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Abstract—We study classification and regression problems in
lung tumours where high throughput gene expression is measured
at multiple levels: epi-genetics, trancription and protein. We
uncover the correlates of smoking and gender-specificity in lung
tumors. Different genes are indicative of smoking levels, gender
and survival rates at these different levels. We also carry out
an integrative anaysis, by feature selection from the pool of
all three levels of features. Our results show that the epi-
genetic information in DNA methylation is a better marker for
smoking status than gene expression either at the transcript
or protein levels. Further, surprisingly, integrative anlysis using
multi-level gene expression offers no significant advantage over
the individual levels in the classification and survival prediction
problems considered.

Index Terms—Lung cancer, Survival prediction, Smoking mu-
tated genes, Multi-omic, Gender specific genes, TCGA data
repository

I. INTRODUCTION

Cancer is a complex disease formed by heritable and envi-
ronmental factors. Understanding of it causes and dynamics
at the molecular level is crucial for early diagnostics and
treatment planning because it is known that drug response,
for example, widely varies across sub-populations of can-
cer sufferers. Hence molecular level stratification of patients
is vital for knowing which drug will have good response
from which group of patients. Advances in high throughput
functional genomics, in which gene sequences, their epi-
genetic modifications, expressions, and relative abundance of
their products (i.e. proteins) are measured at a genomic level
(i.e. throughout the genome), coupled with machine learning
methods, is seen as an appealing avenue to pursue in the
development of a better understanding of the disease and its
effective treatment. Among the various cancers, lung cancer
is a highly prevalent one with a specific environmental factor
– smoking – being its main cause. Over 85% of incidence of
lung cancer relate to smoking, and is the subject of this study.

High throughput measurement of gene expression at various
levels (gene, epi-genetic, protein etc.) produce representations
of a tumor sample in very high dimensions (methylation at
27, 000 sites, 20, 000 transcripts, 7, 000 proteins etc.). Two
important issues arise when we attempt to apply statistical
inference or machine learning methods on such data. Firstly,
the number of patients on whom such measurements can be

made is often much smaller, of the order of a few tens or
hundreds. This leads to the problem often known a n << p
problem (i.e. number of samples far fewer than dimensional-
ity). In this setting, any inference method, those that include
density estimation in particular, suffer the effects of the curse
of dimensionality. Techniques such as feature selection, feature
reduction by subspace projections or regularisation have to be
carefully applied to deal with this issue. Secondly, information
contained in measurements taken at different levels of gene
expression is often not the same, due to various types of
regulatory mechanisms actin in cells. For example, genes
that are transcribed need not all be translated into protein.
Hence we will observe their expression at the level of the
transcriptome, though they could have very different cellular
function at the protein level. Thus, integrative analysis of
measurements taken at different levels is of importance.

Several transcriptome-based studies have been reported in
the literature, including the irreversible effect of tobacco [1],
identifying differentially expressed genes between smokers
and non-smokers [6], [7], [22] and differentiating smokers
from non-smokers [20] or current smokers from others [24].
Methylation data has been used in studies to show how
smoking could be identified using single [3], [5] or multiple
methylation sites [35], and to infer the effects of maternal
smoking on new-borns [27]. Methylation data was analysed
between former and current smokers to see how methylation
changes by smoking [36] and its residuals has also been
suggested as a good marker of smoking in the past [30].

Relating lung cancer with smoking shows that smoking re-
lated methylations identified by [3], [5] have most association
with lung cancer [14], [38]. This property of methylation was
identified in transcriptome data as well [31].

Another area that has attracted attention is prediction of
survival from high throughput genomic data. A wide range
of algorithms including Bayesian ensemble method [4], PCA
[10] and Wavelet based gene selection [13] for gene selection
from trnscriptome data. Similarly survival prediction has been
attempted from trancriptome and proteome data [8], [17], [25],
[29], [32], [37].Interestingly, [33] report a study that links
RNA degradation to survival in non-small cell lung cancer
patients.

Gender specificity of gene expression in response to smok-



ing has also attracted attention in the literature [18], [26], [34].
In this paper, we have a comprehensive analysis on multiple

levels of genes to find the connection between smoking and
molecular data. up-regulated and down-regulated molecular
data were analyzed between current smokers, lifelong non-
smokers, reformed smokers ≤ 15 years and reformed smokers
> 5 years and relationship between the molecular data and
these four various smoking status were discussed. At the
same time all those molecular levels were used to classify
the patients into their corresponding smoking status.
Further, various gene levels of lung cancer patients were
used to predict their individual survival rate. Performances
by individual molecular data were compared to determine
the best molecular data for survival prediction of lung cancer
patients. Moreover, performance of the integrated molecular
data also analyzed in the same problem.

