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Abstract 9 

The next generation of ultra-high-speed (UHS) trains, known as Hyperloop and TransPod, are 10 

aerospace type vehicles designed to carry passengers. The UHS employs a vehicle capsule 11 

within a protected vacuum tube deck, supported by reinforced concrete piers (i.e. multi-span 12 

viaduct). The tube environment allows multiple UHS vehicles to run in parallel simultaneously 13 

(i.e. twin tube deck) where asymmetric train loading will result in a large dynamic unbalanced 14 

moment on the piers. Therefore, exploring the lateral dynamic interaction of bridge deck (twin 15 

tube) and piers under such an unbalanced moment is an extremely important factor for analysis 16 

of viaducts under dynamic UHS train loading. Hence, this paper analytically addresses the 17 

dynamic bridge deck-pier interaction under UHS train loading for lateral vibration.  18 

  19 
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 22 

1. Introduction 23 

Hyperloops, first proposed by Tesla, and later by TransPod, are passenger and freight 24 

transportation modes at ultra-high speeds (UHS), and are composed of a number of vacuum 25 

tubes (Janzen 2017). Within these tubes, pods can move free of air resistance or friction 26 

transporting passengers and cargo. Furthermore, Hyperloops use magnetic levitation and linear 27 



 

 

accelerators to push the pods forward. The operating speed of these UHS trains is around 970 28 

km/h up to a maximum speed of 1200 km/h, and is far higher compared to 270 km/h for mean 29 

operating speed of high-speed (HS) trains. The current UK network rail document (Network 30 

Rail, 2006) for structural design and assessment of bridges ignores vertical dynamic effects of 31 

moving loads for train speeds below 160 km/h e.g. vertical dynamic amplification factor (DAF) 32 

of 1. Nonlinear analysis of existing UK railway bridges also suggests that dynamic train loading  33 

plays a key role for train speeds higher than 160 km/h ((Parke & Hewson 2008),(Canning & 34 

Kashani 2016)). Eurocode EN 1991-2 (2003) uses similar approach for calculation of vertical 35 

DAFs for train speeds not more than 200 km/h. However, for train speeds over 200 km/h, 36 

Eurocode EN 1991-2 (2003) recommends further rigorous dynamic analysis for calculation of 37 

vertical DAFs.    38 

The UHS train usually moves at speed of around four times the mean speed of conventional 39 

HS trains. At these ultra-high speeds, dynamic amplification might be very high, and DAFs for 40 

UHS trains are of great importance for safe design purposes. In addition, Hyperloop tubes will 41 

be supported by multiple piers, which vertically support the tubes and longitudinally allow for 42 

the displacement of the tubes due to the thermal expansion. For example in in the proposed San 43 

Francisco-Los Angeles route , the mean spacing of the piers is 30m and around 25000 piers are 44 

required for the entire line (Musk 2013). Alexander and Kashani (2018) analytically 45 

investigated DAFs due to UHS Hyperloop trains for vertical motion through a parametric 46 

analysis. They found that the UHS Hyperloop trains can introduce very large vertical DAFs 47 

and as such, the current design recommendations are inadequate for the design of these systems. 48 

However, the Hyperloop tube-bridge pier interaction is yet to be investigated for lateral motion 49 

of the deck. In this study, the lateral vibration of the deck comes from asymmetric train loading 50 

where not all but some tubes are loaded. However, lateral loadings such as earthquake and to 51 



 

 

a lesser extent, wind, can cause lateral vibrations which do not fall within the scope of this 52 

study.   53 

The moving load problem was first mathematically described by Timoshenko (Timoshenko 54 

1922) and in a comprehensive and detailed report by Frýba (1972) that explains formulation of 55 

moving force and moving mass for simple spans. Moving force-beam systems were also 56 

formulated to address vertical vehicle-bridge interaction problems ((Filho 1978),(Olsson 57 

1985),(Olsson 1991),(Wu et al. 2000)). Similarly, a comprehensive work on the formulation of 58 

human-structure systems was carried out by Caprani and Ahmadi (2016) for use in vertical 59 

human-induced vibrations. Analytical solutions to moving load problems are beneficial for 60 

parametric analyses. However, all moving force problems cannot be analytically solved and 61 

more detailed numerical methods are required to determine vibration response of such systems 62 

