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1. Introduction

During the last years remarkable progress has been accumulated in our understanding

and in our ability to compute scattering amplitudes, both for theoretical and phenomeno-

logical purposes, cf. ref. [2] for a recent account. Striking relations have emerged and

simple structures have been discovered leading to a beautiful harmony between seemingly

different structures and aspects of gauge and gravity scattering amplitudes cf. ref. [3]. As

an example we mention the duality between color and kinematics, which exhibits a new

structure in gauge theory [4]. This property allows to rearrange the kinematical factors

in the amplitude such, that the form of the amplitude becomes rather simple. Moreover,

recently it has been shown [5], that the duality between color and kinematics allows to

essentially interchange the role of color and kinematics in the full color decomposition of

the amplitude. Many of the nice properties encountered in gauge amplitudes take over to

graviton scattering.

The properties of scattering amplitudes in both gauge and gravity theories suggest a

deeper understanding from string theory, cf. ref. [6] for a recent review. In fact, many strik-

ing field theory relations such as Bern–Carrasco–Johansson (BCJ) or Kawai–Lewellen–Tye

(KLT) relations can be easily derived from and understood in string theory by tracing these

identities back to the monodromy properties of the string world–sheet [7-9]. Furthermore,

recently it has been shown, how superstring amplitudes can be used to efficiently provide

numerators satisfying the color identities [10]. We shall demonstrate in this work, that

the complete result for the N–point superstring amplitudes displays properties and sym-

metries inherent in field–theory and reveals structures relevant to field–theory. Moreover,

we find a beautiful harmony of the string amplitudes with strong interrelations between

field–theory and string theory.

When computing amplitudes it is highly desirable to obtain results which are both

simple and compact. In [1] we show how the pure spinor formalism [11] can be used to

accomplish this for the complete N–point superstring disk amplitude, which is given by

A(1, . . . , N) =
∑

σ∈SN−3

AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N) F σ(α′) , (1.1)

where AYM represent (N − 3)! color ordered Yang–Mills (YM) subamplitudes, F σ(α′) are

generalized Euler integrals encoding the full α′–dependence of the string amplitude and

iσ = σ(i). The intriguing result (1.1) disguises a lot of structure linking aspects of gauge

amplitudes as color and kinematics with properties of generalized Euler integrals. Both the
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Yang-Mills subamplitudes AYM and the hypergeometric integrals F are reduced to a min-

imal basis of (N−3)! elements each. Relations among the integrals F and relations among

the string– or field–theory subamplitudes are found to be in one–to–one correspondence,

hinting a duality between color and kinematics at the level of the full fledged superstring

amplitude.

The pure spinor formalism proved to be crucial to arrive at the compact expression

(1.1). It provides a manifestly spacetime supersymmetric approach to superstring theory

which can still be quantized covariantly [11]. Correlation functions of the worldsheet

CFT in the pure spinor formalism can be efficiently organized in terms of so-called BRST

building blocks [12,13]. These are composite superfields which transform covariantly under

the BRST operator and have the right symmetry properties to allow for an interpretation

in terms of diagrams made of cubic vertices [14]. As shown in [1], manipulations of the

BRST-covariant building blocks and the hypergeometric integrals reduce the number of

distinct integrals in the N–point disk amplitude down to (N − 3)!. At the same time,

field theory subamplitudes AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N) build up as the associated

kinematic factors.

So far, N–point superstring disk amplitudes have been computed up to seven open

strings, i.e. N ≤ 7. The scattering amplitude of four open superstrings has been known for

a long time [15]. Five–point superstring disk amplitudes have been computed in the RNS

formalism in refs. [16,17], while in the pure spinor formalism in refs. [14,18]. Furthermore,

six open string amplitudes have been computed in refs. [17,19-22] in the RNS formalism,

while in pure spinor superspace in refs. [12]. Finally, seven open string amplitudes with

MHV helicity configurations have been computed in the RNS formalism in [21]. However,

the result (1.1) represents the first superstring disk amplitude beyond N ≥ 7 including

the complete kinematics. In addition, in contrast to the previous results, eq. (1.1) yields

also very compact expressions for arbitrary N and independent on the chosen helicity

configuration and the space–time dimension.

The organization of the present work is as follows. In section 2 we discuss and explore

the result (1.1) to reveal the various structures shared by this result. We find a complemen-

tarity between the system of equations derived by the monodromy relations (giving rise to

relations between subamplitudes of different color ordering for the same kinematics) and

the system of equations derived from partial fraction decomposition or partial integrations

(giving rise to relations between functions referring to different kinematics for the same

color ordering). We display the full color decomposition of the full string amplitude and
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comment on a possible string manifestation of the recently anticipated swapping symmetry

between color and kinematics in the color decomposition of the full amplitude [5]. In sec-

tion 3 the module of multiple hypergeometric functions is analyzed in detail. We present

a method to determine the leading poles of Euler integrals. Partial fraction expansion

of these integrals can be made according to their leading pole structure. Furthermore, a

Gröbner basis analysis provides an independent set of rational functions or monomials for

the Euler integrals without poles. Any partial fraction decomposition of finite Euler inte-

grals can be expressed in terms of this basis. In section 4 we have some concluding remarks

and comment on applications and implications of our result in view of effective D–brane

action, recursion relation and graviton scattering amplitudes. In appendix A we propose

a method to analyze the transcendentality properties of Euler integrals. In appendix B

for the six open superstring amplitude we present the extended set of functions and its

relation to the minimal basis set. Finally, in appendix C we present α′–expansions of the

basis functions F σ for N ≥ 7.

2. The structure of the N–point superstring disk amplitude

The complete superstring N–point disk subamplitude is given by [1]

A(1, . . . , N) =
∑

σ∈SN−3

AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N) F σ
(1,...,N)(α

′) . (2.1)

In eq. (2.1), F σ ≡ F σ
(1,...,N) denotes the set of (N−3)! integrals which will be explicitly given

in subsection 2.3. The labels (1, . . . , N) in F σ
(1,...,N) are related to the integration region

of the integrals and are responsible for dictating which color–ordering of the superstring

subamplitude is being computed. The result (2.1) is valid in any space–time dimension D,

for any compactification and any amount of supersymmetry. Furthermore, the expression

(2.1) does not make any reference to any kinematical or helicity choices. In the following

we explore the result (2.1) to illuminate the role of color and kinematics.

2.1. Basis representations: kinematics vs. color

In field–theory there are in total (N − 3)! independent YM color–ordered subam-

plitudes AYM [4], see refs. [8,9] for a string theory derivation of this result. Hence, in

field–theory any subamplitude AYM (1Π, . . . , NΠ), with Π ∈ SN , can be expressed as

AYM (1Π, . . . , NΠ) =
∑

σ∈SN−3

Kσ
Π AYM,σ , (2.2)
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with iΠ = Π(i), some universal and state–independent kinematic coefficients Kσ
Π generi-

cally depending on the kinematic invariants, cf. eq. (2.7) for a straightforward derivation.

Besides, we introduced the abbreviation:

AYM,σ := AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N) . (2.3)

One crucial property of (2.1) is the fact that the superstring N–point (sub)amplitude is

decomposed in terms of a (N − 3)! basis of Yang–Mills color ordered amplitudes AYM,σ,

i.e. the whole superstring amplitude can be decomposed w.r.t. the kinematics described by

the set of AYM,σ, σ ∈ SN−3. Hence, by these results it is obvious, that in the sum of (2.1)

only (N − 3)! terms and as many different multiple hypergeometric functions can appear

since any additional kinematical term could be eliminated by redefining the functions F σ

thanks to the amplitude relations (2.2).

Moreover, the string subamplitudes (2.1) solve the system of relations given by

A(1, 2, . . . , N) + eiπs12 A(2, 1, 3, . . . , N − 1, N) + eiπ(s12+s13) A(2, 3, 1, . . . , N − 1, N)

+ . . .+ eiπ(s12+s13+...+s1N−1) A(2, 3, . . . , N − 1, 1, N) = 0

(2.4)

and permutations thereof. Throughout this work, we will be mostly using dimensionless

Mandelstam invariants sij = α′(ki+kj)
2. The set of identities (2.4) has been derived from

the monodromy properties of the disk world–sheet [8,9].

Furthermore, since there exists a basis of (N − 3)! YM building blocks allowing for

the decomposition (2.2), we may express any string subamplitude by one specific set of

YM amplitudes AYM,σ referring e.g. to the string amplitude (2.1):

A(1Π, . . . , NΠ) =
∑

σ∈SN−3

AYM,σ F
σ
Π(α

′) , (2.5)

with Π ∈ SN . Inserting the set (2.5) into the monodromy relations yields a set of relations

for the functions F σ
Π for each given σ ∈ SN−3. E.g. (2.4) gives the following set of identities:

F σ
(1,...,N) + eiπs12 F σ

(2,1,3,...,N−1,N) + eiπ(s12+s13) F σ
(2,3,1,...,N−1,N)

+ . . .+ eiπ(s12+s13+...+s1N−1) F σ
(2,3,...,N−1,1,N) = 0 , σ ∈ SN−3 .

(2.6)

Hence, for a given σ ∈ SN−3 corresponding to the given YM amplitude AYM,σ the set

of functions F σ
Π , Π ∈ SN enjoys the monodromy relations. As a consequence for each
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permutation σ ∈ SN−3 or YM basis amplitude AYM,σ there are (N−3)! different functions

F σ
Π all related through the equations (2.6) and permutations thereof.

Note that the α′ → 0 limit of eq. (2.5) reproduces explicit expressions of the kinematic

coefficients Kσ
Π introduced in (2.2) (which were already given in [4] for N–point field theory

amplitudes):

Kσ
Π = F σ

Π(α
′) |α′=0 . (2.7)

This relation enables to compute the matrix elements Kσ
Π directly by means of extracting

the field–theory limit of the string world–sheet integrals F σ
Π(α

′) (by the method described

in section 3.3) rather than by solving the monodromy relations (2.4).

Further insights can be gained when looking at different representations for the same

amplitude (2.1):

A(1, . . . , N) =
∑

π∈SN−3

AYM,π F
π
(1,...,N)(α

′) , (2.8)

with some permutations π ∈ SN−3 singling out a basis of (N − 3)! independent basis

amplitudes AYM,π. More precisely, in contrast to the set AYM,σ in (2.3), the new set

AYM,π in (2.8) represents a more general basis of (N − 3)! independent subamplitudes

AYM,π, where three legs i, j, k (possibly other than 1, N−1, N) are fixed and the remaining

ones are permuted by π ∈ SN−3.

By applying the decomposition (2.2) and comparing the two expressions (2.8) and

(2.1) we find the relation between the set of (N − 3)! new and old independent basis

functions Fπ
(1,...,N) and F

σ
(1,...,N):

F σ
(1,...,N) =

∑

π∈SN−3

(K−1)σπ F
π
(1,...,N) , σ ∈ SN−3 . (2.9)

In this case the matrix K becomes a quadratic (N−3)!×(N−3)! matrix, cf. subsection 2.3

for explicit examples. Hence, for a given fixed color ordering (1, . . . , N) any function F σ

may be expressed in terms of a basis of (N − 3)! functions Fπ referring to the same color

ordering. With (2.9) sets of systems of equations involving the kinematics functions Fπ

(of the same color ordering) can be generated. According to (2.7) the field–theory limits

of the functions F σ
π are enough to determine the coefficients of these equations.

The relation (2.9) should be compared with (2.2): While in the first identity one

specific color ordered amplitude is decomposed w.r.t. to a set of (N−3)! independent color

ordered amplitudes all referring to the same kinematics, in the second identity one functions

referring to one specific kinematics is decomposed to w.r.t. to a set of (N−3)! independent
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kinematics functions all referring to the same color ordering. Moreover, as we shall show

in subsection 2.3. for a fixed color ordering (1, . . . , N) an explicit set of (N − 2)! functions

FΠ
(1...N), Π ∈ SN−2 can be given, which fulfills (2.9) – just as a set of (N−2)! YM amplitudes

AYM,Π fulfills (2.2) for a fixed kinematics. Since the latter fact is a result of the (imaginary

part) field–theory monodromy relations, also the relations (2.9) should follow from a system

of equations for the (N − 2)! functions. Relations between functions FΠ
(1...N) of same

color ordering are obtained by either partial fraction decomposition of their integrands or

applying partial integration techniques within their N − 3 integrals. The partial fraction

expansion yields linear equations with integer coefficients for the functions FΠ – just like

the (real part) field–theory monodromy relations yield linear identities (e.g. subcyclic

identities) for the color ordered subamplitudes AYM . On the other hand, the partial

integration techniques applied to the (N−2)! functions FΠ provides a system of equations

of rank (N − 3)!, whose solution is given by (2.9). Hence, we have found a complete

analogy between the monodromy relations equating subamplitudes AYM,Π of different

color orderings Π ∈ SN−2 at the same kinematics and a system of equations relating

functions FΠ referring to different kinematics Π ∈ SN−2 at the same color ordering.

To conclude, behind the expression (2.1) there are two sets of equations: one set,

derived from the monodromy relations (2.4) and equating all subamplitudes of different

color orderings and an other set, derived from the partial fraction decomposition and

partial integration relations equating all kinematics functions Fπ. Both systems are of

rank (N−3)! and allow to express all colored ordered subamplitudes in terms of a minimal

basis or to express all kinematic functions in terms of a minimal basis.

2.2. Color decomposition of the full open superstring amplitude

The color decomposition of the full N–point open superstring amplitude MN can

be expressed by (N − 3)! × (N − 3)! different functions F σ
Π with (N − 3)! YM building

blocks AYM,σ. Firstly, the monodromy relations (2.4) allow to decompose each superstring
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subamplitude in a (N − 3)! element basis [8,9]4

A(1Π, . . . , NΠ) =
∑

π∈SN−3

Kπ
Π A(1, 2π, . . . , (N − 2)π, N − 1, N) , (2.10)

which generalizes the field–theory equation (2.2) in the sense that Kπ
Π(α

′) |α′=0 = Kπ
Π. The

basis expansion (2.10) simplifies the color dressed superstring amplitude to

MN =
∑

Π∈SN−1

Tr(T a1T a2Π . . . T aNΠ )
∑

σ∈SN−3

AYM,σ

∑

π∈SN−3

Kπ
Π F σ

π , (2.11)

with:

F σ
π := F σ

(1,π(2),...,π(N−2),N−1,N)(α
′) . (2.12)

In the sum (2.11) the same set of basis elements AYM,σ is used for all color orderings Π.

This enables to reorganize the color decomposition sum and to interchange the two sums

over color and kinematics:

MN =
∑

σ∈SN−3

AYM,σ

∑

Π∈SN−1

Tr(T a1T a2Π . . . T aNΠ )
∑

π∈SN−3

Kπ
Π F σ

π . (2.13)

Now in (2.13) the role of color and kinematics is swapped. While (2.11) represents a color

decomposition in terms of (N − 1)!/2 color ordered subamplitudes, the sum (2.13) is a

decomposition w.r.t. to (N − 3)! kinematical factors AYM,σ. The sum (2.13) could be the

string theory realization of the recently found observation, that in the color decomposition

of a gauge theory amplitude the role of color and kinematics may be swapped [5]. In these

lines the sum over Π may represent the pre-version of a dual amplitude Adual
N , in which

all kinematical factors AYM,Π are replaced by color traces. However, further studies are

necessary to establish a clear dictionary between Yang–Mills building blocks AYM,Π and

the kinematic analogue τ(12...N) of color traces: On the one hand, our AYM,Π have the

required cyclicity property, on the other hand, they still carry the kinematic poles which

should ultimately be outsourced from the local τ(12...N) into the dual amplitudes Adual
N .

4 In ref. [23], systems of equations of this type are neatly rephrased in terms of the so–called

momentum kernel matrix Sα′ [π|σ], which keeps track of relative monodromy phases between

two SN−2 permutations π and σ. It has non–maximal rank (N − 2)! − (N − 3)!, so the lin-

ear relations between color ordered superstring amplitudes can be compactly represented as∑
σ∈SN−2

Sα′ [π|σ]A(1, 2σ, 3σ, . . . , (N − 1)σ, N) = 0, π ∈ SN−2. On the level of the functions,

this relation implies:
∑

σ∈SN−2

Sα′ [π|σ]F ρ

(1,2σ,3σ,...,(N−1)σ,N)
= 0 , π, ρ ∈ SN−2 .
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2.3. Yang–Mills subamplitudes

Compact expressions for AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N) in D = 10 are derived

in [13] and can be used to describe the YM subamplitudes of (2.1). On the other hand

for D = 4, compact forms for AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N) in the spinor helicity

basis can be looked up in the literature: In the maximal helicity violating (MHV) case, the

subamplitudes reduce to the famous Parke–Taylor or Berends–Giele formula [24,25]. For

the general NMHV case, the complete expressions for AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N)

can be found in [26].

Since in the sum (2.1) the kinematical factors AYM and the functions F σ encoding the

string effects are multiplied together, supersymmetric Ward identities established in field–

theory [27-29] hold also for the full superstring amplitude, cf. also [21]. At any rate, after

component expansion the pure spinor result provides the N–point amplitude involving any

member of the SYM vector multiplet (VM) [30].

2.4. Minimal basis of multiple hypergeometric functions F σ

The system of (N − 3)! multiple hypergeometric functions F σ appearing in (2.1) are

given as generalized Euler integrals [1]5

F (23...N−2)(sij) = (−1)N−3

∫

zi<zi+1

N−2∏

j=2

dzj

(
∏

i<l

|zil|
sil

) {
N−2∏

k=2

k−1∑

m=1

smk

zmk

}
, (2.14)

with permutations σ ∈ SN−3 acting on all indices within the curly brace. Integration by

parts admits to simplify the integrand in (2.14). As a result the length of the sum over m

becomes shorter for k > [N/2]:

F (23...N−2)(sij) = (−1)N−3

∫

zi<zi+1

N−2∏

j=2

dzj

(
∏

i<l

|zil|
sil

)
(2.15)

×




[N/2]∏

k=2

k−1∑

m=1

smk

zmk








N−2∏

k=[N/2]+1

N−1∑

n=k+1

skn
zkn



 .

In the above, [. . .] denotes the Gauss bracket [x] = maxn∈Z,n≤x n, which picks out the

nearest integer smaller than or equal to its argument.

5 In contrast to [1] here we use momenta redefined by a factor of i. As a consequence the signs

of the kinematic invariants are flipped, e.g. |zil|
−sil → |zil|

sil .
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The result (2.1) is manifestly gauge invariant as a consequence of gauge invariance of

the YM subamplitudes AYM . Hence, gauge invariance does not impose further restrictions

on the (N − 3)! functions F σ
(1,...,N), which would further reduce the basis. The set (2.14)

of (N − 3)! functions represents a minimal basis for the set of multiple Gaussian hyperge-

ometric functions or Euler integrals appearing at N–point and referring to the same color

ordering (1, . . .N) or integration region z1 < . . . < zN . Any function of this ordering can

be expressed in terms of this basis.

