Deep Set Prediction Networks

Yan Zhang Jonathon Hare Adam Priigel-Bennett
University of Southampton University of Southampton University of Southampton
Southampton, UK Southampton, UK Southampton, UK
yzbnl2@ecs.soton.ac.uk jsh2@ecs.soton.ac.uk apb@ecs.soton.ac.uk
Abstract

Current approaches for predicting sets from feature vectors ignore the unordered
nature of sets and suffer from discontinuity issues as a result. We propose a general
model for predicting sets that properly respects the structure of sets and avoids this
problem. With a single feature vector as input, we show that our model is able to
auto-encode point sets, predict the set of bounding boxes of objects in an image,
and predict the set of attributes of these objects.

1 Introduction

You are given a rotation angle and your task is to draw the four corner points of a square that is
rotated by that amount. This is a structured prediction task where the output is a set, since there is no
inherent ordering to the four points. Such sets are a natural representation for many kinds of data,
ranging from the set of points in a point cloud, to the set of objects in an image (object detection), to
the set of nodes in a molecular graph (molecular generation). Yet, existing machine learning models
often struggle to solve even the simple square prediction task [26].

The main difficulty in predicting sets comes from the ability to permute the elements in a set freely,
which means that there are n! equally good solutions for a set of size n. Models that do not take this
set structure into account properly (such as MLPs or RNNs) result in discontinuities, which is the
reason why they struggle to solve simple toy set prediction tasks [26]. We give background on what

the problem is in

How can we build a model that properly respects the set structure of the problem so that we can
predict sets without running into discontinuity issues? In this paper, we aim to address this question.
Concretely, we contribute the following:

1. We propose a model (section 3| [Algorithm) that can predict a set from a feature vector
(vector-to-set) while properly taking the structure of sets into account. We explain what
properties we make use of that enables this. Our model uses backpropagation through a set
encoder to decode a set and works for variable-size sets. The model is applicable to a wide
variety of set prediction tasks since it only requires a feature vector as input.

2. We evaluate our model on several set prediction datasets (section 5). First, we demonstrate
that the auto-encoder version of our model is sound on a set version of MNIST. Next,
we use the CLEVR dataset to show that this works for general set prediction tasks. We
predict the set of bounding boxes of objects in an image and we predict the set of object
attributes in an image, both from a single feature vector. Our model is a completely
different approach to usual anchor-based object detectors because we pose the task as a set
prediction problem, which does not need complicated post-processing techniques such as
non-maximum suppression.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

2 Background

Representation We are interested in sets of feature vectors with the feature vector describing
properties of the element, for example the 2d position of a point in a point cloud. A set of size n
wherein each feature vector has dimensionality d is represented as a matrix Y € R**™ with the
elements as columns in an arbitrary order, Y = [y1,...,¥y,]|. To properly treat this as a set, it
is important to only apply operations with certain properties to it [25]: permutation-invariance or
permutation-equivariance. In other words, operations on sets should not rely on the arbitrary ordering
of the elements.

Set encoders (which turn such sets into feature vectors) are usually built by composing permutation-
equivariant operations with a permutation-invariant operation at the end. A simple example is the
model in [25]: f(Y) =)", g(y;) where g is a neural network. Because g is applied to every element
individually, it does not rely on the arbitrary order of the elements. We can think of this as turning the
set {y; }7, into {g(y;)}_,. This is permutation-equivariant because changing the order of elements
in the input set affects the output set in a predictable way. Next, the set is summed to produce a single
feature vector. Since summing is commutative, the output is the same regardless of what order the
elements are in. In other words, summing is permutation-invariant. This gives us an encoder that
produces the same feature vector regardless of the arbitrary order the set elements were stored in.

Loss In set prediction tasks, we need to compute a loss between a predicted set Y = [U1,---,Tn]
and the target set Y. The main problem is that the elements of each set are in an arbitrary order,
so we cannot simply compute a pointwise distance. The usual solution to this is an assignment
mechanism that matches up elements from one set to the other set. This gives us a loss function that
is permutation-invariant in both its arguments.

One such loss is the O(n?) Chamfer loss, which matches up every element of Y to the closest
element in Y and vice versa:

Low(¥,¥) = 3 min [— g+ min [— v, (1)
i i

Note that this does not work well for multi-sets: the loss between [a, a, b], [a, b, b] is 0. A more
sophisticated loss that does not have this problem involves the linear assignment problem with the
pairwise losses as assignment costs:

where IT is the space of permutations, which can be solved with the Hungarian algorithm in O(n?)
time. This has the benefit that every element in one set is associated to exactly one element in the
other set, which is not the case for the Chamfer loss.

Responsibility problem A widely-used approach is to simply ignore the set structure of the
problem. A feature vector can be mapped to a set Y by using an MLP that takes the vector as input

and directly produces Y withd x n outputs. Since the order of elements in Y does not matter, it
appears reasonable to always produce them in a certain order based on the weights of the MLP.

While this seems like a promising approach, [26] point out that this results in a discontinuity issue:
there are points where a small change in set space requires a large change in the neural network
outputs. The model needs to “decide” which of its outputs is responsible for producing which element,
and this responsibility must be resolved discontinuously.

The intuition behind this is as follows. Consider an MLP that detects the colour of two otherwise
identical objects present in an image, so it has two outputs with dimensionality 3 (R, G, B) corre-
sponding to those two colours. We are given an image with a blue and red object, so let us say that
output 1 predicts blue and output 2 predicts red; perhaps the weights of output 1 are more attuned
to the blue channel and output 2 is more attuned to the red channel. We are given another image
with a blue and green object, so it is reasonable for output 1 to again predict blue and output 2 to
now predict green. When we now give the model an image with a red and green object, or two red

Algorithm 1 One forward pass of the set prediction algorithm within the training loop.