II. MATERIALS AND METHODS

Transcriptome, proteome and methylation data of lung can-
cer patients were downloaded from The Cancer Genome Atlas
(TCGA) data repository along with their survival rate, smoking
status and patient gender.
For smoking related studies, we had data from 250 patients
with transcriptome, 163 patients with proteome and 62 patients
with methylation measurements. For survival prediction, the
dataset consisted of 998 patients with transcriptome, 192 pa-
tients with proteome and 197 with methylation data available.
For integrative analysis, however, the number of patients on
whom all three measurements had been made is much smaller,
67.

A. Methods

Inference problems with high throughput genomic data are
posed in very high dimensions, often the number of features
far exceeding the number of samples that are available (the
so called n << p problem in statistics). Feature selection
or other methods of dimensionality reduction (e.g. Principal
Component Analysis) are required to address this. Though
PCA type projections, forming a combination of features,
can be statistically appealing from the point of view of high
accuracies in inference, feature selection is usually preferable
from the point of view of interpretability. Hence we used
two methods of feature selection: ranking by Fisher ratio,
which considers the performance of each feature individually,
and greedy forward feature selection, which searches for
combinations of features.

1) Fisher ratio: Fisher ratio is a measure of how discrim-
inant a feature is, assuming their distributions are Gaussian.
Let µ1 and µ2 be the means and σ1 and σ2 be the standard
deviations of those distributions. Then the Fisher ratio is
defined as FR = (µ1−µ2)
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The features were ranked by the Fisher ratio and the top few
were selected to build classifiers. This has been a popular ap-
proach to feature selection in bioinformatics problems, starting
from the early work of Golub et al. [15].

2) Greedy forward feature selection: Greedy forward
selection is referred to as a wrapper [28] approach attempting
to find a sub-optimal combination of features. It starts with
a single feature, the one with the highest discrimination,
and progressively includes features searching for the best
combination of two, three... etc. feature classifiers. At each
stage, the search is done linearly through the yet unselected
features, drastically reducing the search required. Several
high dimensional problems, including gene expression, whose
discriminant subspaces are much smaller in dimension than
the original feature space in which the problem is posed have
been considered in Li et al. [21], justifying the choice of this
method on the TCGA data.

3) Support Vector Machines (SVM): Empirically, support
vector machines are generally considered suitable choice for
high performance pattern classification. This is particularly
true for problems that are posed in high dimensions because
the focus of optimisation in SVMs is classification accuracy
rather than the estimation of density as might be needed in a
Bayesian classifier. Density estimation in high dimensions is
notoriously difficult due to the curse of dimensionality and
SVMs, by optimising a class boundary and its margin, offer a
good way of circumventing them. The optimization problem
solved in SVMs is,

min
w∈Rd,ξi∈R+

1

2
‖w‖2

+ C

n∑
i=1

ξi

s.t. yi(wT xi + b) ≥ 1− ξi, ξ ≥ 0, i = 1, ...n

where,
ξis are known as slack variables and C is a regularization
parameter.

In our simulations, for simplicity, we used the convex
optimisation toolbox CVX, within the MATLAB programming
environment to implement SVMs. While there are far more
computationally efficient implementations, the problems we
consider are small enough that this choice was considered
adequate. The weights of the SVM were computed on a
training set, the C parameter was tuned using a validations
set and the area under the receiver operating characteristic
(AUC) was measured on an independent test set for reporting
performances. Throughout, for classification, we used a linear
SVM. When working in high dimensions, nonlinear kernels
did not appear to yield significant improvements.

4) Linear regression: We used linear regression to model
survival rates, which are continuous values in the range 0
to 1. Nonlinear models such as neural networks, though
likely to produce better prediction accuracies, would require
significantly more data than we have in TCGA, especially
when we look at combinations of features. Let the input
data matrix X consist of gene expression features as rows,
and the outputs be contained in the vector y, the linear



mapping being y = wt x. It is assumed a bias term is
included in the weight vector and the corresponding column
of the matrix X is filled with ones. The weight vector w is
then calculated as the pseudoinverse w = (XtX)−1Xt y,
implemented in MATLAB by the command w = X \ y which
gives numerical stability. With regression, too, we used ten-
fold cross validation to assess the uncertainty in inference.

