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Approximately 800,000 leukaemia and lymphoma cases are diagnosed worldwide each 

year; with incidence spanning the extremes of both age and economic development. Burkitt’s 

lymphoma (BL) is an aggressive B-cell lymphoid tumour, prevalent in pre-industrialised 

countries, with the primary sufferers aged between 4 and 7. Chronic lymphocytic leukaemia 

(CLL) is the most common adult leukaemia in the Western World; typically presenting with a 

leukaemic population of CD5+ B cells in patients over 60 years of age. CLL is a heterogeneous 

disease with a variable clinical course which presents challenges in prognosis and treatment. A 

more comprehensive understanding of CLL and B-cell cancer biology and the identification of 

disease biomarkers and therapeutic targets has the potential to improve clinical outcomes. 

Murine models offer a controlled and accessible means of studying B-cell cancers. 

Transgenic mice have been developed which use the immunoglobulin heavy chain gene 

enhancer (Eμ) to impose B-cell specific proto-oncogene expression. Eμ-myc and Eμ-TCL1 mice 

model aspects of BL and CLL, respectively.  

To achieve non-biased, quantitative proteomics profiling of B-cell cancers, this 

investigation has utilised isobaric labelling, two-dimensional liquid chromatography and mass 

spectrometry. The proteomes of whole cell lysates of human and mouse B-cell cancers were 

quantitated against non-cancer B-cell controls to determine global cancer-specific protein 

expression. A parallel analysis of pre-terminal and terminal mouse plasma was conducted using 

sub-proteome enrichment and size exclusion chromatography to identify potential disease 

biomarkers. A method was developed which more effectively utilises quantitative isobaric-

labelled data to conclude differences in protein expression. 

Proteomic characterisation quantitated 7391 proteins (FDR <1%) for Eμ-myc and Eμ-

TCL1 B-cell tumours relative to pre-tumour and WT controls, identifying over 2000 

differentially expressed proteins, amongst which were anticipated findings such as myc and 

TCL1. Common and tumour-specific regulation of pathways, potential targets of inhibition and 

cell surface proteins were characterised; most notably of which was the interleukin 5 receptor in 

Eμ-TCL1 tumours. Treatment with interleukin 5 induced proliferation and survival of Eμ-TCL1 

tumour cells, validating this novel finding. This constitutes one of the most comprehensive 

characterisations of B-cell cancers to date. 

2095 proteins were profiled in Eμ-myc and Eμ-TCL1 plasma identifying tumour lysis 

products as the major signature in terminal tumours. Additionally signatures of protein secretion, 

shedding and immune response were present in a tumour-specific manner. An early, pre-terminal 

signature of tumour development was also identified in the Eμ-TCL1 model. 

Profiling of CLL samples quantified 5956 proteins across 14 samples with findings 

agreeing with expected differential expression in CLL, relative to healthy B cells; the most 

comprehensive proteomics characterisation of CLL to date. The results suggested novel targets 

of immunotherapy and inhibitors, especially in the context of B-cell receptor signalling. Novel 

biology such as global spliceosome upregulation was also uncovered. CLL subtype-specific 

differences were identified, however, the strongest signature was that of a subtype-independent 

pattern of protein expression. 

 This investigation has provided unparalleled characterisations of B-cell neoplasms 

suggesting novel biological mechanisms and therapeutic targets, particularly in CLL. This 

supports the further characterisation of B-cell cancers, and other cancers, by the presented 

methodologies. 
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1.0 INTRODUCTION 

1.1 HALLMARKS OF CANCER 

In complex multicellular organisms, it is vital that every cell functions to the benefit of 

the whole organism. Cells must proliferate when required and undergo cell death, should the 

cell’s role become superfluous or detrimental. Cancer can be thought of as the reversal of these 

two obligations; when apoptosis is evaded and proliferation becomes continuous and 

unregulated. The result is cells that can be considered ‘autonomous’, where their function within 

the organism is no longer fulfilled and their presence can rapidly become harmful to other cells’ 

functions, potentially leading to the death of the host.  

Cancer can be defined by a distinct set of characteristics that contribute to cellular 

homeostasis dysregulation. These characteristics include cellular proliferation, immortalisation, 

immune evasion, tumour suppressor dysregulation, angiogenesis, metastasis and reduced 

apoptosis shown in detail in Figure 1.1 [1, 2]. Each of these individual characteristics may be 

relatively harmless, however, the acquisition of multiple traits can cause the selective evolution 

of a clonal population of cells exhibiting all, or the majority, of these hallmarks [1, 2]. 
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Figure 1.1. Hallmarks of cancer. Properties attributable to tumour development and growth; 

adapted from [1, 2]. 

1.1.1 THE MOLECULAR BASIS OF CANCER 

The primary source of tumourigenesis is thought to be the accumulation of alterations at 

the genetic level. Aberrations to the genome influencing cancer can include single nucleotide 

changes, chromosomal translocations and gene duplications or deletions [3-5]. Such mutations 

can arise as a result of either the intrinsic infidelity of DNA replication and repair, or through 

environmental induction, such as chemicals, viruses and radiation [6]. Mutations can also be 

hereditary, passed from the parental genome to the offspring, presenting an increased risk factor 

[7].  

The vast majority of mutations will have no effect on a cell’s phenotype, but with cells 

and their progeny potentially living for many decades, an attribute exacerbated by longer life 

expectancy, the effect of acquired mutations is cumulative (Figure 1.2) [8]. Certain mutations 

can occur which affect the fidelity of DNA replication or stability of the genome and thus 

accelerate the acquisition of further mutations [9]. Aberrations to the epigenome also have the 

potential to harmfully alter gene expression, affecting chromatin structure, transcription factor 

activity and phenotype [10].  

The emergence of cancer hallmarks can ultimately be attributed to the effects, directly or 

indirectly, of protein abundance or function [11]. These can be brought about through alterations 

to the protein coding sequence, enhancing or disrupting the physical and functional properties of 

a protein. Mutations in the regulatory region of genes can alter the levels of gene transcription, 
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and in turn, up- or down-regulate the translation of proteins. Aberrations to the pathways 

responsible for messenger RNA (mRNA) or protein degradation can also adversely influence 

protein abundance. The downstream effects of these proteomic changes ultimately determine the 

phenotypic characteristics, or hallmarks, of a cancerous or pre-cancerous cell [11]. 

The most prevalent mutations, which influence proteins involved in proliferation or 

survival, are most likely to induce avoidance of cell death and increase the cell number with 

such traits. This is the basis of clonal expansion and the evolution of cancer (Figure 1.2) [1, 2, 

12, 13]. Proteins with such effects are typically derived from ‘proto-oncogenes’. 

 

Figure 1.2. Acquisition of cancer traits. The acquisition of mutations and clonal expansion 

from a single epithelial cell to a metastatic and invasive cancer over time. 

1.1.2 ONCOGENES AND PROLIFERATION 

The default reaction of a mammalian cell to complete isolation is to undergo apoptosis 

[14]. For a cell to maintain a typical state of function, whether proliferating or quiescent, signals 

from its environment are required to keep it alive. These signals can originate from the 

extracellular matrix, from adjacent cells or from soluble factors, such as those in the blood or in 

interstitial fluids. In many cases signalling from all three are required. Often, this relies on 

transmembrane proteins, which have specific interactions with survival or growth signals on the 

cell’s exterior and transmit this information to the interior of the cell. This initiates downstream 

signalling which induces protein expression causing a cell to grow, proliferate or remain in a 

quiescent state [14].  
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Signals that induce cell growth and proliferation are termed ‘mitogenic’. Mitogenic 

signals act to upregulate gene expression involved in cell cycle progression and DNA replication 

so that cells can divide and proliferate. Aberrations to these mitogenic pathways form the basis 

of increased proliferation in cancerous cells; where pathways that function to promote healthy 

growth, become incorrectly constitutive. Genes with the potential to express proteins with such 

an effect are termed ‘proto-oncogenes’. Proto-oncogenes are a set of genes that have a functional 

role under typical conditions but upon dysregulation, are capable of inducing one or more 

neoplastic traits [1, 15]. Under such conditions, proto-oncogenes are termed ‘oncogenes’. For a 

proto-oncogene to induce a malignant state, mutations or dysregulation must occur which either 

result in an overexpression or alteration to the primary sequence of the proto-oncoprotein [1, 2]. 

Oncogene activity can be derived from transcription factors; such as myc (described in Section 

1.4), protein kinases; such as Raf and Src, kinase co-activators; such as TCL1 (described in 

Section 1.5), signal transducers; such as Ras, mitogens; such as platelet-derived growth factor 

(PDGF) and mitogen receptors such as PDGF receptor or epidermal growth factor receptor [1, 

2]. 

1.1.3 TUMOUR SUPPRESSION 

It seems somewhat counter intuitive to the principles of evolution, both at cellular and 

organism level, that almost all of more than a trillion nucleated cells in the human body has an 

inherent probability of leading to death through cancer. While cancer is a leading cause of death, 

it most frequently arises in  the elderly [16]. Murine models, for example, which overexpress 

oncogenes can live for months without tumour development [17]. Together, these observations 

demonstrate that oncogenesis is not entirely dictated by the action of aberrant oncogenes.  

It is clear that mechanisms must exist to prevent single mutations from independently 

producing malignant neoplasms. The group of proteins responsible for these anti-cancer 

mechanisms are termed ‘tumour suppressors’. Tumour suppressors have numerous roles in 

detecting, reversing and compensating for the tumorigenic effects of oncogenes and oncogenic 

stresses [18, 19]. Many tumour suppressors have critical roles in providing negative feedback to 

cell proliferation signalling, or inducing senescence or apoptosis, should oncogenes activity or 

abundance become constitutive or excessive. Proteins such as p53 and ARF (described in 

Section 4.1.2), the retinoblastoma protein, Rb, and Phosphatidylinositol-3,4,5-trisphosphate 3-

phosphatase (PTEN), all demonstrate protective roles against the action of oncogene in the 

development of cancers. Loss of tumour suppressor function is a common component of the 

hallmarks of cancer [1]. 
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1.1.4 TUMOUR ORIGINS AND SUBTYPES  

Different cell types demonstrate different propensity for tumour development and the 

same oncogene or inactivated tumour suppressor can have vastly different effects on different 

tissues. This has been demonstrated by the use of knock-out mouse models which often 

demonstrate a specific tumour arising from the loss of each oncogene (detailed in Section 1.3). 

For example, p53 knock-out in mice results predominantly in sarcomas and lymphomas, whereas 

Rb knock-out induces brain and pituitary cancers [20, 21]. Additionally the same cell type, 

acquiring the activation of different oncogenes can result in different cancer phenotypes [22]. In 

healthy individuals, as opposed to mutant mouse models, cancer can be traced to a single cell 

acquiring an activating or inactivating mutation of a proto-oncogene or tumour suppressor, 

respectively (Figure 1.2).  

A translocation event creating an oncogenic fusion protein, BCR/ABL, in chronic 

myeloid leukaemia, for example, was identified in a pool of non-leukaemic cells alongside their 

cancerous counterparts. This suggested that cancer arose from only a subset of these cells, 

indicating a clonal cancer origin [23]. This and other examples highlight an increased frequency 

of cells of origin being from undifferentiated progenitor cells, likely owing to their already 

activated capacity for self-renewal and proliferation [1, 2, 22]. 

One such cell type which presents a remarkable variation of tumour types is B cells, 

varying from rapidly proliferating solid tumours, to slow-developing chronic leukaemias. 

1.2 B-CELL CANCERS  

Cancers arising from B-cell have a high diversity of clinical presentation; ranging across 

a growing number of sub-classifications, derived from many cell types at many stages of 

differentiation. B-cell cancers can present as lymphomas, where the cancer localises to lymph 

nodes or a leukaemia where abnormal numbers of cancers cells enter the blood. At present, thirty 

different classifications exist for lymphoma alone, a number that has doubled in the last decade 

[24, 25]. The consensus from these classifications is that lymphoid neoplasia present an 

overlapping spectrum of phenotypes, oncogenic mechanisms and treatment responses [24, 25]. 

This presents a challenge to clinical approaches made to diagnose and treat patients of these 

diseases. B-cell-derived cancers make up the 95% of lymphoma cases and most frequently arise 

from B cells in germinal centres [26]. Common lymphoma subtypes include mantel cell 

lymphoma (MCL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and 

Burkitt’s lymphoma (BL). B-cell cancers also make up a large proportion of leukaemia cases, 

predominantly in the form of chronic lymphocytic leukaemia (CLL).  



30 

 

 

1.2.1 B-CELL DEVELOPMENT AND SIGNALLING 

‘B’ cells, termed due to their origination from the bursa of fabricus in birds, are a 

principal cell of the adaptive immune system which produce immunoglobulins (Ig) to recognise 

and ultimately eliminate non-self antigens [27]. In mammals, B cells differentiate from 

hematopoietic stem cells within the bone marrow (Figure 1.3) and are defined by cell surface 

expression of proteins such as CD19, CD20, CD23, CD45/B220, CD79a and CD79b [28]. The 

process of B-cell development involves the V(D)J (variable, diversity and joining) 

recombination of the regions coding for the Ig genes. This generates the vast diversity of Ig 

molecules required for the recognition, binding and elimination of previously unencountered 

pathogens. Each naïve B cell expresses a unique Ig at its surface in a complex with CD79a and 

CD79b, termed the B-cell receptor (BCR). The role of BCR signalling is diverse, with roles in 

proliferation, apoptosis and cell survival at different stages of B-cell development. During B-cell 

selection, for example, it is essential that any B cells with Ig capable of self-recognition are not 

allowed to develop. BCR signalling can therefore induce receptor editing, anergy and clonal 

deletion via apoptosis to prevent this. In mature B cells, BCR engagement with a cognate non-

self antigen triggers BCR signalling thereby selectively inducing an expansion of the B cell 

encoding an Ig with antigen specificity. BCR signalling upon antigen engagement involves the 

recruitment of several tyrosine kinases, which activate downstream signalling (Figure 1.4). This 

involves pathways such as phosphatidylinositol-3-kinase (PI3K)/AKT, nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB), Ras and mitogen activated protein kinases 

(MAPK). Signalling triggers cytoskeletal rearrangement, BCR internalisation, receptor editing 

and differentiation into memory B cells and plasma cells; which no longer express the BCR and 

instead secrete Ig [28]. 

The propensity for rapid expansion in B cells makes dysregulation of the BCR pathway, 

and other downstream effectors, such as the myc proto-oncogene, a potential sources of aberrant 

growth that may lead to cancer. 
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Figure 1.3. Schematic of B-cell development and tumourigenesis. B cells differentiate 

through several stages from haematopoietic stem cells defined by the V/(D)/J recombination 

status of the heavy and light Ig chains. Mature (naïve) B cells migrate to primary lymphoid 

organs and upon antigen stimulation proliferate and clonally expand while undergoing somatic 

mutation to evolutionarily increase the affinity of Ig to the non-self antigen. B cells presenting 

high-affinity epitopes differentiate to produce plasma cells capable of secreting the high-affinity 

Ig and memory B cells. Cancers can arise from many of these B-cell subtypes, but most 

commonly from B cells in germinal centre, especially lymphomas. CLL is thought to arise from 

a subset of mature B cells which express CD5. Two subtypes of CLL, mutated-CLL (M-CLL) 

and unmutated CLL (U-CLL) are thought to arise from CD27+ and CD27- negative subsets of 

CD5+ B cells, respectively. The involvement of T cells in the B cells immune response mediates 

somatic mutation of the IGHV gene [28, 29]. 
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Figure 1.4. The B-cell receptor signalling pathways. The B-cell receptor (BCR) consists of 

three main components; CD79a, CD79b and an Ig molecule. Upon antigen binding, Lyn (Lck-

yes-related novel kinase) phosphorylates Syk and the immunoreceptor tyrosine-based activation 

motifs (ITAMs) on CD79a and CD79B. Phospho-ITAMs play a role in the localisation of further 

proteins including the B-cell linker protein (BLNK), which upon phosphorylation localises 

further proteins which are subsequently activated and promote downstream signalling. B-cell 

survival and proliferation are driven by transcription factors and regulators via protein such as 

MAPK p38, extracellular-signal-regulated kinases (ERK), nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB), nuclear factor of activated T cells (NFAT) and forkhead 

box O proteins. Proteins such as the Ras-related protein regulate alterations in cytoskeletal 

structure. Additional pathways exist which act to enable endocytosis of the antigen-BCR 

complex. Under cancerous conditions, zeta chain-associated kinase 70 (ZAP70) can be involved 

in BCR signalling. The BCR signalling pathway is also negatively regulated predominantly by 

phosphatases such as the Src homology region 2 domain-containing phosphatases (SHP); SHP1 

and SHP2; and phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN); reversing the 

activation of AKT induced by PI3K. Negative regulation is modulated by CD22, CD45/B220 

and the inhibitory Fc receptor CD32B. 
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1.2.2 BURKITT’S LYMPHOMA 

Despite being amongst the most proliferative human cancers, BL, is highly treatable 

and, in developed countries, has a cure rate of approximately 90% [30, 31]. BL is scarce in the 

western world, making up just 2% of lymphomas in the UK. In equatorial Africa, however, 

incidence is vastly higher, with BL accounting for 74% of all childhood cancers occurring most 

frequently between 4 and 7 years of age [32, 33].  

Of the sporadic form of the disease, observed in developed countries, the causes and 

molecular mechanisms driving the disease are well characterised. BL results from a genetic 

abnormality in which genes are aberrantly rearranged between different chromosomes, termed 

chromosomal translocations). As many as three quarters of cases are attributable to a 

translocation of t(8;14) which brings the genetic enhancer element of the µ Ig heavy chain (Eµ) 

to drive the expression of the proto-oncogene myc [34, 35]. Other translocations observed in BL 

include t(2;8) (p12;q24) and t(8;22) (q24;q11); all involving myc gene expression amplification 

[34]. These translocations mimic the propensity for antibody production B cells in the expression 

of myc affecting predominantly either germinal centre B-cell or memory B-cell origin [36, 37]. 

When tumour suppressor mechanisms fail to dampen this excessive myc function, proliferation 

and neoplastic transformation occurs. This can result in large tumours with a cell replication rate 

of approximately 24 hours [31].  

Another classification of BL is that of endemic BL, observed in regions coinciding with 

a prevalence of Epstein-Bar virus (EBV) infection [38]. EBV induces B-cell proliferation and 

mutation that substantially increase the chances of a translocation event triggering 

overexpression of myc [39]. EBV also acts to inhibit the tumour suppressive mechanisms that 

would otherwise see the apoptosis of the initial tumour cells [40]. A similar effect is seen with 

human immunodeficiency virus infections, termed HIV-associated BL and malaria [41, 42].  

The treatment regimen for BL is defined as using multiple rounds of aggressive 

chemotherapy. The high proliferation rate of BL contributes to the efficacy of the treatments 

which interfere with DNA replication, giving a very high treatment response rate [31]. Recent 

studies have shown that rituximab therapy is also beneficial in BL therapy when used in 

combination with this chemotherapy regimen [33]. While BL responds very well to current 

treatments, there are still issues with treatment resistance and toxicity that suggests a greater 

understanding of the disease would potentially allow improved clinical approaches [33]. 
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1.2.3 CHRONIC LYMPHOCYTIC LEUKAEMIA 

Chronic lymphocytic leukaemia (CLL) is the most common adult leukaemia of the 

western world, constituting around 1% of all cancers diagnosed in the UK [16, 43]. It is a disease 

with two very different potential outcomes; an indolent form which can persist for more than a 

decade and is often not a direct cause of mortality, and a progressive form which can quickly 

develop into a life threatening disease within eighteen months [44, 45]. CLL predominantly 

effects the elderly and has a prevalence of 2:1 in male patients [43]. Given a lack of clear 

environmental risk factors, an increased risk of CLL amongst relatives of sufferers, and the 

higher incidence of CLL development in Caucasian populations [46], there is almost certainly a 

strong genetic component to CLL development, yet to be fully understood. 

1.2.3.1 DIAGNOSIS OF CLL 

CLL is defined as a leukaemic, lymphocytic lymphoma of the peripheral blood, lymph 

nodes, spleen and bone marrow, presenting with a persistent (>3 months) clonal, CD5+, CD19+ 

B-cell count, above that of 5x109 cells per litre of blood [47, 48]. CD23 and CD20 are also 

typically expressed.  

A possible precursor state, which does not always progress to CLL, is monoclonal B-cell 

lymphocytosis (MBL) which is defined as an asymptomatic presentation with CLL-like cells 

below 5000 cells/µl [50, 51]. MBL represents part of a continuous spectrum, which 

prognosticates CLL as a potential outcome [52, 53].  

CLL or MBL are frequently diagnosed coincidentally when a blood sample is taken for 

other reasons, but can also present with symptoms such as fever, weight loss, night sweats and 

enlarged lymph nodes [49]. 

1.2.3.2 TREATMENT OF CLL 

Counterintuitively, compared with most other cancers, MBL and early CLL are left 

untreated due to the high degree of uncertainty surrounding progression. Watchful waiting for 

clinical characteristics of advanced CLL, such as splenomegaly, lymphocyte doubling time and 

anaemia/thrombocytopenia, is currently used to assess the appropriate time to begin treatment 

[47], based upon the Rai/Binet staging system [44, 54]. Early treatment potentially risks 

selecting for the most aggressive CLL cells which can then occupy the therapy-induced niches. 

Treatment of CLL remains predominantly based around cytotoxic chemotherapy and 

radiotherapy; acting to disrupt DNA synthesis in proliferating cells inducing apoptosis with 

drugs such as cyclophosphamide and fludarabine. Immunotherapy is widely regarded as a safer 

treatment strategy, as well as superior when used in combination with chemotherapy. The use of 

antibodies such as rituximab and alembtuzumab specifically target the B-cell antigens CD20 and 
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CD52, respectively, and induce a lethal immune response against the cells expressing these 

proteins.  

CLL is frequently treated with rituximab, a monoclonal antibody targeted at the B-cell 

specific marker CD20, coupled with the chemotherapeutic adjuvants cyclophosphamide and 

fludarabine [55]. Survival rates are significantly impacted by refractory CLL, in which CLL 

cells become resistant to treatment, requiring further, more effective first-line treatments [56]. 

More recent therapies have focused on targeting more specific intracellular targets with 

small molecular inhibitors. The BCR, for example is known to drive CLL. Inhibiting 

components of BCR signalling have proven highly effective in CLL treatment such as the 

inhibition of Bruton's tyrosine kinase with ibrutinib [57] and the inhibition of PI3K δ with 

idelalisib [58]. BCL2, an anti-apoptotic protein commonly overexpressed in CLL and other B-

cell malignancies, has also been the focus of inhibition therapy. BCL2 inhibitors, such as 

obatoclax, navitoclax/ABT263, ABT737and ABT199 [59-61], demonstrate a re-establishment 

and induction of apoptosis. 

1.2.3.3 CLL BIOLOGY 

CLL has previously been described as a disease of accumulation, rather than 

proliferation, with circulatory CLL cells predominantly in G0 phase of the cell cycle, 

simultaneously overexpressing anti-apoptotic proteins [62-64]. An in vivo study measuring cell 

turnover with deuterium labelling, demonstrated a more dynamic picture of continuous cell 

production and cell death [65]. The microenvironment plays a critical role in these dynamics in 

CLL, with the vast majority of cell division occurring in the secondary lymphoid tissue, induced 

by chemokines, interleukins, integrin signalling and accessory cell contact [66-68]. 

1.2.3.4 PHENOTYPES AND ORIGIN OF CLL 

CLL cells have an immunophenotype of the B-cell antigens CD19 and CD23 with the 

co-expression of CD5, a marker expressed predominantly on T cells [48]. A downregulated 

expression of CD20 and other B-cell traits are also characteristic [69]. Many variable 

characteristics exist amongst cases of CLL, such as the somatic mutational status of the Ig 

heavy-chain variable-region gene (IGHV). CLL with mutated IGHV (M-CLL) is typically 

indolent, whereas unmutated cases (U-CLL) often result in a progressive disease [70]. 

Several studies have attempted to conclude the precursor cell type from which CLL 

arises, producing conflicting evidence [71-74]. Early microarray characterisations suggested that 

gene expression signatures were most analogous to memory B cells [72]. Later suggestions were 

made that marginal zone B cells were a likely origin of CLL, on the basis of the type of BCRs 

observed in CLL [75-77]. An additional suggestion was that a B-cell subset expressing ZAP70, a 
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commonly dysregulated protein in CLL might represent a precursor to CLL [78]. Further 

investigation has indicated CLL development from two CD5+ B-cell subtypes; CD5+CD27+ and 

CD5+CD27- which may correlate with the mutated and unmutated status of the IGHV in CLL 

cases, respectively [74]. Given the expression of CD5 and comparative CD5+ B cells gene 

expression profiles, it has also been proposed that this B-cell subset is the most likely cell of 

CLL origin [29]. 

1.2.3.5 MOLECULAR AETIOLOGY 

Unlike with BL, where overexpression of myc is a clear fundamental cause of the 

disease, the molecular basis of CLL is multifaceted. While several subcategories have been 

proposed, defined by cytogenetic abnormalities, gene mutations, IGHV status and 

immunophenotypes, CLL can still develop in the absence of these features. Additionally, while 

many of these features confer an increased risk of progressive CLL, none can definitively predict 

it.  

1.2.3.6 CYTOGENETIC ABNORMALITIES 

CLL is observed with chromosome aberrations in more than 50% of cases [79-82]. 

These present opportunities to identify genes and subsequently proteins which confer a 

significant influence on the development or progression of CLL. The most frequently recurrent 

genetic lesion is the loss of 13q14, relates to the loss of the miRNAs miR15 and miR16, 

inhibitors of the expression of the anti-apoptotic protein BCL2 [83]. 17p contains the TP53 gene 

which encodes the tumour suppressors, p53. Loss of this region is a strong predictor of short 

survival time [84]. 11q deletions are similarly associated with aggressive CLL, inducing the loss 

of genes encoding the DNA damage sensor ATM and the pleiotropic regulator BIRC3 [85]. The 

acquisition of a third copy of chromosome 12 termed ‘trisomy 12’ is perhaps the least 

understood chromosomal abnormality [86, 87]. Trisomy 12 status is related to an increased 

expression of integrins, suggested to be via epigenetic mechanisms, however, no regulators have 

been proposed [88, 89].  

1.2.3.7 GENE MUTATIONS 

Several genes are reported as frequently mutated in CLL, indicating the potential 

functional importance of the encoded proteins. Indeed, of the top mutated genes in CLL, most 

have a clear function in the pathogenesis of the disease [90]. Alongside the loss of TP53 due to 

17p deletion, point mutations of TP53 is a common observation in CLL, which confers a similar, 

highly increased disease aggression [91]. NOTCH1 encodes a transmembrane receptor and 

transcriptional regulator ‘neurogenic locus notch homolog protein 1’ (NOTCH1) that normally 

influences cell fate determination upon binding ligands such as Jagged1/2. Upon activation, its 
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effects are pleiotropic, regulating pathways involved in proliferation, apoptosis and angiogenesis 

[92]. Approximately 10% of CLL cases have NOTCH1 mutations which consistently act to 

increase both the activity and abundance of NOTCH1 [93]. NOTCH1 mutations appeared almost 

exclusively without TP53 mutations and conferred a similar risk of progression [94]. The gene 

encoding splicing factor 3B subunit 1 (SF3B1) is mutated, again, in around 10% of CLL cases at 

first presentation [95, 96]. While the specific role of SF3B1 mutation is elusive, the recurrence of 

mutations within certain ‘HEAT’ repeat domains suggests that functional aberration to the 

spliceosome influence CLL development [95]. Other frequently mutated genes include ATM 

[97] and BIRC3 [98] also observed deleted with the loss of 11q, and myeloid differentiation 

primary response gene 88 (MYD88) a critical component of Toll-like receptor signalling, also 

mutated in other B-cell cancers [99]. 

1.2.3.8 IGHV STATUS AND BCR SIGNALLING 

The BCR is a complex of the transmembrane adaptors CD79a and CD79b, non-

covalently bound to a surface Ig (Figure 1.4). In B cells, the engagement of antigen triggers 

downstream signalling which induces proliferation and survival [27]. 

The BCR has been shown to play a critical role in CLL pathogenesis, promoting cell 

survival and proliferation independently of normal, non-self antigen stimulation [100]. The 

aggression of CLL is often differentiated by the mutation status of IGHV, with CLL originating 

from B cells prior to somatic mutation, correlated with the most aggressive form of the disease 

[101]. Ig-mediated BCR cross-linking in U-CLL induced proliferation, whereas none was 

observed on M-CLL [102]. BCR signalling and CLL proliferation can be induced by 

cytoskeletal proteins exposed by apoptosis [103, 104], though autoantigenic signalling, where 

BCR signalling is induced by self-recognition [105] or potentially by non-self antigens from 

bacteria or viruses [106, 107]. The role of BCR signalling in CLL is supported by the clinical 

success of inhibitors of this pathway. It is further supported by knockout studies of the key BCR 

signalling protein; protein kinase C beta (PKCβ). Loss of PKCβ in models with a predisposition 

to a CLL-like disease failed to develop a malignancy [108].  

The requirement for antigen engagement in BCR signalling in CLL has been questioned 

however [105], given the observations of low surface Ig expression and mutations and 

aberrations to BCR components [109, 110]. Several downstream components, such as the 

inhibition targets BTK and PI3K, have been studied to elucidate key molecules acting in the 

BCR pathway. 

The protein tyrosine kinase, ZAP70 is typically observed regulating T-cell receptor 

signalling, however, ZAP70 has been shown to be interchangeable in BCR function, acting as an 

adaptor [111]. Expression in CLL cells correlates with both U-CLL status and enhanced BCR 
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signalling [112, 113], and has been shown to amplify downstream signalling such as that of NF-

κB [114].  

Nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) are a family 

of ubiquitous, pleiotropic transcription factors, which in B cells are activated by receptors such 

as CD40, inducing cell survival and proliferation. In CLL, NF-κB is induced by BCR signalling, 

PI3K and ZAP70 [115]. NF-κB appears to be active without, but is still enhanced by, CD40 

stimulation [116, 117], as well as by cytokine signalling [118]. The role of NF-κB in CLL is 

strengthened by the observation that inhibition led to the induction of apoptosis [119]. 

1.2.3.9 IMMUNOPHENOTYPES 

The heterogeneity of CLL is also apparent at the cell surface, with proteins such as 

CD38 [120] and CD49d [121], demonstrating differences in both expression and functional 

influence between cases. 

Expression of ADP-ribosyl cyclase 1, the antigen CD38, has been shown to correlate 

with the proliferation rate of CLL and poor clinical outcome [122]. CD38 normally functions as 

an intracellular metabolic regulator and transducer and has intrinsic links with immune cell 

function and development including that of the BCR; features that appears to be amplified in 

cases of CLL overexpressing CD38 [123, 124]. 

CD49d, also known as integrin alpha 4 (ITGA4), pairs with either integrin beta 1 or 7 to 

act as receptor binding the extracellular matrix, vascular endothelial cells or mucosal tissue. In 

CLL it appears that α4β1 acts to mediate cell-cell, and cell-matrix interactions resulting in 

enhanced transendothelial migration, [125, 126] and enhanced microenvironment signalling 

conferring resistance to apoptosis [127]. CD49d expression correlates with trisomy 12 and has 

been shown to be regulated by DNA methylation [89]. A 3000 patient cohort defined CD49d as 

the single most accurate flow cytometry-based predictor of CLL aggression [121]. CD49d 

expression also has a significant correlation with other features of aggressive CLL including; 

CD38, ZAP70, and U-CLL [128]. 

1.2.3.10   OTHER PATHOGENIC MECHANISMS IN CLL 

While CLL has many differential features, most appear to amplify a state that can 

already be defined as CLL. For instance, the role of BCR signalling in M-CLL appears to be less 

than that of U-CLL [102]. Several characteristic features, such as CD5 expression, have 

emerged, however, which demonstrate a consistent presence in the vast majority, if not all, cases 

of CLL. 

The apoptosis regulator, BCL2, acts to inhibit apoptosis by sequestering pro-apoptotic 

proteins that induce the permeablisation of the mitochondria, an initial step that irreversibly 
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induces apoptosis. BCL2 is observed upregulated in CLL, as well as a number of other B-cell 

cancers, from which it derived its name; B-cell lymphoma 2 (BCL2) [129].  

As mentioned, BCL2 can be upregulated either by loss of miRNAs by 13q14 deletions.  

Even in the absence of a 13q14 deletion, epigenetic silencing has been shown to downregulate 

miR15 and miR16 expression, allowing BCL2 overexpression, independently of any 

chromosomal aberration [130, 131]. A further mechanism has been described where BCL2 

mRNA can be stabilised by the protein nucleolin which aberrantly translocates to the cytosol in 

CLL [132]. Other members of the BCL2 protein family have roles in the pathogenesis of CLL 

such as induced myeloid leukaemia cell differentiation protein (Mcl-1) and BCL2L1/BCLX 

[133, 134]. 

Receptor tyrosine kinase–like orphan receptor 1 (ROR1), a developmental embryonic 

protein, has recently been identified with frequent expression on CLL and other cancers [135, 

136]. ROR1 appeared to induce NF-κB signalling and CLL survival in response to the 

developmental signalling protein WNT5a [137]. WNT5a was later shown to be expressed by 

CLL, self-inducing this pathway as well as increasing CLL cell motility [138]. The 

predominantly developmental expression of ROR1 has made it an attractive target for 

immunotherapy [139, 140]. 

The expression of the chemokine receptor CXCR4 in CLL mediates cell migration into 

tissues such as the bone marrow and lymph nodes [66, 141]. These provide a microenvironment 

in which CLL cells are stimulated by several other chemokines, interleukins and ligands, 

inducing cell survival, proliferation and therapy-resistance [142].  

The proto-oncogene T-cell leukaemia/ lymphoma 1 (TCL1) has also been shown to 

contribute to CLL, in as many as 90% of cases [143]. The role of TCL1 in CLL is supported by 

the observation of a CLL-like presentation of leukaemia in mice overexpressing TCL1 in B cells 

[144, 145]. TCL1 function is described further in Section 1.5.  

1.3 MODELLING CANCERS IN MICE 

Mice provide an excellent pre-clinical platform for the controlled development of 

therapeutics and insights into cancer mechanisms, such as oncogenes. Cancers can be modelled 

in mice by the insertion of oncogenes into targeted cells by retroviral transduction, by 

xenografting human cancers, or by the engineering of transgenic mouse strains with a specific 

predisposition to develop spontaneous tumours, often induced by loss or amplification of tumour 

suppressors or oncogenes, respectively [146, 147].  
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Transgenic animal models provide an opportunity to observe polyclonal cancer 

development and evolution within the microenvironment of a whole organism. The temporal 

effects of the tumour-host interactions throughout tumourigenesis can also be studied. The 

effects of the immune system, availability of nutrients, microenvironment, circadian fluctuations 

and organism wide homeostatic mechanisms, which all likely influence tumour development, 

phenotype and evolution of cancers, can be captured, which may fail to be evident with cell 

culture or tumour xenografts [146, 148, 149]. Studying cancer in mice is also benefited by their 

short lifespan, small size and human comparability [148]. Mice have many physiological, 

metabolic and signalling mechanisms conserved though evolution, and cancers arising in 

humans and mice often share similarities in molecular nature and presentation.  

Mice are, however, genetically and phenotypically very different from humans, with the 

last common ancestor existing around 80 million years ago, and have approximately a 3000-fold 

difference in physical size [150]. The metabolic rate of mice, which is 7 times that of humans, 

results in a far greater rate of DNA damage [151]. These differences have resulted in the 

evolution of, often, very different tumour suppressor mechanisms. For instance, loss of function 

of the Brca2 gene is strongly associated with breast cancer development in humans, however, in 

mice conferred no tumour susceptibility [152]. Developmental and biological effects of an 

overexpressed or knocked-out gene can also mean that the sporadic evolution of tumours doesn’t 

recapitulate human tumour evolution from a single cell [153]. 

Murine cancer models therefore have a significant role in the preliminary understanding 

of oncogenes and basic biology of cancers, that when translatable has proven beneficial to 

several cancer types [154]. They also provide the opportunity to investigate and manipulate 

cancers by means, which in humans might pose more ethically challenging questions. 

1.4 THE MYC PROTO-ONCOGENE 

Myc was first observed in tumours as the viral chimeric homologue v-myc, induced by 

the avian myelocytomatosis virus, due to genome integration of viral DNA into the myc gene 

[155-157]. This genetic insertion upregulated the myc gene and imposed a state of continuous 

proliferation and protein synthesis, resulting in a cell with ideal conditions for rapid viral 

replication, but also a dysregulation with the potential to drive malignancy [158, 159]. 

Myc encodes a helix-loop-helix leucine zipper transcription factor with affinity for E-

box elements, the nucleotide sequence ‘CAnnTG’ (where ‘n’ denotes any nucleotide) associating 

with its dimerisation partner Max (shown in Figure 1.5) [160, 161]. E-box elements can direct 

the influence of the myc protein to approximately 15% of genes in the human genome [160, 

162] . Myc is upregulated in response to mitogenic signals such as growth factors, hormones and 
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notch signalling (Figure 1.6) [163-165]. This leads to cell cycle progression and inhibits genes 

involved in cell cycle arrest or differentiation [159, 166]. Myc has other pivotal roles in 

regulating metabolism, cell adhesion and migration, angiogenesis, apoptosis sensitisation and 

pluripotency [167]. Myc is described as a pluripotency factor, owing to its involvement in the 

generation of induced pluripotent stem cells [168]. 

Myc exerts its effects through the recruitment of transcription factors and histone 

actetyltransferases (HATs) which induces chromatin dissociation and transcriptional 

upregulation [169-172]. Myc also has extensive roles in transcriptional repression, suggested to 

be just as numerous as its transcriptional activation capacities [157, 162].  

 

Figure 1.5. Crystal structure of myc. The myc-max heterodimer forming a helix-loop-helix 

leucine zipper and associating with an E-box element, 5'-CACGTG-3'. Adapted from the crystal 

structure defined by [161] using jmol [173]. 



42 

 

 

Figure 1.6. The function of myc in proliferation and cell growth in response to mitogenic 

signalling. Myc transcription is upregulated by many mitogenic signals. On translation, myc 

regulates many genes with the end effect being cell proliferation and growth. Adapted from 

[165]. RTK; Receptor tyrosine kinase, TCR; T-cell receptor, TGF; tumour growth factor. 

 

1.4.1 THE MYC ONCOGENE 

Ectopic myc-driven cell proliferation and tumourigenesis is seen in around 20% of 

cancers [174]. The intrinsic properties of myc make it particularly aggressive as an oncogene, 

with many of its effects contributions to neoplastic-like traits [1, 167]. It can be induced by 

various genetic aberrations, such as retroviral promoter insertions, chromosomal translocations 

or gene amplifications [35, 175-177]. Myc overexpression can also result from dysregulation of 

its related factors. Mutation or suppression of FBW7, for example, a protein responsible for myc 

degradation, allows an accumulation of myc protein [178]. 

1.4.2 MYC ONCOGENE REGULATION 

The myc protein abundance is intrinsically regulated by multiple mechanisms to protect 

against the oncogenic potential of its overabundance (Figure 1.7) [165]. The alternative reading 

frame protein, p19ARF, for instance, is expressed in response to the transcriptional activities of 

myc [179]. If myc expression is high, ARF accumulates and inhibits the E3 ubiquitin ligase, 
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MDM2, preventing degradation of the tumour suppressor p53 [179, 180]. This allows an 

elevation above the normally very low endogenous levels of the tumour suppressor p53 and acts 

to trigger cell cycle arrest and apoptosis [181]. Studies have shown that mutations to this, and 

parallel pathways, are highly favourable to neoplastic development, specifically in the context of 

lymphomagenesis [21, 182]. When aberrations to components of these detection pathways occur, 

excessive myc expression no longer triggers p53 to initiate cell cycle arrest [182]. This loss of 

detection signifies a critical step in the development of cancer [165]. In B-cell 

lymphomagenesis, CD19 was shown to induce myc protein stability in two independent studies 

[183, 184] correlating strongly with poor survival. 

Secondary to its effect on driving proliferation, myc appears to further accelerate 

tumourigenesis by the effect of its overexpression on genomic instability [185]. The downstream 

effects of myc increase the production of reactive oxygen species (ROS) which can directly 

induce DNA damage [175]. There is also evidence genetic damage can be induced by myc 

independent of ROS production [186]. These two distinct mechanisms are amplified by the 

ability of myc to circumvent cell cycle arrest, which normally occurs in response to genetic 

aberrations [175, 187]. 

 

 

 



44 

 

Figure 1.7. Tumour suppressors counteracting oncogenic myc overexpression. The effect of 

the immunoglobulin heavy chain enhancer region (Eµ) on the expression of myc in proliferation 

and cell growth in B cells. The translocation of Eµ to myc is observed in ~75% of BL cases. 

Myc overexpression induces the expression and accumulation of alternative reading frame 

protein (Arf). Arf inhibits murine double minute 2 protein (MDM2)-induced degradation of p53. 

Accumulation of p53 induces cell cycle arrest and cell death, a mechanism that has evolved to 

inhibit oncogenesis [165, 178-180]. FBW7 is responsible for the degradation of myc. Loss of 

any aspect of the tumour suppressor pathways on the right hand side can allow myc 

overexpression to go unchecked, allowing oncogenesis. 

 

1.4.3 THE Eµ-MYC MURINE MODEL 

BL is modelled in mice by Eµ-induced overexpression of human myc, which 

recapitulates the substantial overexpression of myc specifically in B cells [188]. Eµ-myc mice 

live for approximately 100 days, before succumbing to an aggressive lymphoma [176] (Figure 

1.8) modelling both molecular and pathological aspects of BL [176, 188-190]. The most 

common presentations are splenomegaly, peripheral lymph node tumours, thymomas and 

mesenteric lymph node tumours [176]. As early as prenatally, Eµ-myc mice develop an 

enhanced population of polyclonal pre-B cells, with larger cell morphology and increased 

replicative potential [191] – typical of the effects of myc on cells; inducing a stem-like state, 

preventing progression towards terminal differentiation, accelerating mitosis and stimulating cell 

growth [167]. Eµ-myc mice therefore provide a model through which the BL translocation, and 

thus the biology of myc-driven tumours, can be studied [192].  

Additionally, applications of the Eµ-myc model have been used to elucidate and 

understand aspects of myc biology. Prior to tumourigenesis, for instance, the Eµ-myc model 

demonstrates a substantial increase in myc transcript level, while only a marginal increase in 

myc protein [192]. This observation suggests that substantial feedback mechanisms occur 

supressing the overabundance of myc protein. The model has been used to understand aspects of 

myc biology such as myc-induced, p53- and ARF-dependent cell cycle arrest and apoptosis 

[182], and the cooperation of other oncogenes with myc such as Ras and Raf, accelerating 

tumourigenesis [193]. 

Some aspects of the Eµ-myc model do not accurately recapitulate BL, due to the 

presence of the genetic aberration to myc early in B-cell development. This is contrasted with 

BL where translocations often occur later into development. As a result of this, characteristics of 

DLBCL are also present [189]. 
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Figure 1.8. Characteristics of the Eµ-myc mouse model of Burkitt’s lymphoma. A. An 11-

week old Eµ-myc mouse demonstrating spontaneous lymph node tumours. B. A dissection of the 

mouse from A. highlighting tumours of the cervical (neck) and inguinal (abdominal) lymph 

nodes. C. The survival and emergence of such tumours in 134 Eµ-myc mice indicating a very 

high disease penetrance and a rapid progression from onset to lethality. The median time to 

death was approximately 11 weeks, with the vast majority succumbing to terminal tumours 

within 100 days. Adapted from [176] and [188]. 
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1.5 THE TCL1 PROTO-ONCOGENE 

The TCL1 protein is a small 14 kDa homodimerising peptide which consists of an 8 

strand beta barrel structure shown in Figure 1.9 [194]. The proto-oncogene has been shown to 

be expressed in the spleen and lymph nodes, as well as in circulating B cells [195]. The 

expression of TCL1 in B cells was shown to be in strong correlation with the differentiation of B 

cells as they develop, with naïve and pre-B cells expressing TCL1 significantly more than 

germinal centre B cells or plasma cells [196]. The role of TCL1 was extended to cover the 

development of T- and B cells, observed by reduced hematopoietic development in TCL1-/- mice 

[197]. TCL1 has also been shown to have roles in early embryogenesis [198].  

1.5.1 THE TCL1 ONCOGENE 

The TCL1 gene was named ‘T-cell leukaemia/lymphoma 1’ due to its initial discovery, 

adjacent to a break point region on human chromosome 14 in a case of T-cell chronic 

lymphocytic leukaemia [199]. TCL1 transcript expression was detected in T-cell leukaemias in 

10 T-cell leukaemia cases [200]. This conclusion was later disputed by data suggesting that 

TCL1 transcript could not be detected in 20 analysed T-cell lymphoma samples, suggesting that 

B-cell material expressing TCL1 and may have been a contamination [201, 202]. It was 

concluded that TCL1 expression did not have as great a role as originally thought in T-cell 

leukaemias and was actually strongly expressed in many B-cell tumours [195]. Expression 

across various cancers of hematopoietic cells was accessed by immunohistochemistry to further 

show the prevalence of TCL1 expression in B-, but not T-, cell tumours, especially that of B-cell 

CLL and BL [203]. The negative correlation between B-cell differentiation state and TCL1 

expression was shown to be maintained upon tumourigenesis based on the B-cell subtype from 

which the tumour was derived [196]. The TCL1 gene was confirmed as a proto-oncogene in 

transgenic mice where Lck promoter-regulated TCL1 expression induced tumours of T-cell 

origin [204, 205].  

1.5.2 TCL1 REGULATION  

While activation of TCL1 is frequently attributed to translocations, it is also observed to 

be genotypically normal in many B-cell tumour types. Analysis reveals that hypomethylation of 

the TCL1 promoter region is frequent in TCL1-expressing chronic lymphocytic leukaemia and 

BL [208]. There is strong evidence that the chaperone protein, heat shock protein 70 (HSP70), 

plays a role in enabling TCL1 function. Inhibition of HSP70 causes TCL1 degradation and also 

decreases the activation of AKT through TCL1 [209]. Recent work has shown that TCL1 

overexpression is induced by the loss of miR-3676, a microRNA which strongly downregulates 
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TCL1 expression. miR-3676 is coded within the same region (17p13) as p53, and appears to be 

frequently co-deleted [210]. 

1.5.3 TCL1 AND AKT 

Co-immunoprecipitation and yeast two-hybrid screening demonstrated a direct 

interaction between TCL1 and AKT1 (protein kinase B). This interaction increased the 

phosphorylation potential of AKT1, inducing its promotion of cell survival and proliferation 

[211, 212]. The interaction was also shown to enable co-translocation to the nucleus [211]. The 

role of TCL1 in AKT activation was later demonstrated to enable transphosphorylation between 

AKT1 and AKT3 [213]. This evidence suggested that the primary role of TCL1 was the 

activation of AKT, promoting kinase activity and upregulation of mitogenic and anti-apoptotic 

pathways [211]. However, the loss of the tumour suppressor PTEN, a protein which reverses the 

PI3K-dependent effects of AKT, while causing enhanced proliferation and survival, did not lead 

to tumourigenesis in B cells [214]. This observation led to the conclusion that the effects of 

TCL1 on AKT alone were not sufficient to cause malignancy in B cells, however does not 

discount an involvement of the AKT pathway in CLL development.  

 

 

Figure 1.9. Crystal structures of the TCL1 protein. A. Murine TCL1 homodimer. The 

subunits form two beta-barrel structures. Adapted from the crystal structure defined by [206]. B. 

An alternative conformation seen of human TCL1 forming a single beta sheet across the 

homodimer’s two subunits. The left view is rotated from the top, 90° out of the page to give the 

right view. Adapted from the crystal structure defined in [207] crystal structures visualised in 

Jmol [173]. 
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1.5.4 TCL1 AND P300 

The effect of TCL1 was examined on NF-κB, a proto-oncogene also observed to induce 

a CLL-like cancer in murine B cells [215]. While no direct interaction was observed, the 

transcriptional activator p300 was shown to be an intermediary in the activation of NF-κB [216]. 

The p300-TCL1 interaction was also shown to inhibit the activity of activator protein 1 (AP-1). 

AP-1 has numerous roles in cellular biology, but in the context of CLL, appears to have the 

potential to induce apoptosis via MEKK-1 [216, 217]. Thus, inhibition of AP-1 by TCL1 

through p300 appears to reduce the expression of MEKK-1 and inhibit this apoptotic pathway in 

CLL [216]. TCL1 therefore appears to cause proliferation and survival through AKT and NF-κB 

while inhibiting apoptosis that may be induced by AP-1; all phenotypes that support cancer 

hallmarks [2]. These mechanisms are summarised in Figure 1.10. 

 

Figure 1.10. Potential Oncogenic mechanisms of TCL1 in CLL. TCL1 activates necrosis 

factor kappa-B (NF-κB) and inhibits activator protein 1 (AP1) through p300. This results in 

reduced apoptosis. The role of protein kinase B is unclear, and other mechanisms are emerging 

which implicate further mechanisms of TCL1 in cancer. [218-221]. 

 

1.5.5 THE Eµ-TCL1 MURINE MODEL 

To investigate the oncogenic potential of TCL1, specifically in B cells, the Eµ Ig 

enhancer was used to induce B-cell overexpression of the human TCL1 gene in mice [144], like 

with the Eµ-myc model. The Eµ-TCL1 mouse model is developmentally and phenotypically 
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normal, barring the observation of a higher TCL1 expression in B cells. By 4 months, the 

majority of these mice present with a marginally raised CD5+ population of B cells in the bone 

marrow, spleen and peritoneal cavity, but remain asymptomatic (Figure 1.11A). By 8 months, 

an expanded CD5+ B-cell population is observable and the disease manifests as lethal at around 

11 months of age with splenomegaly and leukaemia (Figure 1.11B) [144, 145]. The Eµ-TCL1 

mouse has been proposed as a model for studying the molecular basis of, primarily aggressive, 

CLL and for better understanding of the pathogenesis of the disease [144, 145]. Several clinical 

characteristics such as the relatively slow disease development, accumulation of a CD5+ 

population in typical CLL-localised compartments, capability of CLL-like T-cell dysfunction 

induction [222-224] and organ infiltration are apparent in the model [145]. Another 

characteristic of the Eµ-TCL1 mouse model which mimics that of CLL is the appearance of an 

aberrant epigenetic profile in B cells from as early as three months of age [225, 226], potentially 

attributable to TCL1’s interactions with DNA methyltransferases [221]. The potential relevance 

of the model to CLL is further supported by the observation of increased TCL1 expression in 

90% of CLL cases in addition to a correlation between TCL1 expression and poor prognosis 

[143, 227].  

The Eµ-TCL1 model has been used as a preclinical model, initially evaluating 

fludarabine demonstrating similar response to CLL [145]. To increase the throughput of such 

experiments, the use of adoptive transfer of an established leukaemic population is applied. This 

technique has been used to test the in vivo efficacy and tolerability of, for instance, deacetylase 

inhibitors [228], the mTOR inhibitor rapamycin [229] and a dual PI3K/mTOR inhibitor [230]. 

While other proposed transgenic mouse models of CLL exist, the Eµ-TCL1 mouse has 

the highest disease penetrance [231]. This has made it one of the most widely used animal 

models of CLL. In addition to the evaluation of Eµ-TCL1 tumour progression, a large number of 

studies have been conducted to evaluate the resulting phenotype arising from crossing Eµ-TCL1 

mice with other transgenic CLL mouse models and knockout models. Some noteworthy 

examples include crosses with; p53 knockout mice [232], B-cell activating factor (BAFF) 

transgenic mice [233], a proliferation-inducing ligand (APRIL) transgenic mice [234], ROR1 

transgenic mice [235] and the miR-29 transgenic mice [236], each resulting in an accelerated 

disease progression.  

As outlined in Section 1.3, the Eµ-TCL1 mouse and other CLL mouse models are, 

however, limited by several factors common to mouse models of cancer and may not provide a 

completely accurate recapitulation of CLL. 
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Figure 1.11. Characteristics of the Eµ-TCL1 mouse model of CLL. A. The appearance of 

CD5+ B cells in the spleen, blood marrow and peritoneum of the Eµ-TCL1 mouse model 

(adapted from [144]). B. Haematoxylin (purple)/eosin (pink) stained samples from pre-terminal 

and terminal Eµ-TCL1 mice demonstrating an expansion of lymphocytes in the spleen and blood 

in the terminal animals (adapted from [145]). 

 

1.6 ‘OMICS 

The term ‘Omics’ describes the systematic consideration of all the constituents among a 

class of related biological molecules. Genomics, epigenomics, transcriptomics, proteomics, 

metabolomics and lipidomics are all common examples of fields that aim to characterise the 

entirety of their given area in a comprehensive and unbiased way. These ‘omics’ approaches are 

based around the central biological dogma which describes the process from which DNA is 

transcribed to mRNA which is translated to proteins, which in turn affect almost every omic 

system [237-239]. In the context of cancer, omics looks to identify patterns in molecular 

aberrations that are characteristic of neoplasia. Understanding aberrations in this way is critical 

to identifying subtle differences between normal and cancerous cells, which can be exploited to 

target cancers or oncogenic mechanisms. 

Genomics focuses on understanding cancer at the genetic level, with the origins of 

cancer often being directly attributable to genomic aberrations. A single nucleotide change can 

induce altered translation, and can cause dramatic changes to the function of a protein, which 

may have a critical role in tumour suppression. For example, TP53, has more than 2500 known 
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mutations identified in cancers which affect its primary sequence [240]. Genomics also attempts 

to appreciate the effects of mutation on the enhancers and promoter regions as well as other non-

coding DNA. 

Transcriptomics describes the characterisation of expression of the total RNA molecules 

present in cells or tissue at a point in time [239]. In cancer, it is frequently used as a means of 

identifying aberrant gene expression, relative to that of typical tissues from which the cancer has 

arisen [241] or for comparison between different cancers. The chemical and physical nature of 

mRNA makes the specific identification and quantification of transcripts a rapid and 

reproducible process. Microarray technology, such as Affymetrix GeneChip microarray enables 

large scale analysis of many thousands of transcripts simultaneously [241]. Deep sequencing 

approaches, such as the shotgun sequencing ‘RNA-seq’, present the opportunity to gain high-

resolution total transcriptome characterisation [242]. 

Translation is a complex and tightly regulated process and numerous RNA binding 

factors, processing bodies, RNA secondary structures and ribosomal mechanisms dictate when 

and how much protein is translated from a transcript at a given time and condition [243]. 

Transcription has even greater complexity under the aberrant conditions of cancer [244]. 

Transcript expression is therefore rarely in direct correlation with protein expression, presenting 

a requirement for the direct measurement of relative protein expression [245]. To more 

accurately understand the phenotype of a cell, investigation of protein expression is critical. 

1.7 PROTEOMICS 

Proteomics is defined as the global approach to the characterisation of the protein 

complement expressed by cells, tissues or organisms under defined biological conditions [246, 

247]. Proteins are the biomolecules responsible for the execution of the functional information 

defined by a genome, contributing to essentially every biological process. Protein study therefore 

presents a greater opportunity to characterise the molecular basis of phenotype. While 

transcriptomic characterisations are becoming comprehensive and relatively cost-effective, the 

correlation between protein and mRNA expression is low for the vast majority of proteins [248, 

249]. 

The breadth of proteomics coverage lags behind genomics and transcriptomics 

characterisations due to the complex physicochemical properties of proteins [250]. Proteins 

present an enormous diversity due to many combinations of the 20 amino acids from which they 

are derived, amplified by many potential post-translation modifications. Where RNA and DNA 

detection can be facilitated through their logarithmic amplification by approaches such as the 

polymerase chain reaction, proteins lack such properties and their detection is determined by the 
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sensitivity of available proteomics methods and techniques [251]. The size of the proteome 

relative to that of the genome also presents a challenge, with potentially more than 5 times as 

many proteins than coding genes [252]. 

Approaches in proteomics are dominated by those employing mass spectrometry (MS), 

however some methods such as antibody microarrays have been described [253]. MS enables 

precise mass measurements of a protein or peptide to be determined allowing for confident 

conclusion of the proteins chemical identity [254, 255]. MS proteomics can be subdivided into 

two main approaches; top-down, which attempts to characterise intact proteins and bottom-up, 

which first employs digestions to fragment proteins into peptides. The application of bottom-up 

proteomics to complex samples has been described as ‘shotgun proteomics’ [256]. 

One of the most fundamental challenges in proteomics is the separation of complex 

protein mixtures for characterisation by MS. A consensus between the several available forms of 

MS characterisations is the need for low analyte complexity to enable sensitive and accurate 

analysis. 

1.7.1 2D-GEL ELECTROPHORESIS 

During its inception, proteomics was based upon two-dimensional (2D) polyamide gel 

electrophoresis, the earliest form of protein separation for proteomics. Using the size and 

isoelectric point of proteins as a means of protein differentiation allowed the 2D visualisation of 

the proteome; identifying protein ‘spots’ [257]. The presence or absence of spots in the same 

coordinates on two comparable 2D gel separations could therefore indicate a biological 

difference between samples. The combination of 2D gel electrophoresis with mass spectrometry 

(MS) provided a means of identifying the differentially expressed protein. 2D gel electrophoresis 

has demonstrated utility, for example, in classifying leukaemias [258] and cell surface marker 

identification across a range of cancers [259]. The method, however, is limited by sensitivity and 

low throughput, given that each spot is unknown until manually analysed [260].  

1.7.2 LIQUID CHROMATOGRAPHY 

Liquid chromatography (LC), much like that of 2D gels, takes advantage of the 

physicochemical differences that exist between proteins or peptides to provide a means of pre-

separation prior to analysis by MS. LC is typically based on the use of columns within which 

different molecules have different levels of interaction, described as a retention. LC consists of 

two major components; a mobile phase, the continuously flowing solvent transporting the 

analytes, and the stationary phase, the material with which the analytes can interact. 

The most widely used form of LC in proteomics, reverse-phase (RP) LC, enables the 

separation of peptides on the basis of hydrophobicity [261, 262]. RP LC uses a stationary phase 



53 

 

of hydrophobic resin of long hydrophobic alkane molecules, typically 8 or 18 carbon atoms in 

length, termed C8 and C18, respectively. Peptides are introduced to the stationary phase while 

dissolved in a hydrophilic mobile phase, which causes a partitioning of the peptides into the 

stationary phase, resulting in retention. Charged species such as salts do not partition, resulting 

in rapid elution – giving RP LC a ‘desalting’ capability. The hydrophobicity of the mobile phase 

is then steadily raised, described as a ‘gradient’, which allows peptides to partition back into the 

mobile phase. The retention time of each peptide is therefore proportional to the hydrophobicity 

[262]. 

1.7.3 SHOTGUN PROTEOMICS 

Shotgun proteomics approaches, favouring the digestion of proteins into peptides prior 

to analysis has several advantages over intact protein characterisation. Trypsin, a digestive 

enzyme, is by far the most popular means of proteolysis, cleaving at the C-terminus of lysine and 

arginine residues [263]. Prior to proteolysis, proteins are reduced and unbridged cysteines are 

alkylated, permanently linearising the protein molecules. Proteolysis reduces the dynamic range 

of several physicochemical properties of the analytes, such as charge, mass and hydrophobicity, 

dramatically simplifying LC and MS. Trypsin proteolysis disrupts protein-protein interactions 

and reduces the approximate mass of analytes to between around 500 and 5000 Da. Another 

effect of trypsinisation is the distribution of the positively charged lysine and arginine residues 

to, most frequently, one instance per peptide. Although proteolysis results in an increase in 

sample complexity and identification redundancy, the resulting low-charged and low mass 

peptides are highly favourable for separation using LC and characterisation by MS, far 

outweighing these disadvantages [264]. 

The advent of modern MS proteomics was facilitated by the development of 

electrospray ionisation (ESI). ESI involves the application of an electrical current between the 

solvent and the aperture through which ions can enter the MS [265]. As evaporation occurs, the 

accumulated charge increases until the repulsive forces exceed that of the surface tension, 

resulting in Coulombic fission. Coulombic fission describes the cascading explosion of charged 

droplets which provides a means by which peptides are converted into a gaseous phase [266]. 

Once in the gaseous phase, and positively charged, it is then possible for the molecule to be 

detected by MS. 

ESI allowed the interfacing of liquid chromatography (LC) with MS, termed LC-MS 

[265]. Coupling LC and MS enabled an increase in throughput as well as improved peptide 

separation and identification [267]. A recent advancement to ESI has been in the addition of 5% 
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dimethyl sulphoxide (DMSO) to the mobile phase, which substantially improves ESI-facilitated 

peptide detection [268]. 

The combination of prefractionation and subsequent MS-coupled fractionation, termed 

2D-LC MS, allowed the extensive fractionation and characterisation of peptides, in a pipeline 

termed ‘multidimensional protein identification for shotgun proteomics (MudPIT)’ [256]. 

1.7.4 MASS SPECTROMETRY 

MS characterisation of peptides can be conducted in several ways, depending on the MS 

instrumentation and means of ionisation. In all cases, the peptide molecules must be converted to 

the gaseous phase with a charge, focused with lenses, captured with a mass analyser, such as; 

quadrupole, ion trap, time of flight or Orbitrap, and the mass to charge ratio (m/z) determined 

with a detector. 

For the Orbitrap Elite (Figure 1.12) and ESI, for example, the gaseous peptides pass 

through an aperture and are initially focused with a source lens and filtered to remove neutral 

species a beam blocker. Charged ions are guided using electrostatic charges and are focused by 

further lenses to be delivered to collision cells or mass analysers. Captured ions are also filtered 

based on the m/z by a quadrupole mass filter [269].  

The Orbitrap Elite has two mass analysers; a linear ion trap (LIT) analyser and a Fourier 

Transform MS (FTMS) analyser. These offer complementarity in their means of detection, with 

the LIT giving a low resolution but high sensitivity and the FTMS with an ultra-high resolution 

and a relatively low sensitivity [269]. For the determination of peptide masses with a full 

spectrum scan, a resolution of up to 240,000 can be achieved at 400 m/z [269, 270]. The LIT 

captures and analyses ions using an electromagnetic field that allows linear oscillation and 

highly sensitive detection by photomultiplier. FTMS captures ions in an orbital oscillation, 

hence the name Orbitrap, which uses the resonant frequency of an orbital ion to determine its 

m/z with a high degree of accuracy [271]. 

 

Figure 1.12. Schematic detailing the components of the Orbitrap Elite. Gaseous phase ions 

from the ESI source move from left to right. Adapted from [269]. 
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1.7.5 DATA-DEPENDENT TANDEM MASS SPECTROMETRY 

Determination of a peptide’s mass is not sufficient to confidently identify its sequence. 

Using mass filtering, it is possible to isolate a mass window around a peptide, termed a 

precursor, and subject the precursor to fragmentation in isolation [264]. This process, termed 

MS/MS, MS2 or tandem MS, generates product ions which are representative of fragmentation 

around the peptide bonds. These fragments can subsequently be used to attempt to confidently 

identify the peptide, in a process known as peptide mass fingerprinting. 

Data dependent acquisition (DDA) is the process by which the full spectrum of ionised 

peptide masses are first determined with MS and are then subjected to MS/MS in order of 

intensity, starting with the most abundant. This process can also be described as ‘top N’, where 

N is the number of peptides characterised before another full spectrum scan is performed and the 

process is repeated. Common practise is to use dynamic exclusion which ignores the peptides 

which were characterised in the previous scans, to focus on the lower abundant and newly 

eluting peptides from the LC [264]. 

Two common forms of peptide fragmentation include collision-induced dissociation 

(CID) and high-energy collisional dissociation (HCD). CID causes peptide fragmentation with 

the use of helium gas, which, with an atomic mass of just 4 Daltons, has relatively low transfer 

of energy upon collision. This results in typically large fragments of the peptide being generated 

[272]. HCD uses nitrogen gas capable of transferring far more energy with a molecular mass of 

28 Da, producing far smaller peptide fragments [273]. Both gasses are additionally inert and 

non-reactive. 

Both CID and HCD induce peptide fission at the C-N bond of the O=C-N-H peptide 

bond. For each fragmentation event, two fragments are produced; the N-terminus fragment is 

termed a ‘b’ ion and the C-terminus fragment is termed a ‘y’ ion. Under different fragmentation 

methods, fission can occur between the α-carbon of an amino acid and the carbon of the peptide 

bond generating ‘a’ and ‘x’ ions or between the nitrogen of the peptide bond and the α-carbon 

amino acid to give ‘c’ and ‘z’ ions [274]. 

1.7.6 TARGET-DECOY PEPTIDE SEARCHING 

Shotgun proteomics experiments typically produce many thousands of MS/MS spectra. 

In order to identify the peptides to which the precursor masses and respective fragment masses 

relate, a process termed target-decoy searching is used. This first analyses the potential matches 

based on theoretical spectra. Theoretical spectra are derived from a proteome by the in silico 

digestion of all the protein sequences in a proteome using a rule that relates to the means of 

proteolysis used for the shotgun proteomics experiment. For trypsin, this generates peptides 



56 

 

based upon an anticipated cleavage at the C-terminus of arginine and lysine residues. Another 

consideration with trypsin is the proline rule which prevents proteolysis when located on the C-

terminus side of arginine and lysine. Theoretical precursor masses and fragment masses can then 

be determined for the resulting theoretical peptides calculated on the known masses of the 

constituent atoms of the peptide and fragments. The result of the ‘target’ search conducted 

between the theoretical spectra and MS/MS-derived spectra is termed a peptide spectrum match 

(PSM) [256, 264]. 

Decoy searching was introduced due to the high frequency of false discovery using 

target searching for PSMs. With both the spectra and theoretical spectra numbering many 

thousands, the odds of matches occurring by chance is very high. To adjust for this false 

discovery, a second search is used which reverses the sequences of the target proteome and 

conducts a second search. This ‘decoy’ search defines the probabilistic score of those spectra 

matching by chance. Comparison of the probabilistic scores of target and decoy matches 

presents an overlap which allows the unlikely PSMs to be disregarded. The threshold at which 

PSMs are disregarded is frequently set allowing for a 1% overlap, termed a false discovery rate 

(FDR) of 1%. This can also be expressed as a ‘q-value’, and for a <1% FDR equates to q<0.01. 

Several approaches exist which implement the process of target decoy searching. The most 

commonly adopted being Andromeda, SEQUEST and MASCOT. [274-277]. Although the 

specific methods used by these engines vary, they follow the basic target-decoy process 

described, assigning each PSM with a false discovery rate. Again, several methods of estimating 

the FDR of PSMs exist. A frequently employed, powerful method is that of semi-supervised 

machine learning, using an algorithm termed ‘Percolator’. Percolator considerers approximately 

20+ features of the target and decoy PSMs providing a far more accurate and efficient means of 

separating the true matches in the data [278]. 

1.7.7 PROTEIN INFERENCE 

The result of a shotgun proteomics experiment is often the identification of several 

thousand peptides. After proteolysis, however, all information regarding the protein of origin of a 

peptide is lost. Strategies must therefore be implemented to infer a peptides origin on the basis of 

protein sequences. Many peptides simply map uniquely to a single protein, however, this process 

is frequently complicated by protein isoforms where several or all of the identified peptides match 

to two distinct protein sequences. Disregarding these data as redundant, especially for proteomes 

of higher eukaryotic organisms, where redundancy is high, impacts the quantity of usable data. A 

process of grouping proteins on the basis of a high degree of similarity is therefore frequently 

employed [279]. Protein grouping attempts to use as much data as possible to explain as many of 

the peptides with the smallest number of protein groups [280]. This process results in a list of 
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proteins where only those proteins with a high probability of having been present in an analysed 

sample are presented based on all the information available from both the identified peptides and 

the aligned proteome. Protein grouping is of particular importance when attempting to quantify 

proteins, as peptide quantitations are only of use if they are proteotypic to a protein group or unique 

protein. Redundant peptides can have ambiguous origins and their quantitations are often 

disregarded. 

1.8 QUANTITATIVE PROTEOMICS 

The qualitative analysis of a particular protein present in a single sample is a useful and 

interpretable result. However, the appreciation of such a result within the context of a complex 

biological matrix is challenging. From the perspective of cancer drug target and biomarker 

discovery, quantitative proteomics approaches allow the characterisation of disease samples 

quantitatively, relative to healthy, reference, control proteomes. These controls form a point of 

comparison from which biological and, potentially, clinical hypotheses can be drawn. To address 

this requirement, techniques have emerged which allow quantitative comparisons between two 

or more samples within large scale proteomics experiments. These approaches can be subdivided 

into label-based and label-free methods. Label-free approaches compare between data derived 

from separate 2D-LC MS/MS experiments, whereas label-based approaches focus on combining 

quantitation into a single 2D-LC MS/MS workflow [281]. 

1.8.1 LABEL-FREE QUANTITATION 

The earliest and most basic form of quantitative proteomics, compared the relative sizes 

of protein spots on 2D gels. However, as described in Section 1.7.1 this is a labour-intensive 

process. Shotgun proteomics dramatically increased this throughput, with the quantitative 

analyses comparing protein abundances using a method termed peptide, or spectral, counting. 

Spectral counting works on the principle that there is a correlation between the number of PSMs 

matching to a protein and the protein’s abundance [282]. Another label-free approach uses the 

relative intensities determined for comparable precursors, on the basis of mass and retention time 

[283]. Label-free approaches are regarded as the least accurate means of MS quantitation, 

predominantly due to inter-experimental variation [284]. 

1.8.2 LABEL-BASED QUANTITATION 

The two major types of label-based proteomics are those which covalently modify 

peptides as part of the proteomics workflow and those which use metabolic labelling to 

incorporate stable isotopes into the protein during its synthesis in a cell. Peptide labelling can 

further be subdivided into approaches which perform relative quantitation using the intensity of 

precursors with MS1 and methods which use isobaric tags to quantify sample-specific 
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abundance with MS2. The primary aim of labelling strategies is to enable simultaneous sample 

processing eliminating the variability seen when chromatography is performed iteratively. The 

incorporation of sample-specific stable isotopes allows samples to be pooled and while 

maintaining a means of deriving relative quantitation using MS. 

Stable isotope labelling by amino acids in cell culture (SILAC) allows cell lines to be 

grown under identical conditions, varying only in supplementation with amino acids 

incorporating stable isotopes, typically arginine and lysine. Upon MS analysis, the relative 

spectral intensities of stable isotope labelled and unlabelled peptides allow direct quantitation 

between the up to three cell cultures [285-287]. This principle has also been extended to whole 

organisms, such as mice [288]. Metabolic labelling is costly and limiting however, especially in 

the context of primary human samples. 

Several methods attempt to overcome the challenges of metabolic labelling by 

preforming the stable isotope labelling at the point of sample processing. 18O incorporation, for 

instance can be induced during proteolysis using H2
18O in the solvent [289, 290]. The first use of 

tag-based covalent peptide labelling was that of isotope-coded affinity tags (ICAT) [291]. ICAT 

was able to covalently modify cysteine sulphydryl groups with either 1H or 2H-containing tags 

inducing a mass-shift of 8 Da. These tags were, however, limited by the scarcity of cysteine 

residues in the proteome and the propensity of deuterium to alter chromatographic retention 

[292]. Several other isotopic mass tags capable of facilitating MS1 quantitation have since 

emerged including; isotope-coded protein labels (ICPL) [293] and dimethyl labelling [294]. 

Quantitation with MS1 using SILAC, 18O labelling, ICPL and dimethyl labelling is limited to a 

comparison of no more than three samples per experiment. This is predominantly due to the 

potential overlap resulting from natural isotopic variability. 

1.8.3 ISOBARIC LABELLING 

Isotope-coded tags emerged which used stable-isotope labelling in a manner which 

ensured each sample-specific label imposed the same physicochemical changes upon peptides. 

These tags, which used a reporter group and a balancing group to maintain identical mass, were 

termed isobaric labels. By maintaining identical peptide masses and properties with different 

labels, it is possible to maintain sample complexity, maintain chromatographic retention and 

allow the co-fragmentation of chemically identical peptides as a single precursor from several 

samples. This enabled the generation of a single MS/MS spectrum providing peptide 

identification and relative quantitation. The two predominant types of isobaric labels are isobaric 

tags for relative and absolute quantitation (iTRAQ) and tandem mass tags (TMT). Both iTRAQ 

and TMT contain an amine reactive group capable of modifying primary amines at either lysine 
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residues or the N-terminus of peptides. Upon reaction, the peptide becomes covalent modified 

with a reporter group and a balancing group described in Figure 1.13. These tags avoided the 

use of deuterium, differentially incorporating 15N and 13C into the mass tag and balancing group. 

TMT were the first isobaric tags described, which allowed for the relative quantification 

of two samples [295]. Using MS/MS, peptides could be quantified with two peaks at 126 and 

127 Da, termed reporter ions. The first variant of iTRAQ offered the simultaneous quantitation 

of 4 samples, termed a 4-plex, with quantitation occurring with MS2 based on the relative 

intensities of reporter ions at 114, 115, 116 and 117 Da [296]. The location of these 

measurements is termed the reporter region. A later variant introduced 4 further labels; 113, 118, 

119 and 121 Da, expanding iTRAQ capabilities to an 8-plex [297]. A 6-plex version of TMT 

was introduced which was recently developed to incorporate a further four labels using the 

reporter region 126 to 131 Da [298, 299]. These additional labels utilised the differential masses 

of the neutron in 15N compared with a neutron in 13C to create mass differences of less than 10 

mDa detectable by high resolution instruments. This also proposed an expansion to a 10-plex 

system which was later described [300]. 

