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Abstract The search problem of computing a Stackelberg (or leader-follower)
equilibrium (also referred to as an optimal strategy to commit to) has been
widely investigated in the scientific literature in, almost exclusively, the single-
follower setting. Although the optimistic and pessimistic versions of the prob-
lem, i.e., those where the single follower breaks any ties among multiple equi-
libria either in favour or against the leader, are solved with different method-
ologies, both cases allow for efficient, polynomial-time algorithms based on
linear programming. The situation is different with multiple followers, where
results are only sporadic and depend strictly on the nature of the followers’
game.

In this paper, we investigate the setting of a normal-form game with a single
leader and multiple followers who, after observing the leader’s commitment,
play a Nash equilibrium. When both leader and followers are allowed to play
mixed strategies, the corresponding search problem, both in the optimistic
and pessimistic versions, is known to be inapproximable in polynomial time to
within any multiplicative polynomial factor unless P “ NP. Exact algorithms
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are known only for the optimistic case. We focus on the case where the follow-
ers play pure strategies—a restriction that applies to a number of real-world
scenarios and which, in principle, makes the problem easier—under the as-
sumption of pessimism (the optimistic version of the problem can be straight-
forwardly solved in polynomial time). After casting this search problem (with
followers playing pure strategies) as a pessimistic bilevel programming problem,
we show that, with two followers, the problem is NP-hard and, with three or
more followers, it cannot be approximated in polynomial time to within any
multiplicative factor which is polynomial in the size of the normal-form game,
nor, assuming utilities in r0, 1s, to within any constant additive loss stricly
smaller than 1 unless P “ NP. This shows that, differently from what happens
in the optimistic version, hardness and inapproximability in the pessimistic
problem are not due to the adoption of mixed strategies. We then show that
the problem admits, in the general case, a supremum but not a maximum, and
we propose a single-level mathematical programming reformulation which asks
for the maximization of a nonconcave quadratic function over an unbounded
nonconvex feasible region defined by linear and quadratic constraints. Since,
due to admitting a supremum but not a maximum, only a restricted version of
this formulation can be solved to optimality with state-of-the-art methods, we
propose an exact ad hoc algorithm (which we also embed within a branch-and-
bound scheme) capable of computing the supremum of the problem and, for
cases where there is no leader’s strategy where such value is attained, also an
α-approximate strategy where α ą 0 is an arbitrary additive loss (at most as
large as the supremum). We conclude the paper by evaluating the scalability
of our algorithms via computational experiments on a well-established testbed
of game instances.

Keywords Leader-follower games ¨ Stackelberg equilibria ¨ Pessimistic
bilevel programming

1 Introduction

In recent years, Stackelberg (or Leader-Follower) Games (SGs) and their cor-
responding Stackelberg Equilibria (SEs) have attracted a growing interest in
many disciplines, including theoretical computer science, artificial intelligence,
and operations research. SGs describe situations where one player (the leader)
commits to a strategy and the other players (the followers) first observe the
leader’s commitment and, then, decide how to play. In the literature, SEs
are often referred to as optimal strategies (for the leader) to commit to. SGs
encompass a broad array of real-world games. A prominent example is that
one of security games, where a defender, acting as leader, is tasked to allo-
cate scarce resources to protect valuable targets from an attacker, who acts
as follower [3, 17, 28]. Besides the security domain, applications can be found
in, among others, interdiction games [10, 23], toll-setting problems [19], and
network routing [2].
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While, with only a few exceptions (see [6, 8, 13, 18, 21]), the majority of
the game-theoretical investigations on the computation of SEs assumes the
presence of a single follower, in this work we address the multi-follower case.

When facing an SG and, in particular, a multi-follower one, two aspects
need to be considered: the type of game (induced by the leader’s strategy) the
followers play and, in it, how ties among the multiple equilibria which could
arise are broken.

As to the nature of the followers’ game, and restricting ourselves to the
cases which look more natural, the followers may play hierarchically one at a
time, as in a hierarchical Stackelberg game [14], simultaneously and coopera-
tively [13], or simultaneously and noncooperatively [4].

As to breaking ties among multiple equilibria, it is natural to consider
two cases: the optimistic one (often called strong SE), where the followers
end up playing an equilibrium which maximizes the leader’s utility, and the
pessimistic one (often called weak SE), where the followers end up playing
an equilibrium by which the leader’s utility is minimized. This distinction
is customary in the literature since the seminal paper on SEs with mixed-
strategy commitments by Von Stengel and Zamir [34]. We remark that the
adoption of either the optimistic or the pessimistic setting does not correspond
to assuming that the followers could necessarily agree on an optimistic or
pessimistic equilibrium in a practical application. Rather, by computing an
optimistic and a pessimistic SE the leader becomes aware of the largest and
smallest utility she can get without having to make any assumptions on which
equilibrium the followers would actually end up playing if the game resulting
from the leader’s commitment were to admit more than a single one. What
is more, while an optimistic SE accounts for the best case for the leader, a
pessimistic SE accounts for the worst case. In this sense, the computation
of a pessimistic SE is paramount in realistic scenarios as, differently from
the optimistic one, it is robust, guaranteeing the leader a lower bound on
the maximum utility she would get independently of how the followers would
break ties among multiple equilibria. As we will see, though, this degree of
robustness comes at a high computational cost, as computing a pessimistic SE
is a much harder task than computing its optimistic counterpart.

1.1 Stackelberg Nash Equilibria

Throughout the paper, we will consider the case of normal-form games where,
after the leader’s commitment to a strategy, the followers play simultaneously
and noncooperatively, reaching a Nash equilibrium. We refer to the correspond-
ing equilibrium as Stackelberg Nash Equilibrium (SNE). 1

We focus on the case where the followers are restricted to pure strategies.
This restriction is motivated by several reasons. First, while the unrestricted
problem is already hard with two followers (as shown in [4]), it is not known

1 For the sake of completeness, we remark that the Stackelberg Equilibrium can be also
adopted with sequential games, see, e.g., [15, 22].
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whether the restriction to followers playing pure strategies makes the problem
easier or not. Secondly, many games admit pure-strategy NEs, among which
potential games [25], congestion games [29], and toll-setting problems [19] and,
as we show in Subsection 3.3, the same also holds with high probability in many
unstructured games.

1.2 Original Contributions

After briefly pointing out that an optimistic SNE (with followers restricted to
pure strategies) can be computed efficiently (in polynomial time) by a mixture
of enumeration and linear programming, we entirely devote the remainder of
the paper to the pessimistic case (with, again, followers restricted to pure
strategies). In terms of computational complexity, we show that, differently
from the optimistic case, in the pessimistic one the equilibrium-finding problem
is NP-hard with two or more followers, while, when the number of followers
is three or more, the problem cannot be approximated in polynomial time
to within any polynomial multiplicative factor nor to within any constant
additive loss unless P “ NP. To establish these two results, we introduce two
reductions, one from Independent Set and the other one from 3-SAT.

After analyzing the complexity of the problem, we focus on its algorithmic
aspects. First, we formulate the problem as a pessimistic bilevel programming
problem with multiple followers. We then show how to recast it as a single-level
Quadratically Constrained Quadratic Program (QCQP), which we show to be
impractical to solve due to admitting a supremum, but not a maximum. We
then introduce a restriction based on a Mixed-Integer Linear Program (MILP)
which, while forsaking optimality, always admits an optimal (restricted) solu-
tion. Next, we propose an exact algorithm to compute the value of the supre-
mum of the problem based on an enumeration scheme which, at each iteration,
solves a lexicographic MILP (lex-MILP) where the two objective functions are
optimized in sequence. Subsequently, we embed the enumerative algorithm
within a branch-and-bound scheme, obtaining an algorithm which is, in prac-
tice, much faster. We also extend the algorithm (in both versions) so that, for
cases where the supremum is not a maximum, it returns a strategy by which
the leader can obtain a utility within an additive loss α with respect to the
supremum, for any arbitrarily chosen α ą 0. To conclude, we experimentally
evaluate the scalability of our methods over a testbed of randomly generated
instances.

The status, in terms of complexity and known algorithms, of the problem
of computing an SNE (with followers playing pure or mixed strategies) is sum-
marized in Table 1. The original results we provide in this paper are reported
in boldface.
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Table 1 Summary of known results for the computation of SNEs. The entries in boldface
correspond to original contributions of this work. The number of players is denoted by n
and the number of followers by |F |. Inapx. indicates that the problem is inapproximable
in polynomial time to within any polynomial multiplicative factor of the input size, nor to
within any constant additive loss, unless P “ NP.

Optimistic Pessimistic

Followers’ strategies Pure Mixed Pure Mixed

n “ 2, |F | “ 1
Complexity P [14, 34] P [14, 34] P [34] P [34]

Algorithm multi-LP [14, 34] multi-LP [14, 34] multi-LP [34] multi-LP [34]

n ě 3, |F | ě 2
Complexity P NP-hard, inapx. [4] NP-hard NP-hard, inapx. [4]

Algorithm multi-LP spatial branch-and-bound [6] multi-lex-MILP -

n ě 4, |F | ě 3
Complexity P NP-hard, inapx. [4] NP-hard, inapx. NP-hard, inapx. [4]

Algorithm multi-LP spatial branch-and-bound [6] multi-lex-MILP -

1.3 Paper Outline

The paper is organized as follows.2 Previous works are introduced in Section 2.
The problem we study is formally stated in Section 3, together with some
preliminary results. In Section 4, we present the computational complexity
results. Section 5 introduces the single-level reformulation(s) of the problem,
while Section 6 describes our exact algorithm (in its two versions). An empirical
evaluation of our methods is carried out in Section 7. Section 8 concludes the
paper.

2 Previous Works

As we mentioned in Section 1, most of the works on (normal-form) SGs focus
on the single-follower case. In such case, as shown in [14] the follower always
plays a pure strategy (except for degenerate games). In the optimistic case,
an SE can be found in polynomial time by solving a Linear Program (LP) for
each action of the (single) follower (the algorithm is, thus, a multi-LP). Each
LP maximizes the expected utility of the leader subject to a set of constraints
imposing that the given follower’s action is a best-response [14]. As shown
in [13], all these LPs can be encoded into a single LP—a slight variation of the
LP that is used to compute a correlated equilibrium (the solution concept where
all the players can exploit a correlation device to coordinate their strategies).3

2 A preliminary version of this work appeared in [12]. Compared to it, this paper ex-
tends the complexity results by studying the inapproximability of the problem (Section 4),
introduces and analyses a single-level QCQP reformulation and an MILP restriction of it
(Section 5), substantially extends the mathematical details needed to establish the correct-
ness of our algorithms, also illustrating their step-by-step execution on an example (Section 6
and Appendix A), and it reports on an extensive set of computational results carried out to
validate our methods (Section 7).

3 In this case, the leader and the follower play correlated strategies under rationality
constraints imposed on the follower only, maximizing the leader’s expected utility.
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Some works study the equilibrium-finding problem (only in the optimistic
version) in structured games where the action space is combinatorial. See [7]
for more references.

For what concerns the pessimistic single-follower case, the authors of [34]
study the problem of computing the supremum of the leader’s expected utility.
They show that, for the latter, it suffices to consider the follower’s actions
which constitute a best-response to a full-dimensional region of the leader’s
strategy space. The multi-LP algorithm the authors propose solves two LPs
per action of the follower, one to verify whether the best-response region for
that action is full-dimensional (so to discard it if full-dimensionality does not
hold) and a second one to compute the best leader’s strategy within that best-
response region. The algorithm runs in polynomial time. While the authors
limit their analysis to computing the supremum of the leader’s utility, we
remark that such value does not always translate into a strategy that the
leader can play as, in the general case where the leader’s utility does not
admit a maximum, there is no leader’s strategy giving her a utility equal to the
supremum. In such cases, one should rather look for a strategy providing the
leader with an expected utility which approximates the value of the supremum.
This aspect, which is not addressed in [34], will be tackled on the multi-follower
case by our work.

The multi-follower case, which, to the best of our knowledge, has only
been investigated in [4, 6], is computationally much harder than the single-
follower case. It is, in the general case where leader and followers are entitled
to mixed strategies, NP-hard and inapproximable in polynomial time to within
any multiplicative factor which is polynomial in the size of the normal-form
game unless P “ NP.4 In the aforementioned works, the problem of finding
an equilibrium in the optimistic case is formulated as a nonlinear and non-
convex mathematical program and solved to global optimality (within a given
tolerance) with spatial branch-and-bound techniques. No exact methods are
proposed for the pessimistic case.

3 Problem Statement and Preliminary Results

After setting the notation used throughout the paper, this section offers a
formal definition of the equilibrium-finding problem we tackle in this work
and illustrates some of its properties.

3.1 Notation

Let N “ t1, . . . , nu be the set of players and, for each player p P N , let Ap
be her set of actions, of cardinality mp “ |Ap|. Let also A “

Ś
pPN Ap “

4 For the case where the utilities are in r0, 1s, the result can be extended to show that the
problem cannot be approximated in polynomial time to within any constant additive loss
strictly smaller than 1 unless P “ NP.
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A1 ˆ ¨ ¨ ¨ ˆ An. For each player p P N , let xp P r0, 1s
mp , with

ř
apPAp

x
ap
p “ 1,

be her strategy vector (or strategy, for short), where each component x
ap
p of

xp represents the probability by which player p plays action ap P Ap. For each
player p P N , let also ∆p “ txp P r0, 1s

mp :
ř
apPAp

x
ap
p “ 1u be the set of

her strategies, or strategy space, which corresponds to the standard pmp ´ 1q-
simplex in Rmp . A strategy is said pure when only one action is played with
positive probability, i.e., when xp P t0, 1u

mp , and mixed otherwise. In the
following, we denote the collection of strategies of the different players (called
strategy profile) by x “ px1, . . . , xnq. For the case where all the strategies are
pure, we denote the collection of actions played by the players (called action
profile) by a “ pa1, . . . , anq.

Given a strategy profile x, we denote the collection of all the strategies in
it but the one of player p P N by x´p, i.e., x´p “ px1, . . . , xp´1, xp`1, . . . , xnq.
Given x´p and a strategy vector xp, we denote the whole strategy profile x
by px´p, xpq. For action profiles, a´p and pa´p, apq are defined analogously.
For the case were all players are restricted to pure strategies with the sole
exception of player p, who is allowed to play mixed strategies, we use the
notation pa´p, xpq.

We consider normal-form games where Up P Qm1ˆ...ˆmn represents, for
each player p P N , her (multidimensional) utility (or payoff) matrix. For each
p P N and given an action profile a “ pa1, . . . , anq, each component Ua1...anp

of Up corresponds to the utility of player p when all the players play the
action profile a. For the ease of presentation and when no ambiguity arises,
we will often write Uap in place of Ua1...anp . Given a collection of actions a´p
and an action ap P Ap, we will also use U

a´p,ap
p to denote the component

of Up corresponding to the action profile pa´p, apq. Given a strategy profile
x “ px1, . . . , xnq, the expected utility of player p P N is the n-th-degree
polynomial

ř
aPA U

a
p x

a1
1 xa22 . . . xann .

An action profile a “ pa1, . . . , anq is called pure strategy Nash Equilibrium
(or pure NE, for short) if, when the players in Nztpu play as the equilibrium
prescribes, player p cannot improve her utility by deviating from the equilib-
rium and playing another action a1p ‰ ap, for all p P N . More generally, a
mixed strategy Nash Equilibrium (or mixed NE, for short) is a strategy profile
x “ px1, . . . , xnq such that no player p P N could improve her utility by playing
a strategy x1p ‰ xp assuming the other players would play as the equilibrium
prescribes. A mixed NE always exists [26] in a normal-form game, while a pure
NE may not. For more details on (noncooperative) game theory, we refer the
reader to [32].

Similar definitions hold for the case of SGs when assuming that only a
subset of players (the followers) play an NE given the strategy the leader has
committed to.
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3.2 The Problem and Its Formulation

In the following, we assume that the n-th player takes the role of leader. We
denote the set of followers (the first n ´ 1 players) by F “ Nztnu. For the
ease of notation, we also define AF “

Ś
pPF Ap as the set of followers’ action

profiles, i.e., the set of all collections of followers’ actions. We also assume,
unless otherwise stated, mp “ m for every player p P N , where m denotes the
number of actions available to each player. This is without loss of generality,
as one could always introduce additional actions with a utility small enough
to guarantee that they would never be played, thus obtaining a game where
each player has the same number of actions.