The lowest terms of the α′–expansion of the functions F σ assume the form

F σ = 1 + α′2 pσ2 ζ(2) + α′3 pσ3 ζ(3) + . . . , σ = (23 . . .N − 2) ,

F σ = α′2 pσ2 ζ(2) + α′3 pσ3 ζ(3) + . . . , σ 6= (23 . . .N − 2) ,
(2.16)

with some polynomials pσn of degree n in the dimensionful kinematic invariants ŝij =

(ki + kj)
2 = sij/α

′ and ŝi...l = (ki + . . . + kl)
2 = si...l/α

′. Note that starting at N ≥ 7

subsets of F σ start at even higher order in α′, i.e. pσ2 , . . . , p
σ
ν = 0 for some ν ≥ 2, cf. section 3

and appendix C for further details. Hence, only the first term of (2.1) contributes to the

field–theory limit of the full N–point superstring amplitude. The power series expansions

(2.16) in α′ is such, that to each power α′n a transcendental function of degree n shows

up. More precisely, a set of multizeta values (MZVs) of fixed weight n appears at α′n. The

latter are multiplied by a polynomial pσn of degree n in the kinematic invariants ŝ with

rational coefficients. We refer the reader to subsection 3.1 and appendix A for more details

on α′–expansions and MZVs. From (2.16) we conclude, that the whole pole structure of

the amplitude (2.1) is encoded in the YM subamplitudes AYM , while the functions F σ are

finite, i.e. do not have poles in the kinematic invariants. A detailed account on multiple

Gaussian hypergeometric functions can be found in [31].

2.5. Extended set of multiple hypergeometric functions FΠ

A system of (N − 2)! functions FΠ, which fulfills (2.9) can be given as follows

F (23...N−1)(sij) =

∫

zi<zi+1

N−2∏

j=2

dzj

(
∏

i<l

|zil|
sil

) {
(−1)N−3

zN−1 − z1

N−2∏

k=2

k−1∑

m=1

smk

zmk

}
, (2.17)

with permutations Π ∈ SN−2 acting on all indices within the curly brace. The set of

(N − 2)! functions (2.17) can be expressed in terms of the basis (2.14) as a consequence

of the relations (2.9). This allows to express (N − 2)! − (N − 3)! = (N − 3) × (N − 3)!

functions of (2.17) in terms of (2.14). This will be demonstrated at some examples in the

next subsection.

In contrast to the minimal set of functions F σ, σ ∈ SN−3, some elements of the

extended set FΠ, Π ∈ SN−2 might have poles in individual Mandelstam invariants.
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2.6. Examples

2.6.1. N = 4

The unique integral appearing in (2.1) for the four–point amplitude is

F (2) = −

∫ 1

0

dz2

(
∏

i<l

|zil|
sil

)
s12
z12

=
Γ(1 + s12) Γ(1 + s23)

Γ(1 + s12 + s23)

= 1− ζ(2) s12s23 + ζ(3) s12s13s23 +O(α′4) . (2.18)

The extended set of two functions consists of (2.18) (with F (2) ≡ F (23)) and the additional

function (2.17):

F (32) = −

∫ 1

0

dz2

(
∏

i<l

|zil|
sil

)
1

z21

s13
z13

=
s13
s12

Γ(1 + s12) Γ(1 + s23)

Γ(1 + s12 + s23)

=
s13
s12

− ζ(2) s13s23 + ζ(3) s213s23 +O(α′4) . (2.19)

With this extended set of two functions we may explicitly verify the relation (2.9). For the

new basis π = {(1, 3, 2, 4)} in eq. (2.2) we have

Kσ
π =

s12
s13

(2.20)

w.r.t. the reference basis σ = {(1, 2, 3, 4, 5)} as a consequence of the field–theory relation

AYM (1, 3, 2, 4) = s12
s13

AYM (1, 2, 3, 4). According to (2.9) the following identity indeed

holds:

F (32) = K−1 F (23) . (2.21)

2.6.2. N = 5

The set of two basis functions appearing in (2.1) and following from (2.14) is:

F (23) =

∫

0<z2<z3<1

dz2dz3

(
∏

i<l

|zil|
sil

)
s12
z12

(
s13
z13

+
s23
z23

)

=

∫

0<z2<z3<1

dz2dz3

(
∏

i<l

|zil|
sil

)
s12
z12

s34
z34

= 1 + ζ(2) (s1s3 − s3s4 − s1s5)

− ζ(3) (s21s3 + 2s1s2s3 + s1s
2
3 − s23s4 − s3s

2
4 − s21s5 − s1s

2
5) +O(α′4),

F (32) =

∫

0<z2<z3<1

dz2dz3

(
∏

i<l

|zil|
sil

)
s13
z13

(
s12
z12

+
s32
z32

)

=

∫

0<z2<z3<1

dz2dz3

(
∏

i<l

|zil|
sil

)
s13
z13

s24
z24

= ζ(2) s13 s24 − ζ(3) s13 s24 (s1 + s2 + s3 + s4 + s5) +O(α′4) , (2.22)
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where si ≡ α′(ki + ki+1)
2 subject to cyclic identification ki+N ≡ ki.

The extended set of six functions consists of (2.22), with

F (234) := F (23) , F (324) := F (32) , (2.23)

and the additional four functions (2.17):

F (423) =

∫

0<z2<z3<1

dz2dz3

(
∏

i<l

|zil|
sil

)
1

z31

s14
z14

s23
z23

,

F (243) =

∫

0<z2<z3<1

dz2dz3

(
∏

i<l

|zil|
sil

)
1

z31

s12
z12

s34
z43

,

F (432) =

∫

0<z2<z3<1

dz2dz3

(
∏

i<l

|zil|
sil

)
1

z21

s14
z14

s23
z32

,

F (342) =

∫

0<z2<z3<1

dz2dz3

(
∏

i<l

|zil|
sil

)
1

z21

s13
z13

s24
z42

. (2.24)

With this extended set of six functions we may explicitly verify the relation (2.9). For the

new basis π = {(1, 4, 2, 3, 5), (1, 2, 4, 3, 5)} in eq. (2.2) we have

Kσ
π =

1

s14 s35

(
s12 s34 −s13 (s34 + s45)

s14 (s12 − s45) −s14 s13

)
(2.25)

w.r.t. the reference basis σ = {(1, 2, 3, 4, 5), (1, 3, 2, 4, 5)}. According to (2.9) the following

identity indeed holds (with K∗ = (K−1)t):

(
F (423)

F (243)

)
= K∗

(
F (234)

F (324)

)
. (2.26)

On the other hand, for the new basis π = {(1, 4, 3, 2, 5), (1, 3, 4, 2, 5)} we have

Kσ
π =

1

s14 s35

(
s12 (s14 + s34) s13 s24

−s12 s14 −s14 (s12 + s23)

)
, (2.27)

and the following relation can be checked:

(
F (432)

F (342)

)
= K∗

(
F (234)

F (324)

)
. (2.28)

Hence, the relations (2.26) and (2.28) allow to express the additional set of functions (2.24)

in terms of the minimal basis (2.22).
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2.6.3. N = 6

The set of six basis functions appearing in (2.1) and following from (2.14) is

F (234) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
s12
z12

s45
z45

(
s13
z13

+
s23
z23

)
=

= 1− ζ(2) (s4s5 + s1s6 − s4t1 − s1t3 + t1t3)

+ ζ(3)
(
2s1s2s4 + 2s1s3s4 + s24s5 + s4s

2
5 + s21s6 + s1s

2
6 − 2s3s4t1

−s24t1 − s4t
2
1 − 2s1s4t2 − s21t3 − 2s1s2t3 + t21t3 − s1t

2
3 + t1t

2
3

)
+O(α′4),

F (324) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
s13
z13

s45
z45

(
s12
z12

+
s32
z32

)
=

= −ζ(2) s13d9 + ζ(3) s13
(
s1s2 + s22 − 2s2s4 − 2s3s4 − s1s6 − s26

+s2t1 − s6t1 + 2s4t2 + s1t3 + 2s2t3 + t1t3 + t23
)
+O(α′4),

F (432) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
s14
z14

s25
z25

(
s13
z13

+
s43
z43

)

= −ζ(2) s14s25 + ζ(3) s14s25 (−s2 − s3 + s5 + s6 + t1 + t2 + t3) +O(α′4),

F (342) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
s13
z13

s25
z25

(
s14
z14

+
s34
z34

)

= ζ(2) s13s25 + ζ(3) s13s25 (−s1 + s2 + 2s3 − s6 − t1 − 2t2 − t3) +O(α′4),

F (423) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
s14
z14

s35
z35

(
s12
z12

+
s42
z42

)

= ζ(2) s14s35 + ζ(3) s14s35 (2s2 + s3 − s4 − s5 − t1 − 2t2 − t3) +O(α′4),

F (243) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
s12
z12

s35
z35

(
s14
z14

+
s24
z24

)
=

= −ζ(2) s35d1 + ζ(3) s35
(
−2s1s2 − 2s1s3 + s23 + s3s4 − s4s5 − s25

+2s3t1 + s4t1 + t21 + 2s1t2 + s3t3 − s5t3 + t1t3
)
+O(α′4), (2.29)

with d1 = s3 − s5 + t1 and d9 = s2 − s6 + t3. The extended set of 24 functions consists of

(2.29) with

F (2345) := F (234) , F (3245) := F (324) , F (4325) := F (432) ,

F (3425) := F (342) , F (4235) := F (423) , F (2435) := F (243) ,
(2.30)

and the additional 18 functions (2.17), which are listed in the appendix B.
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For the new basis π = {(1, 2, 3, 5, 4, 6), (1, 3, 2, 5, 4, 6), (1, 5, 3, 2, 4, 6), (1, 3, 5, 2, 4, 6),

(1, 5, 2, 3, 4, 6), (1, 2, 5, 3, 4, 6)} in eq. (2.2) we have

Kσ
π = s−1

46

×




s5−t1 0 0 0 s14 −d1

0 s5−t1 s14 s3+s14 0 0

s1s4d0
s15t246

s4s13(s25−s46)

s15t246

−s13s14s25
s15t246

−s13s25(s3+s14)

s15t246

s14(s46−s1)d0
s15t246

s1(s3+s4)d0
s15t246

−s1s4
t246

−s4(s1+s2)
t246

s14d4
t246

(s14+s3)d4
t246

s14(s1−s46)
t246

−s1(s3+s4)
t246

s1s4(s35−s46)
s15t125

s4s13d3
s15t125

(s46−s13)d3s14
s15t125

(s4+s24)s13d3
s15t125

−s1s14s35
s15t125

s1s35d1
s15t125

s4(s1−t1)

t125

−s4s13
t125

s14(s13−s46)

t125

−s13(s4+s24)

t125

−s14d2
t125

d1d2
t125




(2.31)

w.r.t. the reference basis σ = {(1, 2, 3, 4, 5, 6), (1, 3, 2, 4, 5, 6), (1, 4, 3, 2, 5, 6), (1, 3, 4, 2, 5, 6),

(1, 4, 2, 3, 5, 6), (1, 2, 4, 3, 5, 6)}. According to (2.9) the following identity indeed holds:




F (2354)

F (3254)

F (5324)

F (3524)

F (5234)

F (2534)




= K∗




F (2345)

F (3245)

F (4325)

F (3425)

F (4235)

F (2435)




. (2.32)

In the above matrix (2.31) we have introduced d0 = s15 + s35, d2 = s1 − s4 − s5, d3 =

s3 − s5 − t3, d4 = s4 + s5 − s13 and tijk = α′(kikj + kikk + kjkk). The other two sets of

basis π and their relations (2.9) to the reference basis σ are displayed in appendix B.

2.7. Properties of the full amplitude

The factorization properties of tree–level amplitudes are well studied in field–theory

[32]. These properties represent an important test of our string result.

2.7.1. Soft limit

According to subsection 2.2 it is sufficient to focus on the N–gluon amplitude. We

consider the limit kN−2 → 0. In this limit the amplitude (2.1) behaves as6:

A(1, . . . , N) −→

(
ξkN−2

kN−2k
−
ξkN−3

kN−3k

)
A(1, . . . , N − 1) . (2.33)

6 The vectors ξ and k refer to the transverse polarization and momentum of the soft–gluon,

respectively. Furthermore, kj denote the external momenta of remaining legs. One could also

express the kinematic dependent factor as soft or eikonal factor written e.g. in the D = 4 spinor

helicity basis [32,33].
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This can be proven by considering the limits of the individual summands of (2.1):

(i) σ ∈ SN−4 with (N − 3)σ = N − 3 : (2.34)

AYM (1, 2σ, . . . , (N − 3)σ, N − 2, N − 1, N) F σ(α′)

−→

(
ξkN−2

kN−2k
−
ξkN−3

kN−3k

)
AYM (1, 2σ, . . . , (N − 3)σ, N − 2, N − 1) F̃ σ(α′) ,

(ii) σ ∈ SN−4 with (N − 3)σ 6= N − 3 :

AYM (1, 2σ, . . . , (N − 3)σ, N − 2, N − 1, N) F σ(α′)

−→

(
ξkN−2

kN−2k
−
ξk(N−3)σ

k(N−3)σk

)
AYM (1, 2σ, . . . , (N − 3)σ, N − 2, N − 1) F̃ σ(α′) ,

(iii) σ ∈ SN−4 with N − 3 ∈ {2σ, . . . , iσ} and i = 2, . . . , N − 4, i.e. (N − 3)σ 6= N − 3 :

AYM (1, 2σ, . . . , iσ, N − 2, (i+ 1)σ, . . . , (N − 3)σ, N − 1, N) F σ(α′)

−→

(
ξk(i+1)σ

k(i+1)σk
−
ξkiσ
kiσk

)
AYM (1, 2σ, . . . , (N − 3)σ, N − 2, N − 1) F̃ σ(α′) ,

(iv) σ ∈ SN−4 : AYM (1, N − 2, 2σ, . . . , (N − 3)σ, N − 1, N) F σ(α′) −→ 0 ,

(v) σ ∈ SN−4 with N − 3 ∈ {(i+ 1)σ, . . . , (N − 3)σ} and i = 2, . . . , N − 4 :

AYM (1, 2σ, . . . , iσ, N − 2, (i+ 1)σ, . . . , (N − 3)σ, N − 1, N) F σ(α′) −→ 0 .

The above functions F̃ σ refer to theN−1–point amplitude. While the (N−5)! summands of

case (i) already have the right form (2.33) and give rise to (N−5)! terms of the N−1–point

amplitude (2.1), the remaining non–vanishing limits (ii) and (iii) for a given σ ∈ SN−4

with (N − 3)σ 6= N − 3 conspire to comprise the remaining (N − 5)(N − 5)! terms of (2.1)

thanks to the relation:

(
ξkN−2

kN−2k
−
ξk(N−3)σ

k(N−3)σk

)
+

N−4∑

i=2
N−3∈{2σ,...,iσ}

(
ξk(i+1)σ

k(i+1)σk
−
ξkiσ
kiσk

)
=

(
ξkN−2

kN−2k
−
ξkN−3

kN−3k

)
.

The remaining 1
2 (N−3)! terms of the cases (iv) and (v) do not contribute in the soft limit.

2.7.2. Collinear limit

Again, according to subsection 2.2 it is sufficient to focus on the N–gluon amplitude.

The collinear limit is defined as two adjacent external momenta ki and ki+1, with i+1 mod

N , becoming parallel. Due to cyclic symmetry, these can be chosen as kN−3 and kN−2,
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with kN−3 carrying the fraction x of the combined momentum kN−3 + kN−2 → kN−3.

Formally,

kN−3 → x kN−3 , kN−2 → (1− x) kN−3 , (2.35)

where the momenta appearing in the limits describe the scattering amplitude of N − 1

gluons. In this limit the amplitude (2.1) behaves as7

A(1, . . . , N) −→
1

kN−3kN−2
V i ∂

∂ξiN−3

A(1, . . . , N − 1) , (2.36)

with the three–gluon vertex V i = (ξN−3ξN−2)(k
i
N−2 − kiN−3) + 2(ξN−2kN−3)ξ

i
N−3 −

2(ξN−3kN−2)ξ
i
N−2. This can be proven by considering the limits of the individual sum-

mands of (2.1). First, if the two states N − 3 and N − 2 are not neighbours, we have:

(i) σ ∈ SN−4 with 2σ 6= N − 3 : AYM (1, N − 2, 2σ, . . . , (N − 3)σ, N − 1, N) −→ 0 ,

(ii) σ ∈ SN−4 with iσ, (i+ 1)σ 6= N − 3 and i = 2, . . . , N − 4 :

AYM (1, 2σ, . . . , iσ, N − 2, (i+ 1)σ, . . . , (N − 3)σ, N − 1, N) −→ 0 . (2.37)

On the other hand, the remaining 2(N − 4)! terms of (2.1) pair up into (N − 4)! tuples

(σ, σ̃) each giving rise to one of the (N − 4)! terms of the N − 1–point amplitude (2.1):

σ, σ̃ ∈ SN−4 with iσ = (i+ 1)σ̃ = N − 3 and i = 2, . . . , N − 4 : (2.38)

AYM (1, 2σ, . . . , iσ, N − 2, (i+ 1)σ, . . . , (N − 3)σ, N − 1, N) F σ(α′)

+ AYM (1, 2σ̃, . . . , iσ̃, N − 2, (i+ 1)σ̃, . . . , (N − 3)σ̃, N − 1, N) F σ̃(α′)

→
1

kN−3kN−2
V i ∂

∂ξiN−3

AYM (1, 2σ, . . . , (N − 3)σ, N − 2, N − 1) F σ(α′) .

Note that in the above combination the x–dependent parts of the two functions F σ and

F σ̃, which stems from the limit (2.35), add up to zero.

2.7.3. Cyclic invariance

While the YM constituent AYM (1, . . . , N) of (2.1) is invariant under cyclic trans-

formations of its labels i → i + 1 mod N , all others transform non–trivially. More

precisely, the set {AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N) | σ ∈ SN−3} is mapped to

7 One could also express the kinematic dependent factor as splitting amplitude written e.g. in

the D = 4 spinor helicity basis [32,33].
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the set {AYM (1, 2, 3σ, . . . , (N − 2)σ, (N − 1)σ, N) | σ ∈ SN−3} by virtue of the

cyclic properties of the AYM . The latter set belongs to the extended SN−2 family

{AYM (1, 2Π, . . . , (N − 1)Π, N) | Π ∈ SN−2}, which can be expanded in terms of the

original basis AYM (1, 2σ, . . . , (N − 2)σ, N − 1, N) according to (2.2). The cyclic transfor-

mation properties of the minimal basis functions F σ are such that the change of AYM,σ

into AYM,Π(σ) =
∑

π∈SN−3

Kπ
Π(σ)AYM,π is compensated:

F σ |ki→ki+1
= FΠ(σ) =

∑

ρ∈SN−3

(K−1)Π(σ)
ρ F ρ . (2.39)

The map Π(σ) is defined by (2Π(σ), . . . , (N − 1)Π(σ)) = (2, 2σ + 1, . . . , (N − 2)σ + 1).

3. The module of multiple hypergeometric functions

The functions F σ describing the full N–point amplitude (2.1) have been introduced

in eqs. (2.14) and (2.17) and are given by generalized Euler integrals. Generalized Euler

integrals appear in any higher–point open string amplitude computation. Therefore, we

find it useful in this section to investigate the properties of these integrals on general

grounds.

