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1. Introduction

Although much has been learned about superstring amplitudes using the Ramond-
Neveu-Schwarz (RNS) formalism, the need to sum over spin structures obscures the role of
spacetime supersymmetry. Using the light-cone Green-Schwarz (GS) formalism, one can
easily compute four-point tree and one-loop amplitudes with half of the supersymmetry
manifest. But higher-point and higher-loop amplitudes are more difficult to compute in
this light-cone formalism, especially amplitudes that involve the ten-dimensional e tensor.
Although a covariant version of the GS formalism has recently been developed by Lee
and Siegel [[] [B], this covariant GS formalism has not been used to compute higher-loop
amplitudes or amplitudes involving the € tensor.

Over the last six years, a manifestly super-Poincaré covariant superstring formalism
has been developed which involves bosonic ghost variables A\* satisfying the pure spinor
constraint Ay™\ = 0 [B]. Tree amplitudes and one-loop four-point amplitudes were com-
puted in [ff] using a “minimal” version of the formalism, and these computations were later
extended to two-loop four-point amplitudes in [f] and to d = 11 one-loop computations
in [f]. When all external states are bosons, these amplitudes were shown in [1] [§] [f] to
coincide with the standard RNS result.

All of these amplitudes are expressed as integrals of superfields in “pure spinor super-
space” which, in d = 10, involves five fermionic # coordinates covariantly contracted with
three bosonic pure spinors. When all superfields are on-shell, the superspace integrands are
annihilated by the pure spinor BRST operator Q = A*D,,. As shown in [J], this implies
that the amplitude expressions are invariant under all sixteen d = 10 supersymmetries
even if the pure spinor superspace only involves five 0’s.

More recently, a non-minimal version of the pure spinor formalism has been developed
which involves both a pure spinor A* and its complex conjugate A, [[J]. The amplitude
prescription using the non-minimal version is considerably simpler than in the minimal
version since there are no picture-changing operators and Lorentz invariance is manifest at
all stages in the computation. Furthermore, the amplitude prescription in the non-minimal
formalism can be related to the prescription in topological string theory where the b ghost
is replaced by a composite operator.

For tree amplitudes, it is trivial to show that the minimal and non-minimal pure spinor
formalisms give the same answers. But for loop amplitudes, there are some differences

between the minimal and non-minimal computations which makes it non-trivial to prove
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their equivalence. In the first part of this paper, the non-minimal pure spinor formalism
will be used to re-compute the massless four-point one-loop and two-loop amplitudes and
equivalence with the minimal computations will be proven. In terms of integrals over pure
spinor superspace, the kinematic factors in these one-loop and two-loop amplitudes will be

shown to be proportional to

K2—loop = <()\7mnpqr/\>fmnqufrs()"YSW»,

where A, W, and F,,, are the spinor gauge superfield, spinor superfield-strength, and
vector superfield-strength of super-Yang-Mills, and the pure spinor measure factor ( )
is defined such that ((Ay"0)(AY"8)(AYP0)(0ymnpf)) = 1. Using the super-Yang-Mills
equations of motion, it is easy to check that the integrands in ([[.LI]) are annihilated by
A*D,,, so these kinematic factors are supersymmetric.

The non-minimal formalism will then be used to compute in a supersymmetric manner
the gauge variation of the massless six-point one-loop amplitude in Type-I superstring
theory. Since this computation involves the ten-dimensional e tensor, it has never been
performed using the light-cone GS formalism. After expressing the gauge variation of the
six-point amplitude as a term at the boundary of moduli space, it will be shown that the

anomaly is proportional to the pure spinor superspace integral
Kanomaty = (M W) (A" W) (M"W) (W Anp W), (1.2)

whose purely bosonic contribution is the standard e;oF® term.
Further investigation upon the appearance of €19 in ([.2) led us to the discovery of a

pure spinor superspace integral, namely,
(M WH W) (MY W) (07 s W),

from which the tg and €19 tensors naturally emerge in a unified manner, in the form

gt ane . Lemnmanimana - Thig differs from the RNS formalism where the tg

and €1p tensors come from different spin structures. It may be possible that this pure
spinor superspace integral is related to the five-point one-loop amplitudes involving the

heterotic €0 BtrF* and Type ITA €t BR* terms, which would be useful for finding the

supersymmetric completions of these terms.



It is interesting to compare these computations using the pure spinor formalism with
the recently developed method of Lee and Siegel for computing one-loop amplitudes. The
method of Lee and Siegel is based on the “ghost pyramid” covariant quantization of the
Green-Schwarz superstring, in which the BRST operator has a complicated structure in-
volving an infinite set of ghosts [[I]. However, the vertex operators in the Lee-Siegel for-
malism are relatively simple and have a very similar structure to the integrated vertex
operator in the pure spinor formalism.