1. z=F(x) > encode input with a model
2: V(O + init > initialise set
3: fort <« 1,7 do

4: [+ Lrepr(Y(t_l)7 z) > compute representation loss
5: Y® y -1 _ n# > gradient descent step on the set
6: end for

7: predict Y'(T)

8 L= % Z;‘F:O L(YW Y) + ALepe (Y, 2) > compute loss of outer optimisation

objects, it is unclear which output should be responsible for predicting which object. Output 2 “wants”
to predict both red and green, but has to decide between one of them, and output 1 now has to be
responsible for the other object while previously being a blue detector. This responsibility must be
resolved discontinuously, which makes modeling sets with MLPs difficult [26].

The main problem is that there is a notion of output 1 and output 2 — an ordered output representation
— in the first place, which forces the model to give the set an order. Instead, it would be better if
the outputs of the model were freely interchangeable — in the same way the elements of the set are
interchangeable — to not impose an order on the outputs. This is exactly what our model accomplishes.

3 Deep Set Prediction Networks

This section contains our primary contribution: a model for decoding a feature vector into a set of
feature vectors. As we have previously established, it is important for the model to properly respect
the set structure of the problem to avoid the responsibility problem.

Our main idea is based on the observation that the gradient of a set encoder with respect to the input
set is permutation-equivariant (see proof in[Appendix A): fo decode a feature vector into a set, we
can use gradient descent to find a set that encodes to that feature vector. Since each update of the
set using the gradient is permutation-equivariant, we always properly treat it as a set and avoid the
responsibility problem. This gives rise to a nested optimisation: an inner loop that changes a set to
encode more similarly to the input feature vector, and an outer loop that changes the weights of the
encoder to minimise a loss over a dataset.

With this idea in mind, we build up models of increasing usefulness for predicting sets. We start with
the simplest case of auto-encoding fixed-size sets (subsection 3.1), where a latent representation is
decoded back into a set. This is modified to support variable-size sets, which is necessary for most
sets encountered in the real-world. Lastly and most importantly, we extend our model to general set
prediction tasks where the input no longer needs to be a set (subsection 3.2)). This gives us a model
that can predict a set of feature vectors from a single feature vector. We give the pseudo-code of this

method in

3.1 Auto-encoding fixed-size sets

In a set auto-encoder, the goal is to turn the input set Y into a small latent space 2z = gen.(Y) with

the encoder g, and turn it back into the predicted set Y = Jdec(z) with the decoder ggec. Using our
main idea, we define a representation loss and the corresponding decoder as:

Lrepr(f/ﬂ Z) = ||genc(?) - zH2 3)

YGdec (Z) = arg}nin Lrepr(Ya Z) “4)
Y

In essence, Lyep, compares Y to Y in the latent space. To understand what the decoder does, first
consider the simple, albeit not very useful case of the identity encoder genc(Y) = Y. Solving ggec(2)

simply means setting Y =Y, which perfectly reconstructs the input as desired.

When we instead choose gy to be a set encoder, the latent representation z is a permutation-invariant
feature vector. If this representation is “good”, Y will only encode to similar latent variables as Y if

the two sets themselves are similar. Thus, the minimisation in should still produce a set Y
that is the same (up to permutation) as Y, except this has now been achieved with z as a bottleneck.

Since the problem is non-convex when gen is a neural network, it is infeasible to solve [Equation 4]
exactly. Instead, we perform gradient descent to approximate a solution. Starting from some initial

set Y'(0), gradient descent is performed for a fixed number of steps 7" with the update rule:

OLpepe(Y Y®),)

P+ _ oy _
5) 40

(&)

with 7 as the learning rate and the prediction being the final state, ggec(z) = Y (D). This is the

aforementioned inner optimisation loop. In practice, we let Y () be a learnable R**" matrix which
is part of the neural network parameters.

To obtain a good representation z, we still have to train the weights of ge,.. For this, we compute
the auto-encoder objective Lset(f/(T), Y) — with Lg¢ = Lcpa Or Lpy, — and differentiate with respect
to the weights as usual, backpropagating through the steps of the inner optimisation. This is the
aforementioned outer optimisation loop.

In summary, each forward pass of our auto-encoder first encodes the input set to a latent representation
as normal. To decode this back into a set, gradient descent is performed on an initial guess with the
aim to obtain a set that encodes to the same latent representation as the input. The same set encoder
is used in the encoding and decoding stages.

Variable-size sets To extend this from fixed- to variable-size sets, we make a few modifications to
this algorithm. First, we pad all sets to a fixed maximum size to allow for efficient batch computation.
We then concatenate an additional mask feature m; to each set element j; that indicates whether it is
aregular element (m; = 1) or padding (m; = 0). With this modification to f’, we can optimise the
masks in the same way as the set elements are optimised. To ensure that masks stay in the valid range
between 0 and 1, we simply clamp values above 1 to 1 and values below 0 to O after each gradient
descent step. This performed better than using a sigmoid in our initial experiments, possibly because
it allows exact Os and 1s to be recovered.

3.2 Predicting sets from a feature vector

In our auto-encoder, we used an encoder to produce both the latent representation as well as to decode
the set. This is no longer possible in the general set prediction setup, since the target representation z
can come from a separate model (for example an image encoder F' encoding an image x), so there is
no longer a set encoder in the model.