3.1. Generalized Euler integrals and multiple hypergeometric functions

For the color ordering (1, . . . , N) the integrals of interest can be written

BN [ñ] =

∫

zi<zi+1




N−2∏

j=2

dzj




∏

1≤i<j≤N−1

|zij |
sij z

ñij

ij , (3.1)

with some set ñ of integers ñij ∈ Z. The latter must fulfill the conditions8

N∑

i<j

ñij +
N∑

i>j

ñji = −2 , j = 1, . . . , N (3.2)

as a result of conformal invariance on the string world–sheet. After fixing three of the

vertex positions as

z1 = 0 , zN−1 = 1 , zN = ∞ , (3.3)

8 Note that the integrands of (2.14) and (2.17) can always be completed to meet this condition.
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and parameterizing the integration region z2 < . . . < zN−2 as

zk =

N−3∏

l=k−1

xl , k = 2, . . . , N − 2 , (3.4)

with 0 < xi < 1 the integrand in (2.14) takes the generic form:

BN [n] =

(
N−3∏

i=1

∫ 1

0

dxi

)
N−3∏

j=1

x
s12...j+1+nj

j

N−3∏

l=j



 1 −
l∏

k=j

xk




sj+1,l+2+njl

, (3.5)

with the set of 1
2N(N − 3) integers nj , njl ∈ Z and si,j ≡ sij:

njl = ñj+1,l+2 , j ≤ l ,

nj = j − 1 +

j+1∑

i<j

ñil , 1 ≤ j ≤ N − 3 .
(3.6)

The integrals represent generalized Euler integrals and integrate to multiple Gaussian

hypergeometric functions [20].

With (3.2) and (3.6) from a rational function

R(xi) =
N−3∏

j=1

x
nj

j

N−3∏

l=j

(1−
l∏

k=j

xk)
njl

in the N − 3 variables xi multiplying the integrand of (3.5) an other rational function

R̃(zij) =
∏

1≤i<j≤N−1

z
ñij

ij

depending on theN−1 variables zi and multiplying the integrand of (3.1) can be computed.

In the following we write this correspondence as:

R(xi) ≃ R̃(zij) . (3.7)

3.2. Partial fraction decomposition and finding a basis

There are many relations among integrals (3.1) with different sets ñ of integers as a

result9 of partial fraction decomposition

1

zijzjk
+

1

zikzkj
=

1

zijzik
(3.8)

9 In fact, these tools have allowed to boil down the set of functions appearing in the open

superstring N–point amplitude [1] to the set (2.14).
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and partial integration of their integrands:

0 =

∫ N−2∏

j=2

dzj
∂

∂zk

∏

1≤i<j≤N−1

|zij |
sij z

ñij

ij (3.9)

=

∫ N−2∏

j=2

dzj
∏

1≤i<j≤N−1

|zij |
sij z

ñij

ij

(
∑

m<k

smk + ñmk

zmk
+
∑

m>k

skm + ñkm

zkm

)
.

Note that in this way any integral (3.1) with powers ñij < −1 can always be expressed by

a chain of integrals with ñij ≥ −1. Hence, in the following it is sufficient to concentrate

on those cases ñij ≥ −1. A quantitative handiness on finding a minimal set of functions

can be obtained by performing

(i) a classification of the integrals (3.1) according to their pole structure in the kinematic

invariants sij and

(ii) a Gröbner basis analysis for those integrals (3.1) without poles.

Any partial fraction decomposition of an Euler integral with poles can be arranged

according to its pole structure (modulo finite or subleading pieces) and the classification

(i) yields a basis for them. This is achieved by performing a partial fraction expansion of

the leading singularity in the kinematic invariants sij . On the other hand, the Gröbner

basis analysis (ii) provides an independent set of rational functions or monomials in the

Euler integrals and any integral (3.1) without poles can be expanded in terms of this set.

Combining (i) and (ii) yields an independent set of integrals (3.1) and any partial fraction

decomposition of Euler integrals (3.1) can be expressed in terms of the basis obtained this

way. In subsection 3.3. and 3.4 we explicitly construct this partial fraction basis for the

cases N = 4, 5 and N = 6 and verify its dimension (N − 2)!.

The first classification (i) of the integrals (3.1) is done w.r.t. their pole structure in

the kinematic invariants sij . The maximum number of possible simultaneous poles of an

N–point amplitude is N − 3. Integrals of this type play an important role, since they

capture the field–theory limit of the full amplitude. They assume the following power

series expansion in α′:

BN [ñ] = α′3−N p3−N [ñ] + α′5−N
∞∑

m=0

α′m
′∑

ir∈N,i1>1
i1+...+id=m+2

pi5−N+m[ñ] ζ(i1, . . . , id)

= α′3−N p3−N [ñ] + α′5−N p5−N [ñ] ζ(2) + α′6−N p6−N [ñ] ζ(3) + . . . .

(3.10)
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The above rational functions or monomials pi5−N+m[ñ] are of degree 5−N +m in the di-

mensionful kinematic invariants ŝij = sij/α
′ and depend on the integer set ñ. Furthermore,

we have introduced the MZVs

ζ(i1,. . . ,id) =
∑

n1>...>nd>0

d∏

r=1

n−ir
r , ir ∈ N, i1 > 1

of transcendentality degree
∑d

r=1 ir = m+2 and depth d, cf. e.g. [34] for more details and

references. The prime at the sum (3.10) means, that the latter runs only over a basis of

independent MZVs of weight m+2. In (3.10) at each order 5−N +m in α′ a set of MZVs

of a fixed transcendentality degree m + 2 appears. We call such a power series expansion

transcendental, cf. appendix A for a detailed discussion. In subsection 3.3 we present a

method to extract the first term of (3.10) corresponding to integrals (3.1) with N − 3

simultaneous poles. In fact, this method allows to extract any lowest order poles from

integrals (3.1) with fewer simultaneous poles. However, as we shall demonstrate, their

type of integrals generically does not assume the transcendental power series expansion

(3.10). At any rate, the method of subsection 3.3 determines the lowest order poles of the

integral (3.1).

The second classification (ii) of the integrals (3.1) is appropriate, if the latter have no

poles, i.e. their power series expansion in α′ starts with some zeta constants. In subsection

3.4 we introduce a Gröbner basis analysis, which allows to find an independent set of

finite integrals (3.1), which serves as basis. Any other finite integral (3.1) is a R–linear

combination of this basis.

Note that the individual integrals entering the functions (2.14) and (2.17) are of both

types – some of them have N − 3 simultaneous poles and their α′–expansion assumes the

form (3.10), others have no poles and start with some zeta constants. In either case our

methods (i) or (ii) can be applied to further reduce them.

3.3. Structure of multiple resonance exchanges

Generically, an N–point scattering process has multiple resonance exchanges. As a

result, the power series expansion in α′ of the integrals (3.5) may have multiple poles in the

Mandelstam variables. These poles come from regions of the integrand for which xi → 0

or xi → 1 for some of the variables xi. To obtain information on the pole structure of the

integrals (3.5) it is useful to transform the integrand to a different form, in which the poles

can be easily extracted.
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For an N–point scattering process there are 1
2N(N − 3) planar channels (i, j) ∈ P

associated to the Mandelstam variable Si,j = α′(ki + ki+1 + · · ·+ kj)
2, with

P = { (1, j) | 2 ≤ j ≤ N − 2 } ∪ { (p, q) | 2 ≤ p < q ≤ N − 1 } (3.11)

for the color ordering (1, 2, . . . , N). The channels (i, j) with states from i, . . . , j and (j +

1, i−1) with states from j+1, . . . , N, 1, . . . , i−1 are identical. The set of N −3 kinematic

invariants, which can simultaneously appear in the denominator of the α′–expansion of

the N–point amplitude, describe the allowed (planar) channels of the underlying field–

theory diagram involving cubic vertices. Not all combinations of channels are allowed.

E.g. adjacent channels as (i, i + 1) and (i + 1, i + 2) cannot appear simultaneously in

denominators (dual or incompatible channels). On the other hand, for non–dual channels

coincident poles are possible. A geometric way to find all compatible channels is to draw

a convex N–polygon of N sides representing momentum conservation. The number of

ways of cutting this polygon into N − 2 triangles with N − 3 non–intersecting straight

lines gives the number of distinct sets of allowed channels. According to Euler’s polygon

division problem this number is given by CN−2 = 2N−2 (2N−5)!!
(N−1)! , with the Catalan number

Cn = 1
n+1

(
2n
n

)
. The N − 3 diagonals of this polygon represent the momenta of possible

intermediate states. To each of the 1
2
N(N − 3) channels (i, j) a variable ui,j ∈ (0, 1) may

be ascribed, with ui,j ≡ uj+1,i−1. For an account and references on the multiparticle dual

model see [35].

1

2

3 4 5 6

7

8

u1,2 u1,3 u1,4 u1,5 u1,6

1

2 3

4

58

67

u1,2

u1,3

u1,4

u1,5u1,6

k1

k2

k3

k4

k5

k6

k7

k8

Fig. 1 Multiperipheral configuration and corresponding dual diagram for N = 8.

For a given channel (i, j) with ui,j = 0 all incompatible channels (p, q) are required to have

up,q = 1. This property is described by the 1
2N(N − 3) duality constraint equations

ui,j = 1−
∏

1≤p<i

i≤q<j

up,q
∏

i<r≤j

j<s≤N−1

ur,s , 1 ≤ i < j ≤ N , (3.12)

21



which are sufficient for excluding simultaneous poles in incompatible channels. We define

ui,i = 0, u1,N−1 = 1 and have uk,N = u1,k−1, k ≥ 3. Only 1
2 (N − 2)(N − 3) of these

equations (3.12) are independent, leaving N − 3 variables ui,j out of the set of 1
2
N(N − 3)

variables free. The set of N − 3 independent variables ui,j can be associated to the inner

lines of one of the CN−2 sliced N–polygon. In particular, as a canonical choice we may

define

u1,j+1 = xj , j = 1, . . . , N − 3 (3.13)

as a set of N − 3 independent variables corresponding to Fig. 1. Hence, each of the

internal lines of the polygon corresponds to an independent variable xj in the integral

(3.5). Choosing the inner lines of an other sliced N–polygon results in a different integral

representation (3.5). As a consequence of (3.12) and (3.13) we have10 :

1− xj =
∏

0<r≤j

j<s≤N−2

ur+1,s+1 , j = 1, . . . , N − 3 , (3.15)

1−

j∏

k=i

xk =
∏

1≤p≤i

j+1≤q≤N−2

up+1,q+1 , 1 ≤ i ≤ j ≤ N − 3 .

With (3.15) and the Jacobian
∏

2≤i<j≤N−1

uj−i−1
i,j , the integral (3.5) translates into an inte-

gral over all 1
2
N(N − 3) variables uP related to the partitions P given in (3.11)

BN [n] =
∏

(i,j)∈P

∫ 1

0

dui,j u
Si,j+ni,j

i,j

∏

P′ /∈(1,j)

δ


uP′ − 1 +

∏

P̃

uP̃


 , (3.16)

10 The inverse solution to the duality constraint (3.12) may be found as (p = 2, 3, . . . , N−2; q =

3, 4, . . . , N − 1 and p < q):

up,q =





(
1−

q−1∏
m=p

u1,m

) (
1−

q∏
n=p−1

u1,n

)

(
1−

q−1∏
r=p−1

u1,r

) (
1−

q∏
s=p

u1,s

) , q 6= N − 1

(
1−

q−1∏
m=p

u1,m

)

(
1−

q−1∏
r=p−1

u1,r

) , q = N − 1 .

(3.14)
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with the assignments:

n1,j+1 = nj , nj+1,j+2 = njj , j = 1, . . . , N − 3 ,

ni,j = j − i− 1 +

j−2∑

i−1≤k≤l

nkl , 1 < i < j < N . (3.17)

In (3.16) the integration is constrained by the duality conditions (3.12) resulting in a

product of 1
2
(N − 2)(N − 3) independent δ–functions. In this form (3.16) many properties

of the integrals (3.5) like the pole structure or cyclicity become manifest. Later this will

be elucidated with examples.

We can introduce a fundamental set of CN−2 integrals BN

⋃

(il,jl)∈P





∏

(i,j)∈P

∫ 1

0

dui,j u
Si,j

i,j

(
N−3∏

l=1

uil,jl

)−1 ∏

P′ /∈(1,j)

δ



uP′ − 1 +
∏

P̃

uP̃







 ,

(3.18)

with (il, jl) running over all CN−2 allowed channels11. The α′–expansion of each of the

elements (3.18) assumes the form (3.10) with
N−3∏
l=1

S−1
il,jl

as its lowest order term. Any other

integral (3.5) with N − 3 simultaneous poles can be expressed as R–linear combination of

the basis (3.18) modulo less singular terms. In case of a sum of N − 3 simultaneous poles

this is achieved by partial fraction decomposition of the polynomials according to their

leading singular term and associating the latter with the basis (3.18).

A special role is played by the integral:

BN [n = −1] =
∏

(i,j)∈P

∫ 1

0

dui,j u
Si,j−1
i,j

∏

P′ /∈(1,j)

δ


uP′ − 1 +

∏

P̃

uP̃


 . (3.19)

By construction it is manifestly invariant under cyclic transformations Si,j → Si+1,j+1,

with i ≡ i+N, j ≡ j +N . Furthermore, it furnishes all CN−2 sets of allowed channels at

the lowest order, i.e.

BN [n = −1] =
∑

(il,jl)∈P

1
N−3∏
l=1

Sil,jl

+ · · · , (3.20)

11 As pointed out before, these integrals appear as constituents of some of the functions F σ. The

poles in their BN combinations are cancelled by the corresponding sij factors in the numerator

of the F σ such that they are rendered local.
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with the sum running over all CN−2 allowed channels. In terms of (3.5), eq. (3.19) takes

the form:

BN

[
ni = −1

nii = −1

]
=

(
N−3∏

i=1

∫ 1

0

dxi

)
N−3∏

j=1

x
s12...j+1−1
j (1− xj)

sj+1,j+2−1

×
N−3∏

l=j+1


 1 −

l∏

k=j

xk




sj+1,l+2 (3.21)

Obviously, (3.19) can be expanded in terms of the basis (3.18).

3.3.1. N = 4

In the case of N = 4 we have the two planar channels (1, 2) and (2, 3) ≡ (1, 4) related

to the two variables u1,2 and u2,3, respectively. After choosing the independent variable

u1,2 = x1 := x and following the steps (3.15) the integral (3.5)

B4[n] =

∫ 1

0

dx xs12+n1 (1− x)s23+n11 (3.22)

takes the form (3.16)

B4[n] =

∫ 1

0

du1,2

∫ 1

0

du2,3 u
s12+n1,2

1,2 u
s23+n2,3

2,3 δ(u1,2 + u2,3 − 1) , (3.23)

with (3.17), i.e. n1,2 = n1 and n2,3 = n11.

The fundamental objects (3.18) correspond to the two rational functions

1

u1,2
,

1

u2,3
, (3.24)

which furnish the C2 = 2 poles s−1
12 and s−1

23 as single poles, respectively. The cyclically

invariant integral (3.19) is given by

B4

[
n1 = −1

n11 = −1

]
=

∫ 1

0

dx xs12−1 (1− x)s23−1 = B(s12, s23) =
1

s12
+

1

s23
+ · · · (3.25)

and exhibits both poles in its power series expansion.
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3.3.2. N = 5

In this case we have the five planar channels (1, 2), (2, 3), (3, 4), (1, 3) ≡ (4, 5) and

(2, 4) ≡ (1, 5) related to the five variables u1,2, u2,3, u3,4, u4,5 ≡ u1,3 and u5,1 ≡ u2,4,

respectively. The five–point integral (3.5) becomes

B5[n] =

∫ 1

0

dx1

∫ 1

0

dx2 x
s1+n1
1 xs4+n2

2 (1− x1)
s2+n11 (1− x2)

s3+n22 (1− x1x2)
s24+n12 ,

(3.26)

with si = α′(ki + ki+1)
2, i = 1, . . . , 5 subject to the cyclic identification i + 5 ≡ i. To

transform (3.26) into the form (3.16) according to (3.13) we choose the two independent

variables u1,2 = x1 and u1,3 = x2. Then, with (3.15) the integral (3.26) takes the form

B5[n] =

∫ 1

0

du1,2

∫ 1

0

du2,3

∫ 1

0

du3,4

∫ 1

0

du4,5

∫ 1

0

du1,5 u
s1+n1,2

1,2 u
s2+n2,3

2,3 u
s3+n3,4

3,4 u
s4+n1,3

4,5

× u
s5+n2,4

1,5 δ(u2,3 + u1,2u3,4 − 1) δ(u2,4 + u1,2u4,5 − 1) δ(u3,4 + u2,3u4,5 − 1) ,

(3.27)

with the assignment (3.17).

In what follows it is convenient to introduce

I5(x, y) = xs4 ys1 (1− x)s3 (1− y)s2 (1− xy)s24 (3.28)

arising from (3.26) with the identifications x1 := y and x2 := x. Furthermore, we use the

following shorter notation for the dual variables ui,j:

Xi = ui,i+1 , i = 1, . . . , 5 , i+ 5 ≡ i (3.29)

and define:

J5(X) =

(
5∏

i=1

Xsi
i

)
δ(X2 +X1X3 − 1) δ(X3 +X2X4 − 1) δ(X5 +X1X4 − 1) . (3.30)

Let us now discuss a few examples. The pole structure of the integral

∫ 1

0

dx

∫ 1

0

dy
I5(x, y)

(1− y) (1− xy)
(3.31)

can be easily deduced after transforming it into the form (3.27)

(
5∏

i=1

∫ 1

0

dXi

)
J5(X)

1

X2X5
=

1

s2s5
+ · · · . (3.32)
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Hence, the only simultaneous pole is at X2, X5 → 0 with the product of δ–functions

yielding the constraints for the three variables X1, X3, X4 → 1. In the sequel we list a few

non–trivial examples:

rational function

in eq. (3.1)

rational function

in eq. (3.26)

rational function

in eq. (3.27)
lowest order poles

z15
z12z13z14z25z35z45

1
x y

X5

X1X4

1
s1s4

,

1
z12z13z24z35z45

1
x y (1−xy)

1
X1X4

1
s1s4

,

1
z13z14z23z25z45

1
x (1−y)

1
X2X4

1
s2s4

,

1
z14z15z23z25z34

1
(1−x) (1−y)

1
X2X3X5

1
s2s5

+
1

s3s5
,

1
z12z15z24z34z35

1
(1−x) y (1−xy)

1
X1X3X5

1
s1s3

+
1

s3s5
.

(3.33)

The fundamental objects (3.18) correspond to the five rational functions

1

X1X3
,

1

X2X4
,

1

X3X5
,

1

X1X4
,

1

X2X5
, (3.34)

which furnish the C3 = 5 poles

1

s1s3
,

1

s2s4
,

1

s3s5
,

1

s1s4
,

1

s2s5
, (3.35)

as single poles, respectively. In the basis (3.26) the rational functions become

1

(1− x)y
,

1

x(1− y)
,

1

(1− x)(1− xy)
,

1

xy(1− xy)
,

1

(1− y)(1− xy)
, (3.36)

respectively. The cyclically invariant integral (3.19) is given by

B5

[
ni = −1

nii = −1

]
=

∫ 1

0

dx

∫ 1

0

dy
I5(x, y)

x (1− x) y (1− y)
=

1

s1s3
+

1

s2s4
+

1

s3s5
+

1

s1s4
+

1

s2s5
+· · · ,

(3.37)

and exhibits all five poles (3.35) in its power series expansion.

Finally, as we shall see in the next subsection there is one rational function without

poles and its series expansion starts at ζ(2):

rational function

in eq. (3.1)

rational function

in eq. (3.26)

monomial
in eq. (3.27)

lowest order

1
z13z14z24z25z35

1
(1−xy) 1 ζ(2) .