In the one-loop computations performed in [[] using the Lee-Siegel method, all vertex
operators are integrated and there are no picture-changing operators. Furthermore, there
is no superspace integration using this method so the amplitudes are expressed in terms
of the component fields. This is the analog of the F; picture in the RNS formalism where
all vertex operators are in the zero picture.

On the other hand, in the one-loop computations using the pure spinor formalism,
one of the vertex operators is unintegrated, the b ghost is a composite operator playing
the role of a picture-raising operator, and the amplitudes are expressed as integrals over
pure spinor superspace. This is the analog of the F5 picture in the RNS formalism where
the unintegrated vertex operator is in the —1 picture and the picture-raising operator is
inserted on top of the b ghost.

For certain one-loop computations such as the four-point and five-point massless am-
plitudes computed in [B], there is no disadvantage in treating all vertex operators in inte-
grated form. However, for the anomaly computation presented here, it is definitely more
convenient to leave one unintegrated vertex operator in a “different picture” from the in-
tegrated vertex operators. It would be interesting to see how to compute this anomaly
using the Lee-Siegel method, and if one needs to introduce some analog of picture-changing
operators.

In section 2, we review the non-minimal amplitude prescription for one-loop and two-
loop amplitudes. In section 3, we compute the massless four-point one-loop and two-loop
amplitudes and show agreement with the computations using the minimal formalism. In
section 4, we compute the gauge variation of the massless six-point one-loop amplitude.
In section 5, we explain how tg and €19 tensors naturally emerge from the integration
over pure spinor superspace. And in appendix A, we list all the pure spinor superspace
identities used in this paper and present two other representations for tg and €g tensors

using pure spinors.



2. Non-Minimal Amplitude Prescription

The prescription in the non-minimal pure spinor formalism for computing /N-point

one-loop and two-loop scattering amplitudes is given by [[[0]

N

Ai—to0p = /dTW (/dwu(w)b(w))‘/l(zl)T_HQ/derr(zr)), (2.1)

and
Ao _100p = /dﬁdTQdTg(N H(/dws,us(ws)b(ws)) H/dzTUr(zT)). (2.2)

where 7; are the Teichmuller parameters, u; are the Beltrami differentials, V,. and U, are
the unintegrated and integrated vertex operators, and ( ) denotes the functional inte-
gral over the Green-Schwarz-Siegel fields [x™, 0%, d,], over the pure spinor ghosts \* and
their conjugate momenta w,, and over the non-minimal fields [A,, 7] and their conjugate
momenta [wW*, s°].

As in topological string theory, the b-ghost is a composite operator satisfying {Q, b} =

T where T' is the stress-tensor, and has the explicit form

2™ (A d) — Nonp (Ay™00) — J(X08) — (A5?6)

b= 5% + -
’ 400

(2.3)

(vanpr) (dYmnpd + 24N, 11,) _ (ry™"Pr) (X%nd)an + (ry™"Pr) (XVPQTT)NmanT
192(A))2 16(AN)3 128(AN)4

where II"™ = 92™ + (67™90) is the supersymmetric momentum and Ny = 5 (WYmn)
and J = Aw are the pure spinor Lorentz and ghost currents.

Integration over the zero modes of the bosonic and fermionic worldsheet fields naively
gives 0/0, so it is necessary to insert a BRST-invariant operator N = el@X} which regu-
larizes this zero mode integration. Since N =1+ {Q, 2}, the choice of y does not affect
the scattering amplitude. A convenient choice is x = —Aa0% — > 9_, (3 N5, (s!y™™X) +
JI(s'X)), which implies that

N = exp(—Aa A — 7,0%) (2.4)

g
—m nl —=I 1 3 B\
exp( 31 S NL N T sy R) ) 4 (SR ()],
I=1



where [N JI,Wmn,jl,dé, s1@] denote the g zero modes of these spin one fields on a

mn>
genus ¢ surface.

Finally, for massless external states, the unintegrated vertex operator is V = \“ A,
and the integrated vertex operator is

1
U=00“A,+1I"A,, + d ,W* + §Nm”}"mn.

The [Aq, An, W, Fpn] superfields describe super-Yang-Mills theory [[LI]] and have the 6-

expansions [[2]

1 1 1
Ay (z,0) = Eam(’me)a — g(ffme)('me)a — 3—2an(va)@(va””9) + ...
1 1
Am(2,0) = am — (Ermb) — S (0rmy?10) Fypq + 15 (01m7710) (0p€740) + - .
1 1 1
W (x,0) = £~ — Z(vm”G)O‘an + Z(ymne)a(amg%e) + 4—8(7m”)“(9vn7pq9)3meq + ...

1
an(l’, 9) = Fopn — 2(6[7715771]9) + 1(97[m7pq9)6n]qu +..,

where a,, () and {*(x) describe the gluon and gluino fields, F,, = 20,,a,], and .. . involve
derivatives of a,, and £°.

