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1. Introduction

Although much has been learned about superstring amplitudes using the Ramond-

Neveu-Schwarz (RNS) formalism, the need to sum over spin structures obscures the role of

spacetime supersymmetry. Using the light-cone Green-Schwarz (GS) formalism, one can

easily compute four-point tree and one-loop amplitudes with half of the supersymmetry

manifest. But higher-point and higher-loop amplitudes are more difficult to compute in

this light-cone formalism, especially amplitudes that involve the ten-dimensional ǫ tensor.

Although a covariant version of the GS formalism has recently been developed by Lee

and Siegel [1] [2], this covariant GS formalism has not been used to compute higher-loop

amplitudes or amplitudes involving the ǫ tensor.

Over the last six years, a manifestly super-Poincaré covariant superstring formalism

has been developed which involves bosonic ghost variables λα satisfying the pure spinor

constraint λγmλ = 0 [3]. Tree amplitudes and one-loop four-point amplitudes were com-

puted in [4] using a “minimal” version of the formalism, and these computations were later

extended to two-loop four-point amplitudes in [5] and to d = 11 one-loop computations

in [6]. When all external states are bosons, these amplitudes were shown in [7] [8] [9] to

coincide with the standard RNS result.

All of these amplitudes are expressed as integrals of superfields in “pure spinor super-

space” which, in d = 10, involves five fermionic θ coordinates covariantly contracted with

three bosonic pure spinors. When all superfields are on-shell, the superspace integrands are

annihilated by the pure spinor BRST operator Q = λαDα. As shown in [3], this implies

that the amplitude expressions are invariant under all sixteen d = 10 supersymmetries

even if the pure spinor superspace only involves five θ’s.

More recently, a non-minimal version of the pure spinor formalism has been developed

which involves both a pure spinor λα and its complex conjugate λα [10]. The amplitude

prescription using the non-minimal version is considerably simpler than in the minimal

version since there are no picture-changing operators and Lorentz invariance is manifest at

all stages in the computation. Furthermore, the amplitude prescription in the non-minimal

formalism can be related to the prescription in topological string theory where the b ghost

is replaced by a composite operator.

For tree amplitudes, it is trivial to show that the minimal and non-minimal pure spinor

formalisms give the same answers. But for loop amplitudes, there are some differences

between the minimal and non-minimal computations which makes it non-trivial to prove

1



their equivalence. In the first part of this paper, the non-minimal pure spinor formalism

will be used to re-compute the massless four-point one-loop and two-loop amplitudes and

equivalence with the minimal computations will be proven. In terms of integrals over pure

spinor superspace, the kinematic factors in these one-loop and two-loop amplitudes will be

shown to be proportional to

K1−loop = 〈(λA)(λγmW )(λγnW )Fmn〉, (1.1)

K2−loop = 〈(λγmnpqrλ)FmnFpqFrs(λγ
sW )〉,

where Aα, W
α, and Fmn are the spinor gauge superfield, spinor superfield-strength, and

vector superfield-strength of super-Yang-Mills, and the pure spinor measure factor 〈 〉

is defined such that 〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1. Using the super-Yang-Mills

equations of motion, it is easy to check that the integrands in (1.1) are annihilated by

λαDα, so these kinematic factors are supersymmetric.

The non-minimal formalism will then be used to compute in a supersymmetric manner

the gauge variation of the massless six-point one-loop amplitude in Type-I superstring

theory. Since this computation involves the ten-dimensional ǫ tensor, it has never been

performed using the light-cone GS formalism. After expressing the gauge variation of the

six-point amplitude as a term at the boundary of moduli space, it will be shown that the

anomaly is proportional to the pure spinor superspace integral

Kanomaly = 〈(λγmW )(λγnW )(λγpW )(WγmnpW )〉, (1.2)

whose purely bosonic contribution is the standard ǫ10F
5 term.

Further investigation upon the appearance of ǫ10 in (1.2) led us to the discovery of a

pure spinor superspace integral, namely,

〈(λγrW 1)(λγsW 2)(λγtW 3)(θγmγnγrstW
4)〉,

from which the t8 and ǫ10 tensors naturally emerge in a unified manner, in the form

ηmntm1n1...m4n4

8 − 1
2ǫ

mnm1n1...m4n4

10 . This differs from the RNS formalism where the t8

and ǫ10 tensors come from different spin structures. It may be possible that this pure

spinor superspace integral is related to the five-point one-loop amplitudes involving the

heterotic ǫ10BtrF 4 and Type IIA ǫ10t8BR
4 terms, which would be useful for finding the

supersymmetric completions of these terms.
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It is interesting to compare these computations using the pure spinor formalism with

the recently developed method of Lee and Siegel for computing one-loop amplitudes. The

method of Lee and Siegel is based on the “ghost pyramid” covariant quantization of the

Green-Schwarz superstring, in which the BRST operator has a complicated structure in-

volving an infinite set of ghosts [1]. However, the vertex operators in the Lee-Siegel for-

malism are relatively simple and have a very similar structure to the integrated vertex

operator in the pure spinor formalism.

In the one-loop computations performed in [2] using the Lee-Siegel method, all vertex

operators are integrated and there are no picture-changing operators. Furthermore, there

is no superspace integration using this method so the amplitudes are expressed in terms

of the component fields. This is the analog of the F1 picture in the RNS formalism where

all vertex operators are in the zero picture.

On the other hand, in the one-loop computations using the pure spinor formalism,

one of the vertex operators is unintegrated, the b ghost is a composite operator playing

the role of a picture-raising operator, and the amplitudes are expressed as integrals over

pure spinor superspace. This is the analog of the F2 picture in the RNS formalism where

the unintegrated vertex operator is in the −1 picture and the picture-raising operator is

inserted on top of the b ghost.