(3.38)
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The function (3.38) together with (3.33) furnishes the six dimensional partial fraction basis

of N = 5 integrals. It may be added to (3.34) to give rise to another fundamental set

X2

X1X3
,

X3

X2X4
,

X4

X3X5
,

X5

X1X4
,
X1

X2X5
, (3.39)

subject to the constraints (3.30) and with the same poles (3.35), respectively. In the basis

(3.5) the latter rational functions correspond to

1− y

(1− x)y(1− xy)
,

1− x

x(1− y)(1− xy)
,

x

(1− x)(1− xy)
,

1

xy
,

y

(1− y)(1− xy)
, (3.40)

respectively. Since we have

X3

X1X4
≃

1

xy

1− x

(1− xy)2
≃

z25z34
z12z13z224z

2
35z45

,
X2

X1X4
≃

1

xy

1− y

(1− xy)2
≃

z14z23
z12z213z

2
24z35z45

,

X3X5

X1X4
≃

1

xy

1− x

(1− xy)
≃

z15z34
z12z13z14z24z235z45

,
X2X5

X1X4
≃

1

xy

1− y

(1− xy)
≃

z15z23
z12z213z24z25z35z45

,

the two rational functions 1
X1X4

and X5

X1X4
are the only possibilities to realize the poles 1

s1s4

without double poles in the denominator of (3.1). Due to cyclicity these arguments take

over to the other four poles (3.35) and their rational functions (3.34) and (3.39). Generally,

rational functions other than the latter give rise to double powers in the denominator of

(3.1), e.g.:
1

X1
≃

1

y(1− xy)
≃

1

z12z14z24z235
,

X1

X2
≃

y

1− y
≃

z12
z13z

2
14z23z

2
25

.

Similarly, as we shall see in the next subsection monomials in the variables Xi other than

the trivial case (3.38) yield to double powers in the denominator of (3.1), e.g.:

X1X4 ≃
xy

1− xy
≃

z12z45
z13z214z24z

2
25z35

,

X1 ≃
y

1− xy
≃

z12
z213z14z24z

2
25

,

X3X5 ≃
1− x

1− xy
≃

z15z34
z13z214z24z25z

2
35

,

X2X3 ≃
(1− x)(1− y)

(1− xy)3
≃

z23z34
z213z

3
24z

2
35

.
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3.3.3. N = 6

In this case we have the nine planar channels (1, 2), (1, 3), (1, 4) ≡ (5, 6), (2, 3), (2, 4),

(2, 5) ≡ (1, 6), (3, 4), (3, 5) and (4, 5) related to the nine variables u1,2, u1,3, u1,4, u2,3, u2,4,

u2,5, u3,4, u3,5 and u4,5, respectively. The six–point integral (3.5) becomes

B6[n] =

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3 x
s1+n1
1 xt1+n2

2 xs5+n3
3 (1− x1)

s2+n11 (1− x2)
s3+n22

× (1− x3)
s4+n33 (1− x1x2)

s24+n12 (1− x2x3)
s35+n23 (1− x1x2x3)

s25+n13 ,

(3.41)

with si = α′(ki + ki+1)
2, i = 1, . . . , 6 subject to the cyclic identification i + 6 ≡ i and

tj = α′(kj + kj+1 + kj+2)
2, j = 1, . . . , 3.

To bring (3.41) into the form (3.16) according to (3.13), we choose the three indepen-

dent variables u1,2 = x1, u1,3 = x2 and u1,4 = x3. Then, with (3.15) the integral (3.41)

takes the form

B6[n] =

∫ 1

0

du1,2

∫ 1

0

du1,3

∫ 1

0

du1,4

∫ 1

0

du2,3

∫ 1

0

du2,4

∫ 1

0

du2,5

∫ 1

0

du3,4

∫ 1

0

du3,5

∫ 1

0

du4,5

× u
s1+n1,2

1,2 u
s2+n2,3

2,3 u
s3+n3,4

3,4 u
s4+n4,5

4,5 u
s5+n1,4

1,4 u
s6+n2,5

2,5 u
t1+n1,3

1,3 u
t2+n2,4

2,4 u
t3+n3,5

3,5

× δ(u2,3 + u1,2u3,4u3,5 − 1) δ(u2,4 + u1,2u1,3u3,5u4,5 − 1) δ(u2,5 + u1,2u1,3u1,4 − 1)

× δ(u3,4 + u1,3u2,3u4,5 − 1) δ(u3,5 + u1,3u1,4u2,3u2,4 − 1) δ(u4,5 + u1,4u2,4u3,4 − 1) ,

(3.42)

with the assignment (3.17).

Similarly as in the five–point case, it is convenient to introduce

I6(x, y, z) = xs5 yt1 zs1 (1−x)s4 (1−y)s3 (1−z)s2 (1−xy)s35 (1−yz)s24 (1−xyz)s25 (3.43)

which arises from (3.41) with the identifications x1 := z, x2 := y and x3 := x. Furthermore,

we define

Xi = ui,i+1 , i = 1, . . . , 6 , i+ 6 ≡ i , Yj = uj,j+2 , j = 1, . . . , 3 (3.44)

and

J6(X, Y ) =

(
6∏

i=1

Xsi
i

) 


3∏

j=1

Y
tj
j


 δ(X2 +X1X3Y3 − 1) δ(Y2 +X1X4Y1Y3 − 1)

×δ(X6 +X1X5Y1 − 1) δ(X3 +X2X4Y1 − 1)

×δ(Y3 +X2X5Y1Y2 − 1) δ(X4 +X3X5Y2 − 1) .

(3.45)
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Let us now discuss a few examples. The pole structure of the integral

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− x) (1− xy) (1− xyz)
(3.46)

can be easily deduced after transforming it into the form (3.42)

(
6∏

i=1

∫ 1

0

dXi

) 


3∏

j=1

∫ 1

0

dYj


J6(X, Y )

Y2
X4X6Y3

=
1

s4s6t3
+ · · · . (3.47)

Hence, the only simultaneous pole is at X4, X6, Y3 → 0 with the product of δ–functions

yielding the constraints for the six variables X1, X2, X3, X5, Y1, Y2 → 1. Note, that by

construction a set of three poles in (3.42) does not necessarily yield a compatible set of

channels, e.g. the integral

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− x) (1− y)
=

(
6∏

i=1

∫ 1

0

dXi

) 


3∏

j=1

∫ 1

0

dYj


 J6(X, Y )

X3X4Y3

=
1

s3t3
+

1

s4t3
+

1

s3
+

1

s4
−

s1
s3t3

−
s1
s4t3

−
s6
s3t3

−
s6
s4t3

+ · · ·

(3.48)

does not give rise to a triple pole as (3, 4), (4, 5) and (3, 5) are not compatible channels.

Similarly, for

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

z(1− z)(1− xy)(1− xyz)
=

(
6∏

i=1

∫ 1

0

dXi

) 


3∏

j=1

∫ 1

0

dYj



 J6(X, Y )

X1X2X6

=
1

s2s6
+

1

s2
+

1

s6
−

s4
s2s6

−
t2
s2s6

+
ζ(2)

s1
+ · · · (3.49)

the channels (1, 2), (2, 3) and (6, 1) are not compatible. In the following table we list a few
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non–trivial examples:

rational function

in eq. (3.1)

rational function

in eq. (3.41)

rational function

in eq. (3.42)
lowest order poles

z2
16

z12z13z14z15z26z36z46z56
1

x y z
X2

6Y2Y3

X1X5Y1

1
s1s5t1

,

z16
z12z13z15z26z36z45z46

1
(1−x) y z

X6Y3

X1X4Y1
−

1
s1s4t1

,

1
z13z15z23z26z45z46

1
(1−x) y (1−z)

1
X2X4Y1

1
s2s4t1

,

1
z12z14z25z34z36z56

1
x (1−y) z (1−xyz)

1
X1X3X5

1
s1s3s5

,

z13z45
z12z2

14z25z34z35z36z56

y (1−x)
x (1−y) z (1−xy) (1−xyz)

X4Y1

X1X3X5

1
s1s3s5

,

1
z14z15z23z26z34z56

1
x(1−y)(1−z)

1
X2X3X5Y2

1
s2s5t2

+
1

s3s5t2
,

1
z12z15z26z34z36z45

1
z (1−x) (1−y)

1
X1X3X4Y3

1
s1s3t3

+
1

s1s4t3
,

1
z15z16z24z26z34z35

y
(1−y) (1−xy) (1−yz)

Y1

X3X6Y2Y3

1
s3s6t2

+
1

s3s6t3
,

1
z15z16z23z26z34z45

1
(1−x) (1−y) (1−z)

1
X2X3X4X6Y2Y3

−
1

s2s4s6
−

1
s2s6t2

−
1

s3s6t2

−
1

s3s6t3
−

1
s4s6t3

.

(3.50)

The fundamental objects (3.18) correspond to the 14 rational functions

1

X1X3X5
,

1

X2X4X6
,

1

X1X4Y1
,

1

X2X5Y2
,

1

X3X6Y3
,

1

X2X5Y1
,

1

X3X6Y2
,

1

X1X4Y3
,

1

X2X4Y1
,

1

X3X5Y2
,

1

X4X6Y3
,

1

X1X5Y1
,

1

X2X6Y2
,

1

X1X3Y3
, (3.51)

which furnish the C4 = 14 poles

1

s1s3s5
,

1

s2s4s6
,

1

s1s4t1
,

1

s2s5t2
,

1

s3s6t3
,

1

s2s5t1
,

1

s3s6t2
,

1

s1s4t3
,

1

s2s4t1
,

1

s3s5t2
,

1

s4s6t3
,

1

s1s5t1
,

1

s2s6t2
,

1

s1s3t3
, (3.52)

as single poles in the denominator of (3.1), respectively. The cyclically invariant integral

(3.19) is given by

B6

[
ni = −1

nii = −1

]
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

x (1− x) y (1− y) z (1− z)
=

1

s1s3s5
+

1

s2s4s6

+
1

s1s4t1
+

1

s2s5t2
+

1

s3s6t3
+

1

s2s5t1
+

1

s3s6t2
+

1

s1s4t3

+
1

s2s4t1
+

1

s3s5t2
+

1

s4s6t3
+

1

s1s5t1
+

1

s2s6t2
+

1

s1s3t3
+ · · · , (3.53)
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and exhibits all fourteen poles (3.52) in its power series expansion. After triple poles, for

a (transcendental) N = 6 integral the next leading order to start with are single poles.

They always come with a ζ(2). In analogy to (3.51) for the latter we may introduce a

fundamental set of rational functions12 furnishing the six single poles ζ(2)
si
, i = 1, . . . , 6:

rational function

in eq. (3.1)

rational function

in eq. (3.41)

rational function

in eq. (3.42)
lowest order poles

1
z12z15z24z35z36z46

1
(1−xy) z (1−yz)

1
X1

ζ(2)
s1

,

1
z14z15z23z26z35z46

1
(1−z) (1−xy)

1
X2

ζ(2)
s2

,

1
z13z15z25z26z34z46

1
(1−y) (1−xyz)

1
X3

ζ(2)
s3

,

1
z13z15z24z26z36z45

1
(1−x) (1−yz)

1
X4

ζ(2)
s4

,

1
z13z14z24z26z35z56

1
x (1−xy) (1−yz)

1
X5

ζ(2)
s5

,

1
z13z16z24z25z35z46

1
(1−xy) (1−yz) (1−xyz)

1
X6

ζ(2)
s6

.

(3.54)

All (transcendental) integrals with single poles can be decomposed w.r.t. the basis (3.54)

modulo finite pieces to be discussed in a moment. Subject to (3.12) we have e.g.:

1

z (1− xy)
≃
X6Y2
X1

=
1

X1
− Y1 ,

y

(1− y) (1− xyz)
≃
Y1
X3

=
1

X3
−X6Y2Y3 ,

x

(1− x) (1− xyz)
≃
X5Y2
X4

=
1

X4
− Y3 , (3.55)

1

x (1− yz)
≃
X6Y3
X5

=
1

X5
− Y1 .

After single poles, for an N = 6 integral the next leading order to start with are constants.

12 Note, that the rational functions 1
Yi

giving rise to the single poles ∼ t−1
i have double poles

in (3.1), i.e. ñij = −2 for some zij .
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They always come with a ζ(2) or ζ(3), e.g.:

rational function

in eq. (3.1)

rational function

in eq. (3.41)

monomial
in eq. (3.42)

lowest order

1
z14z15z24z26z35z36

y
(1−xy) (1−yz) Y1 2 ζ(3) ,

1
z13z14z25z26z35z46

1
(1−xy) (1−xyz) Y2 2 ζ(3) ,

1
z13z15z24z25z36z46

1
(1−yz) (1−xyz) Y3 2 ζ(3) ,

z16
z13z14z15z25z26z36z46

1
1−xyz

X6Y2Y3 ζ(3) ,

z56
z14z15z25z26z35z36z46

xy
(1−xy) (1−xyz)

X5Y1Y2 ζ(3) .

(3.56)

Again, we may add the functions (3.56) to (3.51) to obtain other fundamental sets subject

to the constraints (3.45) and with the same poles (3.52), cf. the next subsection for more

details.

3.3.4. N = 7

In this case we have the 14 planar channels (1, 2), (1, 3), (1, 4) ≡ (5, 7), (1, 5) ≡ (6, 7),

(2, 3), (2, 4), (2, 5), (2, 6)≡ (1, 7), (3, 4), (3, 5), (3, 6), (4, 5), (4, 6) and (5, 6) related to the 14

variables u1,2, u1,3, u1,4, u1,5, u2,3, u2,4 u2,5, u2,6, u3,4, u3,5, u3,6, u4,5, u4,6 and u5,6, respec-

tively. The seven–point integral (3.5) becomes

B7[n] =

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3

∫ 1

0

dx4 x
s1+n1
1 xt1+n2

2 xt5+n3
3 xs6+n4

4 (1− x1)
s2+n11

× (1− x2)
s3+n22 (1− x3)

s4+n33 (1− x4)
s5+n44 (1− x1x2)

s24+n12 (1− x2x3)
s35+n23

× (1− x1x2x3)
s25+n13 (1− x3x4)

s46+n34 (1− x2x3x4)
s36+n24(1− x1x2x3x4)

s26+n14 ,

(3.57)

with si = α′(ki + ki+1)
2, tj = α′(kj + kj+1 + kj+2)

2, i, j = 1, . . . , 7 subject to the cyclic

identifications i+ 7 ≡ i and j + 7 ≡ j, respectively.

To bring (3.57) into the form (3.16) according to (3.13) we choose the three indepen-

dent variables u1,2 = x1, u1,3 = x2, u1,4 = x3 and u1,5 = x4. Then, with (3.15) the integral

(3.57) assumes the form (3.16)

B7[n] =

∫ 1

0

dui,j u
s1+n1,2

1,2 u
s2+n2,3

2,3 u
s3+n3,4

3,4 u
s4+n4,5

4,5 u
s5+n5,6

5,6 u
s6+n1,5

1,5 u
s7+n2,6

2,6 u
t1+n1,3

1,3

× u
t2+n2,4

2,4 u
t3+n3,5

3,5 u
t4+n4,6

4,6 u
t5+n1,4

1,4 u
t6+n2,5

2,5 u
t7+n3,6

3,6
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× δ(u2,3 + u1,2u3,4u3,5u3,6 − 1) δ(u2,4 + u1,2u1,3u3,5u3,6u4,5u4,6 − 1)

× δ(u2,5 + u1,2u1,3u1,4u3,6u4,6u5,6 − 1) δ(u2,6 + u1,2u1,3u1,4u1,5 − 1)

× δ(u3,4 + u1,3u2,3u4,5u4,6 − 1) δ(u3,5 + u1,3u1,4u2,3u2,4u4,6u5,6 − 1)

× δ(u3,6 + u1,3u1,4u1,5u2,3u2,4u2,5 − 1) δ(u4,5 + u1,4u2,4u3,4u5,6 − 1)

× δ(u4,6 + u1,4u1,5u2,4u2,5u3,4u3,5 − 1) δ(u5,6 + u1,5u2,5u3,5u4,5 − 1) , (3.58)

with the assignment (3.17).

Using the identifications x1 := w, x2 := z, x3 := y and x4 := x in (3.57), it is

convenient to introduce

I7(x, y, z, w) = xs6 yt5 zt1 ws1 (1− x)s5 (1− y)s4 (1− z)s3 (1− w)s2 (3.59)

× (1− xy)s46 (1− wz)s24 (1− yz)s35 (1− xyz)s36 (1− yzw)s25 (1− xyzw)s26

and use the following notation for the dual variables ui,j

Xi = ui,i+1 , Yj = uj,j+2 , i, j = 1, . . . , 7 , i+ 7 ≡ i , i, j = 1, . . . , 7 . (3.60)

Furthermore, we define:

J7(X, Y ) =

(
7∏

i=1

Xsi
i

) 


7∏

j=1

Y
tj
j


 δ(X2 +X1X3Y3Y7 − 1) δ(Y2 +X1X4Y1Y3Y4Y7 − 1)

× δ(Y6 +X1X5Y1Y4Y5Y7 − 1) δ(X7 +X1X6Y1Y5 − 1) δ(X3 +X2X4Y1Y4 − 1)

× δ(X4 +X3X5Y2Y5 − 1) δ(Y4 +X3X6Y2Y3Y5Y6 − 1) δ(X5 +X4X6Y3Y6 − 1)

× δ(Y3 +X2X5Y1Y2Y4Y5 − 1) δ(Y7 +X2X6Y1Y2Y5Y6 − 1) .

(3.61)

Let us now discuss a few examples. The pole structure of the integral

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

x (1− y) (1− wz) (1− yz)
(3.62)

can be easily deduced after transforming it into the form (3.42)

(
7∏

i=1

∫ 1

0

dXi

) 


7∏

j=1

∫ 1

0

dYj


 J7(X, Y )

X4X6Y3Y6
=

1

s4s6t3t6
+ · · · . (3.63)

Hence, the only simultaneous pole is at X4, X6, Y3, Y6 → 0 with the product of δ–functions

yielding the constraints for the ten variables X1, X2, X3, X5, X7, Y1, Y2, Y4, Y5, Y7 → 1.
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Note, that by construction a set of four poles in (3.58) does not necessarily yield a com-

patible set of channels, e.g. the integral
∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

w (1− x) (1− z) (1− wyz) (1− wxyz)

=

(
7∏

i=1

∫ 1

0

dXi

) 


7∏

j=1

∫ 1

0

dYj


 J7(X, Y )

X1X3X5X7
=

1

s1s3s5
+ · · ·

(3.64)

does not give rise to a quadruple pole as (1, 2), (3, 4), (5, 6) and (7, 1) are not compatible

channels. Subsequently, in the sequel we list a few non–trivial examples:

rational function

in eq. (3.1)

rational function

in eq. (3.57)

rational function

in eq. (3.58)
lowest order poles

z3
17

z12z13z14z15z16z27z37z47z57z67
1

x y z w
X3

7Y2Y3Y4Y
2
6 Y 2

7

X1X6Y1Y5

1
s1s6t1t5

,

z2
17

z12z14z15z16z27z34z37z57z67
1

x y (1−z) w
X2

7Y4Y6Y7

X1X3X6Y5

1
s1s3s6t5

,

z2
17

z12z13z14z16z27z37z47z56z57
1

(1−x) y z w
X2

7Y2Y3Y
2
6 Y7

X1X5Y1Y5

1
s1s5t1t5

,

z17z67
z12z13z16z27z37z46z47z56z57

x
w z (1−x) (1−xy)

X6X7Y2Y3Y
2
6

X1X5Y1Y4

1
s1s5t1t4

,

z17
z12z14z16z27z34z37z56z57

1
y w (1−x) (1−z)

X7Y6

X1X3X5Y5

1
s1s3s5t5

,

z17
z12z13z16z27z37z45z47z56

1
z w (1−x) (1−y)

X7Y3Y6

X1X4X5Y1Y4

1
s1s4t1t4

+
1

s1s5t1t4
,

z17
z14z15z16z23z27z34z57z67

1
x y (1−z) (1−w)

X7Y4Y7

X2X3X6Y2Y5

1
s2s6t2t5

+
1

s3s6t2t5
,

z67
z12z16z27z36z37z45z47z56

x y
w(1−x)(1−y)(1−xyz)

X6Y2Y5Y6

X1X4X5Y4Y7

1
s1s4t4t7

+
1

s1s5t4t7
,

1
z12z16z27z34z37z45z56

1
w(1−x)(1−y)(1−z)

1
X1X3X4X5Y3Y4Y7

1
s1s3s5t7

+
1

s1s3t3t7
+

1
s1s4t3t7

+
1

s1s4t4t7
+

1
s1s5t4t7

.