5) Performance Metrics: We used area under the receiver
operating characteristics curve (AUC) to quote classification
results. This measure is far better than classification
accuracies when the two classes are unbalanced and the cost
of misclassification is unspecified [28]. For the regression
problem of survival rate prediction, we used mean squared
error (MSE), defined as: 1

N

∑N
i=1(yi − ŷi)2, where yi and ŷi

are the ith target and its prediction respectively.

B. Clinical data

Smoking status of the patients
The smoking status of each patient is provided in TCGA as
one of four groups. These are (a) current smoker; (b) reformed
smoker for > 15 years; (c) reformed smoker for ≤ 15 years;
and (d) lifelong non-smoker.

Survival rate or Survival probability
Survival rates, a continuous value between 0 and
1, are also provided by the TCGA repository. This
is calculated based on the mortality of the patients
(https://docs.gdc.cancer.gov/Data Portal/PDF/Data Portal UG
.pdf), based on their day to death or last follow up. The
Kaplan-Meier estimator used to estimate the survival rate is

given by S(ti) = Πti≤t

(
1− di

ni

)
, where,

• S(ti) is the estimated survival probability or survival rate
for the t time periods

• ni is the number of subjects at risk at the beginning of
time period ti

• di is the number of subjects who die during time period
ti

III. RESULTS

A. DNA Methylation is significantly downreegulated in smok-
ers

To assess the primary effect of smoking in gene expression
across all the measurements, we looked at differential expres-
sion (up- or down-regulation) of genes in the three smoking
groups with respect to the non-smokers. Figure I shows the
numbers of up- or down-regulated genes at the transcript,
DNA methylation and protein levels. We note that the primary
observation one can make is that there is significantly higher
amount of suppression of DNA methylation while the numbers
of elevated and suppressed genes at the other levels is roughly
the same. While a greater number of proteins show elevated
expression than that show suppressed expression, the coverage
of the proteome is not large enough to conclude this might be
a general observation.

(A)

(B)

(C)

Fig. 1. Smoking effect on gene expression. A large number of genes are
up- or down-regulated in the tumors of smokers in comparison to those
in non-smokers. Very little difference exists between those who have given
up smoking either in the recent past ( ≤ 15 years) or significant time
ago ( >15 years). We note that the numbers of up- and down- regulated
genes in transcript and protein levels is not significantly different. DNA
methylation, however, significantly more suppression than elevation in the
smoking population.



B. Gene expression separates tumors of lifelong non-smokers
from current smokrs

(A)

(B)

(C)

Fig. 2. Pairwise classification accuracies (quantified as area under the
receiver operating characteristic curve) of the four different groups of smoking
status among lung cancer patients. Top ten features selected by Fisher ratio
were used to classify in each level of gene expression: A. transcriptome, B.
DNA methylation and C. proteome. Labels: 0-Lifelong non-smoker, 1-Current
smoker, 2-Current reformed smoker for > 15 years, 3- Current reformed
smoker ≤ 15 years

Pairwise classification accuracies of tumors from patients
with different smoking status are shown in Figure 2. These
classifications carried out with the top ten features in each level
of gene expression, filtered based on Fisher ratios. Among
the different combinations, separating life-long non-smokers
from those currently smoking yields near-perfect classification.
Across the three levels of gene expression, methylation data
gives the highest accuracy than the other two.

Further, for most of the pairs, methylation data gave median
accuracy ≥ 0.89. For lifelong non-smokers versus reformed
smoker for ≤ 15 years (0.79) and current smoker versus

reformed smoker for ≤ 15 years (0.82), methylation data gave
comparably low median accuracy than transcriptome. Tran-
scriptome data gave comparably low accuracy than methyla-
tion in all the other pairs and their median accuracies range
between 0.81 and 0.88.

Accuracy of current smoker versus reformed smoker for
≤ 15 years is comparably low in all three molecular levels,
which shows that the molecular expression of current smoker
is nearly same to reformed smoker for ≤ 15 years.