For certain one-loop computations such as the four-point and five-point massless am-

plitudes computed in [2], there is no disadvantage in treating all vertex operators in inte-

grated form. However, for the anomaly computation presented here, it is definitely more

convenient to leave one unintegrated vertex operator in a “different picture” from the in-

tegrated vertex operators. It would be interesting to see how to compute this anomaly

using the Lee-Siegel method, and if one needs to introduce some analog of picture-changing

operators.

In section 2, we review the non-minimal amplitude prescription for one-loop and two-

loop amplitudes. In section 3, we compute the massless four-point one-loop and two-loop

amplitudes and show agreement with the computations using the minimal formalism. In

section 4, we compute the gauge variation of the massless six-point one-loop amplitude.

In section 5, we explain how t8 and ǫ10 tensors naturally emerge from the integration

over pure spinor superspace. And in appendix A, we list all the pure spinor superspace

identities used in this paper and present two other representations for t8 and ǫ10 tensors

using pure spinors.
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2. Non-Minimal Amplitude Prescription

The prescription in the non-minimal pure spinor formalism for computing N -point

one-loop and two-loop scattering amplitudes is given by [10]

A1−loop =

∫

dτ〈N (

∫

dwµ(w)b(w))V1(z1)
N
∏

r=2

∫

dzrUr(zr)〉, (2.1)

and

A2−loop =

∫

dτ1dτ2dτ3〈N
3
∏

s=1

(

∫

dwsµs(ws)b(ws))
N
∏

r=1

∫

dzrUr(zr)〉. (2.2)

where τi are the Teichmuller parameters, µi are the Beltrami differentials, Vr and Ur are

the unintegrated and integrated vertex operators, and 〈 〉 denotes the functional inte-

gral over the Green-Schwarz-Siegel fields [xm, θα, dα], over the pure spinor ghosts λα and

their conjugate momenta wα, and over the non-minimal fields [λα, rα] and their conjugate

momenta [wα, sα].

As in topological string theory, the b-ghost is a composite operator satisfying {Q, b} =

T where T is the stress-tensor, and has the explicit form

b = sα∂λα +
2Πm(λγmd)−Nmn(λγ

mn∂θ)− J(λ∂θ)− (λ∂2θ)

4(λλ)
(2.3)

+
(λγmnpr)(dγmnpd+ 24NmnΠp)

192(λλ)2
−

(rγmnpr)(λγmd)Nnp

16(λλ)3
+

(rγmnpr)(λγpqrr)NmnN
qr

128(λλ)4

where Πm = ∂xm + 1
2 (θγ

m∂θ) is the supersymmetric momentum and Nmn = 1
2 (wγmnλ)

and J = λw are the pure spinor Lorentz and ghost currents.

Integration over the zero modes of the bosonic and fermionic worldsheet fields naively

gives 0/0, so it is necessary to insert a BRST-invariant operator N = e{Q,χ} which regu-

larizes this zero mode integration. Since N = 1 + {Q,Ω}, the choice of χ does not affect

the scattering amplitude. A convenient choice is χ = −λαθα −
∑g

I=1(
1
2N

I
mn(s

Iγmnλ) +

JI(sIλ)), which implies that

N = exp(−λαλ
α − rαθ

α) (2.4)

exp(

g
∑

I=1

[ −
1

2
N I

mnN
mnI

− JIJ
I

−
1

4
(sIγmnλ)(λγ

mndI) + (sIλ)(λdI)] ),
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where [N I
mn, J

I , Nmn, J
I
, dIα, s

Iα] denote the g zero modes of these spin one fields on a

genus g surface.

Finally, for massless external states, the unintegrated vertex operator is V = λαAα

and the integrated vertex operator is

U = ∂θαAα +ΠmAm + dαW
α +

1

2
NmnFmn.

The [Aα, An,W
α,Fmn] superfields describe super-Yang-Mills theory [11] and have the θ-

expansions [12]

Aα(x, θ) =
1

2
am(γmθ)α −

1

3
(ξγmθ)(γ

mθ)α −
1

32
Fmn(γpθ)α(θγ

mnpθ) + . . .

Am(x, θ) = am − (ξγmθ)−
1

8
(θγmγ

pqθ)Fpq +
1

12
(θγmγ

pqθ)(∂pξγqθ) + . . .

Wα(x, θ) = ξα −
1

4
(γmnθ)αFmn +

1

4
(γmnθ)α(∂mξγnθ) +

1

48
(γmn)α(θγnγ

pqθ)∂mFpq + . . .

Fmn(x, θ) = Fmn − 2(∂[mξγn]θ) +
1

4
(θγ[mγ

pqθ)∂n]Fpq + . . .,

where am(x) and ξα(x) describe the gluon and gluino fields, Fmn = 2∂[man], and . . . involve

derivatives of am and ξα.

To compute the functional integral over the worldsheet fields, one first uses the free

field OPE’s to integrate out the non-zero modes. Note that as in topological string theory,

computation of the partition function for the non-zero modes is trivial because of cancel-

lations between bosonic and fermionic fields of equal spin. The worldsheet zero modes are

then integrated out using the measure factors described in [10] and the regulator N of

(2.4).

3. Four-Point One-Loop and Two-Loop Computations

As was shown in [4] and [9] using the minimal pure spinor formalism, the kinematic

factors for the massless four-point one-loop and two-loop amplitudes are proportional to

the pure spinor superspace integrals

K1−loop = 〈(λA)(λγmW )(λγnW )Fmn〉, (3.1)

K2−loop = 〈(λγmnpqrλ)FmnFpqFrs(λγ
sW )〉, (3.2)
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where Aα, W
α, and Fmn are the spinor gauge superfield, spinor superfield-strength, and

vector superfield-strength of the four external super-Yang-Mills multiplets, the expressions

of (3.1) and (3.2) are summed over permutations of the four external superfields, and the

pure spinor measure factor 〈 〉 is defined such that 〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1.

