Deep Set Prediction Networks

Yan Zhang Jonathon Hare Adam Priigel-Bennett
University of Southampton University of Southampton University of Southampton
Southampton, UK Southampton, UK Southampton, UK
yzbnl2@ecs.soton.ac.uk jsh2@ecs.soton.ac.uk apb@ecs.soton.ac.uk
Abstract

We study the problem of predicting a set from a feature vector with a deep neural
network. Existing approaches ignore the set structure of the problem and suffer
from discontinuity issues as a result. We propose a general model for predicting
sets that properly respects the structure of sets and avoids this problem. With a
single feature vector as input, we show that our model is able to auto-encode point
sets, predict bounding boxes of the set of objects in an image, and predict the
attributes of these objects in an image.

1 Introduction

The full version of this paper is available as [19]. Object detection — predicting the set of objects
in an image — is an example of a sef prediction problem. The main difficulty in predicting sets comes
from the ability to permute the elements in a set freely, which means that there are n! equally good
solutions for a set of size n. MLPs and RNNs — the currently prevailing approach for set prediction —
do not take this structure into account, which leads to discontinuities and hinders training [2].

How can we build a model that properly respects the set structure of the problem so that we can
predict sets without running into discontinuity issues? In this paper, we aim to address this question.

1. We propose a model that can predict a set from a feature vector while properly taking the
structure of sets into account (section 3)). We explain what properties we make use of that
enables this. Our model uses backpropagation through a set encoder to decode a set and
works for variable-size sets. The model is applicable to a wide variety of set prediction tasks
since it only requires a feature vector as input.

2. We evaluate our model on several set prediction datasets (section 4): auto-encoding a set
version of MNIST, bounding box prediction on CLEVR, and object attribute prediction on
CLEVR. Our model is a completely different approach to usual anchor-based object detectors
because we pose the task as a set prediction problem, which does not need complicated
post-processing techniques such as non-maximum suppression.

2 Background: Responsibility problem

A widely-used approach is to simply ignore the set structure of the problem. A feature vector can be
mapped to a set Y by using an MLP that takes a vector as input and directly produces Y withd x n
outputs, where d is the dimensionality of each feature vector in the set and n is the set size. Since the
order of elements in ¥ does not matter, it appears reasonable to always produce them in a certain
order based on the weights of the MLP.

However, [2] point out that this results in a discontinuity issue: there are points where a small change
in set space requires a large change in the neural network outputs. The model needs to “decide” which

Sets & Partitions Workshop at 33rd Conference on Neural Information Processing Systems (NeurIPS 2019),
Vancouver, Canada.

Algorithm 1 Forward pass of set prediction algorithm

1. z=F(x) > encode input with a model
2: V(O + init > initialise set
3: fort <« 1,7 do

4: [+ Lrepr(Y(t_l)7 z) > compute representation loss
5: Y® y -1 _ n# > gradient descent step on the set
6: end for

7: predict Y'(T)

8 L= % Z;‘F:O L(YW Y) + ALepe (Y, 2) > compute loss of outer optimisation

of its outputs is responsible for producing which element, and this responsibility must be resolved
discontinuously.

The main problem is that the output of an MLP or RNN is inherently ordered, which forces the model
to give the set an order. Instead, it is preferable if the outputs of the model themselves are freely
interchangeable — in the same way the elements of the set are interchangeable — to not impose an
order on the outputs. We are thus looking for a model that has inherently unordered outputs so that it
models the unordered nature of sets correctly.

3 Deep Set Prediction Networks

Our main idea is based on the observation that the gradient of a set encoder with respect to the input
set is permutation-equivariant (see proof in[Appendix A): fo decode a feature vector into a set, we
can use gradient descent to find a set that encodes to that feature vector. Since each update of the
set using the gradient is permutation-equivariant, we always properly treat it as a set and avoid the
responsibility problem. This gives rise to a nested optimisation: an inner loop that changes a set to
encode more similarly to the input feature vector, and an outer loop that changes the weights of the
encoder to minimise a loss over a dataset.

