Southampton

Medicine

Analysis of loss of heterozygosity by whole-exome sequencing yields insights into pseudomyxoma peritonei

Reuben J. Pengelly¹, Babatunde Rowaiye², Karen Pickard³, Brendan Moran², Sanjeev Dayal², William Tapper¹, Alex Mirnezami³, Tom Cecil², Faheez Mohamed², Norman Carr^{2*} & Sarah Ennis^{1*}

¹Human Genetics & Genomic Medicine, University of Southampton and University Hospital Southampton, UK; ²Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital, Basingstoke, UK; ³Cancer Sciences, University of Southampton, UK. *Equal contribution Contact: <u>R.J.Pengelly@soton.ac.uk</u>

Introduction

Pseudomyxoma peritonei (PMP) is a clinical syndrome characterized by gross mucinous ascites originating from a disseminated intraperitoneal neoplasm. Although typically confined to the abdomen, mortality is high if untreated¹. Biomarkers, including genetic mutation profiles, may aid treatment selection and decision making. Next generation sequencing approaches such as whole-exome-sequencing

(WES) can be applied to gain a broad view of the genome of these neoplasia.

Aims

To investigate the exome wide mutational profile of PMP in a pilot project.

Patient samples

All patients (A-E; Table 1) underwent debulking surgeries at the Peritoneal Malignancy Institute, Basingstoke, and tissue was archived as FFPE blocks (Figure 1).

Patient ID	Α	В	С	D	Е
Age (at diagnosis)	65	35	50	65	45
Sex	Female	Female	Male	Female	Female
PCI	28	21	34	28	18
Serum CEA (U/mL)	34	11	20	15	14
Serum CA 125 (U/ml)	79	49	13	74	50
Serum CA 19-9 (U/mL)	122	23	373	891	39
Follow-up (Months)	58	56	53	53	53

Results

Good quality sequence data was obtained for all samples, with an average read depth of 68X and 113X for the normal and neoplastic material respectively. All samples had a relatively low somatic mutation burden across the exome (Table 2), and contained the frequent *KRAS* and GNAS mutations, with none containing TP53 mutations.

	Α	В	С	D	Е
Frameshift	0	32	9	14	16
Nonsynonymous	75	44	71	55	62
Splicing	7	53	60	35	30
Stopgain	4	2	4	4	6
Synonymous	26	21	29	26	28
Sum	112	152	173	134	142

Table 2 | Somatic mutation classes and counts

The overall mutation profiles of the

Patient 248 exhibited an apparent twostage LOH event (Figure 4), with the distal q-arm undergoing an initial event earlier in the clonal evolution of the cell population.

Figure 4 | LOH plot showing two-stage event in E ilst the LOH event spans chr17q11.2-qter, there is a marked increase in the allele skewing in the right section (dark grey background), demonstrating a more substantial LOH in this region

Conclusions

We have successfully applied WES to PMP samples, achieving high purity of neoplastic cells from FFPE. LOH appears an important event in the be to pathogenesis of some PMP cases⁶. Investigating genes present within recurrent regions of LOH in PMP would provide a powerful way to identify new genes involved in disease processes, and thus potential novel treatment targets.

Table 1 | Clinical characteristics of sequenced patients

PCI: Peritoneal cancer index (range 0-39); CEA: Carcinoembryonic antigen (reference range 0-5); CA 125: Cancer antigen 125 (reference range 0-35); CA 19-9: Cancer antigen 19-9 (reference range 0-33).

Figure 1 | H&E sections showing representative cells

Methods

FFPE blocks underwent laser capture micro-dissection to obtain cellular material of neoplastic and normal origin, from which DNA was extracted. WES was performed, aiming to generate an average depth 50X and 100X for the normal and neoplastic material respectively, data was

samples was assessed (Figure 3), revealing a profile consistent with methylcytosine deamination as a dominant mutational mechanism⁵.

Figure 3 | Mutation profile of all sequenced samples Percentage of mutations identified for each triplet context is shown. Top row of x-axis represents 5' nucleotide, bottom row 3'. An excess of C>T transitions are seen, consistent with methylcytosine deamination as a mutational mechanism.

Loss of heterozygosity (LOH) events were observed in four of the samples (Table 3). 86% of these event contained mutations of potential interest.

		Somatic	Novel/Clinical somatic variants in region ^a			
	Kegion	variants	Gene	Variant type	BAF ^b	
A	Chr20q13.13-qter	2	GNAS	nonsynonymous	24%	
			RGS19	nonsynonymous	20%	
B	Chr18q12.3-qter	1	SMAD2	stopgain	63%	
С	Chr8	4	ST18	nonsynonymous	51%	
			C8orf34	nonsynonymous	12%	
			COL22A1	nonsynonymous	31%	
	Chr20	4	FERMT1	nonsynonymous	57%	
			C20orf203	nonsynonymous	41%	
			GNAS	nonsynonymous	54%	
E	Chr1p36.13-p36.11	0				
	Chr12pter-p11.21	6	ERGIC2	nonsynonymous	64%	
			KRAS	nonsynonymous	71%	
	Chr17q11.2-qter	8	EZH1	nonsynonymous	65%	
			RNF43	stopgain	70%	
			RAB37	nonsynonymous	75%	

Future work

We are currently undertaking targeted sequencing a large scale project to sequence ~400 fresh frozen PMP samples. This will allow us to combine the deep clinical phenotypes with genomic data, further developing our understanding of PMP.

Our follow-up study is utilising a bespoke panel tailored to PMP genomics, providing optimal coverage and data quality. These data will then be combined with deep clinical phenotyping of the cohort in order to provide robust testing for prognostic and treatment response predictors.

analysed as outlined in Figure 2.

• Burrows-Wheeler Aligner² • Against GRCh37 (hg19) Alignment

Calling

Annotatio

nterrogat

• Paired variant calling with VarScan 2³ • LOH calling with BAFsegmentation⁴

• RefSeq transcripts and databases including COSMIC • Filtered for 54 genes in relevant genes • LOH regions investigated

Figure 2 | Bioinformatic workflow for data analysis

Table 3 | LOH and encompassed mutations ^aNot present in 1000 Genomes or dbSNP 135, or previously reported; ^bFrequency of alternate allele in read data.

References

- Carr *et al* (2012) *J Clin Pathol* **65**:919-923
- Li & Durbin (2009) *Bioinformatics* **25**:1754-1760
- Koboldt et al (2012) Genome Res 22:568-576
- Staaf et al (2008) Genome Biol 9:R136
- Alexandrov et al (2018) bioRxiv DOI:10.1101/322859
- 6. Pengelly *et al* (2018) *J Mol Diagn* **20**:635-642

Acknowledgements

This research was kindly supported by the Pelican Cancer Foundation and Cancer Research UK. The authors also acknowledge the use of the IRIDIS High Performance Computing Facility, University of Southampton.

www.southampton.ac.uk/medicine