To compute the functional integral over the worldsheet fields, one first uses the free
field OPE’s to integrate out the non-zero modes. Note that as in topological string theory,
computation of the partition function for the non-zero modes is trivial because of cancel-
lations between bosonic and fermionic fields of equal spin. The worldsheet zero modes are

then integrated out using the measure factors described in [[J] and the regulator N of

(.4).

3. Four-Point One-Loop and Two-Loop Computations

As was shown in [f] and [g] using the minimal pure spinor formalism, the kinematic
factors for the massless four-point one-loop and two-loop amplitudes are proportional to

the pure spinor superspace integrals
Ki_i0op = (M) (MY W) (M W) Frn), (3.1)

Ko _100p = (MY PUN) FrunFpgFrs(AY W), (3.2)
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where A,, W, and F,,, are the spinor gauge superfield, spinor superfield-strength, and
vector superfield-strength of the four external super-Yang-Mills multiplets, the expressions
of (B.) and (B.2) are summed over permutations of the four external superfields, and the
pure spinor measure factor ( ) is defined such that ((Ay"0)(Ay"8)(AYP8)(0Vmnpf)) = 1.
In [§ and [[], the purely bosonic contributions to these pure spinor superspace integrals
where shown to correctly reproduce the tg index contractions of the four Yang-Mills field-
strengths.

It will now be shown that the non-minimal computation of the four-point massless
one-loop and two-loop amplitudes contains the same kinematic factors as in [§[[]. Since
the moduli space part of the amplitude computations in the minimal and non-minimal
formalisms is the same, this proves the equivalence of the two prescriptions for these

amplitudes.

3.1. One-loop computation

Using the one-loop prescription of (2-]]), the regulator N of (24)) can provide a max-
imum of eleven d, zero modes, which are multiplied by the eleven s* zero modes. So
the remaining five d,, zero modes must come either from the vertex operators or from the
single b ghost. Since the three integrated vertex operators can provide at most three d,
zero modes through the terms (Wd,), the single b ghost of (B.]) must provide two d,

zero modes through the term

(Ay™"Pr) (d’)’mnpd)
192(A))2 '

(3.3)

After integrating over the zero modes of the dimension one fields (w,, W", dy, %) using

the measure factors described in [[I{], one is left with an expression proportional to

/ d'°o / [dA][dN][dr](AN) “2(A)*Ay™"Pr) AWW W exp(—A\ — ) (3.4)

- / d'%9 / [dN][dN][dr] exp(—AX — r0) AN 2N ™ PDYAWWW  (3.5)

_ 0

where Dy = 55z

+ (7™0) 4O, is the usual superspace derivative and the index contractions

on

(N Ay™ P DYAWWW (3.6)

have not been worked out. Note that (B-9) is obtained from (B-4)) by writing r, exp(—rf) =

&% exp(—r#), integrating by parts with respect to 6, and using conservation of momentum
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to ignore total derivatives with respect to x. Furthermore, the factor of (A\)* in (B-4) comes
from the A in the unintegrated vertex operator, the 11 factors of A and A which multiply
the zero modes of d, and s, in N, the factor of (A\)~8(X)~® in the measure factor of w,
and w®, and the factor of (A\)~3 in the measure factor of s®.

Fortunately, it is easy to show there is a unique Lorentz-invariant way to contract the
indices in (B.G). To show this, first choose a Lorentz frame in which the only non-zero
component of A is in the AT direction. This choice preserves a U(1) x SU(5) subgroup
of SO(10), under which a Weyl spinor U® and an anti-Weyl spinor V,, decompose as

U — (U5, Uy U%s )+ Vo — (Vogan VIV Vi) (3.7)

2

where the subscript denotes the U(1) charge.

Since (A*)* carries +10 U(1) charge, (Ay™™? D) AW W W must carry —10 U(1) charge
which is only possible if (\y™"P D) carries —3 charge, A, carries —% charge, and each W
carries —3 charge. Contracting the SU(5) indices, one finds that the unique U(1) x SU(5)

invariant contraction of the indices is
AN NapeD) AL WEWP W, (3.8)

Returing to covariant notation, one can easily see that (B.G) must be proportional to the

Lorentz-invariant expression
(Mmnp D) AA) Ay W) (AW (MNP W), (3.9)

which reduces to (B-§) in the frame where A\ is the only non-zero component of \“.
However, to express the kinematic factor as an integral over pure spinor superspace as
in (B-)), it is convenient to have an expression in which all \,’s appear in the combination

(A*Xy). If all X’s appear in this combination, one can use that
/d160 /[d)\] [d][dr] exp(—AX\ — r@)(AX)_”)\O‘/\ﬂ/\’VfaM (3.10)

is proportional to
ANXY fopn). (3.11)