As we mentioned in Section 1, in this work we tackle the problem of com-
puting an equilibrium in a normal-form game where the followers play a pure
NE once they have observed the leader’s commitment to a mixed strategy.
We refer to an Optimistic Stackelberg Pure-Nash Equilibrium (O-SPNE) when
the followers play a pure NE which maximises the leader’s utility, and to a
Pessimistic Stackelberg Pure-Nash Equilibrium (P-SPNE) when they seek a
pure NE by which the leader’s utility is minimized.

3.2.1 The Optimistic Case

Before focusing our attention entirely on the pessimistic case, let us briefly
address the optimistic one.

An O-SPNE can be found by solving the following bilevel programming
problem with n´ 1 followers:

max
xn,x´n

ÿ

aPA

Uanx
a1
1 xa22 . . . xann

s.t. xn P ∆n

xp P argmax
xp

ÿ

aPA

Uap x
a1
1 xa22 . . . xann @p P F

s.t. xp P ∆p X t0, 1u
mp .

(1)

Note that, due to the integrality constraints on xp for all p P F , each fol-
lower can play a single action with probability 1. By imposing the argmax
constraint for each p P F , the formulation guarantees that each follower
plays a best-response action ap, thus guaranteeing that the action profile
a´n “ pa1, . . . , an´1q with, for all ap P Ap, ap “ 1 if and only if x

ap
p “ 1,

be an NE for the given xn. It is crucial to note that the maximization in the
upper level is carried out not only w.r.t. xn, but also w.r.t. x´n. This way, if
the followers’ game admits multiple NEs for the chosen xn, optimal solutions
to Problem (1) are then guaranteed to contain followers’ action profiles which
maximize the leader’s utility—thus satisfying the assumption of optimism.

As shown in the following proposition, computing an O-SPNE is an easy
task:
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Proposition 1 In a normal-form game, an O-SPNE can be computed in poly-
nomial time by solving a multi-LP.

Proof It suffices to enumerate, in Opmn´1q, all the followers’ action profiles
a´n P AF and, for each of them, solve an LP to: i) check whether there is a
strategy vector xn for the leader for which the action profile a´n is an NE and
ii) find, among all such strategy vectors xn, one which maximizes the leader’s
utility. The action profile a´n which, with the corresponding xn, yields the
largest expected utility for the leader is an O-SPNE.

Given a followers’ action profile a´n, i) and ii) can be carried out in polyno-
mial time by solving the following LP, where the second constraint guarantees
that a´n “ pa1, . . . , an´1q is a pure NE for the followers’ game for any of its
solutions xn:

max
xn

ÿ

anPAn

Ua´n,an
n xann

s.t.
ÿ

anPAn

Ua´n,an
p xann ě

ÿ

anPAn

U
a1...a

1
p...an´1an

p xann @p P F, a1p P Apztapu

xn P ∆n.

As the size of an instance of the problem is bounded from below by mn, one
can enumerate over the set of the followers’ action profiles (whose cardinality is
mn´1) in polynomial time. The claim of polynomiality of the overall algorithm
follows due to linear programming being solvable in polynomial time. [\

3.2.2 The Pessimistic Case

In the pessimistic case, the computation of a P-SPNE amounts to solving the
following pessimistic bilevel problem with n´ 1 followers:

sup
xn

min
x´n

ÿ

aPA

Uanx
a1
1 xa22 . . . xann

s.t. xn P ∆n

xp P argmax
xp

ÿ

aPA

Uap x
a1
1 xa22 . . . xann @p P F

s.t. xp P ∆p X t0, 1u
mp .

(2)

There are two differences between this problem and its optimistic counterpart:
the presence of the min operator in the objective function and the fact that
Problem (2) calls for a sup rather than for a max. The former guarantees
that, in the presence of many pure NEs in the followers’ game for the chosen
xn, one which minimizes the leader’s utility is selected. The sup operator is
introduced because, as illustrated in Subsection 3.3, the pessimistic problem
does not admit a maximum in the general case.

Throughout the paper, we will compactly refer to the above problem as

sup
xnP∆n

fpxnq,
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where f is the leader’s utility in the pessimistic case, defined as a function
of xn. Since a pure NE may not exist for every leader’s strategy xn, we define
supxnP∆n

fpxnq “ ´8 whenever there is no xn such that the resulting follow-
ers’ game admits a pure NE. Note that f is always bounded from above when
assuming bounded payoffs and, thus, supxnP∆n

fpxnq ă 8.

3.3 Some Preliminary Results

Since not all normal-form games admit a pure NE, a normal-form game may
not admit an (optimistic or pessimistic) SPNE. Assuming that the payoffs of
the game are independent and follow a uniform distribution, and provided that
the number of players’ actions is sufficiently large, with high probability there
always exists a leader’s commitment such that the resulting followers’ game
has at least one pure NE. This is shown in the following proposition:

Proposition 2 Given a normal-form game with n players and independent
uniformly distributed payoffs, the probability that there exists a leader’s strategy
xn P ∆n inducing at least one pure NE in the followers’ game approaches 1 as
the number of players’ actions m goes to infinity.

Proof As shown in [33], in an n-player normal-form game with independent
and uniformly distributed payoffs the probability of the existence of a pure
NE can be expressed as a function of the number of players’ actions m, say
Ppmq, which approaches 1 ´ 1

e for m Ñ 8. Assume now that we are given
one such n-player normal-form game. Then, for every leader’s action an P An,
let Panpmq be the probability that the followers’ game induced by the leader’s
action an admits a pure NE. Since each of the followers’ games resulting from
the choice of an also has independent and uniformly distributed payoffs, all
the probabilities are equal, i.e., Panpmq “ Ppmq for every an P An. It follows
that the probability that at least one of such followers’ games admits a pure
NE is:

1´
ź

anPAn

p1´ Panpmqq “ 1´ p1´ Ppmqqm .

Since this probability approaches 1 as m goes to infinity, the probability of the
existence of a leader’s strategy xn P ∆n which induces at least one pure NE
in the followers’ game also approaches 1 for mÑ8. [\

The fact that Problem (2) may not admit a maximum is shown by the
following proposition:

Proposition 3 In a normal-form game, Problem (2) may not admit a max
even if the followers’ game admits a pure NE for every leader’s mixed strat-
egy xn.

Proof Consider a game with n “ 3, A1 “ ta1
1, a

2
1u, A2 “ ta1

2, a
2
2u, A3 “

ta1
3, a

2
3u. The matrices reported in the following are the utility matrices for,

respectively, the case where the leader plays action a1
3 with probability 1,
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1
2

1

5

5` 5
2

ρ

fpx3q

Fig. 1 The leader’s utility in the normal-form game in the proof of Proposition 3, showing
that Problem (2) may not admit a maximum.

action a2
3 with probability 1, or the strategy vector x3 “ p1 ´ ρ, ρq for some

ρ P r0, 1s (the third matrix is the convex combination of the first two with
weights x3):

a1
2 a2

2

a1
1 1,1,0 2,2,5

a2
1

1
2 , 1

2 ,1 1,1,0

a1
3

a1
2 a2

2

a1
1 0,0,0 2,2,10

a2
1

1
2 , 1

2 ,1 0,0,0

a2
3

a1
2 a2

2

a1
1 1́ ρ,1́ ρ,0 2,2,5̀ 5ρ

a2
1

1
2 , 1

2 ,1 1́ ρ,1́ ρ,0

x3 “ p1´ ρ, ρq

In the optimistic case, one can verify that pa1
1, a

2
2, a

2
3q is the unique O-SPNE

(as it achieves the largest leader’s payoff in U3, no mixed strategy x3 would
yield a better utility).

In the pessimistic case, the leader induces the followers’ game in the third
matrix by playing x3 “ p1´ ρ, ρq. For ρ ă 1

2 , pa1
1, a

2
2q is the unique NE, giving

the leader a utility of 5`5ρ. For ρ ě 1
2 , there are two NEs, pa1

1, a
2
2q and pa2

1, a
1
2q,

with a utility of, respectively, 5` 5ρ and 1. Since, in the pessimistic case, the
latter is selected, we conclude that the leader’s utility is equal to 5 ` 5ρ for
ρ ă 1

2 and to 1 for ρ ě 1
2 (see Figure 1 for an illustration). Thus, Problem (2)

admits a supremum of value 5` 5
2 , but not a maximum. [\

We remark that the result in Proposition 3 is in line with a similar result
shown in [34] for the single-follower case, as well as with those which hold for
general pessimistic bilevel problems [35].

The relevance of computing a pessimistic SPNE is highlighted by the fol-
lowing proposition:

Proposition 4 In the worst case, in a normal-form game with payoffs in
r0, 1s the leader’s utility in an O-SPNE cannot be approximated to within any
constant multiplicative factor nor to within any constant additive loss strictly
smaller than 1 by the leader’s strategy corresponding to a P-SPNE, nor by any
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leader’s strategy obtained by perturbing the leader’s strategy corresponding to
an O-SPNE.

Proof Consider the following normal-form game with payoffs in r0, 1s where
n “ 3, A1 “ ta

1
1, a

2
1u, A2 “ ta

1
2, a

2
2u, A3 “ ta

1
3, a

2
3u, parametrized by µ ą 4:

a1
2 a2

2

a1
1 0,0,0 0,0,1

a2
1 1,1, 2

µ2 0,0,0

a1
3

a1
2 a2

2

a1
1

1
2 , 1

2 ,0 0,0,0

a2
1 1,1, 4

µ
1
2 , 1

2 ,0

a2
3

a1
2 a2

2

a1
1

ρ
2 ,ρ2 ,0 0,0,1́ ρ

a2
1 1,1, 2`p4µ´2qρ

µ2
ρ
2 ,ρ2 ,0

x3 “ p1́ ρ, ρq

Let x3 “ p1 ´ ρ, ρq. The followers’ game admits the NE pa2
1, a

1
2q for all

values of ρ (with leader’s utility 2`p4µ´2qρ
µ2 ) and the NE pa1

1, a
2
2q for ρ “ 0 (with

leader’s utility 1). Therefore, the game admits a unique O-SPNE achieved at
ρ “ 0 (utility 1), and a unique P-SPNE achieved at ρ “ 1 (utility 4

µ ). See
Figure 2 for an illustration of the leader’s utility function.

To show the first part of the claim, it suffices to observe that the ratio
between the leader’s utility in the unique O-SPNE, which is equal to 1, and
that one in a P-SPNE, which is equal to µ

4 , becomes arbitrarily large when
letting µÑ8, whereas the difference between these two quantities approaches
1 for µ approaching 8.

As to the second part of the claim, after perturbing the value that x3 takes
in the unique O-SPNE by any arbitrarily small ε ą 0 (i.e., by considering the

leader’s strategy x3 “ p1 ´ ε, εq), we obtain a leader’s utility of 2`p4µ´2qε
µ2 ,

whose ratio w.r.t. the utility of 1 in the unique O-SPNE becomes again arbi-
trarily large for µ Ñ 8, whereas the difference between these two quantities
approaches 1 for µ approaching 8. [\

1

2

µ2

4

µ

1

ρ

fpx3q

Fig. 2 The leader’s utility in the normal-form game in the proof of Proposition 4, plotted
as a function of ρ, where the leader’s strategy is x3 “ p1´ ρ, ρq.
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4 Computational Complexity

Let P-SPNE-s be the search version of the problem of computing a P-SPNE for
normal-form games. In Subsection 4.1, we show that solving P-SPNE is NP-
hard for n ě 3 (i.e., with at least two followers). Moreover, in Subsection 4.2 we
prove that for n ě 4 (i.e., for games with at least three followers) the problem
is inapproximable, in polynomial time, to within any polynomial multiplicative
factor or to within any constant additive loss unless P = NP. We introduce
two reductions, a non approximation-preserving one which is valid for n ě 3
and another one only valid for n ě 4 but approximation-preserving.

In decision form, the problem of computing a P-SPNE reads:

Definition 1 (P-SPNE-d) Given a normal-form game with n ě 3 players
and a finite number K, is there a P-SPNE in which the leader achieves a utility
greater than or equal to K?

In Section 4.1, we show that P-SPNE-d is NP-complete by polynomially
reducing to it Independent Set (IND-SET) (one of Karp’s original 21 NP-
complete problems [16]). In decision form, IND-SET reads:

Definition 2 (IND-SET-d) Given an undirected graph G “ pV,Eq and
an integer J ď |V |, does G contain an independent set (a subset of vertices
V 1 Ď V : @u, v P V 1, tu, vu R E) of size greater than or equal to J?

In Subsection 4.2, we prove the inapproximability of P-SPNE-s for the case
with at least three followers by polynomially reducing to it 3-SAT (another of
Karp’s 21 NP-complete problems [16]). 3-SAT reads:

Definition 3 (3-SAT) Given a collection C “ tφ1, . . . , φtu of clauses (dis-
junctions of literals) on a finite set V of Boolean variables with |φc| “ 3 for
1 ď c ď t, is there a truth assignment for V which satisfies all the clauses in
C?

4.1 NP-Completeness

Before presenting our reduction, we introduce the following class of normal-
form games:

Definition 4 Given two rational numbers b and c with 1 ą c ą b ą 0 and
an integer r ě 1, let Γ cb prq be a class of normal-form games with three players
(n “ 3), the first two having r`1 actions each with action sets A1 “ A2 “ A “
t1, ..., r, χu and the third one having r actions with action set A3 “ Aztχu,
such that, for every third player’s action a3 P Aztχu, the other players play a
game where:

– the payoffs on the main diagonal (where both players play the same action)
satisfy Ua3a3a31 “ Ua3a3a32 “ 1, Uχχa31 “ c, Uχχa32 “ b and, for every a1 P

Azta3, χu, U
a1a1a3
1 “Ua1a1a32 “0;
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– for every a1, a2 P Aztχu with a1 ‰ a2, Ua1a2a31 “Ua1a2a32 “ b;
– for every a2 P Aztχu, U

χa2a3
1 “c and Uχa2a32 “0;

– for every a1 P Aztχu, U
a1χa3
1 “1 and Ua1χa32 “0.

No restrictions are imposed on the third player’s payoffs.

See Figure 3 for an illustration of one such game Γ cb prq with r “ 3, parametric
in b and c.

1 2 3 χ

1 1,1,0 b,b,0 b,b,0 1,0,0

2 b,b,0 0,0,´1´c
c

b,b,0 1,0,0

3 b,b,0 b,b,0 0,0,1 1,0,0

χ c,0,0 c,0,0 c,0,0 c,b,0

1

1 2 3 χ

1 0,0,´1´c
c

b,b,0 b,b,0 1,0,0

2 b,b,0 1,1,0 b,b,0 1,0,0

3 b,b,0 b,b,0 0,0,´1´c
c

1,0,0

χ c,0,0 c,0,0 c,0,0 c,b,0

2

1 2 3 χ

1 0,0,1 b,b,0 b,b,0 1,0,0

2 b,b,0 0,0,´1´c
c

b,b,0 1,0,0

3 b,b,0 b,b,0 1,1,0 1,0,0

χ c,0,0 c,0,0 c,0,0 c,b,0

3

Fig. 3 A Γ cb prq game with r “ 3. The third player (the leader) selects a matrix, while the
first and the second players (the followers) select rows and columns, respectively. The third
player’s payoffs are defined starting from the graph in Figure 5, as explained in the proof of
Theorem 1.

The special feature of Γ cb prq games is that, no matter which mixed strategy
the third player (the leader) commits to, with the exception of pχ, χq only the
diagonal outcomes can be pure NEs in the resulting followers’ game. Moreover,
for every subset of diagonal outcomes there is a leader’s strategy such that this
subset precisely corresponds to the set of all pure NEs in the followers’ game.
This is formally stated by the following proposition:

Proposition 5 A Γ cb prq game with c ď 1
r admits, for all S Ď tpa1, a1q :

a1 P Aztχuu with S ‰ H, a leader’s strategy x3 P ∆3 such that the outcomes
pa1, a1q P S are exactly the pure NEs in the resulting followers’ game.