Our model is easiest to explain with an auto-encoder. In a set auto-encoder, the goal is to turn the
input set Y into a small latent space 2 = genc(Y") with the encoder gene and turn it back into the

predicted set Y = gdec(z) with the decoder gge.. Using our main idea, we define a representation
loss and the corresponding decoder as:

Lien(Y',2) = [|genc(Y) — 2|I? (1)

Gdec (Z) = arg min Lrepr(Yv Z) (2)
Y

In essence, Lyep, compares Y to Y in the latent space. To understand what the decoder does, first
consider the simple, albeit not very useful case of the identity encoder ge,(Y) = Y. Solving ggec(2)

simply means setting ¥ = Y, which perfectly reconstructs the input as desired.

When we instead choose gy to be a set encoder, the latent representation z is a permutation-invariant
feature vector. If this representation is “good”, Y will only encode to similar latent variables as Y if

the two sets themselves are similar. Thus, the minimisation in should still produce a set Y
that is the same (up to permutation) as Y, except this has now been achieved with z as a bottleneck.

We then perform gradient descent to find an approximate solution. Starting from some initial set
Y (©), gradient descent is performed for a fixed number of steps 7" with the update rule:

aLrepr(Y(t)) Z)

) 0 _ .
20

3)

Y© Ym Y® Ye Y™ Y& Y© Yo Y® Y Y09 Target Y Baseline

L & & A 3. £ £ E 3
P 5PY o) £ S % Fra 3 firk s parcy
“:g A | | gt | || || || Bt | AR | &R

¥ %7929 %9.49.49149

SR A ARSI A S S MN
¥ 29002222220
Figure 1: Progression of set prediction algorithm (Y ®)) on MNIST.,

with 7 as the learning rate and the prediction being the final state, ggec(2z) = Y (T). This is the

aforementioned inner optimisation loop. In practice, we let Y () be a learnable R**” matrix which
is part of the neural network parameters.

To obtain a good representation z, we still have to train the weights of ge,. For this, we compute the
auto-encoder objective L (Y(T) ,Y') — with Ly as the Chamfer or Hungarian loss — and differentiate
with respect to the weights as usual, backpropagating through the steps of the inner optimisation.
This is the aforementioned outer optimisation loop.

In summary, each forward pass of our auto-encoder first encodes the input set to a latent representation
as normal. To decode this back into a set, gradient descent is performed on an initial guess with the
aim to obtain a set that encodes to the same latent representation as the input. The same set encoder
is used in encoding and decoding.

Notice how our algorithm only depends on z as input, not the input set. This means that we can use
anything that produces a feature vector for z, like an image encoder. This immediately gives us a
model that is not limited to the auto-encoder setting, but can be used for general set prediction.

We describe how to modify the loss function for the supervised case in [Appendix B} The minor
changes necessary for variable-size sets are located in[Appendix C|

4 Experiments

We now compare our set prediction network to a model that uses an MLP or RNN as set decoder,
which matches approaches such as in [13]] and [15]]. Further details about the model architectures,
training settings, and hyperparameters are given in[Appendix E} The source code to reproduce all
experiments is available at [redacted].

4.1 MNIST

We begin with the task of auto-encoding a set version of MNIST. A set is constructed from each
image by including all the pixel coordinates (x and y, scaled to the interval [0, 1]) of pixels that have a
value above the mean pixel value. We compare our model against a baseline where the decoder is
replaced with an MLP.

Results In we show the progression of ¥~ throughout the minimisation with Y (10) a5 the
final prediction, the ground-truth set, and the baseline prediction. Our model clearly predicts much
better sets than the baseline model, which only learned to output very few points in the rough shape of
the digit. Observe how every optimisation starts with the same set Y (), but is transformed differently
depending on the gradient of gen.. Through this minimisation of Ly, by the inner optimisaton, the
set is gradually changed into a shape that closely resembles the correct digit.