 

Figure 1.13. The chemical basis of iTRAQ and TMT peptide labelling. The left hand box 

describes the chemical groups responsible for each property of the iTRAQ and TMT reagents, 

specifically detailing the masses of the iTRAQ 8-plex labels. The right hand boxes describe the 

process of reductive amination, or amide coupling, in which peptides are covalently modified by 

iTRAQ or TMT labelling groups. This reaction also occurs at lysine residues, and is frequently 

neutralised by the use of hydroxylamine (H2NOH). 
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1.8.4 ISOBARIC LABELLING LIMITATIONS  

Under optimum conditions, TMT and iTRAQ workflows enable the effective qualitative 

and relative quantitative analysis of many thousands of proteolytic peptides derived from complex 

biological extracts. However, relative quantification may be impeded by isotopic impurities, 

labelling inefficiencies, intrinsic detection noise, and the typical limitations of bottom-up 

proteomics approaches [250]. Arguably, the greatest limitation to accurate relative quantitation 

when using multiplex isobaric labelling workflows lies in reporter ion ratio compression due to 

precursor ion co-isolation (Figure 1.14) [301, 302].  

In principle, bottom-up proteomics attempts to describe the entire spectrum of proteins 

comprising highly complex biospecimens by proteolytic peptide characterisation. As a result of 

this complexity, peptides with similar mass-to-charge ratios and chromatographic retention times 

frequently co-elute and tandem mass spectrometry often lacks the fidelity required to discretely 

isolate each precursor ion. Co-isolation and co-fragmentation are, therefore, extremely common, 

causing distorted ratios due to the undifferentiable summation of the co-isolated precursors’ 

reporter ions. 

As only a minority percentage of proteins are modulated in many biological conditions, 

there is a high probability of differentially expressed peptides co-isolating with non-differentially 

expressed peptides; resulting in a compression of the detected relative abundance. When deriving 

protein expression ratios, equal averaging of all PSM reporter ion ratios further exacerbates 

compression. 

A number of advanced MS-based approaches have been proposed to eliminate or 

minimise the effects of co-isolation. Approaches include the multi-notch MS3 fragmentation, gas-

phase purification, traveling wave ion mobility separation, extensive chromatographic separation 

and optimised data dependent acquisition settings [303-308]. Alternatively, post-data acquisition 

approaches to reducing the co-isolation effect from mainstream bottom-up proteomic workflows 

have been proposed. These are based upon either weighting or filtering their spectral outputs. One 

such approach attempts to filter out spectral data with less than 30% isolation interference [309]. 

Calculation of the signal-to-interference gives an improved indication of compression rates caused 

by co-eluting peptides [310]. The use of interference-defined cut-off values for differentially 

expressed peptide assignment also holds promise in improving quantitation accuracy [311]. 

Weighting correction has been applied to the intensity of reporter ion signals, given the reduced 

quantitation accuracy at low intensities [312]. 
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Figure 1.14. Ratio compression induced by peptide co-isolation. Co-isolation of additional 

peptide precursors (left) within the MS isolation window results in a compression to the detected 

reporter ion ratio at the MS/MS level.  

1.9 PLASMA PROTEOMICS 

Minimally invasive tests of blood fluids such as plasma and serum hold great potential 

for the early diagnosis of cancers, as well as many other disease states. As little as a millilitre of 

blood can provide insight into the many hundreds of homeostatic mechanisms operating inside 

the body [313]. Few blood-based protein biomarkers exist, however, which successfully allow 

the diagnosis of cancers [314, 315]. Cancer biomarkers offer the most promise when the protein 

can be traced to the cancer itself, offering a specificity to disease detection, and potentially 

correlating with progression. Such proteins, however often have a very low abundance in the 

blood, relative to the typical blood proteins [316]. Biomarkers can also be proteins or molecules 

that are upregulated in response to the presence of a cancer, such as an immune response and 

inflammation. 

Albumin, along with around 20 other proteins, such as Ig and macroglobulins, make up 

over 99% of the protein content of plasma and serum [317]. The remaining ~1% is therefore 

difficult, to isolate and analyse. Shotgun proteomics approaches, due the use of DDA 
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characterisation which survey the most abundant peptides (top N), are severely impeded by this 

dynamic range of concentrations [317]. Plasma proteomics is often favourable over serum 

proteomics as the use of an anticoagulant can reduce the loss of proteins during clotting and can 

expedite sample processing [313].  

To reduce this dynamic range and to enable efficient bottom-up characterisation of the 

lower abundant plasma/serum proteins, an approached termed ‘immunodepletion’ is frequently 

adopted. Immunodepletion uses antibodies specific to the most abundant proteins in 

serum/plasma to selectively remove those proteins which cause interference with shotgun 

proteomics [318]. While the principle is sound, this methodology suffers from limitations such 

as the removal of many proteins non-specifically and having a high degree of variability [319]. 

Another approach to reducing the dynamic range of proteins involves the use of size 

exclusion chromatography (SEC) [320]. SEC allows for the prefractionation of whole serum or 

plasma thereby isolating fractions dominated by certain proteins, which excludes these proteins 

from the other fractions. Under harsh denaturing, but non-reducing, conditions, SEC of whole 

plasma or serum produces 4 fractions; a high molecular weight fraction, an Ig-dominant fraction, 

an albumin-dominant fraction and a low molecular weight fraction. The isolation of these 

fractions, termed sub-proteome enrichment by SEC (SuPrE-SEC) enabled the identification of 

almost 2000 proteins in serum. This method was later developed to enable quantitative analysis 

with isobaric tags demonstrating reproducibility between technical replicates [321]. 

1.10 B-CELL CANCER PROTEOMICS 

Many studies have taken a global approach to characterising the molecular nature of B-

cell malignancies. Genomics [322, 323], microRNA expression [324-326] and transcriptomics 

[327, 328] have all been interrogated in an attempt to better understand the nature of B-cell 

cancers. Proteomic characterisations of B-cell cancers are less common due to relatively lower 

throughput and results yield [329, 330].  

A large number of studies have utilised 2D gel electrophoresis in the proteomic analysis 

of B-cell malignancies [331-340]. Protein microarray have also been employed [341]. B-cell 

cancer proteomics experiments have predominantly focused on the analysis of material derived 

from cell lines [329, 337, 339, 340, 342-349], although a number of studies have considered 

primary material [333-335, 347, 350]. 

The specific focus of studies into B-cell malignancies has varied greatly with 

characterisation focusing on the effects of therapeutics on B-cell cancers [347, 351], the 

elucidation of biological mechanisms [342] and the identification of proteome relating to more 
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or less aggressive versions of a cancer type [333, 334]. Sub-proteomes of B-cell cancers, 

investigating proteomic expression amongst different cellular compartments has also been 

studied [338], with the most interrogated compartment being that of the cell surface proteome, 

with the most potential for therapeutic targeting with immunotherapy [346, 348, 350]. 

Consideration has also been given to the posttranslational modification of proteins in B-cell 

cancers using phosphoproteomics [343, 344] and glycoproteomics [346]. 

One of the most noteworthy of these studies was the MS characterisation of cell lines 

derived from B-cell lymphomas using SILAC [345]. This revealed over 7,500 proteins and 55 

differential markers for each lymphoma subtype.  

1.10.1 CLL PROTEOMICS 

11 published studies have attempted to use proteomic methodologies to characterise 

CLL to date. The most recent and comprehensive published study attempted to elucidate 

biological signatures differentiating 9 M-CLL from 9 U-CLL samples using three iTRAQ 8-

plexes. This study fully quantitated 2024 proteins, and while not identifying any discrete 

markers of IGHV mutation status, the data suggested a role for differential adhesion and 

migration pathways between U- and M-CLL [352]. Another noteworthy study characterised 12 

CLL samples with isobaric-tagged shotgun proteomics, quantifying 655 proteins. A number of 

proteins were suggested as markers of poor prognosis, including TCL1 [353]. One study which 

compared healthy B cells to CLL with iTRAQ quantitation identified 536 proteins [354]. 

Proteomics was conducted to characterise the effects of B-cell response to BCR stimulation in 

primary CLL, identifying upregulated protein responses [355].  

In addition to iTRAQ proteomics, other methods have been employed to characterise 

CLL, such as phosphoproteomics, characterising signalling induced by chemokines [356], 

membrane proteomics [357], ICAT characterisation of membrane and cytosolic proteins [358] 

and label-free 2D-LC MS/MS [359]. 2D gel electrophoresis was also conducted in several 

studies characterising CLL [360-362], of which one also focused on the characterisation of 

membrane proteins [363]. 
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1.11 AIMS AND OBJECTIVES 

The overall aim of this investigations was to implement the latest advances in 

quantitative proteomics to characterise, as comprehensively as possible, a selection of B-cell 

malignancies. While several published studies to date have described proteomic 

characterisations of B-cell cancers, none have successfully reached the full potential of 

quantitative proteomics in primary samples.  

Eµ-myc and Eµ-TCL1 represent two well-studied murine models of oncogene-driven B-

cell tumourigenesis; in many aspects, providing good representations of the human cancers BL 

and CLL, respectively. These two models provide the opportunity to study the full 

developmental course of two differing B-cell cancer phenotypes. While BL and the Eμ-myc 

model present with solid, rapidly proliferating tumours, predominantly at a young age, CLL and 

the Eµ-TCL1 model are characterised by a far slower expansion of B cells in several 

compartments in addition to displaying a blood-borne leukaemia which presents at an older age. 

Modelling these cancers in mice using Eμ-driven oncogenes, while partially artificial, allows 

predictable development under spontaneous conditions in the space of months rather than 

decades. It additionally allows for the characterisation of the effects of tumourigenesis on the 

model over its time course, through the signatures identifiable in the plasma, potentially 

revealing insight into how a whole organism progressively responds to pre-terminal and terminal 

tumours. The contrast between these two models poses interesting questions as to the similarities 

and differences in protein expression responsible for each cancer phenotype. Any commonalities 

between these contrasting cancers may have implications ranging further than just CLL and BL, 

especially in the context of other B-cell cancers. Findings such as targets of small molecular 

inhibitors and cell surface targets of immunotherapy promise additional, clinical potential. To 

date, no published studies have used primary samples, murine or otherwise, to quantitatively 

characterise these B-cell cancers or their respective plasma proteomes using MS proteomics. 

Evaluation of primary human CLL samples also holds substantial potential in providing 

greater insight into the nature of the disease. Given the leukaemic population which emerges in 

CLL, the acquisition of purified cancer cell samples is achievable from a non-invasive blood 

sample without many of the contaminating factors and confounding issues which are present in 

solid tumour samples. Despite many years of research into CLL, prognostics and diagnostics 

have failed to offer consistently effective clinical benefits to patients. This leaves a clear 

requirement for a greater understanding of CLL and the heterogeneous nature of the disease. 

Characterisation of protein expression of CLL holds potential to identify novel immunotherapy 

targets, inhibition targets and subtype specific differences with wide ranging clinical 

implications. To date, the published studies performed using whole cell shotgun proteomics 
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comparing CLL, to healthy B cells, have achieved the characterisation of less than 1000 

proteins. Other characterisations, not incorporating healthy B-cell controls have quantified 

around 2000 proteins in CLL. 

Quantitative proteomics has the potential to provide quantitations for thousands of 

proteins simultaneously and non-biasedly for a set of up to 10 biological samples. Such near-

comprehensive characterisations of protein, rather than mRNA, expression has far greater 

applicability to understanding the phenotype of cells. Proteins are also the molecules which are 

targeted by the majority of therapeutics, given their functional roles in promoting the hallmarks 

of cancer. Isobaric tags have emerged as one of the most widely adopted approaches in 

quantitative proteomics, however still remain limited by the effects of precursor co-isolation. 

This is an area which has several solutions, but few which are readily implementable to the 

majority of proteomics workflows. To most effectively utilise quantitative MS data, it was 

considered it might be possible to predict and non-biasedly select the most reliable peptide 

quantitations. 

This investigation therefore aimed to: 

 Evaluate and validate the success of preliminary quantitative proteomics data 

which characterised tumours of the Eµ-myc model  

o To concluded the validity of the isobaric tag proteomics quantitations 

derived from a 2D-LC MS/MS analysis 

 Develop an approach to reducing the effects of co-isolation induced ratio 

compression on isobaric-labelled quantitations 

 Use 2D LC-MS/MS proteomics to quantitatively characterise the tumour B-cell 

proteomes in the Eµ-myc and Eµ-TCL1 models relative to that of WT and pre-

cancerous Eµ-myc and Eµ-TCL1 B cells 

o To improve upon current understanding of the B-cell cancers in these 

models 

o To identify cell surface protein expression suggestive of immunotherapy 

targets 

o To identify intracellular pathways and proteins which might offer 

targets of small molecular inhibitors 

 Use SuPrE-SEC in combination with 2D LC-MS/MS proteomics to 

quantitatively characterise the blood plasma proteomes of the Eµ-myc and Eµ-

TCL1 model at pre-cancerous, early cancerous and terminally cancerous stages, 

relative to WT plasma proteomes 
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o To identify proteins emerging in the plasma as a result of each tumour 

type 

o To understand the mechanisms by which these proteins appear in the 

plasma 

o To identify a protein signature in plasma prior to terminal tumour 

development  

 Use 2D LC-MS/MS proteomics to quantitatively characterise proteomes of 

CLL, relative to healthy donor B cells 

o To improve upon the current understanding of CLL biology 

o To identify novel CLL cell surface markers and immunotherapy targets 

o To identify intracellular pathways and proteins which might offer 

targets of small molecular inhibitors 

o To identify subtype-specific differences that might explain the 

heterogeneity of CLL 
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2.0 MATERIALS AND METHODS 

2.1 MATERIALS 

Tris(hydroxymethyl)aminomethane (TRIS), sodium dodecyl sulphate (SDS), MgCl2, 

disodium ethylenediaminetetraacetic acid (Na2EDTA), NH4Cl, NaHCO3, agarose, NaCl, sodium 

deoxycholate (DOC), sodium dodecyl sulphate (SDS), guanidine hydrochloride, glycine, HPLC 

and LC-MS grade acetonitrile (ACN) and formic acid (FA) and 100 µm cell sieves were 

purchased from Fisher Scientific.  

Tween20 (tween), sodium heparin, asparagine, 2-mercaptoethanol, sodium azide, 

propidium iodide (PI), sodium citrate, octylphenoxypolyethoxyethanol (IgePalCA630), triton x-

100, protease inhibitors, ponceau S, acetic acid, carboxyfluorescein succinimidyl ester (CFSE), 

methyl methanethiosulfonate (MMTS), tris(2-carboxyethyl)phosphine (TCEP), 

triethylammonium bicarbonate (TEAB), DMSO, hydroxylamine and ammonium hydroxide 

(NH4OH) were purchased from Sigma. 



68 

 

Dulbecco's modified Eagle's medium (DMEM), Roswell Park Memorial Institute 

medium (RPMI), glutamine, pyruvate, penicillin and streptomycin were purchased from Life 

Technologies. 

Coulter Isoton III dilutent and zapoglobin red blood cell (RBC) lytic reagent were 

purchased from Beckman Coulter. Mouse B-cell isolation kits and magnetic cell sorting columns 

were purchased from Miltenyi Biotech, Germany. E. coli JM109 competent cells, proteinase K, 

2 x Green GoTaq buffer were purchased from Promega. 23 gauge needles, 1 ml syringes and 

FACS flow were purchased from BD Biosciences. 

Foetal bovine serum (FBS) was purchased from Lonza, Lidocaine cream from Teva, 100 

µl capillary tubes from Blaubrand, erythrolyse from Serotec, lyphoprep medium from Axis-

Shield, interleukin 5 recombinant protein from Peprotech, CoolCell freezing regulator from 

Biocision, gel red from Biotium, O’Gene Ruler (0.1 µg/µl) 1 kbp ladder from Fermentas 

3x red loading buffer and 1.25 M (30x) dithiothreitol (DTT) were purchased from Cell 

Signaling Technology. Precision Plus Protein All Blue Standard 10-250 kDa and AnykD gels 

were purchased from BioRad. Immobilon 0.45 µm pore polyvinylidene fluoride (PVDF) 

membrane was purchased from Millipore and non-fat milk from Marvel. 

TMT 10-plex isobaric labelling reagents and 2 kDa Mw cut-off (MWCO) Slide-A-Lyzer 

dialysis cassettes were purchased from Thermo Scientific. Proteomics grade trypsin was 

purchased from Roche. iTRAQ 8-plex isobaric labelling reagents were purchased from 

ABSciex. 

2.2 ANIMALS 

Mice were bred and maintained in-house. They were housed with 12 hour light-dark 

cycles, with carefully monitored ambient temperature and humidity and were fed standard chow 

and water ad libitum. All procedures were carried out in accordance with home office licences 

PPL30/2450 and 30/2970 and PIL30/9925. Eµ-myc [C57BL/6J-TgN(IghMyc)22Bri/J] 

hemizygous and Eµ-TCL1 [C57BL/6J-TgN(IghTCL1)22Bri/J] hemizygous mice were used. Eµ-

myc mice and Eµ-TCL1 mice were used as models of BL and CLL, respectively. These mice 

were observed daily for signs of lymphoid tumours, hunching, general signs of discomfort or 

shortness of breath indicative of tumour development. Eµ-TCL1 mice were screened monthly for 

blood count and percentage of B220+ CD5+ B cells in the blood.  Once the percentage of 

leukaemic B220+ CD5+ in the peripheral blood reached 50% of total white blood cells, mice 

were palpated weekly to detect splenomegaly. Eµ-TCL1 mice were considered terminal when 

the blood percentage reached 80% leukaemic cells or when splenomegaly progressed to 3 cm in 
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length. Mice were then euthanised by exsanguination by terminal bleeding under isoflurane 

anaesthesia. Littermates and transgenic controls were housed and samples collected under 

identical conditions.  

For the purposes of deriving B cells which could be compared between malignant, 

premalignant and healthy WT conditions, spleens were collected. Spleens were removed and 

placed in magnetic assisted cell sorting (MACS) buffer (PBS, 2 mM Na2EDTA, 0.5% v/v FBS) 

on ice to provide biological material for analysis and cell culture.  

2.3 ISOLATION OF HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS 

Ethical approval for the use of human samples was granted under REC reference 

228/02/t. Peripheral blood mononuclear cells (PBMCs) were derived from healthy donors and 

CLL patients by Southampton Blood Services or Bournemouth Tissue Bank, respectively. 

PBMCs were isolated from whole blood or blood cones by density gradient centrifugation at 600 

g for 20 minutes using lyphoprep medium and were washed with 40 ml of PBS. PBMCs were 

frozen in 107 cells/ml in FBS containing 10% DMSO (Section 2.11.1).  

2.4 GENOTYPING 

Ear punches were used as a means of identifying individual animals. Each ear punch 

was digested in 100 µl of DNA isolation buffer (50 mM TRIS (pH 8.9), 12.5 mM MgCl2, 0.5% 

v/v Tween20, 0.5 µg/µl Proteinase K) overnight at 55°C. Samples were then heated to 95°C for 5 

minutes and centrifuged at 15,000 g for 5 minutes. The supernatant contained the genetic 

material for PCR. The Eµ-myc and Eµ-TCL1 transgene were detected with PCR and agarose gel 

electrophoresis to detect the PCR product (Section 2.15 and Section 2.16). For Eµ-myc, the 

primers (annealing temperature; 55°C): 5’- CAG CTG GCG TAA TAG CGA AGA G -3’ and 

5’- CTG TGA CTG GTG AGT ACT CAA CC -3’ generated a product of ~900 bp for the Eµ-

myc transgene. For Eµ-TCL1, the primers (annealing temperature; 58°C): 5’- GCC GAG TGC 

CCG ACA CTC -3’ and 5’- CAT CTG GCA GCA GCT CGA -3’ generated a product of ~250 

bp for DNA positive for the Eµ-TCL1 transgene. 

2.5 SCREENING FOR Eµ-TCL1 TUMOUR PROGRESSION 

Mice were warmed at 37°C for 10 minutes to increase vasodilation. Lidocaine cream 

was applied to the tail tip to produce local anaesthesia. Mice were restrained and less than 1 mm 

of tail tip was removed by scalpel blade. Petroleum jelly was applied to tail bases and massaged 

towards the tip. Blood samples were collected from tail tips with 100 µl capillary tubes 

containing 5 µl of heparin solution (50 µg/ml sodium heparin in PBS) and was placed on ice. 
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30-100 µl of heparinised blood was sampled monthly from Eµ-TCL1 mice by tail 

bleeding. 10 µl of blood was immunostained with anti-CD5 FITC and anti-B220 PercP. Cells 

were washed as described in Section 2.14.1, treated with 1 ml of erythrolyse RBC lysis buffer 

and washed again. Flow cytometry analysis was used to determine the percentage of CD5+ 

B220+ lymphocytes in the peripheral blood which was considered as the leukaemia population. 

Lymphocyte count was determined by measuring the cellularity (Section 2.7) of blood diluted 1 

in 5 with PBS. 

2.6 SPLENOCYTE SUSPENSION 

Spleens from Eµ-myc, Eµ-TCL1 or wildtype littermates were washed with ~30 ml of 

MACS buffer and passed through 100 µm cell sieves, using 1 ml syringe plungers into 10 ml of 

MACS buffer. Splenocyte suspensions were centrifuged at 300 g for 5 minutes at 4°C, 

supernatant aspirated and the cell pellet resuspended in 40 ml of MACS buffer. Suspensions 

were passed through a second sieve and a 100 µl aliquot taken for cellularity determination 

(Section 2.7). Suspensions were then centrifuged and resuspended in the appropriate medium 

and volume as required.  

2.7 CELLULARITY 

Cellularities of splenocytes, PBMCs and cell lines were determined with a Coulter 

Industrial D Cell Counter (Beckman Coulter, UK) following manufacturer’s instructions. 20 µl 

of cell suspensions were diluted in 10 ml of Coulter Isoton III dilutent with zapoglobin RBC 

lytic reagent if required. 

2.8 B-CELL ISOLATION 

For the isolation of B cells for both mouse and human samples, negative isolation was 

conducted using antibody cocktails which enabled magnetic depletion of non-B cells. Eluting 

without physical labelling of the B cells prevented any antibody binding to cell surface proteins 

in B cells which may cause downstream signalling altering protein expression. B cells were 

analysed by flow cytometry immunostaining with CD19 and CD3 to determine CD19+CD3- B-

cell purity. Viability of cells was assessed by propidium iodide staining (Section 2.14.2). 

2.8.1 MOUSE SPLENIC B-CELL ISOLATION 

Mouse B cells were isolated from whole splenocytes using the mouse B-cell isolation kit 

(Miltenyi Biotech) according to the manufacturer’s instructions. This method isolated B cells by 

negative selection, using biotinylated antibodies targeted against all non-B cells; CD4, CD43 and 

Ter119. Streptavidin magnetic beads bind these antibodies. Using a MACS column coupled to a 
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strong magnet, all labelled non-B cells from a splenocyte suspension are retained, eluting 

enriched B cells. For proteomics experiments, mouse B-cell fractions were centrifuged at 300 g 

for 10 minutes at 4°C and fully aspirated. B-cell pellets were washed once in 20 ml of 1x red 

blood cell lysis buffer (155 mM  NH4CL, 10 mM NaHCO3, 0.1 mM Na2EDTA (pH 7.4)) before 

further washing in PBS as described in Section 2.10.  

For tumours, where the cellularity was far higher than a normal spleen due to the 

expansion of the tumour cells, the use of MACS cocktails proportional to the cell number of 

non-B cells would have been inefficient. Optimisation demonstrated that in the presence of 

tumour cells, 100 µl of antibody cocktail was sufficient to deplete non-tumour cells from a 

single tumour-bearing spleen. Based on this, 50 µl of antibody cocktail would have been 

sufficient, as 1/5 of a tumour-bearing spleen was efficiently isolated with just 10 µl. However, 

given the variable cellularity within tumour-bearing spleens, an excess of 100 µl was concluded 

to be sufficient to consistently ensure high sample purity.  

2.8.2 HUMAN PERIPHERAL BLOOD B-CELL ISOLATION 

Human B cells were isolated from PBMCs by negative B-cell enrichment using the 

EasySep human B-cell enrichment kit without CD43 depletion. CD43 depletion was avoided, as 

CLL has been shown to have CD43 expression in some cases. As with MACS, all non-B cells 

were labelled with antibodies specific to CD2, CD3, CD14, CD16 and CD56 and glycophorin A, 

which were subsequently bound by magnetic beads. Rather than a column, cells were placed 

within a large magnet in a 5 ml tube. When cells were poured off, non-B cells remained in the 

magnet. The non-magnetically retained cell fraction containing enriched B cells was washed 

with PBS as described in Section 2.10.  

2.9 CELL CULTURE  

Cell lines derived from Eµ-myc mouse tumours were grown in ‘Eµ-myc media’ (DMEM 

supplemented with 2 mM glutamine, 1 mM pyruvate, 45 units/ml penicillin, 45 µl/ml 

streptomycin, 200 µM  asparagine, 50 µM 2-mercaptoethanol and 15% FBS. Initially, 

splenocytes in a single cell suspension from a tumour-bearing Eµ-myc animal were cultured at a 

density of 5x107 cells/ml in Eµ-myc media supplemented with 15% FBS. After approximately 2 

passages, or when the cell culture demonstrated steady proliferation and minimal cell death, cells 

were adapted to Eµ-myc media supplemented with 10% FBS. Cell cultures were maintained for 

10-15 passages, with cells typically being harvested for analysis between 5 and 10 passages. Eµ-

TCL1 splenocyte suspensions were cultured in Eµ-myc media at a density of 5x106 cells/ml. 

These were cultured at 37°C in 10% CO2 in six well plates. Cells were cultured for 48 hours 
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prior to any treatment to acclimatise cells. Cells were cultured for a maximum of 7 days due to 

Eµ-TCL1 splenocytes not readily proliferating in culture. 

HeLa and MCF7 cells were cultured in RPMI and DMEM, respectively, supplemented 

with 10% FBS at 37°C, 5% CO2. Cultures for proteomics were passaged and harvested by 

scraping at 70% confluence to avoid protein digestion that would result from trypsin-based 

passage. E. coli JM109 competent cells were cultured in lysogeny broth at 37°C for 24 hours 

with continuous agitation.  

2.10 CELL WASHING FOR MS SAMPLES 

Cells were washed at least 3 times in 40 ml of sterile PBS, centrifuging at 300 g for 5 

minutes and fully aspirating and resuspending with each wash. Mouse cells were washed with 

ice cold PBS and centrifuged at 4°C, human samples were maintained at room temperature and 

E. coli cells were centrifuged at 5000 g. Washing in PBS was repeated to remove contaminants 

that may be bound to the cells, predominantly FBS proteins, as well as cell debris. 

2.11 CELL FREEZING 

2.11.1 FREEZING CELLS TO MAINTAIN VIABILITY 

To maintain cell viability during freezing, 107 cells/ml were resuspended in FBS with 

10% v/v DMSO and transferred to a cryovial. Cells were frozen using a CoolCell freezing 

regulator to lower the temperature at -1°C/minute to minimise ice crystal formation. These were 

placed in -80°C for one week and transferred to liquid nitrogen for long term storage. 

2.11.2 SNAP FREEZING FOR CELL LYSATES 

For the purposes of cell lysate generation, cell pellets were rapidly frozen in liquid 

nitrogen. Cells were suspended in PBS and transferred to a 1-2 ml tube and centrifuged at 2000 g 

for 5 minutes. Supernatants were fully discarded and tubes were snap frozen in liquid nitrogen.  

2.12 TERMINAL BLEEDING 

Blood collection by terminal vena cava bleeding (TVCB), adapted from [364] was used 

to avoid issues with the standard terminal cardiac bleeding, including; red blood cell lysis, 

cardiac displacement by thymomas and other tumours and potential contamination from the 

puncturing of several layers of tissue to reach the heart. Mice were anaesthetised with isoflurane 

with O2 until unconscious. The isoflurane supply mask was secured to a dissection board. 

Complete anaesthesia was assessed by applying strong pressure to all feet and observing 

reactions. Once unresponsive, the mice were pinned by their limbs and sprayed liberally with 

70% ethanol to ensure the sterility and removal of contaminants. A midline incision was used 
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from the base of the peritoneum to the base of the sternum, and laterally across each skin flap at 

around half way up the peritoneum to avoid major blood vessels. Organs were moved to one 

side, while avoiding unwanted haemorrhage, revealing the inferior vena cava located to the left 

of the vertebral column, behind the liver. Ethanol was again sprayed liberally. 50 µg/ml sodium 

heparin in PBS was drawn with a 23 gauge needle attached to a 1 ml syringe and all the air 

expelled, so that heparin filled the dead space. Needles were placed by bevel-down venepuncture 

of the inferior vena cava just below the junctions of the hepatic and renal veins. Blood samples 

were drawn slowly so as not to cause vessel collapse, taking around 60-90 seconds to allow 

refilling. Needles were withdrawn from the vein and the mouse second-killed by neck 

dislocation. Blood was ejected gently from the syringe (after needle detachment) and placed on 

ice. 

2.13 PLASMA ISOLATION 

Heparinised blood samples were stored on ice prior to centrifugation at 2000 g for 15 

minutes at 4°C. Plasma supernatant was taken and subjected to a further centrifugation at 2000 g 

for 5 minutes at 4°C and repeated if red blood cell contamination remained. Samples were 

rejected if red blood cell lysis was visible by eye. Plasma was stored in liquid nitrogen. 

2.14 FLOW CYTOMETRY 

2.14.1 IMMUNOPHENOTYPING 

2 x 105 cells were resuspended in 100 µl with MACS buffer and either the 

manufacturer’s recommended concentration, or 10 µg/ml, of antibody (Table 2.1) were added 

and incubated for 30 minutes in the dark. Cells were washed with 3 ml of FACS washing buffer 

(PBS, 1% w/v BSA and 10 mM sodium azide), centrifuged at 180 g, the supernatant discarded 

and cells resuspended in 100 µl of FACS flow for flow cytometry analysis by a FACScan or 

FACScalibur (BD). Unstained cells were used to adjust the voltage of the forward scatter (FSC) 

and side scatter (SSC) and to adjust the voltages of the FL1, FL2 or FL3 laser intensities, so that 

unstained events fell below 101 on a logarithmic plot. Cells stained with each antibody were 

individually used for compensation to ensure that each fluorescent dye was detected discretely in 

its intended FL channel. Typically 10,000 or 50,000 events were captured. The results were 

analysed by Cyflogic (CyFlo Ltd, Finland). 

2.14.2 CELL VIABILITY ANALYSIS (PI EXCLUSION) 

2 x 105 cells were suspended in 100 µl with MACS buffer, PI added to a final 

concentration of 3.6 µg/ml and incubated at room temperature for 1 minute. PI is excluded from 

live cells by the integrity of the plasma membrane and the polar charge of the PI molecule. PI 
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penetrates dead cells with no membrane integrity, binding DNA with high affinity. Binding 

DNA results in an approximately 100-fold increase in fluorescent intensity detectable in 

FL2/FL3. 

2.14.3 CELL CYCLE ANALYSIS (HYPOTONIC PI) 

5 x 105 cells were suspended in 0.5 ml of hypotonic PI solution (50 µg/ml PI, 0.1% w/v 

sodium citrate, 0.1% w/v triton x-100), vigorously vortexed and incubated at 4°C for 15 minutes. 

This simultaneously causes cell lysis while leaving the nuclei intact and allowing the PI to stain 

the DNA. The resulting cell nuclei were analysed by flow cytometry (FL2 on linear scale) by a 

FACScan at the lowest flow rate. 

2.14.4 CELL DIVISION ANALYSIS (CFSE STAINING) 

Cells were resuspended in PBS at a concentration of 107 per ml. Carboxyfluorescein 

succinimidyl ester (CFSE) was added at a final concentration of 5 µM by rapid mixing to give an 

equal distribution of the label across all cells. After a 15 minute incubation at room temperature, 

an equal volume of FBS was used to neutralise the CFSE. After treatment, cells were then 

exposed to various assay conditions, after which cell fluorescence was measured using flow 

cytometry with CFSE detectable by FL1. Cells undergoing division distribute half of their 

stained contents into each daughter cell and therefore demonstrate a 50% reduction in 

fluorescence. 

2.15 PCR 

1 µl of supernatant containing isolated DNA was mixed with 1 µl (10 pM) of each 

primer, (diluted in TE (10 mM TRIS pH 8, 1 mM EDTA), 10 µl of 2 x Green GoTaq buffer and 

7 µl of ultrapure water. The PCR was performed using a C1000 thermal cycler (Biorad) as 

follows: 1. Initial denaturing; 95°C for 5 minutes, 2. Denaturing; 95°C for 1 minute, 3. 

Annealing; primer-specific annealing temperature for 1 minute, 4. Elongation; 74°C for 2 

minutes, Steps 2-4 repeated 30 times then 5. 70°C for 10 minutes and; 6. 4°C indefinitely.  

2.16 AGAROSE ELECTROPHORESIS 

DNA samples were subjected to electrophoresis through 1% w/v agarose gels made in 

40 mM tris, 20 mM acetic acid, 1 mM EDTA (TAE) buffer containing 0.005% v/v gel red at 150 

volts for 30 minutes, alongside 7 µl O’Gene Ruler (0.1 µg/µl) 1 kbp ladder, and known positive 

and negative control samples for the transgene being evaluated. 
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2.17 SDS-PAGE AND WESTERN BLOTTING 

2.17.1 CELL LYSIS 

Cells pellets were resuspended in 30µl of radioimmunoprecipitation assay (RIPA) cell 

lysis buffer (0.15 M NaCl, 1% v/v octylphenoxypolyethoxyethanol (IgePalCA630), 0.5% w/v 

sodium deoxycholate (DOC), 0.1% w/v sodium dodecyl sulfate (SDS), 0.05 M TRIS (pH 8) and 

1% v/v protease inhibitor (Sigma)) per million cells and incubated on ice for thirty minutes. 

Lysates were triturated 20 times with a 23 gauge needle and centrifuged at 16,000 g for 5 

minutes at 4°C and the supernatant collected. The centrifugation step was repeated if the sample 

remained cloudy. Lysates were stored at -20°C or -80°C long term. 

2.17.2 PROTEIN QUANTIFICATION 

The protein concentration of cell lysates was determined by bicinchoninic acid assay 

(BCA) protein quantification kit (Thermo Scientific) according to the manufacturer’s 

instructions. The kit was used to estimate the protein concentration of samples relative to a 

standard curve of bovine serum albumin (BSA). The working reagent reacted with protein to 

induce an absorbance change with proportionality to the protein present in a sample. This colour 

change was measured at 562 nm with a Varioskan plate reader (Thermo Scientific). The BSA 

standard curve covered a concentration range of 0 – 2000 µg/ml and lysates were diluted 1 in 10 

with cell lysis buffer to consistently fall within this range. Standards were diluted in cell lysis 

buffer to maintain consistency with cell lysates.  

20 µl of each standard and each 1 in 10 diluted lysate were loaded into a 96-well plate in 

triplicate with 200 µl of the working reagent, agitated for 5 minutes and incubated at 37°C for 30 

minutes to ensure the reaction was complete. The equation of optical density relative to protein 

concentration of the BSA standard was inverted, making protein concentration the subject, and 

applied to the unknown lysates to determine the protein concentration from optical density at 

562 nm.  

2.17.3 SDS-PAGE 

Lysates were diluted based upon their concentration to derive a consistent protein 

content and volume. Lysates were mixed with 3 x red loading buffer, 30 x DTT (final 

concentration 41.7 mM), and heated at 95°C for 5 minutes. Denatured lysates and 10 µl of 

Precision Plus Protein All Blue Standard 10-250 kDa were resolved with AnykD gels at 200 

volts for 40 minutes in SDS-PAGE running buffer (25 mM TRIS, 192 mM glycine, 0.1% w/v 

SDS).  
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2.17.4 WESTERN TRANSFER 

Proteins were transferred by ‘wet transfer’ to Immobilon 0.45 µm pore PVDF membrane 

at 100 volts for 90 minutes in transfer buffer (SDS-PAGE running buffer with 20% v/v 

methanol). The PVDF membrane was first pre-activated for 30 seconds in 100% methanol, and 

then placed between two pieces of filter paper and two sponges arranged as follows: Positive 

electrode, sponge, filter paper, membrane, gel, filter paper, sponge, negative electrode. 

Ponceau staining was used to demonstrate successful protein transference and assisted in 

cutting membranes if required. After transfer, membranes were washed in methanol, agitated in 

0.1% (w/v) ponceau S in 5% (v/v) acetic acid for 5 minutes, agitated in distilled water for 5 

minutes and imaged. Ponceau stain was removed by washing in PBS with 0.05% (v/v) tween 

(PBST) for 5 minutes. 

Membranes were then placed in 5% (w/v) non-fat milk in PBST for 1 hour to neutralise 

the hydrophobicity of the PVDF and prevent further, unwanted protein association. 

2.17.5 IMMUNODETECTION BY WESTERN BLOTTING 

Western blotting (WB) was conducted with primary antibodies diluted in blocking 

buffer (5% (w/v) non-fat milk in PBST (PBS with 0.05% (v/v) tween). Table 2.2 identifies the 

manufacturer, specific dilutions, incubation conditions used and the animal in which the 

antibody was derived. Membranes were washed 4 times for 5 minutes with PBST. 

Secondary antibodies used were based on the animal in which the primary antibody was 

derived; described in Table 2.2. All were diluted in 2.5% (w/v) non-fat milk in PBS with 0.05% 

(v/v) Tween and 0.01% (w/v) SDS. Secondary antibodies were conjugated to one of two 

fluorescent dyes either fluorescing at 680 nm (red) or 800 nm (green). Membranes were washed 

as before but were also washed twice briefly with PBS due to a low level of fluorescence 

possessed by the tween detergent. 

Membranes were imaged using an Odyssey Imager (Licor) which scans for the two 

specific wavelengths of light corresponding to the emission spectra at 680 nm (red) or 800 nm 

(green). These have no overlapping emission spectra so give highly discrete signal detection of 

protein bands when using secondary antibodies conjugated to the two dyes. Scans were set to 50 

nm to give a high resolution for the best quality image for relative quantification. Scanning 

intensities were set to 11.0 for 800 nm and 8.0 for 680 nm. All other settings used were as 

default.  

Mouse anti-GAPDH antibody was used as a loading control to ensure that the levels of 

protein loaded for each sample was consistent. 
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2.17.6 WB EXPRESSION ANALYSIS 

Relative quantification of band fluorescence intensity was derived using Image Studio 

2.0 software (Licor). Each protein band intensity was divided by the band intensity of GAPDH 

for each sample to gain a normalised value for protein expression.  

Normalised values for relative protein expression in each lysate were dividing by the 

normalised value for WT B-cell lysate. This provided a ratio of expression relative to the WT B 

cells. 

A value describing the concordance between the WB-derived relative expressions with 

MS-derived relative expression was determined. This was determined by dividing the log2 (WB-

derived ratio) by the respective log2 (MS-derived ratio).  

2.18 PLASMA SUB-PROTEOME ENRICHMENT 

2.18.1 SIZE EXCLUSION CHROMATOGRAPHY 

120 µl of plasma was diluted with 380 µl of 6 M guanidine hydrochloride in 10% 

methanol and centrifuged at 16,000 g for 5 minutes to remove any insoluble precipitates or 

particles which could block the filter. The supernatant was loaded onto a 500 µl loading loop and 

resolved on the basis of protein size by three KW804 size exclusion chromatography (SEC) 

columns (300 mm length x 8 mm inner diameter (ID) x 7 µm particle size) (Shodex, Japan) with 

6 M guanidine hydrochloride in 10% methanol at 1 ml/min flow rate with a LC-20AD high 

performance liquid chromatography (HPLC) system (Shimadzu) maintained at 30°C. Eluting 

protein was detected over 50 minutes at a wavelength of 280 nm, which reproducibly identified 

six peaks; the first three peaks eluting between 22 and 31 minutes were treated as a high 

molecular weight (Mw) sub-proteome, the peak at 31-34, as the Ig-dominant sub-proteome, 34-

42, the albumin sub-proteome and the material eluting after 42 minutes as the low Mw sub-

proteome. 

2.18.2 DIALYSIS AND PROTEIN PURIFICATION 

Each low Mw sub-proteome, solubilised in 6 M guanidine, was dialysed using 12 ml 2 

kDa Mw cut-off (MWCO) Slide-A-Lyzer dialysis cassettes with five 5 L 18.2 MΩ/cm water 

exchanges at 8 hour intervals. Soluble protein was extracted from cassettes and additionally each 

cassette rinsed with 3 ml of 0.1 M TEAB to extract any precipitated protein. Protein was 

lyophilised using a vacuum concentrator at room temperature (Thermo Scientific). The resulting 

protein was solubilised in 0.5 M TEAB with 0.05% SDS and processed and analysed by 2D-LC 

MS/MS as described in Section 2.19. Due to the low protein yield of the low Mw sub-proteome, 
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only 30 µg of protein material (rather than the typical 100 µg) was digested and labelled for MS 

analysis. 

2.19 QUANTITATIVE MASS SPECTROMETRY PROTEOMICS 

2.19.1 LYSATE PREPARATION 

Snap frozen cell pellets were initially lysed on ice by trituration with a 23 gauge needle 

in 10 µl per million cells of 0.5 M TEAB with 0.05% SDS. If the lysate was too viscous to 

triturate, a further 50% buffer was added. Disrupted cells were then sonicated by an Ultrasonic 

Processor XL (Qsonica) at 20% amplitude for 2 x 30 seconds on ice, with a 30 second interval. 

Trituration allowed a greater degree of control over the initial cell lysis and ensured a good 

degree of disruption to cells prior to sonication providing maximum and consistent protein 

extraction. Lysates were cleared at 16,000 g for 10 minutes at 4°C and transferred to a fresh 

tube. Clearing was repeated if the lysate remained cloudy.  

2.19.2 PEPTIDE PREPARATION 

Lysate protein concentration was determined by a Direct Detect spectrometer 

(Millipore) analysing 2 µl of lysate for amide bond absorbance between wavenumbers 1702 and 

1602 cm-1 or by BCA assay. 100 µg of lysate for each samples was reduced with 50 mM TCEP 

for 60 minutes at 60°C and were alkylated with 200 mM MMTS for 15 minutes at room 

temperature. Denatured protein material was digested overnight at room temperature in the dark, 

using 30:1 proteomics grade trypsin. 

2.19.3 ISOBARIC TAG PEPTIDE LABELLING 

Peptides were incubated with either iTRAQ 8-plex or TMT 10-plex isobaric tags 

according to the manufacturer’s instructions. Reactions were allowed to proceed for 2 hours at 

room temperature, and were quenched with 16 µl of 5% v/v hydroxylamine for 15 minutes at 

room temperature. Hydroxylamine (H2N-OH) contains a primary amine which readily reacts 

with the mass tag peptide reacting group preventing any labelling of the incorrect peptides once 

pooled. Reactions were individually lyophilised at room temperature in a vacuum concentrator 

(Thermo Scientific). Lyophilised, labelled peptides were serially reconstituted in a single volume 

of 100 µl of 2% v/v ACN, 0.1% v/v NH4OH.  

2.19.4 PEPTIDE PRE-FRACTIONATION 

Peptides were first resolved using high-pH (0.1% v/v NH4OH) RP C8 chromatography 

(150 mm x 3 mm ID x 3.5 µm particle, XBridge, Waters) at 300 µl/min with a LC-20AD HPLC 

system (Shimadzu) maintained at 30°C, using the mobile phases (MP); A – 99.9% H2O, 0.1% 

NH4OH, B – 99.9% ACN, 0.1% NH4OH. The typical two hour gradient was as follows; 0 
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minutes; 2% B, 10 minutes; 2% B, 75 minutes; 30% B, 105 minutes; 85% B, 120 minutes; 2% 

B. Prior to peptide injection, the column was first run through a full gradient without sample to 

remove all contaminating material and equilibrated with 2% MP B for 30 minutes. Fractions 

were collected in a peak-dependent manner and were lyophilised. High pH chromatography was 

used to orthogonally complement the low pH separation subsequently conducted for each 

peptide fraction. 

2.19.5 PEPTIDE FRACTION RESOLUTION AND CHARACTERISATION BY LC-MS 

Lyophilized peptide fractions were individually reconstituted in 30 μl of ‘loading’ MP 

(2% ACN, 0.1% FA) and 10 μl loaded by a Dionex Ultimate 3000 (Thermo Scientific) at 20 

μl/minute for 4 minutes onto a C18 PepMap100 trapping cartridge (5 mm × 500 µm ID, 5 μm 

particle) (Thermo Scientific) in ‘loading’ MP. After peptide loading, the trapping cartridge was 

brought in line with an Acclaim PepMap 100 column (50 cm × 75 μm ID, 3 μm particle) at a 

flow rate of 300 nl/minute with 2% MP B (94.9% ACN, 5% DMSO, 0.1% FA) in MP A (2% 

ACN, 5% DMSO, 0.1% FA). Several reverse phase elution gradient lengths were used, 

proportionally extrapolated from the 100 minute gradient: 0 minutes; 2% B, 5 minutes; 2% B, 50 

minutes; 22% B, 75 minutes; 45% B, 85 minutes; 85% B, 90 minutes; 85% B, 95 minutes; 2% 

B.  

Peptide elution was directly coupled to electrospray ionisation at 2.4 kV using a PicoTip 

nESI emitter (New Objective), and were characterised with an Orbitrap Elite Velos Pro mass 

spectrometer (Thermo Scientific). MS characterisation of eluting peptides was conducted 

between 350 and 1900 m/z at 120,000 mass resolution. The top 12 +2 and +3 precursor ions per 

MS scan (minimum intensity 1000) were characterised by tandem MS with high-energy 

collisional dissociation (HCD) (30,000 mass resolution, 1.2 Da isolation window, 40 keV 

normalised collision energy) and collision induced dissociation (CID) (ion trap MS, 2 Da 

isolation window, 35 keV) with a dynamic exclusion (±5 ppm) of 60 seconds. A maximum of 

200 ms ion injection time was allowed. Additionally the DMSO ion at 401.922718 was used as a 

MS lockmass and, where applicable, the TMT-H+ ion at 230.170422 was used as an internal 

MS/MS lockmass. 

2.19.6 MS DATA PROCESSING 

Target-decoy searching of raw spectra data was performed with Proteome Discoverer 

version 1.4.1.14 software (Thermo Scientific). HCD and CID spectra were first extracted from 

raw files due to requiring different search parameters. Spectra were subject to a two stage search, 

both using SequestHT, with Percolator used to estimate FDR with a threshold of q ≤ 0.01. The 
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first allowed only a single missed cleavage, minimum peptide length of 7, precursor mass 

tolerance of 5 ppm, no variable modifications and searched against the human/mouse UniProt 

Swissprot database (downloaded 01/15). The second search used only spectra with q > 0.01 from 

the first search, allowed 2 missed cleavages, minimum peptide length of 6, searched against the 

human/mouse UniProt trembl database (downloaded 01/15), precursor mass tolerance of 10 ppm 

and a maximum of 2 variable (1 equal) modifications of; TMT or iTRAQ (Y), oxidation (M), 

deamidation (N,Q) and phospho (S,T,Y). In both cases, fragment ion mass tolerances of 0.02 Da 

for the HCD spectra and 0.5 Da for the CID spectra and fixed modifications of Methythio (C), 

TMT or iTRAQ (K and N-terminus) were used. Reporter ion intensities were extracted from 

non-redundant PSMs with a tolerance of 20 ppm.  

2.19.7 QUANTITATIVE ANALYSIS OF MS DATA 

Peptide spectrum match data was exported from Proteome Discoverer with the 

associated features: isolation interferences, ion injection times, posterior error probability (PEP) 

scores, charge states, precursor intensities and the reporter ion intensity values. Data was 

submitted to the Statistical Processing for Isobaric Quantitation Evaluation (SPIQuE) (detailed 

in Section 2.20 and Chapter 4) and processed with the default ‘-10:-9:-5:-5:+3’ weighting, with 

median normalisation and T-test. For the purposes of comparing differential protein expression 

between two experiments for example, in the case of the CLL characterisation, ratios for each 

CLL sample to each of the three healthy ‘bridging’ controls were generated and of these, to 

reduce the effect of noise and to conserve only the most consistent observations, only the least 

deviated of the three log2 (ratios) were used for further analyses. For the mouse data, ratios were 

generated describing each tumour pool relative to the two WT controls. 

The resulting log2 (ratios) were then used to define the ‘regulation score’ (RS), a value 

that described both the magnitude and consistency of the considered ratios. Where previous 

analyses have relied on filtering by the average and the standard deviation of technical or 

biological replicates [321, 365] this has a tendency to exclude proteins with a high standard 

deviation resulting from high fold change values. Averaging also allows single outlier log2 

(ratios) to be over-represented giving a false impression of regulation. To normalise against this, 

RS was defined as that of the average of the log2 (ratios) divided by 1 + the standard deviation. A 

high absolute RS was therefore indicative of the proteins with the highest average and lowest 

standard deviation, highlighting the most consistently up or downregulated proteins. For 

unregulated or inconsistently regulated proteins the RS tended towards 0.  

The thresholds at which a RS could be considered as indicative of differential protein 

expression were extrapolated from the principles described by Levin, 2011 [366] based on the 
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number of available sample comparisons and total variation. Variation was considered for each 

protein by the incorporation of SD as a denominator into the RS.  

For the analysis of mouse samples where 4 biological/technical replicates were 

available, a threshold of ±0.5 was used. Using this threshold, the lowest detected fold change 

was 1.44 with an average variation of just 5.4% 

For the analysis of human samples, 13 biological replicates were analysed and an 

approach was taken considering only the minimum of ratios relative to the three controls. This 

provided a higher statistical power allowing for a lower threshold of ±0.25. The lowest fold 

change concluded as differentially expressed was 1.21 with a standard deviation (SD) of 0.08. 

2.19.8 STATISTICAL ANALYSIS OF MS DATA 

Statistically significant differential expression was derived from the log2 (ratios) of 

biological and technical replicates by a one-sample (when describing regulation versus the 

ratios’ denominator) or two sample, FDR-corrected t-test. For multiple test correction, p-values 

were ordered from smallest to largest and each FDR-corrected p-value determined as the 

minimum value of either; the uncorrected p-value multiplied by the ratio of the total number of 

tests and the p-value’s ranking in the list; or the corrected p-value immediately after this value. 

In all cases, a p-value of <0.05 was considered significant. In combination with the RS, statistics 

gave a complementary measure of differential protein expression, and in all cases differential 

proteins expression was defined as those proteins for a given comparison reaching an RS 

threshold as well as a p-value of <0.05. Ratio statistics derived by SPIQuE were not used for the 

determination of these statistics. 

2.20 SPIQUE DEVELOPMENT 

2.20.1 E. COLI SPIKE-IN DESIGN 

Peptides from E. coli, HeLa and MCF7 cells were generated by methods described in 

Section 2.19. Peptides were assigned to 0.8mg of each TMT 10-plex label as follows: 126- 100 

µg HeLa, 127N-50 µg HeLa, 0.25 µg E. coli, 127C-20 µg HeLa, 1.25 µg E. coli, 128N- 2 µg 

HeLa, 5 µg E. coli, 128C- 25 µg E. coli, 129N-1.4 µg MCF7, 12.5 µg E. coli, 129C-14 µg 

MCF7, 2.5 µg E. coli, 130N-35 µg MCF7, 0.5 µg E. coli, 130N-70 µg MCF7, 131-no peptide 

material added (buffer only). The labelled peptides were subjected to a 2D-LC MS/MS 

workflow. After fractionation peptides were combined into 13 pools for LC MS/MS analysis 

with HCD and CID fragmentation. 
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2.20.2 SPIKE-IN DATA ANALYSIS 

Peptide spectrum match data was generated and exported from Proteome Discoverer 

with all associated features including the reporter ion intensity values and precursor intensity 

(not displayed by default). To minimize the overlap of peptides common to both species, a 

minimum peptide length of 7 was used. PEP was calculated by Proteome Discoverer, defined as 

the probability of an incorrect PSM assignment. Other measures of peptide match probability 

will likely provide an equivalency when used in place of the PEP score. Isolation interference, 

also known as precursor isolation purity, was calculated by Proteome Discoverer by the formula: 

𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = (1 − (
∑ 𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 𝑝𝑒𝑎𝑘𝑠

∑ 𝐴𝑙𝑙 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑝𝑒𝑎𝑘𝑠
))  𝑥 100 

2.20.3 DEFINING THE CO-ISOLATION SCORE AND MULTI-FEATURE WEIGHTING MODEL 

E. coli PSM data was first filtered to exclude any PSM reporter ion quantitations that 

were not able to derive a real number score from a ratio of 128C to 127N or 130N. Three ‘co-

isolation scores’ were then calculated for each PSM, giving the following theoretical, 

uncompressed ratios: 

𝑙𝑜𝑔2 (
(128C +  129N)

(126 +  127N +  130N +  130C)
)  ≅  𝑙𝑜𝑔2(50: 1)  ≅  5.64 

𝑙𝑜𝑔2 (
128C

(126 +  127N +  129C +  130N, C)
) ≅  𝑙𝑜𝑔2(5.6: 1)  ≅  2.49 

𝑙𝑜𝑔2 (
128C

(126 +  127N, + 129N, + 130N, C)
) ≅  𝑙𝑜𝑔2(1.5: 1)  ≅  0.58  

For each of the PSM features, comparable scores were calculated using percentile 

ranking (PERCENTRANK function in Microsoft Excel 2013). Scores for features correlating 

negatively with co-isolation scores, including; isolation interference, ion injection time and PEP 

were calculated using 1-percent rank. Using these percentile ranked scores, correlations of single 

or multiple features with the co-isolation scores could then be comparatively evaluated using 

linear regression. The machine learning validation of this approach (courtesy of Yawwani 

Gunawardana) is detailed in Appendix A1. 

2.20.4 ONLINE IMPLEMENTATION OF AN R SCRIPT APPLYING THE MULTI-FEATURE 

WEIGHTING MODEL 

A script was written in R statistical programming language (courtesy of Cory White) to 

enable the automated implementation of weighting to ratios and statistical calculation. This 

script was designed to take an input file in .CSV format containing reporter ion intensities and 

features for each PSM and use an experimental design file specifying the nature of the input file. 
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Lines of code were then used to specify the type of analysis and which ratios to be determined. 

The output file was generated based on this user input. 

This script was incorporated into an online interface (courtesy of Oliver Bills) hosted at 

spiquetool.com. This involved the upload of a .CSV file and the generation of the experimental 

design file on the basis of the uploaded .CSV headers and user specified weighting factors. The 

user could then specify the ratios, statistical test and normalisation parameters, all through a 

simplistic user interface with dropdown menus, recommended defaults and instructions. These 

options then generated the lines of code creating custom script automatically which was then 

submitted by the tool to R for processing. The output was then provided as a compressed file for 

download. The full user guide for SPIQuE is presented in Appendix A2. 

2.20.5 STATISTICAL TESTING OF HELA:MCF7 AND PRIDE DATA WITH SPIQUE  

Data was exported from Proteome Discoverer with the quantitation setting adjusted to 

show raw quant values, no minimum threshold, no missing value replacement, apply quan value 

corrections, maximum fold change of 100 (but allowing usage above this), and co-isolation 

exclusion off (set to 100). Ungrouped peptides (PSMs) were filtered by quantitation usage. Field 

chooser was then used to select the following columns: protein group accession, reporter ion raw 

values, PEP, isolation interference, ion injection time, intensity and charge. The .xlsx file was 

converted to comma-delimited .csv format and submitted to spiquetool.com. Weightings and 

correlation directions of: isolation interference (10 -), ion injection time (9 -), PEP (5 -), charge 

(5 -) and intensity (3 +) were used. Normalisation was set to median, statistical test to T-test, 

missing values were not replaced and where weighting was required, a final exponential 

weighting of 1 was used, otherwise, this was set to 0. To align the SPIQuE-derived results with 

the additional proteome information (protein name, number of peptides etc.), the ‘MATCH’ 

function in excel was used to match and sort based on protein accession numbers. 

2.21 BIOINFORMATICS 

Several approaches were applied to attempt to identify topological and mechanistic 

patterns in each data set. Different approaches were taken to each data set on the basis of data 

complexity and each biological question being evaluated. 

2.21.1 HIERARCHICAL CLUSTERING ANALYSIS 

Protein lists with log2 (ratios) were submitted to Cluster 3.0 (University of Tokyo, 

Human Genome Centre). Hierarchical clustering was performed for conditions using a similarity 

metric of Euclidian distance and complete linkage. Java TreeView (version 1.1.6r2) 

(http://jtreeview.sourceforge.net/) was used to visualise the clustering. 
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2.21.2 PRINCIPAL COMPONENT ANALYSIS 

Principal component analysis (PCA) was conducted using Qlucore Omics Explorer 3.1 

(64-bit version) (Qlucore). The log2 (ratios) for all fully quantitated proteins were imported into 

Qlucore and the PCA option used to visualise the separation of the data on the basis of all 

protein quantitation events using the default settings. 

2.21.3 DAVID (THE DATABASE FOR ANNOTATION, VISUALIZATION AND INTEGRATED 

DISCOVERY) 

Proteins reaching significant (p<0.05) differential expression were submitted to the 

database for annotation, visualisation and integrated discovery (DAVID) [367] 

(https://david.ncifcrf.gov/). DAVID was used to evaluate the enrichment of trends and patterns 

in each given list of proteins relative to a background defined protein set; in most cases the set of 

fully quantitated proteins within each experiment. Default settings were used and in all cases 

only enrichment p-values with a Benjamini-corrected p-value of less than 0.05 were used. 

Enrichment was assessed for several gene properties, including Gene Ontology (GO) terms, 

chromosomal enrichment and canonical pathway, as described below. 

2.21.4 GENE ONTOLOGY TERMS 

GO term enrichment analysis was performed with DAVID using all quantitated proteins 

as a background list. GO term lists for biological processes, cellular components and molecular 

functions were exported with their corresponding Benjamini-corrected p-values. These were 

submitted to REVIGO, a tool for the reduction and visualisation of GO terms using default 

settings. Colouration and circle size were altered to correspond to GO term size and p-value 

significance, respectively. 

2.21.5 INGENUITY PATHWAY ANALYSIS 

Full protein lists were submitted to Ingenuity Pathway Analysis (IPA) which were 

filtered on the basis of regulation score and p-value. Annotations were exported relating to the 

canonical localisations of each protein, its canonical functional category and any potential 

therapeutic targets. Canonical pathway analysis of the CLL proteomics was assessed using IPA 

core analysis, given the greater clinical relevance of this data. Analyses were conducted filtering 

for enrichment for the significantly upregulated proteins (RS>0.25, p<0.05), the significantly 

downregulated proteins (RS<-0.25, p<0.05) and for a combined enrichment considering all 

differentially regulated proteins (RS>0.25/RS<-0.25, p<0.05). The analyses were conducted 

using a ‘stringent’ search against the ingenuity knowledge base allowing for only direct 

relationships and experimentally observed findings in species being examined. The regulation 
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score was used for the analyses to give a robust measurement representative of the overall trend 

in expression in all samples. 

2.21.6 MEMBRANE PROTEIN ANALYSIS 

While GO terms exist describing a protein as ‘integral component of membrane’ 

(GO:0016021) and ‘intrinsic component of plasma membrane’ (GO:0031226), closer 

interrogation of the proteins annotated with these terms revealed that the coverage of the 

proteome is incomplete, even in surface proteins confidently described with cluster of 

differentiation (CD) numbers. In some cases these were simply annotated with ‘membrane’ 

(GO:0016020). To ensure all proteins with a high confidence of surface expression were 

included in this analysis of membrane proteins, more than one source of annotation was 

considered. Firstly, all proteins annotated with GO terms indicative of relation to membranes 

(GO:0005886, GO:0005887, GO:0009986, GO:0031226, GO:0009897, GO:0016020 and 

GO:0016021) were selected and subsequently filtered for any proteins also annotated with 

localisation to the endoplasmic reticulum (GO:0005783), mitochondria (GO:0005739), or 

nucleus (GO:0005634). This list was then combined with those proteins described by the MS 

surface atlas [368]. This resulting list was used to filter for those proteins identified in Chapter 

5.0 and Chapter 7.0 and of these further filtered against the surfaceome database [369], a tool 

combining surface expression observations from several resources. 

2.21.7 CHROMOSOME ENRICHMENT AND MAPPING 

Chromosome enrichment was conducted by the submission of data to DAVID (Section 

2.21.3) using default settings and Benjamini-corrected p-values.  

The Ensembl genome browser was used to map proteins onto their respective coding 

gene locations within the human genome. Uniprot accession numbers for proteins lists were 

submitted to the ‘features on karyotype’ tool 

(http://www.ensembl.org/Homo_sapiens/Location/Genome). 

2.22 ANTIBODIES 

Several antibodies were used for the immunophenotyping of cells by flow cytometry 

summarised in Table 2.1 and immunodetection of proteins by Western blotting, summarised in 

Table 2.2.  
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Target Species/isotype 
Manufacturer/ 

Clone no. 

Mono/ 

Polyclonal 

Mouse CD3 Rat/IgG2a In house (KT3) Monoclonal 

Mouse CD19 Rat/IgG2a In house (1D3) Monoclonal 

Mouse CD5 Rat/IgG2a BD (53-7.3) Monoclonal 

Mouse B220 Rat/IgG2a BD (RA3-6B2) Monoclonal 

Mouse IL5RA Rat/IgG1 BD (T21) Monoclonal 

Human CD3 Mouse/IgG2a Biolegend (OKT3) Monoclonal 

Human CD19 Mouse/IgG1 Biolegend (HIB19) Monoclonal 

Human IL5RA Mouse/IgG1 R&D systems (26815) Monoclonal 

 

Table 2.1. Antibodies used for flow cytometry detection of proteins. (BD; BD Biosciences). 

 

Target Species Dilution 
Incubation 

conditions 

Manufacturer/ 

Clone no. 

Mono/ 

Polyclonal 

Target 

size (kDa) 

Myc Rabbit 1:500 O/N 4°C 
Abcam 

(AB32072) 
Monoclonal 57 

Myo9 Rabbit 1:1000 O/N 4°C CST (#3403) Polyclonal 230 

Cor1A Goat 1:1000 O/N 4°C 
Genetex 

(GTX89757) 
Polyclonal 60 

Moe Rabbit 1:1000 O/N 4°C CST (#8146) Polyclonal 78 

Lcp1 Rabbit 1:500 O/N 4°C CST (#5350) Polyclonal 70 

Hsp90 Rabbit 1:1000 O/N 4°C CST (#4874) Polyclonal 90 

Mdh2 Rabbit 1:500 O/N 4°C CST (#8610) Polyclonal 35 

Capg Rabbit 1:1000 O/N 4°C 
PT (10194-1-

AP) 
Polyclonal 39 

Eno1 Rabbit 1:1000 O/N 4°C CST (#3810) Polyclonal 47 

Npm Rabbit 1:1000 O/N 4°C CST (#3542) Polyclonal 38 

Shp1 Rabbit 1:1000 O/N 4°C CST (#3759) Monoclonal 68 

GAPDH Mouse 1:2500 1 hour RT 
Abcam 

(AB8245) 
Monoclonal 36 

Rabbit Ig (Green) Goat 1:40000 1 hour RT Licor Polyclonal N/A 

Goat Ig (Green) Donkey 1:30000 1 hour RT Licor Polyclonal N/A 

Mouse Ig (Red) Goat 1:15000 1 hour RT Licor Polyclonal N/A 

 

Table 2.2. Antibodies used for immunoblotting detection of proteins. (O/N; overnight, RT; 

room temperature, CST; Cell Signaling Technology, PT; Protein Tech, N/A; not applicable). 
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3.0 ANALYSIS AND VALIDATION OF ITRAQ 2D LC-

MS/MS Eµ-MYC PRECANCEROUS AND LYMPHOMA 

DATA 

3.1 CHAPTER INTRODUCTION 

Myc upregulation is proposed to drive proliferation in approximately 20% of tumours as 

well as having a functional role in tumourigenesis in around 70% of cancers. Multiple 

mechanisms have been described attributing myc dysregulation to oncogenesis. For example, 

myc has been observed to be among the most duplicated and amplified genes in cancer [370].  

The translocation of an Ig enhancer and myc is well characterised as the initiating event 

of BL. The molecular events leading to tumour formation, however, are more complex. The 

overabundance of myc transcription and translation is not independently sufficient to induce 

tumour formation, with tumour suppressor mechanisms inhibiting myc-driven oncogenesis. 

Downregulation of myc degradation by loss or inhibition of FBW7, loss of the p53/ARF/MDM2 

negative feedback axis and BCL2 overexpression have all been characterised as oncogenic 

mechanisms supporting myc-driven oncogenesis [178, 179, 181, 182, 192, 371]. Eµ-myc mice 

were generated to confirm the effects of the myc oncogene upon B-cell lymphomagenesis [188]. 
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This model demonstrated that constitutive expression of myc resulted in the appearance of 

aggressive BL-like tumours at approximately 100 days of age [176, 188, 190].  

Further understanding into the molecular events responsible for Eµ-myc and BL tumours 

offer insight not only into BL and myc-driven tumourigenesis, but potentially other insights into 

other B-cell cancers. Given the success of immunotherapy as an approach to treating B-cell 

cancers, methods were considered which would allow the efficient detection and discovery of 

novel cell surface proteins. One such approach that was considered was a method termed free-

flow electrophoresis (FFE). FFE works on the principle that cells have variable surface charges 

which provide a potential means of prefractionation. By applying an electrical current 

perpendicularly to cells suspended in free flowing buffer, this surface charge causes differential 

attraction and repulsion from the electrodes. The resulting separation is suggested to therefore 

enrich for outlying sub-populations at the extremes of the isoelectric normal distribution [372]. 

In the context of 2D-LC MS/MS characterisation of cancer samples, it was thought that the 

characterisation of these rare sub-populations may enable the enrichment and detection of cell 

surface proteins and immunotherapy targets that would otherwise fall below the detection 

threshold of MS when analysed as part of the whole cell population. 

An experimental design was considered which would compare proteomic expression in 

splenic B cells from Eµ-myc mice with advanced lymphoma (termed ‘lymphoma’), compared 

with a wildtype (WT) splenic B-cell control. The characterisation of Eµ-myc splenic B cells, 

prior to any tumour formation, (termed ‘Eµ-myc’) was also considered with the potential to 

identify proteins regulated in the presence of constitutive myc expression prior to the emergence 

of a neoplastic phenotype.  

The workflow used for this experiment is detailed in Figure 3.1, describing the isolation 

of WT, Eµ-myc and lymphoma splenic B cells, the sub-population enrichment of B cells using 

FFE and the pooling of these outliers sub-population. These three samples were then analysed by 

a 2D-LC MS/MS workflow utilising iTRAQ labelling of peptides as a means of relative 

quantitation enabling the inference of differential protein expression in three splenic B-cell 

phenotypes. Target-decoy searching of the spectra and protein inference and quantitation 

assignment was conducted to produce a quantitative proteomics output. 

This work was performed prior to the commencement of this PhD project by Kath 

Woods-Townsend, who collected the samples and performed FFE and Spiro Garbis, who 

performed the 2D-LC MS/MS characterisation of the samples.  
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This chapter describes the analysis and Western blot validation of this quantitative 

proteome, attempting to conclude the validity of the shotgun proteomics workflow in the 

characterisation of B-cell cancers. 
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Figure 3.1. Workflow detailing the sample procurement and 2D-LC MS/MS 

characterisation of Eµ-myc lymphoma. Spleens were collected and a single cell suspensions 

for each condition was pooled consisting of 4 WT spleens, 3 Eµ-myc spleens prior to any 

tumours and frozen aliquots of splenocytes derived from Eµ-myc mice with advanced tumours. 

Each pool was subject to B-cell isolation using negative selection and the resulting B cells 

subjected to FFE enrichment. The outlying populations were pooled for each condition and the 

resulting cells subjected to 2D-LC MS/MS quantitative proteomics characterisation. This 

involved the reduction, alkylation and trypsinisation of the cell lysates and iTRAQ labelling of 

the resulting peptides. The iTRAQ-labelled peptides were then prefractionated by liquid 

chromatography and each fraction subjected to chromatography in line with ESI and DDA of 

MS/MS. The work conducted up to the point of producing a quantitative proteomics output was 

conducted by Kath Woods-Townsend and Spiro Garbis. 

3.2 ANALYSIS OF THE QUANTITATIVE PROTEOMICS DATA DESCRIBING Eµ-MYC AND 

LYMPHOMA 

The resulting output of the 2D-LC MS/MS characterisation of WT, Eµ-myc and 

lymphoma B cells identified 372 proteins with a false discovery rate of less than 5%. 147 of 

these proteins were identified with at least three non-redundant, unique peptides. To visualise the 

distribution of the quantitations for the 372 proteins in these two conditions, relative to the WT 

B cells, a frequency distribution of the log2 (ratios) of protein expression was plotted (Figure 

3.2). This described, using bins of 0.2, the number of proteins exhibiting varying extents of 

differential expression, approximately forming a normal distribution for each condition. Log2 

(ratios) were used on the basis that ratios and fold changes do not present a linear numerical 

scale suitable for mathematical analysis. Amongst these 372 proteins, 36 and 106 proteins were 

quantitated with more than a 2-fold (log2 (ratio) of ±1) differential expression in pre-lymphoma 

Eµ-myc and lymphoma B cells, respectively, highlighted by the number of proteins observed at 

the extremes of the plot. The standard deviations of log2 (ratios) considering all protein 

quantitations were 0.62 and 1.12 for Eµ-myc and lymphoma, respectively. This analysis 

demonstrated a greater variation in global protein expression in tumour, compared to pre-tumour 

samples. 
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Figure 3.2. Detected differential protein expression in Eµ-myc lymphoma and pre-

lymphoma, relative to WT B cells. Frequency distribution describing the number of proteins 

exhibiting log2 (ratios) in bins of 0.2 for Eµ-myc and lymphoma conditions relative to WT B 

cells. This summarises the regulation observed amongst the 372 proteins identified and 

quantitated by MS-iTRAQ analysis. This approximately forms a normal distribution with the 

greatest number of proteins with little or no regulation. 

3.3 SELECTION OF VALIDATION CANDIDATES 

In order to better understand the validity of the quantitative proteomices data, given a 

lack of positive controls such as myc protein expression, candidates were considered for 

quantitative validation using Western blotting.  

There were many potential means of selecting candidates for validation and biological 

investigation. The MS-iTRAQ analysis generated a vast database of information pertaining to 

each peptide and therefore to each aligned protein. Factors for any protein such as the number of 

aligning peptides, sequence coverage, iTRAQ to background detection ratio, B- and Y- ion to 

background detection ratio, Eµ-myc ratio, lymphoma ratio, inter-peptide ratio variability and 

peptide confidence were considered. The majority of consideration, beyond these preliminary 

factors, was given to the expression ratios derived from the MS-iTRAQ analysis.  
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Proteins were selected for validation and further investigation using the pipeline shown 

in Figure 3.3. Candidates were filtered gradually to remove proteins that had no significant 

regulation observed in either Eµ-myc or lymphoma. Preference was given to candidates with a 

linear progression from WT to Eµ-myc, to lymphoma, to identify candidates with an expression 

correlated with tumour progression. This workflow also incorporated considerations for aspects 

that may influence the success of validation.  

Figure 3.4 describes the shortlist of 18 proteins generated by steps 1-7 of Figure 3.3. 

The standard deviations of the pipeline-selected short lists were 1.08 and 2.59 for Eµ-myc and 

lymphoma, respectively. 

Tyrosine-protein phosphatase non-receptor type 6 (SHP1), coronin 1A (Cor1A), 

macrophage capping protein (Capg), alpha-enolase (Eno1), nucleophosmin (Npm1), and malate 

dehydrogenase, mitochondrial (Mdh2), were selected from the shortlist in Figure 3.4 for 

validation based upon the availability of validated antibodies. Plastin-2 (Lcp1), myosin-9 

(Myo9), heat shock protein 90 (Hsp90) and moesin (Moe) were chosen based on availability of 

antibodies, peptides and biological interest.  
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Figure 3.3. Candidate selection pipeline for the validation of quantitative MS proteomics. 

The pipeline employed to identify a selection of candidates for validation and investigation. This 

pipeline specifically tried to select candidates that show a directional progression from wildtype 

B cells to pre-neoplastic Eµ-myc B cells to neoplastic lymphoma cells, as well as strong peptide 

evidence suggesting a likely success of validation. 4 additional candidates were selected on the 

basis of antibody availability for confident candidate that did not fit criteria 4. 
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Figure 3.4. Validation candidate shortlist. The 18 proteins selected after stage 7 of the 

selection pipeline in Figure 3.3, as well as four further proteins selected for validation based on 

availability of antibodies, MS-observed peptides and biological interest. The proteins shown 

with an asterisk were selected for WB validation based on a number of factors including; 

biological interest, number of peptides, availability of validated antibodies against the protein 

and the ratios observed in Eμ-myc and lymphoma. 

3.4 DETECTING THE LINEAR PHASE OF QUANTITATIVE WESTERN BLOTTING 

To determine the validity of the MS iTRAQ ratios, WB analysis was employed as an 

alternative method of evaluating relative protein expression in the three B-cell phenotypes. Prior 

to this analysis, it was essential to ensure that WB detection produced reliable, quantitative 

observations. The Licor Odyssey was used as a means of WB detection. This scans for the 

detection of fluorophore-conjugated secondary antibodies, thereby generating a uniform 

detection that gives a quantitative comparison between band intensities.  
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Ideally cells would first have been subjected to FFE prior to WB analysis to recapitulate 

the MS-analysed samples. However, given that no surface proteins were amongst the validation 

candidates, and that the cells at both ends of the FFE were analysed, the material analysed was 

assumed to be representative of differential expression of intracellular proteins. Additionally, 

FFE would have depleted cell material making WB detection unworkable. Therefore, for 

validation purposes, no FFE was implemented. 