In [8] and [9], the purely bosonic contributions to these pure spinor superspace integrals

where shown to correctly reproduce the t8 index contractions of the four Yang-Mills field-

strengths.

It will now be shown that the non-minimal computation of the four-point massless

one-loop and two-loop amplitudes contains the same kinematic factors as in [8][9]. Since

the moduli space part of the amplitude computations in the minimal and non-minimal

formalisms is the same, this proves the equivalence of the two prescriptions for these

amplitudes.

3.1. One-loop computation

Using the one-loop prescription of (2.1), the regulator N of (2.4) can provide a max-

imum of eleven dα zero modes, which are multiplied by the eleven sα zero modes. So

the remaining five dα zero modes must come either from the vertex operators or from the

single b ghost. Since the three integrated vertex operators can provide at most three dα

zero modes through the terms (Wαdα), the single b ghost of (2.3) must provide two dα

zero modes through the term
(λγmnpr)(dγmnpd)

192(λλ)2
. (3.3)

After integrating over the zero modes of the dimension one fields (wα, w
α, dα, s

α) using

the measure factors described in [10], one is left with an expression proportional to

∫

d16θ

∫

[dλ][dλ][dr](λλ)−2(λ)4(λγmnpr)AWWW exp(−λλ− rθ) (3.4)

=

∫

d16θ

∫

[dλ][dλ][dr] exp(−λλ− rθ)(λλ)−2(λ)4(λγmnpD)AWWW (3.5)

where Dα = ∂
∂θα

+(γmθ)α∂m is the usual superspace derivative and the index contractions

on

(λ)4(λγmnpD)AWWW (3.6)

have not been worked out. Note that (3.5) is obtained from (3.4) by writing rα exp(−rθ) =
∂

∂θα
exp(−rθ), integrating by parts with respect to θ, and using conservation of momentum
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to ignore total derivatives with respect to x. Furthermore, the factor of (λ)4 in (3.4) comes

from the λ in the unintegrated vertex operator, the 11 factors of λ and λ which multiply

the zero modes of dα and sα in N , the factor of (λ)−8(λ)−8 in the measure factor of wα

and wα, and the factor of (λ)−3 in the measure factor of sα.

Fortunately, it is easy to show there is a unique Lorentz-invariant way to contract the

indices in (3.6). To show this, first choose a Lorentz frame in which the only non-zero

component of λα is in the λ+ direction. This choice preserves a U(1) × SU(5) subgroup

of SO(10), under which a Weyl spinor Uα and an anti-Weyl spinor Vα decompose as

Uα −→
(

U+
5

2

, U 1

2
[ab], U

a
− 3

2

)

, Vα −→
(

V− 5

2
+, V

[ab]

− 1

2

, V+ 3

2
a

)

, (3.7)

where the subscript denotes the U(1) charge.

Since (λ+)4 carries +10 U(1) charge, (λγmnpD)AWWW must carry −10 U(1) charge

which is only possible if (λγmnpD) carries −3 charge, Aα carries −5
2 charge, and each Wα

carries −3
2 charge. Contracting the SU(5) indices, one finds that the unique U(1)×SU(5)

invariant contraction of the indices is

(λ+)4(λγabcD)A+W
aW bW c. (3.8)

Returing to covariant notation, one can easily see that (3.6) must be proportional to the

Lorentz-invariant expression

(λγmnpD)(λA)(λγmW )(λγnW )(λγpW ), (3.9)

which reduces to (3.8) in the frame where λ+ is the only non-zero component of λα.

However, to express the kinematic factor as an integral over pure spinor superspace as

in (3.1), it is convenient to have an expression in which all λα’s appear in the combination

(λαλα). If all λ’s appear in this combination, one can use that

∫

d16θ

∫

[dλ][dλ][dr] exp(−λλ− rθ)(λλ)−nλαλβλγfαβγ (3.10)

is proportional to

〈λαλβλγfαβγ〉. (3.11)

To convert (3.9) to this form, it is convenient to return to the frame in which λ+ is

the only non-zero component of λα and write (3.8) as

(λ+)4ǫabcde(λ
[de]
D+ − λ+D

[de])A+W
aW bW c. (3.12)
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Using the superspace equations of motion for Aα and Wα, it is easy to show that

D+A+ = D+W
a = 0, D[de]A+ +D+A

[de] = 0, ǫabcdeD
[ab]W c = Fde. (3.13)

So (3.12) is proportional to two terms which are

(λ+)4λ+ǫabcde(D+A
[de])W aW bW c and (λ+)4λ+A+W

aW bFab. (3.14)

The second term in (3.14) can be easily written in covariant language as

(λλ)(λA)(λγmW )(λγnW )Fmn, (3.15)

which produces the desired pure spinor superspace integral of (3.1). And the first term in

(3.14) can be written in covariant language as

(λλ)
[

(λD)(λγmnA)
]

(λγpW )(WγmnpW ), (3.16)

which produces the pure spinor superspace integral

〈
[

(λD)(λγmnA)
]

(λγpW )(WγmnpW )〉. (3.17)

But since BRST-trivial operators decouple,

〈(λD)
[

(λγmnA)(λγpW )(WγmnpW )
]

〉 = 0,

which implies that (3.17) is equal to

〈(λγmnA)(λD)
[

(λγpW )(WγmnpW )
]

〉. (3.18)

Finally, using the superspace equation that DαW
β is proportional to (γmn)

β
α Fmn, one

finds that (3.18) is proportional to (3.1). So the non-minimal computation of the kinematic

factor is proportional to the minimal computation of (3.1).
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3.2. Two loops

To compute the kinematic factor at two loops using the non-minimal prescription of

(2.2), first note that the regulator N can provide 22 dα zero modes which are multiplied

by the 22 zero modes of sα. So the remaining 10 dα zero modes must come from the

four integrated vertex operators and the three bα ghosts. This is only possible if each

integrated vertex operators provides a dα zero mode through the term (Wαdα) and each

b ghost provides two dα zero modes through the term of (3.3).