When naively using z = F'(x) as input to our decoder, our decoding process is unable to predict sets
correctly from it. Because the set encoder is no longer shared in our set decoder, there is no guarantee
that optimising genc(f’) to match z converges towards Y (or a permutation thereof). To fix this, we
simply add a term to the loss of the outer optimisation that encourages gen(Y') & z again. In other
words, the target set should have a very low representation loss itself. This gives us an additional
Liepr term in the loss function of the outer optimisation for supervised learning:

L=Le(Y,Y) + Myep(Y, 2) (6)

with L. again being either Lcp, or Lpy,. With this, minimising Lrepr(f’, z) in the inner optimisation
will converge towards Y. The additional term is not necessary in the pure auto-encoder because
Z = genc(Y'), 80 Liepe (Y, 2) is always O already.

Practical tricks For the outer optimisation, We can compute the set loss for not only YD, but
all Y. That i is, we use the average set loss & T Zt get(Y(t) Y') as loss. This encourages Y to
converge to Y quickly and not diverge with more steps, which significantly increases the robustness
of our algorithm.

We sometimes observed divergent training behaviour when the outer learning rate is set inappropri-
ately. By replacing the instances of || - ||? in Ly and Ly with the Huber loss (squared error for
differences below 1 and absolute error above 1) — as is commonly done in object detection models —
training became less sensitive to hyperparameter choices.

The inner optimisation can be modified to include a momentum term, which stops a prediction from
oscillating around a solution. This gives us slightly better results, but we did not use this for any
experiments to keep our method as simple as possible.

It is possible to explicitly include the sum of masks as a feature in the representation z for our model.
This improves our results on MNIST — likely due to an explicit signal for the model to predict the
correct set size — but again, we do not use this to keep our model as simple as possible.

4 Related work

The main approach we compare our method to is the simple method of using an MLP decoder to
predict sets. This has been used for predicting point clouds [15 6], bounding boxes [17; 2l], and graphs
(sets of nodes and edges) [4}/19]. These predict an ordered representation (list) and treat it as if it
is unordered (set). As we discussed in this approach runs into the responsibility problem.
Some works on predicting 3d point clouds make domain-specific assumptions such as independence
of points within a set [12] or grid-like structures [23]].

An alternative approach is to use an RNN decoder to generate this list [[13; 205 22]. The problem can
be made easier if it can be turned from a set into a sequence problem by giving a canonical order to
the elements in the set through domain knowledge [22]. For example, [24] generate the nodes of a
graph by ordering the set of nodes based on the node traversal order of a breadth-first search.

The closest work to ours is by Mordatch [[15]. They also iteratively minimise a function (their energy
function) in each forward pass of the neural network and differentiate through the iteration to learn
the weights. They have only demonstrated that this works for modifying small sets of 2d elements in
relatively simple ways, so it is unclear whether their approach scales to the harder problems such
as object detection that we tackle in this paper. In particular, minimising Ly, in our model has the
easy-to-understand consequence of making the predicted set more similar to the target set, while it is

less clear what minimising their learned energy function E(Y", z) does.

Zhang et al. [26] construct an auto-encoder that pools a set into a feature vector where information
from the encoder is shared with their decoder. This is done to make their decoder permutation-
equivariant, which they use to avoid the responsibility problem. However, this strictly limits their
decoder to usage in auto-encoders — not set prediction — because it requires an encoder to be present
during inference.

Greff et al. [7] construct an auto-encoder for images with a set-structured latent space. They are
able to find latent sets of variables to describe an image composed of a set of objects with some
task-specific assumptions. While interesting from a representation learning perspective, our model is
immediately useful in practice because it works for general supervised learning tasks.

Our inspiration for using backpropagation through an encoder as a decoder comes from the line
of introspective neural networks [10; [11]] for image modeling. An important difference is that in
these works, the two optimisation loops (generating predictions and learning the network weights)
are performed in sequence, while ours are nested. The nesting allows our outer optimisation to
differentiate through the inner optimisation. This type of nested optimisation to obtain structured
outputs with neural networks was first studied in [3]]. Note that [7] and [15]] also differentiate through
an optimisation, which suggests that this approach is of general benefit when working with sets.

It is important to clearly separate the vector-to-set setting in this paper from some related works on
set-to-set mappings, such as the equivariant version of Deep Sets [25]] and self-attention [21]]. Tasks
like object detection, where no set input is available, can not be solved with set-to-set methods alone;
the feature vector from the image encoder has to be turned into a set first, for which a vector-to-set
model like ours is needed. Set-to-set methods do not have to deal with the responsibility problem,
because the output usually has the same ordering as the input. Methods like [14] and [27] learn to
predict a permutation matrix for a set (set-to-set). When this permutation is applied to the input set,

©) Yo Y® Y® Y®© Y™ Y® Y© Y09 Target Y Baseline

33333333
6][6][6][6] 6][6][6][6
IEEEEEEE R

Figure 1: Progression of set prediction algorithm on MNIST (Y ®). Our predictions come from our
model with 0.08 x 103 loss, while the baseline predictions come from an MLP decoder model with
0.09 x 1072 loss.

. |

Hah
W

b=
o
o
R || |8

Table 1: Chamfer reconstruction loss on MNIST in thousandths. Lower is better. Mean and standard
deviation over 6 runs.

Model Loss

MLP baseline 0.21+0.18
RNN baseline 0.49+0.19
Ours 0.09-+0.01

the set is turned into a list (set-to-list). Again, our model is about producing a set as output while not
necessarily taking a set as input.