To evaluate the linear detection threshold for each of the 10 validation candidates 

described in Figure 3.4, WB titrations were first performed. WT B-cell lysates and cultured 

lymphoma B cells (‘Eμ8’) lysates were evaluated for quantitative detection using a titration of 

loading protein from 10-60 µg (Figure 3.5, Appendix A3). Analysis of Cor1A is shown as a 

model example (Figure 3.5). Cor1A demonstrated a linear phase and clear detection for both 

WT and lymphoma from 10 to 40 µg with an R2 value of >0.98 for both lysates. It was 

concluded that at 30 µg of protein, a quantitative comparison of relative Cor1A expression was 

achievable between these B-cell phenotypes.  

It was observed that when high concentrations of protein lysate were subjected to WB, 

protein detection became saturated. Above this point of saturation, there was no longer a 

proportional relationship between amount of protein loaded and the intensity of the resulting 

band. Below this threshold, protein detection consistently demonstrated a linear correlation to 

loading protein mass. Each of the 10 validation candidates subjected to this analysis 

demonstrated that 30 µg of loading protein was below the band saturation threshold for both WT 

and lymphoma B-cell lysates (Appendix A3). 
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Figure 3.5. Determination of the linear phase of quantitative WB protein detection. WB 

detection was conducted for lysates of WT B cells and lymphoma (Eµ8 - Eµ-myc-derived 

lymphoma cell line) evaluating detection of 10-60 µg of protein loaded. The lower graph shows 

the linear portion of the upper graph with a trend line fitted and correlation coefficient described. 

3.5 WB VALIDATION OF CANDIDATE EXPRESSIONS AND MYC EXPRESSION IN 

LYMPHOMA CELL LINES 

The acquisition of fresh Eµ-myc lymphoma samples was challenging given the 

spontaneous nature of the disease development. Given that Eµ-myc lymphoma cells readily grow 

in culture (Section 2.9), it was concluded that early passage (<10) cultured Eµ-myc lymphoma 

cells would effectively recapitulate the characteristics of in vivo Eµ-myc lymphoma. This also 

provided a means of deriving sufficient protein to perform WB for all 10 candidates on the same 

tumour samples. Additionally, while different Eµ-myc lymphoma samples were used for 

validation, it was hoped that by assessing multiple tumours, the biological signature could be 

validated. 
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For quantitative WB analysis, a pool of splenic B cells from three WT mice (WT), a 

pool of splenic B cells from three Eµ-myc mice (Eμ-myc) and five individual Eµ-myc-derived 

lymphoma cell line lysates (Eμ6, Eμ8, Eμ13, Eμ14 and Eμ15) were selected (Figure 3.6). Five 

lymphoma cell line lysates were individually probed to assess the variation of protein between 

the lymphoma samples. This was based on the observation of a much greater SD of protein 

regulation for the lymphoma MS-iTRAQ ratios, as well as the know heterogeneity of cancers. 

WB analysis for myc demonstrated a consistent and substantial upregulation of myc 

across the five lymphoma cell line lysates with an average of 18-fold increase from wildtype to 

lymphoma. Very little difference in myc abundance was observed between the WT and Eµ-myc 

B-cell lysates. No peptides for myc were identified by MS, so this served as qualitative 

biological validation. 

The WB of Cor1A expression in WT, Eµ-myc and the 5 Eµ-myc lymphoma-derived cell 

lines is also shown in Figure 3.6. WB of Cor1A demonstrated lymphoma lysates with a 

consistent and substantial downregulation of Cor1A. A down regulation was also observed in the 

Eµ-myc B cells. The WB bands were quantitated and normalised to glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) expression and this normalised value was compared to that of WT 

expression to give a ratio. Quantitation and GAPDH normalisation of Cor1A expression 

exhibited an average abundance of 20% for lymphoma and 88% for Eµ-myc relative to that of 

wildtype B cells. This analysis was performed for all 10 proteins, shown in Appendix A4. 

 

Figure 3.6. The expression of myc and Cor1A in Eµ-myc lymphoma and pre-lymphoma 

samples, relative to WT B cells. WB of lysates derived from a pool of splenic B cells from 

three WT mice (WT), a pool of splenic B cells from three Eµ-myc mice prior to any tumour 

development (Eμ-myc) and five individual Eµ-myc-derived lymphoma cell line lysates (Eμ6, 

Eμ8, Eμ13, Eμ14 and Eμ15).  GAPDH serves as a loading control for each WB. 
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3.6 EVALUATING THE CORRELATION OF MYC AND COR1A EXPRESSION 

WB of myc and Cor1A (Figure 4.5) demonstrated an inverse pattern of expression 

across the seven assessed samples. Where myc expression was low, in the non-cancerous lysates, 

Cor1A expression was high. In the lymphoma lysates, the inverse was observed. The observation 

of greater myc expression in Eµ 8 and 13 lysates was seen with a lesser expression of Cor1A. 

Quantitation of these relative expressions (Section 2.17.6) demonstrated an inverse correlation 

between the expression of myc and Cor1A across the seven probed B-cell states with an R2 value 

of 0.7338 (Figure 3.7). 

 

Figure 3.7. The inverse relationship between myc and Cor1A expression. The WB-

determined log2 (ratios) of expression changes of myc and Cor1A in WT, to pre-neoplastic Eµ-

myc and lymphoma (Eµ6, Eµ8, Eµ13, Eµ14 and Eµ15) B cells. 

3.7 WB VALIDATION OF ITRAQ 2D LC-MS/MS DIFFERENTIAL EXPRESSION DATA  

To generate a direct comparison between iTRAQ and WB-derived observations, WBs 

(Appendix A4) were quantitated, normalised to GAPDH, and ratios to WT B cells calculated. 

These ratios were plotted side by side to demonstrate the degree of agreement between MS and 

WB observation (Appendix A5). 

Cor1A, again used as an example (Figure 3.8), demonstrated a consistent agreement 

between observations made by MS-iTRAQ and WB for the Eµ-myc and lymphoma samples 

relative to WT B cells. For Eµ-myc B cells, there was a marginal downregulation observed by 
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both iTRAQ and WB. For the 5 lymphoma cell lines, the average value of 20%, agreed closely 

with the 24% averaged determined by MS. While this value varied across the 5 lymphoma 

lysates, the downregulation was consistently below that of both the WT and Eµ-myc B cells.  

This comparison was performed for all 10 validation candidates, shown in Appendix 

A5. Of these 10 candidates, for lymphoma lysates, 8 consistently agreed with the MS-iTRAQ-

determined up- or down-regulation relative to WT. For Eµ-myc pre-lymphoma B-cell lysates, 

only two proteins, HSP90 and Cor1A, demonstrated an agreement between the MS- and WB-

determined ratios to WT B cells. 

 

Figure 3.8. Comparison of the MS-determined and WB-determined ratios of Cor1A 

expression.  Ratios of protein expression in splenic isolated B cells from pre-neoplastic Eµ-myc 

mice (Eµ-myc) and Eµ-myc-derived cell lines from spontaneous splenic tumours (Eµ 6-15) were 

determined relative to wildtype B cells (WT) for WB- determined (open bars) and MS-

determined (closed bars) quantitation methods. 

3.8 DEFINING CONCORDANCE BETWEEN THE MS AND WB QUANTITATIVE DATA  

To represent the overall agreement between relative protein expression determined by 

MS and WB, a ratio between the two values termed ‘concordance’ was defined. Concordance 

was calculated by dividing the WB-determined log2 (ratios) by the MS-determined log2 (ratios) 

thereby giving a single value indicative of the extent of ratio agreement for each WB 

observation. This was performed for both the ratios of Eµ-myc lymphoma (Figure 3.9) and Eµ-

myc pre-lymphoma (Figure 3.10) relative to WT B-cell expression. For example, when the two 
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detection methods both agree exactly with, say, an upregulation of 4-fold (log2 (ratio) of 2), the 

concordance will equal 2/2 = 1. When the log2 (ratio) is larger, for WB than MS, the 

concordance value will be >1. When the log2 (ratio) is smaller for WB than MS, the concordance 

value will be less than 1 and when the regulation is in the opposite direction the concordance 

value will be less than 0. 

Figure 3.9 demonstrated that 8 of the 10 evaluated candidates had consistently positive 

concordance for the Eµ-myc lymphoma B cells. Cor1A, Eno1, Mdh2 and Lcp1 all presented an 

approximate mean ratio of 1, demonstrating that in the pooled sample analysed by MS, the 

derived ratio has a good prediction of the average expression across several samples. Npm1 and 

Myo9 had concordances of <1 for all 5 Eµ-myc lymphoma B-cell samples which suggests the 

iTRAQ quantitation may have overestimated the extent of the up- and down-regulation of these 

proteins, respectively. Capg demonstrates the opposite, with all 5 Eµ-myc WB observations 

suggesting the MS analysis has underestimated Capg down-regulation. Moe and Hsp90 

consistently demonstrate a concordance of <0, between the predicted expression changes from 

WT to lymphoma, with the MS predicting expression change directionality to be completely the 

opposite of that seen by WB.  

The concordance of WB to MS showed the correct prediction of the direction of 

regulation in just 3 of the 10 proteins evaluated for Eµ-myc to WT ratios (Figure 3.10). Hsp90 

demonstrated the only concordance of approximately 1 and Cor1A and Eno1 both suggested an 

overestimation of down- or up-regulation, respectively. SHP1, Capg, Npm1, Mdh2, Lcp1, Myo9 

and Moe all had a negative concordance. 
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Figure 3.9. Eµ-myc lymphoma cell line concordances between log2 (WB ratio) to log2 

(iTRAQ ratio). For each protein validated, this concordance ratio indicates how well the 

relative expression value produced by MS-iTRAQ analysis relates to the relative expression 

shown by quantitative WB data, both describing relative protein expression in Eµ-myc 

lymphoma cell lines relative to WT B cells. 
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Figure 3.10. Eµ-myc pre-lymphoma concordances between log2 (WB ratio) to log2 (iTRAQ 

ratio). For each protein validated, this concordance ratio indicates how well the relative 

expression value produced by MS-iTRAQ analysis relates to the relative expression shown by 

quantitative WB data, both describing relative protein expression in Eµ-myc pre-lymphoma B 

cells relative to WT B cells. 
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3.9 EXAMINING THE EFFECT OF FOLD-CHANGE ON CALCULATED CONCORDANCES 

All concordance values for Eµ-myc B cells and lymphoma cell lines were plotted against 

the fold change determined by WB (Figure 3.11). To demonstrate differential expression 

detection regardless of up- or down regulations, values were converted to absolute fold-changes. 

The concordance values for Moe and Hsp90 were excluded from this analysis. This 

demonstrated that at the lower fold-changes, candidate validation became increasingly 

disconcordant between the two detection methods. At fold changes of 2.5 to 12.5, the 

concordances observed were more accurate, consistently with a concordance ratio between 0.5 

and 1.5. The concordance ratios for fold changes above 5 consistently demonstrate a 

concordance ratio of more than 1, indicating that the MS has underestimated the fold change in 

expression compared to that detected by WB. 
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Figure 3.11. The effect of absolute fold-change on concordance. Values from the individually 

generated ratios for both pre-neoplastic Eμ-myc and lymphoma cell lines (excluding Hsp90 and 

Moe data) plotted against the absolute fold-change from WT determined by WB. 
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3.10 CHAPTER DISCUSSION 

The overall aim of this initial investigation was to analyse and validate the success of 

2D-LC MS/MS quantitative proteomics in the characterisation of B cells from Eμ-myc 

lymphomas and Eμ-myc transgenic B cells prior to lymphoma development relative to WT B 

cells using WB. While the experiment promised the potential of novel biological findings, the 

predominant focus was on the technical findings, given the uncertainty surrounding the ability of 

this emerging methodology.  

It was hoped that protein dysregulation, such as the upregulation of pathways and 

oncogenes, loss of tumour suppressors and the global effects upon protein expression induced by 

the myc oncogene would be detected within the proteomics data. Such findings were, however, 

not effectively captured in the low number of identified proteins. The identification of 372 

proteins was below what would be typically expected of a 2D-LC MS/MS characterisation of 

cancer cell lysates, with only around 5-30% of the potential number of confidently observed 

proteins detected [373, 374]. The isolation of the extremes of electrophoresed cells by FFE 

caused the cell number available for lysate production to be lower than ideal. This led to 

approximately only 30-40% of the ideal protein material being available for MS analysis. With 

MS analyses, detection of peptides is subject to various thresholds defined by detection limits 

and background noise. These limits are even more sensitive in the context of product ions which 

due to variable and imperfect fragmentation can result in more than a 10-fold reduction in 

sensitivity [281, 375]. Therefore, when half the mass of protein in a sample is available, 

substantially less than half of the peptides analysed will be above this threshold [281]. While this 

reduced the efficacy of this experiment, it reinforced the principle that further MS 

experimentation utilising a greater quantity of material promised a greater depth of analysis. 

An impact of this reduced protein material was the lack of sensitivity to detect several 

key proteins, most notably peptides matching to myc – an observation that should have acted as 

a positive control for Eμ-myc lymphomas [188]. Other key proteins such as members of the p53 

pathway also fell below the detection threshold, limiting the conclusions that could be drawn 

regarding pathway dysregulation and wider cell perturbations. Reduced sensitivity may also 

offer an explanation as to why no surface proteins were detected with at least three peptides. 

This lack of surface protein detection was a clear issue, as the original premise behind the FFE 

isolations was rare surface protein discovery. Overall, qualitatively, this lack of sensitivity 

limited the biological conclusions that could be drawn from the experiment. However, the 

higher-abundant differentially expressed proteins presented several opportunities to confirm the 

quantitative validity of the MS findings.  
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The overall trend in quantitative findings were approximately what might be expected 

comparing tumour, pre-tumour and healthy control samples. Greater protein dysregulation was 

anticipated in Eµ-myc lymphoma B cells, compared to that of pre-lymphoma Eµ-myc and WT B 

cells. This was best highlighted by the topological trend described in Figure 3.2, which 

presented a far wider normal distribution for lymphoma than pre-lymphoma Eµ-myc B cells. The 

greater number of differentially expressed proteins agrees with the notion of oncogenesis being a 

process requiring protein dysregulation [1, 2]. In order for a cell to become malignant, sufficient 

traits and autonomy must be acquired; phenotypically driven by up or downregulation of 

proteins.  

For the pre-lymphoma Eµ-myc B cells the observation of lesser protein dysregulation 

was expected, relative to that of B cells which had progressed to lymphoma. Given the 

pleiotropic nature of the aggressive myc oncogene however, it might have been expected to 

observe a greater extent of protein dysregulation, more than the 36 proteins observed with >2-

fold differential expression compared to WT B cells. 

The reproduction of quantitative MS findings by WB offers a means of confirming the 

validity of the MS experiment and the methodology used, especially when no internal positive 

controls, such as the quantitation of myc were available. Validation of the MS findings presented 

several challenges, however. The ideal scenario for validation would have been aliquots of the 

same protein lysates used for the MS characterisation, however no such samples were available 

in light of the FFE isolations providing less than the optimum protein content. The 

implementation of FFE enrichment to a second set of validation samples would have been more 

suitable, however would have suffered from the same low yields; impractical for WB. While 

frozen tumour splenocyte aliquots were available they would not have provided sufficient 

material required for several WBs. Isolation of fresh tumour material from tumours of Eµ-myc 

mice was considered, however, this presented challenges based around the spontaneous tumour 

development and again, limited material. Overall it was concluded that given the high-

abundance of the detected proteins, based on the number of peptides identified, that these 

proteins should be representative of a robust biological trend. Cultured Eµ-myc lymphoma cell 

lysates were therefore evaluated as they provided the most practical means of overcoming these 

issues. While distinct differences are known to exist between cells in culture [376]and within the 

tumour microenvironment, lymphoma B cells were used at the earliest possible passage, rarely 

in culture for more than 21 days (Section 2.9). 

WB provides an opportunity to observe differential expression of proteins, however this 

requires the use of a mass of protein within a linear dynamic range of detection. Too little 

protein and the band may not be detected, too much and band saturation can occur, making 



108 

 

quantitative conclusions inaccurate. Prior to the WB analysis of the 10 validation candidates, it 

was essential to identify the ideal loading protein mass required for maximum band intensity, 

while remaining within the linear dynamic range of WB band quantitation. Figure 3.5 and 

Appendix A3 details these observations demonstrating that band saturation is a potential issue 

with regard to accurate relative quantitation for the majority of the proteins assessed. This is an 

expected observation on the basis that either no more protein can bind the membrane, no further 

primary or secondary antibody can bind, or the scanning becomes saturated. In fact, on this 

basis, actin was avoided as a loading control as saturation occurred at just 20 µg of protein (data 

not shown) while GAPDH provided a linear response at 30 µg. Care was taken to use identical 

conditions for these optimisation blots as several factors such as loading volume, gel type, lane 

width and secondary antibody could all have influenced the potential saturation point. 

The observation of high upregulation of myc in all 5 Eµ-myc lymphoma cell lysates 

(Figure 3.6) supports the premise that Eµ-driven myc overexpression drives tumourigenesis 

[188]. It also confirms that the WB-analysed tumours were almost certainly derived as a result of 

Eµ-myc model, rather than any other tumour type that could have arisen spontaneously. The 

observed expression of myc in the pre-neoplastic Eµ-myc B cells was lower than might be 

expected. This observation is in agreement with literature suggesting that myc protein expression 

is only marginally upregulated in Eµ-myc B cells prior to lymphomagenesis, by 30-50% [377]. 

Increased transcription of the myc gene, driven by the Eµ enhancer [343], would lead to the 

conclusion that myc protein levels should also be elevated above that of wildtype, however no 

elevation was observed. This lack of myc upregulation could be due to negative feedback though 

protein degradation pathways or inhibited translation. 

WB analysis of Cor1A (Figure 3.6) confirmed the MS-derived observation of 

downregulation in Eµ-myc and lymphoma B cells detailed in Figure 3.4. The consistent 

observation across the five lymphoma cell line lysates suggests that the downregulation may be 

seen in all Eµ-myc-derived tumours. WB also confirmed the intermediate expression of Cor1A 

observed in Eµ-myc B cells. These observations of Cor1A regulation in both conditions, either 

suggested a role in lymphomagenesis and lymphoma survival, or as a bystander of these 

processes, implicating Cor1A downregulation as a possible marker of tumour progression.  

The relative expressions of myc and Cor1A across the seven probed cell lysates were 

plotted to examine the relationship between the two proteins (Figure 3.7), which appeared 

inverse by eye (Figure 3.6). The trend that emerged was that as myc expression increased, 

Cor1A expression, overall, decreased. While not highly correlative or conclusive, this suggested 

a general trend that directly or indirectly implicated myc in the downregulation of Cor1A 
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expression. This was of interest, as myc has not been implicated in targeting or suppressing the 

Cor1A gene directly [162]. 

Cor1A has been implicated in cytoskeletal restructuring, required for cell motility 

through invagination and cell protrusions [378, 379]. It has also been shown to be essential for 

T-cell immune function and survival through the increase of calcium ion release [380]. Cor1A-/- 

mice demonstrate a decreased formation of f-actin in T cells [381]. Combined with the 

observation that a key component of actin filament networks, actin-related protein 2/3 complex 

subunit 4 (p20) (Figure 3.4), is significantly downregulated in lymphoma, possible conclusions 

could be drawn as to the suppression of f-actin formation either as part of, or because of, 

lymphomagenesis [382]. Interestingly, a Cor1A mutation that was observed to retard T-cell 

function, showed no effect on B cells [383]. This led to the possible conclusion that while Cor1A 

was downregulated in lymphoma its loss or loss of function may not have had a critical role in 

tumourigenesis [383]. Cor1A was identified as a downregulated protein in 2 thymomas of p53-/- 

mice to an average of 26% of that of WT [384]. This consistent observation with the work 

presented here, implies that Cor1A downregulation may not be exclusive to Eµ-myc lymphomas. 

It would be of interest to see the effects of Cor1A knockout on the progression or presentation of 

Eµ-myc and other tumours. An earlier Eµ-myc tumour presentation in the absence of Cor1A 

would indicate a putative tumour suppressive role and would support a premise that cytoskeletal 

protein dysregulation plays a role in B-cell tumour development. 

Concordance, described in Section 3.8, provides a measure for concluding the validity 

of the MS-iTRAQ-derived ratios for Eµ-myc lymphoma and pre-lymphoma, when comparing to 

WB ratios. The concordance values comparing 70 observations made by WB (Appendix A4) 

and the 30 MS quantitations (Appendix A5), are summarised in two graphs (Figure 3.9 and 

Figure 3.10). The concordance values for lymphoma (Figure 3.9) demonstrated that the 

quantitative MS analysis had successfully identified the up or downregulation of 8 out of 10 of 

the chosen candidates and for 5 of these, the concordance indicated a close agreement between 

MS and WB. This indicates a good degree of success with regards to the determination of the 

directionality of differential protein expression. This demonstrated that the cultured lymphoma 

cells, without the application of FFE enrichment provided, on the whole, a suitable means of 

validating the MS. It also demonstrated that, for these evaluated, high-abundance intracellular 

proteins, the cells at the extremes of the normal distribution of FFE enrichment were comparable 

to the population as a whole.  

The concordance analysis also highlights some potential limitations of this validation 

analysis, with two proteins, Hsp90 and Moe, regulated in the opposite direction between the two 

quantitation approaches. It is difficult to conclude which method is correct, given that the MS is 
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derived from at least 9 observations of peptides for each protein, while the antibodies employed 

in WB have been used in several publications. One potential source of the disparity is that of 

isoforms, which can be distinguished by MS, but not necessarily by antibodies, and sometimes 

vice versa. HSP90, for example has 3 major isoforms with several other minor isoforms with 

overlapping peptide sequence homology [385]. While HSP90 isoform variant AA1 is described 

and quantitated in Figure 3.4, this may have been constituted and quantitated by peptides 

matching several isoforms with potentially vastly different regulation. In order to more 

confidently quantify the specific isoform a far greater number of peptides are required for 

protein inference [279, 280]. Another source of error is potentially that derived from the analysis 

of cultured lymphoma cells which could have been either selected for, or induced, by the act of 

culturing these cells in vitro. The lack of FFE enrichment or sample handling differences could 

also be attributable to differences. However, the predominant trend of protein expression does 

appear to agree between MS and WB, despite these limitation. This suggests that, overall, both 

the WB analyses and MS analysis have provided a suitable and successful validation. 

Concordance values of the Eµ-myc pre-lymphoma regulation directionality, relative to 

WT, was positive in only three of the ten instances (Figure 3.10). Only Hsp90, a protein which 

did not validate successfully for lymphoma, shows a concordance of more than 0.5. It was 

therefore concluded that validation for this condition was unsuccessful. While the same 

limitations discussed above were potentially true for the Eµ-myc pre-lymphoma B-cell samples, 

the observed fold changes, overall, were far smaller than that of lymphoma B cells. The 

detection of smaller ratios is more challenging by both MS and WB quantitation methods, given 

an intrinsic background variability in both approaches. Far more samples with technical 

replicates would be needed to conclude the majority of smaller fold changes represented by Eµ-

myc pre-lymphoma, outside the scope of this analysis. 

The theory that less, or negative, concordance occurs at lower ratio values was tested by 

plotting all of the concordance values (with the exception of those for Moe and Hsp90) against 

the absolute fold-changes derived by WB (Figure 3.11). This graph confirms that quantitative 

MS analysis of smaller fold-changes in expression are less accurately validated, demonstrating 

that any fold-changes below 2 are unlikely to validate successfully. Figure 3.11 also indicates 

that larger fold changes have less accurate concordance, with iTRAQ underestimating the extent 

of the fold change. This trend is consistent with previous studies describing isobaric tag 

quantitation having a substantial ratio compression from the co-isolation of precursors [301, 302, 

304, 386, 387], outlined in Section 1.8.4. 

The validation and analysis described in this chapter suggest that the proteomics results 

have fallen short of fully harnessing the potential of MS technology. The lack of initial material 
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for the MS-iTRAQ analysis, observed proteins, myc peptides and surface proteins reduced the 

qualitative confidence in the data set as a whole. However, the study demonstrated novel 

methods of sample preparation and MS analysis and highlighted a number of validated 

candidates of biological interest. This validation was successful, despite the biological and 

technical variability in sample analysis and preparation. From a biological perspective, the 

ability of the technology to predict candidates that are consistently up or down regulated is vital 

to biomarker and target discovery, which appears to have been captured, at least in part by this 

proteomics approach. The observations of these 8 candidates with a consistent regulation across 

the original MS-iTRAQ analysed samples and the 5 lymphoma cell lines potentially 

demonstrated that sample pooling may be of benefit in this type of discovery, a generally vital 

approach given the limited capacity of iTRAQ and TMT multiplexes. 

Retrospectively, the use of FFE was not ideal in the context of this MS experiment. 

While the principle of attempting to enrich for the detection of surface proteins using FFE was 

sound, it did not take into consideration the substantial challenges behind membrane protein 

solubilisation, digestion and characterisation using the standard 2D-LC MS/MS workflow [264], 

which exacerbated the depletion of cell material. Due to the highly selective nature of the FFE 

process, there was a substantial risk that the cells selected for analysis did not accurately 

represent the whole cell populations. The FFE selection generated bias based upon the 

phenotype of cell surface charge, and it was difficult to speculate as to the intracellular 

mechanisms that may have had some contribution to this phenotype. Possibly one of the most 

significant factors in the surface charge of cells was the effects of apoptosis altering the surface 

lipid composition, such as phosphatidylserine presentation during apoptosis [388]. Apoptosis is 

sensitised in Eµ-myc and lymphoma B cells as a result of myc overexpression [377, 389] and 

was likely increased upon the handling of cells outside of their preferred conditions and 

microenvironment. 

Overall, this investigation has established that there is significant potential behind MS 

iTRAQ proteomics in the context of the Eµ-myc BL model, which may be applicable to many 

other types of cancer. It can be concluded that a more rigorous application of quantitative MS 

analysis has the potential to improve upon this initial study. Current techniques and technology, 

analysis of the whole populations of cells, rather than FFE isolation, and more rigorous 

experimental design may prove to generate higher numbers of proteins detected and quantified. 
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4.0 DEVELOPMENT OF AN OPTIMISED APPROACH TO 

PROTEOME QUANTIFICATION WITH ISOBARIC TAGS 

4.1 CHAPTER INTRODUCTION 

The generally successful validation of preliminary data in Chapter 3.0 supported the 

implementation of further isobaric-labelled MS analyses. Several methodological advances also 

became available after this initial study, which potentially offered a far greater depth of analysis. 

Improvements to available technology also promised an increased number of protein 

identifications and quantifications.  

While limitations of this experiment, such as the number of proteins and peptides 

identified, could likely be improved upon with advancements in sensitivity and mass accuracy of 

mass spectrometers, such as that of the Orbitrap Elite, one issue that remained was that of ratio 

compression induced by the co-isolation of precursor ions [301, 302, 304, 386, 387]; an effect 

highlighted by Figure 3.11 and described in Figure 1.14. 

Ratio compression arises within a complex proteome because differential expression is 

typically in the minority, while the majority of proteins do not differ in abundance. When a 

peptide from a differentially expressed protein is isolated during a shotgun proteomics 
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experiments the probability that any co-isolating peptides are without regulation is very high. 

The end result is therefore an averaging of quantitations, diluting that of the regulated protein. 

While many options to avoid the effects of co-isolation exist, none were deemed optimal 

for implementation. The most common method applies a filter which disregards quantitations 

from spectra where more than 30% of the isolated ions are not attributable to the selected 

precursor, termed isolation interference [309]. The main limitation to this approach is that a large 

number of quantitations are disregarded, many of which still have valuable information which 

can support a finding of a differentially expressed protein. Another flaw to the approach is that 

equal consideration is given to all remaining quantitations which may still introduce ratio 

compression. 

This chapter describes the development of a method for minimising the effects of co-

isolation-induced ratio compression in isobaric-tagged proteomics. A ‘spike-in’ experiment was 

designed using E. coli and human cell lysates, providing non-redundant peptides with the aim of 

better understanding the effects of co-isolation. Using these data, a strategy was designed that 

implements weighting to ratio calculation and also incorporates statistical analysis. This 

experiment also provided an opportunity to evaluate the utility of the newly available TMT 10-

plex reagents for potential use in later experiments. 

The methods described in this chapter have been developed into an online tool termed 

Statistical Processing for Isobaric Quantitation Evaluation (SPIQuE) available at 

http://spiquetool.com. 

4.2 PROTEOMICS DESIGN OF AN E. COLI SPIKE-IN EXPERIMENT 

For the purposes of defining the extent of co-isolation, it was considered that the 

properties of a differentially expressed proteome should be simulated, while being fully 

traceable for data analysis purposes. Protein extracts from E. coli and human cell lines provided 

such an opportunity, with very minimal peptide redundancy between the two proteomes. This 

lack of redundancy and the availability of reference proteomes meant that, upon target-decoy 

searching, the origin of each peptide precursor could be easily concluded. The workflow and 

experimental design are shown in Figure 4.1. 

E. coli and human cell lines were grown and harvested, using extensive cell washing to 

remove any potential contamination from growth media. Cells were lysed using trituration and 

sonication, and lysate protein concentration determined. Peptides were generated using 

trypsinisation of reduced and alkylated lysates. E. coli peptides were spiked into a TMT 10-plex 

experiment as a complex and minority, proteome at defined dilutions. The 10-plex otherwise 
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contained peptides comparing between titrated quantities of HeLa and MCF7 cell line-derived 

tryptic peptides Figure 4.1. This experimental design simulated the complexity, and low 

abundance, of a differentially regulated proteome encountered within clinical and biological 

specimens. Peptides were prefractionated using RP, high-pH liquid chromatography and non-

adjacent fractions were pooled into a total of 13 fractions for analysis. These were each 

subjected to 6 hour LC-MS/MS analysis using DDA and HCD and CID peptide fragmentation. 

 

Figure 4.1. The experimental design and workflow for the TMT 10-plex containing spiked-

in E. coli peptides. A workflow describing, in descending order: The 3 biological materials 

collected for MS characterisation, extensive washing, snap freezing and lysis of these samples 

and the production of peptides from each reduced and alkylated lysate. Peptides were then 

assigned to differential labelling using TMT 10-plex, which were pooled and subjected to 

prefractionation chromatography to reduce sample complexity. These fractions were pooled to 

give 13 fractions for analysis. Each peptide fraction was subject to a second round of 

chromatography, in line with electrospray ionisation, MS detection and data-dependent MS/MS 

characterisation. 
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4.3 DATA ANALYSIS OF THE E. COLI SPIKE-IN EXPERIMENT 

Spectra produced by the MS analysis were analysed using target decoy searching as 

described in Figure 4.2. CID and HCD spectra were subjected to separate searches due to the 

differences in detection methods. Each target-decoy search was performed with Proteome 

Discoverer software against a proteome consisting of the combination of protein sequences for 

E. coli and humans. To facilitate data processing, protein accession numbers were modified to 

contain the suffix Ec_ for E. coli proteins and Hs_ for human proteins. The analysis of the 

combined, labelled peptide extracts resulted in the identification of a total of 8096 protein groups 

(<1% peptide FDR). Specifically, a total of 6499 human and 1597 E. coli proteins were observed 

with approximately 20% of the PSMs matching to the E. coli proteome.  

To gain an impression of the extent of peptide co-isolation and the effects this had on the 

relative quantitations, the quartiles and percentiles for ratios derived from the reporter ions for 

human and E. coli PSMs were summarised (Figure 4.3). For the human PSMs the extent of 

suppression was most apparent in the ‘2%’ ratios for which the median PSM quantitation ratios 

were indicative of 7.1% and 11% for HeLa and MCF7, respectively (Figure 4.3A). For E. coli, 

the minority proteome, suppression was far more apparent. The ratios defining 1% and 2% E. 

coli peptide content, relative to 100% (128C), were indicative of a median of 8.6% and 9.1% 

respectively, with many PSMs exhibiting substantial co-isolation in these channels (Figure 

4.3B). Overall, extensive peptide co-isolation was observed for the E. coli PSM quantitations, 

with >80% of ratios compressed by >50%.  
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Figure 4.2. Identification and segregation of identified human and E. coli proteins. LC-

MS/MS data were processed using Proteome Discoverer, searching spectra separately based 

upon CID and HCD fragmentation against a single proteome containing both the human and E. 

coli UniProtKB proteomes. The percolator algorithm was used to estimate FDR and a threshold 

of q<0.01 was used. Proteome Discoverer was also used to extract quantitation from reporter 

regions and group proteins. The data pertaining to each organism were separated for analysis. 
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Figure 4.3. Quantification of human and E. coli PSM ratios and co-isolation. PSM reporter 

ions were extracted from Proteome Discoverer and individual PSM ratios were calculated for 

those matching human (A.) and E. coli (B.) proteins to demonstrate the proteome-wide extent of 

ratio suppression and variance among observations. The median and quartiles were plotted to 

indicate the approximate distribution of derived ratios. 
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4.4 QUANTIFYING CO-ISOLATION TO ASSIGN A ‘CO-ISOLATION SCORE’ 

With 35,793 PSM quantitations exhibiting a known extent of ratio suppression, 

visualised in the schematic in Figure 4.4A, it was considered that this information may have 

potential to identify trends that could be used to better understand the properties of co-isolation. 

The features of PSMs, such as the isolation interference, the MS-determined precursor intensity 

and the ion injection time used to derive the product ions of a spectrum were therefore evaluated 

for correlation.  

To first determine the extent of peptide co-isolation as a quantifiable and measurable 

value, for all PSMs matching to E. coli proteins, ‘co-isolation scores’ were calculated from 

MS/MS-observed TMT reporter ion intensities. These were defined as a ratio of HeLa- and 

MCF7-dominant reporter ions, to E. coli-dominant reporter ions, as shown in Figure 4.4B. The 

theoretical values for a purely isolated E. coli peptide for these three models were 50:1, 5.6:1 

and 1.5:1 (log2 (ratios) of 0.58, 2.49, 5.64). Given the substantially greater abundance of human 

peptides, the probability of co-isolation for E. coli PSMs was weighted towards that of human 

peptide contamination. In total, 35,793 E. coli PSM quantitations were scored by this approach.  
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Figure 4.4. Using a complex-proteome spike-in experiment to estimate the correlation of 

co-isolation with PSM features. A. A representation of the E. coli peptide minority proteome 

‘spike-in’ between two dilution series of peptides from HeLa and MCF7 human cell line lysates 

within a TMT 10-plex experiment. B. Calculation of the ‘co-isolation score’ defined for three 

ratios with theoretical values (as pipetted) of 1.5:1, 5.6:1 and 50:1. Compression of these ratios 

was used as a quantitative measurement of co-isolation.  
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4.5 CORRELATING THE ‘CO-ISOLATION SCORES’ WITH PSM FEATURES 

Based on preliminary data describing high-abundant, regulated proteins, correlations 

were observed between PSM features and the extent of their ratio compression. To evaluate this 

trend on a larger, more comprehensive scale, the co-isolation scores were plotted against spectral 

features of the PSMs (Figure 4.5, Appendix A6). To normalise to the data and produce 

comparable scores, the features were first transformed using percentile ranking. 

As expected, isolation interference had the strongest correlation with the extent of TMT-

measured co-isolation (Figure 4.5). However, this was a poor determinant of compression to the 

reporter ions with a maximum R2 value of 0.222. Ion injection time and precursor ion intensity 

values also demonstrated some degree of correlation with the co-isolation score of up to 0.175 

and 0.177, respectively.  This was consistent with the notion that higher precursor ion abundance 

levels would allow more selective isolation, and subsequently more accurate TMT reporter ion 

quantitations. The remaining features demonstrated very poor or no correlation with the co-

isolation score. A notable exception was for peptide precursors with a charge of +2, that gave a 

statistically significant lower co-isolation rate than +3 charged peptide precursors for all 3 tested 

ratios (p<0.0001, T-test) (Appendix A6). 

 

Figure 4.5. Correlating ‘co-isolation scores’ with PSM features. Correlation of the ‘co-

isolation scores’ of the 1.5:1, 5.6:1 and 50:1 ratios (theoretical unsuppressed ratios, as pipetted) 

with percentile ranked PSM features. 
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4.6 CORRELATING THE ‘CO-ISOLATION SCORES’ WITH MULTIPLE PSM FEATURES 

An approach using a combination of multiple features to determine correlation with ratio 

compression was considered. The hypothesis was that the properties of multiple features may 

improve upon the correlations seen with individual features. A resulting quality-defined score, 

would therefore estimate the probability of co-isolation and extent of reporter ion ratio 

compression. By extension, when applied to further data, this estimation could provide a means 

of emphasising reporter ion ratios with minimal compression based on PSM features alone.  

Given the varying dynamic scales of PSM features, the process of scoring was 

simplified by percentile ranking to reduce extremes and to give comparable and cumulative 

scores between features (applied in Figure 4.5). Percentile ranked features also demonstrated 

marginally improved linear correlation coefficients with the ‘co-isolation scores’.  

Initially, iterative combinations of isolation interference, ion injection time and 

precursor intensity demonstrated utility in tandem. The strongest correlation (R2=0.312) was 

observed when combining isolation interference and precursor intensity percentile-ranked values 

(Figure 4.6A). The impact of PEP score and precursor charge on the correlation coefficient were 

measured (giving a value of 1, multiplied by the relative contribution, to the cumulative score for 

+2 peptides). The PEP score was chosen as it is a measure of the statistical likelihood of a true 

peptide match, with most search engines providing an equivalent score. Both features improved 

the model (R2=0.331, for both) and gave further improvement in combination (R2=0.358). As 

precursor intensity and ion injection time are related physical parameters, ion injection time was 

separately tested in the place of precursor intensity and showed further improvement (R2=0.362). 

Each of the three ratio models, 50:1, 5.6:1 and 1.5:1 were then individually assessed for the best 

possible correlation coefficient by iterative adjustment of these cumulative contributing factors.  

Each of these individual models and the final model weighting that was generated as an 

average of these, gave R2 values of 0.263, 0.315 and 0.370 for the 1.5:1, 5.6:1 and 50:1 ratios, 

respectively. The final, averaged, cumulative scoring of isolation interference, ion injection time 

and precursor intensity, PEP and charge of 10, 9, 3, 5 and 5, respectively, was plotted against the 

‘co-isolation scores’ for each of the three ratios to illustrate the correlations of these models 

(Figure 4.6B). This percentile-ranked scoring system was termed a ‘multi-feature weighted’ 

model.  

Finally, to confirm the efficiency of this linear regression model, machine learning was 

employed (conducted by Yawwani Gunawardana) which identified that the 10:9:3:5:5 model 

was highly correlative with the optimal approach (R2 =0.9622) with machine learning-derived 

weighting factors of 0.343 : 0.257 : 0.136 : 0.104 : 0.232. When applied to data analysis 
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downstream the machine learning values gave a correlation of R2>0.99 with the final 10:9:3:5:5 

model. For simplicity, the 10:9:3:5:5 model was therefore applied to further data analysis. 

 

 

Figure 4.6. Using ‘co-isolation scores’ to define optimal multi-feature weighting. A. 

Evaluation of the correlation coefficient of individual and cumulative percentile-ranked features 

with the ‘co-isolation scores’ of PSMs. The optimal weighting was individually determined by 

iterative adjustments for the 1.5:1, 5.6:1 and 50:1 ratios and averaged to give the final multi-

feature model. B. The final correlations between the cumulative percentile-ranked feature 

scoring and the ‘co-isolation score’ for the three co-isolation predicting ratios. 
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4.7 DEVELOPMENT OF AN ONLINE TOOL FOR THE APPLICATION OF MULTI-FEATURE 

WEIGHTING 

A controlled means of investigating any potential value to the multi-feature weighted 

model was required. Ideally this would have taken the form of a complex isobaric labelled 

proteome containing several (20+) non-redundant or 13C-labelled recombinant proteins spiked-in 

with known concentrations mimicking differential expression. Such an experiment, however, 

would have been extremely costly and was outside the scope of this analysis. Instead, the 

comparison of the relative expression between HeLa and MCF7 proteins also provided an 

opportunity to evaluate co-isolation, given that differential expression exists between these two 

cell lines. A general assumption can be made that for a given protein the quantitations of the 

surrogate peptides should, on the whole, be indicative of the same ratio of differential 

expression. 

As well as evaluating the predictive capabilities of the multi-feature weighting model on 

individual proteins. The dilution series also offered the potential to observe the effects of co-

isolation within the lower content peptide labels. 128N and 129N, contained just a fiftieth of the 

peptide content labelled by 126 and 130C and were therefore highly sensitive to ratio 

compression induced by E. coli peptide co-isolation. The same was true, but to a lesser extent for 

127C and 129C labels. Four ratios were defined as 126:130C, 127N:130N, 127C:129C and 

128N:129N termed the ‘100%’, ‘50%’, ‘20%’ and ‘2%’ ratios, respectively, on the basis of the 

relative masses of peptide material assigned to these TMT labels (Figure 4.7A). 

In order to implement multi-feature weighting for the determination of protein ratios, 

requiring several complex calculations, a custom R script was written (courtesy of Cory H. 

White) which allowed the automation of this process. The script was designed to collectively 

analyse the reporter ion ratios for all PSMs matching each protein. Either all PSM ratios were 

combined equally to give an average ratio for each protein or, optionally, weighting could be 

applied to each PSM quantitation on the basis of PSM features. Secondarily to ratio calculation, 

the R script performed a statistical test of each ratio based on the individual quantitations of the 

PSMs. This test provided a multiple-test corrected p-value determined by a two-tailed, paired t-

test. While not entirely suitable for this form of analysis, due to a general absence of normal 

distributions within the data, overall analysis showed that the ratios tended towards a normal 

distribution. The t-test was considered sufficiently robust in these situations however, as it was 

used predominantly as a means of filtering data to define instances where a clear difference was 

apparent in the individual ratios.  
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This script was developed into an online tool (courtesy of Oliver Bills) called SPIQuE 

which dramatically simplified the process of R script usage, providing an online interface with 

simplified options, data upload, automated processing and output download (available at 

SPIQuEtool.com). 

4.8 MODELLING CO-ISOLATION-INDUCED RATIO COMPRESSION WITH DIFFERENTIAL 

PROTEIN EXPRESSION IN CELL LINES 

The SPIQuE tool was employed to normalise, statistically test and determine the protein 

ratios of each of the four ratio comparisons (‘100%’, ‘50%’, ‘20%’ and ‘2%’), independently of 

any weighting (Figure 4.7). Differential expression was defined as the observation of a >2-fold 

up or downregulation with a multiple-test corrected p-value of less than 0.05. The number of 

proteins reaching this threshold for each of the four ratios was demonstrated by Venn diagram 

(Figure 4.7B). Only a minor deterioration was seen for the ‘50%’ ratios and statistics, with 12% 

of the ‘100%’ proteins failing to reach significant differential expression (p<0.05, >2-fold). For 

the ‘20%’ ratios, the impact was more apparent, with 28% of the original ‘100%’ proteins 

determined as significantly, differentially expressed. The ‘2%’ ratios demonstrated a substantial 

collapse of both ratios and statistics, with only 182 of the original 1007 ‘100%’ proteins reaching 

significance and at least a 2-fold change. 

Volcano plots were also used to detail the ratio compression and loss of statistical 

significance in the lower ratios; plotting the log2 (ratios) against the -log10 (p-values) (Figure 

4.7C). The distributions for the volcano plots shows the normalisation efficiency in the ‘100%’ 

and ‘50%’ ratios. The effects of the E. coli-derived TMT reporters co-isolation in the ‘20%’ and 

‘2%’ ratios are apparent, with the higher mass 129N and C channels skewing the results towards 

identifying an MCF7-dominant expression. The log2 (ratios) and the -log10 (p-values) for each 

sub-optimal comparison (‘50%’, ‘20%’ and ‘2%’) were plotted against the ‘100%’-derived 

values (Figure 4.7D) This further demonstrated the ratio compression and reduced statistical 

power for the low-percentage, high-interference channels.  

As anticipated, these results confirmed that, with a lower percentage of peptide mass per 

TMT label, and a higher probability of interference from co-isolated E. coli peptide-derived 

reporter ions, an increased rate of ratio compression was observed, negatively impacting both the 

ratios and statistics. It was concluded that the ‘100%’, ‘50%’, ‘20%’ and ‘2%’ ratios presented a 

suitable test case for evaluating the ability of the multi-feature weighting model to relieve the 

observed effects of ratio compression, from both human peptide co-isolation and E. coli peptide-

derived co-isolation. Finally, it was concluded that the SPIQuE script was an effective and 

reproducible means of generating normalised ratios and statistics. 
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Figure 4.8 describes the steps taken and a worked example of applying the multi-feature 

weighting model to PSM-level data. Three proteins which demonstrated unweighted, statistical 

significance for all 4 HeLa:MCF7 ratios with between 8 and 12 PSM quantitations were chosen 

for this example. In these three cases, this highlights how an improvement can be derived from 

multi-feature weighting observed in both ratios and statistics. To visualise the effect of the PSM-

weightings on these values for each protein, the individual weighting scores were plotted against 

their respective PSM-derived log2 (ratios) for the ‘100%’ HeLa:MCF7 quantitation. This 

demonstrated a trend towards reduced weightings given to PSMs which exhibited greater 

relative ratio compression. 

Multi-feature weighting was applied to the ratios of the HeLa:MCF7 proteome as a 

whole, for all 4 comparisons (‘100%’, ‘50%’, ‘20%’ and ‘2%’) (Figure 4.9). When the resulting 

ratios were plotted against the unweighted ratios a trend emerged suggesting that multi-feature 

weighting provided a proteome-wide effect on ratio decompression. The vast majority of protein 

ratios were indicative of a greater or unchanged fold-change in protein expression after multi-

feature weighing. 

This trend was predominantly apparent for the ‘100%’, ‘50%’ and ‘20%’ ratios, while 

even for the ‘2%’ ratios, the few proteins demonstrating more than a 2-fold change, the majority 

of these had larger ratios with multi-feature weighing. Overall, for these proteins, multi-feature 

weighing provided a decompression effect averaging a 25% increase in the fold changes 

determined, relative to the unweighted analysis. The same evaluation was performed for proteins 

demonstrating an upregulation specifically in MCF7 cells which demonstrated an identical trend. 

While this demonstrated a successful decompression of ratios in proteins at the extremes of 

differential expression, further evaluation was required to determine the efficacy of the approach 

on more subtle ratios. 

 

Figure 4.7. Peptide dilution series with spiked-in peptides models ratio compression from 

co-isolation. A. Defining the ratios used to model the effects of co-isolation on the human 

PSMs. B. The number of proteins with differential expression with both a fold-change of >2 and 

a multiple test-corrected p-value of <0.05 for each of the 4 defined ratios. Paired t-testing of the 

log10 (reporter ion intensities) evaluating all individual PSM ratios uniquely matching each 

protein. C. Volcano plots for each of the defined ratios plotting the log2 (ratios) of HeLa:MCF7 

protein expression against the corresponding multiple test-corrected p-values (plotted as -log10 

(p-values)) for each calculated protein expression change. D. The ’50%’, ‘20%’ and ‘2’%’ ratios 

and p-values from C. plotted against the corresponding ‘100%’ values. 
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Figure 4.8. Workflow and worked examples of weighted ratio and p-value calculation by 

SPIQuE. The table demonstrate sets of PSMs specific to three differentially expressed proteins 

and details; the percentile ranking of PSM features, the cumulative and weighted summation of 

these ranks and the calculation of the final weighting factors used in the weighted calculation of 

the protein ratios and their statistics. The weightings are plotted against their respective log2 

(ratios) to demonstrate correlation with ratio compression for the individual PSMs. The three 

proteins with differential expression were mucin-1 (MUC1) (B1AVQ7), FAM107B (C9J6N5) 

and inositol monophosphatase 2 (IMPA2) (O14732). 
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Figure 4.9. Ratio decompression in HeLa:MCF7 ratios from multi-feature weighting. 

Ratios determined by multi-feature weighting plotted against ratios determined by the 

unweighted analysis. 
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4.9 RECOVERING DIFFERENTIALLY EXPRESSED PROTEINS FROM COMPRESSED RATIOS 

To test the accuracy of the multi-feature weighting approach on a proteome-wide scale, 

the 1007 proteins identified for the ‘100%’ ratios by the unweighted approach as significant 

(p<0.05) with a differential expression of at least 2-fold were used as a reference point. These 

proteins were considered the most confidently, differentially expressed, given that they were 

determined from the most confident data (‘100%’ ratios) with the most stringent, unweighted, 

approach. It was therefore concluded that determination of these proteins as differentially 

expressed (p<0.05, >2-fold) in the ‘20%’ and ‘2%’ ratios could provide a measure of the success 

of different approaches to ratio determination. 

Each of the four ratios were subjected to analysis by four alternate means of ratio and 

statistical calculation: Firstly by the unweighted analysis described in Figure 4.7; secondly by 

the commonly adopted approach of filtering out spectra with >30% isolation interference; thirdly 

by weighting the relative contribution of PSM quantitations using the percentile-ranked isolation 

interference; and finally, by the ‘10:9:3:5:5’ multi-feature weighting model. These analyses were 

then filtered to observe the determination rates of the 1007 confidently differentially expressed 

proteins. The log2 (ratios) and -log10 (p-values) for these 1007 proteins were plotted as volcano 

plots for these 16 analyses (Figure 4.10). Filtering out the PSMs with >30% isolation 

interference demonstrated some benefit only to the compressed ‘20%’ and ‘2%’ ratios with an 

additional 31 and 60 proteins observed with a >2-fold differential expression compared to 

unweighted, respectively. Filtering caused a loss of significance for many of the proteins, 

observable as a noticeable downward shift in the volcano plots, for all but the ‘2%’ ratios. The 

reduced significance caused by the removal of these quantitations demonstrated that despite the 

high level of observed interference, they still had value in the calculation of protein expression 

statistics. 

For the isolation interference-only and multi-feature weighting approaches similar 

effects were observed on the number of proteins reaching a >2-fold differential expression, but 

at a consistently greater degree than that of filtering. Multi-feature weighting was, however, 

consistently more effective than both isolation interference-centric analyses for ratio calculation 

and correctly determined 41% more proteins with >2-fold differential expression. Statistically, 

both the isolation interference and multi-feature weighting approaches failed to identify just 3% 

and 2% proteins as significant for the ‘100%’ ratios, respectively; likely as an artefact of this 

alternative approach on marginally significant proteins. For the ‘50%’, ‘20%’ and ‘2%’ ratios, 

however, a substantially larger number of the 1007 proteins were identified as significantly, 

differentially expressed (p<0.05, >2-fold) compared to the unweighted and filtered analyses. 

‘Multiple features’ consistently outperformed ‘isolation interference’ as a statistical weighting 
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approach. The most pronounced improvement was observed for the ‘20%’ and ‘2%’ ratios, with 

2.9% and 5.6% of the 1007 proteins recovering significance in both cases, respectively.  

Overall, the multi-feature weighting approach consistently provided the most effective 

means of determining differential protein expression in compressed data, facilitating the 

strongest recovery of proteins which were impacted by ratio compression in the ‘20%’ and ‘2%’ 

ratios. Additionally multi-feature weighting provided up to 46% more significantly differentially 

expressed proteins (p<0.05, >2-fold) than the unweighted analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Comparing the efficiency of approaches in the recovery of differential protein 

expression from compressed ratios. Differential protein expression for the 100%, 50%, 20% 

and 2% ratios was determined by: 1. unweighted analysis of all PSM quantitations; 2. only 

quantitations from spectra with <30% isolation interference; 3. quantitations weighted by their 

isolation interference alone and; 4. quantitations weighted by multiple PSM features (isolation 

interference, ion injection time, precursor intensity, PEP score and charge with relative of 

weightings of 10:9:3:5:5, respectively). The 1007 proteins identified as significantly, 

differentially expressed (p<0.05, >2-fold) by the unweighted, ‘100%’ (126:130C) ratios were 

used as a reference point as the most confident differentially expressed proteins. Volcano plots 

demonstrate the log2 (ratios) and -log10 (p-values) determined by each approach for each of the 

ratios. The numbers describe the quantity of proteins in agreement with those 1007 ‘confident’ 

differentially expressed for: 1. the number of proteins with both a p-value of <0.05 and a 

differential expression of >2 fold; and 2. the number of proteins with a differential expression 

of >2 fold. 
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4.10 EVALUATING THE ADDITIONAL DIFFERENTIALLY EXPRESSED PROTEINS 

DETERMINED BY MULTI-FEATURE WEIGHTING 

While the previous section demonstrated an ability to recover the determination of 

differentially expressed proteins by multi-feature weighting, it did not consider the potential 

false discovery that may have been caused by this novel approach. It was therefore considered 

important to interrogate any proteins identified reaching significant differential expression 

(p<0.05, >2-fold) uniquely as a result of multi-feature weighting. Figure 4.11 evaluates the 

proteins determined by multi-feature weighting and dissects out those proteins which were not 

considered differentially regulated by established approaches.  

Proteins reaching significant differential expression (p<0.05, >2 fold) by the 

unweighted, isolation interference filtered, isolation interference weighted and multi-feature 

weighted ‘100%’ ratio analyses were plotted as a Venn diagram (Figure 4.11A). Of the 1120 

significant and differentially expressed proteins determined by the unweighted and isolation 

interference-filtered approaches, 61 (5.4%) were not determined by multi-feature weighting. By 

contrast, multi-feature weighting, determined 134 additional proteins reaching significance for 

the unweighted or filtered analyses, the majority of these (70) were also present for the isolation 

interference weighting.  

Figure 4.11B examines the number of additional proteins determined as significant, 

differentially expressed (p<0.05, >2 fold) for the ‘50%’, ‘20%’ and ‘2%’ ratios. Whilst the 

majority of these were determined at ‘100%’, 190 proteins reached significance uniquely to the 

other sub-optimal ratios. The proteins for the ‘100%’ ratios, described in this Venn diagram were 

the same as those compared to the other approaches in Figure 4.11A. 

The 70, 64 and 190 proteins from Figure 4.11A and Figure 4.11B uniquely determined 

as differentially expressed a result of multi-feature weighting were examined for significance 

(p<0.05) in any of the ‘100%’, ‘50%’ ‘20%’ or ‘2%’ ratios (Figure 4.11C). This was done to 

identify those substantial outliers which exhibited significance uniquely as a result of the multi-

feature weighting. A total of 42 of the 134 ‘100%’ multi-feature weighting-unique proteins were 

newly determined as significant. Of the 190 sub-optimal ratio-determined proteins, only 19 were 

not observed as significant for their respective ‘50%’, ‘20%’ and ‘2%’ unweighted ratio 

analyses. This was potentially an artefact of the skewing effects of E. coli interference observed 

in Figure 4.7C. 

These 42 and 19 proteins uniquely determined as significantly, differential expressed 

(p<0.05, >2 fold) with multi-feature weighting were evaluated by plotting the -log10 (p-values) of 

the weighted versus the unweighted results (Figure 4.11D). This plot illustrates the greatly 
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variable effects multi-feature weighting had on the effects on p-values, relative to the 

unweighted approach. Some proteins reached significance though a marginal improvement, 

while others, such as the protein denoted with ‘1’ had its p-value reduced from 0.711 to 0.047. 

Further investigation of these proteins exhibiting a sizeable shift in p-values by multi-feature 

weighting was therefore conducted. 

To demonstrate the impact of the multi-feature weighting on the least-likely 

differentially expressed proteins, PSM weightings of the 20 least significantly regulated proteins, 

as determined without weighting, were plotted against their individual PSM log2 (ratios) (Figure 

4.11E). For the majority of these proteins, a trend was apparent with weightings for each protein 

selectively favouring those PSMs with the greatest observed fold change. Given the assumption 

that all the PSMs for each protein should exhibit the same, or very similar fold changes, the 

multi-feature weighting model appears to be correctly predicting an approximate probability, for 

each of the PSMs, of co-isolation and ratio compression. Those cases with the greatest shift in 

significance, (plots 1-6) contain individual PSMs ratios indicative of the opposite direction of 

differential expression. Based purely on the PSM features, these were determined as ‘poor’ 

quantitation events and subsequently had a minimised contribution to the statistics and ratio 

calculations. While such a trend is absent from plot 11, it is clear that all the PSM quantitations 

are indicative of truly regulated proteins – the outlier in this case had 96% isolation interference.  

By evaluating the individual PSM quantitations of these 20 proteins, it was clear that the 

multi-feature weighting model enabled efficient prediction of precursor co-isolation and ratio 

compression within spectra on the basis of PSM feature alone. Within the context of this 

controlled dataset, the multi-feature weighting model resulted in an improvement of statistics 

and reduced ratio compression that improved the determination of differentially expressed 

proteins with greater accuracy and in greater number. The question remained, however, if this 

approach would translate to other, less controlled datasets. 



136 

 

 



137 

 

Figure 4.11. Evaluating the additional, significantly differentially expressed proteins 

determined by multi-feature weighting. A. The number of proteins identified from the ‘100%’ 

(126:130C) ratios as significantly differentially expressed (p<0.05, >2-fold) by: 1. unweighted 

analysis of all PSM quantitations; 2. only quantitations from spectra with <30% isolation 

interference; 3. quantitations weighted by their isolation interference alone and; 4. quantitations 

weighted by multiple PSM features (isolation interference, ion injection time, precursor 

intensity, PEP score and charge with relative of weightings of 10:9:3:5:5, respectively) were 

examined for overlap using a Venn diagram B. Number of proteins identified as significantly, 

differentially expressed (p<0.05, >2-fold) by multi-feature weighting of the ‘100%’, ’50%’, 

‘20%’ and ‘2%’ ratios were examined for overlap using a Venn diagram. C. Proteins identified 

as significantly, differentially expressed (p<0.05, >2-fold) uniquely by the multi-feature 

weighting approach were compared and filtered to select only those which had gained 

significance by the multi-feature weighted approach using a Venn diagram. D. The -log10 (p-

values) for proteins only reaching significance by multi-feature weighting were plotted against 

their respective unweighted p-values. E. For proteins reaching significance only by multi-feature 

weighting (D.), the individual PSM quantitations and their respective multi-feature-derived 

weighting scores of the 20 lowest unweighted p-values were plotted. 

4.11 EVALUATING MULTI-FEATURE WEIGHTING IN UNCONTROLLED DATASETS 

 With the demonstration of ratio decompression, ratio recovery and the identification of 

additional, potentially differentially regulated proteins in the HeLa/MCF7 data, it was 

considered that this could be a data-set-specific phenomenon – given that the multi-feature 

weighting was defined using the spike-in within the same 2D-LC MS/MS analysis.  

To demonstrate its utility under different experimental conditions, the multi-feature 

weighting approach was applied to an iTRAQ 8-plex data set acquired with an LTQ Orbitrap 

Velos (Johansson et al.) [390]. This quantitative proteome included biological replicates, which 

provided the opportunity to assess the reproducibility of significantly, differentially expressed 

(p<0.05, >2 fold) determination. The search report was downloaded from PRIDE (PXD000281), 

consisting of an analysis of biological replicates (controls; 113 and 114, treated; 119 and 121) of 

therapeutic response to fulvestrant in a human breast cancer cell line LCC2. The data was 

acquired by an LTQ Orbitrap Velos with HCD and CID fragmentation and an isolation width of 

2 m/z, quantitating approximately 7000 proteins from approximately 190000 PSM quantitation 

events. Using SPIQuE, the two independent treated:control ratios of 119:113 and 121:114 were 

subject to unweighted and ‘10:9:3:5:5’ multi-feature weighted analyses. Figure 4.12A describes 

the number of proteins determined as significantly, differentially expressed (p<0.05, >2 fold) as 



138 

 

a result of these two different approaches. The majority of such proteins were determined 

independently of weighting across the two ratios (90) but, when applied, weighting yielded an 

additional 44 (49%) proteins. Of these 44 proteins, 20 were commonly determined for both 

ratios. 17 proteins, determined for only one ratio, were confirmed as significantly, differentially 

expressed in the other ratio upon the implementation of weighting. 

Plotting the weighting-derived -log10 (p-values) for both ratios for each of the 44 

weighting-determined significantly, differentially expressed (p<0.05, >2 fold) proteins 

highlighted a reproducible trend shifted in favour of the multi-feature weighting approach 

(Figure 4.12B). On closer examination, 12 proteins were determined to be uniquely significant 

as a result of multi-feature weighting – demonstrating a similar, wide distribution of p-value 

improvements to that seen in Figure 4.11D. The weighting-derived absolute log2 (ratios) of these 

44 proteins were also plotted against their respective unweighted values (Figure 4.12C). This 

demonstrated that for those 44 proteins with significance for both weighted and unweighted 

calculations, the multi-feature weighting-derived ratio improvements, also played a role in the 

additional determination of differentially expressed proteins (p<0.05, >2 fold). 

The 12 proteins specifically acquiring significance as a result of multi-feature weighting; 

three for 119:113 (proteins 1-3), five for 121:114 (proteins 4-8) and four for both ratios (proteins 

9-12), were evaluated by plotting individual PSM quantitations against respective weighting 

scores (Figure 4.12D). Weightings were once again indicative of a trend towards the selective 

emphasis of uncompressed ratios, again explaining the derived improvements to significance and 

ratios. 

Two additional experiments were analysed by multi-feature weighting (Figure 4.13A), 

with data also downloaded from PRIDE (PDX001125 and PDX000413). The -log10 (p-values) 

for all quantified proteins were plotted to compare the weighted and unweighted analyses 

(Figure 4.13B). The number of proteins reaching significance (p<0.05) by each approach was 

shown by Venn diagram. These were plotted alongside the equivalent analyses of the 

HeLa:MCF7 ratios and the LCC2 ratios. When multi-feature weighting was applied, all eight 

ratios revealed a consistent pattern of statistical improvement. Only a small percentage of -log10 

(p-values) decreased, and the vast majority increased as a result of the multi-feature weighting. 

The Venn diagrams demonstrated that the multi-feature weighting approach yielded ~10% more 

proteins reaching the threshold of significance and only ~3% losing significance. The ratios 

generated with and without weighting were evaluated using fold change cut-offs of 2 and 1.5. 

The number of proteins determined to reach these thresholds across the 8 ratios are illustrated in 

Figure 4.13C. For the 2-fold threshold, all 8 weighted analyses provided between 10 and 30% 

more proteins with, at most, a loss of 4%. The 1.5-fold cut-off demonstrated marginally less 
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advantage to weighting with between 8 and 26% more proteins and a loss of up to 7%. However, 

across all ratios, for all experiments, a consistent trend of improvements was observed as a result 

of multi-feature weighting.  

The multi-feature weighting strategy demonstrated similar improvements across eight 

ratios in four independently acquired experimental datasets. Overall, this suggests that this 

approach has generic utility for improving the determination of significantly, differentially 

expressed proteins from isobaric tag labelled data. 
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Figure 4.12. Multi-feature weighting analysis of differential protein expression in 

uncontrolled data.  Multi-feature weighting analysis of an external dataset downloaded from 

PRIDE (project identifier PXD000281). In brief, these data consisted of an analysis of biological 

replicates (controls; 113 and 114, treated; 119 and 121) of therapeutic response to fulvestrant in 

a human breast cancer cell line LCC2. Data was acquired by an LTQ Orbitrap Velos with HCD 

and CID fragmentation and an isolation width of 2 m/z. iTRAQ 8-plex quantitated 

approximately 7000 proteins from approximately 190000 PSM quantitation events. A. Multi-

feature weighted and unweighted ratios and p-values were calculated using SPIQuE for the 

biological replicates 119:113 and 121:114. PSM quantitations and features were subjected to the 

SPIQuE workflow. The number of proteins determined as significantly differentially expressed 

(p<0.05, >2-fold) for each analysis was displayed as a Venn diagram. B. Comparison of the 

weighted and unweighted -log10 (p-values) for those proteins uniquely determined by the multi-

feature weighting approach for the 119:113 and 121:114 ratios. Shading defined the regions of 

significance (p<0.05). C. The absolute (log2 (ratios)) for proteins identified as significantly, 

differentially expressed uniquely by the multi-feature weighting approach were plotted. Shading 

highlights the regions of a >2-fold change. D. For proteins reaching significance only by multi-

feature weighting, the individual PSM quantitations and their respective multi-feature-derived 

weighting scores were plotted for 119:113 (1-3, red) and 121:114 (4-8, orange). For plots 9-12, 

both ratios gained significance. 
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Figure 4.13. Weighted versus unweighted-determined differential expression across 

multiple datasets. A. The details of the evaluated experiments; from the present study, the 

LCC2 data (evaluated in Figure 4.12) and two additional isobaric tag-labelled proteomics 

datasets downloaded from PRIDE. B. PSM quantitations and features from these studies were 

subject to the SPIQuE workflow by both the multi-feature weighted and unweighted approaches 

to determine the respective ratios and significance values resulting from each method. The 

resulting -log10 (p-values) for each of the 8 ratios were plotted for weighted versus unweighted. 

The number of proteins reaching a significance threshold of p<0.05 by each method was 

demonstrated by Venn diagram (unweighted; left, weighted; right). C. As for B, Venn diagrams 

were used to demonstrate the number of proteins reaching a fold change threshold of 2 and 1.5 

for each of the 8 ratios when the weighted and unweighted approaches were applied. 

4.12 DISCUSSION, LIMITATIONS AND CONCLUSIONS 

This chapter has evaluated the properties of PSMs in an attempt to better understand 

ways of predicting the extent of peptide co-isolation and ratio compression. Isobaric tags, such 

as TMT and iTRAQ, have become widely adopted approaches for relative quantitative 

proteomics, but their utility remains limited, primarily due to ratio compression resulting from 

co-isolation. Although approaches exist to minimise the effects of co-isolation, the techniques 

are not always widely accessible. The proposed multi-feature weighting approach, carefully 

defined using an extensive, complex spike-in proteome, has demonstrated an ability to predict 

the relative ratio compression of PSMs in both controlled and uncontrolled isobaric tag-labelled 

data. In combination with the use of SPIQuE this has demonstrated an improvement to both the 

calculation of ratios and the statistical evaluation of differential protein expression.  

The correlation of features described in Figure 4.5, followed the expected principles of 

MS. The intrinsically related features of precursor intensity and ion injection time both 

correlated with ratio compression presumably on the basis that the higher the intensity of a 

precursor, the lower the probability of an equal or greater intensity precursor imposing  ratio 

compression through co-isolation. The converse is true for peptides with a low intensity, with the 

additional effect of precursors being isolated which fall below the threshold of detection, but 

which still contribute to the total reporter ions when summated. The effect of co-isolation of sub-

detection threshold precursors may be a component causing low correlation between isolation 

interference and the determined co-isolation scores. Additionally, some correlation will have 

been lost by co-isolation of two or more E. coli peptides, however given the minority status of 

these within the proteome any impact will have been minimised.  



144 

 

Peptides with a 2+ charge demonstrated significantly lower co-isolation and improved 

the co-isolation score. This may primarily be an effect of higher charged peptides being isolated 

in the low m/z detection region, which typically contains a greater number of peptides. The 

improvement to the multi-feature weighting model demonstrated by the use of the peptide 

probability measure, PEP score, possibly relates to the more effective fragmentation and 

intensities seen by peptides with better PEP scores giving a more intense and less noisy reporter 

region.  

While the SPIQuE tool and multi-feature weighting provide an overall improvement to 

ratios and statistics for isobaric tag-labelled data, it remains limited by the low R2 value of the 

multi-feature model (0.37). This is compensated for by the trend that emerges when a larger 

number of quantitations are available, as the model predicts the probability of ratio compression. 

When lower number of PSM quantitations are available for a protein, the probability of an 

incorrect p-value evaluation resulting from outlying weighting assignments is raised. As more 

accurate measures and features of PSM-specific co-isolation become readily available, such as a 

precise measure of peaks in the MS2 spectra not derived from either the target peptide 

fragmentation [310] or common label-derived artefacts [391], the weighted statistics approach 

promises even more accurate improvements to the reduction of ratio compression.  

The model’s greatest utility is in guiding the shortlisting process of those proteins most 

likely to be differentially expressed in a proteome. The observation that more than 80% of the E. 

coli-modelled differentially expressed proteome’s PSMs had more than 50% ratio compression 

is a stark demonstration of how many protein ratios are adversely effected by co-isolation. 

SPIQuE offers a means of automatically selecting the majority of these PSMs with a high 

probability of ratio compression and minimising their effect on the resulting protein ratios. In 

this capacity, SPIQuE provides a superior means of post-acquisition iTRAQ or TMT data 

analysis, allowing the user to more accurately consider the quality of their PSMs in their large 

scale quantitative analyses. When querying data for differential protein expression, the use of 

this tool as a secondary analysis may yield novel findings compared to the primary analysis, 

offering a simple, automated means of stimulating further hypotheses. However, the manual 

interrogation of these candidates’ raw data is still important in drawing biological conclusions, 

regardless of the approach taken to ratio calculation. 

Statistical analysis by t-test is limited in the context of iTRAQ and TMT experiments 

where proteins are quantified with quantitations with very consistent but minimal ratios, eg. 

<1.1. This can be accounted for by implementing a fold change cut-off for analyses.  
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The datasets used as test cases for SPIQuE, were from Orbitrap-derived analyses, due to 

availability, but the principles suggest that an isolation interference- and ion injection time-

dominant weighting approach will be applicable to iTRAQ and TMT data from other types of 

MS analysis. Additionally, the use of alternative peptide identification probabilities in the 

weighting model, where the PEP score is not available, should be universally applicable, due the 

minor influence this has on the model and the comparable nature of these scores.  

The focus of SPIQuE’s development has been to provide a simple tool that can be used 

by any researcher, regardless of knowledge of scripting languages. The website spiquetool.com 

was created with this aim in mind. 

In conclusion, SPIQuE and multi-feature weighting promise to assist users in the post-

acquisition analysis of isobaric tag-labelled data, facilitating a more accurate interpretation of 

relative protein expression. 
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5.0 QUANTITATIVE PROTEOMIC CHARACTERISATION OF 

Eµ-MYC AND Eµ-TCL1 B-CELL CANCERS 

5.1 CHAPTER INTRODUCTION 

Building on the characterisation of the Eμ-myc model described in Chapter 3, the 

further application of the latest proteomic methodologies was considered. Several areas for 

improvement upon this previous study design were identified. The isolation of fresh tumour B 

cells, rather than from frozen splenocyte aliquots, would ensure maximum cell viability ensuring 

minimum deviation from in vivo protein expression and identical handling compared with 

controls. The characterisation of the whole cell populations, rather than FFE enrichment, was 

used for the reasons outlined in Section 3.10, such as ensuring sufficient protein material and 

minimising cell handling. Consideration was given to utilising the full capacity of an iTRAQ 8-

plex isobaric tag labelling set allowing the inclusion of more controls and biological replicates. It 

was also decided that increasing the number of samples per control pool to 6 would make the 

comparison to controls more robust, minimising any variation from single outlying samples.  

In addition to these design improvements, several technical advancements had become 

readily available that promised a substantial improvement in the depth of proteome coverage. 
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Access to an Orbitrap Elite MS platform offered the potential to dramatically increase the depth 

of proteome coverage, offering ultra-high resolution Orbitrap analysis, 12 Hz LIT MS/MS 

acquisition speed and a non-linear ion path reducing background noise [269]. A means of 

increasing peptide ESI efficiency using DMSO also offered the potential to increase proteomic 

coverage with stronger peptide signals [268]. Access to software implementing the target-decoy 

validation tool ‘Percolator’ also became readily available; which uses semi-supervised learning 

to more accurately and efficiently determine peptide identifications [278]. The SPIQuE tool, 

described in Chapter 4 also promised to increase the accuracy of protein ratios, which also acted 

to demonstrate the substantial depth of proteome coverage which could be generated using these 

approaches. 

In addition to a more comprehensive characterisation of the Eμ-myc model of BL, the 

Eµ-TCL1 mouse was chosen as a second B-cell cancer model. Eµ-TCL1 mice develop a CLL-

like B-cell tumour induced by the overexpression of the oncogene, TCL1, by the same Ig 

enhancer, Eμ, as the Eμ-myc model [144]. The incorporation of this model into the iTRAQ 8-

plex experimental design allowed a simultaneous cross comparison between two contrasting B-

cell cancer phenotypes. 

The Eμ-myc model takes approximately 100 days to present with a terminal tumour, at 

which stage they develop aggressive lymphomas frequently presenting with splenomegaly, 

thymomas, mesenteric tumours and peripheral lymph node tumours. The time course from first 

presentation to lethality is rarely more than a week [176, 188]. In contrast, Eµ-TCL1 mice 

present with an accumulation of blood-borne CD5+ B220+ leukaemic cells, at around 3-5 months 

of age [144]. This population accumulates over the period of approximately a year, when mice 

become terminal with splenomegaly with white pulp hyperplasia and other organs demonstrating 

lymphocytes infiltration [145].  

The TCL1 oncogene effects are less clearly defined than those for myc, with multiple 

pathways contributing to TCL1-driven oncogenesis. The pathways engaged by TCL1, such as 

the BCR, AKT, p300 and NF-κB activation, have been shown to contribute to cancer 

development in the Eμ-TCL1 model [218-221]. The extent of these pathways’ contributions to 

tumourigenesis and comprehensiveness of this list, however, remains uncertain. In contrast, for 

the Eμ-myc model, the pleiotropic, proliferative and stem-like-promoting effects of myc 

overexpression are well-characterised mechanism of cancer development [17, 165, 178-180]. 

Proteomics offers an unbiased, systematic means of identifying proteins differentially 

expressed in the Eμ-myc and Eμ-TCL1 B-cell cancer models that may help to identify proteins 
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involved in tumourigenesis, cancer proliferation and potentially means of inhibiting growth in 

these tumours. 

This chapter describes the characterisation of the Eμ-myc and Eμ-TCL1 B-cell cancer 

models by quantitative iTRAQ proteomics, applying the 2D-LC MS/MS methods described in 

Section 2.19 and the SPIQuE approach to quantitation detailed in Chapter 4. 