After integrating over the zero modes of the dimension one fields (wI
α, w

Iα, dIα, s
Iα)

using the measure factors described in [10], one is left with an expression proportional to

∫

d16θ

∫

[dλ][dλ][dr](λλ)−6(λ)6(λγmnpr)3WWWW exp(−λλ− rθ) (3.19)

=

∫

d16θ

∫

[dλ][dλ][dr] exp(−λλ− rθ)(λλ)−6(λ)6(λγmnpD)3WWWW (3.20)

where the index contractions on

(λ)6(λγmnpD)3WWWW (3.21)

have not been worked out. Note that the factor of (λ)6 in (3.19) comes from the 11g factors

of λ and λ which multiply the zero modes of dIα and sIα in N , the factor of (λ)−8g(λ)−8g in

the measure factor of wI
α and wIα, and the factor of (λ)−3g in the measure factor of sIα.

As in the one-loop four-point amplitude, there is fortunately a unique way of con-

tracting the indices of (3.21) in a Lorentz-invariant manner. Choosing the Lorentz frame

where λ+ is the only non-zero component of λα, one finds that (λ+)6 contributes +15 U(1)

charge so that each (λγmnpD) must contribute −3 charge and each W must contribute

−3
2
charge. Since the −3 component of (λγmnpD) is (λ

[ab]
D+ − λ+D

[ab]), and since D+

annihilates the −3
2
component of Wα, the only contribution to (3.21) comes from a term

of the form

(λ+)6(λ+)
3(D[ab]D[cd]D[ef ])(W gWhW jW k) (3.22)

where the ten SU(5) indices are contracted with two ǫabcde’s.

The term of (3.22) produces three types of terms depending on how the three D’s

act on the four W ’s. If all three D’s act on the same W , one gets a term proportional to

(λ+)6(λ+)
3WWW∂F , which by U(1)× SU(5) invariance must have the form

(λ+)6(λ+)
3W aW bW c∂aFbc. (3.23)
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And if two D’s act on the same W , one gets a term proportional to (λ+)6(λ+)
3FWW∂W ,

which by U(1)× SU(5) invariance must have the form

(λ+)6(λ+)
3FbcW

aW b∂aW
c. (3.24)

Finally, if each D acts on a different W , one obtains a term that is proportional to

(λ+)6(λ+)
3WFFF , which by U(1)× SU(5) invariance must have the form

(λ+)6(λ+)
3FabFcdFefW

f ǫabcde. (3.25)

The first term in (3.23) vanishes by Bianchi identities. And the second term in (3.24)

is proportional to the first term after integrating by parts with respect to ∂a and using

the equation of motion ∂aW
a = 0. So the only contribution to the kinematic factor comes

from the third term of (3.25), which can be written in Lorentz-covariant notation as

(λλ)3(λγmnpqrλ)FmnFpqFrs(λγ
sW ). (3.26)

So the non-minimal computation of the two-loop kinematic factor agrees with the minimal

computation of (3.2).

4. Type-I Anomaly with Pure Spinors

It will now be shown that the non-minimal pure spinor formalism computation of the

hexagon gauge anomaly in the Type-I superstring is equivalent to the RNS result of [13].

As will be shown below, the kinematic factor of the hexagon gauge variation can be written

as the pure spinor superspace integral

K = 〈(λγmW 2)(λγnW 3)(λγpW 4)(W 5γmnpW
6)〉,

whose bosonic part is the well-known ǫ10F
5 RNS result of [13].

As discussed in [14] [15], the anomaly can be easily computed as a surface term which

contributes at the boundary of moduli space. The result can be separated in two parts:

the kinematic factor depending only on momenta and polarizations, and the moduli space

part which depends on the worldsheet surface. We will be interested only in the kinematic

factor, as the moduli space part uses identical computations as in the anomaly analysis

using the RNS formalism3.

3 A pedagogical presentation of these computations can be found in [16].
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4.1. Kinematic factor computation

In the type-I superstring theory with gauge group SO(N), the massless open string

six-point one-loop amplitude is given by

A =
∑

top=P,NP,N

Gtop

∫ ∞

0

dt〈N

∫

dwb(w)(λA1)
6
∏

r=2

∫

dzrUr(zr)〉 (4.1)

where P,NP,N denotes the three possible different world-sheet topologies, each of which

has a different group-factor Gtop [17]. When all particles are attached to one boundary, we

have a cylinder with GP = Ntr(ta1ta2ta3ta4ta5ta6). When particles are attached to both

boundaries, the diagram is a non-planar cylinder, where GNP = tr(ta1ta2)tr(ta3ta4ta5 ta6).

And finally, there is the non-orientable Möbius strip where GN = −tr(ta1ta2ta3ta4ta5ta6).

We will be interested in the amplitude when all external states are massless gluons

with polarization erm i.e., arm(x) = erme
ik·x, wherem = 0, . . .9 is the space-time vector index

and r is the particle label 4. To probe the anomaly, one can compute (4.1) and substitute

one of the external polarizations for its respective momentum. However, instead of first

computing the six-point amplitude and substituting em → km in the answer, we will

first make the gauge transformation in (4.1) and then compute the resulting correlation

function. This will give us the anomaly kinematic factor directly.