Proof First, observe that the followers’ payoffs that are not on the main diag-
onal are independent of the leader’s strategy x3. Thus, any outcome pa1, a2q

with a1, a2 P Aztχu and a1 ‰ a2 cannot be an NE, as the first follower would
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deviate by playing action χ so to obtain a utility c ą b. Analogously, any
outcome pχ, a2q with a2 P Aztχu cannot be an NE because the second follower
would deviate by playing χ (since b ą 0). The same holds for any outcome
pa1, χq with a1 P Aztχu, since the second follower would be better off playing
another action (as b ą 0). The last outcome on the diagonal, pχ, χq, cannot
be an NE either, as the first follower would deviate from it (as she would get
c in it, while she can obtain 1 ą c by deviating).

As a result, the only outcomes which can be pure NEs are those in tpa1, a1q :
a1 P Aztχuu. When the leader plays a pure strategy a3 P Aztχu, the unique
pure NE in the followers’ game is pa3, a3q as, due to providing the followers
with their maximum payoff, they would not deviate from it. Outcomes pa1, a1q

with a1 P Aztχ, a3u are not NEs as, with them, the first follower would get
0 ă c. In general, if the leader plays an arbitrary mixed strategy x3 P ∆3 the
resulting followers’ game is such that the payoffs in pa3, a3q with a3 P Aztχu
are pxa33 , xa33 q. Noticing that pa3, a3q is an equilibrium if and only if xa33 ě c (as,
otherwise, the first follower would deviate by playing action χ), we conclude
that the set of pure NEs in the followers’ game is S “ tpa3, a3q : xa33 ě cu.

In order to guarantee that, for every possible S Ď tpa1, a1q : a1 P Aztχuu
with S ‰ H, there is a leader’s strategy such that S contains all the pure NEs
of the followers’ game, we must properly choose the value of c. Choosing c ď 1

r
suffices, as, for any set S, the leader’s strategy x3 P ∆3 such that xa33 “ 1

|S|

for every a3 P Aztχu with pa3, a3q P S induces a followers’ game in which all
the outcomes in S are NEs. [\

Notice that the followers’ game always admits a pure NE for any leader’s
commitment x3 in a Γ cb prq game with c ď 1

r . As shown in Figure 4 for r “ 3, the
leader’s strategy space ∆3 is partitioned into 2r´1 regions, each corresponding
to a subset of tpa1, a1q : a1 P Aztχuu containing those diagonal outcomes which
are the only pure NEs in the followers’ game. Hence, in a Γ cb prq game with
c ď 1

r the number of combinations of outcomes which may constitute the set
of pure NEs in the followers’ game is exponential in r, and, thus, in the size
of the game instance.

Relying on Proposition 5, we can establish the following result:

Theorem 1 P-SPNE-d is strongly NP-complete even for n “ 3.

Proof For the sake of clarity, we split the proof over multiple steps.
Mapping. Given an instance of IND-SET-d, i.e., an undirected graph

G “ pV,Eq and a positive integer J , we construct a special instance Γ pGq
of P-SPNE-d of class Γ cb prq as follows. Assuming an arbitrary labelling of
the vertices tv1, v2, ..., vru, let Γ pGq be an instance of Γ cb prq with c ă 1

r and
0 ă b ă c ă 1, where each action a1 P Aztχu is associated with a vertex
va1 P V . In compliance with Definition 4, in which no constraints are specified
for the leader payoffs, we define:

– for any pair of vertices va1 , va2 P V : Ua1a1a23 “ Ua2a2a13 “ ´1´c
c if tva1 , va2u P

E, and Ua1a1a23 “ Ua2a2a13 “ 1 otherwise;
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A

A

A

A

B

B

B

B

CC

C

C

Fig. 4 A Γ cb prq game with r “ 3 and c ď 1
r

. The leader’s strategy space ∆3 is partitioned
into 2r´ 1 regions, one per subset of tpa1, a1q : a1 P Aztχuu (the three NEs in the followers’
game, p1, 1q, p2, 2q, and p3, 3q, are labelled A, B, C).

– for every a3 P Aztχu: U
a3a3a3
3 “ 0 and Uχχa33 “ 0;

– for every a3 P Aztχu and for every a1, a2 P A with a1 ‰ a2: Ua1a2a33 “

Ua2a1a33 “ 0.

As an example, Figure 5 illustrates an instance of IND-SET-d from which the
game depicted in Figure 3 is obtained by applying our reduction. Finally, let
K “ J´1

J . Note that this transformation can be carried out in time polynomial
in the number of vertices |V | “ r. W.l.o.g., we assume that the graph G
contains no isolated vertices. Indeed, it is always possible to remove all the
isolated vertices fromG (in polynomial time), solve the problem on the residual
graph, and, then, add the isolated vertices back to the independent set that
has been found, still obtaining an independent set.

v1

v2 v3

Fig. 5 An undirected graph G “ pV,Eq, where V “ tv1, v2, v3u and E “ ttv1, v2u, tv2, v3uu.

If. We show that, if the graph G contains an independent set of size greater
than or equal to J , then Γ pGq admits a P-SPNE with leader’s utility greater
than or equal to K. Let V ˚ be an independent set with |V ˚| “ J . Consider
the case in which outcomes pa1, a1q, with va1 P V

˚, are the only pure NEs in
the followers’ game, and assume that the leader’s strategy x3 is xa33 “ 1

|V ˚| if

va3 P V
˚ and xa33 “ 0 otherwise. Since, by construction, Ua1a1a33 “ 1 for all
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a3 P Aztχ, a1u, the leader’s utility at an equilibrium pa1, a1q is:

ÿ

a3PAztχu

Ua1a1a33 xa33 “
ÿ

a3PAztχ,a1u

Ua1a1a33 xa33 “
ÿ

a3PAztχ,a1u

xa33 “
|V ˚| ´ 1

|V ˚|
“ K.

Only if. We show that, if Γ pGq admits a P-SPNE with leader’s utility
greater than or equal to K, then G contains an independent set of size greater
than or equal to J . Due to Proposition 5, at any P-SPNE the leader plays a
strategy x̄3 inducing a set of pure NEs in the followers’ game corresponding
to S˚ “ tpa3, a3q : x̄a33 ě cu. We now show that the leader would never play
two actions a1, a2 P Aztχu and tva1 , va2u P E with probability greater than or
equal to c in a P-SPNE. By contradiction, assume that the leader’s equilibrium
strategy x̄3 is such that x̄a13 , x̄a23 ě c. When the followers play the equilibrium
pa1, a1q (the same holds for pa2, a2q), the leader’s utility is:

ÿ

a3PAztχu

Ua1a1a33 x̄a33 “
ÿ

a3PAztχ,a1,a2u

Ua1a1a33 x̄a33 ` x̄a23

´1´ c

c
.

In the right-hand side, the first term is ă 1 (as the leader’s payoffs are ď 1 andř
a3PAztχ,a1,a2u

x̄a33 “ 1´ x̄a13 ´ x̄a23 ă 1, since x̄a13 , x̄a23 ě c). The second term

is less than or equal to c ´1´c
c “ ´1´c (as x̄a23 ě c), which is strictly less than

´1. It follows that, since pa1, a1q (or, equivalently, pa2, a2q) always provides
the leader with a negative utility, she would never play x̄3 in an equilibrium.
This is because, by playing a pure strategy she would obtain a utility of at
least zero (as the followers’ game admits a unique pure NE giving her a zero
payoff when she plays a pure strategy). As a result, we have Ua3a3a33 “ 0 for
every action a3 such that x̄a33 ě c and Ua1a1a33 “ 1 for every other action a1

such that x̄a13 ě c (since va1 and va3 are not connected by an edge).
Note that, in any equilibrium pa1, a1q P S

˚, the leader’s utility is:
ÿ

a3PAztχu

Ua1a1a33 x̄a33 “
ÿ

a3PAztχ,a1u:x̄
a3
3 ěc

Ua1a1a33 x̄a33 `
ÿ

a3PAztχu:x̄
a3
3 ăc

Ua1a1a33 x̄a33 ,

where, in the first summation in the right-hand side, each payoff Ua1a1a33 is
equal to 1 (as x̄a13 ě c and x̄a33 ě c). We show that the same holds for each
payoff Ua1a1a33 appearing in the second summation. By contradiction, assume
that there exists an action a3 P Aztχu such that x̄a33 ă c and Ua1a1a33 “ ´1´c

c
for some equilibrium pa1, a1q P S˚. By shifting all the probability that x̄3

places on a3 to actions a1 such that pa1, a1q P S
˚ (so that x̄a33 “ 0), we obtain

a new leader’s strategy which induces the same set S˚ of pure NEs in the
followers’ game. Moreover, the leader’s utility in any equilibrium pa1, a1q P S

˚

strictly increases if Ua1a1a33 “ ´1´c
c , while it stays the same when Ua1a1a33 “ 1.

This contradicts the fact that x̄3 is a P-SPNE. Thus, all the actions a3 P Aztχu
such that x̄a33 ă c satisfy Ua1a1a33 “ 1 for every equilibrium pa1, a1q P S

˚.
As a result, the leader’s utility at an equilibrium pa3, a3q P S

˚ is 1 ´ x̄a33 .
Since, due to the pessimistic assumption, the leader maximizes her utility in
the worst NE, her best choice is to select an x̄3 such that all NEs yield the
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same utility, that is: x̄a13 “ x̄a23 for every a1, a2 with pa1, a1q, pa2, a2q P S
˚.

This results in the leader playing all actions a3 such that pa3, a3q P S
˚ with

the same probability x̄a33 “ 1
|S˚| , obtaining a utility of |S

˚
|´1

|S˚| “ K. Therefore,

the vertices in the set tva3 : pa3, a3q P S
˚u form an independent set of G of

size |S˚| “ J . The reduction is, thus, complete.
NP membership. Given a triple pa1, a2, x3q which is encoded with a num-

ber bits which is polynomial w.r.t. the size of the game, we can verify in poly-
nomial time whether pa1, a2q is an NE in the followers’ game induced by x3

and whether, when playing pa1, a2, x3q, the leader’s utility is at least as large
as K. The existence of such a triple follows as a consequence of the correct-
ness of either of the two equilibrium-finding algorithms that we propose in
Section 6—we refer the reader to Section 6.2 for a discussion on this. There-
fore, we deduce that P-SPNE belongs to NP. Moreover, since in the game of
the reduction the players’ payoffs are encoded with a polynomial number of
bits and due to IND-SET being strongly NP-complete, P-SPNE-d is strongly
NP-complete. [\

4.2 Inapproximability

We show now that P-SPNE-s (the search problem of computing a P-SPNE) is
not only NP-hard (due to its decision version, P-SPNE-d, being NP-complete),
but it is also difficult to approximate. Since the reduction from IND-SET
which we gave in Theorem 1 is not approximation-preserving, we propose a
new one based on 3-SAT (see Definition 3). We remark that, differently from
our previous reduction (which holds for any number of followers greater than
or equal to two), this one requires at least three followers.

In the following, given a literal l (an occurrence of a variable, possibly
negated), we define vplq as its corresponding variable. Moreover, for a generic
clause

φ “ l1 _ l2 _ l3,

we denote the ordered set of possible truth assignments to the variables,
namely, x “ vpl1q, y “ vpl2q, and z “ vpl3q, by

Lφ “ txyz, xyz̄, xȳz, xȳz̄, x̄yz, x̄yz̄, x̄ȳz, x̄ȳz̄u,

where, in each truth assignment, a variable is set to 1 if positive and to 0 if
negative. Given a generic 3-SAT instance, we build a corresponding normal-
form game as detailed in the following definition.

Definition 5 Given a 3-SAT instance where C “ tφ1, . . . , φtu is a collection
of clauses and V “ tv1, . . . , vru is a set of Boolean variables, and some ε P
p0, 1q, let ΓεpC, V q be a normal-form game with four players (n “ 4) defined
as follows. The fourth player has an action for each variable in V plus an
additional one, i.e., A4 “ t1, . . . , ru Y twu. Each action a4 P t1, . . . , ru is
associated with variable va4 . The other players share the same set of actions
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A, with A “ A1 “ A2 “ A3 “ tϕca | c P t1, . . . , tu, a P t1, . . . , 8uu Y tχu,
where each action ϕca is associated with one of the eight possible assignments
of truth to the variables appearing in clause φc, so that ϕca corresponds to
the a-th assignment in the ordered set Lφc

. For each player p P t1, 2, 3u, we
define her utilities as follows:

– for each a4 P A4ztwu and for each a1 P Aztχu with a1 “ ϕca “ l1l2l3,
Ua1a1a1a4p “ 1 if vplpq “ va4 and lp is a positive literal or vplpq ‰ va4 and
lp is negative;

– for each a4 P A4ztwu and for each a1 P Aztχu with a1 “ ϕca “ l1l2l3,
Ua1a1a1a4p “ 0 if vplpq “ va4 and lp is a negative literal or vplpq ‰ va4 and
lp is positive;

– for each a1 P Aztχu with a1 “ ϕca “ l1l2l3, Ua1a1a1wp “ 0 if lp is a positive
literal, while Ua1a1a1wp “ 1 otherwise;

– for each a4 P A4 and for each a1, a2, a3 P Aztχu such that a1 ‰ a2 _ a2 ‰

a3 _ a1 ‰ a3, Ua1a2a3a4p “ 1
r`2 ;

– for each a4 P A4, a3 P Aztχu, and a2 P Aztχu with a2 “ ϕca “ l1l2l3,
Uχa2a3a41 “ 1

r`1 if l1 is a positive literal, whereas Uχa2a3a41 “ r
r`1 if l1 is

negative, while Uχa2a3a42 “ Uχa2a3a43 “ 0;
– for each a4 P A4, a3 P Aztχu, and a1 P Aztχu with a1 “ ϕca “ l1l2l3,
Ua1χa3a42 “ 1

r`1 if l2 is a positive literal, whereas Ua1χa3a42 “ r
r`1 if l2 is

negative, while Ua1χa3a41 “ 1 and Ua1χa3a43 “ 0;
– for each a4 P A4, a1 P Aztχu, and a2 P Aztχu with a2 “ ϕca “ l1l2l3,
Ua1a2χa43 “ 1

r`1 if l3 is a positive literal, whereas Ua1a2χa43 “ r
r`1 if l3 is

negative, while Ua1a2χa41 “ 0 and Ua1a2χa42 “ 1;
– for each a4 P A4, Ua1χχa41 “ Ua1χχa43 “ 1 and Ua1χχa42 “ 0, for all a1 P

Aztχu;
– for each a4 P A4, Uχa2χa41 “ 1 and Uχa2χa42 “ Uχa2χa43 “ 0, for all a2 P

Aztχu;
– for each a4 P A4, Uχχa3a41 “ Uχχa3a43 “ 0 and Uχχa3a42 “ 1, for all a3 P A.

The payoff matrix of the fourth player is so defined:

– for each a4 P A4 and for each a1 P Aztχu with a1 “ ϕca “ l1l2l3,
Ua1a1a1a44 “ ε if the truth assignment identified by ϕca makes φc false
(i.e., whenever, for each p P t1, 2, 3u, the clause φc contains the negation
of lp), while Ua1a1a1a44 “ 1 otherwise;

– for each a4 P A4 and for each a1, a2, a3 P A such that a1 ‰ a2 _ a2 ‰

a3 _ a1 ‰ a3, with the addition of the triple pχ, χ, χq, Ua1a2a3a44 “ 0.

Games adhering to Definition 5 have some interesting properties, which we
formally state in the following Propositions 6 and 7.

First, we give a characterization of the strategy space of the leader in
terms of the set of pure NEs in the followers’ game. In particular, given a
game ΓεpC, V q, the leader’s strategy space ∆4 is partitioned according to the
boundaries xa44 “ 1

r`1 , for a4 P A4ztwu, by which ∆4 is split into 2r regions,
each corresponding to a possible truth assignment to the variables in V . Specif-
ically, in the assignment corresponding to a region, variable va4 takes value 1 if
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xa44 ě 1
r`1 , while it takes value 0 if xa44 ď 1

r`1 . Moreover, for each a1 P Aztχu
and a1 “ ϕca an outcome pa1, a1, a1q is an NE in the followers’ game only in the
regions of the leader’s strategy space whose corresponding truth assignment is
compatible with the one represented by ϕca. For instance, if ϕca “ v̄1v2v3 the
corresponding outcome is an NE only if x1

4 ď
1
r`1 , x2

4 ě
1
r`1 , and x3

4 ě
1
r`1

(with no further restrictions on the other probabilities). Formally, we can claim
the following:

Proposition 6 Given a game ΓεpC, V q and an action a1 P Aztχu with a1 “

ϕca “ l1l2l3, the outcome pa1, a1, a1q is an NE of the followers’ game whenever
the leader commits to a strategy x4 P ∆4 such that:

– xa44 ě 1
r`1 if vplpq “ va4 and lp is a positive literal, for some p P t1, 2, 3u;

– xa44 ď 1
r`1 if vplpq “ va4 and lp is a negative literal, for some p P t1, 2, 3u;

– xa44 can be any if vplpq ‰ va4 for each p P t1, 2, 3u.