4.2 Bounding box prediction

Next, we turn to the task of object detection on the CLEVR dataset [[7]. The goal is to predict the set
of bounding boxes for the objects in an image. We use ResNet-34 as image encoder to produce a
feature vector, which is then decoded with our model. As baseline, we replace our decoder with an
MLP or an RNN. These two baselines closely match the approaches in [13]] and [[15] respectively.

Yo Yy® Yo Y0 True Y Baseline

Figure 2: Progression of set prediction algorithm for bounding boxes in CLEVR. The baseline
sometimes struggles with heavily-overlapping objects and often fails to centre the object in the boxes.

Table 1: Average Precision (AP) for different intersection-over-union thresholds for a predicted
bounding box to be considered correct. Mean and standard deviation over 6 runs.

Model AP 50 APgO AP95 Ang AP99

MLP Baseline 99.3102 94.0x19 579479 0.7£02 0.0x00
RNN Baseline 99.4102 94.9120 65.0£103 24200 0.0x00
Ours (10 iters) 98.8+03 94.3+15 85.7+30 34.5+57 2.9+12
Ours (20 iters) 99.8+t00 98.7+11 86.2+72 243180 1.4+09
Ours (30 iters) 99.8+01 96.7+24 755+123 17.4+77 0.9+07

Table 2: Average Precision (AP) in % for different distance thresholds of a predicted set element to
be considered correct. AP, only requires all attributes to be correct, regardless of 3d position. Mean
and standard deviation over 6 runs.

Model APOO AP] AP(),5 APO_25 AP(), 125

MLP Baseline 3.6+05 1.5+04 0.8+03 0.2+01 0.0+00
RNN Baseline 4.0+19 1.8+12 0.9+05 0.2+0.1 0.0+00
Ours (10 iters) 72.8+23 59.2+28 39.0+44 124425 1.3+04
Ours (20 iters) 84.0+a5 80.0+49 57.0+121 16.6+90 1.6x09
Ours (30 iters) 85.2+4s3 81.1+52 47.4+176 10.8+00 0.6x07

Results Our results in[Table 1|show that our model is consistently superior, especially for the very
strict APgg and APg9 metrics. We can also run our model with more inner optimisation steps than the
10 it was trained with. Up to APys, the results improve when doubling the number of steps, which

shows that further minimisation of Lrepr(f/, z) is still beneficial, even if it is unseen during training.

4.3 State prediction

Lastly, we want to directly predict the full state of a scene from images on CLEVR. This is the set of
objects with their position in the 3d scene (X, y, z coordinates), shape (sphere, cylinder, cube), colour
(eight colours), size (small, large), and material (metal/shiny, rubber/matte) as features. For example,
an object can be a “small cyan metal cube” at position (0.95, -2.83, 0.35). We use the same model
and baselines as before, except each set element to be predicted now has 18 dimensions instead of 4.

Results We show our results in[Table 2]and give sample outputs in[Appendix F| The evaluation

metric is the standard average precision as used in object detection, with the modification that a
prediction is considered correct if there is a matching groundtruth object with exactly the same
properties and within a given Euclidean distance of the 3d coordinates.

Our model outperforms the baselines by a large margin. This shows that our model is also suitable
for modeling high-dimensional set elements. This time, the results for 20 iterations are all better than
for 10 iterations, which suggests that using only 10 steps in training is not enough and that increasing
this would give further benefits.

References

[1] Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L. J. Learning representations and
generative models for 3D point clouds. In Proceedings of the 35th International Conference on
Machine Learning (ICML), 2018.

[2] Anonymous. FSPool: Learning set representations with featurewise sort pooling. 2019.

[3] Balles, L. and Fischbacher, T. Holographic and other point set distances for machine learning,
2019. URL https://openreview.net/forum?id=rJ1pUiAcYX.