To convert (B9) to this form, it is convenient to return to the frame in which AT is

the only non-zero component of A* and write (B-§) as
(A epede NUD, — X, Dl A W, (3.12)
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Using the superspace equations of motion for A4, and W<, it is easy to show that
DA, =D, We=0, DUIA 4+ D Al =0 eupeqge DIVIWE = Fye. (3.13)
So (B.12)) is proportional to two terms which are
AN L eavede (D4 AL WAWbIWe  and  (AT)*A, AL WOWC Fyy. (3.14)
The second term in (B-I4)) can be easily written in covariant language as
(AN M) (MY WYY W) Fn,s (3.15)

which produces the desired pure spinor superspace integral of (B-J]). And the first term in
(B.14) can be written in covariant language as

(AN [AD) (M A) [ (AP W) (W Ay W), (3.16)
which produces the pure spinor superspace integral
([AD)Y XY™ A) (AP ) (W mnp W) (3.17)
But since BRST-trivial operators decouple,
((AD) (WM™ A) AP W) (W W)]) = 0,
which implies that (B.17) is equal to
(A" A)AD) [(MP W) (W Y W) ) (3.18)

Finally, using the superspace equation that D,W? is proportional to (Ymyn)Z2F™", one
finds that (B.I8) is proportional to (B.I). So the non-minimal computation of the kinematic

factor is proportional to the minimal computation of (B.]).
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3.2. Two loops

To compute the kinematic factor at two loops using the non-minimal prescription of
(2), first note that the regulator N can provide 22 d,, zero modes which are multiplied
by the 22 zero modes of s®. So the remaining 10 d, zero modes must come from the
four integrated vertex operators and the three b, ghosts. This is only possible if each
integrated vertex operators provides a d, zero mode through the term (W“d,) and each
b ghost provides two d,, zero modes through the term of (B.3).

After integrating over the zero modes of the dimension one fields (wl,w!®,dl, s'®)

using the measure factors described in [[], one is left with an expression proportional to

/ d'%o / [AA][dN][dr](AX) " (N O™ 21 W W IW W exp(—AX — ) (3.19)

- / d'%9 / [dA][dN[dr] exp(—AX — r0)(AX) " (A) (™ P D)3 W W W W (3.20)

where the index contractions on
NP DWW W W (3.21)

have not been worked out. Note that the factor of (A\)® in (B:19) comes from the 11g factors
of A and A which multiply the zero modes of d’, and s/ in N, the factor of (A\)789(\)~89 in
the measure factor of w! and @', and the factor of (A\)™39 in the measure factor of s,

As in the one-loop four-point amplitude, there is fortunately a unique way of con-
tracting the indices of (B.21)) in a Lorentz-invariant manner. Choosing the Lorentz frame
where A7 is the only non-zero component of A%, one finds that (A™)% contributes +15 U(1)
charge so that each (Ay™"’ D) must contribute —3 charge and each W must contribute
[ab]D+ — A Dl*®) and since D,

component of W<, the only contribution to (B.2I)) comes from a term

—3 charge. Since the —3 component of (A\y™"PD) is (X

3

annihilates the — 5

of the form
(AHS(x;)3(Dlebl pledl pletly (wawhwiw*) (3.22)

where the ten SU(5) indices are contracted with two €gpede’s.

The term of (B:23) produces three types of terms depending on how the three D’s
act on the four W’s. If all three D’s act on the same W, one gets a term proportional to
AHSAL)PWWWOF, which by U(1) x SU(5) invariance must have the form

A OL)PWAW W e, Fue. (3.23)
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And if two D’s act on the same W, one gets a term proportional to (AT)6(A,)3FWWoOW,
which by U(1) x SU(5) invariance must have the form

A OL )3 FeWewbo, e, (3.24)

Finally, if each D acts on a different W, one obtains a term that is proportional to
(AH)S(A})3W FFF, which by U(1) x SU(5) invariance must have the form

(AT) PN 4)? Fap FeaFep W ebede, (3.25)

The first term in (B.23)) vanishes by Bianchi identities. And the second term in (B.24)
is proportional to the first term after integrating by parts with respect to 0, and using
the equation of motion 9,W* = 0. So the only contribution to the kinematic factor comes

from the third term of (B.27), which can be written in Lorentz-covariant notation as
(AN)2 (MY \) Fpn FpgFrs(AYSW). (3.26)

So the non-minimal computation of the two-loop kinematic factor agrees with the minimal
computation of (B3).

4. Type-I Anomaly with Pure Spinors

It will now be shown that the non-minimal pure spinor formalism computation of the
hexagon gauge anomaly in the Type-I superstring is equivalent to the RNS result of [IJ].
As will be shown below, the kinematic factor of the hexagon gauge variation can be written

as the pure spinor superspace integral
K = (M W) (A" W) (APW ) (WP, WO)),

whose bosonic part is the well-known €10 F® RNS result of [[J].