5 Experiments

In the following experiments, we compare our set prediction network to a model that uses an MLP as
set decoder. In all experiments, we fix the hyperparameters of our model 7' = 10,7 = 800, A = 0.1.
Further details about the model architectures, training settings, and hyperparameters are given in

We provide the source code to reproduce all experiments at/https://github.com/
Cyanogenoid/dspn.

5.1 MNIST

We begin with the task of auto-encoding a set version of MNIST. A set is constructed from each
image by including all the pixel coordinates (x and y, scaled to the interval [0, 1]) of pixels that have a
value above the mean pixel value. The size of these sets varies from 32 to 342 across the dataset.

Model In our model, we use a set encoder that processes each element individually with a 3-layer
MLP, followed by FSPool [26]] as pooling function to produce 256 latent variables. These are decoded
with our algorithm to predict the input set. We compare this against a baseline model with the same
encoder, but with a traditional MLP or LSTM as decoder. This approach to decoding sets is used
in models such as by Achlioptas et al. [1] (AE-CD variant) and Stewart & Andriluka [20]]; these
baselines are representative of the best approaches for set prediction in the literature. Note that
these baselines have significantly more parameters than our model, since our decoder has almost
no additional parameters by sharing the encoder weights (ours: ~139 000 parameters, MLP: ~530
000, LSTM: ~470 000). For the baselines, we include a mask feature with each element to allow for
variable-size sets. Due to the large maximum set size, use of Hungarian matching is too slow. Instead,
we use the Chamfer loss to compute the loss between predicted and target set in this experiment.

Results [Table 1|shows that our model improves over the two baselines. In|Figure 1} we show the

progression of Y throughout the minimisation with Y (10) 45 the final prediction, the ground-truth set,
and the baseline prediction of an MLP decoder. Observe how every optimisation starts with the same

set (9 but is transformed differently depending on the gradient of gepe. Through this minimisation

https://github.com/Cyanogenoid/dspn
https://github.com/Cyanogenoid/dspn

Yy (1o Y20 True Y Baseline

Yo v

Figure 2: Progression of set prediction algorithm for bounding boxes in CLEVR. The shown MLP
baseline sometimes struggles with heavily-overlapping objects and often fails to centre the object in
the boxes.

of Lyepr by the inner optimisaton, the set is gradually changed into a shape that closely resembles the
correct digit.

The types of errors of our model and the baseline are different, despite the use of models with similar
losses in[Figure 1| Errors in our model are mostly due to scattered points outside of the main shape
of the digit, which is particularly visible in the third row. We believe that this is due to the limits of
the encoder used: an encoder that is not powerful enough maps the slightly different sets to the same
representation, so there is no Lyep, gradient to work with. It still models the general shape accurately,
but misses the fine details of these scattered points. The MLP decoder has less of this scattering, but
makes mistakes in the shape of the digit instead. For example, in the third row, the baseline has a
different curve at the top and a shorter line at the bottom. This difference in types of errors is also

present in the extended examples in[Figure 3]

Note that reconstructions shown in [26] for the same auto-encoding task appear better because their
decoder uses additional information outside of the latent space: they copy multiple n x n matrices
from the encoder into the decoder. In contrast, all information about the set is completely contained
in our permutation-invariant latent space.

5.2 Bounding box prediction

Next, we turn to the task of object detection on the CLEVR dataset [9]], which contains 70,000
training and 15,000 validation images. The goal is to predict the set of bounding boxes for the objects
in an image. The target set contains at most 10 elements with 4 dimensions each: the (normalised)
x-y coordinates of the top-left and bottom-right corners of each box. As the dataset does not contain
bounding box information canonically, we use [3] to calculate approximate bounding boxes. This
causes the ground-truth bounding boxes to not always be perfect, which is a source of noise.

Model We encode the image with a ResNet34 [8]] into a 512d feature vector, which is fed into the set
decoder. The set decoder predicts the set of bounding boxes from this single feature vector describing
the whole image. This is in contrast to existing region proposal networks [[16] for bounding box
prediction where the use of the entire feature map is required for the typical anchor-based approach.
As the set encoder in our model, we use a 2-layer relation network [[18]] with FSPool [26] as pooling.
This is stronger than the FSPool-only model (without RN) we used in the MNIST experiment. We
again compare this against a baseline that uses an MLP or LSTM as set decoder (matching AE-EMD
[, [17] for the MLP decoder, [20] for the LSTM decoder). Since the sets are much smaller compared
to our MNIST experiments, we can use the Hungarian loss as set loss. We perform no post-processing
(such as non-maximum suppression) on the predictions of the model. The whole model is trained
end-to-end.

Results We show our results in[Table 2| using the standard average precision (AP) metric used in
object detection with sample predictions in[Figure 2] Our model is able to very accurately localise the
objects with high AP scores even when the intersection-over-union (IoU) threshold for a predicted

Table 2: Average Precision (AP) for different intersection-over-union thresholds for a predicted
bounding box to be considered correct. Higher is better. Mean and standard deviation over 6 runs.

Model AP50 APgo AP95 Ang AP99

MLP baseline 99.3102 94.0+19 57.9+79 0.7x02 0.0xo00
RNN baseline 99.4102 94.9120 65.0x£103 24200 0.0x00
Ours (10 iters) 98.8+03 943115 85.7+30 345157 2.9+12
Ours (20 iters) 99.8+00 987111 86.2+72 243150 1.4+09
Ours (30 iters) 99.8+01 96.7+24 75.5+123 17.4+77 0.9+07

box to match a groundtruth box is very strict. In particular, our model using 10 iterations (the same
it was trained with) has much better APgs and APyg than the baselines. The shown baseline model
can predict bounding boxes in the close vicinity of objects, but fails to place the bounding box
precisely on the object. This is visible from the decent performance for low IoU thresholds, but bad
performance for high IoU thresholds.

