristic when 0
ˆˆ T  , which in this case shown is when ˆ 0  . In both cases for 

the severely clipped data the peak is considerably sharpened compared to the normalised CCF 

for the unclipped data.  

 

To determine the similarity between the approximate and actual solutions for the normalised 

CCF, some approximations are made in the expressions for when 0
ˆˆ 1T −  . In this case Eq. 

(15) becomes 

 

1 2

( )

0
telegraph

2 2 ˆˆ ˆ( ) 1p

x xR T 


 − −                                               (18) 

 

 

Using a geometrical interpretation, Eq. (17) can be written as 

 

( )

( )
1 2

1

2
0 0

( ) 1

2

clipped
0

ˆ ˆˆ ˆ2

ˆ( ) sin
2 2 ˆˆ1

p

x x

T T

R
T

 
 




−

  
− + −  

  
− =  

+ − 
 
 

                            (19) 

 

Applying the condition 0
ˆˆ 1T −  , Eq. (19) can be simplified and rearranged to give 
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1 2

( )

0
clipped

2 2ˆ ˆˆ( ) 1p

x xR T 


 − − ,                                           (20) 

 

which is the same as Eq. (18). This shows that when 0
ˆˆ T   the CCF given by the telegraph 

signal is similar to the exact solution for the normalised severely clipped signal. More 

importantly, the time delay information is preserved, even though the amplitudes of the signals 

are severely distorted. 

 

5.2 Acceleration 

In a similar way to the formulation for pressure, a normalised form of Eq. (9) can be determined 

by dividing by the maximum value of the CCF and setting ˆ d = . It is given by  

 

( ) ( )

( )( )
1 2

4 2

0 0( )

52

0

ˆ ˆˆ ˆ5 10 1
ˆ( )

ˆˆ1

a

x x

T T
R

T

 




− − − +
=

+ −

                                           (21) 

 

Differentiating Eq. (21) twice with respect to ̂ , evaluating the result at 0
ˆˆ T =  and substituting 

this into Eq. (13), gives 30N = . Combining this with Eq. (12) results in 

 

 

0

1 2

2 30 ˆˆ
( )

telegraph
ˆ( )

T
a

x xR e



− −

=                                                  (22) 

 

The corresponding normalised CPSD can be determined by applying the Fourier transform to 

Eq. (22) to give 
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0

1 2

ˆˆ( )
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ˆ( )

ˆ
30 1

120

j Ta

x xS e


 

−
=

 
+ 

 

                                             (23) 

 

Again, there is no explicit analytical solution for the normalised CCF of clipped data, but it can 

be determined by combining Eqs. (7) and (21) to give  

 

( ) ( )

( )( )
1 2

4 2

0 0( ) 1

5clipped 2

0

ˆ ˆˆ ˆ5 10 12
ˆ( ) sin

ˆˆ1

a

x x

T T
R

T

 





−

 
− − − + 

=  
 + − 
 

                            (24)  

  

The corresponding CPSD can be determined numerically by applying the Fourier transform to 

Eq. (24) to give 
1 2

( )

clipped
ˆ( )a

x xS   . To visualise the difference between 
1 2

( )

telegraph
ˆ( )a

x xS   and  

1 2

( )

clipped
ˆ( )a

x xS   they are plotted in Fig. 4(aii), setting 0
ˆ 0T = . Also overlaid in this plot is the exact 

normalised version of the CPSD for the unclipped data determined from Eq. (8) and given by 

( )
1 2 1 2

4 ˆ( ) ( ) 4ˆ ˆ ˆ( ) ( )a a

x x x xS d S e


   
−

=  = . It can be seen that the exact solution for the normalised 

CPSD for the clipped data, and that determined using telegraph signal theory are very similar 

at high frequencies even though there are considerable differences at low frequencies. 