As discussed in [[4] [[T], the anomaly can be easily computed as a surface term which
contributes at the boundary of moduli space. The result can be separated in two parts:
the kinematic factor depending only on momenta and polarizations, and the moduli space
part which depends on the worldsheet surface. We will be interested only in the kinematic
factor, as the moduli space part uses identical computations as in the anomaly analysis

using the RNS formalismll.

3 A pedagogical presentation of these computations can be found in 6.
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4.1. Kinematic factor computation

In the type-I superstring theory with gauge group SO(N), the massless open string

six-point one-loop amplitude is given by

00 6
A= Z Gtop/O dt(N/dwb(w)()\Al) I[Q/dzTUT(zT)) (4.1)

top=P,N P,N

where P, NP, N denotes the three possible different world-sheet topologies, each of which
has a different group-factor Gy, [[q]. When all particles are attached to one boundary, we
have a cylinder with Gp = Ntr(t*¢*2t*stt%t%). When particles are attached to both
boundaries, the diagram is a non-planar cylinder, where Gyp = tr(t®1¢%2)tr(t*st ¢ ¢%).
And finally, there is the non-orientable Mobius strip where Gy = —tr(t*1¢*2¢*st@4¢%¢%).

We will be interested in the amplitude when all external states are massless gluons

iz wherem = 0,...9 is the space-time vector index

with polarization €] i.e., al (x) = el e
and 7 is the particle label . To probe the anomaly, one can compute ([.1]) and substitute
one of the external polarizations for its respective momentum. However, instead of first
computing the six-point amplitude and substituting e,, — k;, in the answer, we will
first make the gauge transformation in (1) and then compute the resulting correlation
function. This will give us the anomaly kinematic factor directly.

Under the super-Yang-Mills gauge transformation
0Ay = Do), dA,, = 0, (4.2)

the integrated vertex operator [ dzU changes by the surface term [ dz0U = [ dz952, and
the unintegrated vertex operator changes by the BRST-trivial quantity 6(AA) = \*D,Q =
Q9. Choosing Q(x, ) = €?** has the same effect as changing €™ — k™, which is the desired
gauge transformation to probe the anomaly.

To compute the gauge anomaly, it will be convenient to choose the gauge transforma-
tion to act on the polarization el in the unintegrated vertex operator, so that the gauge
variation of ([L.1]) is

bA= Y Giy /0 e / dub(w)(Q2(=1) [ / U (). (43)

top=P,N,NP

4 We will omit the adjoint gauge group index from the polarizations and field-strengths for the

rest of this section.
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“Integrating” () by parts inside the correlation function will only get a contribution from

the BRST variation of the b-ghost, which is a derivative with respect to the modulus

[4,Lg. So )
>~ d
SA=-Y" Gtop/O dta(Q(zl)NT_l_[z/der,ﬂ(zT))

top
=~ K'Y Giop| Biop(0) = Biay(0)]
top

where the moduli space part of the anomaly is encoded in the function

t 26 25 Z4 zZ3 6 .
Btop(t) = / d26/ dZ5/ dZ4/ ng/ dzs <H : ezk,«m,« 3>top7
0 0 0 0 0 1

and K = (NUyU3U,UsUs). From ([4), it is clear that the anomaly comes from the
boundary of moduli space.

To compute the kinematic factor K, observe that there is an unique way to absorb
the 16 zero modes of d,, 11 of s* and 11 of r,. The regularization factor N' must provide
11 dg, 11 s* and 11 r, zero modes. The five remaining d, zero modes must come from
the external verticedd through (dW)5. As in the computations of the previous section, the
kinematic factor is thus given by a pure spinor superspace integral involving 3 A’s and 5
W’s, as can be easily verified by integrating all the zero mode measures except [d)], [d)]
and [dr]. To find out how the indices are contracted in K, choose the reference frame
where only AT 2 0. Then one can easily check that the unique U(1) x SU(5)-invariant
contraction is

K = (A1) cabeac Ws W WiWIWE),

which in SO(10)-covariant notation translates into
K = (M W2) (MW" W3) A" Wa) (WsYmnp W ) (4.5)

4.2. Bosonic contribution to kinematic factor

When all external states are gluons, there is only one possibility to saturate the pure
spinor superspace correlation (A\30°). Each superfield W (#) must contribute one 6 through

the term —3(7""6)*F,,,,. Thus, the kinematic factor (fF) is proportional to

(()\’yp'ym2”29)(/\'yq'ym3”39)(/\'y’"'ym4”49)(97m5”5'ypqrfym6”69)>F2 . FS (4.6)

monz* mene*

5 Tt follows from this zero mode counting that the anomaly trivially vanishes for amplitudes

with less than six external massless particles.
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We will now demonstrate the equivalence with the RNS anomaly result of [IJ] by proving
that