We can also run our model with more inner optimisation steps than the 10 it was trained with.
Many results improve when doubling the number of steps, which shows that further minimisation
of L,epr(f’, z) is still beneficial, even if it is unseen during training. The model “knows” that its
prediction is still suboptimal when Ly, is high and also how to change the set to decrease it. This
confirms that the optimisation is stable and does not diverge significantly with more steps. Being
able to change the number of steps allows for a dynamic trade-off between prediction quality and
inference time depending on what is needed for a given task.

The less-strict AP metrics (which measure large mistakes) improve with more iterations, while
the very strict APgg and APg9 metrics consistently worsen. This is perhaps a sign that the inner
optimisation learned to reach its best prediction at exactly 10 steps, but slightly overshoots when run
for longer. The model has learned that it does not fully converge with 10 steps, so it is compensating
for that by slightly biasing the inner optimisation to get a better 10 step prediction. This is at the
expense of the strictest metrics worsening with 20 steps, where this bias is not necessary anymore.

Bear in mind that we do not intend to directly compete against traditional object detection methods.
Our goal is to demonstrate that our model can accurately predict a set from a single feature vector,
which is of general use for set prediction tasks not limited to image inputs.

5.3 State prediction

Lastly, we want to directly predict the full state of a scene from images on CLEVR. This is the set of
objects with their position in the 3d scene (X, y, z coordinates), shape (sphere, cylinder, cube), colour
(eight colours), size (small, large), and material (metal/shiny, rubber/matte) as features. For example,
an object can be a “small cyan metal cube” at position (0.95, -2.83, 0.35). We encode the categorial
features as one-hot vectors and concatenate them into an 18d feature vector for each object. Note
that we do not use bounding box information, so the model has to implicitly learn which object in
the image corresponds to which set element with the associated properties. This makes it different
from usual object detection tasks, since bounding boxes are required for traditional object detection
models that rely on anchors.

Model We use exactly the same model as for the bounding box prediction in the previous experiment
with all hyperparameters kept the same. The only difference is that it now outputs 18d instead of 4d
set elements. For simplicity, we continue using the Hungarian loss with the Huber loss as pairwise
cost, as opposed to switching to cross-entropy for the categorical features.

Results We show our results in[Table 3|and give sample outputs in The evaluation

metric is the standard average precision as used in object detection, with the modification that
a prediction is considered correct if there is a matching groundtruth object with exactly the same
properties and within a given Euclidean distance of the 3d coordinates. Our model clearly outperforms
the baselines. This shows that our model is also suitable for modeling high-dimensional set elements.

Table 3: Average Precision (AP) in % for different distance thresholds of a predicted set element
to be considered correct. AP, only requires all attributes to be correct, regardless of 3d position.
Higher is better. Mean and standard deviation over 6 runs.

Model AP, AP, APy s APpos APgi2s

MLP baseline 3.6+05 1.5+04 0.8+03 0.2+0.1 0.000
RNN baseline 4.0+19 1.8+12 0.9+05 0.2+0.1 0.0+00
Ours (10 iters) 72.8+23 59.2+28 39.0+44 124125 1.3+04
Ours (20 iters) 84.0+45 80.0+49 57.0+121 16.6+00 1.6+09
Ours (30 iters) 85.21+4s 81.1ts52 4741176 10.8100 0.6x07

When evaluating with more steps than our model was trained with, the difference in the more lenient
metrics improves even up to 30 iterations. This time, the results for 20 iterations are all better than
for 10 iterations. This suggests that 10 steps is too few to reach a good solution in training, likely due
to the higher difficulty of this task compared to the bounding box prediction. Still, the representation
z that the input encoder produces is good enough such that minimising Ly, more at evaluation
time leads to better results. When going up to 30 iterations, the result for predicting the state only
(excluding 3d position) improves further, but the accuracy of the 3d position worsens. We believe
that this is again caused by overshooting the target due to the bias of training the model with only 10
iterations.

6 Discussion

In this paper we showed how to predict sets with a deep neural network in a way that respects the
set structure of the problem. We demonstrated in our experiments that this works for small (size 10)
and large sets (up to size 342), as well as low-dimensional (2d) and higher-dimensional (18d) set
elements. Our model is consistently better than the baselines across all experiments by predicting
sets properly, rather than predicting a list and pretending that it is a set.

The improved results of our approach come at a higher computational cost. Each evaluation of the
network requires time for O(T') passes through the set encoder, which makes training take about 75%
longer on CLEVR with 7" = 10. Keep in mind that this only involves the set encoder (which can
be fairly small), not the input encoder (such as a CNN or RNN) that produces the target z. Further
study into representationally-powerful and efficient set encoders such as RN [[18] and FSPool [26]] —
which we found to be critical for good results in our experiments — would be of considerable interest,
as it could speed up the convergence and thus inference time of our method. Another promising
approach is to better initialise Y (°) — perhaps with an MLP — so that the set needs to be changed less
to minimise Lyep,. Our model would act as a set-aware refinement method of the MLP prediction.
Lastly, stopping criterions other than iterating for a fixed 10 steps can be used, such as stopping

when Lrepr(genc(Y)7 z) is below a fixed threshold: this would stop when the encoder thinks Yisofa
certain quality corresponding to that threshold.