C. Gender Specificity of Gene Expression

For each smoking status, ten genes with high difference
between male and female were discussed in this section.
TTTY15, CYorf15B, RPS4Y1, USP9Y, UTY, DDX3Y, CY-
orf15A, ZYF, KDM5D and E1F1AY were differently ex-
pressed between male and female of non-smokers. Most of the
genes are same for current smokers, reformed smoker for ≤ 15
years and reformed smoker for > 15 years, except CYorf15B
of non-smokers was replaced by XIST for current smokers
and reformed smoker for > 15 years, and by NLGN4Y for
reformed smoker for ≤ 15 years, Table I.

We compared our results on high throughput data with
microarray data and found Y-chromosome related genes were
over expressed in male and X chromosome related gene XIST
was over expressed in female. Here, we found some new genes
related to Y-chromosome which are TTTY15, CYorf15B,
CYorf15A, ZYF, NLGN4Y and KDM5D.

D. Smoking mutated genes are gender specific

It has been shown that smoking mutated genes are gen-
der specific [26]. They concluded that female smokers are
more vulnerable to cigarette smoking induced diseases than
male smokers. They identified 175 differently expressed genes
between male smokers and non-smokers, 237 differently ex-
pressed genes between female smokers and non-smokers. Four
up-regulated genes (RGS6, ELL3, TBXA2R and GRM5) and
two down-regulated genes (RAB6B and GPR15) were differ-
ently expressed between female smokers and male smokers.

In this study, we analyzed gender specific smoking mutated
genes between each pair of smoking status. For each pair, top
ten differently expressed genes were identified in this study.
Table II illustrates that almost every smoking mutated genes
are gender specific, except few of them.

E. Selected features on survival prediction shows their con-
nection with tumor formation

We have three distinct molecular data in this study. Each
of these data is separately used in feature selection and dif-
ferent number of features were selected from each molecular
data. 506 transcriptome, 35 proteins and 86 methylation were
selected from 20530 transcriptome, 191 proteins and 23924
methylation correspondingly.

Transcriptome features: GO analysis of selected set of
genes [11] & [12] shows that they are related to DNA damage
related activities. These are the functions of selected features
of gene data:



TABLE I
TOP TEN GENES WITH DIFFERENTIAL GENDER SPECIFIC EXPRESSION IN EACH OF THE FOUR GROUPS CONSIDERED: (A) LIFELONG NON-SMOKERS, (B)

CURRENT SMOKERS, (C) REFORMED SMOKER FOR > 15 YEARS AND (D) REFORMED SMOKER FOR ≤ 15 YEARS.

Lifelong non-smokers TTTY15 CYorf15B RPS4Y1 USP9Y UTY DDX3Y CYorf15A ZFY KDM5D EIF1AY

Current smokers XIST ZFY CYorf15A TTTY15 USP9Y EIF1AY RPS4Y1 UTY KDM5D DDX3Y

Reformed smokers > 15 years TTTY15 XIST CYorf15A USP9Y EIF1AY UTY ZFY KDM5D RPS4Y1 DDX3Y

Reformed smokers ≤ 15 years CYorf15A EIF1AY NLGN4Y TTTY15 UTY RPS4Y1 ZFY KDM5D USP9Y DDX3Y

TABLE II
TOP TEN GENES WHICH, IN A GENDER SPECIFIC WAY, DISCRIMINATE BETWEEN THE DIFFERENT STATUS OF SMOKING IN LUNG CANCER. PAIRWISE

CLASSIFICATIONS OF THE DIFFERENT GROUPS WERE CARRIED OUT SEPARATELY FOR MALE AND FEMALE PATIENTS. LABELS: 1-CURRENT SMOKERS,
2-REFORMED SMOKER FOR > 15 YEARS AND 3-REFORMED SMOKER FOR ≤ 15 YEARS