5.2 Eµ-MYC AND Eµ-TCL1 TUMOUR PRESENTATION 

To better understand the Eμ-myc and Eμ-TCL1 models for defining the biological 

conditions for proteomics characterisation, the natural history of the disease was observed in 27 

Eµ-myc mice and 14 Eµ-TCL1 mice. Figure 5.1 demonstrates that the majority of Eµ-myc 

tumours appeared as terminal between 50 and 150 days. The median age of terminal presentation 

was 106 days and the SD of time to presentation was 69 days. Eµ-myc mice presented with 

splenomegaly in the majority of cases, as well as with frequent thymomas, lymph node tumours 

and mesenteric tumours. Other observations included a generally reduced haematocrit and 

increased haemolysis, in agreement with the literature [176, 188].  

In comparison, Eµ-TCL1 mice demonstrated a peak of mortality at around 1 year of age, 

with the majority of terminal tumours presenting between 10 and 14 months of age. The median 

age of terminal tumour presentation was 352 days, with an SD of 54 days.  

As demonstrated by Bichi et al [144], Eμ-TCL1 mice present with an accumulation of 

CD5+ B cells in the peripheral blood. These were detected by flow cytometry of blood staining 

for CD5 and B220. To demonstrate the typical profiles of the CD5+ B220+ tumour cell 

population, blood from Eµ-TCL1 and WT mice at 3 months and Eµ-TCL1 mice at 10 months 

was analysed, shown in Figure 5.2. At 3 months, the CD5+ and B220+ stained lymphocyte 

population of Eµ-TCL1 mice demonstrated no difference to WT lymphocytes, in contrast with a 

clear tumour population at 10 months. 

Figure 5.2A illustrates the presentation of a raised leukaemic population of CD5+ B220+ 

cells, intermediate in expression of both CD5 and B220 relative to T and B cells, respectively. 

Figure 5.2B plots the concentration of lymphocytes in the blood against the CD5+ B220+ for the 

14 terminal Eµ-TCL1 mice described in Figure 5.1 relative to 3-month-old WT and Eµ-TCL1 

mice. The blood concentration of leukaemia cells did not consistently differentiate healthy from 

terminal mice, whereas CD5+ B220+ cell population percentage gave the clearest separation of 

the two terminal and non-terminal states. An approximately linear correlation was observed 

above that of a CD5+ B220+ cell population 60%. Figure 5.2B also demonstrates that at 3 
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months of age, Eµ-TCL1 mice present with little difference to WT, for either the blood 

lymphocyte concentration or the percentage of CD5+ B220+ cells. 

 

Figure 5.1. Eµ-TCL1 and Eµ-myc terminal tumour presentation. Kaplan-Meier survival 

curve demonstrating terminal tumour presentation of 27 Eµ-myc mice and 14 Eµ-TCL1 mice 

compared to WT littermates. All three genotypes demonstrate significantly different survival 

times from one another, P<0.001. 
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Figure 5.2. CD5+ B220+ leukaemic populations appearing in terminal Eµ-TCL1 mice. A. 

PBMCs stained for CD5 and B220, where the gated population describes the common bounds of 

the leukaemic population of CD5+B220+ cells. For each condition, PBMCs from 4 mice were 

pooled. B. Blood from 22 Eµ-TCL1 mice and 8 WT mice of 3 months of age and 14 terminal-

stage Eµ-TCL1 mice was analysed to determine the lymphocyte concentrations and CD5+B220+ 

cell percentage. Data from monthly screenings of the lymphocyte concentrations and 

CD5+B220+ cell percentage was plotted for terminal mice, with measurements taken no more 

than a month prior to terminal presentation. 
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5.3 Eµ-MYC AND Eµ-TCL1 B-CELL CANCER QUANTITATIVE PROTEOMICS DESIGN AND 

WORKFLOW 

Having characterised the time course of tumour development in the Eμ-myc and Eμ-

TCL1 models, an appropriate proteomics experiment was designed that could be accommodated 

within an iTRAQ 8-plex experiment. Consideration was given to understanding the protein 

expression of B-cell tumours relative to WT B cells as well as pre-tumour B cells from both 

models. 

B cells were derived from the spleen as performed for the characterisation described in 

Chapter 3, and consistently provided enough material for proteomics analysis. MACS was used 

as detailed in Section 2.8.1, which again gave a suitable purity of B cells for proteomics. All 

samples were derived from female mice to avoid inconsistencies that may have arisen from 

gender dimorphism, as well as due to a higher availability because males were typically kept for 

breeding purposes. To reduce variability that might exist between individual samples while 

accommodating the experiment within a single iTRAQ 8-plex, multiple samples were pooled.  

For the non-tumour control samples, due to low cell numbers and to minimise handling 

time, splenocytes were pooled in batches of three upon collection and processed as such. Given 

the previous observations of an increased number of differentially expressed proteins in tumours 

(Chapter 3), the Eµ-myc and Eµ-TCL1 tumour samples were handled individually and 

characterised as pools of 2. Reproducibility of the tumour pools was assessed by the 

incorporation of a biological replicate for each tumour. The characteristics of these samples, 

including splenocyte cellularity and B-cell yield is detailed in Figure 5.3 with additional details 

including the purity and viability of B-cell samples in Appendix A7. 

To define differential protein expression from normal precursors, splenic B cells were 

isolated from WT littermates at 6 weeks of age to act as a control against which iTRAQ ratios 

would be defined. An aged WT B-cell control was from WT mice at 200 days of age also 

assessed; the approximate average age of tumour presentation across the two models. B cells 

were isolated from Eμ-myc and Eμ-TCL1 mice at 6 weeks of age as a means of characterising 

the pre-tumour proteomes in these models (Figure 5.3).  

Tumour and non-tumour B cells were isolated, washed and snap frozen as cell pellets 

using the workflows summarised in Figure 5.3 and described in Section 2.10 and Section 

2.11.2. Once all samples had been procured, cell pellets were defrosted and lysed using a 

combination of trituration and sonication to solubilise proteins as thoroughly as possible.  

 For each pair of control sample replicates, each consisting of material derived from 3 

mice, 50 ug of cell lysate was pooled. For the tumour samples, 50 ug of cell lysate from two 
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tumours was pooled. Accordingly, the 8 subsequent lysate pools were then subjected to 

reduction, alkylation and digestion by trypsin, as described in Section 2.19.2. The resulting 

peptides were allocated to iTRAQ 8-plex labels as described in Figure 5.3. The labelled peptides 

were then pooled, lyophilised and subjected to high-pH, C8, reverse phase chromatography to 

pre-fractionate the peptides as described in Section 2.19.4. Each of the subsequent 69 peak-

dependent fractions were then further resolved by low-pH, C18, reverse phase chromatography 

and analysed by in-line electrospray ionisation and MS characterisation and MS/MS 

characterisation by DDA, as described in Section 2.19.5.  
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 Figure 5.3. The experimental design and workflow for the 8-plex iTRAQ characterisation 

of the Eμ-myc and Eμ-TCL1 B-cell proteome. This describes, in descending order: The 8 

biological conditions or replicates for which samples were collected for MS characterisation 

including age, genotype and biological state – the ‘traffic light’ colours represent the severity of 

tumour risk/progression. Splenocytes were subjected to negative B-cell isolation using an 

antibody cocktail to label and deplete non-B cells. The isolated B cells were washed and 

validated for purity before snap freezing. After storage in liquid nitrogen, B-cell lysates were 

prepared by trituration and sonication of the B-cell pellets. Lysates were pooled to their 

respective conditions to give 8 100 µg pools. B-cell lysate pools were reduced, alkylated and 

proteolysed with trypsin. Peptides were labelled by iTRAQ 8-plex, pooled and subjected to 

prefractionation chromatography to reduce sample complexity generating 69 fractions. Each 

peptide fraction was subject to a second round of chromatography, in line with electrospray 

ionisation, MS detection and data-dependent MS/MS characterisation.  

5.4 Eµ-MYC AND Eµ-TCL1 PROTEIN IDENTIFICATION AND RELATIVE QUANTIFICATION 

Spectra produced by the MS analysis were analysed using target decoy searching as 

described in Section 2.19.6 and Figure 5.4. CID and HCD spectra were subjected to separate 

searches due to the differences in detection methods. Spectra were subjected to iterative searches 

firstly identifying peptides based on highly stringent criteria followed by a subsequent relaxed 

criteria search for all unmatched spectra. Peptide identifications were accepted with an FDR of 

<1% and matched to 9260 protein groups. Data was then submitted to the SPIQuE tool, 

described in Chapter 4, quantifying a total of 7391 proteins. 

5.5 CLUSTER ANALYSIS CONFIRMS REPRODUCIBLE PROTEIN QUANTITATIONS AND 

DYSREGULATION OF Eµ-MYC AND Eµ-TCL1 TUMOURS  

The final outputs from the SPIQuE tool were clustered using Cluster 3.0 and Euclidian 

distance, showing a high degree of dysregulation as well as reproducibility between the tumour 

replicates for both B-cell cancer models (Figure 5.4). The Eµ-myc tumours demonstrated the 

greatest degree of protein dysregulation relative to the WT B-cell controls. The Eµ-myc 6 week, 

pre-malignant sample pool presented a highly similar pattern of dysregulation to that of the 

malignant stage of the disease and clustered strongly with the Eµ-myc tumours. The Eµ-TCL1 

tumours displayed a lesser, but still substantial and reproducible pattern of protein dysregulation. 

Clustering revealed similarities and differences to the Eµ-myc model, indicative of a common B-

cell tumour signature and oncogene-specific trends, respectively. Both the 6-week Eµ-TCL1 B 

cells and the 200 day WT B cells presented with minimal dysregulation relative to 6-week WT B 

cells with 250 (3%) and 90 (1%) of the proteins dysregulated more than 2-fold, respectively.  
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Figure 5.4. Identification and quantification of differential protein expression in the Eμ-

myc and Eμ-TCL1 B-cell cancer models. Fractions were processed using two stage target 

decoy searches within Proteome Discoverer. Spectra were searched separately for CID and HCD 

fragmentation, and initially searched for peptides spectrum matches using stringent settings; 

allowing for no missed cleavages and no dynamic modifications. Spectra failing to match to a 

peptide with a percolator-determined false discovery rate of q<0.01 were subjected to a second, 

relaxed target decoy search allowing for missed cleavages and dynamic modifications. The PSM 

quantitations and features with the protein group assignments were exported for analysis with 

SPIQuE. Quantitative proteomic results were clustered using Cluster 3.0 and to represent the 

topological patterns in the differentially expressed data for each ratio. 

5.6 IDENTIFICATIONS OF ANTICIPATED PROTEIN REGULATIONS  

To initially confirm the quantitative accuracy of the 2D-LC MS/MS quantitative 

workflow and the subsequent data analysis with SPIQuE, a list of anticipated protein 

identifications and their respective quantitations was generated (Figure 5.5A). This described a 

selection of proteins with links to B cells and B-cell cancers and proteins with previous 

validation summarised in Appendices A4 and A8. The expression of myc was confirmed to be 

greatly increased in all samples derived from the Eµ-myc model. An example of such a match is 

shown in Figure 5.5B. Myc was also observed to be upregulated in the Eµ-TCL1 model, only 

explainable from murine myc protein expression. Only peptides specific to the human transgenic 

TCL1A protein were identified (Figure 5.5A, D) which consistently exhibited an Eµ-TCL1 

model-specific expression in both the pre-tumour and tumour samples (Figure 5.5E). 

Further to the expression of the model-specific transgene proteins, other anticipated 

proteins were identified and quantified. For example, CD5 was overexpressed specifically in Eµ-

TCL1 tumours, while B220 was observed downregulated, confirming the characteristic 

observations of the increased and decreased expression levels, respectively, previously observed 

by flow cytometry (Figure 5.2). IgM was overexpressed, specifically in Eµ-TCL1 tumours, 

while IgD and CD200 were downregulated in agreement with Appendix A8. CD79a and CD79b 

were observed marginally downregulated in Eµ-TCL1 tumours, approximately in agreement 

with the variable expression outlined in Appendix A8. In contrast, in Eµ-myc tumours the 

majority of these components were very downregulated. Other B-cell proteins were identified 

exhibiting tumour-specific downregulation, such as CD38, CD23 and CD22. CD19 expression 

appeared mostly unchanged in the tumours, while CD20 and CD5 downregulation was specific 
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to the Eµ-myc tumours. Of the proteins validated by WB in Chapter 3, all but MDH2 agreed 

with the directionality of regulation.  

A single peptide matching p53 was identified, indicative of an overexpression in all 4 

tumour pools, most substantially in Eµ-myc tumours, correlating with the observed expression of 

myc. GAPDH, a common loading control, was observed without regulation in any of the 

samples.  

Together, these findings validated the ability of the 2D-LC MS/MS approach and 

subsequent data analysis methods to detect and reliably quantify oncogenic and tissue-specific 

proteins in B-cell tumours; the first mass spectrometry based observations of such characteristics 

in the Eμ-myc and Eμ-TCL1 models. 

Figure 5.5. Expected protein and peptide identifications and quantifications relating to B-

cell tumours. A. Identifications and quantifications describing protein expression across the Eµ-

myc and Eµ-TCL1 B cells relative to healthy WT B cells collected at 6 weeks and 200 days of 

age. Proteins selected included; the driving oncogenes in each model, characteristic proteins 

immunophenotyped in Figure 5.2, previously evaluated proteins detailed in Appendix A8, B-

cell proteins and the proteins investigated for expression in Eµ-myc tumours by WB in Chapter 

3/Appendix A4 (HSP90 was excluded due to isoforms falling into multiple protein groups). 

GAPDH illustrates an example of an unregulated protein. The final two right hand columns 

detail either anticipated upregulation (↑/red) or downregulation (↓/green) on the basis of the 

WB/flow cytometry results relative to WT B cells. B. A CID peptide spectrum match to the 

myc-specific peptide (surrogate to both the human transgene and murine myc proteins) 

DQIPELENNEK (N-terminally and K11 modified with iTRAQ 8-plex) was observed with an 

m/z of 969.01690 Da (theoretical m/z; 969.02545 Da). C. The iTRAQ reporter region of the 

HCD spectrum corresponding to the precursor fragmented in B. indicating the relative 

expression across 8 conditions for myc. D. A CID peptide spectrum match to the human 

TCL1A-specific peptide (surrogate to the human transgene TCL1 protein) FVYLDEK (N-

terminally and K6 modified with iTRAQ 8-plex) was observed with an m/z of 761.43079 

(theoretical m/z 761.44229). E. The iTRAQ reporter region of the HCD spectrum corresponding 

to the precursor fragmented in D. indicating the relative expression across 8 conditions for 

TCL1. 
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5.7 CONFIDENT, CONSISTENT PROTEIN UPREGULATION IN TUMOURS OF THE Eµ-MYC 

AND Eµ-TCL1 MODELS  

Given that findings were made describing both the expected proteins and quantitations, 

the 7391 quantitated protein were evaluated to identify further biologically relevant protein 

dysregulation. To identify the most significant, consistently upregulated proteins in the two 

tumour models, as well as in both models, protein expression was evaluated for the four ratios; 

tumour A: WT 6 weeks, tumour B: WT 6 weeks, tumour A: WT 200 days, tumour B: WT 200 

days. While such ratios contained technical replicates, they still provided the opportunity to 

identify the most consistently regulated tumour proteins relative to both WT samples. For these 

ratios, two scores were calculated; a -log10 (FDR-corrected p-value) (Section 2.19.8) and a 

measurement indicative of the magnitude and consistency of regulation termed the ‘regulation 

score’ (RS) (Section 2.19.7), determined by the formula: average / (SD + 1). Proteins were 

determined as significantly regulated in both tumours by the separate calculation of p-values and 

RS for all 8 log2 (ratios). In all cases, a p-value of <0.05 (log10 (0.05) → >1.301) was considered 

significant and an RS of >0.5 or <-0.5 was considered regulated.  

The -log10 (p-value) and RS were plotted against one another in a manner described as 

volcano plots due to the characteristic shape. The complementarity of these two values allowed 

for consideration of the significance and magnitude of the differential regulation being described 

by iTRAQ to be simultaneously taken into consideration. The upper right and upper left regions 

of these volcano plots are indicative of those proteins with the most significant observations of 

differential expression. 

Figure 5.6 represents the volcano plots of the 7391 quantitated proteins for the Eμ-myc 

tumours, the Eμ-TCL1 tumours and for both tumours. Overall, Eμ-myc tumours presented the 

greatest degree of dysregulation with 1840 proteins significantly upregulated (p<0.05, RS>0.5) 

and 824 proteins significantly downregulated (p<0.05, RS<-0.5), totalling 36% of all quantitated 

proteins demonstrating dysregulation. The Eμ-TCL1 tumours presented less dysregulation, with 

324 down- and 1142 up-regulated proteins (20% of the quantified proteome). To derive p-values 

and regulation scores for each protein for both tumour types, the same equations were applied to 

all 8 ratios. 21% of the proteome was significantly dysregulated in both tumours with 1219 up- 

and 369 down-regulated proteins. 

Those proteins with both the smallest p-values and the largest regulation scores in the 

upper right hand corner of each volcano plot (Figure 5.6) were plotted and annotated to give a 

detailed representation of the most upregulated proteins. For the Eμ-myc tumours, myc itself was 

amongst these top proteins including multiple KIFs (kinesin motor proteins) and CDCs (cell 
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division cycle proteins). The most upregulated proteins were ubiquitin-conjugating enzyme E2 C 

(UBE2C), kinesin-like protein KIF23, cyclin-dependent kinase 1 (CDK1), targeting protein for 

Xklp2 (TPX2) and transcription factor E2F8. Eμ-TCL1 tumours were also determined to have 

their driving oncoprotein TCL1A substantially overexpressed. The mitochondrial protein enoyl-

CoA hydratase domain-containing protein 3 (ECHDC3) was observed to be the most 

significantly and substantially overexpressed in Eμ-TCL1 tumours alongside; neuroblast 

differentiation-associated protein 2 (AHNAK2), a titin-like protein, nicotinamide nucleotide 

transhydrogenase (NNT), ornithine carbamoyltransferase (OTC), pleckstrin homology domain-

containing family A member 7 (PLEKHA7) and distinct subgroup of the Ras family member 2 

(DIRAS2). Finally, for both tumours, several consistently upregulated proteins, including many 

of those highlighted for Eμ-myc and Eμ-TCL1 tumours alone, were plotted, identifying the urea 

cycle enzymes argininosuccinate synthase 1 (ASS1) and OTC as the most prominent. Figure 5.7 

contains details relating to a selection of these proteins. 

The top 50 most confidently upregulated proteins in both tumours, highlighted in yellow 

in Figure 5.6, were filtered on the basis of the number of unique peptides, PSMs and ratio 

consistency and were systematically evaluated for their function and relevance to cancers 

(Figure 5.7). Due to the majority of these tumour protein ratios meeting or exceeding a log2 

(ratio) of 1, the threshold of colour saturation used in Figure 5.5, the colouring was set to be 

saturated at a log2 (ratio to WT B cells) of 2, the equivalent of a four-fold change.  

These 50 proteins predominantly demonstrated upregulation in the Eμ-myc tumours 

with, to a lesser extent, upregulation in Eμ-TCL1 tumours. The exceptions to this included; 

cytohesis-3 (CYTH3), prelaminin-A/C (LMNA), wee1-like protein kinase (WEE1), heat shock 

70 kDa protein 12A (HSPA12A), lanosterol 14-alpha demethylase (CYP51A1) and 

mitochondrial protein 2-amino-3-ketobutyrate A ligase (GCAT); for which Eμ-TCL1 tumours 

protein upregulation was either equivalent to, or greater than, that of Eμ-myc tumours. Multiple 

proteins involved in processes such as cell cycle progression, DNA damage response and repair, 

amino acid metabolism and cytokinesis were observed. 

The majority of the 50 proteins upregulated in both tumours were previously reported 

with other observations of upregulations or functional roles in cancers. Brief reviews were 

carried out for each protein searching for any of the protein names given on Uniprot in 

conjunction with the word ‘cancer’. While not fully comprehensive, this search gave an 

indication that approximately a fifth of these proteins were novel observations in cancer, whilst 

the remaining four fifths were proteins that could be linked to malignancies. For at least half of 

these, the proteins were linked to multiple cancer types. Of those without a clear published link 

to malignancy, zwilch homologue (ZWILCH), telomere regulation TEL2 homolog (TELO2) and 
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protein spindly (SPDL1) all had clear roles in cell cycle progression, 39S mitochondrial 

ribosomal protein L24 (MRPL24), Midasin (MDN1), GCAT and 60S ribosomal protein L13a 

(RPL13A) had roles in protein synthesis, leaving just TBCD and the uncharacterised protein 

HEATR3 without a published or functional link to cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Significant and consistent protein overexpression in Eµ-myc and Eµ-TCL1 B-

cell cancers. Volcano plots demonstrating proteins with both a strong statistical significance and 

magnitude of regulation, determined by the regulation score (mean/SD+1) of the log2 (ratios) 

generated for each tumour type. The most highly significant and upregulated proteins are 

demonstrated for each comparison on the right. A Venn diagram comparing the overlap of the 

significantly up and downregulated proteins is shown. Proteins expected within each model due 

to the Eµ-driven transgenes are highlighted red. Those proteins identified as significantly 

upregulated in both tumours, with the highest quality of data, are highlighted yellow and detailed 

in the next figure. 
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Figure 5.7. Consistently overexpressed proteins in both Eµ-myc and Eµ-TCL1 B-cell 

tumours. The top 50 Proteins determined with significant upregulation in both tumours with at 

least 12 PSMs or 3 unique peptides, less than ±0.5 log2 (ratio) change between 6-week and 200 

day WT controls, in descending order of regulation score. To emphasise the differences in 

differential expression, a colour saturation threshold of a log2 (ratio) of 2 (fold change of 4) was 

used. 

5.8 MODEL-SPECIFIC PROTEIN EXPRESSION IN THE Eµ-MYC AND Eµ-TCL1 TUMOURS 

Whilst Figure 5.6 and 5.7 highlighted proteins with increased expression in both tumour 

types, to better understand proteins with a high degree of specificity to each tumour type, protein 

ratios were statistically compared and differential regulation scores calculated. These were 

plotted (Figure 5.8) as described in Figure 5.6 and those proteins most specific to each model 

(with a low p-value and a high differential regulation score), plotted and annotated. The number 

of proteins specifically, statically significant to each models’ tumours were 1018 and 1001 for 

Eμ-myc and Eμ-TCL1, respectively. For the Eμ-myc tumours, a number of those proteins 

observed upregulated in Figure 5.6 were reproduced, where there was relatively little or no 

regulation present in the Eμ-TCL1 tumours; most notably, E2F8, UBE2C, proliferating cell 

nuclear antigen-associated factor of 15 kDa (KIAA0101/PAF15) and monocarboxylate 

transporter 1 (SLC16A1). Other proteins appeared in this analysis, however, such as; enkurin 

domain-containing protein 1 (ENKD1), prolyl 4-hydroxylase subunit alpha-1 (P4HA1), 

ribonucleoside-diphosphate reductase large subunit (RRM1) and H/ACA ribonucleoprotein 

complex non-core subunit (NAF1), alongside multiple instances, as with Figure 5.6, of cell 

division cycle and kinesin proteins. A further observation was that of the two DNA 

methyltransferases; DNMT1 and DNMT3B, both with specificity to Eμ-myc tumours. 

As described earlier, the expression of the TCL1 transgene protein was observed with a 

high degree of specificity to the Eμ-TCL1 tumours (Figure 5.8). Only C-terminal binding 

protein-interacting BTB-domain containing zinc finger protein (ZBTB38) and 

calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D) exhibited a 

greater degree of differential expression. Further proteins with an Eμ-TCL1 tumour-specific 

expression included; monoacylglycerol lipase ABHD6, endoplasmic reticulum oxidoreductin-1-

like protein B (ERO1LB), tyrosine-protein phosphatase non-receptor type 22 (PTPN22), 

mitochondrial calcium uptake protein (MICU2), epoxide hydrolase 1 (EPHX1) and 

sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (ATP2A3). All 7 quantitated members 

of the GTP-binding and immunity-associated protein family (GIMAP), GIMAP1, 3, 4, 6, 7, 8 

and 9 were observed significantly downregulated relative to WT B cells in Eμ-myc tumours, 
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while either unregulated or upregulated with a significant specificity to Eμ-TCL1 tumours. Of 

these, just GIMAP4 was significantly upregulated in Eμ-TCL1 tumours relative to WT B cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Eµ-myc and Eµ-TCL1 B-cell tumour-specific protein expression. Volcano plot 

demonstrating the significance and magnitude of differential protein expression between the two 

B-cell cancer models, highlighting those proteins with the greatest degree of specificity to each 

tumour. 
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5.9 TUMOUR-SPECIFIC PROTEIN EXPRESSION RELATIVE TO PRE-TUMOUROUS STATES 

IN Eµ-MYC AND Eµ-TCL1 MODELS 

To understand molecular processes contributing to the tumourigenic transition in the two 

B-cell cancer models, tumour protein expression was compared with that of the pre-cancer 

controls (Figure 5.9). Protein expression in the Eμ-myc pre-tumours was observed to be very 

similar to that of the tumours (Figure 5.4) therefore far fewer proteins appeared as significantly, 

differentially regulated, between tumours and pre-tumour controls compared to other 

comparisons. Myc was significantly overexpressed in tumours versus that of pre-tumours, 

observed previously by Western blotting in Figure 3.6. In total 100 proteins were overexpressed 

in the tumour condition and 254 underexpressed, relative to the pre-tumour state, just 5% of the 

quantitated proteome, compared to 36% of the quantitated proteome dysregulated in Eμ-myc 

relative to WT B cells. The proteins most upregulated in the isolated Eμ-myc tumour pools were 

zinc transporter Zrt- and Irt-like protein 6 (SLC39A6/ZIP-6), chromodomain-helicase-DNA-

binding protein 7 (CHD7), nestin (NES) and three immunogloblulin proteins; Igkv 6-15, 13-84 

and 6-13. Downregulated proteins included cofilin-2 (CFL2), dedicator of cytokinesis protein 5 

(DOCK5), dystroglycan (DAG1) and two Igs; Igkv17-127 and Ighv11-1. 

For the Eμ-TCL1 pre-tumour B cells, protein expression was very minimally altered 

from that of the 6-week WT B cells. The most noticeable difference was the absence of TCL1 

from this analysis, which was equivalently expressed in both pre-tumour and tumour samples 

(Figure 5.5), so was not highlighted by Figure 5.9.  

Overall, 28 proteins were observed as significantly overexpressed in both tumours types, 

relative to their respective pre-tumour counterparts. Of these, 11 had minimal regulation (<±0.5 

log2 (ratio)) in the pre-tumour state relative to the WT controls, and were therefore highly 

specific to all 4 tumour pools. These included; hydroxymethylglutaryl-CoA synthase (HMCS1), 

heat shock factor-binding protein 1 (HSBP1), charged multivesicular body protein 7 (CHMP7), 

alpha-internexin (INA), zinc finger CCHC domain-containing protein 9 (ZCCHC9), COP9 

signalosome complex subunit 7a (COPS7A), serum amyloid A-like 1 (SAAL1), intraflagellar 

transport protein 27 homolog (IFT27), proteasome assembly chaperone 4 (PSMG4), neuroblast 

differentiation-associated protein (AHNAK) and RNA polymerase B transcription factor 3 

(BTF3). 
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Figure 5.9. Comparing tumour with pre-tumour protein expression in the Eµ-myc and Eµ-

TCL1 models. For each plot, the respective tumour regulation scores were adjusted by 

subtracting the pre-tumour log2 (ratio) and p-values determined by one-sample T-test to the pre-

tumour values. 

5.10 LOCALISATION AND FUNCTIONS OF DIFFERENTIALLY EXPRESSED PROTEINS IN Eµ-

MYC AND Eµ-TCL1 TUMOURS 

Proteins were annotated for their canonical localisations and functional categories using 

Ingenuity Pathway Analysis software. The number of proteins fitting into each of these 

categories for those proteins differentially regulated (p<0.05) in each tumour or both tumours, 

was determined and plotted against the numbers observed from all proteins to identify any 

patterns of enrichment. Figure 5.10 represents the proteins up- or down-regulated in the Eμ-myc, 

Eμ-TCL1 and both tumours annotated as canonically existing within the extracellular space, the 

plasma membrane, the cytoplasm or the nucleus – alongside the background percentage of all 

7391 quantitated proteins. 

A trend that was observed for those proteins differentially expressed (p<0.05) in both 

tumours, whether considered individually or combined, was that of a strong downregulation of 

membrane proteins, with on average, twice as many proteins as would be expected to be 

downregulated based on the total number of observed membrane proteins, and the inverse true 

for upregulated membrane proteins. For the Eμ-myc tumours, nuclear proteins were 

overrepresented amongst the upregulated proteins and underrepresented in the downregulated 

proteins. For Eμ-TCL1 tumours, both up- and downregulated nuclear proteins were 

underrepresented. An overrepresentation of upregulated proteins and underrepresentation of 

downregulated proteins was observed for cytoplasmic proteins. 

The same analysis was performed for the annotated protein classifications (Figure 5.11). 

This demonstrated a trend in the overall increased expression of proteins classified as enzymes, 

with almost 20% of identified enzymes upregulated while just 3% were downregulated in both 

tumours. Translational regulators were also overrepresented in the upregulated proteins, with 52 

upregulated in Eμ-myc tumours out of the 78 identified. Transmembrane receptors made up a 

large proportion of downregulated proteins in both tumours; in accordance with the observation 

of downregulated plasma membrane proteins in Figure 5.10. Of the 100 identified, 30 of these 

were downregulated while just 7 were upregulated in both tumours. 
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Figure 5.10. Annotation of protein localisations for the up and downregulated proteins in 

the Eµ-myc and Eµ-TCL1 tumours. A. Proteins defined as up (RS>0.5, p<0.05) and down 

(RS< -0.5, p<0.05) regulated in either tumour, or when considering the RS and p-values derived 

for both tumours, were categorised for their predominant protein localisation and compared with 

all protein identifications.  
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Figure 5.11. Annotation of protein subtypes for the up and downregulated proteins in the 

Eµ-myc and Eµ-TCL1 tumours. Proteins defined as up (RS>0.5, p<0.05) and down (RS< -0.5, 

p<0.05) regulated in either tumour, or when considering the RS and p-values derived for both 

tumours, were categorised for their annotated functional proteins categories. Unclassified 

proteins are not plotted and the percentages of these proteins do not greatly differ. 

 

5.11 GENE ONTOLOGY ENRICHMENT AMONGST DIFFERENTIALLY EXPRESSED PROTEINS 

IN Eµ-MYC AND Eµ-TCL1 TUMOURS 

To gain a greater insight into any commonalities in the nature of the proteins identified 

as upregulated and downregulated a process called gene ontology term (GO term) enrichment 

was employed. GO terms offer descriptions of the proteins, similar to that outlined in Figure 

5.10 and Figure 5.11, however with far greater specificity and annotation depth. Using the 

online software tool ‘DAVID’ (the database for annotation, visualisation and integrated 

discovery) the significantly upregulated and downregulated proteins were assessed against all 

7391 fully quantitated proteins (background) to identify which GO terms were significantly 

overrepresented in the up and down regulated groups. Figure 5.12 and Figure 5.13 demonstrate 

visual representations (using the tool REVIGO) of those GO terms determined as significantly 

enriched amongst the proteins up and down regulated commonly across both tumours, 

respectively. The plots describe the GO terms in three ways; the size is proportional to the -log10 

(term enrichment p-value) for the input data, the colour is indicative of the overall frequency of 

each GO term amongst all mouse genes - red being frequent and blue being rare, and the axis of 

the plot are based on semantic space, clustering terms that are more frequently co-annotated 

together. 

 Due to sizeable overlap of the GO term enrichment for each tumour type with that of 

the analysis simultaneously for both tumours, the separate REVIGO outputs for Eμ-myc Eμ-

TCL1 tumours are presented in Appendix A9. In total 123 and 67 GO terms were significantly 

enriched amongst the 1219 upregulated and 369 downregulated proteins, respectively, amongst 

which 52, 47 and 24, and 51, 15 and 1 belonged to the three classifications; biological process, 

molecular function and cellular component, respectively. 

The proteins upregulated in both tumours demonstrated several significantly enriched 

GO terms suggesting that B-cell tumours overexpress proteins driving cell proliferation (Figure 

5.12). Terms were indicative of a vastly increased rate of protein synthesis with the most 

significantly enriched term being ‘translation (GO:0006412)’. In addition to this, terms including 

‘cellular amino acid metabolism (GO:0006520)’, ‘protein metabolism (GO:0019538)’ and 
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‘cellular component biogenesis (GO:0044085)’ described an increase in translation at the levels 

of both metabolic precursors and macromolecular products. Terms relating to non-coding RNAs 

are also indicative of a translational regulation via tRNAs and rRNAs; ‘ncRNA processing 

(GO:0034470)’ and ‘ncRNA metabolism (GO:0034660)’ The second most significantly 

enriched ‘biological process’ term amongst the upregulated proteins was ‘cell cycle 

(GO:0007049)’. Several other terms were also related to cell cycle progression, suggesting 

coordinated division in the cell and its components, including; ‘organelle fission (GO:0048285)’, 

‘nuclear division (GO:0000280)’, and ‘cell division (GO:0051301)’. Processes underlying the 

initiation and regulation of mitosis were also enriched, such as; ‘cell cycle phase 

(GO:0022403)’, ‘cell cycle (GO:0007049)’, ‘cell cycle process (GO:0022402)’ and ‘mitotic cell 

cycle (GO:0000278)’. Proteins promoting the replication and division of DNA were identified 

with a number of enriched terms, including; ‘DNA replication (GO:0006260)’, ‘DNA 

metabolism (GO:0006259)’, ‘DNA replication initiation (GO:0006270)’, ‘chromosome 

condensation (GO:0030261)’ and ‘chromosome segregation (GO:0007059)’.  

For the ‘cellular component’ terms, enrichment amongst the upregulated tumour 

proteins highlighted the involvement of organelles without membrane association, such as 

ribosomes, indicated by the top three terms; ‘intracellular non-membrane-bounded organelle 

(GO:0043232)’, ‘non-membrane-bounded organelle (GO:0043228)’ and ‘ribonucleoprotein 

complex (GO:0030529)’. Further terms detailed the specificity of this enrichment for ribosomes 

with ‘preribosome (GO:0030684)’, ‘large ribosomal subunit (GO:0015934)’, ‘organellar 

ribosome (GO:0000313)’ and ‘mitochondrial ribosome (GO:0005761)’ enriched amongst the 

upregulated tumour proteins. Nuclear (GO:0044428, GO:0005634), and specifically nucleoli 

(GO:0005730) proteins were significantly enriched for, including terms relating to chromosomes 

(GO:0005694) and spindles (GO:0005819); ‘condensed chromosome (GO:0000793)’, 

‘chromosome, centromeric region (GO:0000775)’ and  ‘spindle microtubule (GO:0005876)’. 

‘Molecular function’ GO terms again highlighted the predominance of ribosomal 

enrichment amongst the upregulated tumour proteins; with ‘structural constituent of ribosome 

(GO:0003735)’ the with the lowest enrichment p-value alongside the term ‘rRNA binding 

(GO:0019843)’. A number of transcription- and RNA-related functions were also observed as 

significantly enriched, including; ‘RNA polymerase activity (GO:0034062)’, ‘DNA-directed 

RNA polymerase activity (GO:0003899)’, ‘RNA binding (GO:0003723)’, ‘nucleoside binding 

(GO:0001882)’, ‘purine nucleotide binding (GO:0017076)’, ‘helicase activity (GO:0004386)’ 

and ‘ATP-dependent helicase activity (GO:0008026)’. Some specific metabolic functions were 

also overrepresented; ‘ligase activity (GO:0016874)’, ‘transferase activity, transferring one-

carbon groups (GO:0016741)’, ‘methyltransferase activity (GO:0008168)’, ‘hydrolase activity, 
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acting on acid anhydrides (GO:0016817)’ and ‘nucleoside-triphosphatase activity 

(GO:0017111)’.  

Those proteins significantly downregulated in across both pools of both Eμ-myc and Eμ-

TCL1 tumours were also submitted for GO term enrichment analysis (Figure 5.13). The two 

most significantly enriched, downregulated ‘biological processes’ were ‘immune system process 

(GO:0002376)’ and ‘immune response (GO:0006955)’. As a subcategory of this loss of immune 

response, three GO terms described, more specifically, a downregulation of major 

histocompatibility complex (MHC) antigen processing and presentation (GO:0002495, 

GO:0019884, GO:0019886) as well as the related processes of ‘endocytosis (GO:0006897)’ and 

‘membrane invagination (GO:0010324)’. Additionally, a suppression of proteins annotated as 

having roles in ‘signal transduction (GO:0007165)’, ‘response to stimulus (GO:0050896)’, 

‘regulation of response to stimulus (GO:0048583)’ and ‘small GTPase mediated signal 

transduction (GO:0007264)’ were observed, as well as terms relating to biological process 

regulation (GO:0065007, GO:0050789 and GO:0048518). Processes relating to differentiation 

(GO:0045597) and development (GO:0050793) were lost in tumours, as well as proteins relating 

to nucleosome assembly (GO:0006334) and DNA packaging (GO:0006323). 

Downregulated ‘cellular components’ were dominated by terms describing proteins 

localised to the cell surface; ‘cell surface (GO:0009986)’, ‘membrane (GO:0016020)’, ‘plasma 

membrane part (GO:0044459)’, ‘intrinsic component of membrane (GO:0031224)’, ‘membrane 

part (GO:0044425)’, ‘external side of plasma membrane (GO:0009897)’, ‘plasma membrane 

(GO:0005886)’ and ‘integral component of membrane (GO:0016021)’. In agreement with the 

biological processes, MHC (GO:0042611, GO:0042613) and nucleosomes (GO:0000786, 

GO:0032993) were underrepresented when considering their components. Just the single term 

‘antigen binding (GO:0003823)’, describing the selective interaction between an antigen and any 

molecule capable of initiating a specific immune response, was significantly enriched for within 

the downregulated proteins for the category of ‘molecular function’. 
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Figure 5.12. Gene ontology term enrichment analysis of the upregulated proteins across 

both Eµ-myc and Eµ-TCL1 tumours. GO term enrichment p-values (Benjamini-corrected) 

were determined for those proteins with significant differential upregulation (RS>0.5, p<0.05) in 

all 4 tumour pools using DAVID with all fully quantitated proteins as background. Significantly 

enriched GO terms (p<0.05) were visualised with REVIGO. These are separated into biological 

processes, cell components and molecular function. The circle size is proportional to the -log10 

(term enrichment p-value), the colour indicates the GO term frequency amongst all mouse genes, 

and the axis of the plot are based on semantic space, clustering terms that are more frequently 

co-annotated together. 
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Figure 5.13. Gene ontology term enrichment analysis of the downregulated proteins across 

both Eµ-myc and Eµ-TCL1 tumours. GO term enrichment p-values (Benjamini-corrected) 

were determined for those proteins with significant downregulation expression (RS< -0.5, 

p<0.05) in all 4 tumour pools using DAVID with all fully quantitated proteins as background. 

Significantly enriched GO terms (p<0.05) were visualised with REVIGO. These are separated 

into biological processes, cell components and molecular function. The circle size is proportional 

to the -log10 (term enrichment p-value), the colour indicates the GO term frequency amongst all 

mouse genes, and the axis of the plot are based on semantic space, clustering terms that are more 

frequently co-annotated together. 
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5.12 CANONICAL PATHWAY ENRICHMENT AMONGST DIFFERENTIALLY EXPRESSED 

PROTEINS IN Eµ-MYC AND Eµ-TCL1 TUMOURS 

Much like with GO terms, proteins classified as up or downregulated can be mapped to 

pathways to identify overrepresentation of discrete cellular functions. Pathways were analysed 

with ‘DAVID’ which evaluated KEGG, BioCarta and PANTHER pathways for 

overrepresentation in each given list of proteins. Pathways were considered for each tumour type 

separately to reflect the discrete biology of the two models. The full summary of significant 

(p<0.05) pathways determined for the significantly (p<0.05) up (RS>0.5) and down (RS<-0.5) 

regulated proteins in both tumours and the Eμ-myc and Eμ-TCL1 tumours separately, is given in 

Appendix A10. IPA pathway analysis was evaluated, but due to the large number of 

differentially regulated proteins produced results which were difficult to interpret. DAVID 

analysis provided a more concise summary of pathways. 

For the proteins upregulated in Eμ-myc tumours, 5 BioCarta pathways were significantly 

enriched (Figure 5.14). Figure 5.12A summarises these alongside 10 other pathways 

determined as significant prior to multiple test correction, but still with a magnitude of 

enrichment. Of the 5 pathways, 4 (Figure 5.14B,C,D,F)  were related to the cell cycle and the 

5th (Figure 5.14E), to protein synthesis. Of those pathways not reaching corrected significance, 

all 10 were directly relatable to tumourigenic mechanisms, such as DNA damage response, 

tumour suppressor pathways or further cell cycle promoting pathways. 

13 KEGG pathways were identified as significantly enriched, with a further 11 when 

disregarding correction (Figure 5.15A). These pathways suggested a trend in increased rates of 

protein synthesis with 77 upregulated ribosome components (Figure 5.15B) demonstrating an 

enrichment p-value of 2.6 x 10-68. Amino acid synthesis was also enriched for, with 5 pathways 

indicative of increased synthesis of 10 amino acids (Gly, Ser, Thr, Val, Leu, Iso, Ala, Asp, Glu 

and Selenocysteine (Sec)), and aa-tRNA regeneration (p=4.5 x 10-10). Protein degradation 

pathways were also enriched, with ‘ubiquitin mediated proteolysis’ (p=0.0002) and the 

proteasome appearing in this list, with 28 and 10 upregulated proteins mapping to these 

pathways respectively. ‘Cell cycle’ (Figure 5.15C) was the second most significantly enriched 

pathway (3.5 x 10-16) with 46 upregulated members. This also identified that all 7 members of 

the mini-chromosome maintenance (MCM) complex were upregulated (including MCM10, not 

shown). DNA replication (p=7.4 x 10-12) was identified as an enriched pathway; emphasised by a 

significant enrichment of both pyrimidine (p=1.0 x 10-15) (Figure 5.15D) and purine (p=2.2 x 10-

11) nucleotide synthesis pathways. DNA damage pathways were also significantly enriched 
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(p<0.01), including nucleotide excision repair, mismatch repair and p53 signalling. Base 

excision repair, cytosolic DNA sensing and homologous recombination also demonstrated some 

enrichment. 

With fewer significantly upregulated proteins, fewer pathways were significantly 

enriched for Eμ-TCL1 tumours (Figure 5.16A). Just one BioCarta pathway was significantly 

enriched after correction; ‘retinoblastoma tumour suppressor/checkpoint signalling in response 

to DNA damage’ (p=0.0045) (Figure 5.16B). However, several other BioCarta pathways were 

significantly enriched before multiple test correction. These were related to the cell cycle and its 

regulation, such as p53 and ataxia telangiectasia mutated (ATM) signalling, G2/M and G1/S 

checkpoints, p27 phosphorylation, E2F1 and cyclin E destruction, regulation of cyclins, CDKs 

and DNA replication, and regulation of mitosis by Ran and AKAP95. The pathway ‘telomeres, 

telomerase, cellular aging, and immortality’ was also enriched for. Overall the majority of 

enriched KEGG pathways were similar to that of the Eμ-myc tumours, but due to a lower 

number of significantly upregulated proteins fewer pathways had corrected significance; 

including the ribosome (p=5.8 x 10-6) (Figure 5.16C) and the cell cycle (p=1.5 x 10-5) (Figure 

5.16D). Only two KEGG pathways reached significance which were not observed for the Eμ-

myc tumours. Firstly valine, leucine and isoleucine biosynthesis reached corrected significance 

(p=8.2 x 10-4) and secondly N-glycan biosynthesis was observed to be significantly enriched 

uniquely to the Eμ-TCL1 model. Three Panther pathways reached significance, uniquely in the 

Eμ-TCL1 tumours, two of which described core p53 biology. The third, and a fourth - significant 

before correction, described the de novo biosynthesis of pyrimidines and purines, respectively. 
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Figure 5.14 Biocarta pathways identified as significantly enriched from the proteins 

upregulated in Eµ-myc tumours. Significantly (p<0.05), differentially expressed (RS>0.5) 

proteins were analysed using DAVID to identify significantly enriched pathways. Red boxes 

highlight those overexpressed proteins mapping to these pathways. A. A summary of the fold 

enrichments, p-values and corrected p-values for the top 15 BioCarta pathways. B. Cyclins and 

cell cycle regulation. C. Role of Ran in mitotic spindle regulation. D. Cell cycle: G1/S check 

point, E. Eukaryotic protein translation. F. Cell cycle: G2/M checkpoint. 
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Figure 5.15 KEGG pathways identified as significantly enriched from the proteins 

upregulated in Eµ-myc tumours. Significantly (p<0.05), differentially expressed (RS>0.5) 

proteins in Eµ-myc tumours were analysed using DAVID to identify significantly enriched 

pathways. Red stars highlight those overexpressed proteins mapping to these pathways. A. A 

summary of the fold enrichments, p-values and corrected p-values for the top 28 KEGG 

pathways. B. Proteins mapping to the ribosome. C. Cell cycle pathway proteins. D. Pyrimidine 

nucleotide and nucleoside synthesis and metabolism. 
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Figure 5.16 Pathways identified as significantly enriched from the proteins upregulated in 

Eµ-TCL1 tumours. Significantly (p<0.05), differentially expressed (RS>0.5) proteins in Eµ-

TCL1 tumours were analysed using DAVID to identify significantly enriched BioCarta, KEGG 

and Panther pathways. Red stars highlight those overexpressed proteins mapping to these 

pathways. A. A summary of the fold enrichments, p-values and corrected p-values for the top 

pathways identified by DAVID. B. Retinoblastoma tumour suppressor/checkpoint signalling in 

response to DNA damage. C. Proteins mapping to the ribosome. D. Cell cycle pathway proteins. 
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5.13 ANNOTATION OF UPREGULATED PROTEINS IN Eµ-MYC AND Eµ-TCL1 TUMOURS 

WITH PRE-EXISTING THERAPEUTIC REAGENTS  

Overall, these observations demonstrate widespread systemic protein dysregulation of 

mapping to several functions and cellular pathways in the two tumours models. To understand 

the potential clinical relevance of the proteomics data produced here, proteins upregulated in 

either or both tumours were annotated using IPA software to describe the potential therapeutic 

reagents available which may be able to interfere with or target these proteins.  

In total, 72 and 46 significantly upregulated proteins represented potential drug targets 

in the Eμ-myc and Eμ-TCL1 tumours, respectively. 51 targetable proteins were significantly 

upregulated when considering both tumours. Figure 5.17 presents those 28, 10 and 31 targetable 

proteins identified with at least 3 PSMs for Eμ-myc, Eμ-TCL1, and both tumours, respectively. 

This analysis highlighted the potential of the flavonoid alkaloid kinase inhibitor alvocidib, 

capable of inhibiting cyclin dependent kinases 1, 2 and 4 (CDK1, CDK2 and CDK4) in both 

tumours, as well as CDK6 specifically in Eμ-myc. Gemcitabine, a nucleoside analogue, was also 

observed with three potential targets in both tumours; ribonucleotide reductase M1 and M2 

(RRM1 and RRM2), and DNA polymerase ε2 (POLE2). The additional target 

phosphoribosylglycinamide formyltransferase (GART) was also targetable with gemcitabine, 

primarily to tumours of Eμ-myc mice, but potentially also in those of Eμ-TCL1 (RS=0.45). 

Thioguanine, another nucleic acid (nucleobase) analogue, was observed with two upregulated 

targets; phosphoribosyl pyrophosphate amidotransferase (PPAT) and inosine 5'-monophosphate 

dehydrogenase 2 (IMPDH2), with a third, ephrin receptor B4 (EPHB4), again with specificity to 

Eμ-myc. The two canonical aurora kinases AURKA and AURKB were identified as upregulated 

in both tumour types both targetable by inhibitors such as tozasertib and danusertib. Three 

histone deacetylases (HDACs) were identified as potential, upregulated drug targets in the two 

tumour types and annotated with inhibitors such as tributyrin, belinostat and vorinostat. HDAC8 

was upregulated in both tumours, while HDAC2 and HDAC4 had a high degree of specificity to 

Eμ-myc and Eμ-TCL1 tumours, respectively. Specifically to Eμ-myc tumours, three potential 

targets of a further nucleoside analogue, cytarabine, were upregulated; deoxycytidine kinase 

(DCK), DNMT1 and primase, DNA, polypeptide 2 (58kDa) (PRIM2). 
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Figure 5.17. Proteins upregulated in either or both tumours with potential for therapeutic 

targeting. Proteins with IPA-annotated drug targets demonstrating a significant differential 

expression in either or both of the B-cell tumours. These were filtered for proteins with at least 3 

PSMs. 
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5.14 EVALUATION OF UPREGULATED PROTEINS ANNOTATED WITH CELL SURFACE 

EXPRESSION AND IMMUNOTHERAPY POTENTIAL 

The expression of proteins at the surface of a cancer cell offers the potential for 

diagnosis and treatment and as such, surface protein expression was investigated by filtering all 

proteins on the basis of GO term annotation for cell surface expression. While the majority of 

these proteins were surface-expressed, no GO term exists to specifically describe transmembrane 

proteins as constitutively localised to the cell surface, therefore all membrane proteins were 

identified and those with cellular component GO terms for ER, mitochondrial or nuclear 

expression were excluded (detailed in full in Section 2.21.6). In total, 515 quantitated proteins 

were determined to have an annotation of surface expression. The regulation scores of these 

proteins were plotted against their -log10 (p-values) calculated for each tumour type and for both 

tumours to represent the surface profiles of these cells (Figure 5.18A). A selection of the most 

confidently upregulated proteins with at least three PSMs are detailed for each tumour and for 

both tumours in Figure 5.18B.  

Eμ-myc tumours presented 64 proteins with significant upregulation at the cell surface. 

Amongst these were 16 proteins annotated with receptor activity (CD163, EphB4, CD95/FAS, 

SLAMF7, CRCP, HMMR, INSR, ITGB1, ITGA6, IL1RAP, IL17RA, PTPRS, SLC20A1, 

SLC7A1, CD71/TFRC and TRPC6), 17 with transmembrane transporter activity (ABCC2, 

ATP1A1, ATP1B3, STEAP3, KCNK18, KCNA3, SLC3A2, SLC7A1, SLC39A11, SLC16A1, 

SLC20A1, SLC38A2, SLC39A6, SLC4A11, SLC35B2, MFSD10 and TRPC6) and 6 cell 

adhesion molecules (ITGB1, ITGA6, HMMR, PTPRS, VCAM1 and VEXT). The most 

upregulated surface protein was the zinc transporter SLC39A6/ZIP6, which was observed 

alongside another significantly upregulated zinc transporter SLC39A11/ZIP11. Secondary to this 

were the proteins; hyaluronan mediated motility receptor (HMMR), monocarboxylate transporter 

1 (SLC16A1) and endothelin-converting enzyme 2 (ECE2). These observations also included the 

upregulation of two Na+-exporting, K+-importing transporters; alpha 1 and beta 3, and a 

combination of integrins (alpha 6 and beta 1) reported to bind laminin on platelets as well as 

neuropilin-2 (NPR2). 

Of the 109 cell surface proteins downregulated on Eμ-myc tumours, 10 proteins had 

roles in cell adhesion; CD2, CD11a (ITGAL), CD22, CD31 (PECAM1), CD36, CD40, CD45 

(PTRPC/B220), CD47, CD84 (SLAM5) and CD166 (ALCAM). Also with roles in cell-cell 

interactions were several MHC proteins; isoforms 1 and 2 of CD74, beta-2-microglobulin and 16 

HLA isoforms (6 class I and 10 class II). 15 proteins with a function in the determination of 

haematopoietic cell lineages were downregulated, including the CD antigens; CD1d, CD2, CD5, 

CD13 (ANPEP), CD20, CD21 (CR2), CD22, CD23 (FCER), CD36, CD37, CD38, CD55 and 
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CD124 (IL4RA) and two HLA class II proteins. Lymphocyte antigen 6D (LY6D), a protein with 

a role at the earliest stage of B-cell specification, was the most downregulated, alongside CD272 

(B-/T-lymphocyte attenuator (BTLA)), an inhibitor of immune cell activation. 

75 proteins exhibited upregulation at the cell surface of Eµ-TCL1 tumours, with 21 

common to Eμ-myc tumours. Again, transporter proteins were a common class, with 15 

demonstrating upregulation; ZIP11, SLC19A1, SLC35B2, SLC38A2, ABCC2, SLC3A2 (CD98) 

and MFSD10 were also observed on the Eμ-myc tumours, with ABCA3, ATP2A3, ATP2C1, 

SLC2A1, ZIP4, MAGT1, ITPR1 and TFRC, being unique in their upregulation on Eµ-TCL1 

tumours. 15 upregulated surface proteins had receptor activity; HMMR, ITGB1 and CD71 

(TFRC); also seen with the Eμ-myc tumours and; ATP9B, CD5, CD80, CD86, NOTCH2, RELT, 

ANTXR2, CSFR2RB, ITPR1, IL17RE, IL5RA and NPR2 specific to Eµ-TCL1. Seven proteins 

with annotated surface expression and a role in lipid biosynthesis were upregulated; 1-acyl-sn-

glycerol-3-phosphate acyltransferase delta (AGPAT4), CD81, CDP-diacylglycerol inositol 3-

phosphatidyltransferase (CDIPT), choline/ethanolaminephosphotransferase 1 (CEPT1), fatty 

acyl-CoA reductase 1 (FAR1), estradiol 17-beta-dehydrogenase 12 (HSD17B12) and 

phosphatidylserine synthase 1 (PTDSS1) with all but FAR1, specific to Eµ-TCL1 tumours. Of 

these, the greatest specificity was seen in those proteins also relating to phospholipid synthesis. 

This may constitute erroneous annotation give that several of these proteins localise to the ER 

and golgi. Upregulated cell adhesion molecules included; CD80, CD86, CD321/F11R, ITGB1, 

two MHC proteins and CD43 (sialophorin/leukocialin). The most upregulated surface protein 

was major facilitator superfamily domain-containing protein 10 (MFSD10), a tetracycline 

transporter analogue with putative drug efflux capabilities. Secondary to this, was the interleukin 

5 receptor alpha subunit, observed alongside its common beta cytokine co-receptor 

(CSF2RB/CD131), both with specific upregulation in the Eµ-TCL1 tumours. The developmental 

extracellular matrix-interacting protein FRAS1 was also substantially, significantly upregulated 

with a high degree of specificity in Eµ-TCL1 tumours. 

Eµ-TCL1 tumours had 66 downregulated surface proteins, of which 39 were also 

observed underexpressed in the Eμ-myc tumours. Cell adhesion molecules were also well-

represented amongst these proteins, with 21 exhibiting a downregulation; CD2, CD22, CD36, 

CD40, CD45, CD47 and CD84 were downregulated as with Eμ-myc tumours; while 

additionally, CD11d (ITGAD), CD26 (DPP4), CD42a,c,d (GP9,1BB,5), CD48, CD49b 

(ITGA2), CD61 (ITGB3), CD62L (L-selectin), CD100 (Semaphorin-4D) and CD105 (endoglin) 

were downregulated with specifically to Eµ-TCL1 tumours, alongside the non-CD proteins, 

synaptobrevin-3 (VAMP3), ITGB5 and the tyrosine kinase receptor AXL. 22 proteins were 

annotated with involvement in immune system process regulation including; ANO6, BTLA, 
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complement receptor 2 (CR2), cannabinoid receptor 2 (CNR2), CD23 (FCER), CD38, 

TYROBP, CD300a, FCGRT, CD55, CLEC2D, SLAMF7 and three class II HLA proteins, in 

addition to those also with a role in adhesion above; CD26, CD36, CD45, CD47, CD49b, CD61, 

CD62L and AXL. 

9 surface proteins demonstrated inverse expression with significant upregulation in one tumour 

and significant downregulation in the other. Six proteins were observed upregulated in the Eµ-

TCL1 tumours which were downregulated in the Eμ-myc tumours; the predominantly 

intracellular ion channel anoctamin 10 (ANO10), sarcoplasmic/ER calcium ATPase 3 

(ATP2A3), CD5, a putative receptor component; ecotropic viral integration site 2A (EVI2A), 

neuropilin-2 (NPR2) and the predominantly ER-localised regulator of inositol 1,4,5-

trisphosphate receptor type 1 (ITPR1); E3 ubiquitin-protein ligase (RNF170). Three proteins 

were significantly up- and downregulated at the cell surface of Eμ-myc and Eµ-TCL1, 

respectively; CD163 (scavenger receptor cysteine-rich type 1 protein M130), K+ voltage-gated 

channel A3 (KCNA3) and signalling lymphocytic activation molecule family member 7 

(SLAM7).  

 

 

 

 

 

 

Figure 5.18. Cell surface expression of proteins in Eµ-myc and Eµ-TCL1 tumours. Fully 

quantitated proteins were filtered on the basis of GO annotated localisation to membranes 

(GO:0005886, GO:0005887, GO:0009986, GO:0031226, GO:0009897, GO:0016020 and 

GO:0016021) and subsequently filtered for any proteins also annotated with localisation to the 

endoplasmic reticulum (GO:0005783), mitochondria (GO:0005739), or nucleus (GO:0005634). 

This list was then combined with those proteins described by the MS surface atlas [368]. This 

resulting list was used to filter for those proteins characterised here and the remaining proteins 

filtered against the surfaceome database [369], a tool combining surface expression observations 

from several resources. In total, this process enriched for a list of 516 predominantly surface-

expressed, transmembrane proteins. A. Volcano plots highlighting proteins with a strong 

statistical significance and magnitude of regulation. B. The most upregulated proteins in either 

and both tumours, filtered for those with at least 3 PSMs. 
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5.15 Eµ-TCL1 TUMOUR-SPECIFIC UPREGULATION OF THE INTERLEUKIN 5 RECEPTOR 

Of the observations made of upregulated cell surface proteins, the most biologically 

interesting finding related to the IL5 receptor. Both components of the interleukin 5 receptor, 

IL5RA and the common receptor subunit, CSF2RB, which also has receptor activity to IL3 and 

granulocyte-macrophage colony-stimulating factor, were strongly and consistently upregulated 

on both Eµ-TCL1 tumour pools, as well as marginally upregulated in the pre-tumour B cells 

isolated at 6 weeks of age. Prior to the biological validation of this target, due to a relatively low 

number of quantitations for these proteins, the PSMs and quantitations were manually inspected 

to increase the confidence in these findings. Figure 5.19A-D summarises two PSMs and their 

respective iTRAQ quantitations for these proteins, demonstrating a clear, specific 

overabundance of iTRAQ reporter masses 119 and 121, corresponding to the two Eµ-TCL1 

tumour pools. Figure 5.19E shows all PSM-derived quantitation ratios; in all but a single case, a 

strong and reproducible trend of upregulation for the peptides of these proteins was observed.  

Given the strength of this evidence, the expression of IL5RA was validated using flow 

cytometry (Figure 5.20). Peripheral blood from an advanced Eµ-TCL1 mouse with an advanced 

tumour and a WT littermate was evaluated for the expression of the standard phenotyping 

markers B220 and CD5 to define the tumour population, as well as for IL5RA. Cells of the CD5+ 

B220+ tumour population corresponded to those exhibiting IL5RA expression. Three terminal, 

tumourous Eµ-TCL1 splenocyte suspensions were evaluated by the same means, evaluated for 

peripheral leukaemic IL5RA expression. All three tumours demonstrated a high degree of 

staining for IL5RA. 

 

 

Figure 5.19. iTRAQ 2DLC-MS/MS identification and quantification of peptides uniquely 

matching to IL5RA and it receptor partner CSF2RB. A. The CID PSM aligning to the 

IL5RA-specific peptide INAPQEDEYDTR (N-terminally modified with iTRAQ 8-plex), 

observed with a precursor m/z of 877.92230 (theoretical m/z, 877.92858). B. The respective, 

HCD-derived iTRAQ precursor region for this IL5RA peptide. C. The CID PSM aligning to the 

CSF2RB-specific peptide ENPPVELSMEEQEAR (N-terminally modified with iTRAQ 8-plex), 

observed with a precursor m/z of 1031.49597 (theoretical m/z, 1031.50689). D. The respective, 

HCD-derived iTRAQ precursor region for this CSF2RB peptide. E. The full list of individual 

PSM quantitations matching to IL5RA and CSF2RB. 
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Figure 5.20. Flow cytometry validation of IL5RA expression on Eµ-TCL1 tumours. The 

expression of CD5, B220 and IL5RA on peripheral blood mononuclear cells (PBMCs) and 

tumourous splenocytes from Eµ-TCL1 mice.  
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5.16 INTERLEUKIN 5 INDUCES DOSE-DEPENDENT CELL SURVIVAL, CELL CYCLE 

PROGRESSION AND MITOSIS IN Eµ-TCL1 TUMOURS IN VITRO 

The observation of the substantial upregulation of the common beta subunit of the IL5 

receptor, alongside IL5RA, suggested that the IL5 receptor may have a functional role in Eµ-

TCL1 tumours. To assess the inferred functionality of the IL5 receptor, tumourous splenocytes 

from two terminal Eµ-TCL1 mice were first co-cultured with three concentrations (10, 50 and 

100 ng/ml) of interleukin 5 and the cell density observed after 48 hours (Figure 5.21). A 

significant increase in cell number was observed for both tumours at all three concentrations of 

IL5 (p<0.05), with significance and average cell numbers increasing with higher doses. These 

data indicated a clear, dose-dependent proliferative effect of IL5 on the tumours of the Eµ-TCL1 

model. 

To evaluate these observations in more detail, splenocytes were subjected to the same 

three doses of IL5 for 48 hours and were analysed by flow cytometry-based methods (Figure 

5.22). Hypotonic propidium iodide staining was used to evaluate the cell cycle stage based on 

cell DNA content. Untreated Eµ-TCL1 tumours had 4.9% of cells in S/G2/M phases of the cell 

cycle. This increased to 6.9% upon treatment with 10ng/ml of IL5, and further to 8.8% at 50 

ng/ml. Treatment with 100 ng/ml tripled that of the untreated rate of cell cycle progression to 

14.5%. Also investigated was the percentage of viable cells, indicative of the rate of apoptosis 

under each treatment condition, determined using propidium iodide exclusion, where the intact 

membrane of viable cells prevents DNA staining. 17.9% of the untreated cells cultured in vitro 

for 48 hours, were undergoing apoptosis, a figure which fell to 9.9% upon treatment with 

10ng/ml of IL5, and again to 8.8% at 50 ng/ml. Just 3.3% of cells were PI-permeable when 100 

ng/ml of IL5 were included in the culture. These data indicate that IL5 promotes cell cycle 

proliferation in the Eµ-TCL1 tumour B cells. 

 Finally, CFSE membrane staining was employed, which allowed tracking of the 

percentage of cells from this population which had undergone cell division. A similar, dose-

dependent response was observed for this assay with approximately 10.9% of the untreated cells 

due to division; which increase to 23.7% upon treatment with 10ng/ml IL5 treatment. For the 50 

and 100 ng/ml treatments, 42.5% and 43.8% were divided, respectively. 
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Figure 5.21. The effect of interleukin 5 on Eµ-TCL1 tumour cell density in vitro. Eµ-TCL1 

tumour cells isolated by lymphoprep from the spleens of two terminal mice (corresponding to 

tumour 1 and tumour 2 evaluated in Figure 5.20 with >95% tumour cell purity) were cultured at 

an initial density of 5x106 and treated in triplicate with 0, 10, 50 or 100 ng/ml of IL5. Cell 

density was measured by a Coulter Counter after 48h. Significance was determined by t-test 

compared with the untreated (0 ng/ml) control. * - p<0.05, ** - p<0.01. 

Figure 5.22. The effect of IL5 on proliferation and survival in Eµ-TCL1 tumours in vitro. 

Tumourous Eµ-TCL1 splenocytes were cultured for 48 h with 0, 10, 50 or 100 ng/ml of IL5. A. 

Cells were stained with hypotonic propidium iodide and DNA content measured with flow 

cytometry. B. Cells were stained with propidium iodide (isotonic) to measure exclusion by intact 

membranes indicative of cell viability. C. Prior to the culturing described above, tumourous Eμ-

TCL1 cells were stained with the fluorescent dye CFSE. The reduction in fluorescence induced 

by the physical division of the cell membranes was determined by flow cytometry. 
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5.17 CHAPTER DISCUSSION 

This chapter aimed to combine and implement several of the latest advances in 

quantitative MS proteomics to comprehensively characterise the contrasting mouse B-cell cancer 

models Eµ-myc and Eµ-TCL1, observed with characteristics of BL and CLL, respectively. The 

resulting proteomic characterisation exceeded expectations raising the number of quantified 

proteins from 215 (peptide FDR<1%) in Chapter 3 to 7391; a 34-fold increase. The 

combination of these approaches has provided one of the most comprehensive characterisation 

of primary B-cell cancers to date. 

The samples characterised by this experiment were derived from Eµ-myc and Eµ-TCL1 

mice demonstrating phenotypes consistent with the initial tumour model characterisations [144, 

176, 188]. The median time to presentation of terminal Eμ-myc tumours of 106 days, illustrated 

by the Kaplan-Meier survival curve in Figure 5.1, agreed closely with the generally accepted 

figure of 100 days [176, 188]. The median time to presentation for the Eμ-TCL1 model of 

approximately a year, was slightly less than the figure of 13-18 months proposed by Bichi et al. 

[144]. It is however very closely in agreement with a later, more comprehensive characterisation 

performed by Johnson et al [145], suggesting a median age of death of 11.93 months. Survival 

times in the Eμ-TCL1 model, for example, may be influenced by environmental factors, such as 

exposure to antigens potentially playing a role in tumour progression [392]. Stress to these 

animals is anecdotally observed to increase the progression of the disease. However, with each 

model following the expected phenotypes, such institute-specific factors were unlikely to have 

had a substantial influence on the MS-characterised tumours. 

Biological replicates demonstrated reproducibility and clustering amongst the 7391 

proteins for the Eµ-myc and Eµ-TCL1 models (Figure 5.4). This topologically confirms the 

success of this quantitative experiment. The trend also implies that both models presented with 

reproducible differential protein expression in their respective tumours. The averaging effects of 

pooling cannot be ruled out as a factor in this, however.  

The pattern of protein expression in Eµ-myc 6-week samples was surprisingly similar to 

that of the Eµ-myc tumours. While no tumours or signs of sickness were observed in any of the 

6-week Eµ-myc mice, it was possible that in one or more of the mice had progressed to the early 

stages of lymphoma, potentially contaminating the analysis with tumour material. The use of 

pooling, however should have substantially reduced this observed trend. Given that the 6-week 

Eµ-myc ‘pool A’ had double the cellularity of pool B (Figure 5.3), even if all 100 million of the 

additional cells were tumourous, this would only have contributed to 25% of the protein 
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analysed after pooling. The SD of differential expression for 6-week Eµ-myc B cells was 

however 80% that of the terminal Eµ-myc tumours. This extent of differential protein abundance 

could not have been attributable to tumour contamination unless this contamination was present 

in at least 5 of the 6 samples. Therefore it remains possible that this protein expression was 

partly attributable to all the 6-week Eµ-myc B cells. The observation of myc protein upregulation 

in this sample however (Figure 5.5), is inconsistent with the literature suggesting myc protein 

expression is not elevated prior to tumour development [377], confirmed by WB in Figure 3.6. 

However, Figure 5.9 does present some specific changes in protein expression, including further 

myc upregulation, between the 6-week Eµ-myc B cells and terminal, malignant Eµ-myc B cells 

which could therefore be specifically attributable to a malignant phenotype. Overall, this 

suggests that the pre-tumour Eµ-myc B-cell protein expression may very well be very similar to 

that which emerges during malignancy. Given the uncertainty, detailed conclusions relating to 

the 6-week Eµ-myc B cells were not drawn.  

Contrasting the 6-week Eµ-myc protein expression profile; the 6-week Eµ-TCL1 B cells 

demonstrated a minimal extent of dysregulation, even less than that of the 200 day WT B cells. 

This reflects the reduced aggression of the Eµ-TCL1-derived cancer and suggested that TCL1, 

even when substantially overexpressed (Figure 5.5), has little effect on the immediate phenotype 

of B cells. 

Expected myc and TCL1 protein overexpression was detected in both the Eµ-myc and 

Eµ-TCL1 terminal tumours, relative to both the WT B cells and respective non-model controls 

(Figure 5.5). In addition to these expected proteins, several other B-cell and B-cell cancer 

related proteins were observed with anticipated regulations. The WB conducted on Eµ-myc 

tumours in Chapter 3 also served as validation for this proteome. These observations acted as 

positive controls, indicating that the 2D LC MS/MS workflow, the data analysis workflow and 

the implementation of SPIQuE had successfully derived an accurate representation of the 

characterised cell lysates. This represented the first characterisation of either myc or TCL1 by 

global proteomics in these respective models. 

Myc overexpression in the Eµ-TCL1 tumours, due to the lack of a myc human 

transgene, could only be traceable to murine myc upregulation, suggesting a role for myc and 

myc dysregulation as a downstream component of TCL1-induced signalling or as a bystander 

effect of lymphomagenesis. This is potentially expected given the activation effect of TCL1 on 

the mitogenic AKT protein [211, 212] which can facilitate the inhibition of myc degradation via 

glycogen synthase kinase 3 beta (GSK3β) phosphorylation [393]. CD19 signalling has been 

shown to have a BCR-independent role in myc upregulation via PI3K-directed AKT activation 

in lymphoma [183, 184]. CD19 expression is maintained in Eµ-TCL1 tumours, compared to 
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several other downregulated B-cell surface components (Figure 5.5A), and multiple PI3Ks are 

upregulated. These observations makes it difficult to conclude a predominant mechanism of 

AKT-directed myc stabilisation, but suggest a convergence of both pathways. It is also possible 

that several other mitogenic pathways such as BCR signalling-induced RAS/RAF/MEK 

signalling influence the upregulation of myc. The genetic deletion of CD19, which induced 

longer survival in Eμ-myc mice [183], in the context of the Eµ-TCL1 model may inform the 

importance of TCL1 activation of AKT in myc stabilisation in Eµ-TCL1 tumours by eliminating 

this potential source of PI3K signalling. The lack of myc upregulation in 6-week Eµ-TCL1 B 

cells suggests that other oncogenic events are required for the effective amplification of myc 

expression. 

Upregulation of p53 correlating with myc expression (Figure 5.5A) was an expected 

observation given the p21 ARF myc-p53 feedback pathway. It also agreed with previous 

observations of p53 upregulation [394]. This suggests that myc expression in both models 

inhibits MDM2 allowing p53 to accumulate. Unfortunately, neither p19ARF nor MDM2 were 

identified by the proteomics, however, MDM2 binding protein (MTBP), a stabilising factor of 

MDM2 exhibited upregulation correlating with myc and p53 upregulation. While in theory 

MTBP overexpression would promote MDM2-directed degradation of p53, p19ARF expression 

likely counteracted this. In addition, a secondary p53 ubiquitin ligase (HUWE1), also inhibited 

by p19ARF [395], was upregulated correlating with myc expression. The upregulation and 

stabilisation of two E3 ubiquitin ligases of p53 degradation, correlating with p53 expression, 

suggest a possible feedback mechanism. Given that loss of functionality of the downstream 

effects of p53 typically results from mutations, it was difficult to derive any conclusions from 

the proteomics data as to how the tumours avoided p53-induced apoptosis. 

Global analysis revealed a far greater extent of protein dysregulation in the Eµ-myc 

tumours, compared with Eµ-TCL1 tumours (Figure 5.6). This was an anticipated observation 

given the contrast in phenotypes between the models and aggression of the oncogenes. The 

observation of common signatures between the two models was less expected, however, for 

these same reasons.  

For those proteins exhibiting upregulation in both myc- and TCL1-driven B-cell 

tumours, the vast majority were far more upregulated in Eµ-myc tumours, highlighted by Figure 

5.7. This suggests that while a common B-cell cancer protein signature may exist, the signature 

may be dependent on other factors. One such factor which correlates with these patterns of 

greater protein expression in Eµ-myc tumours is, indeed, myc itself, a likely candidate given the 

vastly pleiotropic nature of this transcription factor. 
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The most confidently upregulated protein across both tumours was ASS1 (Figure 5.7). 

This was an interesting observation on the basis that arginine dependence is observed in several 

cancer types where ASS1 is downregulated [396-399]. ASS1 expression has also been shown to 

correlate with the aggression of tumours, where upregulation confers treatment resistance and 

poor prognosis [400, 401]. ASS1 expression has been shown to be regulated by myc in a 

melanoma cell line, demonstrating that the ASS1 promoter region contains a binding site for 

myc [402]. This suggests that ASS1 upregulation in these B-cell tumours may be a side effect of 

myc overexpression rather than a necessary feature of tumourigenesis. The correlation between 

ASS1 and myc reinforces the suggestion that myc may be playing a proportional role in both 

tumour phenotypes. Unfortunately a large scale evaluation of myc-specific genes was not 

possible due to the current unavailability of the myc-target gene database [162]. 

Amongst the other proteins highlighted by Figure 5.7, there was a strong trend of 

proteins with roles relating to the hallmarks of cancer (Figure 1.1) [1, 2] and with published 

links to cancers. Even the proteins amongst this list with no clear links to cancer were implicated 

in oncogenic processes. This strongly reinforces the suggestion that this proteomics experiment 

provides an unprecedented characterisation of these B-cell cancers, offering potentially, 

hundreds of novel hypotheses relating to Eµ-myc tumours, Eµ-TCL1 tumours and other cancer 

types. 