(Olsson 1991). Moving load problems can be treated as static loads applying to different 63 

positions on a structure for simplicity. However, dynamic effects of moving loads can be 64 

pronounced in particular for HS trains. Thus, DAFs are defined as dynamic-to-quasi static peak 65 

deflection or stress caused by the dynamics of moving loads. A solid literature review on DAFs 66 

of road bridges for vertical motion can be found in (Paultre et al. 1992).                      67 

There is currently limited analytical and numerical study available in the literature on UHS 68 

Hyperloop trains, and hence, there is no design guideline to help bridge engineers to design 69 

bridges to accommodate the next-generation UHS transport system. As previously stated, 70 

although DAFs of UHS Hyperloop trains have been already addressed for vertical vibration, 71 

the DAFs of such systems need be investigated for lateral vibration due to the eccentricity of 72 

train loadings. Hence, this paper is the first attempt to numerically investigate lateral vibration 73 

of Hyperloop train-bridge-pier systems. Therefore, this study analytically investigates lateral 74 

DAFs of Hyperloop train-bridge-pier systems through a parametric analysis. To achieve this 75 

goal, Hyperloop train is modelled as a series of moving masses and energy equation of the 76 



 

 

system is written to derive equation of motion for lateral direction. The dynamic of the system 77 

is then described in terms of non-dimensional parameters for lateral vibration, and lateral DAFs 78 

are determined and discussed.           79 

 80 

2. Modelling Approach 81 

In this section, the equation of lateral motion of a bridge deck-pier system under asymmetrical 82 

train loading is derived. As shown in Figure 1, the bridge deck is considered as two parallel 83 

continuous Hyperloop tube beams of span length L and number of spans ns. The train is 84 

modelled as a series of equal moving masses, mp, with constant velocity, v, travelling across 85 

one of the Hyperloop tube beams, i.e. asymmetrical dynamic loading. Hyperloop is not a 86 

typical train in the conventional sense, it is like a ‘bullet’, travelling at great speeds through a 87 

near vacuum tube. As the train levitates, the gravitational forces (on the train) must be 88 

transmitted through magnetic fields to the tube. For the train to respond to centrifugal effects 89 

on curved sections of track and to accommodate lateral motions of the deck, the magnetic forces 90 

must have both lateral and vertical components. It should be also noted that the exact form of 91 

an equivalent sprung-damped moving mass system for the hyperloop trains has not been 92 

defined yet as physical prototypes are still an ongoing design problem.  Hence, we conclude 93 

that a moving mass formulation includes both a moving gravitational force where the system 94 

changes in mass with time is a more general problem specification. The mass per unit length 95 

and lateral flexural rigidity of both beams together are mb and EIb and lateral flexural rigidity 96 

of each column (bridge pier) of height h is EIc. Small deflection theory and linear elastic 97 

analysis are used to formulate the lateral motion of the deck. Torsional and vertical oscillations 98 

are also ignored in this analysis.  99 

 100 



 

 

 101 
Figure 1. A train composed of a set of p moving point masses traveling across two continuous ns-span 102 

Hyperloop tube beams supported by ns+1 columns. 103 

 104 

2.1 Energy terms of the system in physical space 105 

The kinetic energy of the system, Q, emanates from two terms: (1) the kinetic energy of the 106 

beams, and (2) the kinetic energy of the moving trainset: 107 

   (1) 108 

where y(x,t)  is the lateral spatiotemporal displacement of the Hyperloop tubes, and mp is the 109 

mass of the pth load in the trainset of np moving point loads. The boxcar function  ensures 110 

that only the travelling masses “on the beams” are considered in this energy calculation. The 111 

boxcar function is defined as follows 112 

   (2) 113 

where H(x) is the Heaviside function. A non-dimensional coordinate ξ is introduced where x = 114 

ξL, and the train positions xp = ξpL. Hence, equation (1) can be restated as  115 

   (3) 116 
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Note that this change of variable changes the integral limits in the standard way. The potential 117 

energy, V, of the system comes from three terms: (1) the lateral flexural energy in deforming 118 

the Hyperloop beam tubes, (2) the flexural energy in laterally deforming the cantilever columns 119 

when subjected to an end moment, and (3) the external work done again laterally by the 120 

gravitational induced moment (large deformation P-Δ effects are ignored) 121 

   (4) 122 

where the pth vertical gravity load is fp = mpg, the eccentricity of this vertical load is e which 123 

is half the horizontal spacing of the tubes and θp is the rotation at the top of the cantilever 124 

columns. From structural mechanics, the relationship between top rotation, θp, and top 125 

displacement, y, of the columns is given by θp = -2y/h. This assumption is reasonably valid for 126 

bridges longer than 40m. Hence, this relationship is used as an approximation for the 127 

relationship between beams rotation and lateral displacement. In this way, we can completely 128 

remove rotational degrees of freedom (DOFs) and consider only lateral translational DOFs. 129 