[4] Cao, N. D. and Kipf, T. MolGAN: An implicit generative model for small molecular graphs. In
ICML Deep Generative Models Workshop, 2018.

[5] Fan, H., Su, H., and Guibas, L. J. A point set generation network for 3D object reconstruction

from a single image. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[6] Greff, K., Kaufmann, R. L., Kabra, R., Watters, N., Burgess, C., Zoran, D., Matthey, L.,
Botvinick, M., and Lerchner, A. Multi-object representation learning with iterative variational
inference. arXiv:1903.00450, 2019.

[7] Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., and Girshick,
R. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[8] Lazarow, J., Jin, L., and Tu, Z. Introspective neural networks for generative modeling. In The
IEEE International Conference on Computer Vision (ICCV), pp. 2774-2783, 2017.

[9] Lee, K., Xu, W., Fan, E., and Tu, Z. Wasserstein introspective neural networks. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[10] Li, C.-L., Zaheer, M., Zhang, Y., Poczos, B., and Salakhutdinov, R. Point cloud GAN.
arXiv:1810.05795, 2018.

[11] Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia, P. Learning deep generative models of
graphs. arXiv:1803.03324, 2018.

[12] Mordatch, I. Concept learning with energy-based models. arXiv:1811.02486, 2018.

[13] Rezatofighi, S. H., Kaskman, R., Motlagh, F. T., Shi, Q., Cremers, D., Leal-Taixé, L., and Reid,
I. Deep perm-set net: Learn to predict sets with unknown permutation and cardinality using
deep neural networks. arXiv:1805.00613, 2018.

[14] Simonovsky, M. and Komodakis, N. GraphVAE: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks (ICANN),
2018.

[15] Stewart, R. and Andriluka, M. End-to-end people detection in crowded scenes. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[16] Vinyals, O., Bengio, S., and Kudlur, M. Order Matters: Sequence to sequence for sets. In
International Conference on Learning Representations (ICLR), 2015.

[17] Yang, Y., Feng, C., Shen, Y., and Tian, D. FoldingNet: Point cloud auto-encoder via deep grid
deformation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

[18] You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec, J. GraphRNN: Generating realistic
graphs with deep auto-regressive models. In Proceedings of the 35th International Conference
on Machine Learning (ICML), 2018.

[19] Zhang, Y., Hare, J., and Priigel-Bennett, A. Deep Set Prediction Networks. In Advances in
Neural Information Processing Systems, 2019. URL https://arxiv.org/abs/1906.06565|

https://openreview.net/forum?id=rJlpUiAcYX
https://arxiv.org/abs/1906.06565

A Proof of permutation-equivariance

Definition 1. A function f : R"*¢ — R? is permutation-invariant iff it satisfies:

f(X) = f(PX))
for all permutation matrices P.

Definition 2. A function g : R"*¢ — R"*% is permutation-equivariant iff it satisfies:
Py(X) = g(PX) (5)
for all permutation matrices P.

Theorem 1. The gradient of a permutation-invariant function f : R"*¢ — R? with respect to its
input is permutation-equivariant:
of(X) _ of(PX)

P 0X 0PX ©

Proof. Using Definition 1, the chain rule, and the orthogonality of P:

of(X) Of(PX)
P 0X P X @
_ _OPX 0f(PX) g
T 98X 9PX ®)
_ r0f(PX)
= PP DX)
_ 0f(PX)
- OPX (10)
O

B Predicting sets from a feature vector

In our auto-encoder, we used an encoder to produce both the latent representation as well as to decode
the set. This is no longer possible in the general set prediction setup, since the target representation z
can come from a separate model (for example an image encoder F' encoding an image x), so there is
no longer a set encoder in the model.