Examining the expression determined using telegraph signal theory given in Eq. (16), it can be 

seen that at high frequencies the CPSD is approximately 
1 2

( ) 2 2

telegraph
ˆ ˆ( ) 4 30a

x xS    . This is 

proportional to 2ˆ1  , as with the pressure measurements, and is much larger than 
ˆ4ˆ e



−

  

 

The normalised CCF determined using telegraph signal theory, given by Eq. (23), and the exact 

solution for the clipped data given in Eq. (24) are plotted in Fig. 4(bii). Also plotted in this 
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figure is the normalised CCF for the unclipped data given by Eq. (21). As with the pressure 

measurements, it can be seen that there are some differences between the approximate and 

exact solutions for the clipped data, but they have a similar characteristic when 0
ˆˆ T  , which 

in this case shown is when ˆ 0  . They are also similar to the normalised CCF for the unclipped 

acceleration data as well, and when 0
ˆˆ 1T −   then  

 

1 2

( )

0
telegraph

2 30 ˆˆ ˆ( ) 1a

x xR T 


 − −                                               (25) 

 

This analysis shows that the peak in the acceleration CCF is sharper than that for the pressure 

data, and this is due to the higher frequency content in this data because of the filtering effect 

of the accelerometers. Moreover, it can be seen that close to the peak in the CCF, the effect of 

severe clipping for acceleration data is very small. As with pressure data, the time delay 

information is preserved, even though the amplitudes of the signals are severely distorted. 

  

6.  Numerical Simulations 

6.1 Simulations 

Simulations are carried out to compare numerical results with analytical predictions given in 

Section 4. A diagram showing the way in which leak noise signals are generated is shown in 

Fig. 5. The leak is assumed to generate Gaussian white noise. Although this is not strictly true 

in practice as leak noise at source has limited bandwidth [24], it is considered to be an 

acceptable assumption for the purposes of this paper. The noise propagates through a section 

of pipe with length 1d  and frequency response function (FRF) 1 1

1( )
d j d c

H e e
  − −

=  to 

pressure sensor 1, and through a section of pipe with length 2d  and FRF 2 2

2 ( )
d j d c

H e e
  − −

=  

to pressure sensor 2. Thus, the pressure time histories can be easily calculated by either 
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convolution of the corresponding impulse responses of 1( )H   and 2 ( )H   with the time 

history of the leak noise, or by multiplying the spectrum of the leak noise with the FRFs 1( )H   

and 2 ( )H  , and then using the inverse Fourier transform. To simulate the severely clipped 

signals, the signum function is applied to the pressure signal time histories at the measurement 

positions. This operation is denoted by SF in Fig. 4. To simulate acceleration signals, the FRFs 

1( )H   and 2 ( )H  , of the pressure signals are simply multiplied by 
2− , and the severely 

clipped acceleration signals are again determined using the signum fiunction.    

 

A specific pipe system was chosen for simulations, which is a test rig in Canada [2], from 

which experimental data is processed and presented in Section 5. The pipe has a value of 

41.15 10  s/m −=  and a wave speed of 475 m/sc = , which were determined by matching the 

model for pressure signals to experimental results. Before any time-histories are processed they 

are normalised so that they have zero mean and a standard deviation of unity. The length 

between the sensors is set to 100 m (which is not precisely the same as the actual test rig), and 

three leak positions are considered: 60 m, 70 m and 90 m. For each leak position, four graphs 

are plotted. They are the modulus and phase of the CPSD, the coherence between the signals 

and the CCC. Furthermore, data are presented for severely clipped and unclipped signals for 

both pressure and acceleration signals. The graphs for pressure signals are plotted in Fig. 6 and 

the graphs for acceleration signals are plotted in Fig. 7.  

 

With the exception of the coherence function, four quantities are plotted in each subplot in 

Figs. 6 and 7. They are the theoretical values for the severely clipped and unclipped signals, 

and those calculated from the random time series data. For the pressure data, the theoretical 

modulus and phase of the CPSD of the unclipped signals are plotted using Eq. (2), the 

corresponding plots for the severely clipped signals, are calculated by combining Eqs. (5) and 
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(7), and then using the Fourier transform. For the acceleration data, the theoretical modulus 

and phase of the CPSD of the unclipped signals are plotted using Eq. (8), the corresponding 

plots for the severely clipped signals, are calculated by combining Eqs. (7) and (10), and then 

using the Fourier transform. The two other quantities plotted are the values corresponding to 

the unclipped and severely clipped data calculated numerically as discussed above and 

illustrated in Fig. 4. The sampling frequency for both the 60 second-long pressure and 

acceleration time histories is 4 kHz. The transformation to the frequency domain is carried out 

using a 4096 point FFT and a Hanning window with 50% overlap. 