Hence, equation (4) becomes:  130 

    (5) 131 

 132 

2.2 Equation of motion in modal space 133 

To employ the minimisation of action principle (Euler-Lagrange equations of motion), a 134 

spatiotemporal expansion of the beam displacement is introduced:  135 

   (6) 136 

where ϕi elements are spatial part of the beams response and ui elements are temporal part of 137 

the beams response (q DOFs). ϕi(ξ) elements are ideally a good representation of the mode 138 
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shapes of the system which guarantee a reliable dynamical model of the system with a small 139 

number of DOFs q. However, we may select any set of functions for ϕi(ξ) that satisfy the 140 

boundary conditions of the beams at the supports (columns’ location). Using equations (3), (5), 141 

and (6), the tensorial form of the Lagrangian (kinetic minus potential energies) of the system 142 

normalised by mbL is written as:  143 

   (7) 144 

in which ui elements are approximately modal amplitudes;  is the Lagrangian, and uj is the 145 

lateral displacement at the jth support. The rank 2 tensors (mass matrices) in equation (7) are 146 

given by: 147 

   (8) 148 

where   is the bridge mass matrix and  is the travel load (trainset) mass matrix. 149 

Similarly, the stiffness matrices are defined as follows,  150 

   (9) 151 

where  is the bridge (deck beam) stiffness matrix and  is the supports (columns) stiffness 152 

matrix. Finally, the traveling load vector is defined as:  153 

   (10) 154 

where is the vector of time-dependant loads due to the travelling trainset. These, matrices 155 

and vectors are defined in terms of the following system parameters, 156 

     (11) 157 

where αp is the mass ratio of the pth trainset mass to the mass (per span) of the two parallel 158 

Hyperloop tube beams, ω is the frequency parameter, η is the ratio of column to beam flexural 159 
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stiffness, and  is an eccentricity ratio of the tube. By employing the vectorial form of the 160 

Euler-Lagrange equation (equation (7)), the equation of motion is given by: 161 

   (12) 162 

To satisfy boundary conditions of the multi-span continuous beams at the supports (lateral 163 

displacements), terms of a Fourier series are adopted as an approximation to modal basis for 164 

an ns-span beam 165 

  (13) 166 

The number of DOFs is given by q where  where . This partial Fourier series 167 

includes a half-sine wave across the entire bridge length ,  a half-sine wave for an individual 168 

span  and further higher modes if . Hence, both primary modes for flexible and stiff 169 

columns are considered.  170 

 171 

2.3 Equation of motion in a non-dimensional form 172 

To describe equation (12) in a non-dimensional form, approximate modal amplitudes and time 173 

are normalised as 174 

   (14) 175 

where τ and z are normalised time and displacement respectively;  is the first natural 176 

frequency of the unloaded bridge for lateral motion. By substituting equation (14) into equation 177 

(12) and adding Rayleigh damping term of the beams, ,  and rearranging, we obtain: 178 

    (15) 179 

e

( ) ( )b t b c t
ij ij i ij ij i jM M u K K u F+ + + =!!

( )

( )
( )

( )
( )

1

1
sin /
cos /

sin
cos

s

s q
i

s

s

n
n

k n
k n

px
px

f x

px
px

´

é ù
ê ú
ê ú
ê ú

= Îê ú
ê ú
ê ú
ê ú
ê úë û

°
M

2 1q k= + sk n³

sn L

L sk n>

2
1 1

,
l l

gu z t t
w w

= =

1lw

ij iC z!

( ) ( )* * *b t b c t
ij ij i ij i ij ij i jM M z C z K K z Fh+ + + + =!! !