To elucidate trends from the tumour data besides the evaluation of single protein 

regulations, enrichment analyses were employed which highlighted, for example, the enrichment 

of proteins involved in processes relating to an increased cell metabolism (Figure 5.12). Given 

the nature of these terminal tumours, this was an expected observation with protein synthesis, 

DNA replication, organelle fission required for increased cell division. Processes specifically 

related to the promotion of cell cycle progression were also enriched for. This trend of cell 

proliferation and protein metabolism was reinforced by several pathways relating to these 

processes, highlighted by Figures 5.14, 5.15 and 5.16. 

The enrichment of upregulated mitochondrial proteins suggested the mechanism by 

which energy was being derived by the tumour cells to maintain cell growth and metabolism. 

Greater numbers of mitochondria or mitochondrial proteins might suggest that these tumours 

have a lesser dependence on the ‘Warburg effect’, a description of cancer cells adopting 

mitochondrial-independent aerobic glycolysis [403]. However, lactate dehydrogenase A, the 

enzyme responsible for the mitochondria-independent ATP synthesis from pyruvate, and 

transmembrane monocarboxylate (lactate) exporters were also substantially upregulated, 

suggesting an interplay between these two means of energy production. Overall this agrees with 

the hallmark describing metabolic dysregulation in cancer [1, 2] and suggests some specific 
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means by which it may be occurring. The increase number of mitochondrial proteins may also be 

due to myc induction of metabolic proteins in response to rapidly dividing cells. 

Downregulated protein trends predominantly indicated immune evasion with the 

enrichment of underexpressed MHC complex proteins and terms such as ‘signal transduction’ 

and ‘plasma membrane’ also suggesting a reduced interaction with the exterior of cells. This 

downregulation of interaction with the immune system and extracellular environment is 

consistent with the hallmark of cancer describing immune system evasion [1, 2] and previous 

observations of MHC downregulation in cancers [404, 405]. The downregulations also suggests 

a trend towards pathways and proteins that may be responsible for the loss of contact inhibition 

by intercellular signalling [1, 2]. These GO terms were also consistent with the loss of B-cell-

specific attributes such as the downregulations described in Figure 5.5. This agrees with the 

proposed concept of de-differentiation especially in the context of myc expression, a 

pluripotency factor and inhibitor of terminal differentiation [406, 407]. As B cells progress to 

cancers, it would make sense that metabolism and protein synthesis of B-cell-specific attributes 

would be evolutionarily lost to favour cells with proliferative potential. This was not so much the 

case with Eµ-TCL1 tumours, especially for BCR components supporting suggestions of the 

involvement of BCR signalling in proliferation and development [408]. 

Evaluation of the drug targets confirmed the efficacy of the proteomics approach in the 

identification of potential targets of small molecular inhibitors of cancer pathways, with several 

known targets observed for both tumours and each tumour type (Figure 5.17). The 

predominance of drug targets relating to DNA synthesis and cell cycle progression confirms the 

general trend of cells maintaining a proliferative state, but may also have reflected the 

predominance of drug development in areas such as nucleoside analogues [409, 410]. Given that 

the standard therapies for both BL and CLL frequently incorporate nucleoside analogues or 

DNA synthesis inhibitors, such observations are expected [411]. Another well-represented class 

of drug were kinase inhibitors, again, related to the cell cycle in the context of cyclin-dependent 

kinase and aurora kinase inhibitors. Such drugs offer the potential to interfere with the core 

mechanisms of cell proliferation, including those described in the pathways in Figures 5.14. 

Histone deacetylase inhibitors (HDACIs) offer an alternative means of cancer treatment. 

While currently pan-HDACi are used (Figure 5.17), the observation of HDAC8 upregulated in 

both B-cell cancer types suggests a potentially highly specific means of therapeutic intervention. 

HDAC8 is a ubiquitously expressed HDAC with a role in cancer survival suggested by the 

reduced in vitro proliferation resulting from HDAC8 siRNA knockdown in hepatocellular 

carcinoma [412]. Several oncogenic mechanisms appear to be enhanced by HDAC8, such as 

telomerase activity [413], tumour suppressor downregulation [414, 415] and cytokine signalling 
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[416], either by the deacetylation of histone lysine residues as a transcriptional regulator or by 

the direct deacetylation of lysine residues on non-histone proteins [417, 418]. The exact effects 

of HDAC8 inhibition by several of the specific inhibitors [419-421] is unclear as they do not 

appear to have been examined specifically in B-cell cancers. The observation of upregulation in 

both the 6-week model samples, additionally implies that myc and TCL1 may have a regulator 

role in the upregulation of HDAC8, however, no published links are apparent. HDAC2 and 

DNA methyltransferase 1, specific to Eμ-myc tumours and HDAC4, specific to Eμ-TCL1 

tumours, suggests differential roles for epigenetic regulation between these two tumours. 

While only currently annotated drugable targets are described in Figure 5.17, several 

other proteins such as kinases identified by proteomics may suggest targets of small molecular 

inhibitors, such as those described in Figure 5.7. 

Membrane protein analysis identified several dysregulated mechanisms at the cell 

surface in both tumours (Figure 5.18). Despite the GO term enrichment detailed in Figure 5.11, 

suggesting an overall downregulation of surface proteins, a selection of receptors and 

transmembrane transporters were still upregulated. A strong signature common to both tumours 

was that of solute carrier channels involved in the transport of zinc, folate, monocarboxylates 

(lactate/pyruvate), neutral amino acids, organic anions and large neutral amino acids. This trend 

describing an increased transmembrane transport of compounds was consistent with the 

observations of increased cell metabolism (Figure 5.10). In order for translation and DNA 

synthesis to take place, prior to cell division, an uptake of amino acids and nucleotide precursors 

is required. These data suggests that a mechanism by which this is occurring is through the 

upregulation of transporters proteins. This mechanism is well characterised in the context of the 

glucose transporter [422], monocarboxylate transporters [423, 424] and amino acid transporters 

[425-427], offering inhibition targets capable of impeding tumour proliferation in several tumour 

types. 

The observation of two zinc transporters ZIP6 and ZIP11 upregulated in Eμ-myc 

tumours and ZIP4 and ZIP11 in Eμ-TCL1 tumours suggested a greater requirement for zinc in 

these tumour cells. Zinc transporter upregulation is less reported and less consistent than those 

transporters above, with some reports of downregulation [428-431]. Instances have been 

observed however with upregulation of the zinc transporter ZIP5 which appeared to increase cell 

proliferation and migration, reduced upon knockdown [432]. ZIP11 has been reported with a 

possible role in bladder cancer based upon variant-related correlations with prognosis [433]. 

ZIP4 was shown to dramatically increase the aggression of pancreatic cancer [434], which has 

been suggested to function via a zinc-dependent zinc finger transcription factor [435]. This 

finding suggests that zinc may play a role in the maintenance of B-cell tumour growth and could 
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provide a therapeutic target. Supplementation or withdrawal of zinc from in vitro Eμ-myc 

tumour cultures might provide further insight into the dependency of B-cell cancers upon Zn2+ 

ions for transcription factors as well as other zinc-dependent proteins, an interesting example of 

which is HDAC8. 

The most upregulated cell surface protein across both cancers was HMMR, also known 

as CD168, which is a receptor for the extracellular matrix component hyaluronic acid. CD168 is 

overexpressed in several malignancies, including B-cell cancers, such as CLL where it has been 

suggested to have prognostic utility, correlating with aggressive disease [436]. While CD168 has 

been rejected as an immunotherapy target in acute myeloid leukaemia [437], observations in 

other cancers suggests the potential of anti-CD168 therapies and its value in prognostic use [438-

442]. This analysis presented several other surface proteins potentially worthy of investigation 

for biological and therapeutic relevance to B-cell cancers.  

The combined, Eμ-TCL1-specific upregulations of both interleukin 5 receptor subunits, 

IL5RA and CSF2RB (Figure 5.19 and Figure 5.20), strongly implied that IL5 has a role in 

signal transduction in Eμ-TCL1-derived B-cell cancers. This hypothesis was supported by 

previous observations of murine B-cell cancers responding to IL5: A cell line, BCL1, derived 

from a spontaneous murine B-cell leukaemia with CLL-like characteristics [443], was observed 

with a dependency on IL5 for proliferation [444, 445]. An IL5-dependent follicular B-cell 

lymphoma line, cRCS-X, was also described [446]. Additionally, a mouse strain with 

constitutive expression of IL5 demonstrated the emergence of a CD5+ CLL-like B-cell 

leukaemia [447]. 

Murine splenic B cells were previously investigated for IL5RA expression, revealing an 

IL5RA+ subpopulation of 2-4% [448]. This work also determined a strong link between IL5RA 

and IgM surface expression, a co-expression also observed on Eμ-TCL1-derived cancers. IL5 

has also been described with a role in inducing proliferation of murine B cells, previously known 

as B-cell growth factor II [449, 450]. A deficiency of a B-cell subset described as CD5+ B-1 cells 

was also observed in a mouse knock out model of IL5 [451]. Taken together these observations 

strongly supported the potential for a role for IL5 in the development, proliferation and survival 

of Eμ-TCL1 tumours, from CD5+ B-1-cell precursor cells. 

Figure 5.21 identified a dose-dependent increase in cell number in Eμ-TCL1-derived 

tumour splenocytes upon treatment with IL5. While this suggested that proliferation was 

occurring, further assays were conducted to evaluate the specific effects of IL5 upon cell 

division, cell cycle phase and cell viability (Figure 5.22). Overall, these assays demonstrated a 

dose-dependent response to IL5, promoting cell survival, cell cycle entry and cell division. This 
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confirms that, like with the other murine B-cell tumours described above, IL5 signalling plays a 

role in the proliferation of Eμ-TCL1 tumours. IL5 signalling may also be critical to the 

development of Eμ-TCL1 tumours.  

The above observations have several implications for the Eμ-TCL1 tumour model. The 

response to IL5 appears to function by downstream signalling predominantly via the intracellular 

domain of CSF2RB which can induce activation of Lyn, JAK2, Syk, BTK, NF-κB and PI3K 

[452-454] which demonstrates considerable crossover with BCR signalling. Amongst these 

pathways, the only proteins demonstrating upregulation similar to that of the IL5R were 

members of PI3K family. While this doesn’t rule out signalling via other pathways, the selective 

upregulation of these PI3Ks could suggest a selective advantage of signalling induced by these 

molecules. 

Phosphoinositide-3-kinase, regulatory subunit 6 (PIK3R6) and phosphatidylinositol-4-

phosphate 3-kinase, catalytic subunit type 2 beta (PIK3C2B) both presented as candidates for 

this signalling, with highly specific upregulation in Eμ-TCL1 tumours (RS>1) and no regulation 

in any other samples. Phosphoinositide-3-kinase, regulatory subunit 5 (PIK3R5) also followed 

this specific expression but was less upregulated (RS>0.5). As discussed previously, PI3K 

signalling induces AKT which is amplified by TCL1 overexpression. It follows that the action of 

TCL1 might therefore occur partly though the amplification of the IL5RA signalling pathway, 

potentially inducing the expression of myc (described in Figure 5.5) promoting aberrant cell 

growth and tumourigenesis. This hypothesis is partly supported by the recent observation of 

PI3K inhibitors exhibiting antitumour effects in Eμ-TCL1 tumours [230]. These observations 

also suggest that the IgM+ IL5RA+ B cells [448] is a very likely B-cell subtype from which Eμ-

TCL1 tumours originate. 

The data suggest Eμ-TCL1 tumours may offer more potential for in vitro study when 

supplemented with IL5, such as those previously characterised tumours [443, 446] to enable 

proliferation and survival of these cells, which may simply be recapitulating the in vivo 

conditions. Further work would need to be conducted to identify the concentration required to 

best reproduce the in vivo growth rate in vitro. 

It was considered, given the CLL-like nature of Eμ-TCL1 tumours, that IL5 may be 

involved in a similar manner in CLL. However, flow cytometry did not identify any upregulation 

of IL5RA relative to healthy B cells in CLL and IL5 treatment did not appear to induce 

proliferation or survival in CLL cells and, in fact, has previously been observed to induce 

spontaneous apoptosis in CLL [455]. 
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The evidence regarding the effects of IL5 is conflicted between humans and mice, with 

reports that suggest IL5 has no effect on human B cells [450, 456]. The role of IL5 and 

potentially the IL5RA-expressing B-cell subset does not appear to be conserved across species, 

however does appear to be conserved with regards to eosinophil proliferation and differentiation 

[450, 456]. 

The observation of an alternative pathway and cell of origin driving Eμ-TCL1 tumour 

development suggests that the model may have limitations in the recapitulation of CLL. 

However, given that the pathways activated appear to have several parallels to BCR signalling, 

the model may still hold potential for furthering understanding of many aspects of the human 

disease. 

This chapter aimed to generate high-quality quantitative proteomics data describing the 

tumours and pre-tumours of the Eμ-myc and Eμ-TCL1 B-cell cancer models. Emphasis was 

placed upon using the use of the latest advances in proteomics, such as the use of DMSO in the 

mobile phase, to maximise the potential of identifying differential protein expression relevant to 

the understanding of these models, and potentially other B-cell cancers. Overall, these results 

represent the most comprehensive phenotypic characterisations of these models to date. While 

limitations such as sample pooling existed, this was overcome by the use of replicate pools and 

the rejection of variable observations. This has resulted in the novel characterisation of a 

cytokine signalling pathway driving the proliferation of Eμ-TCL1 tumours. Additionally, given 

the vastly different presentation and aetiology of the Eμ-myc and Eμ-TCL1 B-cell tumours, there 

is a strong possibility that many of the molecular characteristics common to both tumours, may 

have commonality with other B-cell cancers. 

  



213 

 

 

6.0 QUANTITATIVE PROTEOMIC CHARACTERISATION OF 

Eµ-MYC AND Eµ-TCL1 BLOOD PLASMA  

6.1 CHAPTER INTRODUCTION 

In addition to those samples collected for the characterisation of the B-cell proteome of 

the Eμ-myc and Eμ-TCL1 models, detailed in Chapter 5, blood plasma was simultaneously 

isolated for proteomics. 

Plasma proteomics offers the potential to identify biomarkers indicative of the presence, 

as well as progression, of diseases, due to the minimally-invasive nature of sample collection. In 

cancer, mechanisms such as cell lysis, exosome production, secretion and shedding can allow 

tumour-derived proteins to be detectable in the blood plasma and provide signatures of the 

presence and/or stage of a cancer [316]. Immune response to cancer can also be detected in the 

plasma providing early, non-invasive indications of the state of a cancer. Other systemic 

responses and the microenvironment also likely contribute to protein presence in the blood 

[316]. 

Two major obstacles have hindered the identification of robust biomarkers for cancer 

diagnosis and prognosis from serum and plasma. Firstly, the methods of detection of proteins by 

approaches such as proteomics is hampered by the disproportionate abundances of certain 
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proteins in plasma and secondly the collection of well controlled samples is challenging in pre-

symptomatic stages of a disease. 

In an attempt to overcome some of these issues with plasma protein identifications, an 

adapted version of SuPrE-SEC, described in Section 2.18, was employed. The use of the Eµ-

myc and Eµ-TCL1 mouse models offered an opportunity to study disease progression with a 

model in which cancer development was both predictable but also spontaneous. This offered a 

degree of control over the characteristics and sample quality which would be very challenging to 

obtain from human samples.  

This chapter describes the characterisation of plasma collected from the same mice for 

which the tumour and B-cell proteomes are described in Chapter 5. An additional cohort was 

also used to generate intermediate stage plasma samples from Eµ-TCL1 mice, where a 

leukaemia was established but not yet terminal. Characterising both the cells and plasma of these 

tumours offered an opportunity to gain an insight into the complex interactions between the 

impacts of these tumours on the whole organism, as well as the systemic effect of the organism 

on the tumours. Furthermore, correlations between the B-cell cancers and blood plasma 

proteomes had the potential to reveal a mechanism and explanation behind how these markers 

were appearing in the blood.  

6.2 DEFINING AND COLLECTING PRE-TERMINAL, INTERMEDIATE-STAGE Eµ-TCL1 

PLASMA 

Plasma samples were collected in tandem with those derived for B-cell characterisation 

in Chapter 5 using an adapted method (detailed in Section 2.12), drawing heparinised blood 

directly from the inferior vena cava. Plasma was then isolated by centrifugation, to ensure the 

removal of any cellular material. The effects of an advanced terminal tumour on plasma were 

substantial enough to be observed by eye, with a reduced haematocrit and clear discolouration 

evident (Section 5.2). For the Eμ-myc model, given that substantial protein dysregulation was 

observed at the 6 week, pre-tumour period, these samples were capable of providing insight into 

the Eμ-myc model prior to terminal tumour development. For the Eµ-TCL1 model, however, due 

to the far slower progression, combined with the minimal dysregulation of proteins at 6 weeks, it 

was concluded that the characterisation of an intermediate state would be more informative. An 

intermediate state also more accurately reflects the clinical stage at which CLL is frequently 

diagnosed. An additional condition was therefore considered for the Eµ-TCL1 plasma samples, 

with material derived when a CD5+ B220+ blood-borne leukaemic population was initially 

established. Based on the characterisation of CD5+ B220+ populations in WT and Eµ-TCL1 mice 

(Section 5.2), it was concluded that a threshold of at least 15% above that of the WT CD5+ 
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B220+ percentage at any monthly screening, to account for variability in phenotyping, would 

provide such samples. In all cases, this equated to a CD5+ B220+ population representing 30% of 

the lymphocyte gate, and the condition was named as such (Eµ-TCL1 ‘30%’) for simplicity. As 

with the B-cell-based proteomics study, only female mice were used to generate samples for 

quantitative proteomics. 

A cohort of 22 Eµ-TCL1 mice (8 male, 14 female) and 8 WT female littermates were 

screened for a CD5+ B220+ leukaemia cell population using the flow cytometry gating described 

in Figure 5.2 on a monthly basis. On each screening the CD5+ B220+ population was determined 

for each animal and Eµ-TCL1 percentages compared to WT percentages. To avoid bias that 

might be introduced by selecting the 6 earliest tumours emerging within the cohort, 6 terminal 

plasma samples were collected from every other animal reaching a 30% CD5+ B220+ population.  

Figure 6.1 describes the percentage of CD5+ B220+ cells in the circulation of the 8 WT 

littermates and the 16 tracked Eµ-TCL1 mice over the course of 12 months, as well as the 6 mice 

for which samples were taken for quantitative proteomics. For the WT mice, as determined by 

genotyping described in Section 2.4, there was consistently less than a 15% CD5+ B220+ 

population with the exception of a single aberrant phenotyping at 6 months. For the monitored 

Eµ-TCL1 mice, all but ‘BC4’ at some stage exceeded all CD5+ B220+ cell percentages 

characterised in the WT samples, which became terminal shortly after the 12 month time-point. 

The first lethal tumour of this cohort (BF7) appeared at 5 months, which presented atypically 

with peripheral tumours and no splenomegaly, and was not used for proteomics. From this point 

on, every other animal reaching the 30% threshold was used for the proteomic analysis. For the 6 

samples collected due to a 30% threshold being reached, the average age of sample collection 

was 207 days (SD=38), ranging from 182 to 283 days. The range of CD5+ B220+ cell percentages 

for these samples was 33.2% to 48.7% with an average and SD of 36.8% and 6.5%, respectively. 

All other Eµ-TCL1 mice succumbed to a terminal tumour within 2 months of the end of this 12 

month observation period. 

The CD5+ B220+ cell percentages determined just prior to the collection of the ‘30%’ 

samples were significantly greater than all WT screenings (p<0.00018).  The ‘30%’ percentages 

were also significantly less than those determined just prior to terminal tumour development in 

the animals allowed to progress past 30% (p=0.0069). Finally, a significant difference was also 

observed between the ‘30%’ CD5+ B220+ cell percentages and the Eµ-TCL1 percentages initially 

observed at 3 months (p=3.9x10-5). 
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Figure 6.1. Longitudinal observations of CD5+ B-cell percentages in Eµ-TCL1 and WT 

mice. A. Representative lymphocyte populations describing the CD5+ B220+ cell percentage in 

the blood of WT, ‘30%’ Eµ-TCL1 and terminal Eµ-TCL1 mice. B. 22 Eµ-TCL1 mice (8 male, 

14 female) and 8 WT mice (all female) were immunophenotyped for CD5+ B220+ cell 

percentage on a monthly basis from 3 months of age. The ‘30%’ samples describe every other 

Eµ-TCL1 mouse presenting with >30% CD5+ B220+ cell percentage, which were euthanised for 

sample collection. The remaining animals were monitored by monthly screening, alongside their 

WT littermates. BA, BC and BG were male animals, BB, BD and BF, female. 
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6.3 DESIGN AND WORKFLOW FOR QUANTITATIVE PLASMA PROTEOMICS OF THE Eµ-

MYC AND Eµ-TCL1 MODELS 

A proteomics experiment was designed that incorporated the same conditions described 

in Chapter 5, while additionally incorporating the intermediate, ‘30%’ Eµ-TCL1 samples, 

described in Section 6.2. The optimisation and confirmation of the capabilities of the newly-

available TMT 10-plex reagents, described in Chapter 4, accommodated for these additional 

samples, while maintaining the experiment within a single isobaric tag experiment. Six samples 

were collected for each of the 7 biological conditions, which in the case of the WT and 6-week 

pre-tumour controls were from the same 6 mice from which the B cells were collected (Chapter 

5). For the terminal tumours, due to challenges in the collection of specimens without 

haemolysis, some plasma samples from the tumours used in the B-cell proteomics were not of 

sufficient quality for plasma proteomics. Additional samples were therefore collected to reach a 

total of 6 samples for each condition. For the non-tumour controls, 20 µl of each of the six 

plasma samples were combined into a single 120 µl pool. For the samples derived from terminal 

and intermediate Eµ-TCL1 ‘30%’ mice, two 120 µl pools of 3 x 40 µl were generated to provide 

biological replicates. This allocation of samples and the specific tumours used in each pool is 

described in Figure 6.2. Pooled plasma samples were immediately diluted with 6 M guanidine 

hydrochloride, the mobile phase used for SEC; a strong chaotropic solution capable of 

denaturing almost all non-covalent bonds within the plasma, which subsequently prevents any 

proteolysis occurring in the samples.  

Plasma pools were subjected to SEC with the aim of isolating the low molecular weight 

sub-proteome for each of the 10 pools. The low Mw sub-proteome contains the lowest percentage 

of albumin, based on spectral counting from previous experiments, thereby giving the lowest 

levels of potential interference from albumin peptides when undergoing LC-MS analysis. While 

excluding many large proteins, this sub-proteome provided the greatest number of protein 

identifications and gave a representative signature of large proteins, partially due to the 

enrichment of proteolysis products. Using identical retention time cut points, the eluting protein 

was isolated by dialysis and lyophilisation. This protein was solubilised and treated as a cell 

lysate (Section 2.19) with 30 µg being the lowest yielded mass of protein and therefore the 

quantity used from all samples. As with Chapter 5, the protein solution was reduced, alkylated 

and trypsinised and the resulting peptides were, in this case, labelled with TMT 10-plex 

according to Figure 6.2. The peptides were then pooled and subjected to analysis by 2D-LC 

MS/MS; first prefractionating the peptides with high-pH reverse phase HPLC, then resolving 

each fraction with low-pH reverse phase HPLC in-line with MS analysis, described in Section 

2.19.5.  
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Figure 6.2. The experimental design and workflow for the TMT 10-plex characterisation of 

the Eμ-myc and Eμ-TCL1 plasma proteomes. The workflow describes, in descending order: 

The 10 biological conditions or replicates for which plasma samples were collected for MS 

characterisation including age, genotype and biological state – the ‘traffic light’ colours 

represent the severity of tumour risk/progression. For each biological condition, 6 samples were 

collected for pooling. For the ‘30%’ and terminal tumours 6 samples were pooled into two 

biological replicates of 3 samples. Blood was drawn under terminal anaesthesia from the inferior 

vena cava and plasma isolated by centrifugation and stored in liquid nitrogen. For each of the 10 

conditions/replicates, a pool of 120 µl was derived from either 6 x 20 µl or 3 x 40 µl, which was 

then diluted to 500 µl with 6 M guanidine. Each plasma pool was subjected to size exclusion 

chromatography to isolate the low molecular weight sub-proteome for each sample. The proteins 

enriched within this sub-proteome were extracted by dialysis, concentration determined and 30 

µg for each pool subjected to peptide preparation and labelling with TMT 10-plex. The labelled 

peptides were pooled and prefractionated and each fraction subjected to a second round of 

chromatography, in line with electrospray ionisation, MS detection and data-dependent MS/MS 

characterisation. 
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6.4 Eµ-MYC AND Eµ-TCL1 PROTEIN IDENTIFICATION AND RELATIVE QUANTIFICATION 

Approximately 3 million spectra were subjected to two target decoy searches, relating to 

CID and HCD spectra as described in Section 2.19.6 and Figure 6.3. As with Chapter 5, 

spectra were subjected to iterative searches firstly identifying peptides based on highly stringent 

criteria followed by a subsequent, relaxed criteria search for all unmatched spectra, identifying a 

total of 92,368 PSMs (FDR <1%) matching 2568 protein groups. PSM quantitation data was 

subjected to analysis by the SPIQuE tool, fully quantifying a total of 2095 proteins.  

The terms differential expression or up or downregulated, were considered inaccurate 

for describing plasma protein quantities. Processes such as cell lysis can influence the protein 

profile, which is neither technically an expression nor a regulation. The term ‘abundance’, 

‘overabundant’ and ‘underabundant’ were considered more appropriate for these proteins. 

6.5 CLUSTER ANALYSIS OF DIFFERENTIAL PROTEIN ABUNDANCE IN THE Eµ-MYC AND 

Eµ-TCL1 MODELS  

Cluster 3.0 using Euclidian distance was employed to analyse and visualise the global 

relative protein abundance across the 15 log2 (ratios) determined by SPIQuE (Figure 6.3). As 

with Chapter 5, the biological replicates relating to the terminal tumours demonstrated both 

strong clustering and a high degree of reproducibility, with regions of similarities and 

differences appearing in the plasma between the two models. As with the protein expression of 

the B-cell tumour material (relative to WT controls) terminal Eµ-myc plasma had far greater 

differential abundance in the proteome. Many of these proteins appeared to also be differentially 

abundant in Eµ-TCL1 terminal plasma but to a lesser extent. The Eµ-myc terminal plasma also 

had a large region of proteins specifically, and reproducibly overabundant. Only a small region 

of proteins appeared specifically overabundant only in plasma from Eµ-TCL1 terminal tumours, 

however of these proteins, many also appeared overabundant in this region for the ‘30%’ Eµ-

TCL1 samples. Variability was observed between underabundant proteins when comparing to 

the 6-week or 200 day WT control plasma. Relative to the 6-week WT plasma, the 200 day 

plasma demonstrated a region of 138 proteins twice as abundant, 77 of which were Ig 

components. This enrichment is likely indicative of a background artefact caused by Ig reduction 

allowing appearance in the low Mw sub-proteome. The use of the regulation score combined with 

statistics identified such inconsistencies and removed these proteins from the subsequent 

analysis.  

The 6-week Eµ-TCL1 plasma presented with minimal differential abundance relative to 

6-week WT plasma with only 69 (3.2%) and 59 (2.8%) of the proteins more than twice as 

abundant, respectively. Of the overabundant proteins, several were in a region which was also 
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differentially abundant for the ‘30%’ Eµ-TCL1 plasma. The Eµ-myc 6 week, pre-malignant 

plasma pool presented a pattern of dysregulation which clustered with the Eµ-TCL1 samples at 

all stages but most strongly with the 6-week Eµ-TCL1 plasma.  
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Figure 6.3. Identification and quantification of differential protein abundance in the plasma 

of Eμ-myc and Eμ-TCL1 models. Fractions were processed using two stage target decoy searches 

within Proteome Discoverer 1.4. Spectra were searched separately for CID and HCD 

fragmentation, and initially searched for peptide spectrum matches using stringent settings; 

allowing for no missed cleavages and no dynamic modifications. Spectra failing to match to a 

peptide with a percolator-determined false discovery rate of q<0.01 were subjected to a second, 

relaxed target decoy search allowing for missed cleavages and dynamic modifications. The PSM 

quantitations and features with the protein group assignments were exported for analysis with 

SPIQuE. Quantitative proteomic results were clustered using Cluster 3.0 and Euclidian distance 

to represent the topological patterns of relative protein abundance for each biological condition. 

6.6 PLASMA PROTEIN OVERABUNDANCE IN TUMOURS OF THE Eµ-MYC AND Eµ-TCL1 

MODELS  

Given the potential technical limitations of the low Mw sub-proteome analysis, such as 

the variability of cut points [321] or the sensitivity to biological or technical variation, the use of 

efficient data analysis of the biological replicates was all the more important to identify only 

those robustly reproducible candidates demonstrating differential protein abundance. With 

regards to the anomalies seen with the 200 day control, this presented an opportunity to identify 

proteins, such as several Igs, susceptible to variation, which could therefore be excluded from 

further analysis. As described in Chapter 5, Section 2.19.7 and Section 2.19.8, all four ratios 

for each terminal tumour, as well as the combination of all 8 ratios, were analysed by 

quantitative and statistical analysis. The resulting regulation scores (average / (SD + 1)) and -

log10 (FDR-corrected p-values) were plotted to give volcano plots to identify the most 

significantly upregulated proteins in the plasma of each, and both, of the terminal tumours 

(Figure 6.4). This analysis focused on the upregulated proteins and those with a larger number 

of PSMs, therefore indicative of higher protein concentration and proteins with traceability to the 

tumours. 

Quantitative analysis of the Eµ-myc plasma identified 727 overabundant proteins 

(p<0.05, RS>0.5), 34.7% of all quantitated proteins, with 113 underabundant (5.4%). Amongst 

the overabundant proteins, 4 were clear outliers; translation machinery-associated protein 7 

(TMA7), THO complex subunit 4 (Alyref), DNA replication licensing factor, minichromosome 

maintenance 4 (MCM4) and tyrosine-protein kinase bromodomain adjacent to zinc finger 

domain protein 1B (BAZ1B), resulting from very consistently, high fold changes relative to both 

WT controls. When examining the upper right hand region of the volcano plot, other proteins 

which appeared with substantial overabundance included; nucleolin (NCL), thyroid hormone 
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receptor-associated protein 3 (THRAP3), heterogeneous nuclear ribonucleoprotein A0 

(HNRNA0), actin-related protein 2/3 complex subunit 5-like protein (ARPC5L), leydig cell 

tumor 10 kDa protein homolog (C19orf53) and complexin-1 (CPLX1). Also amongst these 

annotated proteins were 9 ribosomal subunits (RP); RPL24, RPL13, RPL28, RPL23, RPS19, 

RPL5, RPS5, RPL23a and RPL11, three translational regulators; eukaryotic elongation factors 

(EEF) EEF1B2 and EEF1A1 and eukaryotic initiation factor 4G1 (EIF4G1) and, in addition to 

HNRNA0, were four further ribonucleoproteins; heterogeneous nuclear ribonucleoprotein U 

(HNRNPU), heterogeneous nuclear ribonucleoproteins C (HRNRPC), SAP domain-containing 

ribonucleoprotein (SARNP) and U5 small nuclear ribonucleoprotein 200 kDa helicase 

(SNRNP200). The partner protein which enables the transcriptional activity of myc - myc-

associated factor X (MAX) - was detected as a significantly overabundant protein in Eµ-myc 

plasma. However the myc protein was not itself identified in the plasma. 

The Eµ-TCL1 plasma contained 344 (16.5%) significantly overabundant and 119 (5.7%) 

underabundant proteins with two overabundant outliers; D-3-phosphoglycerate dehydrogenase 

(PHGDH) and serum amyloid A3 (SAA3). Other proteins exhibiting the most substantial 

significant overabundance in Eµ-TCL1 plasma included; ubiquitin-like protein 5 (UBL5), 

ubiquitin-fold modifier 1 (UFM1), UV excision repair protein RAD23 homolog B (RAD23B), 

Kunitz-type protease inhibitor 2 (SPINT2), heterogeneous nuclear ribonucleoproteins A2/B1 

(HNRNPA2B1), RNA-binding protein neuro-oncological ventral antigen 2 (NOVA2) and the 

histone proteins HIST1H1C and HIST2H2AC. Two further histone proteins appeared in this 

region; HIST1H2AH and HIST1H1A, alongside non-histone chromosomal proteins; high 

mobility group nucleosome-binding domain-containing proteins (HMGN), HMGN1 and 

HMGN2. 

When considering the log2 (ratios) for the plasma of terminal tumours from both the Eµ-

myc and Eµ-TCL1 models, 625 (29.8%) proteins reached significant overabundance, with 193 

(9.2%) underabundant. Coagulation factor V (F5), galectin-3-binding protein (LGALS3BP), 

Tyrosine-protein phosphatase non-receptor type 18 (PTPN18), Coactosin-like protein (COTL1), 

thioredoxin-related transmembrane protein 1 (TMX1) and ribosome-binding protein 1 (RRBP1) 

all presented as outliers with higher -log10 (p-values) indicative of significant overabundance. 

Other overabundant proteins in terminal plasma included; component of Sp100-rs (CSPRS), 

nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (NUCKS1), coiled-coil 

domain-containing protein 23 (CCDC23), cysteine-rich protein 1 (CRIP1), napsin-A (NAPSA), 

UBL5, SAA3 and HNRNPA2B1. One observable trend amongst the most overabundant proteins 

was that of three S100 proteins; S100A6, S100A8 and S100A9. 
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To better represent the individual ratios for those proteins overabundant in terminal 

plasma, as well as with a high protein concentration, a filtered list of the most confident proteins 

was generated based upon PSMs, unique peptides and regulation scores (Figure 6.5). PSMs 

were used as an imprecise, but approximate indication of total protein concentration in all 10 

samples. As with Figure 5.7, the colouration threshold was raised to a log2 (ratio) of 2 to 

emphasise differences between the higher ratios. This colour threshold was exceeded for the 

majority of the ratios for proteins derived from terminal Eµ-myc plasma. Histone H2A type 2-C, 

for example, had the highest overall average ratios for Eµ-myc plasma proteins, with average 

log2 (ratios) of 5.76 and 4.35 for plasma pools A and B, equivalent of fold changes of 54 and 20, 

respectively. Additionally histone H2A type 2-C was observed with, and quantitated from, 786 

PSMs. Five other histone proteins were in this list, H1.3, H2A.Z, H3.1, H1.2 and H2A type 1-H 

with between 219 and 961 PSMs, all exhibiting at least a 15-fold increase in terminal Eµ-myc 

plasma, relative to WT plasma. Four members of the U6 snRNA-associated Sm-like proteins; 

LSM2, LSM6, LSM7 and LSM8; three ribosomal proteins; RPL29, RPL32 and RPL7; and two 

proteasome subunits; PSMB10 and PSMA6 were all significantly overabundant in the plasma of 

Eµ-myc and Eµ-TCL1 mice bearing terminal tumours. 

Proteins which were equivalently overabundant in terminal Eµ-TCL1, compared to Eµ-

myc plasma included; TMX1, PTPN18, RRBP1 and F5, which were highlighted previously due 

to an increased significance in Figure 6.4. Amongst this list, serum amyloid A-3 was the only 

protein which exhibited greater overabundance in terminal Eµ-TCL1 than Eµ-myc plasma, 

relative to WT plasma. 
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Figure 6.4. Significant and consistent protein overabundance in terminal Eµ-myc and Eµ-

TCL1 plasma. Volcano plots demonstrating proteins with both a significant and large 

differential abundance in the plasma of Eµ-myc and Eµ-TCL1 mice bearing terminal tumours. 

The most significantly overabundant proteins are highlighted for each comparison on the right. 

A Venn diagram comparing the overlap of the significantly over and underabundant proteins for 

the two models is shown. 
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Figure 6.5. Reproducibly overabundant proteins in plasma derived from terminal, tumour 

bearing Eµ-myc and Eµ-TCL1 mice. The 50 proteins exhibiting a combination of high 

abundance and significant overabundance in the terminal plasma of both tumour models relative 

to WT plasma. Proteins were filtered to include the top 50 proteins on the basis of regulation 

score for both models, with 5 PSMs, 2 unique peptides and a less than 1.5 fold change observed 

between 6-week and 200 day WT controls. A threshold of saturated colouration of log2 (ratio) of 

2 was used. 

 

6.7 RELATIVE PLASMA PROTEIN ABUNDANCE ACROSS THE Eµ-TCL1 MODEL TIME 

COURSE  

As mentioned in Section 6.2, the terminal plasma of Eµ-myc and Eµ-TCL1 mice is not 

typically representative of cancers observed in a clinical setting, as tumours are rarely allowed to 

progress this far without intervention. Consideration was therefore given to better understand the 

differential abundances occurring at the intermediate, ‘30%’ stage of Eµ-TCL1 cancer 

development, where leukaemia percentage were significantly different to both the 6-week and 

terminal Eµ-TCL1 mice. 

A volcano plot representative of the differential abundances of the ‘30%’ Eµ-TCL1 

plasma proteins, identified 43 overabundant and 29 underabundant proteins (p<0.05), 

respectively (Figure 6.6A). Additionally, to represent proteins with differential abundance at the 

terminal stage of the Eµ-TCL1 model, the ‘30%’ plasma proteins were overlaid with three 

groups of data identifying the 344 significantly overabundant proteins, the 119 significantly 

underabundant proteins and the proteins without significant regulation amongst the terminal Eµ-

TCL1 plasma proteins described in Figure 6.4. 22 proteins significantly overabundant in 

terminal Eµ-TCL1 plasma mapped to the significantly overabundant ‘30%’ Eµ-TCL1 plasma, 

including; prolargin (PRELP), neurotrophin receptor-alike death domain protein (NRADD), 

small EDRK-rich factor 2 (SERF2), family with sequence similarity 32, member A (FAM32A), 

gastric inhibitory polypeptide (GIP) and the previously described SPINT2 and NUCKS1. Of the 

underabundant proteins, 12 were common to both ‘30%’ and terminal Eµ-TCL1 mouse plasma, 

most notably; desmoglein-2 (DSG2), uncharacterized protein C17orf78 homolog (C17orf78), 

IgHV1-5, calcium-transporting ATPase type 2C member 2 (ATP2C2) and apolipoprotein C-III 

(APOC3).  

Figure 6.6B demonstrates the same volcano plot as Figure 6.6A, overlaid with the 

proteins determined to be over or underabundant in the 6-week Eµ-TCL1 plasma pool. As no 

regulation score or statistics could be calculated for a single ratio, a two-fold change (FC) cut-off 
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was used to define differential abundance, with 69 and 59 proteins considered over and 

underabundant by this criteria, respectively. Four of the proteins significantly overabundant in 

‘30%’ Eµ-TCL1 plasma were overabundant at 6 weeks; cysteine and glycine-rich protein 3 

(CSRP3), Ly6/PLAUR domain-containing protein 3 (LYPD3), gastric inhibitory polypeptide 

receptor (GIPR) and epididymal secretory protein E1 (NPC2); with CSPR3 the only protein not 

demonstrating significant overabundance at the terminal stage, due to a lower overabundance in 

terminal Eµ-TCL1 plasma pool B. Proteins underabundant in both ‘30%’ and 6-week Eµ-TCL1 

plasma included; DSG2, U1 small nuclear ribonucleoprotein 70 kDa (SNRNP70), misshapen-

like kinase 1 (MINK1), APOC3, ATP2C2, coiled-coil domain-containing protein 113 

(CCDC113), ‘DEK’, vezatin (VEZT) and insulin-like growth factor-binding protein 1 (IGFBP1). 

Of the 43 proteins overabundant in the ‘30%’ Eµ-TCL1 plasma, 20 were uniquely 

overabundant in this state, however, of these just 7 proteins had no differential abundance in the 

terminal plasma (RS<0.2) or 6-week plasma (FC>2) an; coagulation factor XIII B (F13B), 

protein strawberry notch homolog 1 (SBNO1), cytochrome c oxidase subunit N69DUFA4 

(NDUFA4), peroxiredoxin-6 (PRDX6), tetratricopeptide repeat protein 36 (TTC36), ATPase 

inhibitor, mitochondrial (ATPIF1) and corticosteroid-binding globulin (SERPINA6). 

To better described those plasma proteins with abundance emerging over the Eµ-TCL1 

time course, proteins were filtered to include those with a stepwise increase from WT and 6-

week Eµ-TCL1 to ‘30%’ Eµ-TCL1 and further to terminal Eµ-TCL1 (Figure 6.7). This analysis 

identified 43 proteins exhibiting an indication of a terminal tumour signature emerging at the 

intermediate ‘30%’ stage of tumour development, that was minimally, or was not at all, traceable 

to the 6-week Eµ-TCL1 plasma. Members of previously described protein groups, such as 

ribosome proteins (RPS5, RPL13, RPL29 and RPL35), eukaryotic initiation factors (eIF3A and 

eIF4G1), proteasome components (PSMA6 and PSMB10), chromosomal proteins (histone 

H2AFZ and HMGN1) and the LSM protein, LSM7, were present in this list. Other emerging 

proteins types included the chemokines CCL2 and CCL21 and the CD molecules H-2 class II 

histocompatibility antigen gamma chain (CD74) and the leukocyte migration factor CD97. 

While the majority (38) of these proteins were simultaneously observed significantly 

overabundant in Eµ-myc terminal plasma (RS>0.5, p<0.05), the remaining 5 demonstrated 

specificity or greater consistency of upregulation in ‘30%’ and terminal plasma Eµ-TCL1 than 

that of terminal or 6-week Eµ-myc plasma. These 5 proteins included haptoglobin (HP), CD74 

and Igkv12-89, with some overabundance in Eµ-myc, and myosin regulatory light chain 2, 

skeletal (MYLPF) and programmed cell death 1 ligand 2 (PDCD1LG2) with no overabundance 

traceable to the plasma of the Eµ-myc model. 
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Figure 6.6. Plasma protein abundances at an intermediate stage of tumour development, 

compared to pre-tumour and terminal stages of Eµ-TCL1 mice. Volcano plots demonstrating 

the regulation scores and -log10 (p-values) determined for the intermediate ‘30%’ Eµ-TCL1 

plasma proteins relative to WT. These plots are overlaid with; A. the terminal Eµ-TCL1 plasma 

proteins with significant overabundance (red) (RS>0.5, p<0.05), underabundance (green) (RS<-

0.5, p<0.05) or no significant abundance change (black) (0.5>RS>-0.5 or p>0.05), B. the 6-week 

Eµ-TCL1 plasma proteins classed as overabundant (red) (FC>1), underabundant (green) (FC<-1) 

or with no abundance change (black) (1>FC>-1). 
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Figure 6.7. Emerging markers correlating with Eµ-TCL1 tumour development. Proteins 

were filtered to generate a list containing those proteins for which the relative abundance 

incrementally increased between 6 weeks and ‘30%’ leukaemia and again at a terminal stage of 

Eµ-TCL1. Proteins were first filtered for those with significant overabundance in the terminal 

pools (RS>0.5, p<0.05) and for no overabundance at 6 weeks, to remove proteins relating to the 

Eµ-TCL1 model prior to any tumourigenesis. The remaining proteins were filtered to include 

those with a RS of at least 0.25 for the comparison of ‘30%’ to WT and a differential RS of 0.25 

between terminal and ‘30%’, indicative of greater abundance in terminal Eµ-TCL1 plasma. 

Proteins were also filtered to exclude those with >1.5-fold regulation in 200 day WT plasma and 

with less than 3 PSMs.  
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6.8 RELATIVE PROTEIN ABUNDANCE IN PRE-TERMINAL Eµ-MYC PLASMA 

Given the more aggressive nature of the Eµ-myc model and the observation of 

substantial protein dysregulation in the pre-tumour samples at 6 weeks, a signature at this stage 

was anticipated to be indicative of the most robust plasma markers of Eµ-myc tumours. An 

analysis like that of 6-week Eµ-TCL1 plasma, described in Figure 6.6B, was therefore 

conducted. Figure 6.8 highlights plasma proteins with progressive abundance in the Eµ-myc 

model, overlaying the volcano plot describing terminal Eµ-myc plasma with proteins with either 

a 2-fold over or underabundance in Eµ-myc plasma at 6 weeks. Of the 128 proteins with >2-fold 

overabundance in Eµ-myc plasma at 6 weeks, 72 were also traceable to significant 

overabundance in terminal Eµ-myc plasma (RS>0.5, p<0.05) including; ribosomal proteins; 

RPS23, RSP24, RSP30, RPL23, RPL29, RPL30 and RPL35; and histone proteins; H1C, H1D, 

H2AC, H2AFX, H2AFZ, H3A and H3F3C. Additional groups of proteins included fatty acid 

binding proteins; FABP1 (liver), FABP2 (intestinal) and FABP5 (epidermal), all of which were 

observed with a minimum of 4 unique peptides and 29 PSMs; and growth factor and hormone-

related proteins; epidermal growth factor receptor kinase substrate 8 (ESP8), growth hormone 

receptor (GHR) hepatoma-derived growth factor (HDGF) and thyroid hormone receptor-

associated protein 3 (THRAP3). 12 proteins had greater abundance at 6 weeks, on average, than 

that of terminal Eµ-myc plasma, including, most notably, all three FABPs; 1, 2 and 5; syndecan-

1 (SDC1), tRNA:m(4)X modification enzyme TRM13 homolog (TRMT13), cysteine-rich 

protein 2 (CRIP2), SUMO-activating enzyme subunit 1 (SAE1), antileukoproteinase (SLPI) and 

another FA-related protein; non-specific lipid-transfer protein (SPC2). Two proteins were 

observed with significant underabundance in terminal Eµ-myc plasma (RS<-0.5, p<0.05), 

while >2-fold overabundant in Eµ-myc plasma at 6 weeks; hyaluronan-binding protein 2 

(HABP2) and the growth factor and possible cytokine; granulins (GRN). 

58 proteins were >2-fold underabundant in 6-week Eµ-myc plasma, and of these, 18 

mapped to the significantly underabundant proteins in terminal Eµ-myc plasma (RS<-0.5, p<0.05). 

Only one protein, adenomatous polyposis coli protein (APC), demonstrated reproducible 

underabundance and further underabundance, comparing WT to 6-week Eµ-myc and 6-week Eµ-

myc to terminal Eµ-myc plasma, respectively. The three proteins demonstrating the greatest 

underabundance in 6-week Eµ-myc plasma relative to underabundance in terminal Eµ-myc plasma 

were CCDC113, VDAC2 and DSG2, all three of which were also observed as underabundant in 

all Eµ-TCL1 plasma samples. One underabundant 6-week Eµ-myc plasma protein was observed 

which demonstrated significant overabundance when terminal; gasdermin-D (GSDMD) 
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Figure 6.8. Protein abundances in pre-tumour, compared to terminal, Eµ-myc plasma. 

Volcano plot demonstrating the regulation scores and -log10 (p-values) determined for the 

terminal Eµ-myc plasma proteins relative to WT. The plot is overlaid with the 6-week Eµ-myc 

plasma proteins classed as overabundant (red) (FC>1), underabundant (green) (FC<-1) or with 

no abundance change (grey) (1>FC>-1). 

6.9 DIFFERENTIALLY ABUNDANT, HIGH-CONCENTRATION PROTEINS IN TUMOUR 

PLASMA 

When considering proteins as potential biomarkers of disease, an important 

consideration is the concentration of the proteins in plasma. While no concentration can be 

directly inferred from MS data, an approximate indication can be derived from the number of 

PSMs with which a protein was identified. To better understand the effects of the terminal 

tumours on the higher abundant proteins detected in plasma, the regulation scores for the ‘30%’ 

Eµ-TCL1, terminal Eµ-myc and terminal Eµ-TCL1 plasma were plotted against the number of 

PSMs for each protein (Figure 6.9). Figure 6.9A therefore highlighted those proteins with both 

differential abundance and high concentration in the terminal Eµ-myc plasma. The most 

prominent cluster contained 9 histone proteins each with over 300 PSMs, with an average RS of 

2.7. A second cluster of proteins, all with more than 100 PSMs and an average RS of 2, was 

again dominated by histone proteins, but also contained two proteasome components; PSMB6 

and PSMB1; two nucleoside diphosphate kinases (NME); NME1 and NME2; and the ribosome 
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protein; RPLP2. A third cluster was observed with several proteins all with less than, or around, 

100 PSMs and a RSs ranging from 2 to 4. These proteins were all nuclear proteins capable of 

nucleic acid or histone binding; heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC), 

laminin B1 (LMNB1), high mobility group nucleosome-binding domain-containing protein 1 

(HMGN1), HMGA1, nucleophosmin, nucleolin, prothymosin alpha (PTMA), LSM6, LSM8 and 

activated RNA polymerase II transcriptional coactivator p15 (SUB1). The highest concentration 

proteins appeared predominantly underabundant, with three apolipoproteins; APOA1, APOA2 

and APOC3; significantly underabundant in terminal Eµ-myc plasma relative to WT plasma. 

Three alpha-1-antitrypsin proteins were underabundant, but only SERPINA1D was significantly 

so. The high-concentration plasma proteins transthyretin (TTR) and albumin (ALB) also 

appeared significantly underabundant. These observations may have been an artefact of the 

normalisation caused by the high overabundance of the histone proteins. 

For terminal Eµ-TCL1 plasma, 10 histones were also amongst the high-concentration, 

overabundant plasma proteins (Figure 6.9B). Alongside these were proteins normally located in 

the plasma; ceruloplasmin (CP), haptoglobin (HP), ITIH4 and all three isoforms of fibrinogen; 

FGA, FGB and FGG; all with more than 100 PSMs. High-concentration plasma proteins without 

differential abundance included albumin, complement C3, alpha-2-macroglobulin (A2M) and 

beta-2-microglobulin (B2M). Transthyretin was again significantly underabundant, as well as the 

apolipoproteins; APOA2, APOC3, APOA1, APOC3B and APOC2. As with Eµ-myc plasma, the 

three alpha-1-antitrypsin proteins SERPINA1 A, B and D were underabundant, with only 

SERPINA1D reaching significance. Several haemoglobin proteins were underabundant in 

terminal Eµ-TCL1, compared to WT, plasma, but without significance due to variability in the 

WT controls. 

Overall, the higher-concentration proteins were not significantly differentially abundant 

in the ‘30%’ Eµ-TCL1 plasma (Figure 6.9C). The proteins formed a triangular distribution with 

the highest abundant proteins exhibiting less regulation, resulting from averaging a larger 

number of observations. The protein with the highest predicted concentration with significant 

differential regulation was APOC3, underabundant by almost 4-fold relative to WT plasma. 

Significantly overabundant, high-concentration proteins included superoxide dismutase [Cu-Zn] 

(SOD1), the chemokine, CCL8, the putative pro-hormone, secretogranin (CHGB), HP, ITIH1, 

SERPINA6 and acyl-CoA-binding protein (DBI). 
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Figure 6.9. Approximate protein concentrations of differentially abundant plasma 

proteins. The regulation scores plotted against the number of PSMs for; A. terminal Eµ-myc; B. 

‘30%’ Eµ-TCL1 and; C. terminal Eµ-TCL1; plasma proteins. The plot is overlaid with those 

proteins reaching significance in each condition relative to WT (p<0.05) (black), and those 

without significance (p>0.05) (grey) relative to WT plasma. 

6.10 MODEL-SPECIFIC PLASMA PROTEIN SIGNATURES OF TERMINAL Eµ-TCL1 

TUMOURS 

To better understand the differences observed between the plasma derived from Eµ-myc 

and Eµ-TCL1 mice bearing terminal tumours, the regulation scores for each model were plotted 

against one another (Figure 6.10). Tumour-specific signatures emerged, which demonstrated 

groups of proteins predominantly overabundant in each tumour, but with overabundance that 

was proportional, to a lesser extent, in the other tumour type. Figure 6.10 highlights these two 

signatures specific to Eµ-myc and Eµ-TCL1 plasma, using RS-defined cut-offs, to identify 747 

and 127 proteins with a predominant specificity to each tumour, respectively. These groups of 

proteins were considered terminal Eµ-TCL1-‘dominant’ and terminal Eµ-myc-‘dominant’ 

signatures and were evaluated for GO term enrichment, to gain an insight into their biological 

meaning.  

Figure 6.11 demonstrates the GO term enrichments derived from the DAVID analysis 

of the 127 terminal Eµ-TCL1-dominant plasma proteins analysed and presented with REVIGO. 

The biological processes were significantly enriched for parent terms relating to immune system 

processes; ‘immune system process (GO:0002376)’ and ‘positive regulation of immune system 

process (GO:0002684)’, which also encompassed, most significantly, the terms; 

‘immunoglobulin mediated immune response (GO:0016064)’, ‘B-cell mediated immunity 

(GO:0019724)’, ‘lymphocyte mediated immunity (GO:0002449)’ and ‘adaptive immune 

response (GO:0002250)’. Additionally, separate immune-related terms suggesting a loss of 

homeostasis and response to tissue damage were significantly enriched; ‘response to stress 

(GO:0006950)’, ‘defense response (GO:0006952)’, ‘response to stimulus (GO:0050896)’, 

‘response to external stimulus (GO:0009605)’, ‘regulation of response to stimulus 

(GO:0048583)’, ‘wound healing (GO:0042060)’, ‘response to wounding (GO:0009611)’ and 

‘acute inflammatory response (GO:0002526)’. The terms ‘hyaluronan metabolic process 

(GO:0030212)’ and ‘aminoglycan metabolic process (GO:0006022)’ were both enriched due to 

the inter alpha-trypsin inhibitor, heavy chains; ITIH2, ITIH4 and ITIH5, with ‘aminoglycan 

metabolic process (GO:0006022)’ additionally enriched with fibrillin 1 (FBN1) and lymphatic 

vessel endothelial hyaluronan receptor 1 (LYVE1). 
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Cellular component enrichment identified 49 out of 127 proteins with an annotation of 

‘extracellular region (GO:0005576)’ (p=2.9x10-17), indicative of proteins with an association, but 

no covalent attachment to the plasma membrane. Alongside this were similar terms indicative of 

an enrichment of proteins with a canonical localisation at the surface of cells, including; ‘cell 

surface (GO:0009986)’, ‘extracellular region part (GO:0044421)’, ‘external side of plasma 

membrane (GO:0009897)’ and ‘plasma membrane (GO:0005886)’. ‘Extracellular space 

(GO:0005615)’, a term suggesting no canonical association with the cell membrane, was also 

significantly enriched (p=3.7x10-6). The terms ‘vacuole (GO:0005773)’, ‘multivesicular body 

(GO:0005771)’ and ‘lysosome (GO:0005764)’, all indicative of intracellular components, were 

enriched by proteins relating to MHC processing; H-2 class II histocompatibility antigen A beta 

chain (H2-AB1) and H-2 class II histocompatibility antigen gamma chain (CD74); and peptide 

cleavage; cathepsin B (CTSB), C (CTSC) and S (CTSS), gamma-glutamyl hydrolase (GGH) and 

legumain (LGMN). 

A trend of protein binding (GO:0005515) emerged from the molecular function 

enrichment analysis of the 127 terminal Eµ-TCL1-dominant plasma proteins, with 59 annotated 

with this parent term (p= 0.011). This term could be attributed to several other, more minor 

terms relating to binding, including; ‘pattern binding (GO:0001871)’, ‘carbohydrate binding 

(GO:0030246)’, ‘glycosaminoglycan binding (GO:0005539)’ and ‘polysaccharide binding 

(GO:0030247)’; terms common to proteins; C-C motif chemokine 8 (CCL8), connective tissue 

growth factor (CTGF), fibronectin (FN1), ITIH4, LYVE1 and vitronectin (VTN). ‘Receptor 

binding (GO:0005102)’ was enriched due to a number of hormones and cytokines, including 

CCL8 and CTGF, in addition to GIP, glycoprotein hormones alpha chain (CGA), inhibin beta C 

chain (INHBC), prolactin (PRL), resistin-like alpha (RETNLA) and tumour necrosis factor 

ligand superfamily member 13 (TNFSF13). Fibrinogen beta chain (FGB), fibrinogen gamma 

chain (FGG) and fibrinogen-like protein 2/fibroleukin (FGL2) were also annotated with this 

‘Receptor binding’. ‘Antigen binding (GO:0003823)’ was enriched due to the MHC and Ig 

components; H-2 class I histocompatibility antigen, K-B alpha chain (H2-K1), H2-AB1, Ig alpha 

chain C region (IGHA), Ig mu chain C region (IGHM) and Ig J chain (IGJ). The significance of 

the opposing terms ‘enzyme inhibitor activity (GO:0004857)’ and ‘peptidase activity 

(GO:0008233)’ was partly attributable to the three ITIH proteins and the three cathepsin 

proteins, respectively. 
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Figure 6.10. Comparison of Eµ-myc and Eµ-TCL1 terminal plasma protein regulation 

scores. The regulation scores for the terminal tumour-derived Eµ-myc and Eµ-TCL1 plasma 

plotted against one another demonstrating two distinct signatures. Proteins relating to each 

signature were selected on the basis of having at least a regulation score of 0.3 for each model as 

well as the protein regulation score exceeding that of the other model by at least 0.3. The plot 

was overlaid with those proteins matching these criteria for Eµ-myc (red) and Eµ-TCL1 

(orange). 
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Figure 6.11. Gene ontology term enrichment analysis for the Eµ-TCL1-specific signature in 

terminal tumour plasma. GO term enrichment p-values (Benjamini-corrected) were 

determined for those proteins specifically overabundant in Eµ-TCL1 plasma (RS>0.3, RS>Eµ-

myc RS + 0.3) using DAVID. Significantly enriched GO terms (p<0.05) were visualised with 

REVIGO. These are separated into biological processes, cell components and molecular 

function. 

6.11 MODEL-SPECIFIC PLASMA PROTEIN SIGNATURES OF TERMINAL Eµ-MYC TUMOURS 

Based upon those 747 proteins highlighted with a predominant specificity to Eµ-myc 

terminal plasma in Figure 6.10, the DAVID and REVIGO analysis, like that of Figure 6.11, was 

conducted (Figure 6.12). 

For biological processes, the analysis identified a strong trend indicative of intracellular 

processes, with the most significantly enriched terms being; ‘translation (GO:0006412)’ and 

‘cellular process (GO:0009987)’ (p<10-30). Other significantly enriched terms (p<10-20) included; 

‘RNA splicing (GO:0008380)’, ‘cellular macromolecule metabolic process (GO:0044260)’, 

‘RNA processing (GO:0006396)’, ‘gene expression (GO:0010467)’ and ‘mRNA processing 

(GO:0006397)’; again processes canonically located within cells. The remaining enriched 

biological processes followed this trend, with all terms attributable to intracellular processes.  

Cellular component GO term enrichment further identified the abundance of cell-derived 

proteins amongst the Eµ-myc-predominant terminal plasma, with the terms ‘intracellular 

(GO:0005622)’ and ‘intracellular part (GO:0044424)’ reaching a p-value of less than 10-55. 

Three quarters of the 747 analysed (566) were annotated with these terms. Several terms were 

also enriched describing subcellular components; ‘cytoplasm (GO:0005737)’, ‘nucleus 

(GO:0005634)’, nuclear part (GO:0044428)’, ‘organelle (GO:0043226)’, ‘intracellular organelle 

(GO:0043229)’, ‘intracellular non-membrane-bounded organelle (GO:0043232)’ and ‘non-

membrane-bounded organelle (GO:0043228); all significantly enriched (p<10-25). Again, all the 

remaining terms were relatable to cell components, such as those describing chromatin, the 

ribosome and the spliceosome. 

A trend of cellular proteins was consistent amongst the enriched GO terms related to 

molecular function, with ‘structural constituent of ribosome (GO:0003735)’ and ‘RNA binding 

(GO:0003723)’ both substantially enriched (p<10-30). Additional terms identified intracellular 

functions including transcription (‘transcription coactivator activity (GO:0003713)’) translation 

(‘translation initiation factor activity (GO:0003743)’, ‘mRNA binding (GO:0003729)’ and 

‘translation factor activity, nucleic acid binding (GO:0008135)’) and the proteasome (‘threonine-
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type endopeptidase activity (GO:0004298)’ and ‘threonine-type peptidase activity 

(GO:0070003)’). 

Amongst the significantly enriched GO terms derived from Eµ-myc-predominant 

terminal plasma proteins, several appeared in a similar manner to those derived from the analysis 

of the proteins significantly upregulated in Eµ-myc terminal tumour tissue (described in 

Chapter 5, Section 5.11). To investigate the overlap of these terms, Venn diagrams were 

generated to demonstrate the number of terms common and distinct between the two datasets 

(Figure 6.13A). This analysis identified a sizeable overlap of GO terms between tumour tissue 

and the plasma derived from terminal Eµ-myc mice. For the biological processes, approximately 

one third (27) of the 82 terms significantly enriched for plasma were common with the B-cell 

tumour material. Cell component terms exhibited the greatest overlap, with 32 out of the 56 

(57%) plasma-derived GO terms common to those derived from tumour cells. Approximately 

half of the 28 plasma-derived terms (15) were common to both datasets for molecular function. 

The -log10 (p-values) for the GO terms, observed for both the terminal Eµ-myc tumour 

and plasma proteins, were plotted to illustrate the similarities and differences in enrichment 

between the two differentially abundant proteomes (Figure 6.13B). Overall, low correlations 

were observed with R2 values of 0.23, 0.15 and 0.37 for biological processes, cell component 

and molecular function, respectively. The predominant trend that emerged was that of the 

ribosome and translation being more significantly overrepresented in the plasma, resulting from 

a lower number of input proteins, and therefore higher proportion of enrichment; ‘ribosome 

(GO:0005840)’, ‘ribosomal subunit (GO:0033279)’, ‘small ribosomal subunit (GO:0015935)’, 

‘large ribosomal subunit (GO:0015934)’, ‘structural constituent of ribosome (GO:0003735)’ and 

‘translation (GO:0006412)’. Terms relating to localisation such as ‘intracellular (GO:0005622)’, 

‘intracellular part (GO:0044424)’, ‘nucleus (GO:0005634)’, ‘organelle (GO:0043226)’ and 

‘intracellular organelle (GO:0043229)’ were less enriched in the terminal Eµ-myc-dominant 

plasma proteins. 

 

 

Figure 6.12. Gene ontology term enrichment analysis for the Eµ-myc-specific signature in 

terminal tumour plasma. GO term enrichment p-values (Benjamini-corrected) were 

determined for those proteins specifically overabundant in Eµ-myc plasma (RS>0.3, RS>Eµ-

TCL1 RS + 0.3) using DAVID. Significantly enriched GO terms (p<0.05) were visualised with 

REVIGO. 
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Figure 6.13. Comparison of GO term enrichment between the Eµ-myc-specific signature in 

terminal tumour plasma and Eµ-myc B-cell tumours. Significantly enriched GO terms 

(p<0.05) for both those proteins specifically overabundant in Eµ-myc plasma (RS>0.3, RS>Eµ-

TCL1 RS + 0.3) and proteins with significant overexpression in Eµ-myc tumour B cells 

(Chapter 5) were compared by Venn diagram (A.) and the -log10 (GO term enrichment p-

values) of those common to both were plotted against one another (B.).  
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6.12 CANONICAL LOCALISATIONS OF PLASMA-IDENTIFIED PROTEIN SIGNATURES 

Given that GO term enrichment suggested the overabundant proteins in the plasma of 

terminal Eµ-myc mice predominantly originated from cells, the 2095 proteins quantified in 

plasma were annotated for canonical localisation with IPA software (Section 2.21.5). The 

canonical localisations of proteins defined as significantly overabundant in the terminal plasma 

of each model (defined in Figure 6.4), the two model-specific signatures (defined in Figure 

6.10) and the significantly overabundant proteins in the ‘30%’ Eµ-TCL1 plasma (defined in 

Figure 6.6) were plotted alongside the annotation of all 2095 quantified proteins (Figure 6.14). 

This firstly demonstrated the distribution of canonical protein localisations across all quantitated 

plasma proteins; identifying the cytoplasm as the most frequent, normal location of over a third 

(749) of the detected proteins. A fifth (448) of the proteins were annotated as normally located in 

the extracellular space, more than the 361 (17%) and the 270 (13%) of proteins typically found 

in the nucleus or localised to the plasma membrane, respectively. For the 43 proteins determined 

to be overabundant in the plasma of the Eµ-TCL1 mice with ‘30%’ leukaemia these proteins 

were distributed in almost exactly equal percentages compared with all protein quantified. Both 

the protein lists determined as significantly overabundant (727) and those ‘dominantly’ 

overabundant (747) in terminal Eµ-myc plasma demonstrated identical distributions with 80% of 

the proteins annotated as intracellular. 35% and 45% of the proteins were annotated as nuclear 

and cytosolic, respectively, with 7% traceable to the cell membrane and 5% normally found 

outside cells. A much larger difference was observed between the significantly overabundant 

Eµ-TCL1 terminal plasma proteins (344) and those with the Eµ-TCL1-‘dominant’ pattern of 

expression (127). For the significantly overabundant, terminal Eµ-TCL1 proteins, a similar trend 

to that of Eµ-myc, was observed, with 70% of proteins annotated as intracellular; 37% and 33% 

as canonically nuclear and cytosolic, respectively. 11 and 13% of the identified proteins were 

typically located at the cell surface or in the extracellular space. The Eµ-TCL1-‘dominant’ 

signature had 6% and 22% of proteins derived from a canonically nuclear or cytosolic origin, 

respectively. 26% of the proteins were typically plasma membrane proteins, a two-fold 

enrichment over the background percentage. Proteins annotated as extracellular accounted for 51 

of the 127 proteins (40%) in the Eµ-TCL1-‘dominant’ signature, more than any other signature, 

in both number and percentage. 
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Figure 6.14. Annotation of protein localisations for the signatures of Eµ-myc and Eµ-TCL1 

tumours. Proteins defined as significantly overabundant in either tumour plasma (RS>0.5, 

p<0.05), specific ‘dominant’ to each tumour plasma (RS>0.3, RS> RS (other tumour) + 0.3) or 

in the ‘30%’ Eµ-TCL1 plasma (RS>0.5, p<0.05) were categorised for their predominant protein 

localisation and compared with all protein identifications. 

6.13 INTER-PROTEOME COMPARISON BETWEEN B CELLS AND PLASMA 

With 70% and 80% of the proteins overabundant in terminal Eµ-TCL1 and Eµ-myc 

plasma, respectively, annotated as canonically derived from the interior of cells, the question 

arose as to how many of these proteins were directly traceable to origins within tumour tissue. 

The overlap between proteins quantified in the plasma and in B cells was evaluated using a Venn 

diagram (Figure 6.15A). This identified that 1156 of the 2095 proteins (55%) were quantified in 

both proteomes. Figure 6.15B presents the distribution of these subsets of proteins amongst the 

canonical localisations for those proteins identified in; B cells only, plasma only and both B cells 

and plasma. Those proteins unique to B cells had the greatest degree of cellularity, as expected, 

with three quarters (4651 out of 6235 proteins) localised to the inside of cells. A further 8% 
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(509) were membrane proteins and 190 proteins (3%) were annotated as extracellular. For the 

1156 proteins commonly observed in both proteomes, a similar distribution was observed, with 

531 proteins (46%) and 274 proteins (24%) cytoplasm- and nuclear-localised, respectively. A 

greater percentage of proteins were extracellular; 9% (103) and; membrane-derived; 11% (134). 

The plasma-specific proteins demonstrated a distinct pattern of localisation, with more than a 

third of the 939 proteins identified annotated as primarily extracellular. Membrane localised 

proteins also had the highest proportion of these three groups with a total of 136 proteins (15%). 

305 intracellular proteins (32%) were unique to plasma, with 87 and 218 annotated as nuclear 

and cytoplasmic, respectively. 

To better understand how the two proteomes compared, the number of PSMs for those 

proteins with identifications in both plasma and B cells were plotted (Figure 6.15C). Plotting 

PSMs gave an approximate indication of the overall protein abundance in each proteome, i.e. 

irrespective of any iTRAQ or TMT quantitations. To identify which of these proteins were 

expected to have predominant abundance in plasma, those 103 proteins annotated as 

extracellular (Figure 6.15B) were highlighted. Overall the proteins with extracellular annotation 

were skewed towards plasma-specific expression, whereas, the cellular proteins were dominantly 

abundant in B cells, with less than 10% with 50+ PSMs. Three clusters of proteins with high 

abundance in plasma, with high, medium and low abundance in B cells were present. 

Haemoglobin (HB) subunits HBA and HBB-B1 were observed as contaminating proteins in both 

proteomes, predominantly in plasma. Alongside these was the antibody component Ig kappa 

chain C region (IGKC) with around 4-fold greater overall abundance in plasma, compared to B 

cells. Albumin and complement C3 had approximately 10-fold greater expression in plasma. A 

group of proteins with, on average 3-10-fold higher abundance in B cells, included; fibronectin 

(FN1), coagulation factor XIII A chain (F13A1), all three fibrinogens; FGA, FGB and FGG, 

lysozyme C2 (LYZ2), gelsolin (GSN), serotransferrin (TF), haptoglobin, cystatin-C (CST3) and 

apolipoprotein E. Five SERPIN proteins A6, C1, A3K, A1B and A1E; and three apolipoproteins; 

APOA1, APOB and APOA4 were observed in a cluster with, on average approximately 100-fold 

greater abundance in plasma. Alpha-2-macroglobulin was the most plasma-specific protein 

observed in both proteomes; in plasma with 2819 PSMs and just 5 PSMs in B cells.  

Several proteins, annotated as extracellular, were identified with a greater abundance in 

B-cell material than plasma, indicative of B cells as a potential secretory source of these protein. 

These included, most predominantly; protein FAM49B, lactotransferrin (LTF), neutrophilic 

granule protein (NGP), the tumour-secreted angiogenic factor, glucose-6-phosphate isomerase 

(GPI), the B220 inhibitor, galectin-1 (LGALS1), IL16, matrix metalloproteinase-9 (MMP9), 

marginal zone B- and B1-cell-specific protein (MZB1), gasdermin-D (GSDMDC1) and HDGF. 
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Of these proteins; HDGF and GPI were overabundant in the terminal plasma from both tumours, 

with no differential expression in any B-cell type; IL16 was significantly underexpressed in both 

terminal tumours, while significantly overabundant in the terminal plasma and gasdermin-D was 

upregulated in Eµ-TCL1 tumours, while only overabundant in the plasma of terminal Eµ-myc 

tumours. MZB1 was specifically overabundant in both the tumours and plasma derived from 

terminal Eµ-TCL1 mice. LGALS1 was significantly overabundant in both plasma and B cells of 

both terminal tumours relative to the respective WT controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15. Comparison between the B-cell and plasma proteomes. An inter-proteome 

comparison between proteins fully quantified in plasma or B-cell characterisations. A. The 

overlap of proteins from the B-cell proteome and plasma proteome. B. The canonical 

localisations of the proteins determined as B-cell specific, plasma specific or common to both 

proteomes. C. The number of PSMs, plotted on a logarithmic scale, identified in plasma and B 

cells for those proteins commonly quantified in both proteomes. The 103 proteins annotated as 

extracellular are highlighted (black), while all other proteins are red. 
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6.14 TRACING THE OVERABUNDANT PLASMA PROTEOME TO THE B-CELL PROTEOME 

To gain an insight into the extent of plasma proteins originating from tumour cells, the 

overlap of proteins categorised as overabundant in the plasma of each terminal tumour was 

compared to the 1156 proteins detected in both plasma and B-cell material (Figure 6.16A). Of 

the 727 proteins significantly overabundant in terminal Eµ-myc plasma, 570 (78%) were 

amongst those proteins observed in B cells, approximately half of all proteins detected in both 

proteomes. 255 (74%) of the 344 proteins overabundant in terminal Eµ-TCL1 plasma were 

common with the proteins present in both plasma and B-cell proteomes. Of these 255 proteins, 

86% (220) were also overabundant in terminal Eµ-myc plasma. Just 187 (24%) of the 792 

proteins overabundant in terminal plasma of either tumour were not characterised in B cells. 

To demonstrate the distribution of B-cell proteins detected in plasma, those B-cell 

proteins with >25 PSMs were overlaid onto the volcano plots of differential plasma protein 

abundance for each terminal tumour described in Figure 6.4 (Figure 6.16B). A 25-PSM 

threshold was used to filter out proteins which the abundance was low in B cells, and were likely 

to be predominantly plasma proteins, such as those described in Figure 6.15C. The B-cell 

proteins mapped strongly to the significantly overabundant proteins in terminal Eµ-myc plasma, 

with 68% (496) of the 727 proteins with an abundant origin in B cells. Of the 113 proteins 

underabundant in terminal Eµ-myc plasma, just 19 (17%) had a possible B-cell origin. The same 

trend was true, but to a lesser extent for terminal Eµ-TCL1 plasma, with 211 (61%) of the 344 

overabundant and 32 (27%) of the 119 underabundant proteins traceable to B cells. In all the 

cases, the anticipated percentage based on random sampling would have been 40.7%. The trend 

was also visible outside the defined bounds of significance and regulation score, especially for 

proteins exhibiting a regulation score of <-0.5, but a p-value of >0.05. 