 

6.2.  Discussion  

6.2.1 Pressure Data 

Examining the modulus of the CPSD for all three measurement positions, the low-pass filtering 

property of the pipe for the unclipped data is evident. Note that this is independent of the 

position of the leak but is a function of the distance between the sensors, because from Eq. (2) 

1 2

( ) ( )
dp

x xS e
 


−

= . Note also, that the analytical and numerical results for unclipped modulus 

data are practically the same for all three cases. The addition of high frequency noise due to 

severe clipping is clear. Consider first the analytical results. It can be seen that clipping has a 

greater effect when the distances from the leak to the measurement positions are similar, and 

has a diminishing effect when these distances are very different, such as when d1=90 m and 

d2=10 m. The reason for this is because when the distances are very different, for example 

when 1
ˆ 1d  , the maximum value of the CCF is small, as shown in Fig. 3(b). When this occurs, 

then 
1 2 1 2clipped

( ) ( ) 2x x x x      as shown in Fig. 3(a), so there is very little distortion in the 

shape of the CCC, and so there is very little distortion in the CPSD due to clipping. The reason 

why the noise in the numerical data does not follow the same pattern is because the coherence 
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between the two leak noise signals becomes increasingly poor at high frequencies as can be 

seen in Figs 6(ci-ciii). This means that the estimate of the CPSD becomes increasingly poor. 

Examining Figs. 6(bi-biii), it can be seen that the slope of the unwrapped phase increases as 

the relative distance between the leak and the measurement positions increases. It can also be 

seen that as this relative distance increases, the frequency beyond which it is not possible to 

unwrap the data decreases, and this is related to the coherence between the measured pressure 

signals [25]. Finally, it can be seen that apart from the unwrapping issue, the effect of severe 

clipping has no effect on the phase spectrum.  

 

Concerning the CCCs shown in Figs. 6(di-diii), it can be seen that the effect of severe clipping 

has no impact on the time delay estimation. Its main effect is to reduce the maximum value, as 

the relative distance between the leak and the measurement positions increases, as shown in 

Fig. 3(a). There is a small change in the shape of the CCC, especially when the relative distance 

between the leak and the measurement positions is small. The main effect of severe clipping, 

in this case, is to sharpen the peak. Note, that there is a negligible difference between the 

analytical solutions and the numerical solutions for both the unclipped and severely clipped 

signals, for any of the three measurements.    

 

6.2.2  Acceleration Data 

The processed acceleration data is shown in Fig. 7 in the same format as for the pressure data 

in Fig. 6. Examining the modulus of the CPSD in Figs. 7(ai-aiii), it can be seen that the main 

difference of the unclipped and severely clipped acceleration data compared to the 

corresponding pressure data, is that the low frequencies have been supressed and the high 

frequencies have been amplified. This is because of the differential effect of the accelerometer 

so that 
1 2 1 2

( ) 4 ( )( ) ( )a p

x x x xS A S  = , which can be seen from Eqs. (2) and (8) [10,]. The 
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combination of the pipe and the accelerometer forms a band-pass filter [5,10] with the peak in 

the modulus of the CPSD occurring at a frequency of ( )
peak

2f d=  [26]. Because the 

coherence is poor at low frequencies, as well as at high frequencies due to the filtering effect 

of the accelerometers as observed in Figs. 7(ai-aiii), the noise is evident in the modulus of the 

numerically evaluated CPSDs at low and high frequencies for the severely clipped data, for all 

three measurement positions. Examining the phase data, it can be seen that they are identical 

to the pressure data, with the exception of the numerical solutions for the severely clipped data, 

in which it is clear that the frequency at which the unwrapping fails is higher, because of the 

amplifying effects of the accelerometer at high frequencies.     

 

Examining the CCCs shown in Figs. 7(di-diii), it can be seen that the use of an accelerometer 

sharpens the peak considerably, and the maximum value reduces sharply as the relative 

distance between the leak and the measurement positions increases as indicated by Fig. 3(a). 

The effect of severe clipping has no impact on the time delay estimation, and only has a small 

effect on the shape of the CCC in all cases. Note that, as with the pressure data, there is a 

negligible difference between the analytical solutions and the numerical solutions for both the 

unclipped and severely clipped signals, for all three measurements.    