Under the super-Yang-Mills gauge transformation

δAα = DαΩ, δAm = ∂mΩ, (4.2)

the integrated vertex operator
∫

dzU changes by the surface term
∫

dzδU =
∫

dz∂Ω, and

the unintegrated vertex operator changes by the BRST-trivial quantity δ(λA) = λαDαΩ =

QΩ. Choosing Ω(x, θ) = eik·x has the same effect as changing em → km, which is the desired

gauge transformation to probe the anomaly.

To compute the gauge anomaly, it will be convenient to choose the gauge transforma-

tion to act on the polarization e1m in the unintegrated vertex operator, so that the gauge

variation of (4.1) is

δA =
∑

top=P,N,NP

Gtop

∫ ∞

0

dt〈N

∫

dwb(w)(QΩ(z1))
6
∏

r=2

∫

dzrUr(zr)〉. (4.3)

4 We will omit the adjoint gauge group index from the polarizations and field-strengths for the

rest of this section.
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“Integrating” Q by parts inside the correlation function will only get a contribution from

the BRST variation of the b-ghost, which is a derivative with respect to the modulus

[14,18]. So

δA =−
∑

top

Gtop

∫ ∞

0

dt
d

dt
〈Ω(z1)N

6
∏

r=2

∫

dzrUr(zr)〉

≡ −K
∑

top

Gtop

[

Btop(∞)−Btop(0)
]

,

(4.4)

where the moduli space part of the anomaly is encoded in the function

Btop(t) ≡

∫ t

0

dz6

∫ z6

0

dz5

∫ z5

0

dz4

∫ z4

0

dz3

∫ z3

0

dz2 〈
6
∏

r=1

: eikr ·xr :〉top,

and K = 〈NU2U3U4U5U6〉. From (4.4), it is clear that the anomaly comes from the

boundary of moduli space.

To compute the kinematic factor K, observe that there is an unique way to absorb

the 16 zero modes of dα, 11 of sα and 11 of rα. The regularization factor N must provide

11 dα, 11 s
α and 11 rα zero modes. The five remaining dα zero modes must come from

the external vertices5 through (dW)5. As in the computations of the previous section, the

kinematic factor is thus given by a pure spinor superspace integral involving 3 λ’s and 5

W ’s, as can be easily verified by integrating all the zero mode measures except [dλ], [dλ]

and [dr]. To find out how the indices are contracted in K, choose the reference frame

where only λ+ 6= 0. Then one can easily check that the unique U(1) × SU(5)-invariant

contraction is

K = 〈(λ+)3ǫabcdeW
a
2W

b
3W

c
4W

d
5W

e
6 〉,

which in SO(10)-covariant notation translates into

K = 〈(λγmW2)(λγ
nW3)(λγ

pW4)(W5γmnpW6)〉. (4.5)

4.2. Bosonic contribution to kinematic factor

When all external states are gluons, there is only one possibility to saturate the pure

spinor superspace correlation 〈λ3θ5〉. Each superfieldWα(θ) must contribute one θ through

the term −1
4 (γ

mnθ)αFmn. Thus, the kinematic factor (4.5) is proportional to

〈(λγpγm2n2θ)(λγqγm3n3θ)(λγrγm4n4θ)(θγm5n5γpqrγ
m6n6θ)〉F 2

m2n2
. . .F 6

m6n6
. (4.6)

5 It follows from this zero mode counting that the anomaly trivially vanishes for amplitudes

with less than six external massless particles.
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We will now demonstrate the equivalence with the RNS anomaly result of [13] by proving

that

〈(λγpγm1n1θ)(λγqγm2n2θ)(λγrγm3n3θ)(θγm4n4γpqrγ
m5n5θ)〉 =

1

45
ǫm1n1...m5n5 . (4.7)

We will first show that the correlation in (4.7) is proportional to ǫ10 by checking its

behavior under a parity transformation. Using the language of [4], we can rewrite (4.7) as

(T−1)(αβγ)[ρ1ρ2ρ3ρ4ρ5]T(αβγ)[δ1δ2δ3δ4δ5](γ
m1n1)δ1ρ1

(γm2n2)δ2ρ2
(γm3n3)δ3ρ3

(γm4n4)δ4ρ4
(γm5n5)δ5ρ5

,

(4.8)

where T and T−1 are defined by

(T−1)(α1α2α3)[δ1δ2δ3δ4δ5] = (γm)α1δ1(γn)α2δ2(γp)α3δ3(γmnp)
δ4δ5 (4.9)

T(α1α2α3)[δ1δ2δ3δ4δ5] = γmα1δ1
γnα2δ2

γpα3δ3
(γmnp)δ4δ5 ,

and the α-indices are symmetric and gamma matrix traceless, and the δ-indices are anti-

symmetric. Since a parity transformation has the effect of changing a Weyl spinor ψα to

an anti-Weyl spinor ψα, it follows from the definitions of (4.9) that a parity transformation

exchanges T ↔ T−1. Furthermore, since a parity transformation also changes

(γmn)δρ → (γmn) ρ
δ = −(γmn)ρδ,

it readily follows that the kinematic factor (4.8) is odd under parity, so it is proportional

to ǫ10. Finally, the proportionality constant of 1
45 in (4.7) can be explicitly computed using

the identities listed in Appendix A.

5. t8 and ǫ10 from pure spinor superspace

In this section, we describe some interesting identities involving the t8 and ǫ10 tensors

and show how they are closely related when obtained from pure spinor superspace integrals.

This is different from computations in the RNS formalism where t8 and ǫ10 come from

correlation functions with different spin structures.