(3.65)

After quadruple poles, for an N = 7 integral the next leading order to start with are double

poles. They always come with a ζ(2), e.g.:

rational function

in eq. (3.1)

rational function

in eq. (3.57)

rational function

in eq. (3.58)
lowest order poles

1
z12z15z24z35z37z46z67

1
wx(1−xy)(1−wz)(1−yz)

1
X1X6

ζ(2)
s1s6

,

z14
z12z13z16z24z35z46z47z57

1
w(1−xy)z(1−wz)(1−yz)

1
X1Y1

ζ(2)
s1t1

,

1
z15z16z26z27z34z37z45

yz
(1−y)(1−z)(1−wxyz)

Y1Y5

X3X4Y3

ζ(2)
s3t3

+ ζ(2)
s4t3

.

(3.66)
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After double poles, for an N = 7 integral the next leading order to start with are single

poles. They are always accompanied by ζ(2) or ζ(3) factors:

rational function

in eq. (3.1)

rational function

in eq. (3.57)

rational function

in eq. (3.58)
lowest order poles

1
z12z16z24z35z37z46z57

1
w(1−xy)(1−wz)(1−yz)

1
X1

2ζ(2)
s1

,

z15
z12z14z16z25z35z37z46z57

1
w(1−xy)(1−yz)(1−wyz)

Y2

X1

2ζ(2)
s1

,

1
z12z16z24z35z36z47z57

1
w(1−wz)(1−yz)(1−xyz)

Y4

X1

2ζ(3)
s1

,

1
z12z15z16z24z35z37z46z47

y
w(1−xy)(1−wz)(1−yz)

Y5

X1

2ζ(3)
s1

,

z15z23
z12z13z16z24z25z35z37z46z57

1−w
w(1−xy)(1−wz)(1−yz)(1−wyz)

X2Y2

X1

2ζ(2)
s1

.

(3.67)

After single poles, for an N = 7 integral the next leading order to start with are the zeta

constants ζ(2), ζ(3) or ζ(4). First, we display examples without poles and whose series

expansion starts at ζ(2) or ζ(3):

rational function

in eq. (3.1)

rational function

in eq. (3.57)

monomial
in eq. (3.58)

lowest order

z47
z14z16z24z27z35z37z46z57

z
(1−xy) (1−yz) (1−wz)

Y1 2 ζ(2) + 2 ζ(3) ,

z14z37
z13z15z16z24z27z35z36z2

47

y
(1−yz) (1−wz) (1−xyz)

Y4Y5
3
2
ζ(2) + 3

2
ζ(3) ,

z15z37
z13z14z16z25z27z35z36z47z57

1
(1−yz) (1−xyz) (1−wyz)

Y2Y4
5
2
ζ(4) + 4 ζ(3)− 2 ζ(3) ,

1
z13z14z25z27z36z46z57

1
(1−xy) (1−wyz) (1−xyz)

Y2Y3Y6 3 ζ(3) ,

(3.68)

Finally, we give examples without poles and whose series expansion starts at ζ(4):

rational function

in eq. (3.1)

rational function

in eq. (3.57)

monomial
in eq. (3.58)

lowest order

1
z13z16z24z27z35z46z57

1
(1−xy) (1−yz) (1−wz) 1 27

4 ζ(4) ,

1
z14z16z24z27z35z36z57

z
(1−yz) (1−wz) (1−xyz) Y1Y4

17
4 ζ(4) ,

z37
z13z14z26z27z35z36z47z57

1
(1−yz) (1−xyz) (1−wxyz) Y2Y4Y6 3 ζ(4) ,

1
z13z14z25z26z37z46z57

1
(1−xy) (1−wyz) (1−wxyz) Y2Y3Y6Y7

5
2 ζ(4) ,

z16
z13z14z15z26z27z36z46z57

1
(1−xy) (1−xyz) (1−wxyz) Y 2

6 Y2Y3 3 ζ(4) .

(3.69)
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Again, we may add the functions (3.69) to the 42 fundamental quadruple poles to obtain

other fundamental sets subject to the constraints (3.61), cf. the next subsection for more

details.

3.3.5. N = 8

In this case we have the 20 planar channels (1, 2), (1, 3) ≡ (4, 8), (1, 4) ≡ (5, 8), (1, 5) ≡

(6, 8), (1, 6) ≡ (7, 8), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7) ≡ (1, 8), (3, 4), (3, 5), (3, 6), (3, 7), (4, 5),

(4, 6), (4, 7), (5, 6), (5, 7) and (6, 7) related to the 20 variables u1,2, u2,3, u3,4, u4,5, u5,6, u6,7,

u1,6 = u7,8, u2,7, u1,3, u2,4, u3,5, u4,6, u5,7, u6,8, u2,6, u3,7, u1,4, u2,5, u3,6, u4,8. The eight–

point integral (3.5) becomes

B8[n] =

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dx3

∫ 1

0

dx4

∫ 1

0

dx5 x
s1+n1
1 xt1+n2

2 xu1+n3
3 xt6+n4

4 xs7+n5
5

× (1− x1)
s2+n11 (1− x2)

s3+n22 (1− x3)
s4+n33 (1− x4)

s5+n44 (1− x5)
s6+n55

× (1− x1x2)
s24+n12 (1− x2x3)

s35+n23 (1− x3x4)
s46+n34 (1− x4x5)

s57+n45

× (1− x1x2x3)
s25+n13 (1− x2x3x4)

s36+n24 (1− x3x4x5)
s47+n35 (3.70)

× (1− x1x2x3x4)
s26+n14 (1− x2x3x4x5)

s37+n25 (1− x1x2x3x4x5)
s27+n15 ,

with si = α′(ki + ki+1)
2, tj = α′(kj + kj+1 + kj+2)

2, i, j = 1, . . . , 8 subject to the cyclic

identifications i+ 8 ≡ i, j + 8 ≡ j, respectively and ul = α′(kl + kl+1 + kl+2 + kl+3)
2, for

l = 1 to 4.

To bring (3.70) into the form (3.16) according to (3.13) we choose the three indepen-

dent variables u1,2 = x1, u1,3 = x2, u1,4 = x3 and u1,5 = x4. Then, with (3.15) the integral

(3.70) assumes the form (3.16).

B8[n] =

∫ 1

0

dui,j u
s1+n1,2

1,2 u
s2+n2,3

2,3 u
s3+n3,4

3,4 u
s4+n4,5

4,5 u
s5+n5,6

5,6 u
s6+n6,7

6,7 u
s7+n1,6

1,6 u
s8+n2,7

2,7

× u
t1+n1,3

1,3 u
t2+n2,4

2,4 u
t3+n3,5

3,5 u
t4+n4,6

4,6 u
t5+n5,7

5,7 u
t6+n1,5

1,5 u
t7+n2,6

2,6 u
t8+n3,7

3,7

× u
u1+n1,4

1,4 u
u2+n2,5

2,5 u
u3+n3,6

3,6 u
u4+n4,7

4,7

× δ(u2,3 + u1,2u3,4u3,5u3,6u3,7 − 1) δ(u2,4 + u1,2u1,3u3,5u3,6u3,7u4,5u4,6u4,7 − 1)

× δ(u2,5 + u1,2u1,3u1,4u3,6u3,7u4,6u4,7u5,6u5,7 − 1) δ(u2,7 + u1,2u1,3u1,4u1,5u1,6 − 1)

× δ(u2,6 + u1,2u1,3u1,4u1,5u3,7u4,7u5,7u6,7 − 1) δ(u3,4 + u1,3u2,3u4,5u4,6u4,7 − 1)

× δ(u3,5 + u1,3u1,4u2,3u2,4u4,6u4,7u5,6u5,7 − 1) δ(u6,7 + u1,6u2,6u3,6u4,6u5,6 − 1)

× δ(u3,7 + u1,3u1,4u1,5u1,6u2,3u2,4u2,5u2,6 − 1) δ(u4,5 + u1,4u2,4u3,4u5,6u5,7 − 1)
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× δ(u4,6 + u1,4u1,5u2,4u2,5u3,4u3,5u5,7u6,7 − 1) δ(u5,6 + u1,5u2,5u3,5u4,5u6,7 − 1)

× δ(u4,7 + u1,4u1,5u1,6u2,4u2,5u2,6u3,4u3,5u3,6 − 1)

× δ(u5,7 + u1,5u1,6u2,5u2,6u3,5u3,6u4,5u4,6 − 1)

× δ(u3,6 + u1,3u1,4u1,5u2,3u2,4u2,5u4,7u5,7u6,7 − 1) , (3.71)

with the assignment (3.17).

In what follows it is convenient to introduce

I8(x, y, z, w, v) = xs7 yt6 zu1 wt1 vs1 (1− x)s6 (1− y)s5 (1− z)s4 (1− w)s3 (1− v)s2

× (1− xy)s57 (1− yz)s46 (1− wz)s35 (1− vw)s24 (1− xyz)s47 (1− wyz)s36

× (1− vwz)s25 (1− wxyz)s37 (1− vwyz)s26 (1− vwxyz)s27

(3.72)

arising from (3.70) with the identifications x1 := v, x2 := w, x3 := z, x4 = y and

x5 := x. Similarly as in the previous subsections, the following shorter notation for the

dual variables ui,j is used

Xi = ui,i+1 , Yj = uj,j+2 , i, j = 1, . . . , 8 , i+ 8 ≡ i , j + 8 ≡ j ,

Zk = uk,k+3 , k = 1, . . . , 4 ,
(3.73)

and we also define

J8(X, Y, Z) =

(
8∏

i=1

Xsi
i

) 


8∏

j=1

Y
tj
j



(

4∏

k=1

Zuk

k

)
δ(X2 +X1X3Y3Y8Z3 − 1)

× δ(Y2 +X1X4Y1Y3Y4Y8Z3Z4 − 1) δ(Z2 +X1X5Y1Y4Y5Y8Z1Z3Z4 − 1)

× δ(Y7 +X1X6Y1Y5Y6Y8Z1Z4 − 1) δ(X8 +X1X7Y1Y6Z1 − 1)

× δ(X3 +X2X4Y1Y4Z4 − 1) δ(Y3 +X2X5Y1Y2Y4Y5Z1Z4 − 1)

× δ(Z3 +X2X6Y1Y2Y5Y6Z1Z2Z4 − 1) δ(Y8 +X2X7Y1Y2Y6Y7Z1Z2 − 1)

× δ(X4 +X3X5Y2Y5Z1 − 1) δ(Y4 +X3X6Y2Y3Y5Y6Z1Z2 − 1)

× δ(Z4 +X3X7Y2Y3Y6Y7Z1Z2Z3 − 1) δ(X5 +X4X6Y3Y6Z2 − 1)

× δ(Y5 +X4X7Y3Y4Y6Y7Z2Z3 − 1) δ(X6 +X5X7Y4Y7Z3 − 1) . (3.74)

Let us now discuss a few examples. The pole structure of the integral

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw

∫ 1

0

dv
I8(x, y, z, w, v)

w (1− v) (1− z) (1− xy) (1− yz)
(3.75)
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can be easily deduced after transforming it into the form (3.71)
(

8∏

i=1

∫ 1

0

dXi

) 


8∏

j=1

∫ 1

0

dYj




(

4∏

k=1

∫ 1

0

dZk

)
J8(X, Y, Z)

X2X4Y1Y4Z4
=

1

s2s4t1t4u4
+ · · · . (3.76)

Hence, the only simultaneous pole is at X2, X4, Y1, Y4, Z4 → 0 with the product of δ–

functions yielding the constraints for the 15 variables X1, X3, X5, X6, X7, X8, Y2, Y3, Y5, Y6,

Y7, Y8, Z1, Z2, Z3 → 1. Subsequently, in the sequel we list a few non–trivial examples:
rational function

in eq. (3.1)

rational function

in eq. (3.70)
...

z4
18

z12z13z14z15z16z17z28z38z48z58z68z78
1

x y z w v
...

z3
18

z12z13z14z16z17z28z38z45z58z68z78
1

x y (1−z) w v
...

1
z17z18z23z24z35z46z57z68

1
(1−v) (1−xy) (1−wz) (1−yz) (1−vw)

...

1
z12z17z28z34z36z47z56z58

y
v (1−y) (1−w) (1−xyz) (1−wyz) ...

1
z17z18z24z26z35z37z45z68

w z
(1−z) (1−vw) (1−wz) (1−vwyz) (1−wxyz) ...

z2
18

z12z15z16z17z28z34z38z45z68z78
1

x y v (1−z) (1−w) ...

1
z12z17z24z34z38z56z57z68

1
v z (1−y) (1−w) (1−xy) (1−vw) ...

1
z13z17z23z25z45z46z68z78

1
x y w (1−z) (1−v) (1−yz) (1−vwz) ...

...
rational function

in eq. (3.71)
lowest order poles

...
X4

8Y2Y3Y4Y5Y
3
7 Y 3

8 Z2
2Z

2
3Z

2
4

X1X7Y1Y6Z1

1
s1s7t1t6u1

,

...
X3

8Y2Y5Y
2
7 Y 2

8 Z2Z
2
3Z4

X1X4X7Y1Y6

1
s1s4s7t1t6

,

...
1

X2X8Y2Y7Z2

1
s2s8t2t7u2

,

...
Y6Z2

X1X3X5Y8Z3

1
s1s3s5t8u3

,

...
Y1Y5Z1Z4

X4X8Y3Y7Z2

1
s4s8t3t7u2

,

...
X2

8Y5Y7Y8Z4

X1X3X4X7Y3Y6

1
s1s3s7t3t6

+
1

s1s4s7t3t6
,

...
1

X1X3X5Y2Y5Z1

1
s1s3s5t5u1

+
1

s3s5t2t5u1
,

...
Y5Y8

X3X4X7Y1Y4Y6Y7Z2

1
s2s4s7t1t4

+
1

s2s4s7t1t6
+

1
s2s4s7t4t7

+
1

s2s4s7t6u2
+

1
s2s4s7t7u2

(3.77)
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3.4. Polynomial relations and Gröbner basis reduction

For ni,j ≥ 0 the representation (3.16) in the dual variables ui,j gives rise to a polyno-

mial ring R[uP ] describing polynomials in ui,j , (i, j) ∈ P with coefficients in R. This ring

is suited to perform a Gröbner basis analysis to find a minimal basis for the polynomials in

the integrand. The set of integrals (3.16) with ni,j ≥ 0 describe all integrals without poles

in their α′–expansion. Due to the constraints (3.12), which give rise to the δ–functions

in (3.16), many polynomials in the variables ui,j referring to different choices of the inte-

gers ni,j yield to the same integral BN . The constraints (3.12) define a monomial ideal

I in the polynomial ring R[uP ]. Hence, we consider the quotient space R[uP ]/I and the

Gröbner basis method is well appropriate to choose a basis in the ideal I and generate

independent sets of polynomials in the quotient ring R[uP ]/I. We are interested in simple

representatives of equivalence classes for congruence modulo I. The properties of an ideal

are reflected in the form of the elements of the Gröbner basis [36,37].

Given a monomial ordering13 in the ring a Gröbner basis G = {g1, . . . , gd} comprises

a finite subset of the ideal I such that the leading term14 of any element of the ideal I is

divisible by a leading term LT (gi) of an element of the subset. Alternatively, a finite subset

G of an ideal I in a polynomial ring represents a Gröbner basis, if 〈LT (g1), . . . , LT (gd)〉 =

〈LT (I)〉 [36,37]. Buchberger’s algorithm generates the unique reduced Gröbner basis G, in

13 As monomial ordering we may choose lexicographic order or graded lexicographic order.

Then, a monomial ordering of two polynomials f =
∑

α
aαx

α and g =
∑

β
bαx

β can be defined

as follows: (i) lexicographic order: α >lex β, if in the vector difference α − β ∈ Zn the leftmost

nonzero entry is positive (xα >lex x
β if α >lex β).

(ii) graded lexicographic order: α >grlex β, if |α| =
n∑

i=1

αi > |β| and α >lex β (xα >grlex x
β , if

α >grlex β).
14 The leading term LT (f) of a polynomial f is defined as follows [36]: For f =

∑
α
aαx

α a

nonzero polynomial in R[x1, . . . , xn] and > a specific monomial order

(i) the multidegree of f is multideg(f) := Max{α ∈ Zn
≥0 | aα 6= 0 },

(ii) the leading coefficient of f is: LC(f) := amultideg(f) ∈ R,

(iii) the leading monomial of f is LM(f) = xmultideg(f), with coefficient 1, and

(iv) the leading term of f is

LT (f) = LC(f) LM(f) .

As an example we consider f = xyz+2xy2z2+3z3−7x5y+3x2z2 with > the lexicographic order.

Then we have: multideg(f) = (5, 1, 0), LC(f) = −7, LM(f) = x5y and LT (f) = −7x5y.
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which no monomial in a polynomial p ∈ G of this basis is divisible by a leading term of

the other polynomials in the basis and LC(p) = 1.

The main idea is, that after dividing a polynomial p ∈ R[x1, . . . , xn] by a Gröbner

basis G = {g1, . . . , gd} for the ideal I ⊂ R[x1, . . . , xn] the remainder pG is uniquely fixed

by the polynomial p, cf. Chapter 5, §3 of [36]. More precisely according to the Proposition

1 therein we have: For a given monomial ordering on R[x1, . . . , xn] and an ideal I ⊂

R[x1, . . . , xn],

(i) Every f ∈ R[x1, . . . , xn] is congruent modulo I to a unique polynomial r, which is a

R–linear combination of the monomials in the complement of 〈LT (I)〉.

(ii) The elements {xα | xα /∈ 〈LT (I)〉} are linearly independent modulo I, i.e. if
∑

α cαx
α =

0 mod I, where the xα are all in the complement of 〈LT (I)〉, then cα = 0 for all α. As a

consequence, for any given f ∈ R[x1, . . . , xn] the remainder f
G
is aR–linear combination of

the monomials contained in the complement of LT (I), i.e. f
G
∈ Span (xα | xα /∈ 〈LT (I)〉):

f = xa ≡ xa1
1 . . . xan

n =
d∑

i=1

ci gi +
∑

xα /∈〈LT (I)〉

rα xα . (3.78)

In the following with the Gröbner basis method we want to construct a basis for those

polynomials, which are independent on the constraints (3.12). This basis is determined

by the complement of 〈LT (I)〉 w.r.t. a Gröbner basis G. Note, that the representation of

this basis (and also of 〈LT (I)〉 and the remainders) may depend on the chosen monomial

ordering. At any rate, there is always the same number of monomials in the complement

of 〈LT (I)〉. In addition, on the degree of the basis monomials we impose a condition to

ensure, that in the denominator of the integrands of (3.1) the zij only appear with powers

of at most one, i.e. ñij ≥ −1. This restriction is useful to take into account the relations

stemming from partial integrations (3.8). We illustrate the method with the following

examples.