When naively using z = F'(x) as input to our decoder, our decoding process is unable to predict sets
correctly from it. Because the set encoder is no longer shared in our set decoder, there is no guarantee

that optimising genc(f’) to match z converges towards Y (or a permutation thereof). To fix this, we
simply add a term to the loss of the outer optimisation that encourages genc(Y') & z again. In other
words, the target set should have a very low representation loss itself. This gives us an additional
Lyep term in the loss function of the outer optimisation for supervised learning:

L=Let(Y,Y) + Aoep(Y, 2) (11)

with L again being either Ly, or Ly,,. With this, minimising Lrepr(f’, z) in the inner optimisation
will converge towards Y. The additional term is not necessary in the pure auto-encoder because
2 = genc(Y'), 50 Lepe(Y, 2) is always 0 already.

Practical tricks For the outer optimisation, we can compute the set loss for not only Y (D) but all

Y (). That is, we use % Do Lset(f’(t), Y') as loss. This encourages Y to converge to Y quickly and
not diverge with more steps, which significantly increases the robustness of our algorithm.

We sometimes observed divergent training behaviour when the outer learning rate is set inappropri-
ately. By replacing the instances of || - ||? in Lge and Ly with the Huber loss (squared error for
differences below 1 and absolute error above 1) — as is commonly done in object detection models —
training became less sensitive to hyperparameter choices.

C Extension to variable-size sets

To extend this from fixed- to variable-size sets, we make a few modifications to this algorithm. First,
we pad all sets to a fixed maximum size to allow for efficient batch computation. We then concatenate
an additional mask feature m; to each set element ¢, that indicates whether it is a regular element
(m; = 1) or padding (m; = 0). With this modification to Y, we can optimise the masks in the same
way as the set elements are optimised. To ensure that masks stay in the valid range between 0 and 1,
we simply clamp values above 1 to 1 and values below 0 to 0 after each gradient descent step. This
performed better than using a sigmoid in our initial experiments, possibly because it allows exact Os
and 1s to be recovered.

D Related work

The main approach we compare our method to is the simple method of using an MLP decoder to
predict sets. This has been used for predicting point clouds [15 5], bounding boxes [[13} 3], and graphs
(sets of nodes and edges) [4;114]]. These predict an ordered representation (list) and treat it as if it
is unordered (set). As we previously discussed, this approach runs into the responsibility problem.
Some works on predicting 3d point clouds make domain-specific assumptions such as independence
of points within a set [10] or grid-like structures [17]].

An alternative approach is to use an RNN decoder to generate this list [[11;[15;/16]. The problem can
be made easier if it can be turned from a set into a sequence problem by giving a canonical order to
the elements in the set through domain knowledge [16]]. For example, [18] generate the nodes of a
graph by ordering the set of nodes based on the node traversal order of a breadth-first search.

The closest work to ours is by Mordatch [12]. They also iteratively minimise a function (their energy
function) in each forward pass of the neural network and differentiate through the iteration to learn
the weights. They have only demonstrated that this works for modifying small sets of 2d elements in
relatively simple ways, so it is unclear whether their approach scales to the harder problems such
as object detection that we tackle in this paper. In particular, minimising Ly, in our model has the
easy-to-understand consequence of making the predicted set more similar to the target set, while it is
less clear what minimising their learned energy function E(Y7 z) does.

Anonymous [2] construct an auto-encoder that pools a set into a feature vector where information from
the encoder is shared with their decoder. This is done to make their decoder permutation-equivariant,
which they use to avoid the responsibility problem. However, this strictly limits their decoder to
usage in auto-encoders because it requires an encoder to be present during inference.

Greff et al. [6] construct an auto-encoder for images with a set-structured latent space. They are
able to find latent sets of variables to describe an image composed of a set of objects with some
task-specific assumptions. While interesting from a representation learning perspective, our model is
more immediately useful in practice because it works for general supervised learning tasks.