Our algorithm may be suitable for generating samples under other invariance properties. For example,
we may want to generate images of objects where the rotation of the object does not matter (such as
aerial images). Using our decoding algorithm with a rotation-invariant image encoder could predict
images without forcing the model to choose a fixed orientation of the image, which could be a useful
inductive bias.

In conclusion, we are excited about enabling a wider variety of set prediction problems to be tackled
with deep neural networks. Our main idea should be readily extensible to similar domains such as
graphs to allow for better graph prediction, for example molecular graph generation or end-to-end
scene graph prediction from images. We hope that our model inspires further research into graph
generation, stronger object detection models, and — more generally — a more principled approach to
set prediction.

References

[1] Achlioptas, P, Diamanti, O., Mitliagkas, I., and Guibas, L. J. Learning representations and
generative models for 3D point clouds. In Proceedings of the 35th International Conference on
Machine Learning (ICML), 2018.

[2] Balles, L. and Fischbacher, T. Holographic and other point set distances for machine learning,
2019. URL https://openreview.net/forum?id=rJ1pUiAcYX.

[3] Belanger, D. and McCallum, A. Structured prediction energy networks. In Proceedings of the
33rd International Conference on Machine Learning (ICML), 2016.

[4] Cao, N. D. and Kipf, T. MolGAN: An implicit generative model for small molecular graphs. In
ICML Deep Generative Models Workshop, 2018.

[5] Desta, M. T., Chen, L., and Kornuta, T. Object-based reasoning in VQA. In IEEE Winter
Conference on Applications of Computer Vision (WACV). 2018.

[6] Fan, H., Su, H., and Guibas, L. J. A point set generation network for 3D object reconstruction
from a single image. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[7] Greff, K., Kaufmann, R. L., Kabra, R., Watters, N., Burgess, C., Zoran, D., Matthey, L.,
Botvinick, M., and Lerchner, A. Multi-object representation learning with iterative variational
inference. arXiv:1903.00450, 2019.

[8] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume
arXiv:1512.03385, 2016.

[9] Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., and Girshick,
R. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[10] Lazarow, J., Jin, L., and Tu, Z. Introspective neural networks for generative modeling. In The
IEEE International Conference on Computer Vision (ICCV), pp. 2774-2783, 2017.

[11] Lee, K., Xu, W., Fan, F., and Tu, Z. Wasserstein introspective neural networks. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[12] Li, C.-L., Zaheer, M., Zhang, Y., Poczos, B., and Salakhutdinov, R. Point cloud GAN.
arXiv:1810.05795, 2018.

[13] Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia, P. Learning deep generative models of
graphs. arXiv:1803.03324, 2018.

[14] Mena, G., Belanger, D., Linderman, S., and Snoek, J. Learning Latent Permutations with
Gumbel-Sinkhorn Networks. In International Conference on Learning Representations (ICLR),
2018.

[15] Mordatch, I. Concept learning with energy-based models. arXiv:1811.02486, 2018.

[16] Ren, S., He, K., Girshick, R., and Sun, J. Faster R-CNN: Towards real-time object detection
with region proposal networks. In Advances in Neural Information Processing Systems 28
(NeurIPS), 2015.

[17] Rezatofighi, S. H., Kaskman, R., Motlagh, F. T., Shi, Q., Cremers, D., Leal-Taixé, L., and Reid,
I. Deep perm-set net: Learn to predict sets with unknown permutation and cardinality using
deep neural networks. arXiv:1805.00613, 2018.

[18] Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia, P., and Lillicrap,
T. A simple neural network module for relational reasoning. In Advances in Neural Information
Processing Systems 30 (NeurIPS), 2017.

10

https://openreview.net/forum?id=rJlpUiAcYX

[19] Simonovsky, M. and Komodakis, N. GraphVAE: Towards generation of small graphs using
variational autoencoders. In International Conference on Artificial Neural Networks (ICANN),
2018.

[20] Stewart, R. and Andriluka, M. End-to-end people detection in crowded scenes. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[21] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and
Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems
3 (NeurIPS) 30, 2017.

[22] Vinyals, O., Bengio, S., and Kudlur, M. Order Matters: Sequence to sequence for sets. In
International Conference on Learning Representations (ICLR), 2015.

[23] Yang, Y., Feng, C., Shen, Y., and Tian, D. FoldingNet: Point cloud auto-encoder via deep grid
deformation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

[24] You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec, J. GraphRNN: Generating realistic
graphs with deep auto-regressive models. In Proceedings of the 35th International Conference
on Machine Learning (ICML), 2018.

[25] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J.
Deep Sets. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[26] Zhang, Y., Hare, J., and Priigel-Bennett, A. FSPool: Learning set representations with feature-
wise sort pooling. arXiv:1906.02795, 2019.

[27] Zhang, Y., Hare, J., and Priigel-Bennett, A. Learning representations of sets through optimized
permutations. In International Conference on Learning Representations (ICLR), 2019.

11

A Proof of permutation-equivariance

Definition 1. A function f : R"*¢ — R? is permutation-invariant iff it satisfies:
f(X) = f(PX) (7)
for all permutation matrices P.
Definition 2. A function g : R"*¢ — R"*% is permutation-equivariant iff it satisfies:
Py(X) = g(PX) ®)
for all permutation matrices P.