All the other outcomes of the followers’ game, i.e., those belonging to the set
tpa1, a2, a3q : a1, a2, a3 P A with a1 ‰ a2 _ a2 ‰ a3 _ a1 ‰ a3u Y tpχ, χ, χqu,
cannot be NEs for any of the leader’s commitments.

Proof Observe that, the followers’ payoffs do not depend on the leader’s strat-
egy x4 in the outcomes not in tpa1, a1, a1q : a1 P Aztχuu. Thus, for every
a1, a2, a3 P Aztχu such that a1 ‰ a2 _ a2 ‰ a3 _ a1 ‰ a3 the outcome
pa1, a2, a3q cannot be an NE as the first follower would deviate by playing
action χ, obtaining a utility at least as large as 1

r`1 , instead of 1
r`2 . Also,

for all a2, a3 P Aztχu the outcome pχ, a2, a3q is not an NE since the second
follower would be better off playing χ (as she gets 1 ą 0). Analogously, for
all a1, a3 P Aztχu the outcome pa1, χ, a3q cannot be an NE as the third fol-
lower would deviate to χ (getting a utility of 1 ą 0). For all a3 P A, a similar
argument also applies to the outcome pχ, χ, a3q as the first follower would
have an incentive to deviate by playing any action different from χ (note that
pχ, χ, χq, whose payoffs are defined in the last item of Definition 5, is included).
Moreover, for all a1 P Aztχu the outcome pa1, χ, χq is not an NE as the sec-
ond follower would deviate to any other action (getting a utility of 1). For
all a1, a2 P Aztχu, the same holds for the outcome pa1, a2, χq, where the first
follower would deviate and play action χ, and for the outcome pχ, a2, χq where,
for all a2 P ztχu, the second follower would deviate and play χ.

Therefore, the only outcomes which can be NEs in the followers’ game are
those in tpa1, a1, a1q : a1 P Aztχuu. Assume that the leader commits to an
arbitrary mixed strategy x4 P ∆4. For each a1 P Aztχu with a1 “ ϕca “ l1l2l3
and for each p P t1, 2, 3u, the outcome pa1, a1, a1q provides follower p with a
utility of up such that:

– up “ xa44 if vplpq “ va4 and lp is a positive literal;
– up “ 1´ xa44 if vplpq “ va4 and lp is a negative literal;

The outcome pa1, a1, a1q is an NE if the following conditions hold:

– up ě
1
r`1 for each p P t1, 2, 3u such that lp is positive, as otherwise follower

p would deviate and play χ;
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– up ě
r
r`1 for each p P t1, 2, 3u such that lp is negative, as otherwise follower

p would deviate and play χ;

The claim is proven by these conditions, together with the definition of up. [\

The characterization of the leader’s strategy space given in Proposition 6
establishes the relationship between the leader’s utility in a P-SPNE of a game
ΓεpC, V q and the feasibility of the corresponding 3-SAT instance. We highlight
it in the following proposition.

Proposition 7 Given a game ΓεpC, V q, the leader’s utility in a P-SPNE is 1
if and only if the corresponding 3-SAT instance is feasible, and it is equal to ε
otherwise.

Proof The result follows form Proposition 6. If the 3-SAT instance is a YES
instance (i.e., if it is feasible), there exists then a strategy x4 P ∆4 such that
all the NEs of the resulting followers’ game provide the leader with a utility
of 1. This is because there is a region corresponding to a truth assignment
which satisfies all the clauses. On the other hand, if the 3-SAT instance is a
NO instance (i.e., if it is not satisfiable), then in each region of the leader’s
strategy space there exits an NE for the followers’ game which provides the
leader with a utility of ε. Therefore, the followers would always play such
equilibrium due to the assumption of pessimism. [\

We are now ready to state the result.

Theorem 2 With n ě 4 and unless P = NP, P-SPNE-s cannot be approxi-
mated in polynomial time to within any multiplicative factor which is polyno-
mial in the size of the normal-form game given as input, nor (assuming the
payoffs are normalized between 0 and 1) to within any constant additive loss
strictly smaller than 1.

Proof Given a generic 3-SAT instance, let us build its corresponding game
ΓεpC, V q according to Definition 5. This construction can be done in poly-
nomial time as |A4| “ r ` 1 and |A| “ |A1| “ |A2| “ |A3| “ 8t ` 1 are
polynomials in r and t, and, therefore, the number of outcomes in ΓεpC, V q is
polynomial in r and t. Furthermore, let us select ε P

`
0, 1

2r

˘
(the polynomiality

of the reduction is preserved as 1
2r is representable in binary encoding with a

polynomial number of bits).
By contradiction, let us assume that there exists a polynomial-time ap-

proximation algorithm A capable of constructing a solution to the problem
of computing a P-SPNE with a multiplicative approximation factor 1

polypIq ,

where polypIq is any polynomial function of the size I of the normal-form game
given as input. By Proposition 7, it follows that, when applied to ΓεpC, V q,
A would return an approximate solution with value greater than or equal to
1 ¨ 1

polypIq ą
1
2r (for a sufficiently large r) if and only if the 3-SAT instance is

feasible. When the 3-SAT instance is not satisfiable, A would return a solution
with value at most 1

2r . Since this would provide us with a solution to 3-SAT
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in polynomial time, we conclude that P-SPNE-s cannot be approximated in
polynomial time to within any polynomial multiplicative factor unless P =
NP.

For the additive case, observe that an algorithm A with a constant additive
loss ` ă 1 would return a solution of value at least 1 ´ ` for feasible 3-SAT
instances and a solution of value at most 1

2r for infeasible ones. As for any
` ă 1´ 1

2r this algorithm would allow us to decide in polynomial time whether
the 3-SAT instance is feasible or not, a contradiction unless P “ NP, we deduce
` ě 1´ 1

2r . Since 1
2r Ñ 0 for r Ñ8, this implies ` ě 1, a contradiction. [\

5 Single-Level Reformulation and Restriction

In this section, we propose a single-level reformulation of the problem ad-
mitting a supremum but, in general, not a maximum, and a corresponding
restriction which always admits optimal (restricted) solutions.

For notational simplicity, we consider the case with n “ 3 players. Although
notationally more involved, the generalization to n ě 3 is straightforward.
With only two followers, Problem (2), i.e., the bilevel programming formulation
we gave in Subsection 3.2, reads:

sup
x3

min
x1,x2

ÿ

a1PA1

ÿ

a2PA2

ÿ

a3PA3

Ua1a2a33 xa11 xa22 xa33

s.t. x3 P ∆3

x1 P argmax
x1

ÿ

a1PA1

ÿ

a2PA2

ÿ

a3PA3

Ua1a2a31 xa11 xa22 xa33

s.t. x1 P ∆1 X t0, 1u
m

x2 P argmax
x2

ÿ

a1PA1

ÿ

a2PA2

ÿ

a3PA3

Ua1a2a32 xa11 xa22 xa33

s.t. x2 P ∆2 X t0, 1u
m.

(3)

5.1 Single-Level Reformulation

In order to cast Problem (3) into a single-level problem, we first introduce the
following reformulation of the followers’ problem:

Lemma 1 The following MILP, parametric in x3, is an exact reformulation
of the followers’ problem of finding a pure NE which minimizes the leader’s
utility given a leader’s strategy x3:

min
y

ÿ

a1PA1

ÿ

a2PA2

ya1a2
ÿ

a3PA3

Ua1a2a33 xa33 (4a)

s.t.
ÿ

a1PA1

ÿ

a2PA2

ya1a2 “ 1 (4b)

ya1a2
ÿ

a3PA3

pUa1a2a31 ´ U
a11a2a3
1 qxa33 ě 0 @a1 P A1, a2 P A2, a

1
1 P A1 (4c)
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ya1a2
ÿ

a3PA3

pUa1a2a32 ´ U
a1a

1
2a3

2 qxa33 ě 0 @a1 P A1, a2 P A2, a
1
2 P A2 (4d)

ya1a2 P t0, 1u @a1 P A1, a2 P A2. (4e)

Proof Note that, in Problem (3), a solution to the followers’ problem satisfies

xa11 “ xa22 “ 1 for some pa1, a2q P A1ˆA2 and x
a11
1 “ x

a12
2 “ 0 for all pa11, a

1
2q ‰

pa1, a2q. Problem (4) encodes this in terms of the variable ya1a2 by imposing
ya1a2 “ 1 if an only if pa1, a2q is a pessimistic NE. Let us look at this in detail.

Due to Constraints (4b) and (4e), ya1a2 is equal to 1 for one and only one
pair pa1, a2q.

Due to Constraints (4c) and (4d), for all pa1, a2q such that ya1a2 “ 1 there
can be no action a11 P A1 (respectively, a12 P A2) by which the first follower
(respectively, the second follower) could obtain a better payoff when assuming
that the other follower would play action a2 (respectively, action a1). This
guarantees that pa1, a2q be an NE. Also note that Constraints (4c) and (4d)
boil down to the tautology 0 ě 0 for any pa1, a2q P A1 ˆA2 with ya1a2 “ 0.

By minimizing the objective function (which corresponds to the leader’s
utility), a pessimistic pure NE is found. [\

To arrive at a single-level reformulation of Problem (3), we rely on linear
programming duality to restate Problem (4) in terms of optimality conditions
which do not employ the min operator. First, we show the following:

Lemma 2 The linear programming relaxation of Problem (4) always admits
an optimal integer solution.

Proof Let us focus on Constraints (4c) and analyse, for all pa1, a2q P A1 ˆA2

and a11 P A1, the coefficient
ř
a3PA3

pUa1a2a31 ´ U
a11a2a3
1 qxa33 which multiplies

ya1a2 . The coefficient is equal to the regret the first player would suffer from
by not playing action a11. If equal to 0, we have the tautology 0 ě 0. If the

regret is positive, after dividing by
ř
a3PA3

pUa1a2a31 ´ U
a11a2a3
1 qxa33 both sides

of the constraint we obtain ya1a2 ě 0, which is subsumed by the nonnegativity
of ya1a2 . If the regret is negative, after diving both sides of the constraint

again by
ř
a3PA3

pUa1a2a31 ´ U
a11a2a3
1 qxa33 we obtain ya1a2 ď 0, which implies

ya1a2 “ 0. A similar reasoning applies to Constraints (4d).
Let us now define O as the set of pairs pa1, a2q such that there is as least

an action a11 or a12 for which one of the followers suffers from a strictly negative
regret. We have O :“ tpa1, a2q P A1 ˆ A2 : Da11 P A1 with

ř
a3PA3

pUa1a2a31 ´

U
a11a2a3
1 qxa33 ă 0_Da12 P A2 with

ř
a3PA3

pUa1a2a31 ´U
a1a

1
2a3

1 qxa33 ă 0u. Relying
on O, Problem (4) can be rewritten as:

min
y

ÿ

a1PA1

ÿ

a2PA2

ya1a2
ÿ

a3PA3

Ua1a2a33 xa33

s.t.
ÿ

a1PA1

ÿ

a2PA2

ya1a2 “ 1

ya1a2 “ 0 @pa1, a2q P O
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ya1a2 P t0, 1u @a1 P A1, a2 P A2.

All variables ya1a2 with pa1, a2q P O can be discarded. We obtain a problem
with a single constraint imposing that the sum of all the ya1a2 variables with
pa1, a2q R O be equal to 1. The linear programming relaxation of such problem
always admits an optimal solution with ya1a2 “ 1 for the pair pa1, a2q which
achieves the largest value of

ř
a3PA3

Ua1a2a33 xa33 (ties can be broken arbitrarily),
and with ya1a2 “ 0 otherwise. [\

As a consequence of Lemma 2, the following can be established:

Theorem 3 The following single-level Quadratically Constrained Quadratic
Program (QCQP) is an exact reformulation of Problem (3):

sup
x3,y
β1,β2

ÿ

a1PA1

ÿ

a2PA2

ya1a2
ÿ

a3PA3

Ua1a2a33 xa33 (5a)

s.t.
ÿ

a1PA1

ÿ

a2PA2

ya1a2 “ 1 (5b)

ya1a2
ÿ

a3PA3

pUa1a2a31 ´ Ua11a2a31 qxa33 ě 0 @a1 P A1, a2 P A2, a
1
1 P A1 (5c)

ya1a2
ÿ

a3PA3

pUa1a2a32 ´ Ua1a12a32 qxa33 ě 0 @a1 P A1, a2 P A2, a
1
2 P A2 (5d)

ÿ

a1PA1

ÿ

a2PA2

ya1a2
ÿ

a3PA3

Ua1a2a33 xa33 ď
ÿ

a3PA3

Ua1a2a33 xa33 `

´
ÿ

a11PA1

β
a1a2a

1
1

1

ÿ

a3PA3

pUa1a2a31 ´ Ua11a2a31 qxa33 `

´
ÿ

a12PA2

β
a1a2a

1
2

2

ÿ

a3PA3

pUa1a2a32 ´ Ua1a12a32 qxa33 @a1 P A1, a2 P A2 (5e)

ÿ

a3PA3

x3 “ 1 (5f)

β
a1a2a

1
1

1 ě 0 @a1 P A1, a2 P A2, a
1
1 P A1 (5g)

β
a1a2a

1
2

2 ě 0 @a1 P A1, a2 P A2, a
1
2 P A2 (5h)

ya1a2 ě 0 @a1 P A1, a2 P A2 (5i)

xa33 ě 0 @a3 P A3. (5j)

Proof By relying on Lemma 2, we first introduce the linear programming
dual of the linear programming relaxation of Problem (4). Thanks to Con-
straints 4b, ya1,a2 P t0, 1u can be relaxed w.l.o.g. into ya1,a2 P Z` for all
a1 P A1, a2 P A2. This way, we do not have to introduce a dual variable for
each of the constraints ya1,a2 ď 1 which would be introduced when relaxing

ya1,a2 P t0, 1u into ya1,a2 P r0, 1s. Letting α, β
a1a2a

1
1

1 , and β
a1a2a

1
2

2 be the dual
variables of, respectively, Constraints (4b), (4c), and (4d), the dual reads:

max
α,β1,β2

α



Computing Pessimistic Leader-Follower Equilibria: the Mixed-Pure Case 25

s.t. α`
ÿ

a11PA1

β
a1a2a

1
1

1

ÿ

a3PA3

pUa1a2a31 ´ U
a11a2a3
1 qxa33 `

`
ÿ

a12PA2

β
a1a2a

1
2

2

ÿ

a3PA3

pUa1a2a32 ´ U
a1a

1
2a3

2 qxa33

ď
ÿ

a3PA3

Ua1a2a33 xa33 @a1 P A1, a2 P A2

α free

β
a1a2a

1
1

1 ě 0 @a1 P A1, a2 P A2, a
1
1 P A1

β
a1a2a

1
2

2 ě 0 @a1 P A1, a2 P A2, a
1
2 P A2.

A set of optimality conditions for Problem (4) can then be derived by simul-
taneously imposing primal and dual feasibility for the sets of primal and dual
variables (by imposing the respective constraints) and equating the objective
functions of the two problems.

The dual variable α can then be removed by substituting it by the primal
objective function, leading to Constraints (5e).

The result in the claim is obtained after introducing the leader’s utility as
objective function and then casting the resulting problem as a maximization
problem (in which a supremum is sought). [\

Since, as shown in Proposition 3, the problem of computing a P-SPNE in a
normal-form game may only admit a supremum but not a maximum, the same
must hold for Problem (5) due to its correctness (established in Theorem 3).
We formally highlight this property in the following proposition, showing in
the proof how this can manifest in terms of the variables of the formulation.

Proposition 8 In the general case, Problem (5) may not admit a finite opti-
mal solution.