1
(AMyPA™m0) (AyIy™2"20) (A ™33 0) (074 4 pgry ™" 0)) = 4—56m1”1“‘m5”5- (4.7)

We will first show that the correlation in (.7) is proportional to €19 by checking its

behavior under a parity transformation. Using the language of [, we can rewrite ([.7) as

(T—l)(aﬁ’Y)[Plp2PBP4P5]T(aﬁv)[5152535455] (,-ymlnl )5;1 (,ymﬂlz )532 (,ymsns )523 (’)/m4n4 )5;14 ("}’m5n5 )525 ,
(4.8)

where T and T~! are defined by
(T—l)(041012013)[5152535455] — (,ym)alél (,yn)agég (,yp)ozg(sg (,ymnp)5455 (4.9)

. Aam n p
T(a1a2€¥3)[5152535455] = Y161 Yazds Yz b, (’7mnp)54557

and the a-indices are symmetric and gamma matrix traceless, and the d-indices are anti-
symmetric. Since a parity transformation has the effect of changing a Weyl spinor ¥ to
an anti-Weyl spinor v,, it follows from the definitions of (f.9) that a parity transformation

exchanges T <> T~!. Furthermore, since a parity transformation also changes
5
(v™") o 7 (Y™™ = =),

it readily follows that the kinematic factor (f.8) is odd under parity, so it is proportional
to €19. Finally, the proportionality constant of 41—5 in (A7) can be explicitly computed using
the identities listed in Appendix A.

5. tg and €15 from pure spinor superspace

In this section, we describe some interesting identities involving the tg and €1 tensors
and show how they are closely related when obtained from pure spinor superspace integrals.
This is different from computations in the RNS formalism where tg and €19 come from
correlation functions with different spin structures.

Since the one-loop tgF* and €;9BF, terms are expected to be related by non-linear
supersymmetry, there might be a common superspace origin for the tg and €y tensors.

This suggests looking for a BRST-closed pure spinor superspace integral involving four
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super-Yang-Mills superfields whose bosonic part involves both the tg and €19 tensors. One

such BRST-closed expression we found is
(M WHOY W2 A W) (07" s W) (5.1)

Although (Bb.J) is not spacetime supersymmetric because of the explicit #, it might be
related to a supersymmetric expression in a constant background where the N = 1 super-
gravity superfield G,, satisfies G0 = %mgeﬁ + b (770), for constant by,,.

When restricted to its purely bosonic part, (5.1]) defines the following 10-dimensional

tensor:
g mEnamanamans — (A A M) (A y ™22 0) (Ay 2 0) (07 M Yaney ™4 D))
(5.2)
Using v y™ = ™" + n™" we obtain
g menamanamans — 4 ((Ay %y 9)(XyPym2020) (Ay 8 0) (67 Yapey ™ 6))
+ nm”<(>\7“7m1”19)(Mb’ym2”29)(k’yc’ym3”39)(9%1)&’”4”492% |
5.3

And using the identities listed in appendix A, one can check thabtE

t%nm1n1m2n2m3n3m4n4 _ 435 nmntgnlnlmzn2m3n3m4”4 _ %Em”m1”1m2n2m3n3m4n4] (5.4)
where the tg tensor is defined as usual by its contraction with four field-strengths to give
tg A iy =+ 8(FTFPFRFY) £ 8(F'FPF?FY) + 8(F' FPFF?)

— 2(F'F%)(F3F*Y) — 2(F?F3)(F'FY) — 2(F'F3)(F%F%).
It is also interesting to contrast the similarity between €15 and tg when written in

terms of the T and T~ tensors:

—1 b b
M AN (T )(0457)[pop1p2p3p4]T(aﬁv)[6051625364](,ymn> o .. (ymam) 5 655
-1\ (« K mini\o mang\o. ’
tgnlnl mang (T )( By)[ p1p2p3p4]T(a67)[m61625364](’7 1 1) [1)1 N -(’)/ 4 4) 34’
which shows, in a pure spinor superspace language, how one can “obtain” the tg tensor

do
PO

indices in T and T~!. So when using pure spinors, there is a close relation between these

from €10: it is a matter of removing (7™")% and contracting the associated spinorial

two different-looking tensors.
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support and NB acknowledges CNPq grant 300256/94-9, Pronex grant 66.2002/1998-9,
and FAPESP grant 04/11426-0 for partial financial support.

6 The sign in front of €19 depends on the chirality of 6. For an anti-Weyl 6, the sign is “+7.
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Appendix A. Pure Spinor Superspace Identities

In this appendix we list all the identities used throughout this paper. They were
obtained with the inestimable help of Ulf Gran’s GAMMA package [[J] along with some
custom-made functions to handle €1¢ tensors. The convention used for antisymmetrization
of n indices is that one must divide by n!. Furthermore, it is sometimes more convenient

an]

to use the notation ;1% = 57[21 Oy s €.8.,

ala2 ]' ay Saz a2 Sai
Ot = 57 (O, 002, — 672,001,)

mimsa my"ma2 miy-ma2

and — for notational simplicity — not care about the difference between downstairs and

upstairs indices in the formulse.