 

 

 

Figure 6.16. Comparison between differentially abundant plasma proteins and B-cell 

tumour proteins. Proteins considered differentially abundant in either Eµ-myc or Eµ-TCL1 

terminal plasma were compared with those proteins with quantitations in both the plasma and B-

cell proteomes; A. comparing the significantly overabundant proteins in each tumour by Venn 

diagram and; B. overlaying the volcano plots of the terminal plasma proteins with those proteins 

identified in B cells with at least 25 PSMs.  
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6.15 QUANTITATIVE COMPARISON BETWEEN DIFFERENTIALLY ABUNDANT PROTEINS IN 

THE B-CELL AND PLASMA PROTEOMES 

Given that B-cell tumour proteins appeared strongly enriched amongst the overabundant 

terminal plasma proteins, it was of interest to see which of these proteins were also 

overexpressed, or underexpressed, in the tumours themselves. Figure 6.17 describes those 

proteins determined as either significantly differentially abundant in terminal tumour plasma, 

which were also detected with significant differential expression in B-cell tumours, for each 

respective model. In total a signature of over 200 proteins was observed significantly 

overabundant for both terminal Eµ-myc plasma and tumours (Figure 6.17A), the most 

noteworthy of which were; cell division cycle-associated protein 3 (CDCA3), DNA replication 

licensing factor MCM4, several ribosomal proteins, deoxyuridine triphosphatase (DUT), 

targeting protein for Xklp2 (TPX2), probable ATP-dependent RNA helicase, DEAD box protein 

27 (DDX27), MKI67 FHA domain-interacting nucleolar phosphoprotein (NIFK), nucleolin 

(NCL), DNA topoisomerase 2-alpha (TOP2A) and ASS1. The majority (120) of these proteins 

were annotated as cytoplasmic with a further 62 having a likely, nuclear origin. Receptor-type 

tyrosine-protein phosphatase S (PTPRS) was the only one of these 204 proteins with cell surface 

expression. Macrophage migration inhibitory factor (MIF) was the only secreted protein, with 

202 PSMs in the B-cell proteome and 28 in the plasma proteome.  

10 proteins were observed to be significantly underabundant in both terminal Eµ-myc 

tumour B cells and plasma, 5 of which were Ig isoforms and two were structural proteins alpha-

synuclein (SNCA) and filamin-B (FLNB). Gamma-soluble NSF attachment protein (NAPG), 

biotinidase (BTD), H-2 class II histocompatibility antigen and A-U alpha chain (HLA-DQA1) 

were also observed with significant underabundance in both proteomes. 9 proteins exhibited 

upregulation in B cells, while still appearing significantly underabundant in plasma. This 

included three cell surface proteins; sodium-dependent phosphate transporter 1 (SLC20A1), 4F2 

cell surface antigen heavy chain (SLC3A2/CD98) and interleukin-1 receptor accessory protein 

(IL1RAP). The inverse trend was true for 59 proteins with overabundance in plasma and 

downregulation in tumour cells, amongst which were 9 histone proteins, three actin-related 

protein 2/3 complex subunits (ARPC) (ARPC4, ARPC5 and ARPCL5) and two proteasome 

subunits. Other noteworthy proteins included HMGA1, translation machinery-associated protein 

7 (TMA7), treacle protein (TCOF1) mitochondrial fission 1 protein (FIS1), LMNB1, sorcin 

(SRI), the cell surface protein sortilin-related receptor (SORL1), IL16, leukocyte antigen CD37 

and the migratory and adhesion promoting proteins PDZ and LIM domain protein 2 (PDLIM2) 

and LIM domain-containing protein 2 (LIMD2). 
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Figure 6.17B describes those proteins with significant differential abundance in both the 

tumours and terminal plasma of Eµ-TCL1 mice. 41 proteins were present as overabundant in 

both proteomes including, most substantially; IGKV12-89, CDCA3, ASS1, tyrosine-protein 

phosphatase non-receptor type 18 (PTPN18), S100A6 and cysteine-rich protein 1 (CRIP1). Also 

amongst these proteins were four ribosomal subunits (L3, L4, L7 and L34) and two 

mitochondrial import inner membrane translocase subunits (TIMM8B and TIMM13). As with 

Eµ-myc, the majority of proteins were traceable to cells, with 18 and 13 proteins annotated as 

cytoplasmic and nuclear. Two cell surface proteins were in this category; neurogenic locus notch 

homolog protein 2 (NOTCH2) and integral membrane protein 2B (ITM2B). NOTCH2 was 

identified in plasma with 3 unique peptides matching to aa 1566 to 1622. These peptides all 

matched to part of the cleavable extracellular domain (aa 26 - 1677). 7 unique peptides in plasma 

spanned aa 93 to 244 of ITM2B. These peptides were all traceable to the C-terminal extracellular 

domain of ITM2B (aa 76-266). Four proteins annotated as extracellular were overabundant in 

both the plasma and B cells of terminal Eµ-TCL1 mice; LGALS1, MZB1, napsin-A (NAPSA) 

and prolactin (PRL). 

Terminal Eµ-TCL1 plasma and B-cell tumours had 10 proteins with consistent inter-

proteome underabundance. Of these proteins, the most noteworthy were SNCA, the plasma 

protein alpha-2-HS-glycoprotein (AHSG) and the GTPase ras-related protein Rap-1b (RAP1B). 

Disintegrin and metalloproteinase domain-containing protein 19 (ADAM19), histone H2A-2B, 

tripartite motif-containing protein 65 (TRIM65), alpha globin 1 (HGA1), C6orf25 and three Igs 

were also amongst these proteins. 6 proteins were upregulated in tumours while significantly 

underabundant in plasma; SLC3A2, YTH domain-containing family protein 2 (YTHDF2), 

RPS6, hydroxyacylglutathione hydrolase, mitochondrial (HAGH), replication initiation factor 

MCM10 homolog (MCM10) and voltage-dependent anion-selective channel protein 2 

(VDAC2). 16 proteins were oppositely differentially abundant; 9 of which were chromosomal 

proteins (HMGA1, HMGN2 and 7 histone isoforms), alongside 5 other intracellular proteins 

(cyclin-dependent kinase inhibitor 1B (CDKN1B), coiled-coil domain-containing protein 23 

(CCDC23), 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), NIFK and LMNB1. A single 

plasma membrane protein, lymphocyte antigen 6D (LY6D), was identified overabundant in Eµ-

TCL1 plasma with 2 peptides (aa 34-60) matching the mature protein region (aa 21-98). A single 

peptide (aa 47-60) was downregulated in Eµ-TCL1, as well as Eµ-myc B-cell tumours. Two 

secreted protein were observed overabundant in terminal Eµ-TCL1 plasma while downregulated 

in the tumour tissue; coagulation factor V (F5) and IL16. For the ‘30%’ Eµ-TCL1 plasma 

proteins, just ASS1 and MCM4 were significantly overabundant, while also significantly 

overexpressed in terminal Eµ-TCL1 tumours. 
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To summarise these finding, those 24 proteins reaching significant overabundance in 

both the terminal tumours and plasma of both the Eµ-myc and Eµ-TCL1 models were tabulated 

(Figure 6.18). This again highlighted both the dominance of Eµ-myc tumours and the frequency 

of intracellular proteins, with 13 cytoplasmic proteins and 11 nuclear proteins. The signature of 

upregulated translation was apparent in this list with 6 proteins; eukaryotic translation initiation 

factor 3 subunit A (EIF3A), aminoacyl tRNA synthase complex-interacting protein 2 (AIMP2) 

and 4 ribosomal proteins (RPL3, 4, 7 and 34). 5 mitochondrial proteins were present; iron-

sulphur cluster assembly enzyme, mitochondrial (ISCU), ASS1, DUT, TIMM8B and TIMM13. 

A reproducible, pre-terminal signature of marginal overabundance was observed in the ‘30%’ 

Eµ-TCL1 plasma for 6 proteins; EIF3A, TIMM13, ASS1, MCM4, Huntingtin-interacting protein 

K (HYPK) and ICSU. 
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Figure 6.17. Significantly differentially abundant proteins in both plasma and B-cell 

tumours. Proteins with either significant overabundance (RS>0.5, p<0.05) or underabundance 

(RS<-0.5, p<0.05) in the terminal plasma and B-cell proteomes were filtered and plotted for each 

B-cell cancer model; A. Eµ-myc and B. Eµ-TCL1. The number of proteins in each quadrant is 

shown. 
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Figure 6.18. A plasma signature of B-cell tumours. Proteins reaching significant 

overabundance (RS>0.5, p<0.05) in both the terminal plasma and tumours of both the Eµ-myc 

and Eµ-TCL1 B-cell cancer models. 
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6.16 DISCUSSION 

The characterisation described in this chapter aimed to utilise methodological 

developments in plasma proteomics to capture protein signatures of B-cell cancers detectable in 

the blood plasma. Such observations held potential to provide further understanding of 

tumourigenesis in the context of the whole organism. This analysis presents one of the most 

comprehensive proteomic characterisations of plasma to date, with a greater depth of coverage 

than any other published plasma proteomes focusing on cancer biomarker discovery. While 

other proteomes have exceeded this coverage, they have either focused on non-cancer samples 

[457] or have used lower thresholds of false discovery (q<0.05) [321], compared with the more 

stringent FDR threshold (q<0.01) applied in this analysis.  

The implementation of SuPrE-SEC for the isolation of the low molecular weight 

proteome offered an effective means of depleting albumin and other high abundant proteins. 

This was firstly demonstrated by the number of PSMs matching to albumin. While still high 

(3835), the number of PSMs was substantially lower than that of transthyretin (7769) and 

apolipoprotein A-II (7129). These were both proteins with molecular weights below 16 kDa; 

anticipated to be enriched in the low Mw sub-proteome. This enrichment and depletion enabled a 

more effective shotgun proteomics analysis, given that otherwise high abundant protein peptides 

would have caused signal suppression and DDA bias. 

Limitations were present in this SuPrE-SEC analysis, however: Substantial abundance 

of Ig in the 200 day WT sample, observable in the clustering (Figure 6.3), was likely an artefact 

of background reduction caused by the age and storage of the 200 day WT samples, which for 

logistical reasons were kept at -80°C for a month prior to transfer to liquid nitrogen, where other 

samples were stored immediately. This artefact highlights the sensitivity of plasma to storage 

conditions and the need for rigorously controlled sample procurement and handling. This may 

have partly explained the previously observed variability when quantifying the low Mw proteome 

[321], in addition to the potential of minor cut point variation induced by the relatively crude 

nature of SEC compared with other chromatographic methods. The biological replicates allowed 

these issues to be circumvented by the stringent use of statistics and RS, conserving only the 

most robust observations. 

Another limitation was the incomplete nature of this characterisation, focusing only on 

the low Mw sub-proteome. While this may have missed several interesting findings, it was 

considered that this isolated analysis of the low Mw sub-proteome provided the greatest depletion 

of high abundant proteins providing the greatest possible depth of proteome coverage. 

Interrogating the other sub-proteomes would have exponentially increased the analysis time and 
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was further hampered by poor protein solubility in several of these fractions. Another 

consideration was that the low Mw proteome contained the degradome and peptidome, a portion 

of plasma containing partially digested and degraded proteins which have been suggested to be a 

source of biomarkers [458-460]. While these proteins may not have functional relevance within 

the blood, they present a signature capable of acting as a biomarker for the prognosis and 

diagnosis of cancers and other diseases.  

The use of pooling also substantially limited the statistical power of the analysis and 

potentially introduced artefacts from single samples, such as the variable pre-tumour controls. 

While the aim was to generate a robust analysis, for the tumours, biological replicates were used 

to minimise this effect and increase the confidence in findings. Overall, despite the limitations, 

the results provided a highly detailed quantitative analysis of plasma, likely far in excess than 

what might have been derived from the less focused analysis of all four sub-proteomes, or by 

immunodepletion strategies. 

The quantitative proteomics identified a strong signature for the Eμ-myc terminal plasma 

with over a third of quantified proteins exhibiting overabundance (Figure 6.3 and Figure 6.4). 

While a strong signature was expected, this signature was almost certainly attributable to 

proteins negligible or not present in the control plasma. The predominant source of these 

proteins was expected to be from tumour lysis products generated by the high rate of apoptosis 

observed in Eμ-myc tumours. This substantial overabundance will have biased the analysis for 

the detection of these proteins, explaining the magnitude of this signature. The observation of 

tumour lysis products in the plasma was confirmed and evaluated by several analyses.  

Figure 6.4 and Figure 6.5 presented general observations of the most overabundant 

proteins belonging to typically intracellular protein families, such as ribosome and proteasome 

components. Figure 6.9 explored the differential abundance of proteins in Eμ-myc tumour 

plasma compared to WT plasma in relation to their experiment-wide abundance. This analysis 

confirmed that the most abundant, terminal Eμ-myc-overabundant proteins in the total analysed 

plasma were cellular-derived, strongly emphasised by several histones. The trend was explored 

further by demonstrating and evaluating the signature of proteins which were dominantly 

overabundant in Eμ-myc terminal plasma (Figure 6.10).  

GO term enrichment of this Eμ-myc terminal plasma-dominant signature (Figure 6.12) 

revealed a trend which was similar in many ways to that of the GO term enrichment for 

upregulated tumour proteins in Figure 5.12. This trend demonstrated a sizeable overlap and 

some correlation between GO terms when comparing upregulated tumour proteins with 

overabundant terminal plasma proteins for Eμ-myc mice (Figure 6.13). The resulting GO term 
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signature, especially the cell component enrichment confirmed an overrepresentation of 

intracellular parts. Evaluation of the canonical localisations of the Eμ-myc-overabundant 

proteins (Figure 6.14) also demonstrated this trend of intracellular proteins. 

Direct comparison between the proteomes describing plasma and B cells identified that 

over two thirds of the significantly overabundant terminal Eμ-myc plasma proteins were 

traceable to proteins confidently identified in the B-cell proteome (Figure 6.16B). Quantitative 

comparison highlighted the signature of more than a quarter of significantly overabundant 

proteins in terminal Eμ-myc plasma were also identified with significant upregulation in the Eμ-

myc tumours (Figure 6.17). 

Together, these observations confirmed that substantial tumour lysis was occurring in 

the Eμ-myc model. Tumour lysis is a well-documented occurrence especially in the context of 

aggressive therapies and lymphomas [461]. Tumour lysis syndrome describes a rapid cell death 

of tumour cells which can overwhelm the circulatory system with intracellular contents [462, 

463]. The detection of this background level of tumour lysis confirms the principle that tumour 

lysis products have potential in the diagnosis of cancer through non-invasive testing of blood 

products. However, this may be exaggerated in the mouse model given that the Eμ-myc tumours 

can typically make up a large proportion, in excess of 10%, of a normal mouse body weight. 

Another potential mechanism which may explain the emergence of these proteins in the 

circulation is that of exosomes [464].  

The Eμ-myc 6-week plasma signature was surprisingly minimal relative to the terminal 

signature, when considering the B-cell signature seen in Chapter 5. Given the tumour-like 

trends observed for the Eμ-myc 6-week B cells (Figure 5.4), a far greater clustering was 

expected than that seen in Figure 6.3. While these plasma and B-cell samples were procured 

form the same 6-week Eμ-myc mice, this trend was likely due to the minimal advancement of 

any tumour material in these animals. Given that the average splenocyte count per 6-week Eμ-

myc spleen was ~50 x 106 cells compared with ~250 x 106  cells in the terminal spleens, it was 

unlikely that the extent of tumour lysis was anywhere near the extent observed in the terminal 

tumours. Some signatures of protein overabundance were observable in the Eμ-myc 6-week 

plasma, however, which corresponded with some of those proteins most consistently observed in 

terminal tumour plasma (Figure 6.5). This indicated that a low level of background lysis was 

occurring prior to any advanced tumourigenesis which could be detected predominantly as an 

overabundance of, for instance, histone proteins. This was further emphasised in Figure 6.7, an 

analysis focused on the identification of pre-terminal markers in the Eμ-TCL1 model. Figure 6.8 

evaluated this trend more widely, considering the terminal differential abundance of proteins 

which had differential abundance at 6 weeks. This additionally suggested a pre-terminal 
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signature of tumour development. The proteins detailed in Figure 6.18 confirmed that for 

several proteins there was traceability of prospective pre-terminal biomarkers between the 

tumours and plasma. The use of pooling and a lack of technical replicates, however, limits the 

conclusions that can be drawn from this analysis, as a single plasma sample in the pool could 

have substantially biased the pooled average. 

The trend observed for Eμ-TCL1 terminal plasma also demonstrated a signature of 

tumour lysis products. However, this trend was substantially less than that seen with Eμ-myc 

tumours. This is demonstrated by the observation of fewer differentially abundant proteins with 

a lesser extent of differential abundance in the Eμ-TCL1 terminal plasma (Figure 6.4). Much 

like the trend observed in Chapter 5 (Figure 5.7) for the tumour cell material, protein 

expression for commonly overabundant proteins was consistently lower for Eμ-TCL1 terminal 

plasma than that of Eμ-myc terminal plasma (Figure 6.5). The nature of the Eμ-TCL1 terminal 

plasma signature was again demonstrated to be related to tumour lysis by the observation of 

several histone proteins amongst the high abundance, overabundant proteins (Figure 6.9B). To 

understand how this signature differed from the Eμ-myc terminal plasma signature, the two RS 

were plotted against one another, revealing two very specific trends of protein expression. While 

these trends were not completely discrete to either tumour, they demonstrated a signature that 

emerged with a dominant expression in each tumour (Figure 6.10). While for Eμ-myc terminal 

plasma this was highly related to cell lysis, for Eμ-TCL1 terminal plasma, the proteins were 

predominantly extracellular and suggested immune function was upregulated in the plasma 

(Figure 6.11). Closer evaluation (Figure 6.14) demonstrated that, while overall Eμ-TCL1 

terminal plasma contained many proteins with an intracellular localisation, the Eμ-TCL1-

dominant terminal plasma signature consisted of predominantly extracellular proteins. This 

implied that for Eμ-TCL1 tumours, an immune response is present which, while also present in 

Eμ-myc terminal plasma is far less apparent. This included the overabundance of proteins such 

as fibrinogens, ITIH proteins, cathepsins, Igs, cytokines and hormones indicative of immune 

system activation. A possible explanation for this may lie in the speed at which Eμ-myc tumours 

develop which can progress from asymptomatic to terminal in days [176, 188]. For Eμ-TCL1 

tumours this process is far slower with a time course of many months, which may provide a 

backdrop for the accumulation of several proteins involved in chronic inflammation. This 

presents the possibility that cancers with a slower development may have greater potential in 

being characterised by biomarkers derived from the immune response to cancers.  

Another trend which emerged was that of cell surface proteins present in the plasma of 

terminal Eμ-TCL1 mice (Figure 6.11). This observation of increased surface protein entry into 

the circulation, suggested that exosomes and shedding may have been mechanisms of plasma 
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protein appearance from Eμ-TCL1 tumours. NOTCH2 and ITM2B were upregulated in the Eμ-

TCL1 tumours and peptides matching the extracellular domains of these proteins were identified 

as overabundant in the Eμ-TCL1 terminal plasma (Figure 6.17). The observation of only the 

extracellular domains, coupled with the previous observations of the NOTCH2 extracellular 

domain cleavage [465] strongly supports shedding as a mechanism of tumour proteins appearing 

in the circulation and provides two confident examples of this process. 

This was reinforced by the observation of similar GO term enrichments for the 

downregulated B-cell tumour proteins. The observation of the lymphocyte antigen, LY6D, 

downregulated in Eμ-TCL1 tumours, while appearing overabundant in the plasma (Figure 

6.17B) suggested that the extracellular domain of this protein was shed into the circulation. The 

suggestion that a lack of LY6D expression in lymphocytes correlates with increased 

pluripotency [466] suggests that this shedding may be a critical mechanism in tumourigenesis, 

which could offer potential as a mechanistic biomarker. The interference of this shedding 

mechanism could also be investigated as a means of reducing tumourigenesis, such as specific 

protease inhibitors. 

Protein secretion was also an apparent mechanism, with several protein identification 

suggesting tumour cells as the most likely origin of plasma proteins, based on PSM numbers 

suggesting cell-dominant abundance. These proteins were identified as overabundant in both the 

tumours and tumour plasma and are canonically annotated as extracellular proteins. The example 

of MZB1, a known secreted protein with a high degree of specificity for B-cell expression, 

supported by the relative abundances based on PSM numbers demonstrated by Figure 6.15, 

indicates that proteins upregulated and secreted by the Eμ-TCL1 tumour can be detected in the 

plasma. This highlighted a particularly interesting mechanism, given that MZB1 has been 

observed as an inhibitor of B-cell proliferation [467]. Secretion may therefore be acting as a 

mechanism by which the attenuation of MZB1 is avoided. Combined with the observation of 

prognostic value in the prediction of CLL aggression [468], the secretion of this protein may 

have prognostic and diagnostic value in human B-cell cancers. 

Another interesting correlation observed between the B cells and plasma proteomes was 

that of hyaluronan metabolism enrichment observed in the Eμ-TCL1-dominant terminal plasma 

signature (Figure 6.11), in combination with the upregulation of the hyaluronan receptor, 

HMMR/CD168 as the most consistently upregulated cell surface protein in both tumours 

(Figure 5.18). The plasma enrichment was based upon the overabundance of several ITIH 

proteins, capable of stabilising the ECM by binding hyaluronan, which exhibited significant 

overabundance in the plasma of both terminal tumours, but to a greater extent in the Eμ-TCL1 

terminal plasma. The ITIH proteins have been proposed to be tumour suppressors which are 
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downregulated in many cancers [469, 470], also observed here, at least for ITIH2 in the B-cell 

tumours. While the mechanisms relating to the ITIH proteins are unclear, the observation of an 

overabundance of both extracellular hyaluronan binding proteins and a tumour-overexpressed 

hyaluronan receptor suggests a role for these proteins in supporting cancer hallmarks. The 

interference of hyaluronan binding may have some potential for further investigation. In addition 

to the biology, the ITIH proteins appeared with high concentration in the plasma suggesting 

potential for easy detection in the context of biomarkers. The ITIH proteins also appeared 

overabundant in some regard in the plasma of all pre-terminal states of the transgenic mice. 

This investigation proved effective in the identification of a pre-terminal plasma 

signature of Eμ-TCL1 tumours. As demonstrated by Figure 6.6A, this signature was minimal but 

had a sizable overlap with that of the terminal signature. This was highlighted in detail by 

Figure 6.7 which suggested a list of proteins which were significantly overabundant in terminal 

Eμ-TCL1 plasma, which also demonstrated overabundance in the ‘30%’ Eμ-TCL1 plasma. 

Interestingly, this highlighted that the majority of these proteins also demonstrated 

overabundance in the Eμ-myc terminal plasma. This implied that these proteins may have utility 

for identifying the early stages of other B-cell cancers. 

Despite these similarities to the terminal signatures, the majority of these proteins were 

relatively low concentration in the plasma; inferred from their PSM number. Figure 6.9 

demonstrates this issue, highlighting that only a few significant overabundant proteins were 

observed with a confident number of PSMs. While there are a number of other proteins that 

exhibit a marginal overabundance, this result highlighted the issues faced by biomarker 

discovery. The signatures presented by these results are low abundance and in most cases only 

marginally detectable as differentially abundant. While proteins were detected in the plasma of 

the 6-week Eμ-TCL1 mice with differential abundance (Figure 6.6B), the correlation of these 

proteins with both terminal and ‘30%’ abundances were low. Given this low correlation and the 

lack of replicates for this condition, conclusions were not drawn for the 6-week Eμ-TCL1 

plasma. 

Overall, this chapter has successfully demonstrated the characterisation of proteins in 

plasma explained by immune response to tumours, tumour lysis products, tumour-secreted 

proteins and cell surface proteins shedding from tumours. In varying combinations these 

mechanisms appear differentially in the two tumour types, in relation to tumour aggression and 

phenotype. This supports the potential of the implemented methods to provide a high depth of 

quantitative proteomic characterisation of plasma. Additionally, it strongly suggests that 

continued biomarker discovery, with continued methodological developments, which to date 

claims only minimal success, will yield discoveries that can help in the diagnosis and prognosis 



263 

 

of cancers. Given that the method presented here analysed a total of only 1.2 ml of plasma, 

enrichment strategies using greater plasma volumes, combined with the sensitivity of the latest 

MS instrumentations therefore promises huge potential in biomarker discovery. While 

limitations still appear in these strategies, this study presents some proof-of-principle findings 

that should be attempted to be reproduced in human cancers, on larger scales and using more 

rigorously procured samples – to avoid the issues seen with Ig in the 200 day WT samples. The 

combined biological characterisation of plasma and tumour samples also provides a unique 

insight into tumour mechanisms such as protein secretion and shedding, immune system 

responses and potential regulation of cellular interactions with the microenvironment. 

  



264 

 

  



265 

 

 

7.0 QUANTITATIVE PROTEOMIC CHARACTERISATION OF CLL 

7.1 CHAPTER INTRODUCTION 

Proteomics of the plasma and B cells of the Eμ-myc and Eμ-TCL1 mouse models 

(Chapters 5 and 6) proved to be an effective means of biological characterisation. Quantitative 

proteomics successfully profiled several previously described model-specific and cancer-related 

protein expression changes. The resulting data also identified novel mechanisms, such as the role 

of IL5 and IL5RA in the proliferation and survival of Eμ-TCL1 tumour cells. Further 

investigation, however, demonstrated that this mechanism was not recapitulated in human CLL, 

with neither differential IL5RA expression, nor IL5 sensitivity. This suggested that critical 

differences exist between the biology of mouse and human B-cell cancers. Given the success of 

the proteomic methodologies, but the limitations of modelling CLL with the Eμ-TCL1 mouse 

model, it was concluded that characterisation of human CLL samples would provide a greater 

deal of insight into CLL biology. 

Several studies had previously characterised CLL using proteomics; with the latest, a 

characterisation of U-CLL versus M-CLL, fully quantitating 2024 proteins; the most 

comprehensive published study to date [352]. Proteomics characterisation of primary human 

CLL samples, however, presented several challenges, not present with the mouse study. The 
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acquisition and processing of human CLL samples required clinical expertise and an established 

infrastructure of ethical approval, standardised collection, characterisation and storage. Human 

CLL samples also exhibit a far greater degree of disease heterogeneity.  

With the Eμ-TCL1 mouse, a single transgene was used to elicit a phenotype modelling 

CLL. This incorporation of a clear transgene-induced cancer aetiology in an inbred black 6 

mouse strain, kept in tightly controlled environmental conditions, meant pooling was likely to be 

sufficient to overcome the majority of inter-sample differences. Far less control could be exerted 

over the environmental factors, the underlying genetics, oncogenic factors and disease stages of 

human samples. Combined with the known heterogeneity of CLL, this posed an issue when 

faced with the limited capacity of single iTRAQ or TMT reagent sets. To overcome these 

capacity limits, common controls, termed ‘bridging’ controls, were used in each multiplex 

experiment which allowed robust comparisons of each sample between different multiplexes. 

Bridging controls enabled the characterisation of individual samples, avoiding several of the 

limitations observed with pooling, allowing the inter-sample differences in CLL to be observed 

and quantified. 

The following chapter details a proteomic investigation characterising 14 individual 

CLL samples across two TMT 10-plex experiments compared in parallel using three healthy 

donor B-cell samples as bridging controls. The characterisation of these individual samples 

enabled the identification of confident, robust characteristics of CLL and the statistical 

comparisons of differential protein expression in CLL subtypes. The work completed in this 

chapter has also provided an opportunity to identify similarities and differences in B-cell cancer 

protein expression between human CLL and the CLL-like cancer which develops in Eμ-TCL1 

mice, described in Chapter 5. 

7.2 EXPERIMENTAL DESIGN AND SAMPLE PREPARATION FOR THE PROTEOMICS 

CHARACTERISATION OF CLL 

The heterogeneity of CLL meant good experimental design and sample selection was 

critical to identifying potential subtype-specific and subtype-independent protein signatures and 

characteristics (Figure 7.1). While several characteristics were considered, it was concluded that 

CLL cases carrying a mutation in either the NOTCH1 (N=5) or SF3B1 (N=5) genes compared to 

CLL cases without a mutation in either gene, termed ‘WT’ (N=4), would provide a meaningful 

sample set for analysis. Amongst these 14 samples was also a distribution of several other 

characteristics, including; IGHV mutation status (7 M-CLL, 7 U-CLL), trisomy 12 (n=5), CD38+ 

(3 with >95%), 13q14 deletion (8 ++, 5 +- and 1 --), and gender (3 female, 11 male). While fresh 

CLL PBMCs were considered to be ideal, frozen samples were used for practical purposes, as 
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these allowed for the use of highly characterised samples at known stages to be evaluated. To 

accommodate for the use of frozen samples, the healthy donor PBMCs were isolated and frozen 

in an identical way, using DMSO to maintain viability. B cells were then isolated from defrosted, 

healthy donor and CLL patient-derived PBMCs using negative selection without the depletion of 

CD43, a protein with potential expression on B-cell cancers. B cells were washed extensively to 

minimise contaminating debris and adherent extracellular protein. CD19+ cell purity was validated 

with flow cytometry and B-cell pellets were snap frozen. Lysates were prepared from these pellets 

by rigorous solubilisation and 100 µg of protein aliquoted for each CLL lysate and 200 µg of 

protein aliquoted for each healthy donor B-cell (HD) sample for proteolysis and isobaric labelling. 

CLL sample subtypes were distributed equally across the two 10-plexes to minimise any 

differences between the two rounds of 2D LC-MS/MS or any differences in quantitative analysis. 

For the HD bridging controls, to minimise variability, pools of 200 µg of protein were proteolysed, 

labelled and then bifurcated with 100 µg of peptides allocated to each 10-plex pool.  

The two pools of 10 labelled HD and CLL peptides, denoted 10-plex A and 10-plex B, 

were separately subjected to peptide prefractionation to reduce sample complexity. Across the 

approximately 100 peaks of the two chromatograms, the reproducibility was extremely high, with 

the average absolute deviation of peak elution times being less than 5 seconds for 89 of the 

common fractionation points, over 120 minute gradients. The top 25 peaks, common across both 

10-plexes, were analysed individually, whereas the remaining, lower-content fractions were 

pooled by orthogonal concatenation, pairing from the extremes of chromatographic retention times. 

This resulted in 60 fractions or fraction pools for each 10-plex which were subjected to 

approximately 200 hours of LC-MS per 10-plex. 
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Figure 7.1. 2D-LC MS/MS quantitative proteomic characterisation of 14 individual CLL 

samples and healthy donor B-cell controls. Peripheral blood mononuclear cells (PBMCs) from 

healthy donors and CLL patients presenting with NOTCH1-mutant status (N=5), SF3B1-mutant 

status (N=5) and wildtype NOTCH1 and SF3B1 status (N=4) were isolated from CLL-patient 

derived blood using density gradient centrifugation. PBMCs were frozen in foetal calf serum 

containing 10% DMSO to maintain cell viability. PBMCs were defrosted and subjected to 

negative B-cell isolation using an antibody cocktail (EasySep) without CD43 depletion. B-cell 

lysates were prepared by trituration and sonication. 100 µg of each CLL lysate and two 100µg 

aliquots of the healthy donor B cells lysates were reduced, alkylated and proteolysed with 

trypsin. CLL peptides were distributed across two TMT 10-plex label sets. Three identical 

aliquots of healthy donor B-cell peptides were used in each 10-plex as a means of inter-

experimental comparison, termed ‘bridging controls’. Samples were then pooled to their 

respective 10-plex experiments. Labelled peptide pools were subjected to peptide 

prefractionation generating around 100 fractions per 10-plex. The low-concentration fractions 

were concatenated at the extremes of the chromatogram to give around 60 fractions, per 10-plex, 

for LC-MS analysis. Each peptide fraction was subject to chromatography, in line with 

electrospray ionisation, MS detection and data-dependent MS/MS characterisation.  

7.3 PROTEIN IDENTIFICATION AND RELATIVE QUANTIFICATION IN CLL RELATIVE TO 

HEALTHY DONOR B CELLS 

The MS characterisation of peptides from 10-plex A and 10-plex B were subjected to 

separate target decoy searches to allow independent quantification of proteins within the 

respective 10-plexes (Figure 7.2). Fractions were excluded from the analysis if they contained a 

low quantity of peptide information or quantifications, leaving 55 and 53 fractions suitable for 

target decoy searching for 10-plex A and 10-plex B, respectively. These were subjected to the 

same two-stage, stringent and relaxed, target decoy searches described in Chapters 5 and 6 and 

Section 2.19.6. For 10-plex A and 10-plex B, respectively, 405,176 and 348,788 PSMs were 

identified (q<0.01), amongst which 195,997 and 171,547 had associated TMT reporter regions. 

These PSMs identified 8,112 and 8,382 proteins, of which 6,686 and 7,358 were fully quantified 

for 10-plex A and 10-plex B, respectively, giving a total of 6150 proteins commonly identified in 

both experiments. Ratios were calculated for each of the 14 CLL samples relative to each of the 3 

HD samples. For each set of 3 ratios indicating the extent of differential expression between a 

CLL sample and the 3 HD controls, only the minimally deviated (from no fold change) of the three 

ratios was kept. This had the effect of reducing both technical and biological noise, by only stating 

an observation of up or downregulation when all three ratios were indicative of such a trend, in a 
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more stringent and effective way than averages. This also contributed to reducing technical noise 

between the two experiments allowing a more accurate inter-experimental quantitation.  

An initial analysis of the data revealed that several platelet proteins were present in the 

HD samples, which did not appear in the CLL samples, giving a false impression of protein 

downregulation in CLL. To address this contamination, 194 proteins with negative regulation, 

observed amongst the top 1000 platelet proteins by copy number [471], were excluded from 

further analyses. Additionally the WT CLL sample 4621, appeared as an outlier and was therefore 

excluded from further analyses. For proteins being subjected to analyses comparing subtypes of 

CLL, 133 proteins exhibiting an FDR-corrected significant difference between the two TMT 10-

plex experiments, A and B, were excluded. 

 5956 proteins were subsequently interrogated for the significance, magnitude and 

consistency of differential expression relative to HD controls, of the 13 CLL samples. As 

described in Chapters 5 and 6, a regulation score and an FDR-corrected one sample, two tailed 

T-test were calculated as complimentary measures of differential expression. Given the far larger 

number of samples, compared with that of previous analyses, providing greater statistical power 

to conclude lower fold-changes, a regulation score cut off defining differential expression was set 

at 0.25 (detailed in Sections 2.19.7). This quantitative analysis determined that 819 proteins 

(13.8%) were significantly overexpressed (RS>0.25, p<0.05) and 746 (12.5%) were significantly 

underexpressed in CLL (RS<-0.25, p<0.05), relative to all HD controls.  

7.4 REPRODUCIBLE PROTEIN IDENTIFICATION AND QUANTITATION IN INDEPENDENT 

ISOBARIC-LABELLED SHOTGUN PROTEOMICS EXPERIMENTS 

Given the independent nature of 10-plexes A and B, the technical reproducibility across 

the two experiments was assessed to support the reliability of any biological findings in the dataset 

(Figure 7.3). Firstly, the number of commonly identified and quantified proteins between 

experiment A and B were demonstrated by Venn diagram (Figure 7.3A). In experiment A and B, 

a total of 8694 proteins were identified (q<0.01) and of these 90% (7800) were identified in both 

proteomes, 96% and 93% of A and B, respectively. Due to an alternative, less sensitive means of 

detection using HCD, rather than CID and HCD, the extent of quantitation was not as reproducible 

as identifications. 78% (6150) of the 7894 total proteins quantified over the two experiments were 

quantified in both; 92% of A and 84% of B. 

The number of peptides and PSMs, attributable to the 7800 commonly identified proteins, 

were compared between 10-plexes A and B, with an R2 of >0.95 observed in both cases (Figure 

7.3B). The log2 (ratios) between the common, HD bridging controls within each experiment was 

also compared between the two experiments (Figure 7.3C). This highlighted, alongside 
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substantial protein dysregulation in HD3, a reproducible pattern of differential protein expression, 

which, while differentially affected by ratio compression, gave at least an R2 value of 0.65, and 

0.75 where more pronounced differential expression was observed in HD3. While this correlation 

was quite low, very few proteins were observed with the opposite direction of regulation. Of HD1 

and HD2, the most consistent of these controls, the proteins observed most differentially regulated 

were MHC proteins; genes with a high level of inter-individual allelic differences, indicating 

reproducible quantitation of absolute presents or absence of polymorphic peptides. 
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Figure 7.2. Protein identification and quantification of CLL proteomes from two TMT 10-

plex 2D LC-MS/MS experiments. Fractions respective to experiment A and B were processed 

using two stage target decoy searches with Proteome Discoverer 1.4. Spectra were initially 

sorted based on fragmentation type, either CID or HCD and subjected to an initial search for 

peptides spectrum matches using stringent settings; allowing for no missed cleavages and no 

dynamic modifications. Spectra failing to match to a peptide with a percolator-determined false 

discovery rate of q<0.01 were subjected to a second, relaxed target decoy search allowing for 

missed cleavages and dynamic modifications. For the purposes of consistent protein grouping, 

reports for 10-plexes A and B were opened in tandem, while keeping quantitations separate. The 

PSM quantitations and features with the protein group assignments were exported separately for 

each 10-plex for analysis with SPIQuE. Ratios were calculated for each CLL sample relative to 

each of the three healthy donor B-cell controls. To adjust for variability from the controls and to 

keep only the most consistent observations specific to CLL only the least deviated ratio was kept 

for subsequent analyses. A platelet contamination in the healthy controls was observed and 

therefore proteins were filtered based on previous platelet proteomics. As a means of 

distinguishing the most confident, upregulated proteins across all samples 13 CLL log2 (ratios), 

with the exception of the clear outlier 4621, were analysed to determine a ‘regulation score’ 

(RS); a measure of the magnitude and consistency of regulation across multiple samples defined 

as the ratio of the mean log2 (ratio) to the SD + 1. A one sample, false discovery rate corrected 

T-test was performed to determine the significance of protein expression across the 13 samples.  
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Figure 7.3. Evaluation of the qualitative and quantitative reproducibility between 10-plex 

A and B. A. The numbers of identified and quantified proteins determined in experiments A and 

B and the commonly determined numbers for each of these. B. The respective numbers of PSMs 

and peptides for each of the 7800 commonly identified proteins across experiments A and B. C. 

The reproducibility of protein quantifications for the healthy donor (HD) bridging controls 

characterised in each experiment. Log2 (ratios) of the 6150 commonly quantified proteins 

comparing HD1, HD2 and HD3 determined by SPIQuE analysis of quantitations derived from 

10-plexes A and B. 

7.5 TOPOLOGICAL ANALYSIS OF QUANTITATIVE PROTEOMICS IDENTIFIES A SUBTYPE-

INDEPENDENT CLL SIGNATURE 

The 5956 proteins fully quantitated, as outlined in Figure 7.2, were subjected to a series 

of analyses to identify possible topological trends in differential protein expression (Figure 7.4). 
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Firstly, Figure 7.4A outlined the known characteristics of the 14 CLL samples subjected to 

quantitative proteomics, including the experiment, A or B, to which each was assigned. The order 

of the samples in this table was determined by the cluster analysis of the log2 (ratios) by Cluster 

3.0 and Euclidian distance, of the 14 CLL samples (Figure 7.4B). This analysis highlighted two 

major clusters and the outlier, ‘4621’, which was subsequently excluded from all further analyses. 

No single feature could successfully separate these two clusters, however trisomy 12 was present 

exclusively in the right-hand cluster with 5/8 samples bearing an additional copy of chr12. 

Clustering also highlighted highly consistent regions containing several proteins with over or 

underexpression in all samples compared to HD samples. There were also regions which 

demonstrated heterogeneity. However, the majority of proteins were either unregulated and 

upregulated, or unregulated and downregulated, with few having different directions of regulation, 

relative to HD expression, for the same protein. Just 20 proteins were observed with a more than 

2-fold change both up and down for at least one CLL sample relative to HD samples.  

Figure 7.4C demonstrated the distribution of protein log2 (ratios) for each CLL sample 

relative to HD samples, highlighting the median and 1st, 25th, 75th and 99th percentiles as well as 

outliers beyond the 1st and 99th percentiles. This demonstrated a consistent extent of protein 

deviation across the samples, without subtype or batch effect influence, with no significant 

difference observed between the standard deviations (p=0.81), median values (p=0.26), 99th 

percentile (p=0.69) or 1st percentile (p=0.21) between samples in 10-plexes A and B. The average 

standard deviation of all 13 protein log2 (ratios) was 0.46, ranging from 0.57 for sample ‘625’ to 

0.36 for ‘3999’. 

To visualise patterns within the dataset and emphasise sample differences, principal 

component analysis was employed (Figure 7.5). The same PCA plot was visualised from two 

angles; the left, with the third component axis coming out of the page and; the right, a 90° rotation 

around axis 1, with the second component axis coming out of the page. The same pairs of rotated 

plots were overlaid with annotations for CLL subtypes; mutations of SF3B1 or NOTCH1, IGHV 

mutations status, trisomy 12 status, CD38+ status and 13q14 deletion. While no separation was 

observed for SF3B1-mutant samples, NOTCH1-mutant samples partly clustered behind the plane 

of axis 1 and 3. U-CLL samples were predominantly clustered behind the plane of axis 1 and 2, 

with a single outlier. Despite this, the M-CLL cases clustered in the centre of the plot. Trisomy 12 

cases clustered closely towards the positive end of axis 1 and the three samples also positive for 

CD38 were at the extreme of this clustering. Heterozygous 13q14 loss was indicative of some 

clustering towards the centre which was focal around the sample with homozygous loss. 
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Figure 7.4. Clustering analysis of the individual CLL samples. A. CLL characteristics, 

patient details and subtype classifications for each of the 14 samples characterised. nd = not 

determined. B. Euclidian distance clustering of 5956 protein log2 (ratios) for the 14 CLL 

samples. C. Distributions of 5956 protein log2 (ratios) for the 14 CLL samples relative to HD B 

cells. The box represents the 25th, 50th and 75th percentiles and the whiskers, the 1st and 99th. Dots 

represent outliers exceeding these bounds.  

 

 

Figure 7.5. Principal component analysis of the individual CLL samples. Principal 

component analyses (PCA) for 13 CLL cases (excluding 4621) highlighting the three 

dimensional separation of features. The log2 (ratio) quantitations for the 5956 proteins were 

analysed using Qlucore Omics Explorer 3.1 using the default settings. 



278 

 

7.6 PROTEOMIC IDENTIFICATION OF ANTICIPATED PROTEIN QUANTIFICATIONS IN CLL 

CLL, as discussed in Section 1.2.3, has been extensively characterised with several 

proteins consistently or variably expressed across cases. As a means of validating the 

quantitative proteomics findings, confirming the quality of the 2D-LC MS/MS analysis, the 

statistical data analysis and the successful isolation of the samples themselves, anticipated 

protein identifications were listed alongside their respective quantitations (Figure 7.6). This 

presented the expression across each of the 14 CLL samples for the minimum determined fold 

change relative to HD samples. CD5, a canonical upregulated marker of CLL, was amongst the 

20 most overexpressed proteins and more than 2-fold upregulated in 11 of the 14 CLL samples, 

with a regulation score of 0.84 (p=8.6x10-6). Several other reported cell surface markers were 

identified overexpressed (RS>0.25, p<0.05), as anticipated, relative to HD samples, including; 

receptor tyrosine kinase-like orphan receptor (ROR1), Suppressor of tumorigenicity 14 protein 

(ST14 or matriptase), T-cell differentiation antigen CD6 and low affinity Ig epsilon Fc receptor 

CD23. Subtype-specific regulations were also observed, with CD38 expression being 

consistently more than 2-fold downregulated in all but those 3 cases phenotyped with 99% CD38 

expression. CD49d, a marker which correlates strongly with trisomy 12 status, was 

downregulated more than 2-fold, specifically in the cases without trisomy 12.  

B-cell receptor components and B-cell-specific proteins were observed significantly 

downregulated (RS>0.25, p<0.05) as expected, included; CD22, CD79A, CD79B and B-

lymphocyte antigen CD20. CD19, a B-cell specific surface protein, which was used to assess 

sample purity, was also identified and quantified, but without any significant differential 

expression between CLL and HD B cells. Intracellular proteins with anticipated and observed 

significant overexpression, included; the B- and T-cell receptor response regulator – tyrosine-

protein phosphatase non-receptor type 22 (PTPN22), the apoptosis regulator and characteristic 

CLL protein BCL2, NFAT proteins, the tyrosine-protein kinase, ZAP-70, and the histone-lysine 

N-methyltransferase SETDB1. 
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Figure 7.6. Anticipated CLL protein identification and quantification. The expression 

determined by quantitative proteomics relative to healthy donor B cells (upregulated – red, 

downregulated – green), with the respective CLL subtypes annotated. These are separated into 

cell surface proteins and non-surface proteins. 

  

7.7 CONFIDENT AND CONSISTENT DIFFERENTIAL PROTEIN EXPRESSION IN CLL 

With the technical reproducibility confirmed and the successful characterisation of key 

proteins relating to known CLL biology identified, the data were analysed to identify differential 

expression potentially describing novel CLL biology. The RS and FDR-corrected p-values 
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describing the magnitude and significance of differential expression, relative to HD samples, 

were used to produce a volcano plot (Figure 7.7). Of the 819 and 746 proteins with significant 

up and downregulation in CLL, respectively, those proteins at the extremes of this plot were 

annotated. The most significantly upregulated protein was cytoskeleton-associated protein 4 

(CKAP4) (RS=1.4, p=1.8x10-8), a putative receptor for antiproliferative factor (APF), which was 

observed with between 250% and 590% expression in all CLL samples (averaging 370%). These 

observations were supported by the number of identifications and quantifications of the protein; 

with 34 unique peptides identified from over 500 PSMs. Bridging integrator 3 (BIN3), a protein 

involved in actin regulation and cytokinesis, was the second most significantly overexpressed 

(RS=1.25, p=1.7x10-8) in CLL, with an average of 300% expression, ranging from 200% to 

400%. The third most significantly upregulated protein was cyclin-dependent kinase 14 

(CDK14) (RS=1.14, p=1.4x10-8), a regulator of cell cycle progression and proliferation, which 

was consistently upregulated to 200-350% expression in all 13 cases. Other proteins with both a 

high degree of significance and upregulation included; dynamin-binding protein (DNMBP), zinc 

finger protein M1 (ZFPM1), collagen alpha-2(IX) chain (COL9A2), girdin (CCDC88A), AP-1 

complex subunit sigma-3 (AP1S3) and phosphatidylethanolamine-binding protein 1 (PEBP1). 

Strongly significant proteins (p<10-7), with a lower regulation score (1>RS>0.5) included; 

sorting nexin-18 (SNX18), sugen tyrosine-protein kinase 223 (SGK223), SWI/SNF-related 

matrix-associated actin-dependent regulator of chromatin subfamily C member 2 (SMARCC2) 

and inactive phospholipase C-like protein 2 (PLCL2). Conversely, proteins with less 

significance (10-4>p>10-6), but a high regulation score (RS>1) included; pyrin and HIN domain-

containing protein 1 (PYHIN1), epidermal growth factor receptor kinase substrate 8-like protein 

2 (EPS8L2), polymeric Ig receptor (PIGR) and TOX high mobility group box family member 2 

(TOX2). 

Amongst the ~80 upregulated proteins annotated in Figure 7.7, 9 were mitochondrial 

proteins; enoyl-CoA delta isomerase 1 (ECI1), StAR-related lipid transfer protein 7 (STARD7), 

10 kDa heat shock protein (HSPE1), serine hydroxymethyltransferase (SHMT2) and of these, 5 

were dehydrogenase enzymes; medium-chain specific acyl-CoA dehydrogenase (ACADM), 

choline dehydrogenase (CHDH), isovaleryl-CoA dehydrogenase (IVD), succinate-semialdehyde 

dehydrogenase (ALDH5A1) and methylmalonate-semialdehyde dehydrogenase [acylating] 

(ALDH6A1). Additionally to this, fatty acid dehydrogenase (ALDH3A2) was also amongst 

these proteins. Three members of the tyrosine-protein phosphatase non-receptor family – 

PTPN2, PTPN7 and PTPN22 were observed in this region of the volcano plot. Kinases were also 

frequently observed amongst these proteins, including; CDK14, SGK223, wee1-like protein 

kinase (WEE1) and ROR1. 
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Of the 746 significantly downregulated proteins, as with the upregulated proteins, 

approximately the top 10% were plotted and annotated. This highlighted four proteins as the 

most significantly downregulated relative to HD samples; kalirin (KALRN) (RS= -1.85, 

p=3.1x10-8), RNA-binding protein with multiple splicing 2 (RBPMS2) (RS= -1.72, p=1.6x10-8), 

aspartyl/asparaginyl beta-hydroxylase (ASPH) (RS= -1.69, p=3.1x10-8) and DENN domain-

containing protein 3 (DENND3) (RS= -1.64, p=7.6x10-9). Kalirin, a cytoskeletal remodelling 

protein and guanyl-nucleotide exchange factor characterised in neurons and observed with 

sensitivity to splicing [472], was downregulated to an average of 15% expression over the 13 

CLL samples, ranging from 8-25% expression, relative to HDs. This quantitation was derived 

from 10 unique peptides and 68 PSMs. The minimally characterised, but apparent smooth 

muscle cell-fate determinant protein, RBPMS2, was similarly consistently downregulated to 

approximately 30% in all CLL samples. RBPSM2 expression averaged 18% and had a maximal 

downregulation to just 12.5% of the expression in HD samples. ASPH, a transmembrane ER 

protein with tumour suppressor capacity in mice [473], was similarly underexpressed, averaging 

15%, ranging from 11 to 34% expression of that of HD samples across the CLL samples. 

Another guanyl-nucleotide exchange factor, DENND3, a protein with a role in endosome 

transport and recycling [474] was observed with a slightly lower average of 21% expression, but 

with more consistent and significant expression with a range of 15-32% of HD samples. 

 Other proteins downregulated in CLL with the greatest significance were; cathepsin W 

(CTSW), transmembrane ligand ephrin-B1 (EFNB1), microtubule-associated protein 1A 

(MAP1A), uncharacterised protein KIAA0513, stonin-2 (STON2), special AT-rich sequence-

binding protein 1 (SATB1), cytosolic phospholipase A2 (PLA2G4A) and chloride intracellular 

channel protein 3 (CLIC3). Additional more substantially downregulated proteins included; 

specifically androgen-regulated gene protein (SARG/C1orf116), prostacyclin receptor (PTGIR), 

schlafen family member 14 (SLFN14), apoptosis regulator Bcl-2-like protein 1 (BCL-

X/BCL2L1), latent-transforming growth factor beta-binding protein 1 (LTBP1), monocyte 

differentiation antigen CD14 and c-Maf-inducing protein (CMIP). 
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Figure 7.7. Differential protein expression in the CLL proteome. The regulation score and 

negative log10 (p-values) of protein expression relative to a log2 (ratio) of 0 were plotted for the 

5956 proteins commonly identified, non-platelet proteins. Those proteins reaching significance 

(p<0.05), with a regulation score of >0.25 or <-0.25 were considered as up and downregulated, 

shown in the upper right and left regions, and annotated in the upper and lower panels, 

respectively. Proteins highlighted in red are a selection of positive controls, previously observed 

with upregulation in CLL. 

7.8 OVEREXPRESSED CLL CELL SURFACE PROTEINS WITH POTENTIAL FOR 

IMMUNOTHERAPY TARGETING  

In light of this confident substantial dysregulation across the proteome, the first question 

was that of potential clinical targets that may suggest novel ways in which CLL can be treated. 

The most prominent of these were cell surface targets. Understanding the cell surface protein 

expression in CLL presents several potential clinical benefits. CD5, for instance, allows 

diagnosis of CLL, CD49d expression offers a potential prognostic indicator and CD20 and 

CD52 present targets for immunotherapy which can treat the disease. To interrogate the 

proteomics findings for existing, and potentially novel, cell surface expression of clinical targets, 

proteins were filtered on the basis of GO term annotation as well as several other tools and 

databases for annotating proteins with cell surface expression, described in Section 2.12.6. A 

total of 395 quantitated proteins, 6.6% of all quantitated proteins, were determined to have 

consistent annotation for expression on the surface of cells and the regulation scores of these 

proteins were plotted against their -log10 (p-values) (Figure 7.8A). This volcano plot identified a 

total of 21 proteins, 5% of the membrane proteins, with significant upregulation (RS>0.25, 

p<0.05) on the surface of CLL cells, which were subsequently tabulated with a sample-specific 

breakdown of protein expression (Figure 7.8B).  

Amongst the 21 upregulated surface proteins on CLL (Figure 7.8A and B) were the 

anticipated proteins described in Figure 7.6; CD5, ROR1, ST14/matriptase, CD23 and CD6; 

alongside CKAP4, described previously as the most upregulated protein identified in CLL 

(Figure 7.7). Also known as climp-63, CKAP4, is reported to be a predominantly ER-localised 

protein, but with a propensity for cell surface expression as a receptor for APF. No previous 

reports appear to have demonstrated a role for CKAP4 in CLL or B-cell cancers. PIGR, an Fc 

receptor, with no previous links to CLL or B-cell cancers, is capable of transporting Ig across 

epithelial membranes by transcytosis, whereupon the extracellular region is cleaved. PIGR was 

the second most upregulated CLL surface protein, observed with an average upregulation of 

468% of that of HD samples, ranging from 158% to 1,106%, with at least 200% expression in 12 
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samples, and 400% in 8 samples. 4 unique peptides, matching only the intracellular portion of 

PIGR, were identified. CD5 was the third most overexpressed surface protein, behind only 

CKAP4 and PIGR.  

The fourth most upregulated cell membrane protein was lymphocyte transmembrane 

adaptor 1 (LAX1) (RS=0.66, p=1.35x10-5), a negative regulator of B- and T- cell receptor 

signalling [475] with no previous implications or characterisations in CLL. On average, 

expression of LAX1 in CLL was 185% of that of HD samples, consistently above 140%, with 5 

samples exceeding 200% expression. The next most upregulated protein without any previous 

characterisation in B-cell cancers was the glycan-binding receptor and proliferating germinal B-

cell-expressed protein ‘prolectin’, also known as c-type lectin domain family 17, member A 

(CLEC17A). Prolectin was significantly upregulated (RS=0.52, p=2.4x10-4), averaging 168% 

expression, with 10 samples exceeding 125%, and 7 exceeding 180% expression. 

Two peripheral ion channels were observed significantly upregulated in CLL, without 

any previous reports; ATPase, Ca2+ transporting, plasma membrane 4 (ATP2B4) (RS=0.48, 

p=5.7x10-5) and ATPase, Na+/K+ transporting, beta 1 polypeptide (ATP1B1) (RS=0.36, 

p=3.6x10-2). ATP2B4, a calcium exporter with a putative link to BCR-induced calcium efflux 

[476], was overexpressed (>125%) in all but 1 CLL sample, averaging 155% of that of HD 

samples. While less consistently expressed, the regulatory and potentially cell-adhesive subunit 

controlling Na+ export, ATP1B1, was observed with >200% expression in 6 samples, >140% 

expression in a further 4 samples and a downregulation to less than 50% in sample ‘653’.  

In addition to the Fc receptors CD23/FCER2 and PIGR, two Fc receptor-like (FCRL) 

surface proteins were identified with significant upregulation in CLL. FCRL2 (CD307B), a BCR 

signalling inhibitor [477] previously reported in CLL [478, 479] was identified with an average 

expression of 145%, with 10 samples indicating some overexpression (>125%) compared with 

HD samples. FCRL5 (CD307E), another modulator of BCR signalling [480] with reported 

involvement in CLL [481], had a greater average overexpression of 160%, and 11 samples 

exceeding 125%. 

Four further peripheral membrane proteins with previous characterisations in CLL were 

also identified; signalling threshold regulating transmembrane adaptor 1 (SIT1) (RS=0.38, 

p=6.4x10-6), fas apoptotic inhibitory molecule 3 (FAIM3/TOSO) (RS=0.38, p=3.3x10-3), ST6 

beta-galactosamide alpha-2,6-sialyltranferase 1 (CD75) (RS=0.37, p=1.6x10-4) and intercellular 

adhesion molecule 3 (ICAM3/CD50) (RS=0.25, p=1.9x10-3). Peptides matching three minimally 

characterised, putative cell surface proteins; transmembrane and coiled-coil domain family 3 

(TMCC3) (RS=0.46, p=1.8x10-4), chromosome 3 open reading frame 33 (C3orf33) (RS=0.36, 
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p=1.3x10-4) and chromosome 17 open reading frame 80, cell migration-inducing gene 3 protein 

(C17orf80) (RS=0.30, p=1.3x10-5) ; were indicative of upregulation in CLL. Finally, 

neuroplastin (NPTN), an Ig-superfamily cell adhesion molecule with a widely expressed isoform 

(Np55) capable of activating fibroblast growth factor receptor 1 (FGFR1) [482, 483] was 

significantly overexpressed in CLL (RS=0.29, p=3.5x10-4). NPTN was upregulated to 125% in 

all but 4 of the samples. No previous observations were apparent describing this overexpression 

in CLL or other B-cell cancers. 

7.9 UNDEREXPRESSED CLL CELL SURFACE PROTEINS 

While of less clinical significance for immunotherapy targets and diagnosis, proteins 

downregulated in CLL are indicative of alteration in the biology of interactions between the 

cancer and the immune system and the microenvironment. The downregulated surface proteins 

were more frequent than the upregulated proteins in CLL (Figure 7.8A). Approximately 1 in 3 

fully quantified surface proteins (133/395) demonstrated significant underexpression (RS<-0.25, 

p<0.05) – over six times that of the upregulated proteins. Less emphasis was placed on the 

downregulated proteins, firstly due to the greater clinical interest in upregulated proteins, but 

also the potential contamination observed from platelets in the HD samples, which may extend 

to other cell material not accounted for by the adjustments made by filtering platelet proteins. 

The most significantly downregulated cell membrane proteins included the previously described 

(Section 7.7); EFNB1 (RS= -1.42, p=3.7x10-9), PTGIR (RS= -1.34, p=1.6x10-8) and CD14 (RS= 

-1.43, p=5.5x10-8); and additionally leucine-rich repeat-containing protein 32 (LRRC32), (RS= -

1.20, p=3.1x10-8), phospholipase D4 (PLD4) (RS= -1.32, p=2.3x10-7) and Claudin-5 (CLDN5) 

(RS= -1.39, p=3.1x10-7). Overall, several trends emerged amongst the downregulated CLL 

surface proteins in Figure 7.8A such as a high frequency of proteins annotated as transporters, 

cell adhesion proteins, immune system regulator and transmembrane receptors. 

Amongst the transporter proteins, 16 were ion transporters; Ca2+-transporting ATPase 

type 2C member 1 (ATP2C1), anoctamin-10 (ANO10), two choline transporter-like proteins; 1 

and 2 (SLC44A1 and SLC44A2), H(+)/Cl(-) exchange transporter 7 (CLCN7), inositol 1,4,5-

trisphosphate receptor type 1 (ITPR1), metalloreductase STEAP3 (STEAP3), multidrug 

resistance-associated protein 4 (ABCC4), pannexin-1 (PANX1), probable phospholipid-

transporting ATPase IF (ATP11B), protein tweety homolog 3 (TTYH3), sideroflexin-3 

(SFXN3), two sodium/hydrogen exchangers (SLC9A1 and SLC9A9), solute carrier family 12 

member 2 (SLC12A2) and transient receptor potential cation channel subfamily V member 2 

(TRPV2). An additional 13 proteins related to vesicle mediated transport were downregulated; 

two secretory carrier-associated membrane proteins (SCAMP2 and SCAMP3); syntaxins; STX3 
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and STX17; vesicle transport proteins; GOLT1B and USE1; vesicle transport through interaction 

with t-SNAREs homolog 1B (VTI1B), vesicle-associated membrane protein 3 (VAMP3) 

atlastin-3 (ATL3), B-cell receptor-associated protein 31 (BCAP31), CD14, protein YIPF5 and 

sortilin-related receptor (SORL1). Amongst these transporters were also 5 proteins related to 

lipid transport; long-chain fatty acid transport protein 4 (SLC27A4), ATP11B, apolipoprotein B 

receptor (APOBR), phospholipid-transporting ATPase IA (ATP8A1) and SORL1. 

21 surface proteins involved in cell adhesion processes were determined to be 

downregulated in CLL, including; 7 integrins; ITGA4/CD49d, ITGA5/CD49e, ITGAL/CD11a, 

ITGAM/CD11b, ITGB1/CD29, ITGB2/CD18 and ITGB5; 7 non-integrin CD molecules; CD22, 

CD47, CD72, CD84, CD97, CD151 and CD226; and 6 other adhesion molecules; claudin 5, L-

selectin (CD62L), embigin (EMB), EFNB1 and lysosome membrane protein 2 (SCARB2).  

Immune system regulators were also frequently downregulated, represented by 33 of the 

133 proteins, including; ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 and 2 (CD38 and 

CD157); B-cell proteins; CD79A, CD79B, CD22, CD20, IGHG2 and BCAP31; 5 HLA class 2 

molecules; HLA-DMB, HLA-DOB, HLA-DQB1, HLA-DRB4 and HLA-DRB1; all but ITGB5 

of the above integrins, 13 further CD molecules; CD14, CD26, CD35, CD37, CD40, CD46, 

CD47, CD55, CD97, CD180, CD226, CD257/BAFF and CD305; and other regulators; lunapark 

(LNP) and EFNB1. 

 Approximately one in four downregulated CLL surface proteins had receptor activity 

(39/133), including; the CD molecules; CD14, CD20, CD35, CD38, CD40, CD46, CD47, CD72, 

CD79A, CD79B, CD84, CD97, CD123/IL3RA, CD180, CD226, CD305 ; all 7 integrins 

described above; all 5 HLA molecules described above; two receptor-type tyrosine protein 

phosphatases; alpha (PTPRA) and epsilon (PTPRE); additionally, receptors to; prostacyclin 

(PTGIR), Inositol 1,4,5-trisphosphate (ITPR1) and apolipoprotein B (APOBR). 

 

Figure 7.8. Cell surface expression of proteins in CLL. Fully quantitated proteins were 

filtered on the basis of GO-annotated localisation to membranes (GO:0005886, GO:0005887, 

GO:0009986, GO:0031226, GO:0009897, GO:0016020 and GO:0016021) and subsequently 

filtered to remove any proteins also annotated with localisation to the endoplasmic reticulum 

(GO:0005783), mitochondria (GO:0005739), or nucleus (GO:0005634). This list was then 

combined with those proteins described by the MS surface atlas [368]. This resulting list was 

used to filter for those proteins characterised here and the remaining proteins filtered against the 

surfaceome database [369], a tool combining surface expression observations from several 

resources. In total, this process enriched for a list of 395 predominantly surface-expressed, 
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transmembrane proteins. A. Volcano plot highlighting proteins with a strong statistical 

significance and magnitude of regulation. B. The detailed results for those 21 proteins 

determined to be significantly upregulated (RS>0.25, p<0.05) on the surface of CLL, with the 

final column indicating whether or not the protein has previously been described in CLL. 
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7.10 UPREGULATED TARGETS OF SMALL MOLECULAR INHIBITORS IN CLL 

Several approaches which have proved successful in the treatment of CLL have involved 

the use of small molecular inhibitors, either alone or, more frequently, in combination with 

immunotherapy. A key question of the proteomics data was therefore the identification of 

potential intracellular protein targets, that may be driving or sustaining CLL, which are 

vulnerable to interference with small molecular inhibitors. The inbuilt capabilities of IPA 

software were used to annotate proteins to identify drugable targets, and a list of upregulated 

proteins with potential for such interference was generated (Figure 7.9). BCL2, an established 

target of small molecular inhibitors in CLL was in this list (RS= 0.55, p=1.5x10-4) with small 

molecular inhibitors such as obatoclax, navitoclax/ABT263, ABT737and ABT199 [59, 60], and 

the antisense oligodeoxyribonucleotide oblimersen capable of interfering with BCL2 production. 

The most upregulated protein with potential for interference was collagen alpha-2 (IX) 

chain (COL9A2) (RS= 0.97, p=2.3x10-7), a typically extracellular protein, forming part of the 

extracellular matrix, identified with 6 unique peptides and between 175% and 424% 

overexpression in all CLL cases, relative to HD samples. While no small molecular inhibitors 

were reported or annotated with IPA, a degradation enzyme collagenase clostridium histolyticum 

is available. The next most upregulated target of inhibition was heme oxygenase 1 (HMOX1) 

(RS= 0.80, p=4.8x10-7), an enzyme which degrades free heme, thereby offering cytoprotective 

effects. HMOX1 was also potentially involved in mitochondrial biogenesis and previously 

implicated in CLL [484, 485]. HMOX1 was upregulated to >190% expression in 12 cases and 

was potentially a target of inhibition by tin mesoporphyrin. The second functional heme 

oxygenase isoform (HMOX2) was also upregulated, though to a lesser extent (RS= 0.26, 

p=1.4x10-3) with 9 samples exceeding 120% expression - a novel finding in CLL. Microtubule-

associated protein 2 (MAP2) was the third most upregulated potential interference target (RS= 

0.77, p=2.5x10-5), with the inhibitor estramustine potentially capable of interfering with the 

suggested stabilising effects of MAP2 on microtubules. MAP2 was upregulated at least 150% in 

all but one sample, and averaging 225% expression relative to HD samples. 

Six kinases with potential for inhibition were observed upregulated in CLL, compared to 

HD controls; two mitogen-activated protein kinases; MAPK8/JNK1 (RS= 0.34, p=3.0x10-4) and 

MAPK13 (RS= 0.24, p=1.6x10-2); two tyrosine-protein kinase proto-oncoproteins; FGR (RS= 

0.29, p=4.8x10-3) and LCK (RS= 0.41, p=2.8x10-4); and two proteins with a role in cell cycle 

progression cyclin-dependent kinase 7 (CDK7) (RS= 0.23, p=2.9x10-5) and wee1-like protein 

kinase (WEE1) (RS= 0.60, p=4.2x10-5). The upregulation of the kinase JNK1, a protein with 

several functions capable of promoting tumourigenesis, was potentially a target of inhibition by 

the cyclic depsipeptide aplidine. Aplidine has previously been used to treat leukaemias and JNK 
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isoforms were found to be responsible, at least in part for its mechanism of action [486, 487]. 

JNK1 was expressed at 125% of that in HD samples in 9 CLL samples. MAPK13, the delta 

isoform of the p38 MAPK family, has potential roles in regulating protein translation and 

microtubule remodelling in response to cytokine signalling, DNA damage and stress. The 

protein was upregulated >160% in 6 CLL samples. The compound talmapimod is a known small 

molecular inhibitor of MAPK13, though with specificity to all members of the p38 MAPK 

family. LCK, a kinase which phosphorylates and activates ZAP70, normally upon T-cell 

signalling, was upregulated >125% in 10 of the CLL samples and in 6 of these samples, >150%. 

Reduction of LCK activity has previously been shown to reduce BCR signalling in CLL [488]. 

FGR, a kinase potentially subject to inhibition by vemurafenib, was upregulated (>125%) in 8 

CLL cases. FGR normally functions to direct immune response and cytoskeletal remodelling in 

immune cells in response to ITGB2 (downregulated) signalling [489]. 

The cell cycle progression promoting kinase, WEE1, was observed upregulated 

to >175% in 9, and to >125% in a further 4, CLL samples verses HD control. Annotation 

identified the WEE1-specific inhibitor MK1775, which has shown successful implementation in 

the treatment of several cancers, as a potential inhibitor of any effects of this WEE1 

upregulation. The second cell cycle regulating kinase, CKD7, was identified as a potential 

inhibition target of alvocidib, with 9 cases with >120% expression. Alvocidib has previously 

demonstrated cytotoxicity in CLL [490]. 

Three HDAC enzymes were identified with some degree of upregulation in CLL; 

HDAC1 (RS= 0.24, p=1.3x10-4), HDAC3 (RS= 0.31, p=1.7x10-5) and HDAC7 (RS= 0.51, 

p=5.0x10-6). All three enzymes were identified with the potential to be inhibited with 

compounds termed HDACi. Entinostat, for instance, a specific inhibitor of HDAC1 and HDAC3 

re-established tumour suppressor expression in CLL [491]. The most upregulated of these three 

proteins, HDAC7, with >135% expression in all but one sample, did not have any previous 

findings of upregulation at the protein level. NAD-dependent protein deacylase sirtuin-5, 

mitochondrial (SIRT5), an enzyme with deacetylase activity, but more probably demalonylation 

and desuccinylation (similar-property small carbonyl motifs to acetylation), was marginally 

upregulated (RS= 0.24, p=1.0x10-3). SIRT5 was identified with potential inhibition by suramin. 

Another identified target of inhibition was that of succinate-semialdehyde 

dehydrogenase, mitochondrial (ALDH5A1), a substantially and consistently overexpressed 

enzyme in the data, with all samples overexpressing by at least 125% and 8 samples over 200%. 

ALDH5A1, frequently abbreviated to SSADH, catalyses a step in the degradation of gamma-

aminobutyric acid, specifically succinate semialdehyde to succinic acid, which is reported to be 

non-specifically inhibited by valproic acid. 
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Fibroblast growth factor (FGF2) was identified significantly upregulated (RS= 0.48, 

p=6.0x10-3), but with variable expression; four samples had 3.5- to 6.3- fold upregulation, and 7 

samples had 1.4- to 2.3-fold upregulation. A typically extracellular signalling molecule with 

capabilities of inducing cell survival and proliferation, FGF2, was annotated to have inhibitors 

such as suradista which could reduce its activity. 

Four CLL-upregulated proteins with roles in DNA replication were identified with 

available chemotherapeutic reagents capable of inhibiting these proteins. DNA polymerase 

epsilon subunit 4 (POLE4) (RS= 0.23, p=5.5x10-4), DNA (cytosine-5-)-methyltransferase 1 

(DNMT1) (RS= 0.29, p=1.3x10-4), DNA topoisomerase I (TOP1) (RS= 0.55, p=3.2x10-6) and 

ribonucleoside-diphosphate reductase subunit M2 (RRM2B) (RS= 0.31, p=1.1x10-4) were 

annotated to be inhibited by nucleotide analogues  such as gemcitabine, cytarabine, decitabine 

and 5-azacytidine and, specifically to TOP1; the alkaloids camptothecin and irinotecan. 

Four other proteins had significant upregulation with a potential for inhibition; retinoid 

X receptor, alpha (RXRA) (RS= 0.34, p=8.1x10-4), promyelocytic leukemia protein (PML) (RS= 

0.27, p=3.0x10-3), peptidyl-prolyl cis-trans isomerase A (PPIA) (RS= 0.38, p=7.5x10-6) and 

arachidonate 5-lipoxygenase (ALOX5) (RS= 0.42, p=2.6x10-5). 
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Figure 7.9. Protein targets of small molecule inhibition in CLL. Proteins upregulated in CLL 

with potential for interference with inhibitors. The top 25 previously described drug targets, as 

annotated by ingenuity pathway analysis, based on regulation score with a false discovery rate 

corrected p-value of <0.05. 

7.11 LOCALISATION AND FUNCTIONS OF DIFFERENTIALLY EXPRESSED PROTEINS IN 

CLL 

To gain an insight into the patterns emerging amongst the differentially regulated 

proteins in CLL, not observable by the analysis of single proteins, a series of bioinformatic tools 

were employed. Firstly, the significantly upregulated (819) or downregulated (746) proteins in 

CLL, as well as the list of all those fully quantitated proteins (5956), were annotated to describe 

the canonical localisations and functions using IPA software. The numbers of proteins annotated 

with each localisation for the regulated or full list of proteins were plotted against the numbers 

observed from all proteins to identify patterns of enrichment (Figure 7.10A). 3.4% (200) of all 

fully quantitated proteins were annotated as canonically extracellular. Of the up and 

downregulated proteins, 2.2% (18) and 6.6% (46) were extracellular, demonstrating under and 

overrepresentation, respectively. The same trend was even more pronounced at the plasma 

membrane (highlighted previously in Figure 7.8), with 30 (3.7%) and 118 (16.9%) of the over 

and underexpressed proteins, respectively, localised to the cell periphery compared to 419 (7%) 

of all the proteins. This demonstrated that over a quarter of proteins identified at the cell surface 

were consistently downregulated in CLL. Just under half of all proteins were cytoplasmic (2830, 

47.5%) which were again, although marginally, enriched amongst the downregulated proteins 

(394, 56.4%) and underrepresented amongst the upregulated proteins (227, 28.2%). The most 

striking trend was that observed for the nucleus, where 58.3% (470) of the proteins determined 

to be upregulated were annotated as being canonically localised. 1 in 4 of the 1880 (31.6%) 

proteins identified from the nucleus were therefore determined with consistent upregulation. The 

trend was complimented by the observation that just 10.6% (74) of downregulated proteins were 

nuclear. Proteins annotated without a canonical localisation had approximately expected 

numbers with 10.5% (627), 7.6% (61) and 9.6% (67) of all, up and downregulated proteins 

respectively. 

An identical analysis was performed, plotted as pie charts, for the annotations made 

which described canonical protein classifications (Figure 7.10B). Approximately half of 

proteins for each group were annotated with a classification and for simplicity, those without 

were not considered when determining percentages. Transcriptional regulators, the second most 

frequently identified class of proteins (552, 18%), were over and underrepresented amongst the 
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up and downregulated proteins in CLL, respectively. 37% (141) of those upregulated proteins 

were annotated as transcriptional regulators, more than a quarter of all identified transcriptional 

regulators. Just 22 (6%) of the downregulated proteins were transcriptional regulators. An 

inverse trend was observed for those proteins annotated as transporters (373, 12%), kinases (306, 

10%) and peptidases (175, 6%), which were all marginally overrepresented, by percentage, 

amongst the underexpressed proteins; 20% (76), 13% (50) and 8% (31), of these proteins 

respectively. The overexpressed proteins also underrepresented these three classifications, with 

28 (7%) transporters, 25 (6%) kinases and 11 (3%) peptidases. Phosphatases showed no 

enrichment with 4% of classified proteins for each category. Translational regulators appeared 

with minimal differential expression in CLL, with 3 (0.78%) and 6 (1.56%) of the 76 (2.45%) 

over and underexpressed. Transmembrane receptors (69, 2.2%), in agreement with the trend for 

plasma membrane proteins (Figure 7.10A and Figure 7.8), were substantially skewed towards 

downregulation (27, 7%) with more than a third of all those identified underexpressed, and just 3 

(0.78%) with significant upregulation. Alongside this were ion channels of which 9 (2.3%) of 

the 35 (1.1%) identified were significantly downregulated, without any exhibiting upregulation. 