Proof Consider the game introduced in the proof of Proposition 3 and let
x3 “ p1´ρ, ρq for ρ P r0, 1s. Adopting, for convenience, the notation pa1

1, a
1
2q “

p1, 1q, pa1
1, a

2
2q “ p1, 2q, pa

2
1, a

1
2q “ p2, 1q, and pa2

1, a
2
2q “ p2, 2q, Constraints (5e)

read:

y11p0q ` y12p5` 5ρq ` y21p1q ` y22p0q ď 0´ β112
1 p0.5´ ρq ´ β112

2 p´1´ ρq

y11p0q ` y12p5` 5ρq ` y21p1q ` y22p0q ď 5` 5ρ´ β122
1 p1` ρq ´ β121

2 p1` ρq

y11p0q ` y12p5` 5ρq ` y21p1q ` y22p0q ď 1´ β211
1 p´0.5` ρq ´ β212

2 p´0.5` ρq

y11p0q ` y12p5` 5ρq ` y21p1q ` y22p0q ď 0´ β221
1 p´1´ ρq ´ β221

2 p0.5´ ρq.

Note that the left-hand sides of the four constraints are all equal to the objec-
tive function (i.e., to the leader’s utility).

Let us consider the case ρ ă 0.5 for which, as shown in the proof of Propo-
sition 3, p1, 2q is the unique pure NE in the followers’ game. (1,2) is obtained
by letting y12 “ 1 and y11 “ y21 “ y22 “ 0, for which the left-hand sides of
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the four constraints become equal to 7.5´ 5ε. Note that such value converges
to the supremum as ε Ñ 0. For this choice of y and letting ρ “ 0.5 ´ ε for
ε P p0, 0.5s (which is equivalent to assuming ρ ă 0.5), the constraints read:

7.5´ 5ε ď 0´ εβ112
1 ` p1.5´ εqβ111

2

7.5´ 5ε ď 7.5´ 5ε´ p1.5´ εqβ122
1 ´ p1.5´ εqβ121

2

7.5´ 5ε ď 1` εβ211
1 ` εβ212

2

7.5´ 5ε ď 0` p1.5´ εqβ221
1 ´ εβ221

2 .

Rearrange the four constraints as follows:

β111
2 ě

7.5´ 5ε` εβ112
1

1.5´ ε

p1.5´ εq pβ122
1 ` β121

2 q ď 0

β211
1 ` β212

2 ě
6.5´ 5ε

ε

β221
1 ě

7.5´ 5ε` εβ221
2

1.5´ ε
.

The second constraint implies β122
1 “ β121

2 “ 0. Letting β112
1 “ β221

2 “ 0,
which corresponds to the least restriction on the first and fourth constraints,
we derive:

β111
2 ě

7.5´ 5ε

1.5´ ε

β211
1 ` β212

2 ě
6.5´ 5ε

ε

β221
1 ě

7.5´ 5ε

1.5´ ε
.

As ε Ñ 0, we have a finite lower bound for β111
2 and β221

1 , but we also have
β211

1 ` β212
2 ě 6.5´5ε

ε Ñ 8, which prevents β211
1 and β212

2 from taking a finite
value.

With a similar argument, one can verify that there is no other way of
achieving an objective function value approaching 7.5 as, for ρ ě 5, the third
constraint in the original system imposes an upper bound on the objective
function value of 1. [\

5.2 A Restricted Single-Level (MILP) Formulation

As state-of-the-art numerical optimization solvers usually rely on the bound-
edness of their variables when tackling a problem, due to the result in Propo-
sition 8 solving the single-level formulation in Problem 5 may be numerically
impossible.

We consider, here, the option of introducing an upper bound of M on

both β
a1a2a

1
1

1 and β
a1a2a

1
2

2 , for all a1 P A1, a2 P A2, a
1
1 P A1, a

1
2 P A2. Due to the
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continuity of the objective function, this suffices to obtain a formulation which,
although being a restriction of the original one, always admits a maximum
(over the reals) as a consequence of Weierstrass’ extreme-value theorem. Quite
conveniently, this restricted reformulation can be cast as an MILP, as we now
show.

Theorem 4 One can obtain an exact MILP reformulation of Problem (5)

for the case where β
a1a2a

1
1

1 ď M and β
a1a2a

1
2

2 ď M hold for all a1 P A1, a2 P

A2, a
1
1 P A1, a

1
2 P A2, and a restricted one when these bounds are not valid.

Proof After introducing the variable za1a2a3 , each bilinear product ya1a2xa33

in Problem (5) can be linearised by substituting za1a2a3 for it and introducing
the McCormick envelope constraints [24], which are sufficient to guarantee
za1a2a3 “ ya1a2xa33 if ya1a2 takes binary values [1].

Assuming β
a1a2a

1
1

1 P r0,M s for each a1 P A1, a2 P A2, a
1
1 P A1, we can

restrict ourselves to β
a1a2a

1
1

1 P t0,Mu. This is the case also in the dual (reported
in the proof of Theorem 3). Indeed, the dual problem asks for solving the
following problem:

max
β1,β2ě0

#
min

pa1,a2qPA1ˆA2

#ř
a11PA1

β
a1a2a

1
1

1

ř
a3PA3

pUa1a2a31 ´ U
a11a2a3
1 qxa33 `ř

a12PA2
β
a1a2a

1
2

2

ř
a3PA3

pUa1a2a32 ´ U
a1a

1
2a3

2 qxa33

++
.

The min operator ranges over functions (one for each pair pa1, a2q P A1 ˆ

A2) defined on disjoint domains (the β1, β2 variables contained in each such
function are not contained in any of the other ones). Therefore, we can w.l.o.g.
set the value of β1 and β2 so that each function be individually maximized.
For each pa1, a2q P A1ˆA2, this is achieved by setting, for each a11 P A1 (resp.,

a12 P A2) β
a1a2a

1
1

1 (resp., β
a1a2a

1
2

2 ) to its upper bound M if
ř
a3PA3

pUa1a2a31 ´

U
a11a2a3
1 qxa33 ě 0 (resp.,

ř
a3PA3

pUa1a2a32 ´ U
a1a

1
2a3

2 qxa33 ě 0), otherwise setting

β
a1a2a

1
1

1 (resp., β
a1a2a

1
2

2 ) to its lower bound of 0.

We can, therefore, introduce the variable p
a1a2a

1
1

1 P t0, 1u, substituting

Mp
a1a2a

1
1

1 for each occurrence of β
a1a2a

1
1

1 . This way, for each a1 P A1, a2 P

A2, a
1
1 P A1, the term β

a1a2a
1
1

1

ř
a3PA3

pUa1a2a31 ´U
a11a2a3
1 qxa33 becomesM

ř
a3PA3

pUa1a2a31 ´

U
a11a2a3
1 qp

a1a2a
1
1

1 xa33 . We can, then, introduce the variable q
a1a2a

1
1a3

1 and impose

q
a1a2a

1
1a3

1 “ p
a1a2a

1
1

1 xa33 via the McCormick envelope constraints. This way, the

term M
ř
a3PA3

pUa1a2a31 ´ U
a11a2a3
1 qp

a1a2a
1
1

1 xa33 becomes the completely linear

term M
ř
a11PA1

ř
a3PA3

pUa1a2a31 ´U
a11a2a3
1 qq

a1a2a
1
1a3

1 . Similar arguments can be

applied for β
a1a2a

1
2

2 , leading to an MILP formulation. [\

The impact of bounding β
a1a2a

1
1

1 and β
a1a2a

1
2

2 by M is explained as follows.
Assume that those upper bounds are introduced into Problem (5). If M is not
large enough for the chosen x3 (remember that, as shown in Proposition 8,
one may need M Ñ8 for x3 approaching a discontinuity point of the leader’s
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utility function), Constraints (5e) may remain active for some pâ1, â2q which
is not an NE for the chosen x3. Let pa1, a2q be the worst-case NE the followers
would play and assume that the right-hand side of Constraint (5e) for pâ1, â2q

is strictly smaller than the utility the leader would obtain if the followers played

the NE pa1, a2q, namely,
ř
a3PA3

U â1â2a33 xa33 ´
ř
a11PA1

β
â1â2a

1
1

1

ř
a3PA3

pU â1â2a31 ´

U
a11â2a3
1 qxa33 ´

ř
a12PA2

β
â1â2a

1
2

2

ř
a3PA3

pU â1â2a32 ´U
â1a

1
2a3

2 qxa33 ă
ř
a3PA3

Ua1a2a33 xa33 .

Letting ya1a2 “ 1, this constraint would be violated (as, with that value of y,
the left-hand side of the constraint would be

ř
a3PA3

Ua1a2a33 xa33 , which we as-
sumed to be strictly larger than the right-hand side). This forces the choice of

a different x3 for which the upper bound of M on β
a1a2a

1
1

1 and β
a1a2a

1
2

2 is suffi-
ciently large not to cause the same issue with the worst-case NE corresponding
to that x3, thus restricting the set of strategies the leader could play.

In spite of this, by solving the MILP reformulation outlined in Theorem 4
we are always guaranteed to find optimal (restricted) solutions to it (if M
is large enough for the restricted problem to admit feasible solutions). Such
solutions correspond to feasible strategies of the leader, guaranteeing her a
lower bound on her utility at a P-SPNE.

6 Exact Algorithm

In this section, we propose an exact exponential-time algorithm for the com-
putation of a P-SPNE, i.e., of supxnP∆n

fpxnq, which does not suffer from
the shortcomings of the formulations we introduced in the previous section.
In particular, if there is no xn P ∆n where the leader’s utility fpxnq attains
supxnP∆n

fpxnq (as fpxnq does not admit a maximum), our algorithm also
returns, together with the supremum, a strategy x̂n which provides the leader
with a utility equal to an α-approximation (in the additive sense) of the supre-
mum, namely, a strategy x̂n satisfying supxnP∆n

fpxnq ´ fpx̂nq ď α for any
additive loss α ą 0 chosen a priori. We first introduce a version of the algo-
rithm based on explicit enumeration, in Subsection 6.1, which we then embed
into a branch-and-bound scheme in Subsection 6.3.

In the remainder of the section, we denote the closure of a set X Ď ∆n

relative to affp∆nq by X, its boundary relative to affp∆nq by bdpXq, and its
complement relative to ∆n by Xc. Note that, here, affp∆nq denotes the affine
hull of ∆n, i.e., the hyperplane in Rm containing ∆n.

6.1 Enumerative Algorithm

6.1.1 Computing supxnP∆n
fpxnq

The key ingredient of our algorithm is what we call outcome configurations.
Letting AF “

Ś
pPF Ap, we say that a pair pS`, S´q with S` Ď AF and

S´ “ AF zS
` is an outcome configuration for a given xn P ∆n if, in the
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followers’ game induced by xn, all the followers’ action profiles a´n P S`

constitute an NE and all the action profiles a´n P S
´ do not.

For every a´n P AF , we define Xpa´nq as the set of all leader’s strategies
xn P ∆n for which a´n is an NE in the followers’ game induced by xn. Formally,
Xpa´nq corresponds to the following (closed) polytope:

Xpa´nq :“

$
&
%
xn P ∆n :

ÿ

anPAn

Ua´n,an
p xann ě

ÿ

anPAn

U
a1´n,an
p xann @p P F, a1p P Apztapu

with a1´n “ pa1, . . . , ap´1, a
1
p, ap`1, . . . , an´1q

,
.
- .

For every a´n P AF , we also introduce the set Xcpa´nq of all xn P ∆n for
which a´n is not an NE. For that purpose, we first define the following set for
each p P F :

Dppa´n, a
1
pq :“

$
&
%
xn P ∆n :

ÿ

anPAn

Ua´n,an
p xann ă

ÿ

anPAn

U
a1´n,an
p xann

with a1´n “ pa1, . . . , ap´1, a
1
p, ap`1, . . . , an´1q

,
.
- .

Dppa´n, a
1
pq, which is a not open nor closed polytope (as it has a missing facet,

the one corresponding to its strict inequality), is the set of all values of xn for
which player p would achieve a better utility by deviating from a´n and playing
a different action a1p P Ap. For every p P F , a´n P AF , and a1p P Ap, we call

the corresponding set Dppa´n, a
1
pq degenerate if U

a´n,an
p “ U

a1´n,an
p for each

an P An (recall that a1´n “ pa1, . . . , ap´1, a
1
p, ap`1, . . . , an´1q). In a degenerate

Dppa´n, a
1
pq, the constraint

ř
anPAn

U
a´n,an
p xann ă

ř
anPAn

U
a1´n,an
p xann reduces

to 0 ă 0. Since, in principle, any player could deviate from a´n by playing
any action not in a´n, Xcpa´nq is the following disjunctive set:

Xcpa´nq :“
ď

pPF

¨
˝ ď

a1pPApztapu

Dppa´n, a
1
pq

˛
‚.

Notice that, since any point in bdpXcpa´nqq which is not in bdp∆nq would
satisfy, for some a1p, the (strict, originally) inequality of Dppa´n, a

1
pq as an

equation, such point is not in Xcpa´nq and, hence, bdpXcpa´nqqXX
cpa´nq Ď

bdp∆nq. The closure Xcpa´nq of Xcpa´nq is obtained by discarding any de-
generate Dppa´n, a

1
pq and by turning the strict constraint in the definition of

each nondegenerate Dppa´n, a
1
pq into a nonstrict one. Note that degenerate

sets are discarded as, for such sets, turning their strict inequality into a ď
inequality would result in turning the empty set Dppa´n, a

1
pq (whose closure

is the empty set) into ∆n. An illustration of Xpa´nq and Xcpa´nq, together
with the closure Xcpa´nq of the latter, is reported in Figure 6.

For every outcome configuration pS`, S´q, we introduce the following sets:

XpS`q :“
č

a´nPS`

Xpa´nq
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Xpa´nq Xcpa´nq Xcpa´nq

Fig. 6 An illustration of Xpa´nq, Xcpa´nq, and Xcpa´nq for the case with m “ 3. The
three sets are depicted as subsets (highlighted in gray and continuous lines) of the leader’s
strategy space ∆n. Dashed lines and circles indicate parts of ∆n which are not contained
in the sets.

and
XpS´q :“

č

a´nPS´

Xcpa´nq.

While the former is a closed polytope, the latter is the union of not open
nor closed polytopes and, thus, it is not open nor closed itself. Similarly to
Xcpa´nq, XpS

´q satisfies bdpXpS´qqXXpS´q Ď bdp∆nq. The closure XpS´q
of XpS´q is obtained by taking the closure of each Xcpa´nq. Hence, XpS´q “Ş
a´nPS´

Xcpa´nq.
By leveraging these definitions, we can now focus on the set of all leader’s

strategies which realize the outcome configuration pS`, S´q, namely:

XpS`q XXpS´q.

As for XpS´q, XpS`qXXpS´q is not an open nor a closed set. Due to XpS`q
being closed, the only points of bdpXpS`qXXpS´qq which are not in XpS`qX
XpS´q itself are the very points in bdpXpS´qq which are not in XpS´q. As a
consequence, XpS`q XXpS´q “ XpS`q XXpS´q.

Let us define the set P :“ tpS`, S´q : S` P 2AF ^ S´ “ 2AF zS`u, which
contains all the outcome configurations of the game. The following theorem
highlights the structure of fpxnq, suggesting an iterative way of expressing the
problem of computing supxnP∆n

fpxnq. We will rely on it when designing our
algorithm.

Theorem 5 Let ψpxn;S`q :“ min
a´nPS`

ÿ

anPAn

Ua´n,an
n xann . The following holds:

sup
xnP∆n

fpxnq “ max
pS`,S´qPP :

XpS`qXXpS´q‰H

max
xnPXpS`qXXpS´q

ψpxn;S`q.

Proof Let ∆1n be the set of leader’s strategies xn for which there exists a
pure NE in the followers’ game induced by xn, namely, ∆1n :“ txn P ∆n :
fpxnq ą ´8u. Since, by definition, fpxnq “ ´8 for any xn R ∆

1
n and the



Computing Pessimistic Leader-Follower Equilibria: the Mixed-Pure Case 31

supremum of fpxnq is finite due to the finiteness of the payoffs (and assuming
the followers’ game admits at least a pure NE for some xn P ∆n), we can,
w.l.o.g., focus on ∆1n and solve supxnP∆1n

fpxnq. In particular, the collection of

the sets XpS`qXXpS´q ‰ H which are obtained for all pS`, S´q P P forms a
partition of ∆1n. Due to the fact that at any xn P XpS

`qXXpS´q the only pure
NEs induced by xn in the followers’ game are those in S`, fpxnq “ ψpxn;S`q.
Since the supremum of a function defined over a set is equal to the largest of
the suprema of that function over the subsets of such set, we have:

sup
xnP∆n

fpxnq “ max
pS`,S´qPP :

XpS`qXXpS´q‰H

sup
xnPXpS`qXXpS´q

ψpxn;S`q.