 

 

Note that a stiffness-proportional damping is used for the beams; the normalised stiffness 180 

matrices are defined as follows,  181 

   (16) 182 

and the damping matrix is define as  183 

   (17) 184 

where coefficients a1 and a2 are obtained in the standard way from (see (Cruz & Miranda 2017)) 185 

using the first and second modes. The normalised loading vectors is as follows,  186 

   (18) 187 

The modal natural frequencies of the beams are determined from eigenvalues of dynamic 188 

matrix  . We also assume the same damping ratio, γ, for the first and second 189 

modes. The train loads position on the beams are defined according to their group velocity, v, 190 

and their starting positions at t = 0 is   191 

   (19) 192 

The non-dimensional location of the pth moving load, ξp, is used in time-varying train mass 193 

matrix, Mijt, and train load vector, Fjt* by the term πξp (see equation (13)). This term is redefined 194 

as Ωlτ + θ where, 195 

   (20) 196 

and, θ = πsp. The non-dimensional speed of the lateral motion, Ωl, is an important parameter of 197 

the system. 198 

Alexander and Kashani (2018) investigated bridge deck-train interaction considering vertical 199 

motion of the deck and found that the non-dimensional speed of the vertical motion plays a key 200 
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role in dynamic behaviour of the deck. For the non-dimensional speed of the vertical motion, 201 

Ωv, the frequency of the first flexural mode of the deck was used. For the non-dimensional 202 

speed of the lateral motion, however, the frequency of the first lateral flexural mode of the pier-203 

deck system is used. At the supports, the two parallel tubes are likely to act compositely as they 204 

will be connected by a supporting beam. We consider the case where, for the majority of the 205 

tubes’ length away from the supports, the tubes have no connecting beams. So, there is no shear 206 

transfer between tubes and they act as independent parallel beams. Hence, the flexural rigidity 207 

around both horizontal and vertical axes of the deck is assumed identical in this study. 208 

Employing the mean frequency suggested in (Network Rail, 2006), Alexander and Kashani 209 

(2018) related the non-dimensional speed of vertical motion to the span length for a wide range 210 

of train speeds. They recommended that the mean HS train reaches a vertical non-dimensional 211 

speed range of 0-1/3 independent of span length, and Hyperloop/Transpod trains experience a 212 

vertical non-dimensional speed range of 0-4/3. For the lateral vibration, non-dimensional speed 213 

limits are determined for HS trains and Hyperloop/TransPod trains: 214 

  ,      (21) 215 

in which  is the first natural frequency of the unload bridge for vertical motion. Thus, by 216 

parametrically varying  we explore the influence of both train speed and span length.  217 

 218 

3. Lateral Dynamic Amplification Factor 219 

To study the effects of moving train on lateral motion of pier-deck system, lateral dynamic 220 

amplification factor (DAF), λ, is determined and compared for a wide range of key parameters: 221 

   (22) 222 
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where ydmax and ysmax are absolute maximum dynamic and quasi-static lateral deflections. Note 223 

that the location of both the maximum quasi-static and dynamic deflection is dependent on 224 

geometry and speed. For example, in the dynamic case, the maximum deflection occurs near 225 

to the modal maximum of the predominant mode for a given speed. This location will not 226 

generally be a midspan. For very low pier-to-deck stiffness ratios, the maximum deflection 227 

could be at a pier, while for high pier-to-deck stiffness ratios, it is likely to be nearer to a 228 

midspan. Eq, (22) simply determines the maxima DAF regardless of the specific locations of 229 

the maxima of quasi-static and dynamic deflections.   230 

The dynamic deflection is determined from solving equation (12), and the quasi-static 231 

deflection is obtained setting inertial and damping terms of equation (12) equal to zero. The 232 

parameters of bridge deck-pier systems are: (1) lateral non-dimensional speed, Ωl, (2) number 233 

of moving masses for train, np, (3) number of spans of length L, ns, (4) single train-to-single 234 

span bridge mass ratio, αp, (5) the spacing between moving loads, sp, (6) pier-to-deck stiffness 235 

ratio, ηk, (7) eccentricity ratio, e, and (8) damping ratio of the first and second modes of the 236 

beams, γ, where identical damping ratio is assumed for both modes. Note that any variation in 237 

train loading eccentricity does not change the lateral DAF. This is because the train loading 238 

(see equation (10)) and accordingly lateral deflection of the system (equation (12)) is linearly 239 

related to the eccentricity ratio, e.  240 

Figure 2 shows an example of the first three mode shapes and modal frequencies (f1, f2, and f3) 241 

for a 4-span bridge with flexible and stiff columns, and Ωl = 1. As expected, for the bridge with 242 

flexible columns, the mode shapes have nonzero values at the supports (see Figure 2a) while 243 

the modal coords are very close to zero at the supports for the bridge with stiff columns (see 244 