Our inspiration for using backpropagation through an encoder as a decoder comes from the line
of introspective neural networks [8; 9] for image modeling. An important difference is that in
these works, their two optimisation loops (generating predictions/samples and learning the network
weights) are performed in sequence, while ours are nested. The nesting allows our outer optimisation
to differentiate through the inner optimisation. Note that [6] and [12] also differentiate through an
optimisation, which suggests that this type of optimisation is of general use when working with sets.

E Details

In our algorithm, 1 was chosen in initial experiments and we did not tune it beyond that. We did
this by increasing 7 until the output set visibly changed between inner optimisation steps when the
set encoder is randomly initialised. This makes it so that changing the set encoder weights has a

noticeable effect rather than being stuck with ¥ () ~ Y (0.

T = 10 was chosen because it seemed to be enough to converge to good solutions on MNIST. We
simply kept this for the supervised experiments on CLEVR.

In the supervised experiments, we would often observe large spikes in training that cause the model
diverge when A = 1. By changing around various parameters, we found that reducing \ eliminated
most of this issue and also made training converge to better solutions. Much smaller values than 0.1
converged to worse solutions. This is likely because the issue of not having the Ly (Y, z) term in
the outer loss in the first place (A = 0) is present again.

For all experiments, we used Adam with the default momentum values and batch size 32. The only
hyperparameter we tuned in the experiments is the learning rate. Every individual experiment is run
on a single 1080 Ti GPU.

We tried an alternative version of the inner optimisation that includes a momentum term. This gave
us slightly better results, but we did not use this for any experiments in the paper to keep our method
as simple as possible.

E.1 MNIST

For MNIST, we train our model and the baseline model for 100 epochs to make sure that
they have converged. Both models have a 3-layer MLP with ReLU activations and 256 neu-
rons in the first two layers and 64 in the third. For simplicity, sets are padded to a fixed size
for FSPool. FSPool has 20 pieces in its piecewise linear function. We tried learning rates in
{1.0,0.1,0.03,0.01,0.003,0.001, 0.0003,0.0001, 0.00001} and chose 0.01. For the baseline, none
of the other learning rates performed significantly better than the one we chose.

The baseline is trained slightly differently to our model. The baseline does not output mask values
natively, so we have to train it with the mask values in the training target. In other words, it is trained
to predict x coordinate, y coordinate, and the mask for each point. Better results (but still worse than
our model) with fewer predicted padding points can be achieved by not including this mask value
in the target, but this baseline model no longer predicts variable-sized sets. Our model is trained
without mask values in the target and is able to learn the mask values purely through Lyep, in the inner
optimisation.

It is possible to explicitly include the sum of masks as a feature in the representation z for our model.
This improves our results on MNIST — likely due to an explicit signal for the model to predict the
correct set size — but again, we do not use this to keep our model as simple as possible.

E.2 CLEVR

We train our model and the baseline model for 100 epochs on the training set of CLEVR and evaluate
on the validation set, since no ground-truth scene information is available for the test set. The set
encoder is a 2-layer Relation Network with ReLU activation between the two layers, wherein the
sum pooling is replaced with FSPool. The two layers have 512 neurons each. Because we use the
Hungarian loss instead of the Chamfer loss here, including the mask feature in the target set does not
worsen results, so we include the mask target for both the baseline and our model for consistency. To
tune the learning rate, we started with the learning rate found for MNIST and decreased it similarly-
sized steps until the training accuracy after 100 epochs worsened. We settled on 0.0003 as learning
rate for both the bounding box and the state prediction task. All other hyperparameters are kept the
same as for MNIST. The ResNet-18 that encodes the image is not pre-trained.

F Additional outputs

Y09 Target Y Baseline

7717777l 7]l 7]

9)

Y

Ve

?

S 24

-

§

~ " a

v

4|4

-~ 2

Eons BEE S
;.'Z

KXY . < 2, .1...! e e
Xy i - o 3 .aﬂ. - = %0 o .
W& |5 || |22 0[R2 || |22 |~ G AN T

o5 || 9% | 95| | 955
d, . 2 A S

5

2>

1> Lad

¢ 2
A

%
o
§9

¢ g
Rad

-
SR
Y

w1
H

4

g7
Aad

}

}

}

E

.3
R

o
3

It

w3
ﬂﬁm@ .W-.