What remains to show is that the following relationship holds for all
XpS`q XXpS´q ‰ H:

sup
xnPXpS`qXXpS´q

ψpxn;S`q “ max
xnPXpS`qXXpS´q

ψpxn;S`q.

Since ψpxn;S`q is a continuous function (it is the point-wise minimum of
finitely many continuous functions), its supremum over XpS`qXXpS´q equals
its maximum over the closure XpS`q XXpS´q of that set. Hence, the rela-
tionship follows due to XpS`q XXpS´q “ XpS`q XXpS´q. [\

In particular, Theorem 5 shows that fpxnq is a piecewise function with a
piece for each set XpS`q XXpS´q, each of which corresponding to the (con-
tinuous over its domain) piecewise-affine function ψpxn;S`q. It follows that
the only discontinuities of fpxnq (due to which fpxnq may admit a supre-
mum but not a maximum) are those where, in ∆n, xn transitions from a set
XpS`q XXpS´q to another one.

We show how to translate the formula in Theorem 5 into an algorithm by
proving the following theorem:

Theorem 6 There exists a finite, exponential-time algorithm which computes
supxnP∆n

fpxnq and, whenever supxnP∆n
fpxnq “ maxxnP∆n fpxnq, also re-

turns a strategy x˚n with fpx˚nq “ maxxnP∆n fpxnq.

Proof The algorithm relies on the expression given in Theorem 5. All pairs
pS`, S´q P P can be constructed by enumeration in time exponential in the

size of the instance.5 In particular, the set P contains 2m
n´1

outcome configu-
rations, each corresponding to a bi-partition of the outcomes of the followers’
game into S` and S´ (there are mn´1 such outcomes, due to having m actions
and n´ 1 followers).

For every p P F , let us define the following sets, parametric in ε ě 0:

Dppa´n, a
1
p; εq :“

$
&
%
xn P ∆n :

ÿ

anPAn

Ua´n,an
p xann ` ε ď

ÿ

anPAn

U
a1´n,an
p xann

with a1´n “ pa1, . . . , ap´1, a
1
p, ap`1, . . . , an´1q

,
.
- ,

5 Recall that the size of a game instance is lower bounded by mn.
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Xcpa´n; εq :“
ď

pPF

¨
˝ ď

a1pPApztapu

Dppa´n, a
1
p; εq

˛
‚,

XpS´; εq :“
č

a´nPS´

Xcpa´n; εq.

We can verify whether XpS`q X XpS´q ‰ H by verifying whether there
exists some ε ą 0 such that XpS`q X XpS´; εq ‰ H. This can be done by
solving the following problem and checking the strict positivity of ε in its
solution:

max
ε,xn

ε

s.t. xn P XpS
`q XXpS´; εq

ε ě 0
xn P ∆n.

(7)

Notice that degenerate sets Dppa´n, a
1
pq play no role in Problem (7). This is

because if Dppa´n, a
1
pq is degenerate, its constraint

ř
anPAn

U
a´n,an
p xann ` ε ď

ř
anPAn

U
a1´n,an
p xann reduces to ε ď 0 and, thus, any solution to Problem (7)

with xn belonging to a degenerate set Dppa´n, a
1
pq would achieve ε equal to 0.

Thus, ε ą 0 can be obtained only by choosing xn not belonging to a degenerate
Dppa´n, a

1
pq.

Problem (7) can be cast as an MILP. To see this, observe that each
Xcpa´n; εq can be expressed as an MILP with a binary variable for each term
of the disjunction which composes it, namely:

ÿ

anPAn

Ua´n,an
p xann ` ε ď

ÿ

anPAn

U
a1´n,an
p xann `M

a´n,a
1
p

p z
a´n,a

1
p

p

@p P F, a1p P Apztapu,with a1´n “ pa1, . . . , ap´1, a
1
p, ap`1, . . . , an´1q (8a)

ÿ

pPF

ÿ

a1pPApztapu

p1´ z
a´n,a

1
p

p q “ 1 (8b)

z
a´n,a

1
p

p P t0, 1u @p P F, a1p P Apztapu (8c)

xn P ∆n (8d)

ε ě 0. (8e)

In Constraints (8), the constantM
a´n,a

1
p

p , which satisfiesM
a´n,a

1
p

p “ maxanPAn
tU

a´n,an
p ´

U
a1´n,an
p u, is key to deactivate any instance of Constraints (8a) when the corre-

sponding z
a´n,a

1
p

p is equal to 1. The set XpS´; εq is obtained by simultaneously
imposing Constraints (8) for all a´n P S

´.

After verifying XpS`q XXpS´q ‰ H by solving Problem (7), the value of
max

xnPXpS`qXXpS´q
ψpxn;S`q can be computed in, at most, exponential time
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by solving the following MILP:

max
η,xn

η

s.t. η ď
ÿ

anPAn

Ua´n,an
n xann @a´n P S

`

xn P XpS
`q XXpS´; 0q

η P R
xn P ∆n,

(9)

where the first constraint accounts for the maxmin aspect of the problem. The
largest value of η found over all sets XpS`q X XpS´q for all pS`, S´q P P
corresponds to supxnP∆n

fpxnq.
In the algorithm, to verify whether fpxnq admits maxxnP∆n

fpxnq (and
to compute it if it does) we solve the following problem (rather than the
aforementioned max

xnPXpS`qXXpS´q
ψpxn;S`q):

lex–max
εě0,xnPXpS`qXXpS´;εq

rψpxn;S`q; εs. (10)

This problem calls for a pair pxn, εq with xn P XpS
`q X XpS´; εq such that,

among all pairs which maximize ψpxn;S`q, ε is as large as possible. This way,
in any solution pxn, εq with ε ą 0 we have xn P XpS

`q XXpS´q (rather than
xn P XpS

`q X XpS´q). Since, there, ψpxn;S`q “ fpxnq, we conclude that
fpxnq admits a maximum (equal to the value of the supremum) if ε ą 0,
whereas it only admits a supremum if ε “ 0.

Problem (10) can be solved in, at most, exponential time by solving the
following lex-MILP:

max
η,xn,ε

rη ; εs

s.t. η ď
ÿ

anPAn

Ua´n,an
n xann @a´n P S

`

xn P XpS
`q XXpS´; εq

η P R
ε ě 0
xn P ∆n,

(11)

where η is maximized first, and ε second. In practice, it suffices to solve two
MILPs in sequence: one in which the first objective function is maximized, and
then another one in which the second objective function is maximized after
imposing the first objective function to be equal to its optimal value. [\

6.1.2 Finding an α-Approximate Strategy

For those cases where fpxnq does not admit a maximum, we look for a strategy
x̂n such that, for any given additive loss α ą 0, supxnP∆n

fpxnq ´ fpx̂nq ď α,
i.e., for an (additively) α-approximate strategy x̂n. Its existence is guaranteed
by the following lemma:
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Lemma 3 Consider the sets X Ď Rn, for some n P N, and Y Ď R, and
a function f : X Ñ Y with s :“ supxPX fpxq satisfying s ă 8. For any
α P p0, ss, there exists then an x P X : s´ fpxq ď α.

Proof By negating the conclusion, we deduce the existence of some α P p0, ss
such that, for every x P X, s ´ fpxq ą α. Then, fpxq ă s ´ α for all x P X.
This implies s “ supxPX fpxq ď s´ α ă s: a contradiction. [\

After running the algorithm we outlined in the proof of Theorem 5 to
compute the value of the supremum, an α-approximate strategy x̂n can be
computed a posteriori thanks to the following result:

Theorem 7 Assume that fpxnq does not admit a maximum over ∆n and
that, according to the formula in Theorem 5, s :“ supxnP∆n

fpxnq is attained
at some outcome configuration pS`, S´q. Then, an α-approximate strategy x̂n
can be computed for any α ą 0 in at most exponential time by solving the
following MILP:

max
ε,xn

ε

s.t.
ÿ

anPAn

Ua´n,an
n xann ě s´ α @a´n P S

`

xn P XpS
`q XXpS´; εq

ε ě 0
xn P ∆n.

(12)

Proof Let x˚n P XpS
`q X XpS´q be the strategy where the supremum is at-

tained according to the formula in Theorem 5, namely, where ψpx˚n, S
`q “

max
xnPXpS

`
qXXpS´q

ψpxn;S`q “ s. Problem (12) calls for a solution xn of

value at least s´α (thus, for an α-approximate strategy) belonging to XpS`qX
XpS´; εq with ε as large as possible, whose existence is guaranteed by Lemma 3.
Let px̂n, ε̂q be an optimal solution to Problem (12). If ε̂ ą 0, x̂n P XpS

`q X

XpS´q (rather than x̂n P XpS`q X XpS´q). Thus, fpxnq is continuous at
xn “ x̂n, implying ψpxn;S`q “ fpxnq. Therefore, by playing x̂n the leader
achieves a utility of at least s´ α. [\

6.1.3 Outline of the Explicit Enumeration Algorithm

The complete enumerative algorithm is detailed in Algorithm 1. In the pseu-
docode, CheckEmptynesspS`, S´q is a subroutine which looks for a value of
ε ě 0 which is optimal for Problem (7), while Solve-lex-MILPpS`, S´q is an-
other subroutine which solves Problem (11). Note that Problem (7) may be
infeasible. If this is the case, we assume that CheckEmptynesspS`, S´q re-
turns ε “ 0, so that the outcome configuration pS`, S´q is discarded. Let
us also observe that (in Algorithm 1) Problem (11) cannot be infeasible,
as it is always solved for an outcome configuration pS`, S´q whose corre-
sponding Problem (7) is feasible. Due to the lexicographic nature of the
algorithm, fpxnq admits a maximum if and only if the algorithm returns
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a solution with best.ε˚ ą 0. If best.ε˚ “ 0, x˚n is just a strategy where
supxnP∆n

fpxnq is attained (in the sense of Theorem 5). In the latter case,
an α-approximate strategy is found by invoking the procedure Solve-MILP-
approxpbest.S`, best.S´, best valueq, which solves Problem (12) on the out-
come configuration pbest.S`, best.S´q on which the supremum has been found.

In Appendix A.1, we report the illustration of the execution of Algorithm 1
on a normal-form game with two followers.

Algorithm 1 Explicit Enumeration
1: function Explicit Enumeration
2: bestÐ nil
3: best valÐ ´8
4: for all S` Ď AF do
5: S´ Ð AF zS`
6: pε, ¨q Ð CheckEmptynesspS`, S´q Ź Solve MILP Problem (7)
7: if ε ą 0 then
8: pη, ε˚, xn̊q Ð Solve-lex-MILPpS`, S´q Ź Solve lex-MILP Problem (11)
9: if η ą best val then

10: bestÐ pS`, S´, xn̊ , ε˚q
11: best valÐ η
12: end if
13: end if
14: end for
15: if best.ε˚ ą 0 then
16: x̂n Ð best.xn
17: else
18: x̂n Ð Solve-MILP-approxpbest.S`, best.S´, best valqŹ Solve MILP Problem (12)
19: end if
20: return best val, best.xn̊ , x̂n
21: end function

6.2 On The Polynomial Representability of P-SPNEs

The algorithm that we have presented is based on solving Problem 11 a number
of times, once per outcome configuration pS`, S´q P P .

As Problem 11 is an MILP, its solutions can be computed by a standard
branch-and-bound algorithm based on solving, in an enumeration tree, a set of
linear programming relaxations of Problem 11 in which the value of (some of)
its binary variables is fixed to either 0 or 1. We remark that both Problem 11
and its linear programming relaxations with fixed binary variables contain
a polynomial (in the size of the game) number of variables and constraints.
Moreover, all the coefficients in the problem are polynomially bounded, as
they are produced by adding/subtracting the players’ payoffs.

Since the extreme solution of a linear programming problem can be encoded
by a number of bits which is also bounded by a polynomial function of the
instance size (see Lemma 8.2, page 373, in [9]), we have that any xn which
(for some followers’ action profile a´n) constitutes a P-SPNE can be succintly
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encoded by a polynomial number of bits. This observation completes the proof
of Theorem 1, showing that P-SPNE-d belongs to NP.

6.3 Branch-and-Bound Algorithm

As it is clear, computing supxnP∆n
fpxnq with the enumerative algorithm can

be impractical for any game of interesting size, as it requires the explicit enu-
meration of all the outcome configurations of a game—many of which will,
incidentally, yield empty regions XpS`qXXpS´q. A more efficient algorithm,
albeit one still running in exponential time in the worst-case, can be designed
by relying on a branch-and-bound scheme.

6.3.1 Computing supxnP∆n
fpxnq

Rather than defining S´ “ AF zS
`, assume now S´ Ď AF zS

`. In this case,
we call the corresponding pair pS`, S´q a relaxed outcome configuration.

Starting from any followers’ action profile a´n P AF with Xpa´nq ‰ H, the
algorithm constructs and explores, through a sequence of branching operations,
two search trees, whose nodes correspond to relaxed outcome configurations.
One tree accounts for the case where a´n is an NE and contains the relaxed
outcome configuration pS`, S´q “ pta´nu,Hq as root node. The other tree
accounts for the case where a´n is not an NE, featuring as root node the
relaxed outcome configuration pS`, S´q “ pH, ta´nuq.

If S´ Ă AF zS
` (which can often be the case when relaxed outcome config-

urations are adopted), solving max
xnPXpS`qXXpS´q

ψpxn;S`q might not give a

strategy xn for which the only pure NEs in the followers’ game it induces are
those in S`, even if xn P XpS

`qXXpS´q (rather than xn P XpS
`qXXpS´q).

This is because, due to S` Y S´ Ă AF , there might be another action profile,
say a1´n P AF zpS

` Y S´q, providing the leader with a utility strictly smaller
than that corresponding to all the action profiles in S`. Since, if this is the
case, the followers would respond to xn by playing a1´n rather than any of
the action profiles in S`, max

xnPXpS`qXXpS´q
ψpxn;S`q could be, in general,

strictly larger than supxnP∆n
fpxnq, thus not being a valid candidate for the

computation of the latter.

In order to detect whether one such a1´n exists, it suffices to carry out
a feasibility check (on xn). This corresponds to looking for a pure NE in
the followers’ game different from those in S´ (which may become NEs on
bdpXpS`q X XpS´q) which minimizes the leader’s utility—this can be done
by inspection in Opmn´1q. If the feasibility check returns some a1´n R S

`, the
branch-and-bound tree is expanded by performing a branching operation. Two
nodes are introduced: a left node with pS`L , S

´
L q where S`L “ S` Y ta1´nu and

S´L “ S´ (which accounts for the case where a1´n is a pure NE), and a right
node with pS`R , S

´
R q where S`R “ S` and S´R “ S´Yta1´nu (which accounts for

the case where a1´n is not a pure NE). If, differently, a1´n P S
`, then ψpxn;S`q
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represents a valid candidate for the computation of supxnP∆n
fpxnq and, thus,

no further branching is needed (and pS`, S´q is a leaf node).
The bounding aspect of the algorithm is a consequence of the following

proposition:

Proposition 9 Solving max
xnPXpS`qXXpS´q

ψpxn;S`q for some relaxed out-

come configuration pS`, S´q gives an upper bound on the leader’s utility under
the assumption that all followers’ action profiles in S` constitute an NE and
those in S´ do not.

Proof Due to pS`, S´q being a relaxed outcome configuration, there could be
outcomes not in S` which are NEs for some xn P XpS

`q X XpS´q. Due to
ψpxn;S`q being defined as mina´nPS`

ř
anPAn

U
a´n,an
n xann , ignoring any such

NE at any xn P XpS
`qXXpS´q can only result in the min operator considering

fewer outcomes a´n, thus overestimating ψpxn;S`q and, ultimately, fpxnq.
Thus, the claim follows. [\

As a consequence of Proposition 9, optimal values obtained when computing
the value of max

xnPXpS`qXXpS´q
ψpxn;S`q throughout the search tree can be

used as bounds as in a standard branch-and-bound method.
Since max

xnPXpS`qXXpS´q
ψpxn;S`q is not well-defined for nodes where

S` “ H, for them we solve, rather than an instance of Problem (11), a re-
striction of the optimistic problem (see Section 3) with constraints imposing
that all followers’ action profiles in S´ are not NEs. We employ the following
formulation, which we introduce directly for the lexicographic case:

max
y,xn,ε

« ÿ

aPA
U
a´n,an
n ya´nxann ; ε

ff
(13a)

s.t.
ÿ

a´nPAF

ya´n “ 1 (13b)

ya´n
ÿ

anPAn

pUa´n,an
p ´ Ua

1
´n,an
p qxann ě 0 @p P F, a´n P AF , a1p P Apztapu

with a1́ n “ pa1, . . . , ap´1, a
1
p, ap`1, . . . , an´1q (13c)

ya´n P t0, 1u @a´n P AF (13d)

xn P ∆n (13e)

xn P XpS´; εq. (13f)

The problem can be turned into a lex-MILP by linearising each bilinear prod-
uct ya´nxann by means of McCormick’s envelope constraints and by restating
Constraint (13f) as done in the MILP Constraints (8).