A.1. Identities ad nauseam

The computation of a correlation like
(A" 0) (A" y ™22 0) (A Py ™2 0) (07 Ymnpy ™70 0))

or
(AY™0) Ay iy ™1 0) (AyPemy ™22 ) (035 ey ™44 6))

requires a lot of identities, which will be listed below.
We first define (67" 4™45pnp ™55 0) = Gralams?s (§y"172736). One can check that

mnprirars

1
(manamsns MM4AM5NNANEPT1T2T3 np mmams msns SMMAN A
mnprirars =€ 24671471557"17"27"3 126714 61”11”21”3 ( 1)
P 6 p

_ msns STMNV4AMN4Y mMang SNMsM mang STNM5N5 mang STINP
661’Lp 57"17"27"3 +126’I’L5p 57"17"27"3 6571]7 67‘17‘27‘3 25m5n5 6T1T2T3+[mnp]+[m4n4]+[m5n5]7

and +[mnp| + [many] + [msns] means that one must antisymmetrize in those indices.

Kabcmn
T1T27T3 7

The computation tg also requires the identity (6y°¢y™ng) = (6y7172730)

where

abecmn __ cn sabm cm sabn bn sacm bm sacn an sbem am sben
K?"l’r‘g’r‘g - _TI 57"17‘27"3 + TI 67“17"27‘3 + 77 57"17"27"3 - TI 67“11"27‘3 - TI 57"17"27"3 + 77 57"17‘27"3

The following identity is also us.efulEI

1
(9™P0) (A 750) = — o (67" O) ()™ Py 7 A)

1
96

(A.2)

()\’Yadee )\) (e,ytuv g)fmnpqrs

abcdetuv

T This identity was suggested by Pierre Vanhove during discussions of [f].
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where
fmnpqrs _ 18(57"3 6abcde _ 5356((;113;?;15 + 6$n5abcde> (A3>

abcedetuv uv’mnpqt pstuv

+54(5n1}5abcde . 5T05abcde i 6p55abcde )+ [mnp] i [QT'S] + [t'U/U]

rs “mpqtu np-gsmtu tv Ymngru

Using the gamma matrix identities
(A" "P0) = (Ay"7P0) + ™" (MyP0) — 0P (My"0),
(ybenteg) = -+ ™te) — 25 (Xy°6) + 285 (X "0) — 205 (Mr°0)
=850 ™) + 55(y°0) + 52Ny "“0) — B4\ *°6) — 52(**0) + 55(0r"<0)

and the definitions above, all correlations considered in this paper turn into a linear com-

bination of the following building-blocks:
1

((AMY™0)(AY"0)(AVPO) (0ij10)) = maj}gl’ (A.4)
mn ]' m n
(™ "8) (A1) (A76) (B7i58)) = =5 61101467 6 (A.5)
mn rs 1 11kmnpqrs
((Aye0) (Ay™P0) (Ay1 9)(9%jk9)>:m63’“ parst 4. (A.6)
1 [mn 7"5] [rsmn] 1 vlqg ST, .S|lm n vimn r S
35 |0 08763 — oy o 5;}—2—&)[77“@-77 (45T g7 8 — gy 6jnp”qak]5v]]-
mnpqr v ]' vlm sn T 2 m ¢n r| cv
(™1 0) (Myseu) (M "0) (0779n8) = 52 I 67 8 110267 — 55[[8 07606146, 0 (A7)
1mnr ]"Uabc de] 2[abcdev
FogC T abede (gﬁ 00,05t 039%) — 5501, 0t 0% 01705 )
(A PEX)(AY0) (075 gn0) (07j0)) = (A.8)
A Toimsngvga srigu o glmgnge saslge _ Lsimen,  spsa i Lgimen,  spsa it
_g[ i Ok %0010 On) T Orp 09 01010k 1) — 501 Ok MIFOg0nM T — 5015 Og ][5 0%y }

1 mnpqr

- 10506 abcde [

]- a c elu ]‘ a C elu
—55[[3' 512771][f5g51§l]77 b 55[[f52”h][j5k5lc]l" | ]

lachbcc cd se] su le¢bcc od se] su
013 540131 31y + 078,079,

mn T 1 mn T 1 mn ™
(97777 0) (\1aB) () 0179n0) = =350t = o™ oy (A9)
((Ay™mPIX) (A **0) (077 g1 0) (0vj810)) = (A.10)
12 [s ul[m gn 7] [s uj|m sn ]
—g[a[ st o7 616y + 6128ty lm s ot 6467
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=8t 85y 670567 — 16 3y 356787