{944

AEIEEIE

p,.'
ELA

FM I

0K

F 41

Flalslslslslslslsls]s]3
e) » » ¥ * a a ! »)
1 * o B B By 3 By 3 -3 -3 -3 .3

FIH R

Figure 3: Progression of set prediction algorithm on MNIST.

Vo y (10) Y20 True Y Baseline

Figure 4: Progression of set prediction algorithm on CLEVR bounding boxes.

10

Table 3: Progression of set prediction algorithm on CLEVR state prediction. Red text denotes a wrong
attribute. Objects are sorted by x coordinate, so they are sometimes misaligned with wrongly-coloured
red text (see third example: red entries in Y (20)

and bottom two red entries in baseline).

v(5)

y(10)

v (20)

True Y

Baseline

(-0.14,1.16,3.57)

large purple rubber sphere

(0.01,0.12, 3.42)

large gray metal cube

(0.67, 0.65, 3.38)

small purple metal cube

(0.67, 1.14, 2.96)

small purple rubber sphere

(-2.33,-2.41,0.73)

(-120,1.27,0.67)

large purple rubber sphere

(-0.96, 2.54, 0.36)

small gray rubber sphere

(161, 1.57,0.36)

large yellow metal cube

small yellow metal cube

(-2.33,-2.42,0.78)
large yellow metal cube
(-1.21, 1.20, 0.65)

large purple rubber sphere

(-0.96,2.59, 0.36)

small gray rubber sphere

(1.58,1.62, 0.38)
small purple metal cube

(-2.42, -2.40, 0.70)
large yellow metal cube
(-1.18, 1.25, 0.70)

large purple rubber sphere

(-1.02,2.61,0.35)

small gray rubber sphere

(1.74,1.53,0.35)
small purple metal cube

(-1.65, -2.85, 0.69)
large yellow metal cube
(-0.95, 1.08, 0.68)
large green rubber sphere
(-0.40, 2.14, 0.35)
small red rubber sphere
(1.68, 1.77, 0.35)
small brown metal cube

v

v (10)

v (20)

True Y

Baseline

(-0.29, 1.14, 3.73)

small purple metal cube

(-0.11,-0.37, 3.65)

small brown metal cube

(0.08, 0.56, 3.84)

large cyan rubber cube

(0.69, -0.43, 3.55)

small brown rubber sphere

(1.12,021, 3.83)

large cyan rubber cube

(1.23,-0.25,3.58)

small cyan rubber sphere

(173, 1.04,3.57)

small cyan rubber sphere

(2.06, 1.94,3.81)

large brown rubber sphere

(-2.78, 0.86, 0.72)

large cyan rubber sphere

(-2.17,-1.59, 0.38)

small blue rubber cylinder

(-0.45,2.19, 0.40)

small purple metal cube

(-0.14,-2.15, 0.38)

small yellow metal cube

(0.53,2.56, 0.70)

large green rubber sphere

(0.93,-1.41,0.35)

small cyan rubber sphere

(2.50, -2.08, 0.76)
large cyan rubber cube
(2.61,2.59,0.33)

small green rubber sphere

(-2.62,0.83, 0.68)
large cyan rubber sphere
(-2.12,-1.58, 0.49)
small blue rubber cylinder
(-0.60, 2.23, 0.29)
small purple metal cube
(-0.30, -1.99, 0.32)
small yellow metal cube
(0.27,2.46,0.72)
large green rubber sphere
(0.86,-1.31,0.27)
small cyan rubber sphere
(2.64,-2.05,0.76)
large cyan rubber cube
(2.75,2.73, 0.35)
small green rubber sphere

