The University of Southampton
University of Southampton Institutional Repository

Neutral and cationic phosphine and arsine complexes of tin(IV) halides: synthesis, properties, structures and anion influence

Neutral and cationic phosphine and arsine complexes of tin(IV) halides: synthesis, properties, structures and anion influence
Neutral and cationic phosphine and arsine complexes of tin(IV) halides: synthesis, properties, structures and anion influence
The reaction of trans-[SnCl4(PR3)2] (R = Me or Et) with trimethylsilyltriflate (TMSOTf) in CH2Cl2 solution substitutes one chloride to form [SnCl3(PR3)2(OTf)]; addition of excess TMSOTf does not substitute further chlorides. The complexes have been fully characterised by microanalysis, IR and multinuclear NMR (1H, 13C{1H}, 19F{1H}, 31P{1H}, 119Sn) spectroscopy. The crystal structure of [SnCl3(PMe3)2(OTf)] revealed mer-chlorines and trans phosphines. In contrast, trans-[SnBr4(PR3)2], [SnCl4{Et2P(CH2)2PEt2}], [SnCl4{o-C6H4(PMe2)2}] and [SnCl4{o-C6H4(AsMe2)2}] did not react with TMSOTf in CH2Cl2 solution even after 3 days.
The arsine complexes, [SnX4(AsEt3)2] (X = Cl, Br), were confirmed as trans-isomers by similar spectroscopic and structural studies, while attempts to isolate [SnI4(AsEt3)2] were unsuccessful and reaction of SnX4 with SbR3 (R = Et, iPr) resulted in reduction to SnX2 and formation of R3SbX2. Trans-[SnCl4(AsEt3)2] is converted by TMSOTf into [SnCl3(AsEt3)2(OTf)], whose X-ray structure reveals the same geometry found in the phosphine analogues, with the triflate coordinated.
The salts, [SnCl3(PEt3)2][AlCl4] and [SnCl2(PEt3)2][AlCl4]2 were made by treatment of [SnCl4(PEt3)2] with one and two mol. equivalents, respectively, of AlCl3 in anhydrous CH2Cl2, whereas reaction of [SnCl4(AsEt3)2] with AlCl3 produced a mixture including Et3AsCl2 and [Et3AsCl][Sn(AsEt3)Cl5] (the latter identified crystallographically). In contrast, using Na[BArF] (BArF = B{3,5-CF3(C6H3)4}) produced [SnCl3(PEt3)2][BArF] and also allowed clean isolation of the arsine analogue, [SnCl3(AsEt3)2][BArF]. [SnCl4{o-C6H4(PMe2)2}] also reacts with AlCl3 in CH2Cl2 to form [SnCl3{o-C6H4(PMe2)2}][AlCl4] and [SnCl2{o-C6H4(PMe2)2}][AlCl4]2. Multinuclear NMR spectroscopy on the [AlCl4]-salts show that 31P and 119Sn move progressively to high frequency on conversion from the neutral complex to the mono- and the di-cations, whilst 1J(119Sn-31P) follow the trend: [SnCl3{o-C6H4(PMe2)2}]+ > [SnCl4{o-C6H4(PMe2)2}] > [SnCl2{o-C6H4(PMe2)2}]2+. DFT studies on selected complexes show only small changes in ligand geometries and bond lengths between the halide and triflate complexes, consistent with the X-ray crystallographic data reported and the HOMO and LUMO energies are relatively unperturbed upon the introduction of (coordinated) triflate, whereas the energies of both are ca. 4 eV lower in the cationic species and reveal significant hybridisation across the pnictine ligands.
0300-9246
17097-17105
Greenacre, Victoria
c665a38b-0b1a-4671-ac75-bf0679dd1c57
King, Rhys, Paul
2f9548b8-fc3b-447c-a5df-de5a3e513a39
Levason, William
e7f6d7c7-643c-49f5-8b57-0ebbe1bb52cd
Reid, Gillian
37d35b11-40ce-48c5-a68e-f6ce04cd4037
Greenacre, Victoria
c665a38b-0b1a-4671-ac75-bf0679dd1c57
King, Rhys, Paul
2f9548b8-fc3b-447c-a5df-de5a3e513a39
Levason, William
e7f6d7c7-643c-49f5-8b57-0ebbe1bb52cd
Reid, Gillian
37d35b11-40ce-48c5-a68e-f6ce04cd4037

Greenacre, Victoria, King, Rhys, Paul, Levason, William and Reid, Gillian (2019) Neutral and cationic phosphine and arsine complexes of tin(IV) halides: synthesis, properties, structures and anion influence. Dalton Transactions, 48 (45), 17097-17105. (doi:10.1039/C9DT03683K).