 

7. Field measurements 

Measured signals from a pipe rig, specially constructed for water leak detection at the National 

Research Council campus in Canada, are used to illustrate the effects of severe clipping on 

actual leak noise data. The description of the test site and measurement procedures are given 

in [2,8], and a schematic of the site is shown in Fig. 8(a). Noise from a leak, an illustration of 

which is shown in Fig. 8(b), was measured using hydrophones and accelerometers at two access 

points, one of which is shown in Fig. 8(c). The distance between the measurement points was 
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102.6 m, and the distance of the upstream measurement point from the leak was 73.5 m. The 

signals of 66 s duration were each passed through an anti-aliasing filter with the cut-off 

frequency set at 200 Hz and then sampled at a frequency of 500 Hz. The frequency domain 

data were determined using a 1024-point FFT, a Hanning window, with 50% overlap, and 

spectral averaging. The results are shown in Fig. 9 for both unclipped and severely clipped 

pressure and acceleration data, using the same format as with the simulations. Also shown in 

the figure, are predictions calculated using the analytical model. Severe clipping of the 

measured data was simulated by using the signum function, in the same way as for the 

simulated data. 

 

7.1 Pressure data 

First, examining the modulus of CPSD for the pressure data shown in Fig. 9(ai), it can be seen 

that the experimental results follow the predictions up to about 50 Hz, and then they deviate at 

higher frequencies. The reason for the deviation is due to a resonance in the pipe-sensor system 

as discussed in [27].  The severely clipped data and the predictions match very well over the 

whole frequency range, and show that the effect of clipping is to add noise to the leak noise 

data, above about 50 Hz. Concerning the phase, shown in Fig. 9(bi), it can be seen that the 

phase is successfully unwrapped up to around 50 Hz for both unclipped and severely clipped 

data, even though the coherence is significantly reduced when the data is severely clipped, as 

shown in Fig. 9(ci).  To calculate the CCC the data are first passed through a band-pass filter 

with lower and upper cut-off frequencies set to 10 and 50 Hz respectively to remove unwanted 

background noise. The CCC for the pressure data is plotted in Fig. 9(di). Note that, unlike the 

simulations shown in the previous section, the CCC for the severely clipped data is multiplied 

by 2  so that the shapes of the CCC for the unclipped and severely clipped data can be easily 

compared. It can be seen that severe clipping of the data does not change the estimated time 
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delay or the shape of the CCC (in the figure the plots are indistinguishable). The reason for this 

is the same as discussed in the previous section for simulated data. The differences between the 

shape of the CCC for the predictions and the measurements can be attributed to unmodeled 

noise. Note, however, that the shape of the predicted and measured CCCs close to the estimated 

time delay of 92 ms are very similar. 

 

7.2 Acceleration data 

First, consider the modulus of CPSD for the acceleration data shown in Fig. 9(aii). The band-

pass characteristic is evident, as discussed for the simulated data. The effect of measuring 

acceleration rather than pressure is to increase the frequency range over which the leak data 

can be processed, and it is clear that there is very little difference in the modulus of the CPSD 

for the unclipped and the severely clipped data. In this particular pipe system there are no 

resonances evident in the acceleration data unlike with the pressure data, as discussed in [27], 

and this means that the phase can be unwrapped up to a much higher frequency than for the 

pressure data – just over 100 Hz compared with about 50 Hz. However, note in Fig. 9(bii) that 

the effect of severe clipping is to reduce the frequency at which the phase can be unwrapped. 

In Fig. 9(cii), it can be seen that the coherence is much smaller than for pressure data, for 

unclipped data, and is similar for severely clipped data. Finally, for the CCC plotted in Fig. 

9(dii), it can be seen that, as with the pressure data, severe clipping of the data does not change 

the estimated time delay or the shape of the CCC (in the figure the plots are indistinguishable). 

Note that the CCC for the severely clipped data is multiplied by 2 , as with the pressure data. 