(-2.88,0.78, 0.70)
large cyan rubber sphere
(-2.14,-1.63, 0.35)
small blue rubber cylinder
(-0.78, 1.97, 0.35)
small purple metal cube
(-0.38, -2.06, 0.35)
small yellow metal cube
(0.42, 2.56, 0.70)
large green rubber sphere
(0.81, -1.30, 0.35)
small cyan rubber sphere
(2.56,-1.94,0.70)
large cyan rubber cube
(2.74,2.64, 0.35)
small green rubber sphere

(-2.42,0.63,0.71)
large purple rubber sphere
(-2.40, -2.07, 0.35)
small green rubber cylinder
(-0.74,2.46, 0.33)
small cyan metal cube
(0.30, -1.86, 0.34)
small gray rubber sphere
(0.69, -2.10, 0.36)
small red metal cube
(1.12, 2.28, 0.70)
large cyan rubber sphere
(2.55,-2.26,0.73)
large yellow rubber cube
(2.99,2.59, 0.35)
small purple rubber sphere

v(5)

¥(10)

¥(20)

True Y

Baseline

(0.22,0.12, 3.47)
small brown rubber cube
(0.41,0.11, 3.77)
large gray metal cube
(0.50, 0.44, 3.61)
small gray rubber cube
(0.83,0.53,3.45)
small cyan rubber sphere
(0.86, 0.85, 3.50)
small gray rubber sphere
(1.86, 2.34, 3.80)
large gray metal cube
(1.97,0.55, 3.61)
small green rubber sphere

(-2.76, -1.42, 0.68)
large blue metal cylinder
(-1.56,-0.61, 0.35)
small blue rubber cylinder
(-1.08, 0.23, 0.33)
small green rubber cube
(-0.07, 0.97, 0.36)
small green rubber cylinder
(0.28, -2.44, 0.49)
small cyan rubber cylinder
(1.36,-0.63, 0.38)
small green rubber sphere
(2.01, 3.07, 0.65)
large gray metal cube
(2.69,0.63, 0.34)
small yellow rubber sphere

(-2.68, -1.64, 0.77)
large blue metal cylinder
(-2.43,0.03, 0.34)
small blue rubber cube
(-1.00, 1.18, 0.33)
small red rubber cylinder
(-0.01, -1.00, 0.46)
small green rubber cube
(0.21, -2.88, 0.40)
small cyan rubber cylinder
(0.99,0.17,0.37)
small green rubber sphere
(1.97,2.89,0.39)
large gray metal cube
(2.87,0.51,0.25)
small yellow rubber sphere

(-2.62,-1.76, 0.70)
large blue metal cylinder
(-2.29,0.49, 0.35)
small blue rubber cube
(-0.93, 1.15, 0.35)
small red rubber cylinder
(0.28, -2.84, 0.35)
small cyan rubber cylinder
(0.29,-0.98, 0.35)
small green rubber cube
(0.92, 0.54, 0.35)
small green rubber sphere
(2.04,2.78, 0.70)
large gray metal cube
(2.70, 0.67, 0.35)
small yellow rubber sphere

(-2.47,-1.73,0.70)
large cyan metal cylinder
(-2.42,0.09, 0.36)
small blue rubber cylinder
(-1.24,1.16, 0.36)
small red rubber cube
(0.39, 0.20, 0.33)
small red rubber sphere
(0.56,-3.11, 0.35)
small yellow rubber cylinder
(0.90, 0.64, 0.35)
small green rubber sphere
(2.39,0.27,0.36)
small yellow rubber sphere
(2.44,2.55,0.68)
large gray metal cube

11

	Introduction
	Background: Responsibility problem
	Deep Set Prediction Networks
	Experiments
	MNIST
	Bounding box prediction
	State prediction

	Proof of permutation-equivariance
	Predicting sets from a feature vector
	Extension to variable-size sets
	Related work
	Details
	MNIST
	CLEVR

	Additional outputs