Since the one-loop t8F
4 and ǫ10BF4 terms are expected to be related by non-linear

supersymmetry, there might be a common superspace origin for the t8 and ǫ10 tensors.

This suggests looking for a BRST-closed pure spinor superspace integral involving four

13



super-Yang-Mills superfields whose bosonic part involves both the t8 and ǫ10 tensors. One

such BRST-closed expression we found is

〈(λγrW 1)(λγsW 2)(λγtW 3)(θγmγnγrstW
4)〉. (5.1)

Although (5.1) is not spacetime supersymmetric because of the explicit θ, it might be

related to a supersymmetric expression in a constant background where the N = 1 super-

gravity superfield Gmα satisfies Gmα = γmαβθ
β + bmn(γ

nθ)α for constant bmn.

When restricted to its purely bosonic part, (5.1) defines the following 10-dimensional

tensor:

tmnm1n1m2n2m3n3m4n4

10 = 〈(λγaγm1n1θ)(λγbγm2n2θ)(λγcγm3n3θ)(θγmγnγabcγ
m4n4θ)〉.

(5.2)

Using γmγn = γmn + ηmn we obtain

tmnm1n1m2n2m3n3m4n4

10 =+ 〈(λγaγm1n1θ)(λγbγm2n2θ)(λγcγm3n3θ)(θγmnγabcγ
m4n4θ)〉

+ ηmn〈(λγaγm1n1θ)(λγbγm2n2θ)(λγcγm3n3θ)(θγabcγ
m4n4θ)〉.

(5.3)

And using the identities listed in appendix A, one can check that6

tmnm1n1m2n2m3n3m4n4

10 = −
2

45

[

ηmntm1n1m2n2m3n3m4n4

8 −
1

2
ǫmnm1n1m2n2m3n3m4n4

]

(5.4)

where the t8 tensor is defined as usual by its contraction with four field-strengths to give

tm1n1...m4n4

8 F 1
m1n1

. . .F 4
m4n4

=+ 8(F 1F 2F 3F 4) + 8(F 1F 3F 2F 4) + 8(F 1F 3F 4F 2)

− 2(F 1F 2)(F 3F 4)− 2(F 2F 3)(F 4F 1)− 2(F 1F 3)(F 2F 4).

It is also interesting to contrast the similarity between ǫ10 and t8 when written in

terms of the T and T−1 tensors:

ǫmnm1n1...m4n4 ∝ (T−1)(αβγ)[ρ0ρ1ρ2ρ3ρ4]T(αβγ)[δ0δ1δ2δ3δ4](γ
mn)δ0ρ0

. . .(γm4n4)δ4ρ4

tm1n1...m4n4

8 ∝ (T−1)(αβγ)[κρ1ρ2ρ3ρ4]T(αβγ)[κδ1δ2δ3δ4](γ
m1n1)δ1ρ1

. . .(γm4n4)δ4ρ4
,

(5.5)

which shows, in a pure spinor superspace language, how one can “obtain” the t8 tensor

from ǫ10: it is a matter of removing (γmn)δ0ρ0
and contracting the associated spinorial

indices in T and T−1. So when using pure spinors, there is a close relation between these

two different-looking tensors.

Acknowledgements: CRM acknowledges FAPESP grant 04/13290-8 for financial

support and NB acknowledges CNPq grant 300256/94-9, Pronex grant 66.2002/1998-9,

and FAPESP grant 04/11426-0 for partial financial support.

6 The sign in front of ǫ10 depends on the chirality of θ. For an anti-Weyl θα, the sign is “+”.
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Appendix A. Pure Spinor Superspace Identities

In this appendix we list all the identities used throughout this paper. They were

obtained with the inestimable help of Ulf Gran’s GAMMA package [19] along with some

custom-made functions to handle ǫ10 tensors. The convention used for antisymmetrization

of n indices is that one must divide by n!. Furthermore, it is sometimes more convenient

to use the notation δa1...an

m1...mn

= δ
[a1

m1
. . .δ

an]
m1

, e.g.,

δa1a2

m1m2
=

1

2!

(

δa1

m1
δa2

m2
− δa2

m1
δa1

m2

)

,

and – for notational simplicity – not care about the difference between downstairs and

upstairs indices in the formulæ.

A.1. Identities ad nauseam

The computation of a correlation like

〈(λγmγm1n1θ)(λγnγm2n2θ)(λγpγm3n3θ)(θγm4n4γmnpγ
m5n5θ)〉

or

〈(λγmθ)(λγaγm1n1θ)(λγbcnγm2n2θ)(θγm3n3γabcγ
m4n4θ)〉

requires a lot of identities, which will be listed below.

We first define (θγm4n4γmnpγ
m5n5θ) = Gm4n4m5n5

mnpr1r2r3
(θγr1r2r3θ). One can check that

Gm4n4m5n5

mnpr1r2r3
= +

1

6
ǫmm4m5nn4n5pr1r2r3 − 24δnpn4n5

δmm4m5

r1r2r3
+ 12δm5n5

n4p
δmm4n
r1r2r3

(A.1)

−6δm5n5

np δmm4n4

r1r2r3
+12δm4n4

n5p
δmm5n
r1r2r3

−6δm4n4

np δmm5n5

r1r2r3
−2δm4n4

m5n5
δmnp
r1r2r3

+[mnp]+[m4n4]+[m5n5],

and +[mnp] + [m4n4] + [m5n5] means that one must antisymmetrize in those indices.