3.4.1. N = 4

We work with the two coordinates X1 = u1,2 and X2 = u2,3 and consider the polyno-

mial ring R[X1, X2]. From (3.23) we can read off the constraints (3.12) giving rise to the

monomial ideal:

I = 〈 X1 +X2 − 1 〉 ⊂ R[X1, X2] . (3.79)
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w.r.t. lexicographic order we find for the Gröbner basis of (3.79):

G = {g1} = { X1 +X2 − 1 } . (3.80)

Hence w.r.t. lexicographic order the leading term of this monomial gives rise to:

LT (I) = X1 . (3.81)

Therefore, the set of possible remainders modulo I is the set of all R–linear combinations

of the following monomials:

{1, X2, X
2
2 , X

3
2 , . . . } . (3.82)

For some examples let us determine their remainders on dividing them by the Gröbner

basis (3.80):

X1 = g1 + 1−X2 ≃ 1−X2 , (3.83)

X2 = 0 g1 +X2 ≃ X2 ,

X1X2 = X2 g1 +X2 −X2
2 ≃ X2 −X2

2 ,

X2
1 = (1 +X1 −X2) g1 + 1− 2 X2 +X2

2 ≃ 1− 2 X2 +X2
2 ,

X2
1X2 = X2 (1 +X1 −X2) g1 +X2 − 2 X2

2 +X3
2 ≃ X2 − 2 X2

2 +X3
2 .

Indeed, the remainders (displayed after the ≃ sign) are generated by the basis (3.82).

In (3.23) the monomials Xn11
2 , n11 = 0, 1, . . . of (3.82) give rise to the following

integrals (3.22):

B4[n] =

∫ 1

0

dx xs12 (1− x)s23+n11 . (3.84)

The integrals (3.22) without poles in their field–theory expansions are given by the integers

n1, n11 = 0, 1 . . .. According to our construction all these integrals (3.22) can be generated

by R–linear combinations of the basis (3.84). However according to (3.7) we have

(1− x)n11 ≃
zn11
14 zn11

23

z2+n11
13 z2+n11

24

, (3.85)

i.e. all finite integrals (3.84) in (3.1) imply some powers ñij with ñij < −1. As a conse-

quence the set of integrals (3.84) cannot serve as a basis and (3.24) are the only elements

of the partial fraction basis. Note, that this basis is two–dimensional, i.e. (N − 2)! = 2 for

N = 4.
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3.4.2. N = 5

We work with the five coordinates (3.29) and consider the polynomial ringR[X1, . . . , X5].

From (3.30) we can read off the constraints (3.12) giving rise to the monomial ideal:

I = 〈 X2 +X1X3 − 1, X3 +X2X4 − 1, X5 +X1X4 − 1 〉 ⊂ R[X1, . . . , X5] . (3.86)

w.r.t. lexicographic order we find for the (reduced) Gröbner basis of (3.86) the three ele-

ments:

G = {g1, g2, g3} = { X1 +X2X5 − 1, X3 +X2X4 − 1, X4 +X3X5 − 1 } . (3.87)

Hence w.r.t. lexicographic order the leading terms of these three monomials give rise to:

LT (I) = { X1, X2X4, X3X5 } . (3.88)

Therefore, the set of possible remainders modulo I is the set of all R–linear combinations

of the following monomials:

∞⋃

m,n=0

{ Xm
2 X

n
3 , X

m
2 X

n
5 , X

m
3 X

n
4 , X

m
4 X

n
5 } . (3.89)

For some examples let us determine their remainders on dividing them by the Gröbner

basis (3.87):

X1 = g3 + 1−X2X5 ≃ 1−X2X5 , (3.90)

X1X4 = g1 −X5 g2 +X4 g3 + 1−X5 ≃ 1−X5 ,

X3X5 = g1 + 1−X4 ≃ 1−X4 ,

X3X
2
5 = X5 g1 +X5 −X4X5 ≃ X5 −X4X5 ,

X1X2 = X2 g3 +X2 −X2
2X5 ≃ X2 −X2

2X5 ,

X2X3X5 = X2 g1 − g2 − 1 +X2 +X3 ≃ −1 +X2 +X3 .

Indeed, the remainders (displayed after the ≃–sign) are generated by the basis (3.89).
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We have the following dictionary

monomial
in eq. (3.27)

rational function

in eq. (3.26)

rational function

in eq. (3.1)

1 1
1−xy

1
z13z14z24z25z35

,

X2
1−y

(1−xy)2
z23

z2
13z

2
24z25z35

,

X3
1−x

(1−xy)2
z34

z13z14z2
24z

2
35
,

X4
x

(1−xy)
z45

z2
14z24z25z

2
35
,

X5 1 z15
z13z2

14z
2
25z35

,

X2X3
(1−x)(1−y)
(1−xy)3

z23z34
z2
13z

3
24z

2
35
,

X2X5
1−y
1−xy

z15z23
z2
13z14z24z

2
25z35

,

X3X4
x(1−x)
(1−xy)2

z34z45
z2
14z

2
24z

3
35
,

X4X5 x z15z45
z3
14z

2
25z

2
35
,

(3.91)

between monomials in the integral (3.27), the polynomial in (3.26), and the representation

(3.1). According to the list (3.91) from the generators (3.89) of the complement 〈LT (I)〉

only the element 1 does not give rise to higher powers of zij in the denominator of the

integrand (3.1), i.e. ñij ≥ −1. Therefore, we dismiss all other basis elements and the

integral ∫ 1

0

dx

∫ 1

0

dy
I5(x, y)

1− xy
= ζ(2) + · · · (3.92)

is left as the only basis element without poles. The integral (3.92) yields a transcendental

power series in α′, cf. appendix A. Together with the fundamental set (3.34) we obtain a

six–dimensional partial fraction basis, i.e. (N − 2)! = 6 for N = 5.

3.4.3. N = 6

Using the coordinates (3.44) we consider the polynomial ringR[X1, . . . , X6, Y1, . . . , Y3].

From (3.45) we can read off the constraints (3.12) giving rise to the monomial ideal:

I =〈 X2 +X1X3Y3 − 1 , X3 +X2X4Y1 − 1 , X4 +X3X5Y2 − 1 ,

X6 +X1X5Y1 − 1 , Y2 +X1X4Y1Y3 − 1 , Y3 +X2X5Y1Y2 − 1〉 .
(3.93)
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W.r.t. lexicographic order we find for the (reduced) Gröbner basis of (3.93) the 13 elements:

G ={ 1− Y1 +X6Y1 −X6Y2 −X6Y3 +X2
6Y2Y3, −1 +X5Y1 +X6Y3, (3.94)

1−X5 −X6 +X5X6Y2, −1 +X4Y3 +X5Y2, −1 +X4Y1 +X3Y2,

X4 −X6 −X4Y1 +X4X6Y1 +X6Y2 −X4X6Y2, −1 +X2Y1 +X3Y3,

X3 −X4 +X6 −X3Y1 +X4Y1 −X6Y1 +X3X6Y1 −X3X6Y3 −X6Y2 +X4X6Y2,

−X3 +X3X5 −X6 +X3X6 +X4X6, 1−X2 −X3Y3 −X6Y3 +X2X6Y3 +X3X6Y3,

− 1 +X2 +X5 −X2Y3 +X3Y3 −X5Y3 +X2X5Y3 +X6Y3 −X3X6Y3 −X2X5Y2,

−X2 +X3 +X2X4 −X5 +X2X5 +X6 −X3X6 −X4X6,−1 +X1 +X2X6Y2 } .

Hence w.r.t. lexicographic order the leading terms of these 13 monomials give rise to:

LT (I) ={ X2
6Y2Y3, X5Y1, X5X6Y2, X4Y3, X4X6Y1, X3Y2, X3X6Y1, X3X5, X2Y1,

X2X6Y3, X2X5Y3, X2X4, X1 } . (3.95)

We would like to mention that the Gröbner basis consists of 18 elements in the case of

degree lexicographic order.

From the set (3.95) the monomials generating the complement 〈LT (I)〉 can be deter-

mined. Most of these monomials yield to higher powers of zij in the denominator of the

integrand (3.1), i.e. ñij = −2 for some zij . In fact, only the following five monomials give

rise to single powers in their denominators, i.e. ñij ≥ −1:

monomial
in eq. (3.42)

rational function

in eq. (3.41)

rational function

in eq. (3.1)

1 1
(1−xy) (1−yz)

1
z13z15z24z26z35z46

,

Y1
y

(1−xy) (1−yz)
1

z14z15z24z26z35z36
,

Y2
1

(1−xy) (1−xyz)
1

z13z14z25z26z35z46
,

Y3
1

(1−yz) (1−xyz)
1

z13z15z24z25z36z46
,

X6Y2Y3
1

(1−xyz)
z16

z13z14z15z25z26z36z46
.

(3.96)

Therefore, we dismiss all other basis elements of 〈LT (I)〉. All (finite) integrals (3.1) with

only single powers of zij in their denominators, i.e. ñij ≥ −1, are spanned by the following
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five integrals15:

G0 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− xy) (1− yz)
= 2 ζ(2) + · · · ,

G1 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
y I6(x, y, z)

(1− xy) (1− yz)
= 2 ζ(3) + · · · ,

G2 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− xy) (1− xyz)
= 2 ζ(3) + · · · ,

G3 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− yz) (1− xyz)
= 2 ζ(3) + · · · ,

G4 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

1− xyz
= ζ(3) + · · · . (3.97)

E.g. we have

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
yz I6(x, y, z)

(1− yz) (1− xyz)
= G3 −G4 ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
y (1− z) I6(x, y, z)

(1− xy) (1− yz) (1− xyz)
= G1 −G3 +G4 ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
(1− y) I6(x, y, z)

(1− xy) (1− yz) (1− xyz)
= −G1 +G2 +G3 −G4 ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
(1− x) y I6(x, y, z)

(1− xy) (1− yz) (1− xyz)
= G1 −G2 +G4 ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
xy I6(x, y, z)

(1− xy) (1− xyz)
= G2 −G4 (3.98)

as result from the identities between their corresponding monomials on dividing them by

the Gröbner basis (3.94):

X1Y1Y3 = Y3 −X6Y2Y3 ,

X2Y1Y2 = Y1 − Y3 +X6Y2Y3 ,

X3Y2Y3 = −Y1 + Y2 + Y3 −X6Y2Y3 ,

X4Y1Y3 = Y1 − Y2 +X6Y2Y3 ,

X5Y1Y2 = Y2 −X6Y2Y3 . (3.99)

15 Note, that although for degree lexicographic order the Gröbner basis consists of more elements

than (3.94) the resulting list (3.96) of monomials is the same for any monomial ordering rule.
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To conclude: Any finite integral (3.1) with ñij ≥ −1 can be expressed as R–linear

combination of the basis (3.97) as a result of partial fraction decomposition of their inte-

grands.

Except the first integralG0, the other four integrals (3.97) yield a transcendental power

series in α′, cf. appendix A. Any partial fraction decomposition, which involves G0 must

refer to a non–transcendental integral (3.1) and only partial fraction expansions involving

the basis G1, . . . , G4 comprise into a transcendental integral. In the previous subsection

we have found a set of six transcendental integrals (3.54) with single poles. Together with

the fundamental set (3.51) we obtain a partial fraction basis (of transcendental integrals

(3.1)) with 4 + 6 + 14 = 24 elements, i.e. (N − 2)! = 24 for N = 6.

3.4.4. N = 7

Using the coordinates (3.60) we consider the polynomial ringR[X1, . . . , X7, Y1, . . . , Y7].

From (3.61) we can read off the constraints (3.12) giving rise to the monomial ideal:

I =〈 X2 +X1X3Y3Y7 − 1, X3 +X2X4Y1Y4 − 1, X4 +X3X5Y2Y5 − 1, X5 +X4X6Y3Y6 − 1,

Y4 +X3X6Y3Y2Y5Y6 − 1, Y6 +X1X5Y1Y4Y5Y7 − 1, Y7 +X2X6Y1Y2Y5Y6 − 1,

X7 +X1X6Y1Y5 − 1, Y2 +X1X4Y1Y3Y4Y7 − 1, Y3 +X2X5Y1Y2Y4Y5 − 1〉 .

(3.100)

W.r.t. lexicographic order we find 84 elements in the (reduced) Gröbner basis of (3.100).

On the other hand w.r.t. degree lexicographic order we have 184 basis elements. In the

following, we determine the monomials generating the complement 〈LT (I)〉 w.r.t. to degree

lexicographic order as this ordering directly yields a cyclic invariant basis. Most of the

monomials in the complement 〈LT (I)〉 yield to higher powers of zij in the denominator

of the integrand (3.1), i.e. ñij = −2 for some zij . After disregarding those, only the

following six monomials and their cyclic transformations give rise to single powers in their
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denominators, i.e. ñij ≥ −1:

monomial
in eq. (3.58)

rational function

in eq. (3.57)

rational function

in eq. (3.1)

1 1
(1−xy) (1−yz) (1−wz)

1
z13z16z24z27z35z46z57

,

Y1Y4
z

(1−yz) (1−wz) (1−xyz)
1

z14z16z24z27z35z36z57
,

Y1Y3Y6
z

(1−xy) (1−wz) (1−xyz)
z47

z14z15z24z27z36z37z46z57
,

Y1Y2Y5
yz

(1−xy) (1−yz) (1−wyz)
1

z14z16z25z27z35z37z46
,

Y2Y4
1

(1−yz) (1−wyz) (1−xyz)
z15z37

z13z14z16z25z27z35z36z47z57
,

Y1
z

(1−xy) (1−wz) (1−yz)
z47

z14z16z24z27z35z37z46z57
.

(3.101)

Therefore, in total we have a basis of 36 elements and all (finite) integrals (3.1) with only

single powers in their denominators zij , i.e. ñij ≥ −1, are spanned by the following six

integrals

G0 =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− xy) (1− yz) (1− wz)
=

27

4
ζ(4) + · · · , (3.102)

G1a =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
z I7(x, y, z, w)

(1− yz) (1− wz) (1− xyz)
=

17

4
ζ(4) + · · · ,

G2b =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
z I7(x, y, z, w)

(1− xy) (1− wz) (1− xyz)
= 3 ζ(4) + · · · ,

G3a =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
yz I7(x, y, z, w)

(1− xy) (1− yz) (1− wyz)
= 3 ζ(3) + · · · ,

G4b =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− yz) (1− wyz) (1− xyz)
=

5

2
ζ(4) + 4 ζ(3)− 2 ζ(2) + · · · ,

G5a =

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
z I7(x, y, z, w)

(1− xy) (1− wz) (1− yz)
= 2 ζ(3) + 2 ζ(2) + · · · ,

and their cyclic transformations. E.g. we have

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− xy) (1− wz)
= G0 −G1b , (3.103)

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
yz2 I7(x, y, z, w)

(1− yz) (1− wz) (1− xyz)
= −G0 +G1a +G1b +G1d −G2b ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
yz I7(x, y, z, w)

(1− yz) (1− wyz) (1− xyz)
= G5b −G3c −G3f +G4b ,
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∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
z I7(x, y, z, w)

(1− wz) (1− xyz)
= G0 −G1b −G1d +G2b ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
y I7(x, y, z, w)

(1− xy) (1− wyz)
= G0 −G1b −G1f +G2f ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
yz I7(x, y, z, w)

(1− yz) (1− wxyz)
= −G1b +G1g −G3d −G3e − 2 G3g

+G4d +G4g +G5f ,
∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
yz I7(x, y, z, w)

(1− wyz) (1− xyz)
= 2 G0 − 2 G1b −G1d −G1f +G2a

+G2b +G2f +G3a +G3b +G3c +G3f −G4a −G4c −G5c −G5d ,

as results from the identities between their corresponding monomials on dividing them by

the Gröbner basis of (3.100):

X7Y3Y6Y7 = 1− Y1Y5 ,

Y 2
1 Y4Y5 = −1 + Y1Y4 + Y1Y5 + Y3Y6 − Y1Y3Y6 ,

Y1Y2Y4Y5 = Y3 + Y2Y4 − Y2Y3Y6 − Y3Y4Y7 , (3.104)

X7Y1Y3Y4Y6Y7 = 1− Y1Y5 − Y3Y6 + Y1Y3Y6 ,

X7Y2Y3Y5Y6Y7 = 1− Y1Y5 − Y3Y7 + Y3Y5Y7 ,

X7Y1Y2Y4Y5Y6Y7 = −Y1Y5 + Y6 + Y1Y6 − Y2Y5Y6 + Y7 − Y1Y4Y7 + Y5Y7 − 2Y3Y6Y7 ,

X7Y1Y2Y3Y4Y5Y6Y7 = 2− Y1Y3 − Y2 − Y4 − 2Y1Y5 − Y3Y5 + Y1Y3Y5 + Y1Y2Y5 + Y1Y4Y5

− Y3Y6 + Y1Y3Y6 + Y2Y3Y6 − Y3Y7 + Y3Y4Y7 + Y3Y5Y7 .

Only G0, G1, G2 out of the six integrals in (3.102) yield a transcendental power series in

α′, cf. appendix A.

To conclude: Any finite integral (3.1) with ñij ≥ −1 can be expressed as R–linear

combination of the basis (3.102) as a result of partial fraction decomposition of their

integrands.

As a concrete example let us discuss the function F (3452) from the set (2.14) of basis

functions for N = 7. It is comprised by a sum of four integrals:

F (3524) = s13s46

∫

zi<zi+1

N−2∏

j=2

dzj

(
∏

i<l

|zil|
sil

)
(3.105)

×

(
s15s24

z13z15z24z46
+

s15s26
z13z15z26z46

+
s24s35

z13z24z35z46
+

s26s35
z13z26z35z46

)
.
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Their corresponding rational functions in (3.57) and monomials in (3.58) are given in the

following table:

rational function

in eq. (3.1)

rational function

in eq. (3.57)

monomial
in eq. (3.58)

z17
z13z15z16z24z27z37z46z57

1
(1−xy) (1−wz)

X7Y3Y6Y7 ,

z17z67
z13z15z16z26z27z37z46z47z57

xy
(1−xy) (1−wxyz)

X6X7Y2Y3Y5Y
2
6 Y7 ,

1
z13z16z24z27z35z46z57

1
(1−xy) (1−wz) (1−yz) 1 ,

z67
z13z16z26z27z35z46z47z57

xy
(1−xy) (1−yz) (1−wxyz) X6Y2Y5Y6 .

(3.106)

Their polynomial reduction w.r.t. the Gröbner basis of (3.100) gives

X7Y3Y6Y7 = 1− Y1Y5 ,

X6X7Y2Y3Y5Y
2
6 Y7 = 1− Y1Y5 + Y6 − Y2Y5Y6 − Y4Y7 + Y5Y7 − Y3Y6Y7 ,

X6Y2Y5Y6 = 1− Y4Y7 ,

(3.107)

respectively. The remaining monomials belong to the set (3.101) and cyclic transformations

thereof. Hence, with the lowest expansion coefficients from (3.102) we compute:

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− xy) (1− wz)
=

10

4
ζ(4) + · · · ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
xy I7(x, y, z, w)

(1− xy) (1− wxyz)
=

3

4
ζ(4) + · · · ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− xy) (1− wz) (1− yz)
=

27

4
ζ(4) + · · · ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
xy I7(x, y, z, w)

(1− xy) (1− yz) (1− wxyz)
=

10

4
ζ(4) + · · · .