6.3.2 Finding an α-Approximate Strategy

In the context of the branch-and-bound algorithm, an α-approximate strategy
x̂n cannot be found by just relying on the a posteriori procedure outlined in
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Theorem 7. This is because when pS`, S´q is a relaxed outcome configuration
there might be an action profile a1´n P AF zpS

`YS´q (i.e., one not accounted
for in the relaxed outcome configuration) which not only is an NE in the
followers’ game induced by x̂n, but which also provides the leader with a utility
strictly smaller than ψpx̂n;S`q. If this is the case, the strategy x̂n found with
the procedure of Theorem 7 may return a utility arbitrarily smaller than the
supremum s and, in particular, smaller than s´ α.

To cope with this shortcoming and establish whether such an a1´n exists,
we first compute x̂n according to the a posteriori procedure of Theorem 7 and,
then, perform a feasibility check. If we obtain an action profile a1´n P S

`, x̂n
is then an α-approximate strategy and the algorithm halts. If, differently, we
obtain some a1´n R S

` for which the leader obtains a utility strictly smaller
than ψpx̂n;S`q, we carry out a new branching operation, creating a left and
a right child node in which a1´n is added to, respectively, S` and S´. This
procedure is then reapplied on both nodes, recursively, until a strategy x̂n for
which the feasibility check returns an action profile in S` is found. Such a
strategy is, by construction, α-approximate.

Observe that, due to the correctness of the algorithm for the computation
of the supremum, there cannot be at x˚n an NE a1´n worse than the worst-case
one in S`. If a new outcome a1´n becomes the worst-case NE at x̂n, due to the
fact that it is not a worst-case NE at x˚n there must be a strategy x̃n which
is a convex combination of x˚n and x̂n where either a1´n is not an NE or, if
it is, it yields a leader’s utility not worse than that obtained with the worst-
case NE in S`. An α-approximate strategy is thus guaranteed to be found on
the segment joining x̃n and x˚n by applying Lemma 3 with X equal to that
segment. Thus, the algorithm is guaranteed to converge.

6.3.3 Outline of the Branch-and-Bound Algorithm

The complete outline of the branch-and-bound algorithm is detailed in Al-
gorithm 2. F is the frontier of the two search trees, containing all nodes
which have yet to be explored. Initializepq is a subprocedure which creates
the root nodes of the two search trees, while pickpq extracts from F the
next node to be explored. FeasibilityCheckpxn, S

´q performs the feasibility
check operation for the leader’s strategy xn, looking for the worst-case pure
NE in the game induced by xn and ignoring any outcome in S´. CreateN-
odepS`, S´q (detailed in Algorithm 3) adds a new node to F , also comput-
ing its upper bound and the corresponding values of xn and ε. More specif-
ically, CreateNodepS`, S´q performs the same operations of a generic step
of the enumerative procedure in Algorithm 1 for a given S` and S´, with
the only difference that, here, we invoke the subprocedure Solve-lex-MILP-
OptpS`, S´q whenever S` “ H to solve Problem (13), while we invoke Solve-
lex-MILPpS`, S´q to solve Problem (11) if S` ‰ H. In the last part of the
algorithm, Solve-MILP-approxpbest.S`, best.S´, best valq attempts to compute
an α-approximate strategy as done in Algorithm 1. In case the feasibility check
fails for it, we call the procedure Branch-and-Bound-approxpbest.S`, best.S´, best.x˚nq,
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Algorithm 2 Branch-and-Bound
1: function Branch-and-Bound
2: bestÐ nil, lbÐ ´8, ubÐ8
3: F Ð Initialize()
4: while F ‰ H do
5: nodeÐ F .pickpq
6: if node.ub ą lb then
7: a´n Ð FeasibilityCheckpnode.xn̊ , node.S´q
8: if a´n P node.S` then
9: bestÐ pnode.S`, node.S´, node.xn̊ , node.ε˚q

10: lbÐ node.ub
11: else
12: S`L “ node.S` Y ta´nu
13: F Ð F ` CreateNodepS`L , node.S´q
14: S´R “ node.S´ Y ta´nu
15: F Ð F ` CreateNodepnode.S`, S´R q
16: end if
17: ubÐ max

nodePF tnode.ubu
18: end if
19: end while
20: if best.ε˚ ą 0 then
21: x̂n Ð best.xn̊
22: else
23: x̂n Ð Solve-MILP-approxpbest.S`, best.S´, best valqŹ Solve MILP Problem (12)
24: a1́ n Ð FeasibilityCheckpx̂n, best.S´q
25: if a1́ n R best.S` then

26: x̂n Ð Branch-and-Bound-approxpbest.S`, best.S´, best.xn̊q
27: end if
28: end if
29: return ub, best.xn̊ , x̂n
30: end function

which runs a second branch-and-bound method, as described in Subsection 6.3.2,
until an α-approximate solution is found.

In Appendix A.2, we report the illustration of the execution of Algorithm 2
on a normal-form game with two followers.

7 Experimental Evaluation

We carry out an experimental evaluation of the equilibrium-finding algorithms
introduced in the previous sections, comparing the following methods:

– QCQP: the QCQP Formulation (5) solved with the state-of-the-art spatial-
branch-and-bound solver BARON 14.3.1 [30]. Since global optimality can-
not be guaranteed by BARON if the feasible region of the problem is not
bounded [30], the solutions obtained with QCQP are not necessarily optimal.

– MILP: the MILP formulation derived according to Theorem 4 with dual
variables artificially bounded by M , solved with the state-of-the-art MILP
solver Gurobi 7.0.2.
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Algorithm 3 CreateNode

1: function CreateNode(S`, S´)
2: pε, ¨q Ð CheckEmptynesspS`, S´q Ź Solve MILP Problem (7)
3: if ε ą 0 then
4: nodeÐ EmptyNodepq
5: node.S` Ð S`
6: node.S´ Ð S´
7: if S` “ H then
8: pη, ε˚, xn̊q Ð Solve-lex-MILP-OptpS`, S´q Ź Solve lex-MILP Problem (13)
9: else

10: pη, ε˚, xn̊q Ð Solve-lex-MILPpS`, S´q Ź Solve lex-MILP Problem (11)
11: end if
12: node.ubÐ η
13: node.xn̊ Ð xn̊
14: node.ε˚ Ð ε˚
15: return node
16: end if
17: return H
18: end function

– BnB-sup: the branch-and-bound algorithm we proposed, run for comput-
ing supxnP∆n

fpxnq. The algorithm is coded in Python 2.7, relying on
Gurobi 7.0.2 as MILP solver.

– BnB-α: the branch-and-bound algorithm we proposed, run to find an α-
approximate strategy whenever there is no xn P ∆n at which the value of
the supremum is attained.

For MILP and Bnb-α, we report the results for different values of M and α.
BnB-sup and BnB-α are initialized with an outcome which results in an O-

SPNE for some leader’s strategy. Specifically, we add it to S` in the starting
node with empty S´ and to S´ in the starting node with empty S`. The next
node to explore is always selected according to a best-bound rule.

We generate a testbed of random normal-form games with payoffs indepen-
dently drawn from a uniform distribution over r1, 100s, using GAMUT [27].
The results are then normalized to the interval r0, 1s for the sake of pre-
sentation. The testbed contains games with n “ 3, 4, 5 players (i.e., with
2, 3, 4 followers), m P t4, 6, . . . , 20, 25, . . . , 70u actions when n “ 3, and m P

t3, 4, . . . , 14u actions when n “ 4, 5. We generate 30 different instances per
pair of n and m.

We report the following figures, aggregated over the 30 instances per game
with the same values of n and m:

– Time: average computing time, in seconds (up to the time limit).
– LB : average value of the best feasible solution found (only considered for

instances where a feasible solution is found).
– Gap: average additive gap measured as UB ´ LB, where UB is the upper

bound returned by the algorithm. 6

6 When solving QCQP and MILP, Gap corresponds to the gap “internal” to the solution
method. Since QCQP and MILP impose artificial restrictions (present by design in MILP and
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– Opt: percentage of instances solved to optimality (reported only for BnB-sup,
as QCQP and MILP are not guaranteed to produce optimal solutions).

– Feas: percentage of instances for which a feasible solution has been found
(reported only for QCQP and MILP as an alternative to Opt).

The experiments are run on a UNIX machine with a total of 32 cores
working at 2.3 GHz, equipped with 128 GB of RAM. The computations are
carried out on a single thread, with a time limit of 3600 seconds per instance.

7.1 Experimental Results with Two Followers

Table 2 reports the results on games with two followers (n “ 3) and m ď 30,
comparing QCQP, MILP (with M “ 10, 100, 1000), BnB-sup, and BnB-α (with
α “ 0.001, 0.01, 0.1).

QCQP can be solved only for instances with up to m “ 18 due to BARON
running out of memory on larger games. With m ď 18, feasible solutions are
found, on average, in 91% of the cases, but their quality is quite poor (the
additive gap is equal to 0.34 on average). The time limit is reached on almost
each instance, even those with m “ 4, with the sole exception of those with
m “ 18, on which the solver halts prematurely due to memory issues.

MILP performs much better than QCQP, handling instances with up to m “

30 actions per player. M “ 100 seems to be the best choice, for which we
obtain, on average, LBs of 0.68 and gaps of 0.28, with a computing time
slightly smaller than 2600 seconds. For M “ 1000, the number of feasible
solutions found increases from 94% to 97%, but LBs and gaps become slightly
worse, possibly due to the fact that MILP solvers are typically quite sensitive
to the magnitude of “big M” coefficients (which, if too large, can lead to large
condition numbers, resulting in numerical issues).

BnB-sup substantially outperforms QCQP and MILP, finding not just feasible
solutions but optimal ones for every game instance with m ď 25 and solving
to optimality 47% of the instances with m “ 30. The average computing time
is of 359 seconds, and it reduces to 126 if we only consider the instances with
m ď 25 (all solved to optimality). BnB-sup shows that the supremum of the
leader’s utility is very large on the games in our testbed, equal to 0.96 on
average on the instances with m ď 25 for which the supremum is computed
exactly.

The time taken by BnB-α to find an α-approximate strategy is, in essence,
unaffected by the value of α. Since, in its implementation, BnB-α requires
a relaxed outcome configuration on which the value of the supremum has
been attained to compute an α-approximate strategy, we have run it only on
instances with m ď 25 (on which the supremum has always been computed
by BnB-sup).

introduced automatically by the solver in QCQP), such value is, in general, not valid for the
original, unrestricted problem. This is not the case for BnB-sup and BnB-α, for which Gap is a
correct estimate of the difference between the best found LB and the value of the supremum
(overestimated by UB).
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Table 2 Experimental results for games with n “ 3 players. The figures are averaged over
games with the same values of m.
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Table 3 Results obtained with BnB-sup for games with n “ 3 players and 35 ď m ď 70.

BnB-sup
m Time LB Gap Opt
35 3573 0.80 0.21 3
40 3560 0.63 0.37 0
45 3600 0.50 0.50 0
50 3600 0.49 0.51 0
55 3600 0.53 0.47 0
60 3600 0.49 0.51 0
65 3600 0.50 0.50 0
70 3600 0.50 0.50 0

Table 3 reports further results obtained with BnB-sup for games with n “ 3
and up to m “ 70 actions per player. As the table shows, while some optimal
solutions can still be found for m “ 35, optimality is lost for game instances
with m ě 40. Nevertheless, BnB-sup still manages to find feasible solutions
for instances with up to m “ 70, obtaining solutions with an average LB of
0.55 and an average additive gap of 0.44. Under the conservative assumption
that games with 35 ď m ď 70 admit suprema of value close to 1 (which is
empirically true when m ď 30), BnB-sup provides, on average, solutions that
are less than 50% off of optimal ones.

7.2 Experimental Results with More Followers and Final Observations

Results obtained with BnB-sup with more than two followers (n “ 4, 5) are
reported in Table 4 for m ď 14. For the sake of comparison, we also report
the results obtained for the same values of m and n “ 3 that are contained in
Tables 2 and 3.

Table 4 Results obtained with BnB-sup for games with n “ 4, 5 players and m “
4, 6, 8, 10, 12, 14. For the sake of comparison, the results for n “ 3 are also reported.

BnB-sup BnB-sup BnB-sup
n “ 3 n “ 4 n “ 5

m Time Gap Opt Time Gap Opt Time Gap Opt
4 0 0.00 100 3 0.00 100 8 0.00 100
6 2 0.00 100 17 0.00 100 137 0.00 100
8 5 0.00 100 126 0.00 100 2953 0.11 53

10 7 0.01 100 955 0.00 100 3461 0.46 13
12 15 0.00 100 2784 0.06 60 3600 0.53 0
14 20 0.01 100 3600 0.50 0 3600 0.52 0

As the table illustrates, computing the value of the supremum of the
leader’s utility becomes very hard already for m “ 12 with n “ 4, for which
the algorithm manages to find optimal solution in only 60% of the cases. For
m “ 14 and n “ 4, no instance is solved to optimality within the time limit.
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For n “ 5, the problem becomes hard already for m “ 8, where only 53% of
the instances are solved to optimality. With m “ 12 and n “ 5, no instances
at all are solved to optimality.

We do not report results on game instances with n “ 4, 5 and m ą 14
as such games are so large that, on them, BnB-sup incurs memory problems
when solving the MILP subproblems.

In spite of the problem of computing a P-SPNE being a nonconvex pes-
simistic bilevel program, with our branch-and-bound algorithm we can find
solutions with an additive optimality gap ď 0.01 for three-player games with
up to m “ 20 actions (containing three payoffs matrices with 8000 entries
each), which are comparable, in size, to those solved in previous works which
solely tackled the problem of computing a single NE maximizing the social
welfare, see, e.g., [31].

8 Conclusions and Future Works

We have shown that the problem of computing a pessimistic Stackelberg equi-
librium with multiple followers playing pure strategies simultaneously and
noncooperatively (reaching a pure Nash equilibrium) is NP-hard with two
or more followers and inapproximable in polynomial time (to within multi-
plicative polynomial factors and constant additive losses) when the number
of followers is three or more unless P “ NP. We have proposed an exact single-
level QCQP reformulation for the problem, with a restricted version which we
have cast into an MILP, and an exact exponential-time algorithm (which we
have then embedded in a branch-and-bound scheme) for finding the supremum
of the leader’s utility and, in case there is no leader’s strategy where such value
is attained, also an α-approximate strategy.

Future developments include establishing the approximability status of the
problem with two followers, the generalization to the case with both leader and
followers playing mixed strategies, partially addressed in [4, 5] (even though we
conjecture that this problem could be much harder, probably Σp

2 -hard), and
the study of structured games (e.g., congestion games beyond the special case
of singleton games with monotonic costs which are shown to be polynomially
solvable in [11, 20]).

The algorithms we have proposed can constitute a useful framework for de-
veloping solution methods for games in which the normal-form representation
cannot be assumed as input. Retaining the main structure of our algorithms,
such games could be tackled by adapting the subproblems that are solved for
each (relaxed) outcome configuration to the case where the followers’ actions
cannot be all taken into account explicitly. For outcomes in S`, a cutting plane
method could be employed to generate a best response for each of the follow-
ers iteratively, without having to generate all of them a priori. For outcomes
in S´, one could adopt a column generation approach to iteratively add sets
Dppa´n, a

1
pq for different followers p P F and action profiles a´n P S

´, thus
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iteratively enlarging the set of strategies the leader could play to improve her
utility while guaranteeing that the outcomes in S´ are not Nash equilibria.