Theorem 1. The gradient of a permutation-invariant function f : R"*¢ — R% with respect to its
input is permutation-equivariant:
0f(X) _ of(PX)

P 0X 0PX ©)

Proof. Using Definition 1, the chain rule, and the orthogonality of P:

= PPT% (12)
O

B Details

In our algorithm, 1 was chosen in initial experiments and we did not tune it beyond that. We did
this by increasing 7 until the output set visibly changed between inner optimisation steps when the
set encoder is randomly initialised. This makes it so that changing the set encoder weights has a
noticeable effect rather than being stuck with ¥(7) ~ ¥ (0,

T = 10 was chosen because it seemed to be enough to converge to good solutions on MNIST. We
simply kept this for the supervised experiments on CLEVR.

In the supervised experiments, we would often observe large spikes in training that cause the model
diverge when A = 1. By changing around various parameters, we found that reducing A eliminated
most of this issue and also made training converge to better solutions. Much smaller values than 0.1
converged to worse solutions. This is likely because the issue of not having the Ly, (Y, z) term in

the outer loss in the first place (A = 0) is present again — see

For all experiments, we used Adam with the default momentum values and batch size 32 for the outer
optimisation. The only hyperparameter we tuned in the experiments is the learning rate of the outer
optimisation. Every individual experiment is run on a single 1080 Ti GPU.

The MLP decoder baseline has 3 layers with 256 (MNIST) or 512 (CLEVR) neurons in the first two
layers and the number of channels of the output set in the task in the third layer. The LSTM decoder
linearly transforms the latent space into 256 (MNIST) or 512 (CLEVR) dimensions, which is used as
initial cell state of the LSTM. The LSTM is run for the same number of steps as the maximum set
size, and the outputs of these steps is each linearly transformed into the output dimensionality.

B.1 MNIST
For MNIST, we train our model and the baseline model for 100 epochs to make sure that they have con-

verged. Both models have a 3-layer MLP with ReLU activations and 256 neurons in the three layers.
For simplicity, sets are padded to a fixed size for FSPool. FSPool has 20 pieces in its piecewise linear

12

function. We tried learning rates in {1.0,0.1,0.03,0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00001} and
chose 0.01. For the baselines, none of the other learning rates performed significantly better than the
one we chose.

The baselines are trained slightly differently to our model. They do not output mask values natively,
so we have to train them with the mask values in the training target. In other words, they are trained
to predict x coordinate, y coordinate, and the mask for each point. We found it crucial to explicitly
add 1 to the mask in the baseline model for good results. Otherwise, many of the baseline outputs get
stuck in the local optimum of predicting the (0, 0, 0) point and the output is too sparse.

B.2 CLEVR

We train our model and the baselines models for 100 epochs on the training set of CLEVR and
evaluate on the validation set, since no ground-truth scene information is available for the test set.
The set encoder is a 2-layer Relation Network with ReLU activation between the two layers, wherein
the sum pooling is replaced with FSPool. The two layers have 512 neurons each. Because we use the
Hungarian loss instead of the Chamfer loss here, including the mask feature in the target set does not
worsen results, so we include the mask target for both the baseline and our model for consistency. To
tune the learning rate, we started with the learning rate found for MNIST and decreased it similarly-
sized steps until the training accuracy after 100 epochs worsened. We settled on 0.0003 as learning
rate for both the bounding box and the state prediction task. All other hyperparameters are kept the
same as for MNIST. The ResNet34 that encodes the image is not pre-trained.

13

C Additional outputs

]

V(10 Target Y Baseline
2155

Eal iy

=4

Pe

B

[

‘. .

-4

Bra,

k=2

HEEEEBEEE

ilen

¥

b b &) 6] &) &) &) 66 é&

¥

HNRRRRRRRRREE

’

IEIEAE AR

3)[a)[aj[a][a][a][a][a][a]a]a]a]4

7190000665050

HHEEHHEEEHERER

NEE R R BRI

11(5]5][4)[6][6] 5] ¢][¢][c]c]¢]6
1)5] 5| 8]6] 6|86 6] 8][8][6] 6

NRRRRRRRREEEIE

HAARREEAERBERE

InnnnnRnnnE

28000888809

of set prediction algorithm on MNIST.

Figure 3: Progression

14

Vo y (10) Y20 True Y Baseline

Figure 4: Progression of set prediction algorithm on CLEVR bounding boxes.

15

Table 4: Progression of set prediction algorithm on CLEVR state prediction. Red text denotes a wrong
attribute. Objects are sorted by x coordinate, so they are sometimes misaligned with wrongly-coloured
red text (see third example: red entries in Y (20)

and bottom two red entries in baseline).

)

¥(10)

v (20)

True Y

Baseline

(-0.14, 1.16,3.57)

large purple rubber sphere

(0.01,0.12, 3.42)
large gray metal cube
(0.67,0.65, 3.38)

small purple metal cube

(0.67, 1.14, 2.96)

small purple rubber sphere

(-2.33,-2.41,0.73)

large yellow metal cube

(-1.20, 1.27,0.67)

large purple rubber sphere

(-0.96,2.54, 0.36)

small gray rubber sphere

(1.61, 1.57,0.36)

small yellow metal cube

(-2.33,-2.42,0.78)
large yellow metal cube
(-1.21, 1.20, 0.65)
large purple rubber sphere
(-0.96, 2.59, 0.36)
small gray rubber sphere
(1.58,1.62, 0.38)
small purple metal cube

(-2.42, -2.40, 0.70)
large yellow metal cube
(-1.18, 1.25, 0.70)
large purple rubber sphere
(-1.02,2.61, 0.35)
small gray rubber sphere
(1.74, 1.53, 0.35)
small purple metal cube

(-1.65, -2.85, 0.69)
large yellow metal cube
(-0.95, 1.08, 0.68)
large green rubber sphere
(-0.40, 2.14, 0.35)
small red rubber sphere
(1.68, 1.77, 0.35)
small brown metal cube

v

v (10)

v (20)