Eventually for (3.105) we obtain:

F (3524) =
1

4
ζ(4) s13 s46 (10 s15s24 + 3 s15s26 + 27 s24s35 + 10 s26s35)+O(α′5) . (3.108)

A similar analysis can be done for the other three functions F (5324), F (3542) and F (5342)

starting at ζ(4), c.f. appendix C.
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4. Concluding remarks

In the first part of this work [1] we derived a strikingly short and compact expression

for the N–point superstring amplitude involving any external massless open string state

from the SYM vector multiplet. The final expression is given in (1.1) and gives rise to a

beautiful harmony of the string amplitudes. We have elucidated their implications both

from and to field–theory in section 2. Our result demonstrates how to efficiently compute

tree–level superstring amplitudes with an arbitrary number of external states. The pure

spinor cohomology techniques sketched in [14,12] proved to be crucial to derive (1.1). The

methods presented in our work should be applicable to tackle any tree–level disk amplitude

computation in any dimensions.

The availability of the compact expression (1.1) for the superstring N–point am-

plitude allows a detailed study of possible recursion relations allowing to construct the

N–amplitude from amplitudes with fewer external states and some guiding principle. Due

to the factorized form of (1.1), which separates the YM–part from the string part, the basic

question is how to combine the field–theory recursions established in the YM sector [38]

(see also [13]) to recursions working in the module of hypergeometric functions BN . For

the latter the following recurrence relations may be useful [39]

BN =
∑

Bn1
Bn2

· . . . ·Bnk
,

k∑

l=1

nl = N + 3 (k − 1) , (4.1)

with some partition {n1, . . . , nk} into k smaller amplitudes Bnl
. Eq. (4.1) allows to write

BN in terms of products of (N − 3) functions B4, cf. the next Figure.

Fig. 2 Partition into products of four–point amplitudes B4.

The amplitudes (1.1) give rise to higher order corrections in α′ to the Yang-Mills

action, therefore the YM amplitudes AYM which appear in (1.1) serve as building blocks

to construct the higher order terms in the effective action with the expansion coefficients

encoded in the functions F σ. Moreover, the field–theory amplitudes AYM may be arranged
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such that only YM three–vertices contribute [4]. Hence, only the latter enter the full

superstring amplitude (1.1). As a consequence it should be possible to describe the higher

order α′–corrections in the effective action entirely in terms of the fundamental YM three–

vertices dressed by the contributions from F σ.

Together with the KLT relations [7], the open string N–point amplitudes (1.1) can

be used to obtain compact expressions for the N–point closed string amplitudes [40].

The latter give rise to N–graviton scattering amplitudes. Their α′–expansions have been

analyzed up to N ≤ 6 through the order α′8 in ref. [34]. These findings proved to be

crucial in constraining possible counterterms in N = 8 supergravity in D = 4 up to seven

loops [41]. Counterterms invariant under N = 8 supergravity have an unique kinematic

structure and the tree–level closed string amplitudes provide candidates for them, which

are compatible with SUSY Ward identities and locality. The absence or restriction on

higher order gravitational terms at the order α′l together with their symmetries constrain

the appearance of possible counter terms available at l–loop. With the present results it

may now be possible to bolster up the results of [34] and to extend the research performed

in [41,42].
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Appendix A. Degree of transcendentality in the α′–expansion

A.1. Euler integrals and their power series expansions in α′

The α′–dependence enters through the kinematic invariants sij , si...l into the integrals

(3.1) or (3.5). Hence, in their (integer) power series expansions in α′, which may start

at least at the order α′3−N , each power α′n is accompanied by some rational function

or polynomial of degree n in the kinematic invariants ŝij , ŝi...l . The latter have rational

coefficients multiplied by multizeta values (MZVs) of certain weights. The maximal weight

thereof appearing at a given order α′n is related to the power n.

One important question is, whether the set of MZVs showing up at a given order n in

α′ is of a fixed weight. In this case we call the power series expansion transcendental (we

may also call the integral transcendental). The power series (3.10) is of this kind. E.g. for

N = 6 we may have the following integral and its power series expansion in α′:

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

xyz
=

1

s1s5t1
− ζ(2)

(
s3
s1s5

+
s4
s1t1

+
s2
s5t1

)
(A.1)

+ ζ(3)

(
s3 + s4 − t3

s1
+
s2 + s3 − t2

s5
+
s23 + s3t1
s1s5

+
s24 + s4s5
s1t1

+
s22 + s1s2
s5t1

)
+O(α′).

In (A.1) to each power α′n in α′ a Riemann zeta constant of fixed weight n + 3 (with

n ≥ −1) appears. Hence, (A.1) represents a transcendental power series expansion. On

the other hand, the following two integrals

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− xyz)2
= ζ(2) + ζ(2) (s3 + s6 − t2 − t3)

− ζ(3) (s1 + s2 + 2s3 + s4 + s5 + 2s6 + t1 − t2 − t3) +O(α2) ,

(A.2)

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
I6(x, y, z)

(1− xy)(1− yz)
= 2 ζ(2) + [2 ζ(2)− 4 ζ(3)] (t1 + t2 + t3)

− [2 ζ(2)− ζ(3)] (s1 + s2 + s3 + s4 + s5 + s6) +O(α2)

(A.3)

yield examples of non–transcendent power series.

It would be useful to have a criterion at hand, which allows to infer the transcenden-

tality properties of an integral by inspecting its integrand before power series expanding

the whole integral. In this subsection we present a criterion, which allows to deduce from

the structure of the integrand, whether we should expect a transcendental power series ex-

pansion in α′. Although this is a mathematical question, it will turn out that superstring

theory provides a satisfying answer to this.
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Transforming the integrals from the representation (3.5) into the form (3.1) subject to

(3.2) will prove to be useful in the following. Integrals (3.1), whose integrands are rational

functions involving double or higher powers of zij in their denominators, i.e. ñij < −1

for some zij , always give rise to non–transcendental power series. This can be seen by

performing a partial integration within the integrals, e.g. for a double power we have:

∫
z
sij−2
ij r(zkl) =

1

sij − 1

∫
r(zkl) ∂ziz

sij−1
ij = −

1

sij − 1

∫
z
sij−1
ij ∂zir(zkl) . (A.4)

Regardless of the transcendentality structure of the integral
∫
z
sij−1
ij ∂zir(zkl) the factor

1
sij−1

= 1 + sij + s2ij + · · · always destroys any transcendentality. This explains, why the

integral (A.2) with the corresponding rational functions (cf. eq. (3.7))

1

(1− xyz)2
≃

1

z13z14z225z36z46

yields a non–transcendental power series expansion. On the other hand, the non–

transcendentality of the integral (3.5) with the rational function [(1− x)(1− y)(1− z)(1−

xyz)]−1 can only be seen after transforming it into the representation (3.1), in which a

rational function with a double power in the denominator appears, i.e.:

1

(1− x)(1− y)(1− z)(1− xyz)
≃

1

z216z23z25z34z45
.

Let us now discuss the integrals (A.1) and (A.3) and elaborate their differences. w.r.t. to

the two representations (3.5) and (3.1) we have the following correspondences

1

xyz
≃

z216
z12z13z14z15z26z36z46z56

→
1

z12z13z14z15
,

1

(1− xy)(1− yz)
≃

1

z13z15z24z26z35z46
→

1

z13z15z24z35
,

(A.5)

respectively. The last correspondence (denoted by the arrow) follows from the choice

(3.3), with z6 = z∞ = ∞ and taking into account the z2∞ factor of the c–ghost factor

〈c(z1)c(z5)c(z6)〉 = z15z
2
∞. We may regard the rational functions (A.5) as originating

from a CFT computation of a six–gluon amplitude. This fact will be exploited in the

next subsection to infer the transcendentality properties of an integral (3.5) from the zij–

representation of its integrand (3.1).
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A.2. A transcendentality criterion from gluon amplitude computations

Gluon disk amplitudes in superstring theory provide transcendental power series when

expanding them w.r.t. to α′. This fact follows from dimensional grounds and the under-

lying effective field theory action describing the reducible and irreducible contributions of

the power series expansions. As a consequence the individual constituents of a gluon am-

plitude describing some kinematical factor must be described by transcendental integrals

(3.1). Recall that, in the NSR formalism with the choice (3.3) the color ordered N–gluon

amplitude A(1, . . . , N) is computed from

Tr(T a1 . . . T aN ) A(1, . . . , N) = Tr(T a1 . . . T aN ) 〈c(z1)c(zN−1)c(zN )〉

×

(
N−2∏

l=2

∫ 1

zl−1

dzl

)
〈V (−1)

g (zi) V
(−1)
g (zj)

N∏

l6=i,j

V (0)
g (zl)〉 ,

(A.6)

with the i–th and j–th gluon vertex operator put into the (−1)–ghost picture. The re-

maining N − 2 vertex operators are in the zero–ghost picture in order to guarantee a total

ghost charge of −2. The gluon vertex operator are given by

V (−1)
g = gA T a e−φ ξµ ψ

µ eikρX
ρ

,

V (0)
g = T a gA

(2α′)1/2
ξµ
[
i∂Xµ + 2α′ (kλψ

λ) ψµ
]
eikρX

ρ

,
(A.7)

in the (−1)– and zero–ghost picture, respectively. Above we have the scalar field φ bosoniz-

ing the superghost system, the coupling constant gA and the Chan–Paton factor T a. In

the following we always stick to the canonical color ordering (1, . . . , N). The assignment

of the superghost charges is yet left unspecified. The interplay between the bosonic fields

∂Xµ and the fermionic parts (kψ)ψµ of the N − 2 zero–ghost vertices V
(0)
g will play a

crucial role for the following considerations16.

In a six–gluon amplitude (A.6) the integral (A.1) describes the space–time contrac-

tion (ξ1ξ6)(ξ2k1)(ξ3k1)(ξ4k1)(ξ5k1), while the integral (A.3) characterizes the contraction

(ξ2ξ6)(ξ1k3)(ξ3k5)(ξ4k2)(ξ5k1). The crucial difference between the two encountered con-

tractions is, that in (A.6) the first contraction can only be realized by contracting17

ξµ1

1 ξµ2

2 ξµ3

3 ξµ4

4 ξµ5

5 ξµ6

6 kλ1k
σ
1 k

ρ
1k

τ
1 〈ψµ1

1 ψµ6

6 〉〈∂Xµ2

2 Xλ
1 〉〈∂X

µ3

3 Xσ
1 〉〈∂X

µ4

4 Xρ
1 〉〈∂X

µ5

5 Xτ
1 〉 ,

16 In the sequel, neither the normalization factors gA of the gluon vertex operators nor the

number of space–time dimensions play any role.
17 According to Wicks rule the correlator in (A.6) decomposes into products of two–point

correlators, given by: 〈∂Xµ(z1)X
ν(z2)〉 = − 2α′ηµν

z12
, 〈ψµ(z1)ψ

ν(z2)〉 =
ηµν

z12
.
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with the first and sixth gluon vertex operator in the (−1)–ghost picture. Therefore, the

integral (A.1) gives rise to a non–vanishing piece in the full amplitude. Since the full

amplitude is only comprised by transcendental functions multiplying kinematical factors

the contribution (A.1) must be a transcendental function. On the other hand, in (A.6) the

second contraction can be obtained from:

ξµ1

1 ξµ2

2 ξµ3

3 ξµ4

4 ξµ5

5 ξµ6

6 kλ1
1 kλ2

2 kλ3
3 kλ5

5 〈ψµ2

2 ψµ6

6 〉〈∂Xµ1

1 Xλ3
3 〉〈∂Xµ3

3 Xλ5
5 〉〈∂Xµ4

4 Xλ2
2 〉〈∂Xµ5

5 Xλ1
1 〉 ,

with the second and sixth gluon vertex operator in the (−1)–ghost picture. Furthermore,

we may also obtain the second contraction from the contraction involving fermionic corre-

lators:

ξµ1

1 ξµ2

2 ξµ3

3 ξµ4

4 ξµ5

5 ξµ6

6 kλ1
1 kλ2

2 kλ3
3 kλ5

5 〈ψµ2

2 ψµ6

6 〉〈ψµ1

1 ψλ3
3 〉〈ψµ3

3 ψλ5
5 〉〈∂Xµ4

4 Xλ2
2 〉〈ψµ5

5 ψλ1
1 〉 .

In fact, after taking into account the anti–commutation symmetry of fermions the two

contractions sum up to zero in the full amplitude (A.6):

〈∂X1X3〉〈∂X3X5〉〈∂X5X1〉 − 〈ψ1ψ3〉〈ψ3ψ5〉〈ψ5ψ1〉 = 0 .

Otherwise18, the latter would give rise to non–transcendent contributions to the full am-

plitude (A.6).

To summarize: in order to investigate the transcendentality properties of an Euler

integral (3.5) we transform it into the form (3.1) subject to (3.2). If the rational function

R̃ of this integrand involves powers higher than one in the denominator the corresponding

integral yields a non–transcendental power series. Otherwise, the rational function (more

precisely its limit zN → ∞ with taking into account the c–ghost factor with the choice

(3.3)) is mapped to a gluon contraction of the form19 (ξrξN )(ξikj) . . . (ξlkm) arising from

an N–gluon superstring computation (A.6) with the r–th and N–th gluon vertex operator

in the (−1)–ghost picture. If the contraction under consideration can only be realized by

the correlator 〈ψrψN 〉〈∂XiXj〉 . . . 〈∂XlXm〉 the corresponding integral is transcendental.

If on the other hand, the contraction under consideration can also be realized by correlators

involving more fermionic contractions, the underlying integral is non–transcendental and

18 Alternatively, we could also consider the kinematics (ξ2ξ6)(ξ1k5)(ξ3k1)(ξ4k2)(ξ5k3). Similar

arguments as before would yield: 〈∂X1X5〉〈∂X5X3〉〈∂X3X1〉 − 〈ψ1ψ5〉〈ψ5ψ3〉〈ψ3ψ1〉 = 0.
19 With no more than one (ξξ) scalar product. Otherwise in (3.5) there may be double poles,

of which not all disappear by the choice (3.3).
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the two contributions add up to zero. Hence, in the N–gluon amplitude computation (A.6)

non–transcendental contributions referring to a given kinematics (ξrξN )(ξikj) . . . (ξlkm)

are always accompanied by contributions involving a circle of fermionic contractions such,

that all contributions add up to zero. Stated differently, integrals describing a kinematics20

(ξrξN )(ξikj) . . . (ξlkm), which can be realized by several field contractions, describe non–

transcendental functions.

In fact, this criterion rules out the double poles (A.4) to join into a transcendental

integral. The latter can be realized by both bosonic and fermionic contractions. E.g.

the power 1/z2ij describes the kinematical factor (ξikj)(ξjki), which may stem from either

ξµi

i ξ
µj

j kλi

i k
λj

j 〈∂Xµi

i X
λj

j 〉〈∂X
µj

j Xλi

i 〉 or from ξµi

i ξ
µj

j kλi

i k
λj

j 〈ψµi

i ψ
λj

j 〉〈ψ
µj

j ψλi

i 〉. Both contri-

butions add up to zero:

〈∂XiXj〉〈∂XjXi〉 − 〈ψiψj〉〈ψjψi〉 = 0 .

Note, that kinematics involving the product (ξiξj) are realized by both ξµi

i ξ
µj

j 〈∂Xµi

i ∂X
µj

j 〉

and ξµi

i ξ
µj

j 〈ψµi

i ψ
µj

j 〉 kλi

i k
λj

j 〈ψλi

i ψ
λj

j 〉 giving rise to (1− 2α′kikj)(ξiξj)z
−2
ij in the end. Ac-

cording to (A.4) the non–transcendentality of the double pole integral is then compensated

by the 1−sij factor in the numerator. Therefore, kinematics involving more than two pairs

of (ξiξj) scalar products always involve double powers in the denominator. This is why

kinematics with more than two pairs of (ξiξj) scalar products cannot provide information

on the transcendentality property of the underlying integral. On the other hand, when

mapping an integral to the kinematics (ξrξN )(ξikj) . . . (ξlkm) in (A.6) we put the r–th and

N–th gluon vertex operator in the (−1)–ghost picture such that the double pole from the

contraction (ξrξN ) drops.

Let us mention, that the two integrals (3.48) and (3.49) have non–transcendent

power series. Indeed our criterion confirms this: In the representation (3.1) the inte-

gral (3.48) gives rise to the rational function 1
z13z15z2

26z34z45
involving a double pole. As

a consequence of the latter the α′–expansion in (3.48) is not transcendental. On the

other hand, the integral (3.49) leads to the rational function z13z26
z12z14z16z23z25z35z36z46

→
z13

z12z14z23z25z35
= 1

z12z14z25z35
+ 1

z14z23z25z35
. According to the previous statements the last

two fractions correspond to the six–gluon kinematics (ξ1ξ6)(ξ2k1)(ξ3k5)(ξ4k1)(ξ5k2) and

(ξ1ξ6)(ξ4k1)(ξ2k3)(ξ3k5)(ξ5k2), respectively. The underlined part of the last kinematics

may also be realized by contracting fermions along a circle. Hence the power series in

(3.49) is non–transcendental.

20 Note, that this statement assumes the r–th and N–th gluon vertex operator in the (−1)–ghost

picture to get rid of the double pole from the correlator 〈e−φ(zr)e−φ(zN )〉〈ψrψN 〉.
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A.3. Transcendentality criterion at work

Let us now apply our criterion for some N = 7 integral examples. The following inte-

grals can be associated to only one kinematical factor. Therefore, they represent integrals

with transcendental power series expansions.

rational function

in eq. (3.5)

rational function

in eq. (3.1)
kinematics transcendental

power series

1
(1−xy)(1−wz)(1−yz)

1
z13z16z24z35z46

(ξ1ξ7)(ξ2k4)(ξ3k1)(ξ4k6)(ξ5k3)(ξ6k1) yes ,

z
(1−wz)(1−yz)(1−xyz)

1
z14z16z24z35z36

(ξ1ξ7)(ξ2k4)(ξ3k6)(ξ4k1)(ξ5k3)(ξ6k1) yes ,

y
(1−xy)(1−yz)(1−wyz)

1
z13z16z25z35z46

(ξ1ξ7)(ξ2k5)(ξ3k1)(ξ4k6)(ξ5k3)(ξ6k1) yes ,

1
(1−yz)(1−xyz)(1−wxyz)

1
z13z14z26z35z36

(ξ1ξ7)(ξ2k6)(ξ3k1)(ξ4k1)(ξ5k3)(ξ6k3) yes ,

z
(1−wz)(1−wyz)(1−xyz)

1
z14z16z24z25z36

(ξ1ξ7)(ξ2k4)(ξ3k6)(ξ4k1)(ξ5k2)(ξ6k1) yes ,

yz
(1−yz)(1−wxyz)

1
z14z15z16z26z35

(ξ1ξ7)(ξ2k6)(ξ3k5)(ξ4k1)(ξ5k1)(ξ6k1) yes ,

yz
(1−wyz)(1−xyz)

1
z14z15z16z25z36

(ξ1ξ7)(ξ2k5)(ξ3k6)(ξ4k1)(ξ5k1)(ξ6k1) yes ,

yz
(1−y)(1−z)(1−wxyz)

1
z15z16z26z34z45

(ξ3ξ7)(ξ1k5)(ξ2k6)(ξ4k3)(ξ5k4)(ξ6k1) yes ,

1
w(1−xy)(1−wz)(1−yz)

1
z12z16z24z35z46

(ξ3ξ7)(ξ1k6)(ξ2k1)(ξ4k2)(ξ5k3)(ξ6k4) yes ,

1
w(1−wz)(1−yz)(1−xyz)

1
z12z16z24z35z36

(ξ1ξ7)(ξ2k1)(ξ3k6)(ξ4k2)(ξ5k3)(ξ6k1) yes .