1mnr [s ¢t ullash sc sd el [sct. wullash sc cdsel
~3e0C " avede | 0150y "Ny 0,010y + O8N0 57536,

{1 Sy 05040 — o0l o 05076 |
(A" P0) (A 17°0) (M) (07i10)) = (A.11)

5 [ — olig? slolanorlsa + olia] sklolor orlae + off ol o 67

“ 175 L %000 %) Ol t%u %) Ola a0 w0y

+5[C%77b[2513ﬂ7k] [mnv][qéﬁns]aég] - 5{277b[257277k] [mns] [tagnv]aaf] - 6[[:/51];77}6] [mnv] [qéﬁagpﬂ

ag 6&

1 mnpqrs u, vl][a
+ 6abcde f Pq 5[t5 n 1l 15h] g

a4 as)
33600 arazagasas dabedefgh |O[f0g 96740, +6

o) gl gz 5 s o)

[i k] Z1f 79 Th]
_ z[tau v][a1 592 §as §as 5a5] o z[tay v][a1 592 533 §aa 5a5]
mon g "[i%;" Ok 9z o i kO Op) 027 |-

These identities can be straightforwardly derived. The recipe is the following. One writes
the most general tensor containing Kronecker deltas with the same symmetry properties
as the left hand side and then contracts some appropriate indices to find the coefficients
which satisfy the normalization (A\30°) = 1. After obtaining all terms containing only
Kronecker deltas one can find terms with €19 tensors considering the duality properties of

the gamma matrices:

(7m1m2m3m4m5> 8 =4 m1m2m3m4m5n1n2n3n4n5(
[e%

QE

’Yn1n2n3n4n5>a,3:

B

m1m2m3m4m5m6) 6 +_Em1m2m3m4m5m6n1n2n3n4 (,.y )
- nin2n3n4 /o 7

(v o 1

aff = —QE

m1m2m3m4m5m6m7> mimzamsamqmsmemrninansg (

(7 ’Ynlnzns)aﬁ ’

a T g€

m1m2m3m4m5m6m7mg) ﬁ mMm1Mma2mamMm4amsmmMeM7rmMgning (,_y )
nin2/a

(v

The following identities turn out to be useful when doing all these manipulations and

can be derived using the properties of pure spinors and gamma matrices:

(75 i)™ = 48 (8205 = 5303) . Dam)M™€) =0 vy, €5 (A12)
™0 (N naf) = 0, (™17 \) (Aym) = 0 (A-13)
(y™™0) (A1) = 2000 (N"0), () (A 0) = —4(X"8)(\"0)  (A.14)
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(AN (Baved) = 96(Xy™0)(M"0),
(Ayem0) (Xyaped) = —36(Ay™0)(A"0),
(A *P0) (AYabed) = —28(Xy™0) (X)),
(A 0) (A 0) = — (M 0) (M) + (X" 0) () + (M) (A “0)
= (M"10)(A°0) — 0 (M 0)(Ay0) + n°!(\y0) (Ay°0)
+ 0" (MO (M 0) — 0" (Ay°0) (A °0)

(Ay?0) (A 9"0) = + (My"*°%0) (M90) — (A %0) (M) + (Ay"°0) (Ay*9"0
— (A"0) (M P"0) + (M 70) (Ay9"0) — (Ay“@°0) (A0

" (AP0) (Ay90) +
+ 0" (Aye0) (M90) +
+ 19 (A *0) (A1) —

+1
+1

(
n?* (Ay°%0)(Ay"0)
4 (

(A.15)
(A.16)

(A.17)

(A.18)

"(Me0) (Xy70) — 0" (Xy*10) (X 70)
ge( bcde) )\,yhe) . ngd(}\,ybcee)(A,yhe)

(A e2e0) (A 0) = — 4" (My“0) Ay 0) + 4™ (Ay°0) (\y°0) — 4" (A "0) (M)

— 2(X°%0) (X\y"0)
A.2. Other pure spinor representations for tg and eqg

The following correlations also give rise to identities for tg and €1,
(AY"0) MaW ) A W) (W22 W 1)) + perm(1234),

(A WH W2 (X" W) (077 WH)) + perm(1234).

Indeed one can show that

116
<()\f7[m|9)()\,ya,ym1n1 9)()\’71,’7m2n26)(0’7m3n3’7ab|n]’7m4n40)> +p<1234) _ _525 MMM T
m min mon mansz . abn_man 16 mM1Ng...M4MN4
N (A" 0) (Ayay ™™ 0) (Aqyy™2"20) (B "0 ™41 0)) + p(1234) = 1t

2
(Y™™ 0) (AyPy 272 0) (A1 ™33 0) (9™ 0y ™4740)) + p(1234) = —— M man

175
16

Do (A1 0) (AyPy ™22 0) (Ay "y ™53 0) (07 ™oy ™44 0)) +p(1234) = 158
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