The computation t8 also requires the identity (θγabcγmnθ) = (θγr1r2r3θ)Kabcmn
r1r2r3

,

where

Kabcmn
r1r2r3

= −ηcnδabmr1r2r3
+ ηcmδabnr1r2r3

+ ηbnδacmr1r2r3
− ηbmδacnr1r2r3

− ηanδbcmr1r2r3
+ ηamδbcnr1r2r3

The following identity is also useful7

(λγmnpθ)(λγqrsθ) = −
1

96
(θγtuvθ)(λγmnpγtuvγ

qrsλ)

≡ −
1

96
(λγabcdeλ)(θγtuvθ)fmnpqrs

abcdetuv

(A.2)

7 This identity was suggested by Pierre Vanhove during discussions of [8].
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where

fmnpqrs
abcdetuv = 18(δrsuvδ

abcde
mnpqt − δnpuvδ

abcde
qrsmt + δmn

qr δ
abcde
pstuv) (A.3)

+54(δnvrs δ
abcde
mpqtu − δrvnpδ

abcde
qsmtu + δpstv δ

abcde
mnqru) + [mnp] + [qrs] + [tuv].

Using the gamma matrix identities

(λγmγnpθ) = (λγmnpθ) + ηmn(λγpθ)− ηmp(λγnθ),

(λγabcγdeθ) = +(λγabcdeθ)− 2δbcde(λγ
aθ) + 2δacde(λγ

bθ)− 2δabde(λγ
cθ)

−δce(λγ
abdθ) + δcd(λγ

abeθ) + δbe(λγ
acdθ)− δbd(λγ

aceθ)− δae (λγ
bcdθ) + δad(λγ

bceθ)

and the definitions above, all correlations considered in this paper turn into a linear com-

bination of the following building-blocks:

〈(λγmθ)(λγnθ)(λγpθ)(θγijkθ)〉 =
1

120
δmnp
ijk (A.4)

〈(λγmnpθ)(λγqθ)(λγtθ)(θγijkθ)〉 =
1

70
δ
[m
[q ηt][iδ

n
j δ

p]
k] (A.5)

〈(λγtθ)(λγ
mnpθ)(λγqrsθ)(θγijkθ)〉 =

1

8400
ǫijkmnpqrst+ (A.6)

+
1

140

[

δ
[m
t δn[iη

p][qδrj δ
s]
k]−δ

[q
t δ

r
[iη

s][mδnj δ
p]
k]

]

−
1

280

[

ηt[iη
v[qδrj η

s][mδnk]δ
p]
v −ηt[iη

v[mδnj η
p][qδrk]δ

s]
v

]

.

〈(λγmnpqrθ)(λγstuθ)(λγ
vθ)(θγfghθ) =

1

35
ηv[mδn[sδ

p
t ηu][fδ

q
gδ

r]
h] −

2

35
δ
[m
[s δ

n
t δ

p

u]δ
q

[fδ
r]
g δ

v
h] (A.7)

+
1

120
ǫmnpqr

abcde

(

1

35
ηv[aδb[sδ

c
tηu][fδ

d
gδ

e]
h] −

2

35
δ
[a
[s δ

b
t δ

c
u]δ

d
[fδ

e]
g δ

v
h]

)

〈(λγmnpqrλ)(λγuθ)(θγfghθ)(θγjklθ)〉 = (A.8)

−
4

35

[

δ
[m
[j δ

n
k δ

p

l]δ
q

[fδ
r]
g δ

u
h] + δ

[m
[f δ

n
g δ

p

h]δ
q

[jδ
r]
k δ

u
l] −

1

2
δ
[m
[j δ

n
k ηl][fδ

p
gδ

q

h]η
r]u −

1

2
δ
[m
[f δ

n
g ηh][jδ

p
kδ

q

l]η
r]u

]

−
1

1050
ǫmnpqr

abcde

[

δ
[a
[j δ

b
kδ

c
l]δ

d
[fδ

e]
g δ

u
h] + δ

[a
[fδ

b
gδ

c
h]δ

d
[jδ

e]
k δ

u
l]

−
1

2
δ
[a
[j δ

b
kηl][fδ

c
gδ

d
h]η

e]u −
1

2
δ
[a
[fδ

b
gηh][jδ

c
kδ

d
l]η

e]u
]

〈(λγmnpqrθ)(λγdθ)(λγeθ)(θγfghθ) = −
1

42
δmnpqr
defgh −

1

5040
ǫmnpqr

defgh (A.9)

〈(λγmnpqrλ)(λγstuθ)(θγfghθ)(θγjklθ)〉 = (A.10)

−
12

35

[

δ
[s
[fδ

t
gη

u][mδnh]δ
p

[jδ
q
kδ

r]
l] + δ

[s
[jδ

t
kη

u][mδnl]δ
p

[fδ
q
gδ

r]
h]

16



−ηv[sδt[fη
u][mδng ηh][jδ

p
kδ

q

l]δ
r]
v − ηv[sδt[jη

u][mδnk ηl][fδ
p
gδ

q

h]δ
r]
v

]

−
1

350
ǫmnpqr

abcde

[

δ
[s
[fδ

t
gη

u][aδbh]δ
c
[jδ

d
kδ

e]
l] + δ

[s
[jδ

t
kη

u][aδbl]δ
c
[fδ

d
gδ

e]
h]

−ηv[sδt[fη
u][aδbgηh][jδ

c
kδ

d
l]δ

e]
v − ηv[sδt[jη

u][aδbkηl][fδ
c
gδ

d
h]δ

e]
v

]

.