(A.8)

Sometimes, before analyzing the integrands a partial fraction decomposition may be useful.

E.g. according to (3.7) we have:

1

(1− xy)(1− xyz)(1− wz)(1− wxyz)
≃

z16
z13z14z15z26z27z36z46z57

→
z16

z13z14z15z26z36z46
.

The partial fraction expansion yields:

z16
z13z14z15z26z36z46

=
1

z13z14z15z26z46
+

1

z14z15z26z36z46
.

The two rational functions on the r.h.s. correspond to the two kinematical fac-

tors (ξ1ξ7)(ξ2k6)(ξ3k1)(ξ4k1)(ξ5k1)(ξ6k4) and (ξ1ξ7)(ξ2k6)(ξ3k6)(ξ4k1)(ξ5k1)(ξ6k4), respec-

tively. Both of them do not allow for additional fermionic contractions. Hence, the integral

under consideration yields a transcendental series.

Furthermore, let us discuss some integrals with non–transcendental power series ex-

pansions. The rational functions of the following integrals describe kinematics, which can
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be realized in two ways. The second possibility involves contractions of several pairs of

fermions. The latter are contracted along a circle and give rise to the underlined subset of

the kinematics.

rational function

in eq. (3.5)

rational function

in eq. (3.1)
kinematics transcendental

power series

z
(1−xy)(1−wz)(1−yz)

1
z14z16z24z35z46

(ξ5ξ7)(ξ1k6)(ξ4k1)(ξ6k4) (ξ2k4)(ξ3k5) no ,

1
(1−xy)(1−wz)(1−wxyz)

1
z13z15z24z26z46

(ξ1ξ7)(ξ2k6)(ξ6k4)(ξ4k2) (ξ3k1)(ξ5k1) no ,

xyz
(1−xy)(1−wyz)(1−xyz)

1
z14z16z25z36z46

(ξ2ξ7)(ξ1k6)(ξ6k4)(ξ4k1) (ξ3k6)(ξ5k2) no .

(A.9)

Sometimes, before analyzing the integrands a partial fraction decomposition may be useful.

E.g. according to (3.7) we have:

z(1− xyz)

(1− xy)(1− wz)(1− wyz)(1− xyz)
≃

z26z47
z14z16z24z25z27z36z37z46z57

→
z26

z14z16z24z25z36z46
.

The partial fraction expansion yields:

z26
z14z16z24z25z36z46

=
1

z14z16z24z25z36
+

1

z14z16z25z36z46
.

The second term on the r.h.s. corresponds to one of the rational functions discussed in

(A.9). Hence, the integral under consideration does not give rise to a transcendental series.

An other example is:

1

(1− yz)(1− wyz)(1− xyz)
≃

z15z37
z13z14z16z25z27z35z36z47z57

→
z15

z13z14z16z25z35z36
.

The partial fraction expansion yields:

z15
z13z14z16z25z35z36

=
1

z13z14z16z25z36
+

1

z14z16z25z35z36
.

The two rational functions on the r.h.s. correspond to the two kinematical fac-

tors (ξ2ξ7)(ξ1k6)(ξ3k1)(ξ6k3)(ξ4k1)(ξ5k2) and (ξ2ξ7)(ξ1k6)(ξ3k5)(ξ4k1)(ξ5k2)(ξ6k3), respec-

tively. The first kinematics can also be realized by a fermionic contraction along a circle,

which is underlined. Hence, the integral under consideration does not give rise to a tran-

scendental series. Finally, the third integral with the integrand

y

(1− wz)(1− yz)(1− xyz)
≃

z14z37
z13z15z16z24z27z35z36z247
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yields a non–transcendental power series due to the double pole.

The results (A.9) can be anticipated by explicitly computing the integrals:
∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
z I7(x, y, z, w)

(1− xy)(1− wz)(1− yz)
= 2 ζ(2) + 2 ζ(3) + · · · ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− xy)(1− wz)(1− wxyz)
= 3 ζ(3) +

(
19

4
ζ(4)− 3 ζ(3)

)
s7

+
4

5
ζ(2)2 (s1 + s6 + t1 + t5) + · · · ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
xyz I7(x, y, z, w)

(1− xy)(1− wyz)(1− xyz)
= −2 ζ(2) + 4 ζ(3) + · · · ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
I7(x, y, z, w)

(1− yz)(1− wyz)(1− xyz)
=

5

2
ζ(4) + 4 ζ(3)− 2 ζ(2) + · · · ,

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

∫ 1

0

dw
y I7(x, y, z, w)

(1− wz)(1− yz)(1− xyz)
=

3

2
ζ(2) +

3

2
ζ(3) + · · · ,

(A.10)

Appendix B. Extended set of multiple hypergeometric functions for N = 6

Here we list all additional 18 functions (2.17) for the six–point case and give their

relations (2.9) to the basis (2.14).

F (2354) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z41

s12
z12

s45
z54

(
s13
z13

+
s23
z23

)
,

F (3254) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z41

s13
z13

s45
z54

(
s12
z12

+
s23
z32

)
,

F (5324) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z41

s15
z15

s24
z24

(
s13
z13

+
s35
z53

)
,

F (3524) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z41

s13
z13

s24
z24

(
s15
z15

+
s35
z35

)
,

F (5234) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z41

s15
z15

s34
z34

(
s12
z12

+
s25
z52

)
,

F (2534) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z41

s12
z12

s34
z34

(
s15
z15

+
s25
z25

)
,

(B.1)
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F (2453) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z31

s12
z12

s35
z53

(
s14
z14

+
s24
z24

)
,

F (4253) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z31

s14
z14

s35
z53

(
s12
z12

+
s24
z42

)
,

F (5423) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z31

s15
z15

s23
z23

(
s14
z14

+
s45
z54

)
,

F (4523) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z31

s14
z14

s23
z23

(
s15
z15

+
s45
z45

)
,

F (5243) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z31

s15
z15

s34
z43

(
s12
z12

+
s25
z52

)
,

F (2543) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z31

s12
z12

s34
z43

(
s15
z15

+
s25
z25

)
,

(B.2)

F (3452) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z21

s13
z13

s25
z52

(
s14
z14

+
s34
z34

)
,

F (4352) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z21

s14
z14

s25
z52

(
s13
z13

+
s34
z43

)
,

F (5432) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z21

s15
z15

s23
z32

(
s14
z14

+
s45
z54

)
,

F (4532) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z21

s14
z14

s23
z32

(
s15
z15

+
s45
z45

)
,

F (5342) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z21

s15
z15

s24
z42

(
s13
z13

+
s35
z53

)
,

F (3542) = −

∫

0<z2<z3<z4<1

dz2dz3dz4

(
∏

i<l

|zil|
sil

)
1

z21

s13
z13

s24
z42

(
s15
z15

+
s35
z35

)
,

(B.3)

In (2.32) we have displayed the relation (2.9) for one particular basis π. Here, we

want to present the relations (2.9) for two other choices of basis. For the new basis π =
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{(1, 2, 4, 5, 3, 6), (1, 4, 2, 5, 3, 6), (1, 5, 4, 2, 3, 6), (1, 4, 5, 2, 3, 6), (1, 5, 2, 4, 3, 6), (1, 2, 5, 4, 3, 6)}

we have

Kσ
π = s−1

36

×




t1−s1 s13 0 0 0 t1−s1+s3

0 0 s3+s13 s13 t1−s1+s3 0

s1(t3−s4)d13
t145s15

(s36−s1)s13d13
t145s15

−(s3+s13)s14s25
t145s15

−s13s14s25
s145s15

d8s14s35
t145s15

s1s35d13
t145s15

s1(s4−t3)

t145

(s1−s36)s13
t145

(s3+s13)d5
s145

s13d5
t145

−(s1+s24)s35
t145

−s1s35
t145

s1s4(s1−t1)
t125s15

−s1s4s13
s125s15

s14(s2+s35)d3
t125s15

s13d3d7
t125s15

s14s35d3
t125s15

s1(s4−s36)s35
s125s15

(t1−s1)d6
t125

s13d6
t125

−s14(s2+s35)
t125

−d7s13
t125

−s14s35
t125

d1s35
t125




(B.4)

and the following relation can be checked:




F (2453)

F (4253)

F (5423)

F (4523)

F (5243)

F (2543)




= K∗




F (2345)

F (3245)

F (4325)

F (3425)

F (4235)

F (2435)




. (B.5)

On the other hand, for the third basis π = {(1, 3, 4, 5, 2, 6), (1, 4, 3, 5, 2, 6), (1, 5, 4, 3, 2, 6),

(1, 4, 5, 3, 2, 6), (1, 5, 3, 4, 2, 6), (1, 3, 5, 4, 2, 6)} we have

Kσ
π = s−1

26

×




s1 s1+s2 0 s1−s3+t2 0 0

0 0 s1−s3+t2 0 s1+s24 s1

s1(s26−s13)d13
s145s15

−d9s13d13
s145s15

d10s14s25
s145s15

s13s25d13
s145s15

−s14(s1+s24)s35
s145s15

−s1s14s35
s145s15

s1(s13−s26)
s145

d9s13
s145

−(s3+s13)s25
s145

−s13s25
s145

−d12(s1+s24)
s145

−s1d12
s145

−s1s4s13
s246s15

−(s1+s2)s4s13
s246s15

s14s25d0
s246s15

s13s25(s4−s26)
s246s15

s14(s2+s25)d0
s246s15

s1(s26−s14)d0
s246s15

s1d11
s246

d11(s1+s2)

s246

−s14s25
s246

−(s3+s14)s25
s246

−s14(s2+s25)

s246

s1(s14−s26)

s246




(B.6)

and the following relation can be checked:




F (3452)

F (4352)

F (5432)

F (4532)

F (5342)

F (3542)




= K∗




F (2345)

F (3245)

F (4325)

F (3425)

F (4235)

F (2435)




. (B.7)
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Hence, the relations (2.32), (B.5) and (B.7) allow to express the additional set of 18

functions (B.1), (B.2) and (B.3) in terms of the minimal basis (2.29).

In the above matrices (B.4) and (B.6) we have introduced d5 = s1 + s24 − s36, d6 =

−s1+s5+s35, d7 = s1−s5+s24−s35 d8 = s6−s4+s13−s24, d10 = s1−s3−s4+s6, d11 =

s3 + s14 − s26, d12 = s26 − s3 − s13 and d13 = s15 + s45.

Appendix C. Power series expansions in α′ for N ≥ 7

In this appendix we give the α′–expansions (2.16) of the functions F σ. While for

N = 4, 5, 6 the latter can be found in subsection 2.5, here the cases N ≥ 7 are dealt.

The strategy how to compute the power series expansion in α′ for any generalized Euler

integral is described in [17,20]. Generically, this task amounts to evaluate generalized

Euler–Zagier sums involving many integer sums, which becomes quite tedious for N ≥ 6.

A complementary approach to determine the α′–expansion for the basis (2.14) can be set

up by imposing the factorization properties discussed in section 2.7.

Specifically , in the following we display the first orders of the 24 basis functions (2.14)

specifying the N = 7 amplitude:

F (2345) = 1− ζ(2) (s5s6 + s1s7 − t1t4 − s5t5 + t4t5 − s1t7 + t1t7)

+ ζ(3) (−2s1s3s5 + s25s6 + s5s
2
6 + s21s7 + s1s

2
7 + 2s3s5t1 + 2s4s5t1 + 2s1s5t2

+ 2s1s5t3 − 2s5t1t3 + 2s1s2t4 + 2s1s3t4 − 2s3t1t4 − t21t4 − 2s1t2t4 − t1t
2
4 − 2s4s5t5

− s25t5 + t24t5 − s5t
2
5 + t4t

2
5 − 2s1s5t6 − s21t7 − 2s1s2t7 + t21t7 − s1t

2
7 + t1t

2
7) +O(α′4) ,

F (2354) = −ζ(2) s46 (s4 − s6 + t5) + ζ(3) s46 (2s1s3 + s24 + s4s5 − s5s6 − s26 − 2s3t1 − 2s4t1

− 2s1t2 − 2s1t3 + 2t1t3 + s4t4 − s6t4 + 2s4t5 + s5t5 + t4t5 + t25 + 2s1t6) +O(α′4) ,

F (2435) = ζ(2) (s3 + t1 − t5) (s3 + t4 − t7)

+ ζ(3) (2s1s2s3 + 2s1s
2
3 − s33 + 2s23s5 + 2s3s4s5 − 2s23t1 + 2s3s5t1 + 2s4s5t1 − s3t

2
1

− 2s1s3t2 − 2s3s5t3 − 2s5t1t3 + 2s1s2t4 + 2s1s3t4 − 2s23t4 − 3s3t1t4 − t21t4 − 2s1t2t4

− s3t
2
4 − t1t

2
4 − 2s3s5t5 − 2s4s5t5 + 2s5t3t5 + s3t4t5 + t24t5 + s3t

2
5 + t4t

2
5 − 2s1s2t7

− 2s1s3t7 + s3t1t7 + t21t7 + 2s1t2t7 + s3t5t7 − t25t7 + s3t
2
7 + t1t

2
7 − t5t

2
7) +O(α′4) ,

F (2453) = −ζ(2) s36 (s3 + t1 − t5)

+ ζ(3) s36 (−2s1s2 − 2s1s3 − s23 − 2s3s4 − 2s4t1 + t21 + 2s1t2 + 2s3t3 + 2t1t3 + s3t4

+ t1t4 + 2s3t5 + 2s4t5 − 2t3t5 − t4t5 − t25 + s3t7 + t1t7 − t5t7) +O(α′4) ,

62



F (2534) = ζ(2) s46 (s3 + s6 − t3 − t5) + ζ(3) s46 (2s1s3 + 2s23 + s3s4 − s3s5 + s3s6 + s4s6

− s5s6 − s26 − 2s1t2 − 2s1t3 − 4s3t3 − s4t3 + s5t3 − s6t3 + 2t23 − s3t4 − s6t4 + t3t4

− 3s3t5 − s4t5 + s5t5 + 3t3t5 + t4t5 + t25 + 2s1t6) +O(α′4) ,

F (2543) = −ζ(2) s36 (s3 + s6 − t3 − t5) + ζ(3) s36 (−2s1s3 − s23 − s3s4 − s4s6 + s26

+ 2s1t2 + 2s1t3 + 2s3t3 + s4t3 − t23 + s3t4 + s6t4 − t3t4 + 2s3t5 + s4t5 − 2t3t5

− t4t5 − t25 − 2s1t6 + s3t7 + s6t7 − t3t7 − t5t7) +O(α′4) ,

F (3245) = −ζ(2) s13 (s2 − s7 + t7) + ζ(3) s13 (s1s2 + s22 + 2s3s5 − s1s7 − s27 + s2t1 − s7t1

− 2s5t2 − 2s5t3 − 2s2t4 − 2s3t4 + 2t2t4 + 2s5t6 + s1t7 + 2s2t7 + t1t7 + t27) +O(α′4) ,

F (3254) = −2 ζ(3) s13 s25 s46 +O(α′4) ,

F (3425) = ζ(2) s13 (s3 + s7 − t2 − t7) + ζ(3) s13 (−s1s3 + s2s3 + 2s23 + 2s3s5 − s1s7

+ s2s7 + s3s7 − s27 − s3t1 − s7t1 + s1t2 − s2t2 − 4s3t2 − 2s5t2 − s7t2 + t1t2 + 2t22

− 2s5t3 + 2s5t6 + s1t7 − s2t7 − 3s3t7 + t1t7 + 3t2t7 + t27) +O(α′4) ,

F (3452) = ζ(2) s13 s26 + ζ(3) s13 s26 (−s1 + s2 − s7 − t1 + 2t3 − 2t6 − t7) +O(α′4),

F (3524) =
1

4
ζ(4) s13 s46 (10 s15s24 + 3 s15s26 + 27 s24s35 + 10 s26s35) +O(α′5) ,

F (3542) =
1

4
ζ(4) s13 s26 (−7 s15s24 − 17 s24s35 + 3 s15s46 + 10 s35s46) +O(α′5) ,

F (4235) = −ζ(2) s14 (s3 + t4 − t7)

+ ζ(3) s14 (−2s2s3 − s23 − 2s3s5 − 2s4s5 + s3t1 + 2s3t2 + 2s5t3 − 2s2t4 + t1t4

+ 2t2t4 + t24 + s3t5 + t4t5 + 2s2t7 + 2s3t7 − t1t7 − 2t2t7 − t5t7 − t27) +O(α′4) ,

F (4253) = ζ(2) s14 s36

+ ζ(3) s14 s36 (2s2 + 3s3 + 2s4 − t1 − 2t2 − 2t3 − t4 − t5 − t7) +O(α′4) ,

F (4325) = −ζ(2) s14 (s3 + s7 − t2 − t7) + ζ(3) s14 (−s2s3 − s23 − 2s3s5 − s2s7 + s27 + s3t1

+ s7t1 + s2t2 + 2s3t2 + 2s5t2 − t1t2 − t22 + 2s5t3 + s3t5 + s7t5 − t2t5 − 2s5t6

+ s2t7 + 2s3t7 − t1t7 − 2t2t7 − t5t7 − t27) +O(α′4) ,

F (4352) = −ζ(2) s14 s26

+ ζ(3) s14 s26 (−s2 + s3 + s7 + t1 − t2 − 2t3 + t5 + 2t6 + t7) +O(α′4) ,

F (4523) = ζ(2) s14 s36

+ ζ(3) s14 s36 (2s2 + 2s4 − t1 + t2 + t3 − t4 − t5 − 3t6 − t7) +O(α′4) ,

F (4532) = −ζ(2) s14 s26
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+ ζ(3) s14 s26 (−s2 − s4 + s7 + t1 − t2 − t3 + t5 + 2t6 + t7) +O(α′4) ,

F (5234) = ζ(2) s15 s46

+ ζ(3) s15 s46 (s4 − s5 − s6 + 2t2 − t4 − t5 − 2t6) +O(α′4) ,

F (5243) = −ζ(2) s15 s36

+ ζ(3) s15 s36 (s3 − s4 + s6 − 2t2 − t3 + t4 + t5 + 2t6 + t7) +O(α′4) ,

F (5324) =
1

4
ζ(4) s15s46 (10 s13s24 + 3 s13s26 − 17 s24s35 − 7 s26s35) +O(α′5) ,

F (5342) =
1

4
ζ(4) s15s26 (−7 s13s24 + 3 s13s46 + 10 s24s35 − 7 s35s46) +O(α′5) ,

F (5423) = −ζ(2) s15 s36

+ ζ(3) s15 s36 (−s2 − s4 + s6 − t2 − t3 + t4 + t5 + 2t6 + t7) +O(α′4) ,

F (5432) = ζ(2) s15 s26 + ζ(3) s15 s26 (−s6 − s7 + t2 + t3 − t5 − t6 − t7) +O(α′4) . (C.1)

As anticipated after eq. (2.16) there is one function starting only at ζ(3)α′3 and a set of

four functions starting not until at ζ(4)α′4.

We also have the expressions for N ≥ 8. However, it is too elaborate to present all

expansions for ≥ 120 basis functions (2.14). At any rate in [40] a detailed survey of the

structure of the α′–expansions (2.16) is undertaken.
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