The narrow peak in the CCC for the acceleration data compared with the pressure data, is due 

to the wider bandwidth of the acceleration data. 
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8. Conclusions 

This paper has described an analytical, numerical and experimental study into the effects of 

severe amplitude distortion of leak noise data due to either severe clipping or extreme 

quantization caused by instrumentation which is part of a leak noise correlator. The efficacy of 

using cross-correlation on severely clipped signals for time delay estimation in the location of 

leaks in buried plastic water distribution pipes has been investigated. Two types of data have 

been analysed, namely acoustic pressure inside the pipe, and acceleration of the pipe wall. To 

study severe clipping of the data, the signum function was applied to the data removing all 

amplitude information, effectively keeping only the zero crossings in the signals. Applying 

Van Vleck’s result for severely clipped signals, it was shown that severe clipping has a greater 

effect on pressure data than acceleration data. Moreover, it has a greater effect if the measured 

leak signals are similar, such that the peak in the CCC is close to unity. If this is not the case, 

which can occur either when the leak is close to one of the measurement positions or when the 

signal to noise ratio is small, then the effect of severe clipping on the shape of the CCC function 

is negligible. To gain some additional insight into the effect of severe clipping, random 

telegraph theory has been applied to the theoretical model of the CCF for leak noise from plastic 

water pipes. New analytical expressions have been presented for the normalised CCFs and the 

corresponding CPSDs for pressure and acceleration measurements. These expressions allow 

insight into the shape of the CCF at time delays close to the peak, and also the behaviour of the 

CPSD at high frequencies. 

 

Generally, it has been shown that the effect of severe clipping does not have an appreciable 

effect on the normalised CCF and hence the location of the leak. Its main effect is to add high 

frequency correlated noise to the data, which does not have detrimental effect on time delay 

estimation. In the experimental pressure and acceleration data presented, the effect of severe 
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clipping was barely discernible in the normalised CCF. This result has a major implication for 

the development of leak noise correlators. It means that electronic circuits for automatic gain 

control are unnecessary, as distortion of the leak noise signals by clipping has a negligibly 

small effect on time delay estimation. Furthermore, the fidelity of the digitised signals using a 

large number of bits in the ADC is also unnecessary. If the leak noise is at least as large as the 

voltage level of a single bit, then the time delay estimation using two leak noise signals is 

possible.    

 

Acknowledgements 

The authors gratefully acknowledge the National Research Council in Canada for providing 

the leak noise test data. Professor Gao would like to acknowledge the financial support of the 

Natural Science Foundation of China (under Grant 11774378). The remaining authors would 

like to acknowledge the financial support of FAPESP (Process No. 2013/50412-3). Professor 

Brennan would further like to acknowledge the financial support of FAPESP (Process Nos. 

2018/04407-1 and 2018/25360-3).    

 

  



27 

 

References 

[1]   H.V. Fuchs, R. Riehle, Ten years of experience with leak detection by acoustic signal 

analysis, Applied Acoustics, 33, (1991), 1–19. 

 

[2] O. Hunaidi, W.T. Chu, Acoustical characteristics of leak signals in plastic water 

distribution pipes. Applied Acoustics, 58(3), (1999), 235–254. 

 

[3]. J.M. Muggleton, M.J. Brennan, R.J. Pinnington, Wavenumber prediction in buried pipes 

for water leak detection. Journal of Sound and Vibration, 249(5), (2002), 939-954.  

 

[4]. J.M. Muggleton, M.J. Brennan, P.W. Linford, Axisymmetric wave propagation in 

fluid-filled pipes: Measurements in in-vacuo and buried pipes.  Journal of Sound and 

Vibration, 270, (2004),171-190. 

 

[5]. F.C.L. Almeida, M.J. Brennan, P.F. Joseph, S. Whitfield, S. Dray, A. Paschoalini, On 

the acoustic filtering of the pipe and sensor in a buried plastic water pipe and its effect 

on leak detection: An experimental investigation. Sensors,14, (2014), 5595-5610.  

 

[6] Y. Gao, Y. Liu, J.M. Muggleton, Axisymmetric fluid-dominated wave in fluid-filled 

plastic pipes: loading effects of surrounding elastic medium. Applied Acoustics, 116, 

(2017), 43–49. 

 

[7] M.J. Brennan, M. Karimi, J.M. Muggleton, F.C.L. Almeida, F. Kroll de Lima, P.C. 

Ayala, D. Obata, A.T. Paschoalini, N. Kessissoglou, On the effects of soil properties 

on leak noise propagation in plastic water distribution pipes, Journal of Sound and 

Vibration, 427, (2018), 120–133.  

 

[8] Y. Gao, M.J. Brennan, P.F. Joseph, J.M. Muggleton, O, Hunaidi, A model of the 

correlation function of leak noise in buried plastic pipes. Journal of Sound and Vibra-

tion, 277, (2004), 133-148.  