0 VS 1
Male TSPAN2 TXNIP BMX PACSIN3 C12orf65 CFH NPR3 ITIH3 CACNA2D3 MRPS5

Female ZNF564 SLC40A1 RBM17 EHMT2 SERGEF C12orf69 CNNM1 GTPBP4 LUZP2 GPR15

0 VS 2
Male NPR3 C5orf23 ADAMTS6 KIAA0776 DACT1 C3orf30 CSDC2 CNTNAP3 ACPP ELP2P

Female PPP1R3G CNNM1 C14orf181 CTSD CCDC144B LGALS9 LOC653786 RAB42 TMEM86A TREM2

0 VS 3
Male RNGTT AVIL CNTNAP3 PAAF1 HDAC7 KHK LOC100130522 PDSS2 CACNA2D3 CDS2

Female PITPNC1 ENPP3 PRDM1 MPI LHX9 CNNM1 ZNF702P OLIG1 SERGEF GPR15

1 VS 2
Male MTPAP PSMC3IP HYLS1 CD82 CST5 ALDH1A1 SESN1 CLEC9A GPR15 TNFSF13

Female JSRP1 RRAS2 SND1 C12orf69 AHRR FAM65C LUZP2 TMEM56 CRYGN GPR15

1 VS 3
Male KIAA0895L CCR9 FAM102B LIPA KIAA1409 SNX2 BREA2 IQGAP2 CLEC9A GM2A

Female FAM5C PLCXD3 CCDC138 PSPH BAT3 GTF2H4 TMEM56 NRG2 NEGR1 SKIV2L

2 VS 3
Male ACOX3 RAPGEF3 CASR ARID3C MRPL19 PRICKLE4 PLAA IMMT IL17RC GPR15

Female ZNF681 ZSCAN18 HMGN3 LEP LIN7C HNRPDL LOC728855 ZNF675 AHRR GPR15

• regulation of intrinsic apoptotic signaling pathway in
response to DNA damage

• steroid biosynthetic process
• regulation of response to DNA damage stimulus
• trans membrane receptor protein tyrosine kinase signaling

pathway
• enzyme linked receptor protein signaling pathway

Since DNA damage has been proved to be the root cause of
cancer, the selection of these features from transcriptome of
lung cancer patients is reasonable.
Proteome & Methylation features:
35 features were selected out of 191 total protein data and 86
methylation were selected out of 23924 methylation and used
separately in the survival prediction. Go annotation of these
genes reports that they are related to cell cycle regulation
activities. Go terms related to these genes are:

• cell cycle arrest
• negative/positive regulation of cell cycle
• regulation of gene expression
• cell death
• cellular response to hypoxia
• negative regulation of cell differentiation
• regulation of organ growth
• cell proliferation or regulation of cell proliferation
• cell aging
• regulation of cell death or regulation of programmed cell

death
• cell development

Cell proliferation and cell death have close relationship with
carcinogens. The above mentioned GO terms justify the se-
lected features. Comparing the selected features on various
molecular levels shows that there are no common features
between transcriptome and proteome or transcriptome and
methylation while we have a single common feature PEA15
between transcriptome and proteome.

F. Integration of multi-omic data might not increase the ac-
curacy of survival prediction

Figure 3 illustrates that almost all three of those molecular
data predict the individual survival rate of lung cancer pa-
tients with high accuracy. Variations of training error between
molecular data are very low. Comparing test error shows that
transcriptome data gave highest accuracy among them.

Generally, transcriptome data was used in the survival
prediction. Using the expression of a single gene in survival
prediction is a technique used in a few studies. Proteome data
and methylation data is rarely used in survival prediction. [32]
revealed that protein data can significantly differentiate high
survival risk and low survival risk of glioma patients. Here,
we showed that transcriptome data might predict the individual
survival better than other two molecular data on lung cancer
patients, with minor differences in accuracy of others.



Fig. 3. Training and test errors of a linear regression model on predicting
survival from the three levels of gene expression: transcriptome, proteome and
DNA methylation. Variation across ten-fold cross validation are shown as box
plots. 300 transcript, 20 methylation and 35 protein features were selected by
the greedy forward feature selection algorithm.

All three gene level data were available along with survival
data only for 68 patients. These 68 patients were used to
check the performance of integrated molecular data on survival
prediction of lung cancer patients. Here greedy forward feature
selection algorithm selected 32 transcriptome features, 22
proteome features, 35 methylation features and 37 features
from integrated data. Figure 4 compares the performance by
single level with the performance by integration.

Fig. 4. Comparing feature selection on individual levels of expression with
integrated analysis (right-most columns for training and testing). The first
three columns differ slightly from those in Fig. 3 because the number of
samples for which all three levels of expression are available is different and
the models were re-estimated on the reduced set. With the reduced dataset 32
transcriptomic, 22 proteomic and 35 methylation features were selected. The
integrative analysis (greedy search for combination of features using all three
feature sets) selects 37 features (23 methylation and 14 transcriptomic with
none of the protein expression levels contributing to the combination).