〈(λγmnpθ)(λγqrsθ)(λγtuvθ)(θγijkθ)〉 = (A.11)

−
3

175

[

− δ[ia δ
j

[qδ
k]
r δ

[m
s] δ

n
[tδ

p]
u δ

a
v] + δ[ia δ

j

[tδ
k]
u δ

[m
v] δ

n
[qδ

p]
r δ

a
s] + δ

[i
[qδ

j
rη

k][mηs][tδ
n
uδ

p]
v]

+δa[tη
b[iδjuη

k][mηv][qδ
n
r ηs]aδ

p]
b − δa[qη

b[iδjrη
k][mηs][tδ

n
uηv]aδ

p]
b − δ

[i
[tδ

j
uη

k][mηv][qδ
n
r δ

p]
s]

]

+
1

33600
ǫabcde a1a2a3a4a5

fmnpqrs
abcdefgh

[

δ
[t
[fδ

u
g η

v][a1δa2

h] δ
a3

[i δ
a4

j δ
a5]
k] + δ

[t
[iδ

u
j η

v][a1δa2

k] δ
a3

[f δ
a4

g δ
a5]
h]

−ηz[tδu[fη
v][a1δa2

g ηh][iδ
a3

j δa4

k] δ
a5]
z − ηz[tδu[iη

v][a1δa2

j ηk][fδ
a3

g δa4

h] δ
a5]
z

]

.

These identities can be straightforwardly derived. The recipe is the following. One writes

the most general tensor containing Kronecker deltas with the same symmetry properties

as the left hand side and then contracts some appropriate indices to find the coefficients

which satisfy the normalization 〈λ3θ5〉 = 1. After obtaining all terms containing only

Kronecker deltas one can find terms with ǫ10 tensors considering the duality properties of

the gamma matrices:

(γm1m2m3m4m5)αβ = +
1

5!
ǫm1m2m3m4m5n1n2n3n4n5 (γn1n2n3n4n5

)αβ ,

(γm1m2m3m4m5m6)
β
α = +

1

4!
ǫm1m2m3m4m5m6n1n2n3n4 (γn1n2n3n4

)
β
α ,

(γm1m2m3m4m5m6m7)αβ = −
1

3!
ǫm1m2m3m4m5m6m7n1n2n3 (γn1n2n3

)αβ ,

(γm1m2m3m4m5m6m7m8)
β
α = −

1

2!
ǫm1m2m3m4m5m6m7m8n1n2 (γn1n2

)
β
α .

The following identities turn out to be useful when doing all these manipulations and

can be derived using the properties of pure spinors and gamma matrices:

(γmnp)αβ (γmnp)
γδ

= 48
(

δγαδ
δ
β − δγβδ

δ
α

)

, (λγmψ)(λγ
mξ) = 0 ∀ψα, ξα (A.12)

(λγmnpqrλ)(λγmnaθ) = 0, (λγmnpqrλ)(λγmθ) = 0 (A.13)

(λγamnθ)(λγaθ) = 2(λγmθ)(λγnθ), (λγabmθ)(λγabnθ) = −4(λγmθ)(λγnθ) (A.14)
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(λγmabcnλ)(θγabcθ) = 96(λγmθ)(λγnθ), (A.15)

(λγabcmnθ)(λγabcθ) = −36(λγmθ)(λγnθ), (A.16)

(λγaγbcmnθ)(λγabcθ) = −28(λγmθ)(λγnθ), (A.17)

(λγabcθ)(λγadeθ) =− (λγcdeθ)(λγbθ) + (λγbdeθ)(λγcθ) + (λγbceθ)(λγdθ)

− (λγbcdθ)(λγeθ)− ηce(λγbθ)(λγdθ) + ηcd(λγbθ)(λγeθ)

+ ηbe(λγcθ)(λγdθ)− ηbd(λγcθ)(λγeθ)

(A.18)

(λγabcdeθ)(λγaghθ) = + (λγhbcdeθ)(λγgθ)− (λγgbcdeθ)(λγhθ) + (λγbcdθ)(λγeghθ)

− (λγbceθ)(λγdghθ) + (λγbdeθ)(λγcghθ)− (λγcdeθ)(λγbghθ)

− ηhe(λγbcdθ)(λγgθ) + ηhd(λγbceθ)(λγgθ)− ηhc(λγbdeθ)(λγgθ)

+ ηhb(λγcdeθ)(λγgθ) + ηge(λγbcdθ)(λγhθ)− ηgd(λγbceθ)(λγhθ)

+ ηgc(λγbdeθ)(λγhθ)− ηgb(λγcdeθ)(λγhθ)

(λγabcdeθ)(λγabhθ) =− 4ηeh(λγcθ)(λγdθ) + 4ηdh(λγcθ)(λγeθ)− 4ηhc(λγdθ)(λγeθ)

− 2(λγcdeθ)(λγhθ)

A.2. Other pure spinor representations for t8 and ǫ10

The following correlations also give rise to identities for t8 and ǫ10,

〈(λγmθ)(λγaW
1)(λγbW

2)(W 3γabnW 4)〉+ perm(1234),

〈(λγaW 1)(λγbW 2)(λγnW 3)(θγmγabW
4)〉+ perm(1234).

Indeed one can show that

〈(λγ[m|θ)(λγaγ
m1n1θ)(λγbγ

m2n2θ)(θγm3n3γab|n]γm4n4θ)〉+p(1234) = −
116

525
ǫmnm1n1...m4n4

ηmn〈(λγ
mθ)(λγaγ

m1n1θ)(λγbγ
m2n2θ)(θγm3n3γabnγm4n4θ)〉+ p(1234) =

16

15
tm1n1...m4n4

8

〈(λγaγm1n1θ)(λγbγm2n2θ)(λγ[nγm3n3θ)(θγm]γabγ
m4n4θ)〉+ p(1234) =

2

175
ǫmnm1n1...m4n4

ηmn〈(λγ
aγm1n1θ)(λγbγm2n2θ)(λγnγm3n3θ)(θγmγabγ

m4n4θ)〉+p(1234) = −
16

15
tm1n1...m4n4

8 .
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