True Y

Baseline

(-0.29, 1.14,3.73)
small purple metal cube
(-0.11,-0.37, 3.65)
small brown metal cube
(0.08, 0.56, 3.84)
large cyan rubber cube
(0.69,-0.43, 3.55)
small brown rubber sphere
(1.12,0.21, 3.83)
large cyan rubber cube
(1.23,-0.25, 3.58)
small cyan rubber sphere
(1.73,1.04, 3.57)
small cyan rubber sphere
(2.06, 1.94, 3.81)
large brown rubber sphere

(-2.78, 0.86, 0.72)
large cyan rubber sphere
(-2.17,-1.59, 0.38)
small blue rubber cylinder
(-0.45,2.19, 0.40)
small purple metal cube
(-0.14,-2.15, 0.38)
small yellow metal cube
(0.53,2.56, 0.70)
large green rubber sphere
(0.93,-1.41,0.35)
small cyan rubber sphere
(2.50, -2.08, 0.76)
large cyan rubber cube
(2.61,2.59,0.33)
small green rubber sphere

(-2.62,0.83, 0.68)
large cyan rubber sphere
(-2.12,-1.58, 0.49)
small blue rubber cylinder
(-0.60, 2.23, 0.29)
small purple metal cube
(-0.30, -1.99, 0.32)
small yellow metal cube
(0.27,2.46,0.72)
large green rubber sphere
(0.86,-1.31,0.27)
small cyan rubber sphere
(2.64,-2.05,0.76)
large cyan rubber cube
(2.75,2.73, 0.35)
small green rubber sphere

(-2.88,0.78, 0.70)
large cyan rubber sphere
(-2.14,-1.63, 0.35)
small blue rubber cylinder
(-0.78,1.97,0.35)
small purple metal cube
(-0.38, -2.06, 0.35)
small yellow metal cube
(0.42,2.56, 0.70)
large green rubber sphere
(0.81,-1.30, 0.35)
small cyan rubber sphere
(2.56,-1.94,0.70)
large cyan rubber cube
(2.74,2.64,0.35)
small green rubber sphere

(-2.42,0.63,0.71)
large purple rubber sphere
(-2.40,-2.07, 0.35)
small green rubber cylinder
(-0.74,2.46, 0.33)
small cyan metal cube
(0.30, -1.86, 0.34)
small gray rubber sphere
(0.69, -2.10, 0.36)
small red metal cube
(1.12,2.28, 0.70)
large cyan rubber sphere
(2.55,-2.26,0.73)
large yellow rubber cube
(2.99,2.59,0.35)
small purple rubber sphere

v (5

v (10)

¥(20)

True Y

Baseline

(0.22,0.12, 3.47)
small brown rubber cube
(0.41,0.11, 3.77)
large gray metal cube
(0.50,0.44,3.61)
small gray rubber cube
(0.83,0.53, 3.45)
small cyan rubber sphere
(0.86, 0.85, 3.50)
small gray rubber sphere
(1.86,2.34, 3.80)
large gray metal cube
(1.97,0.55, 3.61)
small green rubber sphere

(-2.76,-1.42, 0.68)
large blue metal cylinder
(-1.56,-0.61, 0.35)
small blue rubber cylinder
(-1.08,0.23, 0.33)
small green rubber cube
(-0.07,0.97, 0.36)
small green rubber cylinder
(0.28,-2.44, 0.49)
small cyan rubber cylinder
(1.36,-0.63, 0.38)
small green rubber sphere
(2.01, 3.07, 0.65)
large gray metal cube
(2.69,0.63, 0.34)
small yellow rubber sphere

(-2.68, -1.64, 0.77)
large blue metal cylinder
(-2.43,0.03, 0.34)
small blue rubber cube
(-1.00, 1.18, 0.33)
small red rubber cylinder
(-0.01, -1.00, 0.46)
small green rubber cube
(0.21, -2.88, 0.40)
small cyan rubber cylinder
(0.99,0.17,0.37)
small green rubber sphere
(1.97,2.89, 0.39)
large gray metal cube
(2.87,0.51,0.25)
small yellow rubber sphere

(-2.62, -1.76, 0.70)
large blue metal cylinder
(-2.29,0.49, 0.35)
small blue rubber cube
(-0.93, 1.15, 0.35)
small red rubber cylinder
(0.28, -2.84, 0.35)
small cyan rubber cylinder
(0.29, -0.98, 0.35)
small green rubber cube
(0.92, 0.54, 0.35)
small green rubber sphere
(2.04,2.78, 0.70)
large gray metal cube
(2.70, 0.67, 0.35)
small yellow rubber sphere

(-2.47,-1.73,0.70)
large cyan metal cylinder
(-2.42,0.09, 0.36)
small blue rubber cylinder
(-1.24,1.16,0.36)
small red rubber cube
(0.39, 0.20, 0.33)
small red rubber sphere
(0.56,-3.11, 0.35)
small yellow rubber cylinder
(0.90, 0.64, 0.35)
small green rubber sphere
(2.39,0.27,0.36)
small yellow rubber sphere
(2.44,2.55,0.68)
large gray metal cube

16

	Introduction
	Background
	Deep Set Prediction Networks
	Auto-encoding fixed-size sets
	Predicting sets from a feature vector

	Related work
	Experiments
	MNIST
	Bounding box prediction
	State prediction

	Discussion
	Proof of permutation-equivariance
	Details
	MNIST
	CLEVR

	Additional outputs