Of the 12 proteins classified as cytokines, two; interleukin-like epithelial to mesenchymal 

transition inducer (FAM3C/ILEI) and IK down-regulator of HLA II cytokine (RED/IK) were 

significantly upregulated; and two; guanine nucleotide exchange factor VAV3 and IL18 were 

significantly downregulated. 
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Figure 7.10. Annotation of protein localisations and subtypes for the up and 

downregulated proteins in CLL. A. Proteins defined as up and down regulated in CLL were 

categorised for their predominant protein localisation and compared with all protein 

identifications. B. As A. for the annotated functional proteins categories displayed as pie charts. 

Unclassified proteins are not plotted and the percentages of these proteins do not greatly differ.  
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7.12 GENE ONTOLOGY ENRICHMENT OF DIFFERENTIALLY EXPRESSED PROTEINS IN 

CLL 

To gain a more detailed and specific insight into the biological trends emerging in CLL 

in Figure 7.10, GO term enrichment was employed. GO term enrichment was determined for the 

819 and 746 significantly up and downregulated proteins against a background of all 5956 fully 

quantitated proteins with DAVID and visualised by Revigo. Significant GO term enrichment 

amongst the upregulated proteins in CLL, is plotted in Figure 7.11 describing biological 

processes, cellular components and molecular functions.  

For biological processes, several terms describing the upregulation of general 

metabolism, regulation and cell processes were significantly enriched; ‘metabolic process 

(GO:0008152)’ (p=3.35x10-8), ‘cellular process (GO:0009987)’ (p=2.13x10-5), ‘biological 

regulation (GO:0065007)’ (p=4.31x10-2), ‘regulation of metabolic process (GO:0019222)’ 

(p=1.11x10-10), ‘biosynthetic process (GO:0009058)’ (p=5.63x10-3), ‘regulation of cellular 

process (GO:0050794)’ (p=1.61x10-2), ‘cellular metabolic process (GO:0044237)’ (p=8.00x10-

11), ‘primary metabolic process (GO:0044238)’ (p=1.49x10-10) and ‘regulation of biological 

process (GO:0050789)’ (p=2.76x10-2). In addition to these, two processes relating to 

macromolecules, such as DNA, RNA and proteins were highlighted; ‘macromolecule 

biosynthetic process (GO:0009059)’ (p=2.50x10-5) and ‘macromolecule metabolic process 

(GO:0043170)’ (p=4.19x10-13). The two most significantly enriched terms ‘nucleobase-

containing compound metabolic process (GO:0006139)’ (p=3.36x10-38) and ‘nitrogen compound 

metabolic process (GO:0006807)’ (p=2.69x10-40) both indicated that nucleic acid metabolism, 

linked with nitrogen metabolism, was upregulated. The terms; ‘RNA processing (GO:0006396)’ 

(p=4.46x10-23), ‘mRNA processing (GO:0006397)’ (p=1.23x10-34) and ‘mRNA metabolic 

process (GO:0016071)’ (p=2.37x10-31); indicated that CLL cells consistently upregulated 

proteins involved in the synthesis of mRNA, significantly more frequently than would be 

expected by chance. Further to this, other terms which reached substantial significance, not 

shown due to overlapping term redundancy, specified that splicing and the spliceosome were a 

major component of this finding; ‘RNA splicing (GO:0008380)’ (p=9.01x10-32) and ‘mRNA 

splicing, via spliceosome (GO:0000398)’ (p=2.69x10-25). Processes prior to splicing were also 

enriched, with aspects of aspects of transcription and gene expression suggested to be 

upregulated; ‘gene expression (GO:0010467)’ (p=1.93x10-24) and ‘negative regulation of 

transcription, DNA-templated (GO:0045892)’ (p=3.52x10-7). The term ‘chromatin organization 

(GO:0006325)’ (p=2.05x10-11), based on related and redundant terms, were indicative of a 

significant enrichment of upregulated proteins involved in histone acetylation, specifically of 

histone H2A and H4 (p<0.05) which also suggested transcriptional dysregulation. ‘DNA 
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metabolic process (GO:0006259)’ (p=6.49x10-5), combined with the terms ‘cellular response to 

DNA damage stimulus (GO:0006974)’ (p=6.13x10-3) and ‘cell aging (GO:0007569)’ (p=3.22 

x10-2), were indicative of a state induced by cell division and DNA replication. 

Cellular component GO term enrichment confirmed, most significantly, the previous 

observation of frequently upregulated nuclear proteins in CLL (‘nucleus (GO:0005634)’ 

(1.89x10-47)). The analysis also provided a breakdown of more specific enriched terms; 

‘nucleoplasm (GO:0005654)’ (p=1.81x10-17), ‘nucleoplasm part (GO:0044451)’ (p=1.54x10-11), 

‘nuclear matrix (GO:0016363)’ (p=7.41x10-3) and ‘nuclear periphery (GO:0034399)’ 

(p=1.85x10-2). Additional terms were in agreement with biological processes relating to mRNA 

processing; ‘spliceosomal complex (GO:0005681)’ (p=7.62x10-17) and ‘nuclear speck 

(GO:0016607)’ (p=2.06x10-8) – a region of the nucleus rich in splicing activity - further 

indicated an upregulated of splicing. Further GO terms identified significant enrichment of 

nuclear proteins relating to DNA and the regulation of chromosomes; ‘chromosome 

(GO:0005694)’ (p=4.39x10-7), ‘chromatin remodeling complex (GO:0016585)’ (p=5.93x10-3), 

‘protein-DNA complex (GO:0032993)’ (p=6.17x10-3), ‘chromosomal part (GO:0044427)’ 

(p=5.49x10-5) and ‘histone acetyltransferase complex (GO:0000123)’ (p=5.80x10-3). The terms 

‘small nuclear ribonucleoprotein complex (GO:0030532)’ (p=1.10x10-2), ‘heterogeneous nuclear 

ribonucleoprotein complex (GO:0030530)’ (p=8.55x10-5) and ‘ribonucleoprotein complex 

(GO:0030529)’ (p=6.93x10-4) were related to the overexpression of proteins localised to DNA 

and RNA, such as the chromosomes and spliceosome, respectively. 

The most significantly enriched molecular function in CLL, ‘nucleic acid binding 

(GO:0003676)’ (p=6.40x10-32), summarised the majority of other molecular function terms, most 

specifically; ‘DNA binding (GO:0003677)’ (p=2.68x10-17) and ‘RNA binding (GO:0003723)’ 

(p=3.28x10-15). DNA binding could be further subdivided into the similar but more specific 

terms ‘sequence-specific DNA binding transcription factor activity (GO:0003700)’ (p=1.56x10-

3), ‘transcription regulator activity (GO:0030528)’ (p=1.75x10-11) and ‘transcription factor 

binding (GO:0008134)’ (p=1.89x10-3) and the enrichment of several other terms further detailed 

these; ‘transcription activator activity (GO:0016563)’ (p=1.35x10-3), ‘transcription repressor 

activity (GO:0016564)’ (p=1.01x10-4), ‘transcription coactivator activity (GO:0003713)’ 

(p=2.19x10-2) and ‘transcription cofactor activity (GO:0003712)’ (p=6.73x10-4). The terms ‘zinc 

ion binding (GO:0008270)’ (p=2.89x10-5) and ‘transition metal ion binding (GO:0046914)’ 

(p=1.24x10-3) suggested the type of transcription factors, such as the 45 zinc finger proteins, 

which were most significantly enriched in these data. 

Significantly downregulated protein GO term enrichment in CLL (Figure 7.12) 

confirmed and provided greater insight into many of the patterns described in Figure 7.10. For 
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biological processes, the term ‘localization (GO:0051179)’ was the most significantly enriched 

(p=9.58x10-11). This term described several subtypes of localisation, the most significant of 

which was ‘vesicle-mediated transport (GO:0016192)’ (p=4.00x10-6), which was observed 

alongside related terms suggesting a downregulation of proteins related to membrane vesicular 

movement; ‘lipid localization (GO:0010876)’ (p=1.23x10-3), ‘lipid metabolic process 

(GO:0006629)’ (p=1.87x10-2), ‘membrane invagination (GO:0010324)’ (p=3.09x10-2) and 

‘cellular component movement (GO:0006928)’ (p=2.39x10-2). Other forms of intracellular 

protein and peptide movement were also suggested to be downregulated; ‘peptide transport 

(GO:0015833)’ (p=1.57x10-2) and ‘protein processing (GO:0016485)’ (p=3.86x10-2). Processes 

relating to whole cell localisation and adhesion of were also significantly enriched for; ‘cell 

migration (GO:0016477)’ (p=2.49x10-2), ‘localization of cell (GO:0051674)’ (p=2.46x10-2), 

‘locomotion (GO:0040011)’ (p=1.86x10-3), ‘cell adhesion (GO:0007155)’ (p=9.52x10-3) and 

‘biological adhesion (GO:0022610)’ (p=9.52x10-3). Related to such processes were 

‘cytoskeleton organization (GO:0007010)’ (p=1.01x10-3) and ‘actin filament-based process 

(GO:0030029)’ (p=8.61x10-4). CLL also demonstrated a significant trend in the downregulation 

of proteins relating to communication with the immune system; ‘immune response 

(GO:0006955)’ (p=1.92x10-5) and ‘immune system process (GO:0002376)’ (p=1.30x10-4); 

already highlighted in the trends which emerged amongst the downregulated membrane proteins 

(Figure 7.8). Other terms describing intercellular communication; ‘response to stimulus 

(GO:0050896)’ (p=1.64x10-4), ‘response to external stimulus (GO:0009605)’ (p=2.64x10-4), 

‘response to wounding (GO:0009611)’ (p=1.10x10-4), ‘regulation of response to external 

stimulus (GO:0032101)’ (p=1.65x10-3), and ‘regulation of response to stimulus (GO:0048583)’ 

(p=2.04x10-2); were also overrepresented. Three terms highlighted some possible specific 

signalling processes by which these more general processes were being downregulated; 

‘integrin-mediated signaling pathway (GO:0007229)’ (p=2.47x10-4), ‘small GTPase mediated 

signal transduction (GO:0007264)’ (p=1.08x10-2) and ‘protein phosphorylation (GO:0006468)’ 

(p=3.41x10-2). 

For cellular components the most prominent trend was that of membrane protein 

downregulation, with the terms ‘membrane (GO:0016020)’ and ‘membrane part (GO:0044425)’ 

by far the most significantly downregulated (p<10-40). This analysis highlighted the localisation 

to different membranous regions within the cell, with the cell membrane being the most 

significant; ‘plasma membrane (GO:0005886)’ (p=1.15x10-20) and ‘cell surface (GO:0009986)’ 

(p=2.71x10-5). Other membranous compartments were also described with significant 

enrichment; ‘vacuole (GO:0005773)’ (p=1.59x10-7), ‘lysosome (GO:0005764)’ (p=2.32x10-7), 

‘endoplasmic reticulum (GO:0005783)’ (p=5.73x10-6), ‘golgi apparatus (GO:0005794)’ 
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(p=6.31x10-6), ‘cytoplasmic membrane-bounded vesicle (GO:0016023)’ (p=1.22x10-4) and 

‘vesicle (GO:0031982)’ (p=1.97x10-4). Terms also described the different associations of 

proteins with membranes, suggesting that protein without a covalent integration into the 

membrane (‘extrinsic component of membrane (GO:0019898)’ (p=6.34x10-4)) has less 

enrichment than those with a covalent component within the membrane; ‘integral component of 

membrane (GO:0016021)’ (p=6.23x10-32) and ‘intrinsic component of membrane 

(GO:0031224)’ (p=2.90x10-33). This trend also held true at the cell surface where the terms 

‘intrinsic component of plasma membrane (GO:0031226)’ and ‘integral component of plasma 

membrane (GO:0005887)’ were significant (p<10-5), while no extrinsic term was enriched. The 

significantly enriched terms ‘receptor complex (GO:0043235)’ (p=1.58x10-3), ‘cell projection 

(GO:0042995)’ (p=4.80x10-3), ‘cell junction (GO:0030054)’ (p=1.20x10-2) and ‘basolateral 

plasma membrane (GO:0016323)’ (p=2.77x10-4) gave a more detailed impression of the types of 

cell surface proteins downregulated. Additional cellular component terms described frequent 

downregulation of extracellular proteins; ‘extracellular region (GO:0005576)’ (p=3.07x10-11), 

‘extracellular space (GO:0005615)’ (p=2.71x10-5) and ‘extracellular matrix (GO:0031012)’ 

(p=1.77x10-2); as well as a prevalence of underexpressed cytoskeletal components; ‘actin 

cytoskeleton (GO:0015629)’ (p=1.12x10-3). 

Significantly enriched molecular functions described a trend of downregulation in 

proteins relating to responses to external signals, with the three most significant terms in CLL 

being; ‘molecular transducer activity (GO:0060089)’ (p=3.86x10-8), ‘receptor activity 

(GO:0004872)’ (p=2.13x10-6), and ‘signal transducer activity (GO:0004871)’ (p=3.86x10-8); in 

addition to the term; ‘transmembrane signaling receptor activity (GO:0004888)’ (p=4.57x10-2). 

Transportation also demonstrated significant enrichment (‘transporter activity (GO:0005215)’ 

(p=8.54x10-5)), predominantly describing terms related specifically to transmembrane transport; 

‘transmembrane transporter activity (GO:0022857)’ (p=8.58x10-4), ‘active transmembrane 

transporter activity (GO:0022804)’ (p=5.64x10-3), ‘substrate-specific transporter activity 

(GO:0022892)’ (p=3.53x10-4) and ‘substrate-specific transmembrane transporter activity 

(GO:0022891)’ (p=2.73x10-2). Another previously observed trend of downregulated cytoskeletal 

components was observed, with the significant enrichment of terms related to cytoskeletal 

binding; ‘cytoskeletal protein binding (GO:0008092)’ (p=3.05x10-6), ‘actin binding 

(GO:0003779)’ (p=1.54x10-4) and ‘actin filament binding (GO:0051015)’ (p=3.16x10-2). 10 

protein annotated with heme binding, a tetrapyrrole molecule, were also significantly 

downregulated in CLL giving enrichments for the terms ‘heme binding (GO:0020037)’ and 

‘tetrapyrrole binding (GO:0046906)’ of p=6.12x10-3 and p=1.21x10-2, respectively. 15 

downregulated proteins, predominantly Ig and MHC class II molecules, gave significant 
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enrichment to the term ‘antigen binding (GO:0003823)’ (p=5.36x10-3). The downregulation of 

14 serine proteases gave a significant enrichment to the terms ‘serine-type peptidase activity 

(GO:0008236)’ (p=2.57x10-2) and ‘serine hydrolase activity (GO:0017171)’ (p=3.18x10-2). 

‘GTPase activity (GO:0003924)’ was significantly enriched (p=1.20x10-3) due to 

downregulation in 28 proteins with this function, 11 of which were Ras-related proteins. GTPase 

activity has pleitropic roles in many of the enriched processes described amongst the 

downregulated proteins, including vesicle transport, transmembrane signal transduction and 

protein translocation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11. Gene ontology (GO) term enrichment amongst upregulated CLL proteins. 

Significantly enriched GO terms (p<0.05) for biological processes, cell components and 

molecular function determined by DAVID and represented using Revigo. Benjamini-corrected 

GO term p-values were determined using those 819 significantly upregulated (RS>0.25, p<0.05) 

proteins against a background of the 5956 fully quantitated proteins.  
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Figure 7.12. Gene ontology (GO) term enrichment amongst downregulated CLL proteins. 

As described for Figure 7.11, a representation of significant GO terms enrichment (p<0.05) for 

biological processes, cell components and molecular function determined by DAVID and 

represented using Revigo. Benjamini-corrected GO term p-values were determined using those 

746 significantly downregulated (RS< -0.25, p<0.05) proteins against a background of the 5956 

fully quantitated proteins.  

7.13 PATHWAY ENRICHMENT OF DIFFERENTIALLY EXPRESSED PROTEINS IN CLL 

GO term enrichment presented several strong trends in the up and downregulated 

proteins, outlining patterns of underlying biological process in CLL. In order to assess these in 

the context of specific proteins and groups of related proteins working towards similar functions, 

pathways were evaluated for enrichment. 

The spliceosome was the most significantly enriched pathway amongst the differentially 

regulated proteins in CLL (p=2.0x10-44). The spliceosome, a series of proteins which control the 

removal of introns from pre-mRNA, involves approximately 133 gene products. 111 of these 

were fully quantitated in CLL and amongst these 61 of the 819 significantly upregulated proteins 

(RS>0.25, p<0.05) were components. A further 41 of the significant proteins which didn’t reach 

a regulation score of 0.25 (RS>0, p<0.05) also mapped to the spliceosome. These proteins were 

annotated onto the KEGG pathway describing the spliceosome (Figure 7.13A). This trend was 

evaluated further by overlaying all identified spliceosome proteins onto the volcano plot from 

Figure 7.7 (Figure 7.13B). Of the 111 quantified spliceosome proteins, all but 1 had a positive 

regulation score (RS>0), and only 9 were not significant. The average regulation score for these 

proteins was 0.249, with an average significance of 1.16x10-4. The most significantly 

upregulated components were WW domain-binding protein 11 (WBP11), RNA-binding motif 

protein, X chromosome (RMBX), transformer-2 protein homolog beta (TRA2B) and RNA-

binding protein 8A (RBM8A) (RS>0.38, p<10-5). Another significantly enriched KEGG 

pathway amongst the upregulated proteins in CLL was ‘valine, leucine and isoleucine 

degradation’ (p=7.2x10-9) (Figure 7.14). Of the 47 proteins described in this pathway, 17 were 

matched from the 819 significantly upregulated CLL proteins. 

Pathway enrichment was also performed with IPA, analysing three sets of proteins; 

those with significant upregulation (RS>0.25, p<0.05), those with significant downregulation 

(RS<-0.25, p<0.05) and an analysis considering all the significantly differentially regulated 

proteins (RS>0.25/RS<-0.25, p<0.05), summarised in Appendix A11. In each case, a stringent 

search was performed allowing for only direct relationships and experimentally observed 
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findings in human samples. The regulation score was used for the analyses to give a robust 

measurement representative of the overall trend in expression in all samples. 

Analysis of the upregulated proteins identified the most significantly enriched canonical 

pathway as ‘cleavage and polyadenylation of pre-mRNA’ (p=1.02x10-12). This highlighted 10 of 

the 819 upregulated proteins which mapped to the 12 proteins of this pathway, which were 

overlaid with the regulation score to summarise the expression across all CLL samples (Figure 

7.15). To detail the expression in each of the CLL samples, bar charts were used for each protein 

which described the expression in the same order used in Figure 7.8 and 7.9, with the final bar 

describing the regulation score. For symbols describing multiple protein isoforms the quantitated 

members were displayed to one side of the pathway, denoted by a broken grey arrow and ‘MB’ 

referring to ‘members’. This pathway demonstrated a consistent pattern of upregulated proteins 

both driving and facilitating the 3’ adenylation of mRNAs. 

Mechanisms involved in transcriptional regulation were also upregulated; observed in 

the significantly enriched pathway ‘DNA methylation and transcriptional repression’ 

(p=1.2x10-3) (Figure 7.16). This pathway highlighted epigenetic regulation via DNA 

methylation and subsequent histone acetylation. DNMT1 involved in the transfer of existing 

methylation patterns to copied DNA, was consistently upregulated (RS= 0.29, p=1.3x10-4), while 

DNMT3A and DNMT3B were not quantified. The most significantly upregulated protein was 

methyl-CpG-binding protein 2 (MECP2) (RS=0.413, p=6.1x10-4), a protein capable of binding 

methylated DNA without sequence-specificity and recruiting an HDAC complex. The majority 

of the components of the HDAC complexes, capable of transcriptionally repressing DNA by the 

acetylation of histones, were also consistently upregulated. 

Another significantly enriched pathway in CLL was ‘nucleotide excision repair’ 

(8.2x10-5), to which 8 significantly upregulated proteins aligned (Figure 7.17). Mapping 

regulation scores and isoforms to this pathway revealed several other more marginally 

upregulated proteins involved in this process. The pathway, describing a DNA damage response, 

identified the replication proteins (RP) RPA1 and RPA3 as the most significantly upregulated 

components (RS>0.55, p<10-5). RNA polymerase II components were also identified with 

marginal, but consistent upregulation as part of this pathway. Related to this observation, was 

the significant enrichment of the assembly of the RNA polymerase II complex amongst the 

upregulated CLL proteins (p=5.75x10-6). Alongside the RNA polymerase components, several 

associated factors were also observed with generally consistent upregulation, such as 13 TBP-

associated factor (TAF) isoforms and 5 general transcription factors (GTF) (Figure 7.18). The 

core component, TATA-box binding protein (TBP) was, however, consistently downregulated 

(RS= -0.623, p=7.0x10-6).  
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A pathway significantly enriched due to a predominance of downregulated CLL proteins 

was that of integrin signalling (p= 3.80x10-8) (Figure 7.19). This highlighted the downregulation 

of 26 proteins in this pathway, including the 7 integrins described in Figure 7.8 as well as the 

additional, marginal downregulation of ITGB7. In addition to these downregulations, the key 

integrin-related signalling molecule, focal adhesion kinase (FAK) was also downregulated in 

CLL (RS= -0.52, p=1.2x10-3). While the upstream regulators were downregulated, several 

downstream proteins exhibited some upregulation in these pathways, including; 1-

phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (PLCG1), mitogen-activated 

protein kinase 8 (JNK1/MAPK8) and Ras-related protein R-Ras2 (RRAS2). 

Closely related to integrin signalling and similarly enriched amongst the proteins 

downregulated in CLL, was leukocyte extravasation signalling (1.35x10-7), the process by which 

leukocytes adhere to and migrate through the epithelial layer (Figure 7.20). 25 proteins were 

enriched in this pathway including proteins involved in the signalling in both the migrating 

leukocytes and the epithelial cells. In addition to 6 integrins downregulated, other cell adhesion 

molecules were also underexpressed, including most significantly junctional adhesion molecule 

C (JAM3) (RS= -1.25, p=1.2x10-6) and claudin-5 (CLDN5) (RS= -1.39, p=3.1x10-7). Two 

components of the docking structure, however, were upregulated including the T-cell protein 

leukosialin (CD43/SPN) (RS=0.19, p=1.4x10-2) and intercellular adhesion molecule 3 

(ICAM3/CD50) (RS=0.25, p=1.9x10-3).  
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Figure 7.13. Significantly upregulated spliceosome pathway proteins in CLL. A. Significant 

enrichment of the KEGG pathway (p=2.0x10-44) describing the components of the spliceosome 

overlaid with the 61/819 significantly upregulated proteins (RS>0.25, p<0.05) (red) and 41 of 

those with significance and a positive regulation score (RS>0, p<0.05) (orange) in CLL, relative 

to healthy donor B cells. B. The volcano plot detailed in Figure 7.7, overlaid with 111 of the 133 

spliceosome proteins identified amongst the 5956 proteins. 

 

Figure 7.14. Significantly upregulated CLL proteins mapping to the valine, leucine and 

isoleucine degradation pathways. The overlaying of significantly upregulated (RS>0.25, 

p<0.05) CLL proteins onto the KEGG pathway describing valine, leucine and isoleucine 

degradation. A total of 17 of the 819 upregulated proteins mapped to the 47 proteins of the 

pathway, with a significant enrichment of p=7.2x10-9. 
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Figure 7.15. RNA polyadenylation pathway in CLL. Proteins mapping to the IPA canonical 

pathway ‘cleavage and polyadenylation of pre-mRNA’ to which 10 significantly upregulated 

proteins map to the 12 proteins of the pathway with an enrichment p-value of 1.02x10-12. 

Proteins are coloured on the basis of up or downregulation according to the regulation score. The 

bar charts adjacent to proteins indicate the expression across all 14 samples. Protein isoforms are 

indicated by broken light grey lines labelled as members (MB). 
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Figure 7.16. Transcriptional repression in CLL. Proteins mapping to the IPA canonical 

pathway ‘DNA methylation and transcriptional repression’ with an enrichment p-value of 

1.2x10-3. Proteins are coloured on the basis of up or downregulation according to the regulation 

score. The bar charts adjacent to proteins indicate the expression across all 14 samples. Protein 

isoforms are indicated by broken light grey lines labelled as members (MB). 
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Figure 7.17. DNA damage repair in CLL. Proteins mapping to the IPA canonical pathway 

‘nucleotide excision repair’ with an enrichment p-value of 8.2x10-5. Proteins are coloured on the 

basis of up or downregulation according to the regulation score. The bar charts adjacent to 

proteins indicate the expression across all 14 samples. Protein isoforms are indicated by broken 

light grey lines labelled as members (MB). 
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Figure 7.18. RNA polymerase II assembly in CLL. Proteins mapping to the IPA canonical 

pathway ‘assembly of RNA polymerase II complex’ with an enrichment p-value of 5.75x10-6. 

Proteins are coloured on the basis of up or downregulation according to the regulation score. The 

bar charts adjacent to proteins indicate the expression across all 14 samples. Protein isoforms are 

indicated by broken light grey lines labelled as members (MB). 
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Figure 7.19. Integrin signalling in CLL. Proteins mapping to the IPA canonical pathway 

‘integrin signalling’ with an enrichment p-value of 3.80x10-8. Proteins are coloured on the basis 

of up or downregulation according to the regulation score. The bar charts adjacent to proteins 

indicate the expression across all 14 samples. Protein isoforms are indicated by broken light grey 

lines labelled as members (MB). 
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Figure 7.20. Leukocyte extravasation signalling in CLL. Proteins mapping to the IPA 

canonical pathway ‘leukocyte extravasation signalling’ with an enrichment p-value of 1.35x10-7. 

Proteins are coloured on the basis of up or downregulation according to the regulation score. The 

bar charts adjacent to proteins indicate the expression across all 14 samples. Protein isoforms are 

indicated by broken light grey lines labelled as members (MB). 

7.14 DIFFERENTIAL EXPRESSION OF PROTEINS OF THE B-CELL RECEPTOR PATHWAY IN 

CLL 

The up or downregulation of a protein in a pathway does not definitively indicate 

activation or inactivation of its function. As a general rule, especially in cancer, underexpression 

of a proteins can be used to infer a likelihood that the function is less critical to proliferation or 

survival. Overexpression can imply that the upregulation of a certain protein has provided the 

cancer with, for instance, a survival advantage. One of the most well studied pathways in CLL is 

the B-cell receptor (BCR) signalling pathway, and the simultaneous, non-biased quantitation of 

the components of this pathway had potential to reveal novel insight into the function of BCR 

signalling in CLL. 

The BCR signalling pathway was the most significantly enriched pathway amongst the 

downregulated proteins in CLL (p=1.1x10-10) with 28 significantly underexpressed proteins 

(RS< -0.25, p<0.05). In addition to these proteins, 10 significantly upregulated proteins 

(RS>0.25, p<0.05) also mapped to the pathway. To demonstrate the localisation of these protein 

regulation within the pathway and within the cell, expression values for all 14 CLL samples 

were overlaid onto the canonical BCR signalling pathway (Figure 7.21). Core components of 

the B-cell receptor were significantly downregulated; B-cell antigen receptor complex-

associated protein alpha chain (CD79A) (RS= -0.34, p=3.6x10-3) and the beta chain (CD79B) 

(RS= -0.73, p=2.7x10-5); as well as all 9 quantitated Ig chains. CD22 was also very 

downregulated (RS= -0.76, p=4.3x10-5). Other cell surface accessory molecules, such as CD19, 

CD45, low affinity Ig gamma Fc region receptor II-b (FCGR2B) were generally unregulated. 

Amongst the downstream BCR signalling molecules some, inconsistent marginal 

regulation was observed for the majority of proteins, such as a 1.5-fold upregulation in four of 

the CLL samples for tyrosine-protein kinase SYK. However, proteins downstream of SYK were 

consistently significantly downregulated, such as Bruton tyrosine kinase (BTK) (RS= -0.34, 

p=3.7x10-5), a protein indispensable for BCR signalling,  

 GRB2-associated-binding protein 2 (GAB2), a protein capable of initiating 

phosphatidylinositol kinase activity downstream of several transmembrane receptors, was the 

only significantly upregulated molecule immediately downstream of the BCR (RS=0.28, 
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p=5.3x10-4).  Phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2), the most 

overexpressed PIK subunit, was marginally, but significantly upregulated (RS=0.19, p=1.4x10-

3). A phosphatidylinositol phosphatase, SAC2/INPP5F, capable of reversing the effects of PIK 

was, however, confidently identified with 23 unique peptides and 123 PSMs, as the most 

significantly upregulated protein in the BCR pathway (RS=0.89, p=1.2x10-5). Proteins 

downstream of phosphatidylinositol trisphosphate (PIP3) signalling were, again, generally 

downregulated, such as dual adapter for phosphotyrosine and 3-phosphotyrosine and 3-

phosphoinositide (DAPP1) (RS= -0.41, p=5.5x10-6) and RAC-alpha serine/threonine-protein 

kinase (AKT1) (RS= -0.13, p=9.7x10-3). BTK was also annotated to be downstream of PIP3 

signalling. 

Four members of the mitogen-activated protein kinase (MAPK)/extracellular signal-

regulated kinase (ERK) kinase kinase (MEKK) cascade were marginally upregulated; mitogen-

activated protein kinase 8 (MAPK8) (RS=0.34, p=3.0x10-4), MAPK kinase kinase 1 (MAP3K1) 

(RS=0.19, p=6.7x10-4), dual specificity MAPK kinase 6 (MAP2K6) (RS=0.21, p=2.8x10-3) and 

mitogen-activated protein kinase 13 (MAPK13) (RS=0.24, p=1.6x10-2). RRAS2 was the only 

observed significantly upregulated upstream signalling molecule of the MEKK pathways 

(RS=0.33, p=9.7x10-4). All three quantitated transcription factors downstream of the MEKK 

pathway were significantly upregulated histone acetyltransferases (HATs); CREB-binding 

protein (CREBBP) (RS=0.29, p=4.0x10-5), histone acetyltransferase p300 (EP300) (RS=0.31, 

p=1.2x10-5) and cyclic AMP-dependent transcription factor 2 (ATF2) (RS=0.38, p=1.4x10-5). 

Proteins of the NF-κB pathway were generally unregulated and the upstream regulators, 

mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) (RS= -0.32, 

p=7.9x10-5) and B-cell lymphoma/leukaemia 10 (BCL10) (RS= -0.23, p=8.1x10-4) were 

downregulated. Bcl-2-like protein 1 (BCL-XL/BCL2L1), downstream of NF-κB was 

significantly downregulated, consistently in all cases of CLL (RS= -1.19, p=1.4x10-8). 

Other significantly overexpressed downstream transcription factors included two nuclear 

factor of activated T cells (NFAT) proteins; cytoplasmic isoform 1 (NFATC1) (RS=0.48, 

p=1.3x10-6) and isoform 5 (NFAT5) (RS=0.24, p=8.2x10-3); forkhead box protein O1 (FOXO1) 

(RS=0.25, p=5.4x10-4) and transcription factor E2-alpha (TCF3) (RS=0.40, p=1.2x10-4). The 

protein most specifically involved in the induction of B-cell commitment, alongside FOXO1 and 

TCF3, early B-cell factor 1 (EBF1), was significantly downregulated (RS= -0.92, p=4.6x10-6). 

Other functions of the BCR signalling pathway, such as signalling proteins involved in 

cytoskeletal rearrangement were generally downregulated, such as focal adhesion kinases 1 and 
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2 (FAK (RS= -0.52, p=1.2x10-3) and FAK2/PTK2B (RS= -0.36, p=1.5x10-4)) and Ras-related 

proteins RAP1B (RS= -0.56, p=1.5x10-4) and RAP2A (RS= -0.28, p=7.7x10-4). 
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Figure 7.21. Annotation of the BCR signalling pathway with CLL protein expression. The 

significantly enriched IPA canonical pathway ‘B-cell receptor signalling pathway’ (p=1.1x10-10) 

overlaid with proteomics-determined protein expression relative to healthy donor B cells. 

Proteins are coloured on the basis of up or downregulation according to the regulation score. The 

bar charts adjacent to proteins indicate the expression across all 14 samples. Protein isoforms are 

indicated by broken light grey lines labelled as members (MB). 

7.15 SUBTYPE-SPECIFIC DIFFERENTIAL EXPRESSION IN CLL 

Across the 14 quantitated CLL samples, while protein expression generally followed the 

same direction of up or downregulation (Figure 7.4) relative to healthy donor B cells, the extent 

of this regulation varied greatly across the samples. On the whole, the regulation score gave an 

impression of the overall regulation in CLL, however overlooked that certain CLL subtype 

samples may be exhibiting a vastly different pattern of expression. Additionally, given that no 

definitive clustering was identified amongst these samples it was of interest to better understand 

the specific proteins with the greatest extent of heterogeneity. 

To achieve a subtype analysis, the individual log2 (ratios) of each CLL sample to each of 

the three HD controls were first averaged, rather than the minimum taken, as described in 

Figure 7.2. Such values could be compared to one another, rather than specifically to the HD 

controls (Figure 7.22). Proteins were again filtered to remove platelet proteins. Additionally, 

consideration was given to the bias that may have been introduced due to a greater extent of ratio 

compression for a protein’s quantitation derived from either 10-plex. A T-test was therefore used 

to filter out 237 proteins for which expression differed significantly between 10-plex A and 10-

plex B; leaving 5719 proteins. Again, sample 4621 was excluded from all analyses. 

The number of samples had insufficient statistical power to confidently conclude 

discrete biomarkers or characteristics of each subtype. However, it was still possible to generate 

lists of proteins with trends indicative of subtype-specific protein expression, using the T-test 

without multiple correction to give an approximate, rather than a precise measure of confidence. 

Such an analysis was used by [352]. 

To evaluate the magnitude of subtype-specific expression patterns in CLL, differential 

regulation scores (ΔRS) were used, defined as the difference between the two RS calculated for 

those CLL samples fitting into each subtype. The RS of the named subtype had the RS of those 

samples which were not of that subtype, subtracted; e.g. for a protein overexpressed in the 

trisomy 12 cases compared to the non-trisomy 12 cases, the ΔRS would be positive. 
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This analysis was performed to identify subtype-specific expression for trisomy 12, 

CD38+ cases, NOTCH1-mutated cases, SF3B1-mutated cases and unmutated CLL (U-CLL) 

cases (Figure 7.22B). In each case, the number of proteins with significant, subtype-specific 

upregulation (ΔRS>0.25, p<0.05) and downregulation (ΔRS< -0.25, p<0.05) was determined. 

For the 7 U-CLL cases, 122 proteins were significantly overexpressed relative to M-CLL, while 

103 had significantly lower expression. The 5 NOTCH1-mutated cases had 67 over and 94 

underexpressed proteins and the 5 SF3B1-mutated CLL had 33 over and 56 underexpressed 

proteins. The strongest signatures were observed for trisomy 12 cases and CD38+ cases, with 458 

and 478 proteins differentially regulated, respectively. However, it should be noted that all three 

CD38+ cases also had trisomy 12.  

When considering subtype-specific expression, it was also of interest to note how each 

protein was differentially regulated compared with the HD B-cell controls. Proteins were 

therefore annotated to highlight whether the regulation score was greater than or less than 0.25, 

relative to the HD samples, specifically for those samples with the named subtype. 

 

 

 

 

 

 

 

Figure 7.22. Determination of differential expression between CLL subtypes. A. The 

workflow describing the determination of significant differential expression between CLL 

subtypes. Using the SPIQuE-determined log2 (ratios) relative to the three HD controls, mean log2 

(ratios) for each CLL sample were calculated. Proteins were filtered for those proteins described 

in Figure 7.2 which represented platelet contamination in the HD samples. Proteins were also 

filtered to remove instances where the observed differential expression between 10-plex A and 

10-plex B was statistically significant. Differential expression was then determined between 

CLL subtypes using a differential regulation score and an uncorrected T-test. B. The number of 

proteins reaching significant subtype-specific expression (ΔRS>0.25, p<0.05 or ΔRS< -0.25, 

p<0.05) for each subtype comparison. 
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7.16 U-CLL-SPECIFIC PROTEIN EXPRESSION 

Ribonuclease P protein subunit p25 (RPP25), an RNAse with a role in tRNA maturation, 

was the most upregulated protein in U-CLL, relative to M-CLL and to HD controls (Figure 

7.23). Another protein, serine/threonine-protein kinase DCLK2, was upregulated, compared with 

HD samples, in all but two M-CLL samples, and demonstrated substantially more upregulation 

in U-CLL than M-CLL. The most non-overlapping signature of U-CLL was the mitochondrial 

carnitine/acylcarnitine carrier (SLC25A20) with an expression, relative to HD samples, of 

between 45% and 65% in M-CLL and 70% and 100% in U-CLL. In addition to SLC25A20, 7 

other ion channels had greater expression in U-CLL than M-CLL, with solute carrier family 12 

member 2 (SLC12A2), calcium-binding mitochondrial carrier protein Aralar2 (SLC25A13), 

adenosine 3'-phospho 5'-phosphosulfate transporter 1 (SLC35B2), zinc transporter ZIP11 

(SLC39A11) and voltage-dependent anion-selective channel proteins (VDACs); VDAC1, 

VDAC2 and VDAC3. Of these; all three VDACs, SLC25A13 and SLC25A20 are mitochondrial 

transporters. Both IgM and IgE were detected with higher expression in U-CLL samples 

compared to M-CLL samples. 

Altered glycosylation was represented by 6 U-CLL-dominant proteins including; 

oligosaccharyl transferase subunit STT3B, probable C-mannosyltransferase DPY19L1, beta-1,3-

galactosyltransferase 6 (B3GALT6), polypeptide N-acetylgalactosaminyltransferase 2 

(GALNT2), dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit 

(DDOST), magnesium transporter protein 1 (MAGT1). Two carbohydrate kinases, potentially 

extending these post-translational modification were upregulated in U-CLL; 6-

phosphofructokinase type C (PFKP) and sphingosine kinase 2 (SPHK2). Acylation also showed 

a strong trend amongst these proteins, with carnitine O-palmitoyltransferases 1, liver isoform 

(CPT1A) and 2, mitochondrial (CPT2) both overexpressed in U-CLL, alongside apolipoprotein 

E (APOE), sialic acid synthase (NANS) and elongation of very long chain fatty acids protein 1 

(ELOVL1). MICOS (mitochondrial contact site and cristae organizing system complex) subunits 

MIC19, MIC25 and MIC60 also demonstrated a trend of similar proteins with increased.  

GO term enrichment revealed that 34 out of 122 proteins (28%) significantly 

overexpressed in U-CLL were annotated as mitochondrial, with an enrichment p-value of 

4.5x10-8. 

Amongst the proteins with significantly less expression in U-CLL, were, most notably; 

the previously described upregulated cell surface (Figure 7.8) Na+/K+ transporting ATPase 

subunit beta-1 (ATP1B1), selenoprotein M (SELM) - a putative thiol-disulfide oxidoreductase, 

the transcription factor Krueppel-like factor 2 (KLF2) and an adaptor of actin to the cell 
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membrane radixin (RDX). Other CLL-upregulated surface proteins with lower expression on U-

CLL were ICAM3 and CD6. Additionally ICAM2, CD40, CD74 and CD82, downregulated 

across CLL relative to HD controls, were more downregulated in U-CLL cases.  A trend was 

observed relating to the downregulation of Ras protein signalling in U-CLL, with Ras-related 

protein (RRAS) more downregulated and RRAS2 less upregulated in U-CLL samples. Guanine 

nucleotide-binding protein subunit alpha-13 (GNA13), son of sevenless homolog 1 (SOS1) and 

14-3-3 protein beta/alpha (YWHAB) were also related to Ras signalling, while underexpressed 

in U-CLL, relative to M-CLL. Three proteins annotated with a role in B-cell activation were 

amongst the U-CLL-underexpressed proteins; CD40, B-cell scaffold protein with ankyrin 

repeats 1 (BANK1) and tumour protein D52. The theta, and more substantially gamma, subunits 

of the diacylglycerol kinase enzyme were marginally upregulated in M-CLL, while unregulated 

or downregulated in U-CLL. Other U-CLL-downregulated kinases included protein kinase C 

epsilon (PRKCE), bifunctional polynucleotide phosphatase/kinase (PNKP), casein kinase I 

isoform gamma-1 (CSNK1G1) beta-adrenergic receptor kinase 2 (ADRBK2) and G protein-

coupled receptor kinase 5 (GRK5). Hyaluronan binding was also more prevalent in M-CLL, 

with hyaluronan-binding protein 2 (HABP2) and intracellular hyaluronan-binding protein 4 

(HABP4) both less upregulated in U-CLL. Three proteins related to antigen presentation; HLA 

class II histocompatibility antigen gamma chain (CD74), endoplasmic reticulum aminopeptidase 

2 (ERAP2) and TAP-binding protein tapasin (TAPBP) tended to have a higher expression in M-

CLL. Cell projection appeared downregulated in U-CLL with 8 proteins annotated with such a 

role; ena/VASP-like protein (EVL), catenin delta 1 (CTNND1), centrosomal protein 290kDa 

(CEP290), girdin (GRDN), ICAM2, GNA13, metastasis suppressor protein 1 (MTSS1) and 

RDX. 
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Figure 7.23. Subtype specific protein expression comparing U-CLL with M-CLL samples. 

A. Volcano plot describing the differential regulation score (ΔRS) plotted against the -log10 (p-

value) of differential regulation between U-CLL and M-CLL samples. The plot highlights those 

proteins for which the regulation score calculated for the 7 U-CLL samples was >0.25 (red) and 

< -0.25 (green). B. The log2 (ratios) for the top 15 significantly overexpressed and top 15 

underexpressed proteins in U-CLL, detailing the sample expression, the ΔRS and the 

uncorrected p-value estimating the probability of subtype specific expression between the 7 U-

CLL samples and 6 M-CLL samples (4621 was excluded from the analysis as an outlier). 

7.17 NOTCH1-MUTANT CLL-SPECIFIC PROTEIN EXPRESSION 

NOTCH1-mutated cases demonstrated a strong trend of increasing the expression of 

proteins otherwise significantly downregulated in CLL with 28 of the 67 proteins having a 

regulation of less than -0.25 across all CLL samples (Figure 7.24). This was emphasised by the 

protein with the greatest degree of specificity to NOTCH1-mutated cases; the actin-binding 

stabiliser tropomyosin beta chain (TPM2). In cases without NOTCH1 mutation, TPM2 

expression varied from 1.5% to 5.8%, while NOTCH1-mutated cases expressed between 6.5% 

and 27.2% that of HD controls. Another cytoskeletal protein, microtubule-associating protein 

MAP1A was also less downregulated in cases with mutant NOTCH1 (22.8-30.3%) compared to 

other cases (16.7-20.4%). Similarly regulated was the cytoskeletal reorganisation/migration 

regulator – serine/threonine-protein kinase MRCK beta (CDC42BPB).The T-cell signalling 

protein C-Maf-inducing protein (CMIP), and SARG/C1orf116 also followed this trend of 

reduced downregulation in samples with mutations of NOTCH1.  

The most specifically upregulated proteins in NOTCH1-mutant cases was the DNA 

damage response regulator and histone H4 modifier - E3 ubiquitin-protein ligase DTX3L. Poly 

[ADP-ribose] polymerase 9 (PARP9) also demonstrated NOTCH1I-specific upregulation – a 

functional binding partner of DTX3L required for ubiquitination activity, for which the 

expression between the two proteins correlated with an R2 value of 0.74. While the third partner 

in this complex, PARP1, was unregulated across all cases, expression of an alternative PARP, 

PARP14, correlated to DTX3L with an R2 value of 0.78. PARP14, which independently is an 

IL4-responsive survival factor in B cells 19147789, has been shown to form a complex with 

PARP9 and DTX3L inducing several oncogenic phenotypes in prostate cancer [492]. Another 

noteworthy upregulation with a higher prevalence in NOTCH1-mutated samples was that of 

CKAP4, the protein exhibiting the greatest upregulation in CLL, relative to HD samples. In 

cases with NOTCH1 mutations, CKAP4 expression varied from 390% to 624%, while in other 

samples it was between 260 and 420%. 
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Two Ig; Ig alpha-1 chain C region (IGHA1) and Ig delta chain C region (IGHD); and the 

BCR component CD79A had higher expression in NOTCH1-mutant CLL cases. Other immune 

regulators which followed this trend included; complement component 1, q subcomponent 

binding protein (C1QBP), granzyme A (GZMA), guanylate binding protein 1, interferon-

inducible, 67kDa (GBP1), interferon, gamma-inducible protein 30 (IFI30), tafazzin (TAZ) and 

toll-like receptor 7 (TLR7). 

Carboxylic acid metabolism appeared upregulated in CLL cases with a mutation in 

NOTCH1 with 6 proteins with greater expression; 2-oxoglutarate dehydrogenase complex 

component E2 (DLST), acyl-coenzyme A thioesterase 8 (ACOT8), long-chain-fatty-acid--CoA 

ligase 5 (ACSL5), fructose-1,6-bisphosphatase 1 (FBP1), bifunctional methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase, mitochondrial (MTHFD2), serine hydroxymethyltransferase, 

mitochondrial (SHMT2). 

Amongst the 94 proteins relatively downregulated in the presence of NOTCH1 mutation, 

54 were proteins which would have otherwise been upregulated (CLL RS of >0.25), relative to 

HD controls. The majority of these therefore appeared unregulated, relative to HD samples, in 

the NOTCH1-mutant samples. RNA 3'-terminal phosphate cyclase (RTCA) was an example of 

this trend, with between 109 and 120% expression in NOTCH1-mutant cases, compared with 

125 to 175% in cases with wildtype NOTCH1. Other proteins following this trend included, 

most notably; spermine synthase (SMS), SUMO-activating enzyme subunit 1 (SAE1), regulator 

of G-protein signalling 10 (RGS10), DNA-directed RNA polymerase III subunit RPC9 (CRCP) 

and zinc finger C2HC domain-containing protein 1A (ZC2HC1A). Proteins were also present 

that maintained their upregulation (NOTCH1-mutant sample RS of >0.25); glucosamine-6-

phosphate isomerase 1 (GNPDA1), profilin-2 (PFN2), heterogeneous nuclear ribonucleoprotein 

L-like (HNRNPLL) and transcription factor JUND. Two calcium/calmodulin-dependent protein 

kinase type II subunits (CAMK2), CAMK2B and CAMK2D, exhibited downregulation in 

NOTCH1-mutant relative to both HD samples and wildtype NOTCH1 samples.  

Shootin-1 (KIAA1598) demonstrated downregulation in NOTCH1-mutant samples, 

relative to samples with WT NOTCH1. This was also the only NOTCH1-mutant sample-

downregulated protein to demonstrate significant downregulation when considering all CLL 

samples (CLL RS of < -0.25, p<0.05). Other noteworthy proteins appearing in this list were 

BCL2, two alcohol dehydrogenase enzymes (ADH5 and AKR1A1) and an aldose reductase 

(AKR1B1), two annexins ANX7 and ANX11,  

The predominant trend amongst the proteins underexpressed in NOTCH1-mutant CLL 

samples was that of gene expression and nucleotide metabolism. In addition to RTCA, CRCP, 
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ZC2HC1A, HNRNPLL and JUND, 18 of the 94 proteins were annotated with a role in 

transcriptional regulation. Proteins canonically localised to the nucleus were also significantly 

overrepresented (p=1.9x10-7). 
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Figure 7.24. Subtype specific protein expression in NOTCH1-mutant CLL. A. Volcano plot 

describing the differential regulation score (ΔRS) plotted against the -log10 (p-value) of 

differential regulation between samples bearing mutations of the NOTCH1 gene and samples 

with wildtype NOTCH1. The plot highlights those proteins for which the regulation score 

calculated for the 5 NOTCH1-mutant samples was >0.25 (red) and < -0.25 (green). B. The log2 

(ratios) for the top 15 significantly overexpressed and top 15 underexpressed proteins in 

NOTCH1-mutant CLL, detailing the sample expression, the ΔRS and the uncorrected p-value 

estimating the probability of subtype-specific expression between the 5 NOTCH1-mutant 

samples and 8 wildtype NOTCH1-mutant samples (4621 was excluded from the analysis as an 

outlier). 

7.18 SF3B1-MUTANT CLL-SPECIFIC PROTEIN EXPRESSION 

SF3B1-mutant CLL samples had the smallest degree of subtype specific regulation 

amongst the subtypes analysed. However, the observed trend was one of amplification, with the 

proteins specifically upregulated in SF3B1-mutants (33) exhibiting upregulation relative to HD 

samples, and the downregulated proteins (56) being downregulated relative to the HD samples. 

Pleckstrin homology domain-containing family A member 1 (PLEKHA1) was specifically 

overexpressed relative to wildtype SF3B1 samples in which expression ranged from 33% to 57% 

of that of HD samples, whereas in SF3B1-mutant samples expression was between 72% and 

108%. Also observed in this list was pleckstrin homology domain-containing family G member 

1 (PLEKHG1) with a generally greater expression in samples bearing an SF3B1 mutation 

(ΔRS=0.41). Gamma-glutamylaminecyclotransferase (GGACT) had the most specific 

upregulated expression in SF3B1-mutants with 140 to 170% of HD control expression compared 

to 110 to 143% expression in samples wildtype for SF3B1. Another observation amongst the 

upregulated SF3B1-mutant samples included a generally higher expression of CD5 (250-540%) 

than in the other samples (135-300%). 

Proteins downregulated in samples with an SF3B1 mutation relative to both HD samples 

and SF3B1-wildtype samples included; zinc transporter 9 (SLC30A9), SARG/C1orf116, 

lysosomal protective protein (CTSA) and transmembrane protein 87B (TMEM87B). Just two 

proteins exhibited upregulation relative to HD samples (SF3B1-mutated sample RS>0.25) that 

was less than that of the other samples (ΔRS< -0.25); Ribonuclease UK114 (HRSP12) and 

isovaleryl-CoA dehydrogenase, mitochondrial (IVD). Membranous proteins were well-

represented in this list with 33 out of 56 with this annotation, which included localisation to 

lysosomes (6) and the ER (12) and 7 proteins functionally related to vesicle mediated transport. 
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Figure 7.25. Subtype specific protein expression in SF3B1-mutant CLL. A. Volcano plot 

describing the differential regulation score (ΔRS) plotted against the -log10 (p-value) of 

differential regulation between samples bearing mutations of the SF3B1 gene and samples with 

wildtype SF3B1. The plot highlights those proteins for which the regulation score calculated for 

the 5 SF3B1-mutant samples was >0.25 (red) and < -0.25 (green). B. The log2 (ratios) for the top 

15 significantly overexpressed and top 15 underexpressed proteins in SF3B1-mutant CLL, 

detailing the sample expression, the ΔRS and the uncorrected p-value estimating the probability 

of subtype-specific expression between the 5 SF3B1-mutant samples and 8 wildtype SF3B1-

mutated samples (4621 was excluded from the analysis as an outlier). 

7.19 CD38+ CLL-SPECIFIC PROTEIN EXPRESSION 

CD38, ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1, is a transmembrane marker 

which correlates with immune cell activation. When expressed on CLL, CD38 is associated with 

a more aggressive phenotype. For the three samples, 2483, 3405 and 1194 immunophenotyped 

as 99% CD38+, CD38 expression was determined by proteomics to be the most significantly 

upregulated (p=2.4x10-6) in these cases with 96%, 76% and 91% expression, respectively, on 

average, relative to the healthy donor B-cell samples (Figure 7.26). The remaining samples, 

immunophenotyped with less than 50% CD38+ expression, were detected with significant 

downregulation to between 13% and 35% expression compared with the HD controls.  

A marker of cell proliferation, KI67/MKI67, was observed with an even more 

significant specific (than CD38) expression in the CD38+ samples (p=1.0x10-6) (103-110% of 

HD expression) while downregulated in the remaining samples (35-70% of HD expression). The 

correlation between KI67 and CD38 expression had an R2 value of 0.79. A third protein which 

fit this pattern of expression was the key cell cycle control protein cyclin-dependent kinase 1 

(CDK1), also correlating with CD38 expression (R2=0.75). Condensin complex subunit 3 

(NCAPG), alongside subunit 1 (NCAPD2), a complex which condenses chromosomes for 

mitosis, and the uncharacterised coiled-coil domain-containing protein 102A (CCDC102A) 

exhibited downregulation in all but the CD38+ samples. 

Several groups of proteins had higher protein expression specifically in CD38+ samples, 

including; 21 ribosomal proteins, 7 clathrin-associated adaptor protein complex subunits 

(AP1G2, AP1S2, AP3B1, AP3D1, AP3S1, AP5S1 and AP5Z1), 6 E3 ubiquitin ligases 

(RNF123, RNF), 6 integrator complex subunits (INTS1, INTS2, INTS4, INTS5, INTS6 and 

INTS8), 6 proteosome components (PSMB6, PSMB7, PSMD11, PSMD14, PSMD9, PSME4), 5 

exportin subunits (XPO1, XPO2, XPO4, XPO5 and XPOT), 5 importin subunits (IPO4, IPO5, 

IPO7, IPO9 and IPO13), 3 dedicator of cytokinesis proteins (DOCK2, DOCK7 and DOCK11), 3 
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inositol 1,4,5-trisphosphate receptors (ITPR1, ITPR2 and ITPR3), 3 N-alpha-acetyltransferases 

(NAA10, NAA16 and NAA25), 3 ubiquitin carboxyl-terminal hydrolases (USP5, USP15 and 

USP34) and 3 unconventional myosins (MYO1D, MYO1F and MYO9B). Other noteworthy 

proteins included DNA replication licensing factors MCM4 and MCM7, retinoblastoma-

associated protein (RB1), serine-protein kinase ATM, structural maintenance of chromosomes 

proteins SMC2 and SMC4, and the RAF proto-oncogene. 

GO term enrichment of the 278 CD38+ CLL-specific proteins identified strong trends 

relating to extracellular matrix focal adhesion (p=1.38x10-5), vesicles (p=2.83x10-5), nucleolus 

(p=4.42x10-4) and nuclear pores (p=4.17x10-4). 

The most CD38+-specifically underexpressed protein was adenlyate kinase 1 (AK1) an 

enzyme capable of transferring phosphate groups from ATP to AMP, which exhibited, relative 

to HD control expression, 44-62% expression in CD38+ cases compared with 80-410% in other 

CLL samples. Another protein with sizable downregulation in CD38+ cases was F-box only 

protein 2 (FBXO2), a protein with a role in the ER degradation pathway ubiquitinating unfolded 

proteins targeting them for degradation. A potential chaperone with unfolded protein binding, 

DnaJ homolog subfamily B member 4 (DNAJB4), was observed alongside FBXO2.  

Cell surface proteins specifically underexpressed in CD38+ cases, included CD40, 

CD44, CD46, IL4RA, FAIM3, ICAM2 and TGF-beta receptor type-2 (TGFBR2). Other 

underexpressed protein included; 6 MHC class II molecules, 4 histones (H1.2, H1.4, H4 and 

H2A) and 2 high mobility group nucleosome-binding domain-containing proteins (HMGN3 and 

HMGN4), 4 histone modifying enzymes; histone deacetylase complex subunits SAP18 and 

SAP30 and histone-lysine N-methyltransferases NSD3 and SETD2, 3 subunits of 17-beta-

hydroxysteroid dehydrogenase (HSD17B4, HSD17B8 and HSD17B11), 3 pre-mRNA splicing 

factors (CWC25, ISY1 and WTAP) and 3 of the 4 components of the MIS12/MIND kinetochore 

subcomplex (DSN1, NSL1 and MIS12). 

RNA binding, specifically poly(A) RNA binding was significantly overrepresented 

amongst the CD38+-specific, underexpressed proteins (p=1.65x10-5). Additionally, proteins 

relating to chromatin organisation, regulation of lymphocyte activation, regulation of mRNA 

splicing, via spliceosome were overrepresented. 

Figure 7.26. Subtype-specific protein expression in CD38+ CLL samples. A. Volcano plot 

describing the differential regulation score (ΔRS) plotted against the -log10 (p-value) of 

differential regulation between CD38+ CLL samples (>99%) and CD38- CLL samples (<50% 

CD38+). The plot highlights those proteins for which the regulation score calculated for the 3 

CD38+ samples was >0.25 (red) and < -0.25 (green). B. The log2 (ratios) for the top 15 
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significantly overexpressed and top 15 underexpressed proteins in CD38+ CLL, detailing the 

sample expression, the ΔRS and the uncorrected p-value estimating the probability of subtype-

specific expression between the 3 CD38+ samples and 10 CD38- CLL samples (4621 was 

excluded from the analysis as an outlier). 
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7.20 TRISOMY 12 CLL-SPECIFIC PROTEIN EXPRESSION 

The acquisition of third copy of chromosome 12, termed trisomy 12, is observed in 

around 15-20% of CLL cases and results in a more aggressive phenotype. A marker that 

frequently correlates with trisomy 12 is integrin alpha 4, known as CD49d, a cell surface 

receptor with the potential to initiate binding to the extracellular matrix and induce intracellular 

signalling. Indeed, the protein demonstrating the greatest degree of specificity in trisomy 12 

CLL cases was CD49d, with 47-145% expression of that of HD controls, compared with 16-40% 

in disomy 12 cases (Figure 7.27). Integrin beta 7, a co-receptor required for the binding of 

CD49d to fibronectin, vascular CAM 1 (VCAM1) or mucosal addressin CAM 1 (MADCAM1), 

was also specifically overexpressed in trisomy 12 cases (96-135% of HD) compared to disomy 

12 cases (45-85% of HD). A third integrin, alpha-L (ITGAL), while still downregulated in 

trisomy 12 cases (40-80% of HD), generally had higher expression than that of disomy 12 cases 

(30-45% of HD). 

Ubiquitin carboxyl-terminal hydrolase 5 (UPS5) a chr. 12 protein for which loss 

increases p53 accumulation [493] was specifically overexpressed (135-140% of HD) in trisomy 

12 cases. With a nearly identical expression pattern was another chr.12 protein tyrosine-protein 

phosphatase non-receptor type 11 (PTPN11 or SHP2) (140-145% of HD), a cell surface to 

nucleus signal transducer, which has been shown to correlate with telomerase activity [494]. 

Both proteins had minimal regulation (88-119%) compared with HD controls in disomy 12 

samples. IQ motif and SEC7 domain-containing protein 1 (IQSEC1), which when 

downregulated amplified cell spreading and accumulation of cell surface integrin expression 

[495], demonstrated 70-100% expression in trisomy 12 samples, whereas in disomy 12, was 

downregulated to 30-50% of HD control expression.  

Additional proteins with trisomy 12-specific upregulation, relative to both HD samples 

and disomy 12 samples, included; TP53-induced glycolysis and apoptosis regulator (TIGAR) – a 

protein offering protection against and p53-induced reactive oxygen species-related apoptosis 

[496], TP53-regulated inhibitor of apoptosis 1 (TRIAP1), an inhibitor or caspase 9 activation 

[497] and extended synaptotagmin-1 (ESYT1) a Ca2+-responsive ER glycerophospholipid 

binding/transport protein which plays a role in anchoring the ER to the plasma membrane [498]. 

All three of these proteins, TIGAR, TRIAP1 and ESYT1 are encoded by chr. 12. 

Two cell surface proteins were specifically upregulated in trisomy 12, relative to both 

disomy 12 samples (ΔRS>0.25) and HD samples (RS>0.25); Leucine-rich repeat-containing 

protein 25 (LRRC25) and receptor-type tyrosine-protein phosphatase O (PTPRO). Three 

proteins related to B-cell activation had greater expression in trisomy 12 CLL cases; proto-
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oncogene VAV1, PTPN6 and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit 

gamma isoform (PIK3CG). PTPN6 and PTPRO are also both encoded by chr. 12. 

Amongst the 214 trisomy 12-upregulated proteins, 72, 106 and 36 proteins were 

upregulated (RS>0.25), unregulated (0.25>RS> -0.25) and downregulated (RS< -0.25) amongst 

the 5 trisomy 12 samples, relative to the HD samples, respectively. The proteins were analysed 

for chromosome enrichment using DAVID and the three lists were overlaid onto the human 

genome using the Ensembl genome browser (Figure 7.28). Of these three sub-lists of proteins, 

42/72 (58.3%) upregulated proteins, 37/106 (34.9%) unregulated proteins and 3/36 (8.3%) 

downregulated proteins mapped to chromosome 12; a total of 82 proteins, with an enrichment p-

value of 2.3x10-50. A comparative enrichment analysis of the 819 proteins upregulated across all 

CLL samples also revealed a significant enrichment, with 70/819 proteins (8.5%) mapping to 

chr. 12 (p=3.2x10-5). 

For the 244 trisomy 12-specific downregulated proteins, a predominant trend was one of 

the downregulation of otherwise upregulated proteins, with 175/244 (72%) giving a regulation 

score of >0.25 when calculating from the 8 disomy 12 samples. There was also a trend of 

overlapping proteins observed specific to CD38+ samples, due to the co-occurrence of the 

subtypes; such as CCDC117 and AK1. While also significant in CD38+ CLL, zinc finger protein 

64 (ZFP64) underexpression was more significantly specific to trisomy 12 cases, with less 

upregulation, 120-150%, compared with 175-300% in disomy 12 cases, comparing to that of HD 

control samples. ZFP64 acts as a potential transcription factor upregulated in response to toll-

like receptor signalling, inducing several cytokines. Prenylcysteine oxidase 1 (PCYOX1), a 

protein with a role in degrading prenylated proteins, was unregulated in trisomy 12 cases (100-

125% of HD) while upregulated in disomy 12 samples (125-225% of HD). INPP5F, described in 

Figure 7.21 as the most upregulated protein potentially inhibiting aspects of the BCR signalling 

pathway, demonstrated a lower expression amongst trisomy 12 (110-255% of HD), relative to 

disomy 12, samples (255-510% of HD). Cell surface proteins underexpressed in trisomy 12 

cases, relative to disomy 12 cases included; CD6, FAIM3, CD75, CD43, FCRL3/CD307c, 

CD166, CXCR4, CD44 and CD55. 74 of the 244 trisomy 12-underexpressed proteins were 

annotated with nucleic acid binding (p=5.5x10-5), 24 of which were RNA binding (p=5.7x10-3) 

and 50 were DNA binding (p=1.2x10-2). 8 proteins were spliceosome components. 
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Figure 7.27. Subtype specific protein expression in trisomy 12 CLL samples. A. Volcano 

plot describing the differential regulation score (ΔRS) plotted against the -log10 (p-value) of 

differential regulation between trisomy 12 and disomy 12 samples. The plot highlights those 

proteins for which the regulation score calculated for the samples was >0.25 (red) and < -0.25 

(green). B. The log2 (ratios) for the top 15 significantly overexpressed and top 15 

underexpressed proteins in trisomy 12, detailing the sample expression, the ΔRS and the 

uncorrected p-value estimating the probability of subtype-specific expression between the 5 

trisomy 12 samples and 8 disomy 12 samples (4621 was excluded from the analysis as an 

outlier). 

 

Figure 7.28. Chromosome mapping of trisomy 12 CLL-specific proteins. Chromosome 

mapping of the 214 proteins with subtype-specific overexpression in trisomy 12 cases 

(ΔRS>0.25, p<0.05), separated into those proteins demonstrating upregulation (RS>0.25, red), 

downregulation (< -0.25, green) and no regulation (0.25>RS> -0.25, black) calculated for the 5 

trisomy 12 samples relative to HD samples. The mapping of these proteins to chromosome 12 is 

described. 
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7.21 INTER-PROTEOME COMPARISON BETWEEN HUMAN CLL AND CANCERS OF THE Eµ-

TCL1 MOUSE MODEL 

The Eµ-TCL1 mouse has been proposed as potential model of CLL, mimicking such 

features as the slow progression of a CD5+ leukaemia and the development of tumour 

populations in the bone marrow, spleen and lymph nodes. The comparison of the quantitative 

CLL proteome described in this chapter with the Eµ-TCL1 proteome described in Chapter 5, 

presented an opportunity to identify similarities and differences emerging between the two 

cancer types at the level of individual orthologous protein expression. While this comparison 

was between splenic B cells in mice and circulatory B cells in humans, it was hoped that the 

strongest biological trends would still be apparent. Any emerging signatures would potentially 

be indicative of proteins which played a pivotal role in CD5+ B-cell cancers, based on the 

evolutionary conservation of B-cell biology, capable of facilitating neoplasia development and 

malignancy. 

The UniProtKB entry names were used to align between the human and murine 

proteomes, which determined that a total of 4720 proteins were commonly identified in both 

experiments (Figure 7.29A). To determine whether or not the alignment of the two proteomes 

provided an accurate inter-proteome comparison, the number of PSMs, a very approximate 

measure of the abundance of protein within a proteome, for each protein was plotted (Figure 

7.29B). This identified a correlation between the two proteomes with an R2 value of 0.598, with 

the majority of proteins being detected with no more than a 10-fold difference in their 

approximate abundance between orthologs.  

To define the number of commonly regulated proteins, the threshold described in 

Section 5.7 and Section 7.3, of an RS exceeding ±0.5 or ±0.25, for Eµ-TCL1 and CLL, 

respectively, with an FDR-corrected p-value of less than 0.05 was used (Figure 7.29C). From 

the orthologs common to both proteomes, this identified 664 and 656 upregulated proteins for 

Eµ-TCL1 and CLL, respectively. A total of 65 overexpressed proteins were common to both 

CLL and the Eµ-TCL1 tumour cells; 9.8% of the Eµ-TCL1-upregulated proteins and 9.9% of the 

CLL-upregulated proteins. 35 proteins exhibited common downregulation; 23.3% of the 150 Eµ-

TCL1-downregulated proteins and 6.5% of the 537 proteins underexpressed in CLL.  

The regulation scores for the 4720 proteins identified with comparable orthologs were 

plotted to demonstrate the correlation between CLL and Eµ-TCL1 tumours (Figure 7.30). This 

identified no overall correlation between the two cancers, with an R2 value of less than 0.01. 

Correlations between CLL subtypes and the Eµ-TCL1 tumours, or against the Eµ-myc tumours, 

did not improve upon this correlation coefficient. Despite this lack of an overall trend, the 
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comparison of CLL to Eµ-TCL1 quantitations identified several proteins with consistent 

expression patterns. The most significantly upregulated protein identified in CLL, the anti-

proliferative factor receptor CKAP4, (RS=1.4, p=1.8x10-8) also demonstrated significant 

upregulation in Eµ-TCL1 tumours (RS=1.07, p=0.02), with more than 250 PSMs and 25 unique 

peptides in both proteomes. Tyrosine-protein phosphatase non-receptor type 22 (PTPN22) has 

been shown to negatively regulate T-cell receptor signalling, by the dephosphorylation of 

proteins which may also regulate BCR signalling in CLL, such as ZAP70 [499]. PTPN22 was 

the ninth most upregulated, commonly identified ortholog in Eµ-TCL1 (RS=1.68, p=0.004) and 

also exhibited significant upregulation in CLL (RS=0.64, p=1.7x10-6). CD5, a defining marker 

of both tumours was detected with similar overexpression in CLL (RS=0.84, p=8.6x10-6) and 

Eµ-TCL1 tumours (RS=0.98, p=0.04). 

Two highly upregulated proteins in CLL, the cell cycle control protein cyclin-dependent 

kinase 14 (CDK14) (RS=1.14, p=1.4x10-8) and zinc finger protein ZFPM1 (RS=0.91, p=2.4x10-

7), were also upregulated in Eµ-TCL1 tumours but to a lesser extent (RS>0.5, p<0.05). A cluster 

of five proteins was observed with substantial upregulation in Eµ-TCL1 tumours (RS>1) and 

consistent upregulation in CLL (RS>0.4); the cell cycle regulator WEE1, the B-cell survival 

regulator TNF receptor-associated factor 3 (TRAF3), the NOTCH signalling repressor ataxin-1 

(ATXN1), the minimally characterised 629 kDa structural protein neuroblast differentiation-

associated protein AHNAK and the uncharacterised protein GRAM domain-containing protein 

1B (GRAM1B). Two uncharacterised proteins arf-GAP domain and FG repeat-containing 

protein 2 (AGFG2) and UPF0544 protein C5orf45 were identified with consistent and equivalent 

upregulation in both cancers.  

Amongst the full list of 65 proteins determined to be significantly upregulated in CLL 

and the Eµ-TCL1 tumours, 19 proteins mapped to the mitochondria, a 5-fold enrichment 

(p=5.6x10-7). 11 of these proteins were enriched (14-fold) to the matrix and lumen (p=5.3x10-7). 

Other noteworthy proteins included the upregulation of two DNA replication licensing factors 

MCM3 and MCM5, a second PTPN protein involved in lymphocyte signalling, PTPN7, the 

minimally studied anti-apoptotic protein BCL7C, the BCR-inducible transcription regulator 

NFATC1 and another transcription regulator, reported to affect B-cell differentiation and Ig 

expression TCF3. 28 of these 65 proteins (43%) also had significant upregulation in the Eµ-myc 

tumours (RS>0.5, p<0.05). 

One of the most downregulated CLL proteins, DENND3 (RS= -1.64, p=7.6x10-9), a 

regulator of endosome transport and recycling, was also significantly downregulated in Eµ-

TCL1 tumours (RS= -1.37, p=0.02). Ig delta chain C region (IGHD/IgD), the predominant 

surface Ig expressed on peripheral B cells, also demonstrated downregulation in both cancers, 
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with a far more prominent underexpression in Eµ-TCL1 tumours (RS= -2.46, p=0.01) than CLL 

(RS= -0.42, p=0.01). Another commonly downregulated Ig protein was Ig alpha-1 chain C 

region (IGHA1), which demonstrated greater underexpression in CLL than in Eµ-TCL1 tumours. 

The protein with the most consistent downregulation in both tumours was special AT-rich 

sequence-binding protein 1 (SATB1), a global gene regulator (RS< -1). Four proteins also 

demonstrating similar downregulation in both cancers, included; sortilin-related receptor 

(SORL1), CD38, CD22 and fascin (FSCN1) (RS<-0.7). Two interferon-induced proteins with 

tetratricopeptide repeats (IFITs) were identified amongst the proteins downregulated in CLL and 

Eµ-TCL1 tumours, IFIT2 and IFIT3 (RS< -0.5), typically proteins involved in antiviral response. 

Two B-cell CLL/lymphoma proteins BCL2L1 and BCL7A, were also in this list. The list also 

included 6 immune regulators, CD38, CD40, CD47, CD55, SAM domain and HD domain 1 

(SAMHD1) and dipeptidyl-peptidase 4 (DPP4) and 6 cell adhesion molecules CD22, CD47, 

CD72, CD84, ITGB5 and selectin L (SELL).  

The 35 proteins significantly downregulated in CLL and Eµ-TCL1 tumours were 

significantly enriched for membrane proteins (p=7.35x10-5), with 26 (74%) of the proteins 

annotated as such. Another trend amongst these proteins was the observation that 28 (80%) also 

demonstrated significant downregulation in the Eµ-myc tumours. 

 

 

 

 

 

 

 

 

Figure 7.29. Comparison of murine and human B-cell cancer proteomes. A. The common 

and uniquely identified protein orthologs in the fully quantified murine and human B-cell cancer 

proteomes. B. The number of PSMs (plotted as log10 (PSM number)) for each protein for the 

orthologs common to both proteomes, as an approximate indicated of protein abundance. C. The 

overlap of common orthologs with significant up or downregulation in CLL and Eµ-TCL1 

tumours. 
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Figure 7.30. Quantitative comparison of CLL and Eµ-TCL1 tumour proteomes. 

Comparison of the regulation scores relative to healthy, non-tumour B cells determined for CLL 

and the Eµ-TCL1 tumours. The four correlating or inversely correlating quadrants are expanded 

and plotted above and below. 

 

7.22 CHAPTER DISCUSSION 

In light of the successful applications of proteomics, detailed in Chapters 3-6, this 

chapter aimed to reproduce this quality of results for the characterisation of primary human CLL 

samples. Compared with other proteomics analyses of CLL, this characterisation has exceeded 

all other studies in the number of protein identifications and quantitations, therefore potentially 

offering the most comprehensive phenotyping of CLL produced to date.  

The resulting CLL proteome fully quantified fewer proteins overall, compared with the 

B-cell proteome (Chapter 5). This was partly due to the lesser extent of fractionation, and 

peptide pooling needed to accommodate two full 2D-LC MS/MS 10-plex experiments in a finite 

amount of MS time. The lower protein quantification number is also attributable to the greater 

stringency implicated by the requirement that proteins be identified and quantified in the two 

discrete shotgun proteomics experiments (Figure 7.3A). It can therefore be concluded that a 

more carefully optimised 2D-LC MS/MS characterisation utilising more extensive fractionation 

and more MS time holds the potential to further increase the depth of characterisation described 

here. 

The 2D-LC MS/MS characterisations from the two parallel 10-plex experiments were 

successful from a technical perspective, demonstrating highly reproducible RP LC traces 

(Figure 7.1), a substantial degree of overlap between proteomes (Figure 7.3A); which extended 

to the numbers of PSMs and peptides describing each protein (Figure 7.3B) and the 

reproducibility of protein quantitations between 10-plex A and B (Figure 7.3C). While the R2 

value was lower for the comparison between the log2 (ratios of HD2:HD1) of 10-plex A and B 

(Figure 7.3C), compared to HD3 comparisons, this was partly due to the high degree of 

similarity of the two B-cell samples. With fewer ratios above the threshold of noise, the R2 value 

was less able to reflect a correlation. Those proteins with substantial fold changes were observed 

to be reproducible. Interestingly, the proteins exhibiting differential expression between HD1 

and HD2 were HLA proteins, which are known for allelic inter-individual differences [500]. 