Record type: Article

Abstract

The reaction of trans-[SnCl4(PR3)2] (R = Me or Et) with trimethylsilyltriflate (TMSOTf) in CH2Cl2 solution substitutes one chloride to form [SnCl3(PR3)2(OTf)]; addition of excess TMSOTf does not substitute further chlorides. The complexes have been fully characterised by microanalysis, IR and multinuclear NMR (1H, 13C{1H}, 19F{1H}, 31P{1H}, 119Sn) spectroscopy. The crystal structure of [SnCl3(PMe3)2(OTf)] revealed mer-chlorines and trans phosphines. In contrast, trans-[SnBr4(PR3)2], [SnCl4{Et2P(CH2)2PEt2}], [SnCl4{o-C6H4(PMe2)2}] and [SnCl4{o-C6H4(AsMe2)2}] did not react with TMSOTf in CH2Cl2 solution even after 3 days.
The arsine complexes, [SnX4(AsEt3)2] (X = Cl, Br), were confirmed as trans-isomers by similar spectroscopic and structural studies, while attempts to isolate [SnI4(AsEt3)2] were unsuccessful and reaction of SnX4 with SbR3 (R = Et, iPr) resulted in reduction to SnX2 and formation of R3SbX2. Trans-[SnCl4(AsEt3)2] is converted by TMSOTf into [SnCl3(AsEt3)2(OTf)], whose X-ray structure reveals the same geometry found in the phosphine analogues, with the triflate coordinated.
The salts, [SnCl3(PEt3)2][AlCl4] and [SnCl2(PEt3)2][AlCl4]2 were made by treatment of [SnCl4(PEt3)2] with one and two mol. equivalents, respectively, of AlCl3 in anhydrous CH2Cl2, whereas reaction of [SnCl4(AsEt3)2] with AlCl3 produced a mixture including Et3AsCl2 and [Et3AsCl][Sn(AsEt3)Cl5] (the latter identified crystallographically). In contrast, using Na[BArF] (BArF = B{3,5-CF3(C6H3)4}) produced [SnCl3(PEt3)2][BArF] and also allowed clean isolation of the arsine analogue, [SnCl3(AsEt3)2][BArF]. [SnCl4{o-C6H4(PMe2)2}] also reacts with AlCl3 in CH2Cl2 to form [SnCl3{o-C6H4(PMe2)2}][AlCl4] and [SnCl2{o-C6H4(PMe2)2}][AlCl4]2. Multinuclear NMR spectroscopy on the [AlCl4]-salts show that 31P and 119Sn move progressively to high frequency on conversion from the neutral complex to the mono- and the di-cations, whilst 1J(119Sn-31P) follow the trend: [SnCl3{o-C6H4(PMe2)2}]+ > [SnCl4{o-C6H4(PMe2)2}] > [SnCl2{o-C6H4(PMe2)2}]2+. DFT studies on selected complexes show only small changes in ligand geometries and bond lengths between the halide and triflate complexes, consistent with the X-ray crystallographic data reported and the HOMO and LUMO energies are relatively unperturbed upon the introduction of (coordinated) triflate, whereas the energies of both are ca. 4 eV lower in the cationic species and reveal significant hybridisation across the pnictine ligands.

Text
Sn cations paper accepted 02_10_19 - Accepted Manuscript
Download (749kB)
Text
Sn cations ESISn final
Restricted to Repository staff only
Request a copy

More information

Accepted/In Press date: 2 October 2019
e-pub ahead of print date: 8 November 2019
Published date: 7 December 2019

Identifiers

Local EPrints ID: 434873
URI: http://eprints.soton.ac.uk/id/eprint/434873
ISSN: 0300-9246
PURE UUID: 73bc6958-4df3-4593-84dc-032ef62bda82
ORCID for Victoria Greenacre: ORCID iD orcid.org/0000-0002-3381-9616
ORCID for William Levason: ORCID iD orcid.org/0000-0003-3540-0971
ORCID for Gillian Reid: ORCID iD orcid.org/0000-0001-5349-3468

Catalogue record

Date deposited: 14 Oct 2019 16:30
Last modified: 17 Mar 2024 03:46

Export record

Altmetrics

Contributors

Author: Victoria Greenacre ORCID iD
Author: Rhys, Paul King
Author: William Levason ORCID iD
Author: Gillian Reid ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×