Figure 2b). Further, the bridge with stiffer columns has higher modal frequencies as expected.       245 

 246 



 

 

 247 
Figure 2. The first three mode shapes of a 4-span bridge and their frequencies: (a) η = 100, and (b) η = 10000. 248 

 249 

Figure 3a shows the solution of equation of motion (equation (13)) for both dynamic and quasi-250 

static states at the midspan location of a single-span bridge with Ωl = 0.3, αp = 0.1, η = 100, e 251 

= 0.1, and γ = 0.05. The horizontal axis is normalised by π/ Ωl which is the non-dimensional 252 

traverse time of the moving mass across the span length L. Hence, at τπ/ Ωl = 1, the moving 253 

mass has travelled the single-span bridge, and for τπ/ Ωl values higher than 1, the moving load 254 

is not on the bridge, and the bridge freely vibrates. The temporal variation of dynamic and 255 

quasi-static deflections are not identical and the position and magnitude of maximum dynamic 256 

and quasi-static deflections are also different. Figure 3b displays the temporal variation of the 257 

lateral dynamic-to-static deflection ratio (yd/ys, dashed-to-solid line ratio). It is apparent that 258 
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the maximum lateral deflection ratio does not occur when the load is exactly at the midspan 259 

but very close to the midspan. 260 

 261 

 262 
Figure 3. (a) Midspan (ξ = 0.5) lateral deflection of the beams (quasi-static versus dynamic), and (b) lateral 263 

dynamic-to-static deflection ratio versus scaled time.  264 

 265 

3.1 Effect of number of spans and train-to-bridge mass ratio 266 

Figure 4 shows the effects of number of spans on the DAFs for the lateral vibration. Lateral 267 

DAFs are plotted versus non-dimensional speed for single-span to 5-span beams. This figure 268 

is for case of single moving mass (p = 1) on a continuous beam. The results demonstrate a 269 

maximum which increases for higher number of spans. The increase in the peak is because of 270 

the train loading being in contact with the beam for more cycles of loading. Hence, the higher 271 

the number of span is, the more dominate the resonant response is. The maximum speed limits 272 

for HS trains and Hyperloop trains form regions as the natural frequency of the unload bridge 273 

changes for different number of spans. It is favoured that the current maximum speed for HS 274 

trains falls below this resonance, and that the continuous spans do not extend to high ns 275 
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practically without using thermal expansion joints. It is worth noting that the worldwide 276 

average speed of conventional HS trains is around 270 km/h (0 < Ωl < 1/3) which suggests λ ≤ 277 

1.55. It should be noted that unequal spans might affect the results and need further research. 278 

It is a function of flexural rigidity of the deck and pier as well as the ratio of each span length 279 

to the total length of the bridge.                      280 

 281 
Figure 4. Lateral dynamic amplification factors for various number of spans, ns, αp = 0.1, η = 100, e = 0.1, and γ 282 
= 0.05. 283 

 284 

Figure 5 shows lateral DAFs of a 4-span beam with different train-to-bridge mass ratios (mass 285 

ratios, αp = 0.1, 0.3, 0.5, and 1.0). The maximum speed limits for HS trains and Hyperloop 286 

trains are constant as the natural frequency of the unload bridge remains unchanged for 287 

different mass ratios. It is worth noting that as the mass ratio increases, the lateral DAF does 288 

so. Furthermore, the maximum lateral DAF moves toward lower non-dimensional speed with 289 

the increase of mass ratio. Comparison of the DAF range in (Alexander & Kashani 2018) with 290 

0 0.5 1 1.5 2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

HS Train Max Hyperloop Max

Wl

l

 

 
ns = 1
ns = 2
ns = 3
ns = 4
ns = 5



 

 

those determined in the current study, suggests that DAF of vertical vibration are much larger 291 

than those from lateral vibration.  292 

    293 
Figure 5. Lateral dynamic amplification factors for various mass ratios, αp, ns = 4, η = 100, e = 0.1, and γ = 0.05. 294 

 295 

3.2 Effect of spacing of train masses 296 

Figure 6 illustrates lateral DAFs versus non-dimensional speed and spacing for a train of 9 297 

equidistance masses. In the case where sp is zero, a single moving mass travels the bridge while 298 

for non-zero sp values, the mass of each moving load is 0.2/9. Thus, the total mass ratio between 299 

the train and the deck is assumed to be 0.2. The maximum lateral DAFs are roughly similar to 300 

a single moving mass case (sp = 0). However, the maximum lateral DAFs for spacing range of 301 