 

[9] Y. Gao, M.J. Brennan, P.F. Joseph, A comparison of time delay estimators for the 

detection of leak noise signals in plastic water distribution pipes. Journal of Sound 

and Vibration, 292, (2006), 552-570.  

 

[10]  Y. Gao, M.J. Brennan, P.F. Joseph, J.M. Muggleton, O, Hunaidi, On the selection of 

acoustic/vibration sensors for leak detection in plastic water pipes. Journal of Sound 

and Vibration, 283, (2005), 927-941.  

 

[11] J.H. Van Vleck, The spectrum of clipped noise, Radio Research Laboratory Research 

Report 51, Harvard University, Cambridge, Massachusetts, USA, (1943).  

 

[12] J.H. Van Vleck, D. Middleton, The spectrum of clipped noise, Proceedings of the 

IEEE, 54, 1, (1966), 2-19. 

 

[13] S. Weinreb. A digital spectral analysis technique and its application to radio 

astronomy. Massachusetts Institute of Technology Technical Report 412, (1963), 119 

pages. 

 



28 

 

[14]   D.G. Watts, A general theory of amplitude quantization with applications to 

correlation determination. Proceedings of the IEE - Part C: Monographs, 9(15), 

(1962), 209-2018. 

 

[15] B.F.C. Cooper, Correlators with two-bit quantization, Australian Journal of Physics, 

23, (1970), 521-527. 

 

[16] J.R. Jordan, Correlation algorithms, circuits and measurement applications, 

Proceedings of the IEE – Part C: Electronic Circuits and Systems, 133(1), (1986), 58-

74. 

 

[17] F.K. Bowers, R.J. Klingler, Quantization noise of correlation spectrometers, 

Astronomy and Astrophysics Supplement, 15, (1974), 373-380. 

 

[18] G.C. Carter, Ph.D. Dissertation: Time delay estimation. University of Connecticut, 

1976. 

 

[19] C.H. Knapp, G.C. Carter, The generalised correlation method for estimation of time 

delay, IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(4), (1976) 

320–327. 

 

[20] R. Cusani, Fast techniques for time delay estimation, Proceedings of the 

Electrotechnical Conference Integrating Research, Industry and Education in Energy 

and Communication Engineering, 11-13 April 1989, Lisbon, Portugal, (1989), 177-

180. 

 

[21] J.S. Bendat, A.G. Piersol, Random data analysis and measurement procedures, 3rd 

Edition, John Wiley and Sons. Inc, New York, (2000). 

 

[22] K. Shin, J.K. Hammond, Fundamentals of Signal Processing for Sound and Vibration 

Engineers, John Wiley, Chichester, (2008). 

 

[23] F.C.L. Almeida, M.J. Brennan, P.F. Joseph, S. Dray, S. Whitfield, A.T. Paschoalini, 

Towards an in-situ measurement of wave velocity in buried plastic water distribution 

pipes for the purposes of leak location. Journal of Sound and Vibration, 359, (2015), 

40-55. 

 

[24] A.S. Papastefanou, P.F. Joseph, M.J. Brennan, Experimental Investigation into the 

Characteristics of In-Pipe Leak Noise in Plastic Water Filled Pipes. Acta Acustica 

united with Acustica, 98(6), (2012), 847-856. 

 

[25] J.M. Muggleton, M.J. Brennan, Y. Gao, Determining the location of buried plastic 

water pipes from measurements of ground surface vibration, Journal of Applied 

Geophysics, 75(1), (2011), 54-61. 

 

[26] M.J. Brennan, F. Kroll de Lima, F.C.L. Almeida, P.F. Joseph, A.T. Paschoalini, A 

virtual pipe rig for testing acoustic leak detection correlators: Proof of concept, 

Applied Acoustics, 102, (2016), 137-145. 

 



29 

 

[27] F.C.L. Almeida, M.J. Brennan, P.F. Joseph, Y. Gao, A.T. Paschoalini, The effects of 

resonances on time delay estimation for water leak detection in plastic pipes. Journal 

of Sound and Vibration, 420, (2018), 315-329. 

 

[28] S.O. Rice, The mathematical analysis of random noise, The Bell System Technical 

Journal 23(3), (1944), 282-232. 