One could also address solution concepts in which, in case the followers’
game admitted multiple Nash equilibria, the followers would choose one which
maximizes a sequence of objective functions in the lexicographic sense. For
instance, they could, first, look for an equilibrium which maximizes the social
welfare or their total utility, breaking ties by choosing one which also maxi-
mizes (optimistic case) or minimizes (pessimistic case) the leader’s utility. Our
algorithm could be extended to this case by casting the subproblem which is
solved for each (relaxed) outcome configuration as a bilevel programming prob-
lem where the leader looks for a strategy xn which maximizes her utility at
either the best (optimistic case) or the worst (pessimistic case) equilibrium
for the followers among those which maximize their collective utility (social
welfare or total utility).
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Computing optimal randomized resource allocations for massive security
games. In: AAMAS, pp 689–696

18. Korzhyk D, Conitzer V, Parr R (2011) Security games with multiple at-
tacker resources. In: Twenty-Second International Joint Conference on Ar-
tificial Intelligence
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A Illustration of the Algorithms

We show how the exact algorithms proposed in Section 6 (namely the explicit enumeration
algorithm in Algorithm 1 and its branch-and-bound extension in Algorithm 2) work by
providing detailed examples of their execution on a normal-form game.

We consider the following game with n “ 3 players (two followers), where A1 “ ta11, a21u,
A2 “ ta12, a22u, and A3 “ ta13, a23u. (The first and second matrices represent the followers’
games resulting from the leader playing actions a13 and a23, respectively, while the third
matrix is the resulting game when the leader’s commitment is the mixed strategy x3 “
p1´ ρ, ρq for ρ P r0, 1s.)

a12 a22

a11
1
2

, 1
2

,0 1
4

, 1
4

,0

a21 1,1, 1
6

0,0,0

a13

a12 a22

a11 0,0,0 1
4

, 1
4

,1

a21 1,1, 1
3

1
2

, 1
2

,0

a23

a12 a22

a11
1
2
´ρ

2
, 1
2
´ρ

2
,0 1

4
, 1
4

,ρ

a21 1,1, 1
6
`ρ

6
ρ
2

, ρ
2

,0

x3 “ p1́ ρ, ρq
The followers’ game admits the NE pa21, a12q for all values of ρ (with leader’s utility

1
6
` ρ

6
) and the NE pa11, a22q for ρ “ 1

2
(with leader’s utility 1

2
). Therefore, the game admits

a unique O-SPNE, achieved at ρ “ 1
2

(utility 1
2

), and a unique P-SPNE, achieved at ρ “ 1

(utility 1
3

). See Figure 7 for an illustration of the leader’s utility function.
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Fig. 7 The leader’s utility in the normal-form game used for the illustration of the algo-
rithms, plotted as a function of ρ, where the leader’s strategy is x3 “ p1´ ρ, ρq.

A.1 Illustration of the Explicit Enumeration Algorithm

We show how Algorithm 1 works on the example provided above. The algorithm iterates
over all the outcome configurations pS`, S´q P P by enumerating all the subsets of follow-
ers’ action profiles S` Ď AF , with S´ “ AF zS`. For the ease of presentation, we denote

by 1 , 2 , 3 , and 4 the followers’ action profiles pa11, a12q, pa11, a22q, pa21, a12q, and pa21, a22q,
respectively. When convenient, we represent a leader’s strategy x3 P ∆3 via a single pa-
rameter ρ P r0, 1s, letting x3 “ p1 ´ ρ, ρq. The following is a detailed description of all the
iterations performed by the algorithm. Note that the iteration corresponding to S` “ H
can always be omitted, as, in that case, S´ “ t 1 , 2 , 3 , 4 u “ AF and fpx3q “ ´8 for
any x3 P XpS´q since the followers’ game for x3 has no pure NEs.

Iteration S` “ t 1 u. The resulting outcome configuration pS`, S´q is discarded since
it yields ε “ 0, as Problem 7 is infeasible. This is because there is no leader’s strategy for
which 1 in an NE in the resulting followers’ game. Formally, XpS`q is empty since (among

others) the constraint 1
2
´ ρ

2
ě 1 (encoding the fact that the first follower should have no

incentive to deviate from a11 by playing a21) is violated for every value ρ P r0, 1s.
Iteration S` “ t 2 u. As in the previous iteration, the outcome configuration is dis-

carded since Problem 7 is infeasible. Indeed, XpS`q contains only one strategy x3 “ p 12 , 12 q,
as the two NE constraints for 2 , namely 1

4
ě ρ

2
and 1

4
ě 1

2
´ ρ

2
, imply ρ “ 1

2
. On the other

hand, membership to XpS´; εq requires that at least one between 1 ` ε ď 1
2
´ ρ

2
“ 1

4
and

1` ε ď ρ
2
“ 1

4
be satisfied (since 3 must not be an NE for x3), which is impossible due to

ε ě 0.
Iteration S` “ t 3 u. Let us consider Problem 7. First, XpS`q “ ∆3, as the constraints

imposing that 3 is an NE, namely 1 ě 1
2
´ ρ

2
(first follower) and 1 ě ρ

2
(second follower),

are satisfied for every ρ P r0, 1s. Moreover, x3 P XpS´; εq requires the following conditions
to be met:

1 :
1

2
´ ρ

2
` ε ď 1 _ 1

2
´ ρ

2
` ε ď 1

4

2 :
1

4
` ε ď ρ

2
_ 1

4
` ε ď 1

2
´ ρ

2

4 :
ρ

2
` ε ď 1

4
_ ρ

2
` ε ď 1.

Recalling that the objective of Problem 7 is to maximize ε, an optimal solution is obtained by
setting ρ “ 1 (so that x3 “ p0, 1q), for which we find ε “ 1

4
. Thus, CheckEmptynesspS`, S´q

returns an ε greater than zero and the outcome configuration is not discarded. Then, the
lex-MILP defined by Problem 11 is solved. The first-level objective calls for the maximum
value of η subject to the constraint η ď 1

6
` ρ

6
(as 3 is the unique followers’ action profile in
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S`), where x3 “ p1´ρ, ρqmust belong to XpS`qXXpS´; εq. An optimal solution is achieved
for ρ “ 1. Solve-lex-MILPpS`, S´q returns the optimal solution η “ 1

3
, ε˚ “ 1

4
(which is

optimal for the second-level objective of maximizing ε, given η “ 1
3

), and x˚3 “ p0, 1q.
Iteration S` “ t 4 u. The outcome configuration is discarded since Problem 7 is

infeasible, as there is no leader’s strategy for which 4 is an NE in the followers’ game.
Formally, XpS`q is empty as (among others) the constraint ρ

2
ě 1 (encoding the fact that

second follower should have no incentive to deviate by playing a12 instead of a22) is violated
for every value ρ P r0, 1s.

Iterations S` “ t 1 , 2 u, S` “ t 1 , 3 u, S` “ t 1 , 4 u, S` “ t 1 , 2 , 3 u,
S` “ t 1 , 2 , 4 u, S` “ t 1 , 3 , 4 u. Since 1 P S`, the resulting outcome configurations

pS`, S´q are discarded (see iteration S` “ t 1 u).
Iteration S` “ t 2 , 3 u. Let us consider Problem 7. First, XpS`q contains only one

strategy x3 “ p 1
2
, 1
2
q, as the two NE constraints for 2 , namely 1

4
ě ρ

2
and 1

4
ě 1

2
´ ρ

2
,

imply ρ “ 1
2

(whereas 3 does not impose additional constraints, as it is always an NE).

Furthermore, x3 P XpS´; εq for any ε ď 3
4

, as the following two conditions need to be met:

1 :
1

2
´ ρ

2
` ε ď 1 _ 1

2
´ ρ

2
` ε ď 1

4

4 :
ρ

2
` ε ď 1

4
_ ρ

2
` ε ď 1.

Thus, CheckEmptynesspS`, S´q returns ε “ 3
4
ą 0. As to Problem 11, η ď ρ (since 2 P S`)

and η ď 1
6
` ρ

6
(since 3 P S`) must hold. Moreover, it must be ρ “ 1

2
in order to

have x3 P XpS`q. Thus, the optimal value is η “ 1
4

. As a result, Solve-lex-MILPpS`, S´q
returns η “ 1

4
, ε˚ “ 3

4
(which is optimal for the second-level objective, given η “ 1

4
), and

x˚3 “ p 12 , 12 q.
Iterations S` “ t 2 , 4 u, S` “ t 2 , 3 , 4 u, S` “ t 3 , 4 u. Given that 4 P S`,

the resulting outcome configurations pS`, S´q are discarded (see iteration S` “ t 4 u).
In conclusion, a P-SPNE is realized for the outcome configuration resulting from S` “

t 2 u (which gives the highest value of η “ 1
3

), and it is achieved for the leader’s strategy

x̂3 “ p0, 1q. Notice that for S` “ t 2 u we have ε˚ “ 1
4
ą 0, which shows that x̂3 is also a

maximum.

A.2 Illustration of the Branch-and-Bound Algorithm

We show how Algorithm 2 works on the same example used for Algorithm 1. We assume
that nodes are picked from the frontier F giving priority to those with larger upper bounds.
Moreover, as for Algorithm 1 we denote the followers’ action profiles by 1 , 2 , 3 , and

4 , whereas a leader’s strategy is x3 “ p1´ ρ, ρq with ρ P r0, 1s. What follows is a detailed
description of the steps performed by the algorithm. We report a picture of the search tree
built during the execution in Figure 8.

Initialization. We assume that the two search trees are initialized using the followers’
action profile 2 . Thus, the frontier F initially contains two root nodes node1 and node2
corresponding to the outcome configurations pt 2 u,Hq and pH, t 2 uq, respectively. They
are created with Algorithm 3, as follows:

– node1. Letting S` “ t 2 u and S´ “ H, CheckEmptynesspS`, S´q returns ε ą 0, as, in

Problem 7, xpS´; εq “ ∆3 (since S´ “ H) and XpS`q only contains x3 “ p 12 , 12 q (which

is the only leader’s strategy for which 2 is an NE). Then, Solve-lex-MILPpS`, S´q
returns node1.ub “ 1

2
, node1.x

˚
3 “ p 12 , 12 q, and node1.ε˚ ą 0.

– node2. Let S` “ H and S´ “ t 2 u. In Problem 7, XpS`q “ ∆3 holds (as S` “ H),

while x3 P XpS´; εq if one between 1
4
` ε ď 1

2
´ ρ

2
(second follower) and 1

4
` ε ď ρ

2
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(first follower) is satisfied. As a result, CheckEmptynesspS`, S´q returns ε “ 1
4

(which

is the maximum value that ε can take, achieved for ρ “ 1). Then, since S` “ H, Solve-
lex-MILP-OptpS`, S´q returns an optimal solution to Problem 13, which is achieved for

x3 “ p0, 1q and ε “ 1
4

by letting the variables y select the followers’ action profile 3

as NE (note that 1 and 4 cannot be NEs in the followers’ game, and the leader’s

utility in 3 is 1
6
` ρ

6
, which is maximized for ρ “ 1). Thus, we find node2.ub “ 1

3
,

node2.x
˚
3 “ p0, 1q, and node2.ε˚ “ 1

4
.

First Iteration. F .pickpq selects node1, as it enjoys the highest upper bound (as
node1.ub “ 1

2
ą node2.ub “ 1

3
). As node1.ub ą lb “ ´8, the algorithm invokes the func-

tion FeasibilityCheckpnode1.x˚3 , node1.S´q (with node1.S´ “ H), which returns the worst

(for the leader) NE in the followers’ game resulting from node1.x
˚
3 “ p 12 , 12 q, namely, the

followers’ action profile 3 . Given that 3 R node1.S`, the following two new nodes are
created:

– node3. The node satisfies node3.S` “ S` “ t 2 , 3 u and node3.S´ “ S´ “ H. Thus,

XpS`q contains only one leaders’ strategy, namely, x3 “ p 12 , 12 q, whereas XpS´; εq “
∆3 for any ε ą 0. As a result, CheckEmptynesspS`, S´q returns ε ą 0 and Solve-lex-
MILPpS`, S´q returns node3.ub “ 1

4
, node3.x

˚
3 “ p 12 , 12 q, and node3.ε˚ ą 0 (note that,

in Problem 11, η must satisfy the constraints η ď 1
2

and η ď 1
4

, corresponding to 2

and 3 , respectively).

– node4. The node satisfies node4.S` “ S` “ t 2 u and node4.S´ “ S´ “ t 3 u. Thus,
XpS´; εq is empty for any value of ε ě 0, since there is no way of satisfying any constraint
among 1 ` ε ď 1

2
´ 1

2
ρ and 1 ` ε ď ρ

2
. Thus, Problem 7 is infeasible and the node is

discarded.

Second Iteration. F .pickpq selects node2, as the node enjoys the highest upper bound
(as node2.ub “ 1

3
ą node3.ub “ 1

4
). Since node2.ub ą lb “ ´8, running the procedure

FeasibilityCheckpnode2.x˚3 , node2.S´q with node2.x
˚
3 “ p0, 1q and node2.S´ “ t 2 u returns

the followers’ action profile 3 , which is an NE and provides the leader with a utility of 1
3

.

Since 3 R node2.S`, the following two new nodes are created:

– node5. The node satisfies node5.S` “ S` “ t 3 u and node5.S´ “ S´ “ t 2 u. Thus,

XpS`q “ ∆3 and x3 P XpS´; εq if any constraint among 1
4
` ε ď ρ

2
and 1

4
` ε ď 1

2
´ ρ

2

is satisfied. Thus, CheckEmptynesspS`, S´q returns ε “ 1
4

(achieved for ρ “ 1). Then,

in Problem 11, η ď 1
6
` ρ

6
must hold, which leads to an optimal value of η “ 1

3
(for

ρ “ 1). Thus, we find node5.ub “ 1
3

, node5.x
˚
3 “ p0, 1q, and node5.ε˚ “ 1

4
.

– node6. The node satisfies node6.S` “ S` “ H and node6.S´ “ S´ “ t 2 , 3 u. Hence,
the node is discarded for the same reason as node4.

Third Iteration. F .pickpq selects node5 (as node5.ub “ 1
3
ą node3.ub “ 1

4
). Then,

FeasibilityCheckpnode5.x˚3 , node5.S´q with node5.x
˚
3 “ p0, 1q and node5.S´ “ t 2 u returns

the followers’ action profile 3 P node5.S`. Thus, a feasible solution is found and best

is set to pnode5.S` “ t 3 u, node5.S´ “ t 2 u, node5.x˚3 “ p0, 1q, node5.ε˚ “ 1
4
q, while

lb “ node5.ub “ 1
3

.

Fourth Iteration. The remaining node in F is node3, with node3.ub “ 1
4
ă lb “ 1

3
.

Thus, it is discarded.
This concludes the algorithm. The optimal solution is found for the relaxed outcome

configuration with S` “ t 3 u and S´ “ t 2 u, and the optimal leader’s strategy is x̂3 “
p0, 1q (which is where the unique P-SPNE is achieved). Note that the algorithm does not
need to search for an α-approximate strategy, as best.ε˚ “ 1

4
ą 0.
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node2

S` “ H
S´ “ t 2 u
ub “ 1

3

x˚
3 “ p0, 1q
ε˚ “ 1

4 node6

S` “ H
S´ “ t 2 , 3 u

inf.

3 Ñ
S ´

node5

S` “ t 3 u
S´ “ t 2 u
ub “ 1

3

x˚
3 “ p0, 1q
ε˚ “ 1

4

F
FeasibilityCheck

3 P S`

3 Ñ
S̀

FeasibilityCheck

3 R S`

2 Ñ
S ´

node1

S` “ t 2 u
S´ “ H
ub “ 1

2

x˚
3 “ p 12 , 12 q
ε˚ ą 0 node4

S` “ t 2 u
S´ “ t 3 u

inf.

3 Ñ
S ´

node3

S` “ t 2 , 3 u
S´ “ H
ub “ 1

4

x˚
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3

3 Ñ
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2
Ñ S

`

2

1

3
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Fig. 8 Example of search tree built by Algorithm 2 for the normal-form game used as
example. The root of the tree represents the initialization step. The symbol ˆ indicates that
the subtree rooted at the preceding node is pruned (as its upper-bound is lower than the
value of the current best solution). The symbol F indicates that a feasible solution has been
found in its preceding node. The numbers inside the rectangles in the top-right corners of
the nodes indicate the iteration in which the nodes are selected.
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