0.1-0.15 is slightly lower than those for other spacing ratios. Further, the speed at which the 302 

maximum lateral DAF occurs depends on the spacing ratio. As spacing ratio increases, the 303 

maximum lateral DAF moves towards higher non-dimensional speeds. For normal HS trains, 304 
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this is very desirable as it pushes the resonance further away from their operating speed limit. 305 

However, for Hyperloop trains, it is adverse as this effect pushes the resonance close to their 306 

operating speed limit. 307 

 308 

 309 
Figure 6. Lateral dynamic amplification factors for various moving mass spacing ratios, αp = 0.2/9, η = 100, ns = 310 
4, e = 0.1, and γ = 0.05: (a) 3D plot, and (b) contour plot. 311 
 312 

3.3 Effect of pier-to-deck stiffness ratio 313 

Figure 7 shows lateral DAFs versus non-dimensional speed and column-to-beam stiffness ratio, 314 

i.e. lateral flexural rigidity of the column to that of the deck. Like the effect of spacing of train 315 
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masses (see section 3.2), the maximum lateral DAFs at the resonance are quite similar. The 316 

speed corresponding to the maximum lateral DAFs also depends on the stiffness ratio. This 317 

speed increases for higher stiffness ratios which is very beneficial for conventional HS trains. 318 

However, it is critical for Hyperloop trains when the stiffness ratio is very large and the 319 

resonant speed becomes closer to operating speed limit Hyperloop trains.        320 

 321 
Figure 7. Lateral dynamic amplification factors for various column-to-beam stiffness ratios, αp = 0.2, ns = 4, e = 322 
0.1, and γ = 0.05: (a) 3D plot, and (b) contour plot. 323 
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When the pier is very flexible particularly in post-tensioned spinal rocking piers ((Kashani et 325 

al. 2018),(Kashani et al. 2019), (Ahmadi & Kahshani 2019)), the lateral vibration of the bridge 326 

deck becomes very large and lateral vibrations could be critical even for small lateral DAFs 327 

from design point of view. However, large lateral flexibility is desirable for earthquake resistant 328 

design of a bridge as high lateral displacements cause high energy dissipations.   329 

 330 

4. Conclusions 331 

Dynamic amplification factors of Hyperloop trains for lateral vibration were addressed through 332 

a parametric analysis. The Hyperloop train-bridge-pier system were analytically modelled and 333 

described in form of a series of non-dimensional parameters.     334 

It was found that lateral DAFs of the system are highly dependent on the train speed, train-to-335 

bridge mass ratio, train loading spacing, and pier-to-deck stiffness ratio. At a specific train 336 

velocity, a peak is seen in DAFs of the system. Higher number of spans and train-to-bridge 337 

mass ratios respectively increase and decrease the peak DAF. The effect of spacing of train 338 

loading and pier-to-deck stiffness ratio on maximum DAFs are negligible.  339 

Note also that the maximum lateral DAFs (a maximum of approximately 2, for 5% damping) 340 

are much lower than those observed for vertical motions (a maximum of 10, for 5% damping) 341 

in [2]. Nevertheless, in both cases these are significantly larger than code recommendations. 342 

While the DAFs of lateral vibration are much smaller than the vertical vibration, it does not 343 

lower the importance of lateral vibrations as small lateral vibrations of the bridge deck can 344 

cause or enhance the bridge pier uplift. Slight lateral vibrations can also have negative impacts 345 

on the train stability or cause passengers discomfort at high speeds. Therefore, this work 346 

highlights the significance of lateral vibration in addition to the vertical vibration for Hyperloop 347 

train-bridge-pier systems which needs be considered in future design guidelines. 348 



 

 

The current study investigates dynamic amplification factors under one moving trainset with 349 

constant velocity. This means further works on multi moving trainsets crossing each other even 350 

for accelerating and decelerating cases are required. Furthermore, the present work focuses on 351 

straight train track, and further work on curved bridges is required due to potentially high effect 352 

of centrifugal forces on lateral vibration of the deck. Rigorous nonlinear finite element analyses 353 

are also needed to better understand the dynamics of the Hyperloop train-bridge-pier systems.  354 
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