Comparing accuracies shows that, training error of methy-
lation data and integrated data have no significance difference
between them and higher than other two training error. And,
there is no significance difference between the test error of
proteome data and integrated data. As we have few number
of patients in this integrated dataset, this result might need
further analysis. [19] already exposed that integration of multi-
omic data may improve the accuracy of prediction of their
clinical variables. Here, we suggest that integrating the omic-
data might not increase or decrease the accuracy of survival
prediction of lung cancer patients.

IV. DISCUSSION

Features with high differentiation power were identified
between each pair of smoking status. Analyzing the selected
features between pairs shows that there are some common
features between pairs. For instance, gene GPR15 is identified
in four different pairs, except lifelong non-smokers versus
reformed smokers > 15 years and current smokers versus
reformed smokers ≤ 15 years. We compared our features
with other studies and [2] identified some transcriptomes to
differentiate people with different smoking habits and their
features on microarray data of whole blood with our features
ends up with empty set. PLA2G1B of [22] is common with
our features where they used microarray data of lung adeno-
carcinoma patients.
Methylation 450K and 27K data were used in smoking related
studies. Methylation cg05575921 of gene AHRR and methy-
lation cg03636183 of gene F2RL3 were widely discussed in
smoking related studies [3], [5], [14] and [38]. However, our
study does not find these features as a super methylation to dif-
ferentiate various smoking status. [3] used methylation 450K
data in their study and [5] used blood of general population to
get the methylation 27K data and their criteria for selecting the
subjects to experiment is too stringent. Despite, in our study,
we used methylation 27K data of lung cancer patients from
the TCGA without any conditions. This might be the reason,
why our study could not find those markers. And it reveals that
these features are dependent on the subject’s health condition
and the technique we used to measure the data.

Besides, [6] and [22] studied on up-regulated and down-
regulated transcriptome data between smokers and non-
smokers. [6] identified 88 up-regulated and 106 down-
regulated genes between active smokers and non-smokers from
transcriptome of buccal mucosa tissue. At the same time, [22]
identified 83 up-regulated and 213 down-regulated genes be-
tween smokers and non-smokers who are lung adenocarcinoma
patients.

Further, selected features from transcriptome data on sur-
vival prediction was compared with published features of [33].
They identified 997 genes on survival prediction of lung cancer
patients. They used microarray transcriptome of non-small cell
lung cancer patients and analyzed the variance to select the
features. They mentioned few selected features where NLRC4
and MAGEA3 were common with our transcriptome features.

Moreover, [34] and [18] studied on gender specific genes.
Microarray expression of brain was used in [34] and identified
DBY, SMCY, UTY, RPS4Y1 and USP9Y (genes from Y
chromosome) and XIST (gene from X chromosome) are dif-
ferently expressed between male and female. [18] studied on
microarray transcriptome data of idiopathic dilated cardiomy-
opathy (IDCM) patients. 35 genes were over expressed and 16
genes were under expressed between male and female. Genes
related to Y-chromosome such as USP9Y, DDX3Y, RPS4Y1
and E1F1AY were over expressed in male. X-chromosome
related genes such as XIST was over expressed in female.
Our study on high throughput sequencing data of lung cancer



patients has some common genes such as UTY, RPS4Y1,
USP9Y, DDX3Y, RPS4Y1, E1F1AY and XIST and some
new biomarkers such as TTTY15, CYorf15A, CYorf15B, ZFY,
KDM5D and NLGN4Y.

V. CONCLUSION

In this work, we have carried out classification and regres-
sion analysis on multi-level gene expression data on sam-
ples from a highly prevalent cancer in which environmental
influences are significant. We have extracted genes that are
relevant for predicting smoking status, gender specificity and
survival at all three levels of epi-genetic, transcript and protein
abundances. On the raw data, we note that the predomi-
nant effect of smoking is the relative suppression of DNA
methylation, not seen in the other two levels. We also see
that those currently smoking ar easily differentiated from
other subgroups. Somewhat surprisingly, integrated analysis,
in which we seek to identify combinations of features across
all three levels of gene expression did not give significant
improvement over taking the features individually. This could
be because the size of the dataset for integrative analysis (the
patients in which all three measurements were made) was
substantially smaller than those with any one measurement.
Referring the properties of genes selected using gene ontology
analysis confirms some of the observations we make.
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