This detection therefore, in part, served as a positive control where this substantial differential 

expression was representative of the discrete presence or absence of polymorphic peptides in the 

samples. These values also suggested the threshold of noise for the vast majority of protein ratios 
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at around a log2 (ratio) of 0.3 (a fold change of 1.23). More extensive protein expression 

differences were observed in HD3 than the other HD samples which highlighted a more 

reproducible pattern of differential protein abundance resulting in more accurate R2 values. The 

exclusion of HD3 from the analysis was considered, however, it was decided that in combination 

with the minimum (least deviated) value approach that this would help to preserve only the most 

CLL-specific signatures. No substantial pattern emerged to suggest a cause of the differences 

observed for HD3.  

The reproducibility of the HD bridging control ratios and protein identifications 

confirmed the potential of inter-proteome quantitative comparison. While a typical approach to 

comparing between the two 10-plexes would have been to formulate a single average to all three 

HD controls, for each CLL sample, this caused a clustering between the two experiments when 

performing hierarchical clustering. This demonstrated that the proteome-specific differences, 

such as variable effects of ratio compression were apparent within the quantitations. By selecting 

the minimum deviated ratio, of those derived from the three HD samples, this experimental 

clustering was abolished (Figure 7.4). This approach also offered a means of conserving only 

the most reproducible results, providing confidence that each presented log2 (ratio) was 

consistently representative of all three ratios, not a single outlier point causing an increased 

average. This also reduced the effects of quantitative background noise such as that observed in 

Figure 7.3C. 

The success of the quantitative proteome characterisation was also reinforced by the 

observation of several expected biological characteristics amongst the CLL samples. Positive 

controls such as CD5 and BCL2 upregulation were observed highlighting the successful 

comparison between CLL and healthy donor B-cell samples (Figure 7.6). Anticipated inter-

sample differences confirmed the capability of the results to profile individual samples and 

conclude subtype specific differences, such as the specific expression of CD38 in the 99% 

CD38+ CLL cases and CD49d expression in the trisomy 12 CLL cases (Figure 7.6). A further 

observation was that of the highly specific detection of two Y-chromosome-encoded proteins 

exclusively in male CLL cases. These observations, in combination with several other 

anticipated findings detailed throughout this chapter, confirm that the sample procurement and 

processing, the 2D-LC MS/MS proteomics analysis, the data processing and the quantitative 

analyses adopted have provided an accurate representation of the phenotypes of CLL, relative to 

both the HD controls and to the other CLL samples and subtypes, from which further hypotheses 

about CLL biology can be drawn. 

The initial analysis of the data also revealed some limitations to the approach such as the 

observation of platelet contamination. The contamination, however, was restricted to the HD 
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control samples which only limited conclusions that could be drawn relating to the proteins 

downregulated in CLL. The contamination was filtered from the analysis using a previously 

characterised platelet proteome [471], which eliminated many of the proteins artefactually 

appearing as substantially ‘downregulated’. However, proteins such as CD14, a marker of other 

immune cells remained, suggesting the possibility of marginal contamination from other 

PBMCs. These contaminations were no doubt related to the vastly increased volume of blood 

required to isolate equivalent numbers of B cells from healthy donors compared to CLL patients. 

In addition to this, thrombocytopenia, describing a lower number of platelets, is also 

characteristic of CLL further exacerbating this disparity. Because of this, conclusions were 

drawn more cautiously in relation to the proteins determined to be downregulated.  

Another anomaly in the data was that of CLL sample ‘4621’ identified by the outlying 

results observed in the hierarchical clustering (Figure 7.4B) and ratio distribution (Figure 

7.4C). The clustering of this sample was separated from all other CLL samples suggesting that 

either a substantial technical or biological difference was present. No trends were immediately 

apparent explaining this outlier, however sample handling differences, such as a greater 

contamination from non-CLL cells may explain this observation. Sample ‘4621’ could also 

possibly be representative of a different disease. CLL sample ‘4621’ was therefore excluded 

from any further analyses, but the results for this sample were presented wherever possible. 

It should also be noted that the circulatory B cells used as a non-cancer control were not 

ideal. A pan-B-cell isolation from each donor may have highlighted protein expression 

differences that were attributable to the B-cell type from which CLL arises from, rather than 

specifically as a result of transformation to cancer, such as CD5. However, pan-B-cell samples 

provided the best available option given the low percentage of B-cell subtype cells that can be 

isolated from PBMCs, comparable to the circulatory CLL cells. Additionally, uncertainty 

remains as to the specific CLL cell of origin; and therefore most ideal healthy control. Despite 

this limitation, any therapeutic targets identified pertaining to the CLL cell of origin, would still 

offers a selective CLL target, which would avoid the elimination of the majority of healthy B 

cells. 

 

One of the most striking topological observations in the data analysis was that, despite 

variation of subtypes and CLL sample origin (Figure 7.4A), a strong trend emerged from 

hierarchical clustering demonstrating a consistent direction of regulation for the majority of 

proteins in CLL, relative to HD samples (Figure 7.4B). While many proteins demonstrated 

heterogeneity, these variable proteins each appeared either upregulated and unregulated, or 
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downregulated and unregulated across the CLL samples, relative to the HD controls. This 

suggests that a CLL-specific protein signature exists that commonly and consistently defines the 

potential of up or downregulation of each protein compared to healthy B cells. Homogeneity, 

similar to this, has also been consistently observed in those studies evaluating CLL at the gene 

expression level [71, 72]. While several factors, such as CLL subtype, appear to influence the 

protein expression profile, it appears that these subtypes may be either amplifying or suppressing 

characteristics of B cells to promote a CLL phenotype. It also suggests that alternative pathways 

and mechanisms may exist to achieve the same acquisition of cancer traits through convergent 

evolution, which has also been highlighted at the genetic level in CLL [501]. This is consistent 

with the principle that CLL arises without a single causative mutation, such as myc 

translocations in BL, and can exist without the canonical genomic or genetic aberrations 

frequently observed in CLL. Overall, this finding of a subtype-independent CLL signature 

disputes the notion that different subtypes of CLL constitute distinct diseases [502]. 

 

The proteomics experiments performed in this chapter provided a successful means of 

characterising surface-expressed transmembrane proteins in CLL. The study identified several 

novel candidates with potential for investigation as immunotherapy targets (Figure 7.8B). The 

validity of these novel targets is reinforced by the previously characterised cell surface proteins 

within the list and is additionally reinforced by the independent observation and quantitation in 

both TMT 10-plex experiments. 

CKAP4 was not only the most CLL-upregulated protein with annotated cell surface 

expression, but was also the single most CLL-upregulated protein identified in this proteome 

(RS=1.4, p=1.8x10-8). The additional high-frequency of unique peptides (34) and PSMs (501) 

substantially reinforced this observation. This finding is novel at the protein level and only a 

single study has discussed upregulation of CKAP4 mRNA [503]. Also known as CLIMP-63, the 

cell surface expression of CKAP4 is well documented in relation to its function as a receptor for 

molecules including; tissue plasminogen activator (tPA) [504], surfactant protein A (SP-A) [505] 

and APF [506]. 

The protein is also recognised to be predominantly localised to the rough ER as a 

microtubule-binding protein with a role in ER sheet thickness and additional roles in regulating 

the miRNA processing protein ‘dicer’, translocon assembly and ribosome binding [507-510]. 

APF treatment of a bladder cancer cell line resulted in reduced proliferation, attributable 

to substantially reduced phosphorylation of AKT and GSK3β and an increased expression of p53 
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[511]. CKAP4 has additionally been shown to reduce proliferation by the suppression of 

epithelial growth factor receptor (EGFR) signalling [512]. 

The novel observation of substantial CKAP4 protein upregulation in CLL, suggests that 

the targeting of this pathway might offer a means of reducing the proliferation of CLL. The 

observation that CKAP4 is also upregulated in the tumours of the Eμ-TCL1 mouse, but not Eμ-

myc, reinforces a mechanistic role in CD5+ B-cell tumours as well as providing a means of 

evaluating this hypothesis in vivo. The exact role and potential for immunotherapy are difficult 

to conclude however, given that CKAP4 cellular localisation and functions appear variably 

reported. It does however appear likely that CKAP4 may function in a growth suppression role, 

potentially as a negative feedback response to increased proliferation. Evaluation of CKAP4 

localisation in CLL and the response to various stimuli will be critical in confirming any 

potential clinical benefits that can be exploited from CKAP4 overabundance in CLL. 

Amongst the other novel cell surface proteins identified with significant upregulation in 

CLL was a trend relating to BCR function or B-cell biology. The minimally studied protein 

LAX1 was shown to have an inhibitory role in B- and T-cell signalling in lymphocytes [475] and 

ATP2B4 may have a role in BCR-induced calcium efflux [476]. Prolectin, also known as 

CLEC17A, is a germinal centre B-cell-expressed protein whose expression correlates with 

proliferation [513]. Despite this protein being a marker of B-cell proliferation, no previous 

observations have been made as to its upregulation in B-cell cancers. Prolectin also has a 

putative role in BCR signalling, demonstrated to have a rapid and substantial association with 

BLNK upon BCR stimulation [514]. Prolectin, LAX1 and ATP2B4 not only suggest novel 

specific target of immunotherapy, but also present a means of interfering with and better 

understanding BCR signalling in CLL. 

Of the 4 Fc receptors identified as upregulated on CLL, FCER2/CD23, FCRL2/CD307B 

and FCRL5/CD307E, were previously reported findings, while PIGR was a novel observation. 

PIGR is an Fc receptor for IgA and IgM which facilitates transcytosis of antibodies, typically 

through epithelial cells. Upon completion of transport, the extracellular portion, known as the 

secretory component, is cleaved to release the antibody, leaving a 35 amino acid portion of the 

extracellular domain [515-517]. While PIGR upregulation has been implicated in a number of 

solid tumours, [518-523], it has not been characterised in any leukaemias or lymphomas, 

suggesting this finding is novel. Interrogation of the peptide level data suggested that only 

peptides matching to the intracellular portion of PIGR were identified. This suggested that the 

secretory component of PIGR is cleaved, at least sufficiently for any matching peptides to fall 

below the threshold of detection. The implication of such a cleavage would be that the 

transcytosis action of PIGR is functional; an unusual observation given that leukaemia cells do 
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not have either a basolateral or apical surface for antibodies to be transcytosed between. 

Regardless of the cleavage and functionality, validation of PIGR as a cell surface marker of CLL 

could present a clinical tool, even if just the 35 amino acid portion remains on the surface of 

cells. Further investigation is also warranted into the function of PIGR on CLL. 

 

The proteomics experiment performed in this chapter also provided a range of proteins 

upregulated in CLL, indicative of cancer-promoting mechanisms which could be targeted by 

inhibitors (Figure 7.9). Again, this list included novel targets, corroborated by previously 

identified targets, such as BCL2 and LCK. 

The upregulation of both HMOX proteins (HMOX1 and HMOX2) suggested, in 

addition to potential therapeutic targets, a critical requirement for an increase in free heme 

degradation in CLL metabolism. This is consistent with the observation that CLL exhibits a high 

level of oxidative stress [524], and that free heme accumulation can induce apoptosis. It was 

previously demonstrated that HMOX1 was the most upregulated gene in response to a 

thioredoxin reductase-induced increase in reactive oxygen species, and inhibition of HMOX1 

synergistically increased apoptosis [525]. However, this, and other similar analyses have failed 

to consider HMOX2. These finding suggest that any attempts at inhibiting HMOX1 should be 

attempted with compounds which also inhibit HMOX2, such as tin mesoporphyrin which may 

otherwise act to circumvent any specific means of HMOX1 inhibition. They also reinforce the 

notion that inhibition of the HMOX proteins has therapeutic potential in CLL, which is yet to be 

fully explored. 

Another trend amongst these targets of inhibition was that of overexpressed HDACs. 

HDACi have been trialled in CLL, however have not been adopted as a means of treatment, due 

to poor response and tolerability [526-528]. The use of pan-HDACi such as SAHA have likely 

contributed to these limitations, with fewer off-target effects. More targeted therapies promise 

greater efficacy such as the HDACi, entinostat, which has a high degree of specificity to HDAC1 

and HDAC3, both identified upregulated in these results. Entinostat induced several proapoptotic 

effects on CLL [529]. To date, only mRNA level gene expression data has been published relating 

to global HDAC expression in CLL, which also identified HDAC7 as the most upregulated HDAC, 

relative to HD controls [527]. Overall, this finding of HDAC7 protein overexpression constitutes 

a novel observation in CLL and suggests that targeted strategies to HDAC7 may have unexplored 

clinical potential with fewer off-target effects. No HDAC7-specific inhibitors appear to have been 

successfully characterised however. 
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Global analysis of the trends exhibited amongst the differentially regulated proteins in 

CLL highlighted a substantial pattern indicating the overexpression of nuclear proteins (Figure 

7.10A). This trend could be more specifically accounted for by proteins annotated as 

transcriptional regulators (Figure 7.10B) and GO term enrichment highlighted an equivalent 

overrepresentation of transcriptional repressors and activators (Figure 7.11). Pathway 

enrichment analysis detailed specific means by which transcriptional regulators were 

differentially expressed in CLL, describing the upregulation of transcriptional repression by 

epigenetic means and transcriptional initiation by the pre-initiation complex (Figure 7.16 and 

Figure 7.18). 

Another substantial trend, pertaining to this nuclear protein enrichment, was that of the 

global upregulation of the spliceosomal complex (Figure 7.11). Subsequent pathway analysis 

identified the vast majority of the spliceosome components exhibiting overexpression in CLL 

(Figure 7.13). In addition to spliceosome upregulation, the pathway describing mRNA 

polyadenylation, and subsequent stabilisation was also enriched (Figure 7.15) 

The combined global analysis of protein upregulation demonstrates that CLL presents 

substantially altered transcriptional and post-transcriptional processes compared with HD 

controls. This is in agreement with many of the transcriptome-level analyses conducted 

characterising CLL, describing major alterations to mRNA expression [71, 72, 105, 530, 531]. 

The role of aberrant splicing in CLL is highlighted by frequent mutations to the SF3B1 

gene [96]. Recent deep transcriptome analysis confirmed that CLL demonstrates vast 

dysregulation in splicing patterns, relative to HD B cells [531]. The proteomics results detailing 

spliceosome protein overexpression (Figure 7.13) therefore offered an explanation as to how 

CLL cells induce these aberrations. This novel observation of global spliceosome upregulation 

strongly suggests that methods of interfering with the spliceosome reducing overall splicing 

could offer a means of treating CLL. 

Trends relating to downregulated proteins (Figure 7.10A) further highlighted the overall 

underexpression of cell surface proteins seen in Figure 7.8, confirming the patterns seen in 

transmembrane receptor and ion channel downregulation (Figure 7.10B). Figure 7.12 detailed 

this reduced expression of proteins relating to cellular migration, immune system interactions, 

cell surface expression and signal transduction. These findings were consistent with previous 

observations suggesting that CLL in the circulation have impaired transmigration capabilities 

[532]. The proteomics data presented in Figure 7.19 and Figure 7.20, describing the 

downregulation of integrin signalling and leukocyte transmigration, therefore details several 

specific mechanisms which may explain the circulatory phenotype of this subpopulation of CLL 
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cells. To more accurately conclude these mechanisms, however, comparisons would need to be 

made between CLL cells and B cells isolated from the lymph nodes, bone marrow and spleen. 

 

Substantial dysregulation was observed amongst the proteins of the BCR signalling 

pathway, and while the majority of proteins appeared downregulated, specific downstream 

signalling molecules were upregulated (Figure 7.21). Overexpression of downstream 

transcription regulators suggested a rewiring of the BCR pathway enabling CLL cells to 

modulate or potentially circumvent their dependency on BCR complex-induced upstream 

signalling. This is in agreement with the observation that proliferation in CLL occurs 

independently of external antigen-induced signalling [94]. This could also be described as the 

adoption of an anergic phenotype similar to that induced in B cells after antigen engagement, 

with a downregulation of surface IgM, and lack of BCR responsiveness. 

NFAT transcription factor activity, observed upregulated in CLL (Figure 7.21) is 

proposed to contribute to the establishment of an anergic phenotype [533]. Additionally the 

inositol phosphatase INPP5D/SHIP1 has been shown to act as a negative regulator of BCR 

signalling and is activated in anergic B cells [534]. While INPP5D did not demonstrate 

differential regulation, a lesser-studied inositol phosphatase of the INPP5 family, INPP5F/SAC2, 

was confidently observed with significant overexpression in CLL, a previously unreported 

finding. Further investigation into the role of INPP5F in BCR signalling and its overall effects 

on CLL are warranted, given the confidence and consistency of these findings and its relatively 

poor characterisation to date. This finding is also partly counterintuitive, given that INPP5F is 

suggested to reverse the effects of PI3K signalling, thereby inhibiting the phosphorylation of 

AKT and upregulation of pro-survival/proliferation pathways. INPP5F is therefore poised to 

play a key role in the establishment of aberrant anergy and subsequently the undifferentiated B-

cell phenotype observed in CLL. 

While the overall trend was downregulation of upstream BCR proteins, in many cases 

this was only marginal or variable, which is consistent with the retained functionality of these 

BCR signalling pathways in most but not all cases of CLL, most frequently in U-CLL [535, 

536]. Despite this, few BCR signalling pathway proteins demonstrated any differential 

expression between U-CLL and M-CLL. An exception was, however, IgM itself (Figure 2.23), 

which was overexpressed in U-CLL, relative to M-CLL. This is consistent with previous 

findings and the observation of greater antigen sensitivity in U-CLL [536]. 

RRAS2 was significantly upregulated in M-CLL, relative to both U-CLL and HD 

controls. This was of particular interest given that RRAS2/TC21 has been shown to be critical 
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for B-cell development and survival [537]. This suggests a key difference in the B-cell signalling 

pathways between U-CLL and M-CLL, with RRAS2 potentially supplementing survival signals 

in the more anergic M-CLL phenotype. This finding identifies RRAS2 signalling as a potential 

therapeutic target in M-CLL cases. 

 

Despite the relatively large number of samples characterised, the evaluation of the data 

for subtype-specific trends was generally insufficient to confidently draw conclusions for 

individual proteins. However, trends amongst the data revealed several strong patterns of protein 

dysregulation suggesting unique characteristics of each CLL subtype. Overall analyses revealed 

that CD38 expression and trisomy 12 status produced the most distinct phenotype in CLL, which 

while overlapping, still highlighted discrete differences (Figure 7.22). 

U-CLL presented a strong trend of mitochondrial protein upregulation compared with 

that of M-CLL. This included both mitochondrial transmembrane transporters and mitochondrial 

structural proteins. This potentially indicated that mitochondria were more abundant or more 

functional in U-CLL. Given that mitochondrial stress is far greater in CLL, than normal B cells 

[485], and that U-CLL adopts a more aggressive form of the disease, it follows that 

mitochondrial components may be upregulated in response to greater BCR signalling and 

proliferation in U-CLL. 

Glycosylation appeared upregulated in U-CLL relative to M-CLL, which is consistent 

with previous observations of increased mannosylation of surface IgM in U-CLL [538]. These 

data therefore suggests specific proteins may be responsible for this phenomenon. The amplified 

ability of U-CLL to potentially upregulate glycosylation may have implications when 

considering immunotherapy as aberrant glycosylation may interfere with antibody binding to 

target antigens, such as that described for ROR1 in CLL [539]. 

U-CLL also demonstrated downregulation of antigen presentation and cell surface 

proteins, possibly reflecting a greater need for immune evasion, give the more aggressive nature 

of the disease, and reduced requirement of any pro-survival signals from transmembrane 

receptors. 

 

The most prominent trend amongst the NOTCH1-mutant CLL samples was that of the 

subtype-specific overexpression of immune system-related proteins such as CD79a, Ig, 

granzyme A, CMIP and TLR7 (Figure 7.24).  NOTCH1-mutant-specific overexpression of 

DTX3L and PARP9 suggested an upregulation of a DNA damage repair pathway. However, the 
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correlative expression of PARP14, combined with the potential of DTX3L and PARP9 to form a 

cell-survival promoting complex [492], suggested an alternative or additional pathway might be 

present. PARP14 has been shown to be a binding partner of STAT6, capable of protecting 

against apoptosis in IL4-treated B cells [540]. 

Together, these findings indicate that NOTCH1 mutation and constitutive activation may 

induce a reorganisation of immunoregulatory signalling. This agrees with the altered immune 

cell lineages induced by the overexpression and deletion of the NOTCH1 gene in mice [541]. 

The co-expression of the DTX3L-PARP9-PARP14 complex suggest NOTCH1-mutant CLL 

samples may have a greater responsiveness to IL4 and other immune-related stimuli. 

Transcriptional regulation demonstrated a general trend in downregulation in NOTCH1-

mutant samples, suggesting some specific mechanisms behind the alterations to gene and protein 

expression induced by NOTCH1 signalling. 

 

SF3B1 mutation induced the least discrete protein expression profile amongst the CLL 

subtypes and few overall trends emerged amongst these proteins (Figure 7.25). This is 

surprising considering the adverse outcomes associated with SF3B1 mutation and the frequency 

with which it is observed [542, 543]. It has been suggested that the acquisition of SF3B1 

mutations typically occurs at an advanced stage of CLL progression [544]. This implies that the 

effect of mutant SF3B1 may be more subtle and specific than initiating mutations, while still 

sufficient to provide a selective advantage, potentially explaining this minimal signature.  

The two most specifically upregulated protein in SF3B1-mutant CLL, compared to both 

HD samples and CLL WT for SF3B1 were histone demethylase KDM4B/JMJD2B and arginine 

methyltransferase 1 (PRMT1), both proteins with a role in epigenetic regulation of gene 

expression [545, 546]. KDM4B has an additional role in the DNA damage response, offering a 

survival advantage in several cancers, especially in the context of cytotoxic therapies [547]. 

KDM4B has been shown to enhance proliferation and epithelial to mesenchymal transition in 

gastric cancers via its epigenetic mechanisms and potentially promotes genomic instability [545, 

548-550]. A KDM4 inhibitor, NCDM-32B, has been shown to effectively reduce cell viability in 

breast cancer [551], and may therefore offer a therapeutic option with regards to SF3B1-mutant 

CLL cases.  

PRMT1 expression has been shown to promote resistance to apoptosis in breast cancer 

[552] and has also been shown to have a role in epithelial to mesenchymal transition in 

hepatocellular carcinoma and breast cancer [553-555]. Arginine methylation by PRMT1 has 

been shown to enhance BCR signalling [556], suggesting a further mechanism by which SF3B1 
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mutation may drive CLL. Inhibitors of PRMT1 have been identified with antiproliferative 

effects in a variety of cancers [557]. 

Neither KDM4B nor PRMT1 have previously been implicated in CLL and these novel 

findings suggest mechanisms behind the observations of genomic instability, epigenetic 

dysregulation and poor clinical outcome in SF3B1-mutated CLL [558]. 

 

CD38+ (99%) CLL cases demonstrated the most dysregulated subtype-specific profile 

consistent with the observation that CD38 expression correlates with a more proliferative 

disease. The correlation between CD38 and proliferation marker KI67 expression in CLL, 

demonstrating this, has previously been established [122] and both findings act as positive 

controls for this subtype analysis (Figure 7.26).  

The analysis also confirmed the proliferative nature of CD38+ CLL by highlighting the 

subtype-specific expression of cell cycle promoting proteins. Importantly, these proteins were 

discretely expressed in the three CD38+ CLL cases, and not in the 2 trisomy 12 CLL cases, with 

less than 50% CD38+ expression. 

The three CD38+ CLL cases appeared more metabolically active with a greater 

expression of ribosome proteins, nuclear translocation proteins, a greater activity of vesicle 

movement and greater cellular adhesion capabilities. A large number of these proteins had 

expression that while greater than the non-CD38+ CLL cases, was equivalent to HD B cells. The 

same was true for the majority of non-CD38+ CLL downregulated proteins. This suggests that 

maintaining CD38 expression in CLL actually produces a phenotype more closely resembling 

healthy B cells; partly highlighted by a reduced topological expression pattern (Figure 7.4). This 

poses the interesting question of what causes low CD38 expression in some CLL cases, 

especially given the proliferative advantage provided by CD38. Given that CD38+ CLL cases do 

not express more CD38 than that of the healthy B cells, it seems possible that CD38 expression 

is not a characteristic which CLL can selectively upregulate. This may suggest an activated 

CD38+ CLL precursor in these cases, or that further CD38 expression is ineffectual. 

The observation of substantial, specific downregulation of adenylate kinase in CD38+ 

cases suggested a mechanism between two metabolic regulators. AK1, however, reduces cellular 

ATP by transferring a phosphate to AMP forming 2 ADP molecules. Given that CD38 function 

is inhibited by ATP, this process would seem preferential to CD38 function. While inconclusive, 

this suggests that AK1 function, may represent a critical difference between CD38+ and CD38- 

CLL metabolisms induced by CD38 expression, targetable by therapeutics. 
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The analysis of proteins downregulated in CD38+  CLL cases compared to non-CD38+ 

CLL cases suggested several mechanisms which appeared, as with the overexpressed proteins, 

with expression more similar to healthy, circulatory B cells in the CD38+  CLL cases. These 

included lower expression of transmembrane receptors, MHC proteins, lymphocyte regulation, 

chromatin reorganisation and most interestingly; spliceosomal components. This implies that 

CD38+ CLL cases show less dependency on spliceosome overexpression. Overall, the protein 

expression profile observed in CD38+ CLL cases suggests that CD38 imposes a more 

proliferative phenotype with more features similar to healthy B cells, while still presenting a 

clear, subtype-independent CLL phenotype. 

 

The subtype-specific overexpression of CD49d (ITGA4), ITGB7 and ITGAL (CD11a) 

provided positive controls for trisomy 12 CLL cases [89, 559] (Figure 7.27). 

IQSEC1/BRAG2/GEP100, has been shown to have various roles in promoting integrin 

expression and cancer cell migration [560-562]. Trisomy 12-specific overexpression of IQSEC1 

strongly suggests a novel candidate for this increased surface expression of integrins and the 

lymph node-homing phenotype in trisomy 12 CLL cases.  

Other novel protein findings highlighted a trend of trisomy 12-overexpressed proteins 

with roles in oncogenic mechanisms, such as telomerase transduction, p53 inhibition, B-cell 

activation and apoptosis inhibitors. Interestingly the majority of these proteins were encoded by 

chromosome 12, suggesting several candidates for specific evolutionary advantages posed by the 

acquisition of a third copy of chr12 in CLL. Chromosome analysis identified a strong 

enrichment of chr12 proteins specifically upregulated in trisomy 12 CLL cases relative to both 

disomy 12 CLL and HD controls (Figure 7.28). This confirms the principle that the third copy 

of chr12 promotes the upregulation of chr12 proteins and provides some explanation as to the 

advantages presented by the acquisition of chr12; a previously unexplained phenomenon. 

 

The analysis comparing between CLL and the Eμ-TCL1 mouse models, was conducted 

to evaluate any trends which emerged suggesting common mechanism in the human and mouse 

diseases. While key proteins such as CD5 correlated, the vast majority of proteins demonstrated 

no similarities between mouse and human CD5+ B-cell cancers (Figure 7.30). While the overall 

protein abundances, measured very approximately using PSM numbers showed some extent of 

correlation (Figure 7.29), this was not reproduced in the observed quantitations for these 

proteins relative to their respective, non-tumour controls. It should first be noted that this 

analysis may not have effectively aligned proteins due to differences in protein grouping, 
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resulting from the issues of protein inference from peptides. It is also likely that differences are 

amplified given the isolation of cancer samples from different niches; peripheral blood for CLL 

and spleen for Eμ-TCL1-derived tumours. 

Given the evolutionary differences, it is additionally possible that many proteins have 

marginally different roles exchanged between common isoforms, amplified in the context of 

cancer. HDAC and phosphatase expression, for instance, were common dysregulation in both 

tumours, however different isoforms were specifically upregulated, while downregulated in the 

opposing tumour type. The role of INPP5F, upregulated in CLL, while downregulated in Eμ-

TCL1 tumours may be explained by the role of INPP5B, upregulated in Eμ-TCL1 tumours, while 

downregulated in CLL. This might be supported by similarities in GO terms, however, some of 

the strongest trends in CLL, such as the global spliceosome upregulation, were not seen in the 

Eμ-TCL1 tumours. Overall, however, this suggests that at the protein level, CLL and the tumours 

emerging from the overexpression of TCL1 in mouse B cells are very different entities.  

In summary, this chapter highlights the potential of the adopted proteomics approaches 

in the characterisation of human CLL samples to achieve disease specific, subtype specific and 

sample specific profiling of relative protein expression. The experiment, which is potentially the 

most comprehensive characterisation of CLL phenotype to date, has yielded both anticipated and 

novel findings pertaining to therapeutic targets as well suggestions of biological mechanisms 

driving CLL. It can therefore be concluded that the investigation of the results produced in this 

characterisation and the further proteomics characterisation of CLL promises to provide novel 

insight into CLL treatment options and a greater understanding of CLL biology. 
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8.0 FINAL DISCUSSION AND FUTURE DIRECTIONS 

Studies characterising B-cell cancers prior to these investigations were limited by 

technological capabilities or only focused on the analysis of cultured, immortalised cell line 

material, not truly representative of an in vivo B-cell cancer phenotype [345, 352]. The 

application of some of the latest advances in MS proteomics to carefully procured primary B-cell 

cancer samples and controls has produced three data-rich characterisations detailing novel and 

anticipated biological and clinical findings. The combined characterisation of plasma and B cells 

in the Eμ-myc and Eμ-TCL1 mouse B-cell cancers models provides one of the most 

comprehensive phenotypic characterisations of cancer models produced to date. The quantitative 

proteomics profiling of CLL has presented the most detailed description of a primary human B-

cell cancer phenotype to date. 

The data produced characterising FFE-isolated Eμ-myc tumour cells (Chapter 3) 

provided a starting point for demonstrating that quantitative MS proteomics could provide data 

which could be validated successfully using Western blotting. While the principle of FFE was 

not entirely compatible with proteomics given the low yields and extensive handling time of 

cells, it allowed a representative sample to be characterised which generally provided accurate 

validation. This suggested that the proteomics approaches combining isobaric tags and 2D-LC 

MS/MS gave a successful, albeit minimal characterisation. Given the limitations of the analysis, 
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it was concluded that further analysis, building upon the lessons learnt from this experimental 

design offered an opportunity to extend the depth of proteome characterisation. 

Studies, including the characterisation detailed in Chapter 3, highlighted the issue 

posed by co-isolation in the compression of ratios when using isobaric tags for relative 

quantitative proteomics. Arguably ratio compression poses the most substantial disadvantage to 

iTRAQ and TMT quantitative proteomics. It was therefore considered that a means of predicting 

ratio compression at a PSM level might offer the opportunity to correct for this limitation. The 

approach described in Chapter 4, weighting isobaric tag quantitations on the basis of PSM 

features proved widely and consistently successful in reducing ratio compression in multiple 

data sets. It was therefore concluded that it would prove applicable to the biological 

characterisation presented in this thesis offering a substantial improvement to the majority of 

ratios. 

To expand upon the work analysed in Chapter 3, alterations were made to the original 

experimental design, such as the additional characterisation of the Eμ-TCL1 B-cell cancer model 

alongside tumours derived from Eμ-myc mice (Chapter 5). Several improvements were offered 

by technical advances which proved highly successful, identifying over 9000 proteins and 

quantitatively profiling 7391. The quantitative results were equally successful with 36% of these 

proteins demonstrating regulation for the Eμ-myc tumours. Analysis of these data revealed 

anticipated protein identification and quantification, such as myc and TCL1, which acted as 

positive controls within the experiment. The findings of proteins upregulated in both tumours 

collectively provided a consistent trend of cancer-related proteins, even suggesting proteins with 

clear putative oncogenic functions, without any prior findings in the literature. Together, this 

suggests that these data may constitute a description of several novel cancer promoting 

mechanisms, which were identified alongside many known tumourigenic pathways. The analysis 

also proved successful in the identification of targets of small molecular inhibitors, both specific 

to each tumour and applicable to both tumours. The combination of novel upregulated oncogenic 

proteins and inhibition targets present numerous possibilities with regards to the application of 

small molecular inhibitors in the context of these, and potentially other cancers. These data also 

highlights inhibition candidates which, if equivalently observed in human cancers, provides 

confirmation of the potential of these models as a preclinical platform for compound testing. 

The cell surface phenotypes of each tumour were also successfully captured, describing 

over 200 differentially expressed transmembrane proteins. Amongst these were both novel and 

anticipated proteins, suggesting several possibilities for further investigation as immunotherapy 

targets in B-cell cancers. One particularly interesting trend which emerged from the membrane 

proteins was that of the Eμ-TCL1 tumour-specific upregulation of both subunits required for 
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signal transduction in response to IL5. In combination with the consistent findings of 

upregulation at the PSM level, this was strongly indicative of either a selective pressure for cells 

expressing, or an aberrant upregulation of, the IL5R. Evaluation of the expression of IL5RA 

confirmed this upregulation on Eμ-TCL1 tumours and to understand any potential role of this 

IL5R upregulation, responses to IL5 were evaluated in vitro. After initial culturing with IL5 

demonstrated a significant dose-dependent expansion of cell density, individual aspects of cell 

proliferation and survival were interrogated. Overall, this revealed that IL5 had a dose-dependent 

effect on promoting cell viability, cell cycle progression and proliferation. This finding was 

consistent with several previous findings of IL5-resposiveness in mouse lymphomas, however 

was a novel observation explaining the possible origin of Eμ-TCL1 tumours [444, 445, 449, 

450]. It seems very likely that the species-specific IL5R-expressing B-cell population in mice 

[448] are conservatively amplified by the overexpression of TCL1. A likely mechanism behind 

this is the amplification of AKT signalling by TCL1 inducing proliferation via molecules such as 

myc [211, 212]. A possible means of testing this hypothesis would be to treat 6-week old WT 

and non-tumourous Eμ-TCL1 B cells with IL5 and observe the proliferative capacity of the 

IL5R+ population in the Eμ-TCL1 B cells. The inhibition of this signalling by PI3K inhibitors 

would further reinforce the role of TCL1 in the PI3K-AKT signalling pathway. Phosphorylated 

GSK3β and myc expression could also be evaluated to demonstrate any signalling downstream 

of AKT. 

While this population of IL5R+ B cells does not appear in humans, the function of the 

TCL1 in the AKT pathway may be interchangeable with other cytokine receptors. IL4R, for 

instance, exerts an analogous pro-survival role in human B cells, and has additionally been 

shown to activate the PI3K/AKT pathway in B-cell lymphoma [563]. This could offer an 

explanation of the effects of TCL1 correlating with more aggressive forms of CLL. It would be 

of interest to investigate any correlation between TCL1 protein expression and IL4 sensitivity in 

CLL. 

While it will be important to ascertain the specific in vivo function of IL5 in Eμ-TCL1 

tumours, an additional benefit of these findings is the suggestion that culturing Eμ-TCL1 

tumours with IL5 in vitro will potentially aid the evaluation of their biology. 

The characterisation of Eμ-TCL1 and Eμ-myc tumours and controls, discussed above, 

was performed on pooled samples to accommodate the samples in a single isobaric labelling 

experiment. Ideally, this work would be expanded upon by the evaluation of individual samples 

to better understand the heterogeneity of these tumours, potentially identifying, for instance why 

certain Eμ-TCL1 and Eμ-myc tumours progress more aggressively than others. There is also 

potential behind evaluating other mouse models of CLL to identify parallels and differences to 
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help conclude the model which most resembles CLL at the molecular level. Models such as the 

APRIL transgenic mouse [564], the ROR1 x TCL1 transgenic mouse [235], the Eμ-miR-29 

transgenic mouse [236], SV40 T antigen-expressing IgH.TEμ mice 19332766 and IL5-

overexpressing models [447] all warrant further investigation using proteomics methodologies. 

Overall, given that IL5 responsiveness appears as a critical mechanism driving the Eμ-

TCL1 tumours, a trait not reproduced in CLL, it was concluded that proteomics of primary 

human CLL samples would be far more suitable for the purposes of biological characterisation 

and clinical target discovery. The comparison between CLL and the Eμ-TCL1 mouse models, 

conducted in Chapter 7, later furthered this suggestion that at the protein level, CLL and the 

tumours emerging from the overexpression of TCL1 in mouse B cells are different entities.  

 

The characterisation of plasma samples (Chapter 6) paralleling the analysis of B-cell 

tumours and controls described in Chapter 5 offered substantial potential in understanding the 

systemic effects of B-cell tumourigenesis in each tumour model. The implementation of SuPrE-

SEC for the enrichment of the low molecular weight sub-proteome presented an effective and 

streamlined strategy in the identification and quantification of protein signatures. While limited 

by some reproducibility issues, these were minimised by technical replicates and the use of the 

RS and statistical tests.  

The terminal plasma proteome characterisation revealed an extensive pattern of cell lysis 

products, which proved traceable to the B-cell tumours themselves, based on PSM numbers. The 

cell lysis signature was most predominantly observed for the Eμ-myc tumours; an expected 

observation given the high rate of apoptosis in the model [182]. While the Eμ-TCL1 tumours 

also had a strong signature of tumour lysis in their plasma, an additional Eμ-TCL1 tumour 

plasma-dominant signature emerged, which suggested a more subtle mechanism of plasma 

proteins becoming upregulated. These included several proteins indicative of an immune 

response to tumours, tumour-secreted proteins and proteins with signatures suggestive of 

shedding from the cell surface of tumours, which were also indicative of possible tumour 

biomarkers. The previous observations of immune aberrations such as an increase in circulatory 

T cells may offer some explanation to this [224]. Biological inferences could also be made 

between the B-cell tumours and plasma, for instance, with a common trend of hyaluronan 

binding in both proteomes suggesting a possible mechanism of tumour-induced 

microenvironment interactions [433, 434].  

This plasma characterisation is reinforced and cross-validated by many of the 

observations made in the B-cell tumour proteomics experiments. Despite these observation in 
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both proteomes, however, validation of the differential proteins abundances is required in 

individual samples. Moreover, functional validation will help better understand the applicability 

of the mechanisms identified.  

The characterisation of pre-terminal Eμ-TCL1 plasma samples also proved successful in 

the identification of terminally-overabundant protein signatures at an early stage of the disease. 

However, it must be noted that the proteins of this signature predominantly presented low 

numbers of PSM and small differential abundances, suggesting that the concentration in the 

whole, pre-terminal Eμ-TCL1 plasma, prior to enrichment would have been very low. This both 

highlights the difficulties, but suggests the potential behind, the plasma proteomics approaches 

outlined in this analysis. To conclude meaning from such subtle signatures it will be important to 

evaluate many individual samples, to ensure that differential protein abundances are consistently 

detectable. 

Overall, the analysis of tumour and pre-tumour plasma demonstrates biomarkers 

attributable to cell lysis, immune reaction, shedding, secretion and possibly microenvironment 

interactions, which were differentially present in the two tumour types, in relation to tumour 

aggression and phenotype. While biomarker discovery is less applicable to CLL, as the 

circulatory leukaemia cells provide a non-invasive means of diagnosis and prognosis, the 

analysis presents a proof-of-principle study that suggests applicability to the identification of 

cancer biomarkers for human solid tumour samples. 

For such human experiments, this analysis highlights the need for rigorously controlled 

sample procurement, the use of individual sample characterisation and, where possible, the 

proteomics characterisation of paralleled tumour tissue samples. The combination of higher 

initial volumes of plasma, higher resolution size exclusion chromatography and greater 

sensitivity provided by the latest MS instrumentation almost certainly has the potential to 

provide a robust method of plasma characterisation. 

 

After the observation of a lack of a response to IL5 and expression of IL5RA observed 

in CLL, like that seen with tumours of the Eμ-TCL1 mouse (Chapter 5), it became apparent that 

to make clinically applicable observations, CLL itself, would need to be characterised. Given the 

consistent success of the other proteomes described in this investigation, an experiment was 

designed which would characterise individual, primary CLL samples (Chapter 7). This 

incorporated the use of bridging controls into two TMT 10-plexes, extending the comparative 

capacity of isobaric-labelled experiments, beyond those described in Chapters 3-6. The 

resulting 2D-LC MS/MS characterisation resulted in the most comprehensive proteomics 
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profiling of CLL to date. The accuracy of this characterisation was corroborated by both 

technical reproducibility and anticipated protein expression of proteins such as CD5, BCL2, 

CD49d and CD38. While limitations such as inter-experimental differences and platelet 

contamination existed, these were addressed with a conservative use of ratios and the 

proteomics-based filtering of platelet proteins, respectively.  

 

The study successfully suggested several potential clinical targets of inhibition or 

immunotherapy. Several known targets of small molecular inhibitors were profiled suggesting 

that CLL may be targetable with several compounds, such as pan-HMOX inhibitors and 

HDAC7-specific inhibitors. The novel protein-level observation of HDAC7 over-expression, 

while corroborated by mRNA overexpression data [490], offers a good candidate for validation 

by WB. 

Cell surface proteins were successfully profiled, suggesting novel and anticipated 

candidates, in approximately equal proportions. CKAP4 presents a very promising candidate 

given its high confidence finding, but will require further investigation to better understand the 

localisation and precise role of this protein. Culturing CLL in the presence of any extracellular 

ligands of CKAP4 may induce measureable alterations in phenotype, such as the reduction of 

AKT phosphorylation seen previously with APF treatment of bladder cancers [511]. If the 

effects are recapitulated, APF, or more specific artificial ligands to CKAP4, could present a 

highly effective means of reducing CLL proliferation. Given its ubiquity, targeting CKAP4 may 

stabilise progressive CLL cases without applying aggressive therapeutics which can lead to a 

more aggressive, treatment-resistance disease. Additionally, the observation of similar CKAP4 

overexpression in Eμ-TCL1 tumours, provides a promising pre-clinical platform for any 

evaluation of CKAP4 function and targeting. 

Prolectin/CLEC17A suggests a very promising target of immunotherapy, with 

expression limited to subsets of B cells. Validation of the cell surface expression of prolectin on 

a wider cohort of CLL will be required to conclude this potential. The observation of prolectin 

association with the BCR complex upon signalling, suggests an interesting avenue for 

investigation to better understand BCR signalling in CLL. The same is true for LAX1 and 

ATP2B4. PIGR also warrants validation and further investigation to identify why circulatory 

cancer cells upregulate an Fc receptor, PIGR, which typically functions in transcytosis across 

endothelial membranes.  
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Pathway analysis highlighted the consistent upregulation of transcriptional and post-

transcriptional processes in CLL. The upregulation of almost every component of the 

spliceosome, may constitute an important finding in understanding previous observations of 

aberrant splicing. It will be important to identify whether overabundance of the spliceosome and 

subsequent overactive splicing is responsible for aberrant splicing observed in CLL.  

Downregulated pathways highlighted a strong trend of downregulation amongst cell 

surface proteins indicative of immune evasion and a dedifferentiated B-cell state. Additionally, 

pathway analysis identified an apparent rewiring of the BCR pathway; suggesting INPP5F as a 

strong candidate for upstream induction of anergy and/or BCR signalling modulation in CLL. 

INPP5F biology is minimally characterised, suggesting a need for further investigation in both 

CLL and healthy B cells to understand any role it may have in BCR signalling. 

 

The subtype-specific trends observed in the CLL cases examined were lower than 

originally anticipated, given the observation of phenotypic and clinical differences between these 

CLL subtypes. This analysis was, however, limited by low sample numbers and each evaluated 

CLL subtype did identify a distinct signature suggesting altered biological trends. U-CLL 

presented a strong trend of mitochondrial protein upregulation, glycosylation upregulation and 

antigen presentation and cell surface protein downregulation. NOTCH1-mutant CLL upregulated 

a trend of immune-related proteins and downregulated aspects of transcriptional regulation. The 

SF3B1-mutant CLL signature was minimal but highlighted specific epigenetic regulators with 

oncogenic potential, which could additionally be targeted with inhibitors. CD38+ CLL cases 

presented a profile indicative of cells with a more active metabolism and cell cycle, in addition 

to more closely resembling the phenotype of healthy B cells. Trisomy 12 CLL cases identified 

an expected signature of upregulated chr12 proteins which suggested some specific oncogenic 

mechanisms such as p53 inhibition.  

Overall, however, the quantitative proteomics results revealed a strong subtype-

independent signature of CLL that was far greater than any subtype-specific trend of protein 

expression. This suggested that despite the several subtypes and heterogeneous nature of CLL 

the overall phenotype was indicative of a generally homogeneous disease. 

To more confidently conclude this homogeneity amongst CLL cases, and to better 

understand the subtype-specific differences, a far greater number and range of samples will need 

to be analysed. Additionally a greater number of control samples would also need to be 

characterised, to understand the signatures arising from B-cell subtypes and inter-individual 

variations. More comprehensive profiling of subtypes would allow more confident conclusions 
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relating to how different subtypes should be clinically managed and treated. An example of this 

is the SF3B1-mutant-specific overexpression of PRMT1 and KDM4B, which may offer subtype-

specific targets of inhibition. 

The proteomics methodologies presented here also promise applicability to several other 

biological questions in the context of CLL. Characterisation of the protein expression changes 

which emerge in MBL and the further changes which are critical to the transformation to CLL, 

could offer a means of defining an early prognosis. The characterisation of B-cell subtypes in 

combination with MBL could additionally suggest strong phenotypic evidence for the elusive 

CLL cell of origin. The proteomics changes related to treatment-resistant CLL could also offer 

specific strategies to increase the chances of avoiding drug resistance and treating it when it 

occurs. Finally, it will be of interest to apply these methods to better understand how global 

protein expression changes in CLL cells localised to different biological niches, such as lymph 

nodes, bone marrow and the spleen. 

 

In conclusion, the application of isobaric labels in 2D-LC MS/MS proteomics has 

provided a successful means of characterising the global protein expression in the context of B-

cell cancers. This investigation presents unparalleled analyses of primary B-cell malignancies 

and plasma, demonstrating both expected and novel findings. These include the identification of 

putative targets of immunotherapy and targets of small molecular inhibitors. In addition to 

suggesting several novel hypotheses, the results offers some explanation to unanswered 

questions in B-cell cancer biology, such as advantages presented by trisomy 12 and a mechanism 

behind aberrant splicing in CLL.  

Finally, these characterisations have highlighted the potential behind isobaric-labelled 

2D-LC MS/MS proteomics. This success not only has implications for deriving further clinical 

impacts to CLL prognosis, diagnosis and treatment, but suggests applicability to other cancers, 

diseases and biological questions. With the field of proteomics continually improving 

characterisation quality, the applications in this investigation suggest that proteomics has the 

potential to become a revolutionary tool in many area of cancer biology and beyond. 

  



367 

 

 

9.0 REFERENCES 

1. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 
144(5): p. 646-74. 

2. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 
3. Mitelman, F., B. Johansson, and F. Mertens, The impact of translocations and gene 

fusions on cancer causation. Nat Rev Cancer, 2007. 7(4): p. 233-45. 
4. Rabbitts, T.H., Commonality but diversity in cancer gene fusions. Cell, 2009. 137(3): p. 

391-5. 
5. Stratton, M.R., P.J. Campbell, and P.A. Futreal, The cancer genome. Nature, 2009. 

458(7239): p. 719-24. 
6. Doll, R., The Pierre Denoix Memorial Lecture: nature and nurture in the control of 

cancer. Eur J Cancer, 1999. 35(1): p. 16-23. 
7. Fletcher, O. and R.S. Houlston, Architecture of inherited susceptibility to common 

cancer. Nat Rev Cancer, 2010. 10(5): p. 353-61. 
8. Finkel, T., M. Serrano, and M.A. Blasco, The common biology of cancer and ageing. 

Nature, 2007. 448(7155): p. 767-74. 
9. Sieber, O.M., K. Heinimann, and I.P. Tomlinson, Genomic instability--the engine of 

tumorigenesis? Nat Rev Cancer, 2003. 3(9): p. 701-8. 
10. Jones, P.A. and S.B. Baylin, The epigenomics of cancer. Cell, 2007. 128(4): p. 683-92. 
11. Vogelstein, B. and K.W. Kinzler, Cancer genes and the pathways they control. Nat Med, 

2004. 10(8): p. 789-99. 
12. Hoeijmakers, J.H., Genome maintenance mechanisms for preventing cancer. Nature, 

2001. 411(6835): p. 366-74. 
13. Greaves, M. and C.C. Maley, Clonal evolution in cancer. Nature, 2012. 481(7381): p. 

306-13. 



368 

 

14. Raff, M.C., Social controls on cell survival and cell death. Nature, 1992. 356(6368): p. 
397-400. 

15. Massague, J., G1 cell-cycle control and cancer. Nature, 2004. 432(7015): p. 298-306. 
16. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA Cancer J Clin, 2013. 

63(1): p. 11-30. 
17. Sidman, C.L., et al., Multiple mechanisms of tumorigenesis in E mu-myc transgenic mice. 

Cancer Res, 1993. 53(7): p. 1665-9. 
18. Lowe, S.W., E. Cepero, and G. Evan, Intrinsic tumour suppression. Nature, 2004. 

432(7015): p. 307-15. 
19. White, R.L., Tumor suppressing pathways. Cell, 1998. 92(5): p. 591-2. 
20. Robanus-Maandag, E., et al., p107 is a suppressor of retinoblastoma development in 

pRb-deficient mice. Genes Dev, 1998. 12(11): p. 1599-609. 
21. Donehower, L.A., et al., Mice deficient for p53 are developmentally normal but 

susceptible to spontaneous tumours. Nature, 1992. 356(6366): p. 215-21. 
22. Visvader, J.E., Cells of origin in cancer. Nature, 2011. 469(7330): p. 314-22. 
23. Fialkow, P.J., et al., Chronic myelocytic leukemia. Origin of some lymphocytes from 

leukemic stem cells. J Clin Invest, 1978. 62(4): p. 815-23. 
24. Campo, E., et al., The 2008 WHO classification of lymphoid neoplasms and beyond: 

evolving concepts and practical applications. Blood, 2011. 117(19): p. 5019-32. 
25. Harris, N.L., et al., The World Health Organization classification of neoplastic diseases of 

the haematopoietic and lymphoid tissues: Report of the Clinical Advisory Committee 
Meeting, Airlie House, Virginia, November 1997. Histopathology, 2000. 36(1): p. 69-86. 

26. Kuppers, R., Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer, 2005. 5(4): 
p. 251-62. 

27. Cooper, M.D. and M.N. Alder, The evolution of adaptive immune systems. Cell, 2006. 
124(4): p. 815-22. 

28. LeBien, T.W. and T.F. Tedder, B lymphocytes: how they develop and function. Blood, 
2008. 112(5): p. 1570-80. 

29. Zhang, S. and T.J. Kipps, The pathogenesis of chronic lymphocytic leukemia. Annu Rev 
Pathol, 2014. 9: p. 103-18. 

30. Iversen, U., et al., Cell kinetics of African cases of Burkitt lymphoma. A preliminary 
report. Eur J Cancer, 1972. 8(3): p. 305-8. 

31. Molyneux, E.M., et al., Burkitt's lymphoma. Lancet, 2012. 379(9822): p. 1234-44. 
32. van den Bosch, C.A., Is endemic Burkitt's lymphoma an alliance between three 

infections and a tumour promoter? Lancet Oncol, 2004. 5(12): p. 738-46. 
33. Miles, R.R., S. Arnold, and M.S. Cairo, Risk factors and treatment of childhood and 

adolescent Burkitt lymphoma/leukaemia. Br J Haematol, 2012. 156(6): p. 730-43. 
34. Taub, R., et al., Translocation of the c-myc gene into the immunoglobulin heavy chain 

locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U 
S A, 1982. 79(24): p. 7837-41. 

35. Bernheim, A., R. Berger, and G. Lenoir, Cytogenetic studies on African Burkitt's 
lymphoma cell lines: t(8;14), t(2;8) and t(8;22) translocations. Cancer Genet Cytogenet, 
1981. 3(4): p. 307-15. 

36. Kuppers, R., B cells under influence: transformation of B cells by Epstein-Barr virus. Nat 
Rev Immunol, 2003. 3(10): p. 801-12. 

37. Thorley-Lawson, D.A. and A. Gross, Persistence of the Epstein-Barr virus and the origins 
of associated lymphomas. N Engl J Med, 2004. 350(13): p. 1328-37. 

38. Brady, G., G.J. Macarthur, and P.J. Farrell, Epstein-Barr virus and Burkitt lymphoma. 
Postgrad Med J, 2008. 84(993): p. 372-7. 



369 

 

39. Neri, A., et al., Epstein-Barr virus infection precedes clonal expansion in Burkitt's and 
acquired immunodeficiency syndrome-associated lymphoma. Blood, 1991. 77(5): p. 
1092-5. 

40. Wilson, J.B., J.L. Bell, and A.J. Levine, Expression of Epstein-Barr virus nuclear antigen-1 
induces B cell neoplasia in transgenic mice. EMBO J, 1996. 15(12): p. 3117-26. 

41. Lane, H.C., et al., Abnormalities of B-cell activation and immunoregulation in patients 
with the acquired immunodeficiency syndrome. N Engl J Med, 1983. 309(8): p. 453-8. 

42. Donati, D., et al., Increased B cell survival and preferential activation of the memory 
compartment by a malaria polyclonal B cell activator. J Immunol, 2006. 177(5): p. 3035-
44. 

43. http://www.cancerresearchuk.org/. 
44. Binet, J.L., et al., A new prognostic classification of chronic lymphocytic leukemia 

derived from a multivariate survival analysis. Cancer, 1981. 48(1): p. 198-206. 
45. Rai, K.R. and A. Sawitsky, A review of the prognostic role of cytogenetic, phenotypic, 

morphologic, and immune function characteristics in chronic lymphocytic leukemia. 
Blood Cells, 1987. 12(2): p. 327-38. 

46. Weiss, N.S., Geographical variation in the incidence of the leukemias and lymphomas. 
Natl Cancer Inst Monogr, 1979(53): p. 139-42. 

47. Hallek, M., et al., Guidelines for the diagnosis and treatment of chronic lymphocytic 
leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia 
updating the National Cancer Institute-Working Group 1996 guidelines. Blood, 2008. 
111(12): p. 5446-56. 

48. Hallek, M., et al., Guidelines for the diagnosis and treatment of chronic lymphocytic 
leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia 
updating the National Cancer Institute-Working Group 1996 guidelines. Blood, 2008. 
111(12): p. 5446-56. 

49. Nabhan, C. and S.T. Rosen, Chronic lymphocytic leukemia: a clinical review. JAMA, 2014. 
312(21): p. 2265-76. 

50. Rawstron, A.C., et al., Monoclonal B-cell lymphocytosis and chronic lymphocytic 
leukemia. N Engl J Med, 2008. 359(6): p. 575-83. 

51. Mowery, Y.M. and M.C. Lanasa, Clinical aspects of monoclonal B-cell lymphocytosis. 
Cancer Control, 2012. 19(1): p. 8-17. 

52. Molica, S., et al., Monoclonal B-cell lymphocytosis: a reappraisal of its clinical 
implications. Leuk Lymphoma, 2012. 53(9): p. 1660-5. 

53. Marti, G.E., et al., Diagnostic criteria for monoclonal B-cell lymphocytosis. Br J 
Haematol, 2005. 130(3): p. 325-32. 

54. Rai, K.R., et al., Clinical staging of chronic lymphocytic leukemia. Blood, 1975. 46(2): p. 
219-34. 

55. Hallek, M., et al., Addition of rituximab to fludarabine and cyclophosphamide in 
patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. 
Lancet, 2010. 376(9747): p. 1164-74. 

56. Brown, J.R., The treatment of relapsed refractory chronic lymphocytic leukemia. 
Hematology Am Soc Hematol Educ Program, 2011. 2011: p. 110-8. 

57. Wiestner, A., Targeting B-Cell receptor signaling for anticancer therapy: the Bruton's 
tyrosine kinase inhibitor ibrutinib induces impressive responses in B-cell malignancies. J 
Clin Oncol, 2013. 31(1): p. 128-30. 

58. Shah, A. and A. Mangaonkar, Idelalisib: A Novel PI3Kdelta Inhibitor for Chronic 
Lymphocytic Leukemia. Ann Pharmacother, 2015. 

59. Souers, A.J., et al., ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor 
activity while sparing platelets. Nat Med, 2013. 19(2): p. 202-8. 

http://www.cancerresearchuk.org/


370 

 

60. Roberts, A.W., et al., Phase 1 study of the safety, pharmacokinetics, and antitumour 
activity of the BCL2 inhibitor navitoclax in combination with rituximab in patients with 
relapsed or refractory CD20(+) lymphoid malignancies. Br J Haematol, 2015. 170(5): p. 
669-78. 

61. Campas, C., et al., Bcl-2 inhibitors induce apoptosis in chronic lymphocytic leukemia 
cells. Exp Hematol, 2006. 34(12): p. 1663-9. 

62. Dighiero, G., et al., B-cell chronic lymphocytic leukemia: present status and future 
directions. French Cooperative Group on CLL. Blood, 1991. 78(8): p. 1901-14. 

63. Dighiero, G., Unsolved issues in CLL biology and management. Leukemia, 2003. 17(12): 
p. 2385-91. 

64. Lanasa, M.C., Novel insights into the biology of CLL. Hematology Am Soc Hematol Educ 
Program, 2010. 2010: p. 70-6. 

65. Messmer, B.T., et al., In vivo measurements document the dynamic cellular kinetics of 
chronic lymphocytic leukemia B cells. J Clin Invest, 2005. 115(3): p. 755-64. 

66. Burger, J.A., M. Burger, and T.J. Kipps, Chronic lymphocytic leukemia B cells express 
functional CXCR4 chemokine receptors that mediate spontaneous migration beneath 
bone marrow stromal cells. Blood, 1999. 94(11): p. 3658-67. 

67. Burger, J.A., et al., Blood-derived nurse-like cells protect chronic lymphocytic leukemia B 
cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood, 2000. 
96(8): p. 2655-63. 

68. Redondo-Munoz, J., et al., Alpha4beta1 integrin and 190-kDa CD44v constitute a cell 
surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal 
B cells. Blood, 2008. 112(1): p. 169-78. 

69. Almasri, N.M., et al., Reduced expression of CD20 antigen as a characteristic marker for 
chronic lymphocytic leukemia. Am J Hematol, 1992. 40(4): p. 259-63. 

70. Damle, R.N., et al., Ig V gene mutation status and CD38 expression as novel prognostic 
indicators in chronic lymphocytic leukemia. Blood, 1999. 94(6): p. 1840-7. 

71. Rosenwald, A., et al., Relation of gene expression phenotype to immunoglobulin 
mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med, 2001. 194(11): p. 
1639-47. 

72. Klein, U., et al., Gene expression profiling of B cell chronic lymphocytic leukemia reveals 
a homogeneous phenotype related to memory B cells. J Exp Med, 2001. 194(11): p. 
1625-38. 

73. Chiorazzi, N. and M. Ferrarini, Cellular origin(s) of chronic lymphocytic leukemia: 
cautionary notes and additional considerations and possibilities. Blood, 2011. 117(6): p. 
1781-91. 

74. Seifert, M., et al., Cellular origin and pathophysiology of chronic lymphocytic leukemia. J 
Exp Med, 2012. 209(12): p. 2183-98. 

75. Chiorazzi, N., K.R. Rai, and M. Ferrarini, Chronic lymphocytic leukemia. N Engl J Med, 
2005. 352(8): p. 804-15. 

76. Chiorazzi, N. and M. Ferrarini, B cell chronic lymphocytic leukemia: lessons learned from 
studies of the B cell antigen receptor. Annu Rev Immunol, 2003. 21: p. 841-94. 

77. Messmer, B.T., et al., Multiple distinct sets of stereotyped antigen receptors indicate a 
role for antigen in promoting chronic lymphocytic leukemia. J Exp Med, 2004. 200(4): p. 
519-25. 

78. Nolz, J.C., et al., ZAP-70 is expressed by a subset of normal human B-lymphocytes 
displaying an activated phenotype. Leukemia, 2005. 19(6): p. 1018-24. 

79. Oscier, D.G., Cytogenetic and molecular abnormalities in chronic lymphocytic 
leukaemia. Blood Rev, 1994. 8(2): p. 88-97. 



371 

 

80. Stilgenbauer, S., P. Lichter, and H. Dohner, Genetic features of B-cell chronic 
lymphocytic leukemia. Rev Clin Exp Hematol, 2000. 4(1): p. 48-72. 

81. Juliusson, G., et al., Prognostic subgroups in B-cell chronic lymphocytic leukemia defined 
by specific chromosomal abnormalities. N Engl J Med, 1990. 323(11): p. 720-4. 

82. Dohner, H., et al., Genomic aberrations and survival in chronic lymphocytic leukemia. N 
Engl J Med, 2000. 343(26): p. 1910-6. 

83. Cimmino, A., et al., miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl 
Acad Sci U S A, 2005. 102(39): p. 13944-9. 

84. Rossi, D., et al., Integrated mutational and cytogenetic analysis identifies new 
prognostic subgroups in chronic lymphocytic leukemia. Blood, 2013. 121(8): p. 1403-12. 

85. Marasca, R., et al., Clinical heterogeneity of de novo 11q deletion chronic lymphocytic 
leukaemia: prognostic relevance of extent of 11q deleted nuclei inside leukemic clone. 
Hematol Oncol, 2013. 31(2): p. 88-95. 

86. Puiggros, A., G. Blanco, and B. Espinet, Genetic abnormalities in chronic lymphocytic 
leukemia: where we are and where we go. Biomed Res Int, 2014. 2014: p. 435983. 

87. Gaidano, G., R. Foa, and R. Dalla-Favera, Molecular pathogenesis of chronic lymphocytic 
leukemia. J Clin Invest, 2012. 122(10): p. 3432-8. 

88. Riches, J.C., et al., Trisomy 12 chronic lymphocytic leukemia cells exhibit upregulation of 
integrin signaling that is modulated by NOTCH1 mutations. Blood, 2014. 123(26): p. 
4101-10. 

89. Zucchetto, A., et al., CD49d is overexpressed by trisomy 12 chronic lymphocytic 
leukemia cells: evidence for a methylation-dependent regulation mechanism. Blood, 
2013. 122(19): p. 3317-21. 

90. Jeromin, S., et al., SF3B1 mutations correlated to cytogenetics and mutations in 
NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia, 
2014. 28(1): p. 108-17. 

91. Rossi, D., et al., The prognostic value of TP53 mutations in chronic lymphocytic leukemia 
is independent of Del17p13: implications for overall survival and chemorefractoriness. 
Clin Cancer Res, 2009. 15(3): p. 995-1004. 

92. Brutsch, R., et al., Integrin cytoplasmic domain-associated protein-1 attenuates 
sprouting angiogenesis. Circ Res, 2010. 107(5): p. 592-601. 

93. Fabbri, G., et al., Analysis of the chronic lymphocytic leukemia coding genome: role of 
NOTCH1 mutational activation. J Exp Med, 2011. 208(7): p. 1389-401. 

94. Rossi, D., et al., Mutations of NOTCH1 are an independent predictor of survival in 
chronic lymphocytic leukemia. Blood, 2012. 119(2): p. 521-9. 

95. Rossi, D., et al., Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: 
association with progression and fludarabine-refractoriness. Blood, 2011. 118(26): p. 
6904-8. 

96. Quesada, V., et al., Exome sequencing identifies recurrent mutations of the splicing 
factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet, 2012. 44(1): p. 47-52. 

97. Ouillette, P., et al., Incidence and clinical implications of ATM aberrations in chronic 
lymphocytic leukemia. Genes Chromosomes Cancer, 2012. 51(12): p. 1125-32. 

98. Rossi, D., et al., Disruption of BIRC3 associates with fludarabine chemorefractoriness in 
TP53 wild-type chronic lymphocytic leukemia. Blood, 2012. 119(12): p. 2854-62. 

99. Ngo, V.N., et al., Oncogenically active MYD88 mutations in human lymphoma. Nature, 
2011. 470(7332): p. 115-9. 

100. Stevenson, F.K., et al., B-cell receptor signaling in chronic lymphocytic leukemia. Blood, 
2011. 118(16): p. 4313-20. 

101. Hamblin, T.J., et al., Unmutated Ig V(H) genes are associated with a more aggressive 
form of chronic lymphocytic leukemia. Blood, 1999. 94(6): p. 1848-54. 



372 

 

102. Guarini, A., et al., BCR ligation induced by IgM stimulation results in gene expression 
and functional changes only in IgV H unmutated chronic lymphocytic leukemia (CLL) 
cells. Blood, 2008. 112(3): p. 782-92. 

103. Catera, R., et al., Chronic lymphocytic leukemia cells recognize conserved epitopes 
associated with apoptosis and oxidation. Mol Med, 2008. 14(11-12): p. 665-74. 

104. Chu, C.C., et al., Chronic lymphocytic leukemia antibodies with a common stereotypic 
rearrangement recognize nonmuscle myosin heavy chain IIA. Blood, 2008. 112(13): p. 
5122-9. 

105. Duhren-von Minden, M., et al., Chronic lymphocytic leukaemia is driven by antigen-
independent cell-autonomous signalling. Nature, 2012. 489(7415): p. 309-12. 

106. Landgren, O., et al., Respiratory tract infections and subsequent risk of chronic 
lymphocytic leukemia. Blood, 2007. 109(5): p. 2198-201. 

107. Kostareli, E., et al., Molecular evidence for EBV and CMV persistence in a subset of 
patients with chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell 
receptors. Leukemia, 2009. 23(5): p. 919-24. 

108. Holler, C., et al., PKCbeta is essential for the development of chronic lymphocytic 
leukemia in the TCL1 transgenic mouse model: validation of PKCbeta as a therapeutic 
target in chronic lymphocytic leukemia. Blood, 2009. 113(12): p. 2791-2794. 

109. Thompson, A.A., et al., Aberrations of the B-cell receptor B29 (CD79b) gene in chronic 
lymphocytic leukemia. Blood, 1997. 90(4): p. 1387-94. 

110. Vuillier, F., et al., Lower levels of surface B-cell-receptor expression in chronic 
lymphocytic leukemia are associated with glycosylation and folding defects of the mu 
and CD79a chains. Blood, 2005. 105(7): p. 2933-40. 

111. Chen, L., et al., ZAP-70 enhances IgM signaling independent of its kinase activity in 
chronic lymphocytic leukemia. Blood, 2008. 111(5): p. 2685-92. 

112. Chen, L., et al., Expression of ZAP-70 is associated with increased B-cell receptor 
signaling in chronic lymphocytic leukemia. Blood, 2002. 100(13): p. 4609-14. 

113. Chen, L., et al., ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. 
Blood, 2005. 105(5): p. 2036-41. 

114. Pede, V., et al., Expression of ZAP70 in chronic lymphocytic leukaemia activates NF-
kappaB signalling. Br J Haematol, 2013. 163(5): p. 621-30. 

115. Antony, P., et al., B cell receptor directs the activation of NFAT and NF-kappaB via 
distinct molecular mechanisms. Exp Cell Res, 2003. 291(1): p. 11-24. 

116. Furman, R.R., et al., Modulation of NF-kappa B activity and apoptosis in chronic 
lymphocytic leukemia B cells. J Immunol, 2000. 164(4): p. 2200-6. 

117. Hewamana, S., et al., The NF-kappaB subunit Rel A is associated with in vitro survival 
and clinical disease progression in chronic lymphocytic leukemia and represents a 
promising therapeutic target. Blood, 2008. 111(9): p. 4681-9. 

118. Zaninoni, A., et al., Cytokine modulation of nuclear factor-kappaB activity in B-chronic 
lymphocytic leukemia. Exp Hematol, 2003. 31(3): p. 185-90. 

119. Horie, R., et al., DHMEQ, a new NF-kappaB inhibitor, induces apoptosis and enhances 
fludarabine effects on chronic lymphocytic leukemia cells. Leukemia, 2006. 20(5): p. 
800-6. 

120. Vaisitti, T., et al., The enzymatic activities of CD38 enhance CLL growth and trafficking: 
implications for therapeutic targeting. Leukemia, 2015. 29(2): p. 356-68. 

121. Bulian, P., et al., CD49d is the strongest flow cytometry-based predictor of overall 
survival in chronic lymphocytic leukemia. J Clin Oncol, 2014. 32(9): p. 897-904. 

122. Damle, R.N., et al., CD38 expression labels an activated subset within chronic 
lymphocytic leukemia clones enriched in proliferating B cells. Blood, 2007. 110(9): p. 
3352-9. 



373 

 

123. Funaro, A., et al., Human CD38 is associated to distinct molecules which mediate 
transmembrane signaling in different lineages. Eur J Immunol, 1993. 23(10): p. 2407-
11. 

124. Deaglio, S., et al., CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia 
cells. Blood, 2003. 102(6): p. 2146-55. 

125. Till, K.J., et al., The chemokine receptor CCR7 and alpha4 integrin are important for 
migration of chronic lymphocytic leukemia cells into lymph nodes. Blood, 2002. 99(8): p. 
2977-84. 

126. Till, K.J., et al., CLL, but not normal, B cells are dependent on autocrine VEGF and 
alpha4beta1 integrin for chemokine-induced motility on and through endothelium. 
Blood, 2005. 105(12): p. 4813-9. 

127. de la Fuente, M.T., et al., Fibronectin interaction with alpha4beta1 integrin prevents 
apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax. 
Leukemia, 1999. 13(2): p. 266-74. 

128. Gattei, V., et al., Relevance of CD49d protein expression as overall survival and 
progressive disease prognosticator in chronic lymphocytic leukemia. Blood, 2008. 
111(2): p. 865-73. 

129. Tsujimoto, Y., et al., Cloning of the chromosome breakpoint of neoplastic B cells with 
the t(14;18) chromosome translocation. Science, 1984. 226(4678): p. 1097-9. 

130. Mertens, D., et al., Allelic silencing at the tumor-suppressor locus 13q14.3 suggests an 
epigenetic tumor-suppressor mechanism. Proc Natl Acad Sci U S A, 2006. 103(20): p. 
7741-6. 

131. Sampath, D., et al., Histone deacetylases mediate the silencing of miR-15a, miR-16, and 
miR-29b in chronic lymphocytic leukemia. Blood, 2012. 119(5): p. 1162-72. 

132. Otake, Y., et al., Overexpression of nucleolin in chronic lymphocytic leukemia cells 
induces stabilization of bcl2 mRNA. Blood, 2007. 109(7): p. 3069-75. 

133. Pepper, C., et al., Mcl-1 expression has in vitro and in vivo significance in chronic 
lymphocytic leukemia and is associated with other poor prognostic markers. Blood, 
2008. 112(9): p. 3807-17. 

134. Gottardi, D., et al., In leukaemic CD5+ B cells the expression of BCL-2 gene family is 
shifted toward protection from apoptosis. Br J Haematol, 1996. 94(4): p. 612-8. 

135. Baskar, S., et al., Unique cell surface expression of receptor tyrosine kinase ROR1 in 
human B-cell chronic lymphocytic leukemia. Clin Cancer Res, 2008. 14(2): p. 396-404. 

136. Barna, G., et al., ROR1 expression is not a unique marker of CLL. Hematol Oncol, 2011. 
29(1): p. 17-21. 

137. Fukuda, T., et al., Antisera induced by infusions of autologous Ad-CD154-leukemia B 
cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci 
U S A, 2008. 105(8): p. 3047-52. 

138. Janovska, P., et al., Autocrine signaling by Wnt-5a deregulates chemotaxis of leukemic 
cells and predicts clinical outcome in chronic lymphocytic leukemia. Clin Cancer Res, 
2015. 

139. Daneshmanesh, A.H., et al., Monoclonal antibodies against ROR1 induce apoptosis of 
chronic lymphocytic leukemia (CLL) cells. Leukemia, 2012. 26(6): p. 1348-55. 

140. Hudecek, M., et al., Receptor affinity and extracellular domain modifications affect 
tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res, 
2013. 19(12): p. 3153-64. 

141. Sipkins, D.A., et al., In vivo imaging of specialized bone marrow endothelial 
microdomains for tumour engraftment. Nature, 2005. 435(7044): p. 969-73. 

142. Burger, J.A., et al., The microenvironment in mature B-cell malignancies: a target for 
new treatment strategies. Blood, 2009. 114(16): p. 3367-75. 



374 

 

143. Herling, M., et al., TCL1 shows a regulated expression pattern in chronic lymphocytic 
leukemia that correlates with molecular subtypes and proliferative state. Leukemia, 
2006. 20(2): p. 280-5. 

144. Bichi, R., et al., Human chronic lymphocytic leukemia modeled in mouse by targeted 
TCL1 expression. Proc Natl Acad Sci U S A, 2002. 99(10): p. 6955-60. 

145. Johnson, A.J., et al., Characterization of the TCL-1 transgenic mouse as a preclinical 
drug development tool for human chronic lymphocytic leukemia. Blood, 2006. 108(4): p. 
1334-8. 

146. Ablain, J., et al., How animal models of leukaemias have already benefited patients. Mol 
Oncol, 2013. 7(2): p. 224-31. 

147. Cespedes, M.V., et al., Mouse models in oncogenesis and cancer therapy. Clin Transl 
Oncol, 2006. 8(5): p. 318-29. 

148. Frese, K.K. and D.A. Tuveson, Maximizing mouse cancer models. Nat Rev Cancer, 2007. 
7(9): p. 645-58. 

149. Becher, O.J. and E.C. Holland, Genetically engineered models have advantages over 
xenografts for preclinical studies. Cancer Res, 2006. 66(7): p. 3355-8, discussion 3358-9. 

150. Rangarajan, A. and R.A. Weinberg, Opinion: Comparative biology of mouse versus 
human cells: modelling human cancer in mice. Nat Rev Cancer, 2003. 3(12): p. 952-9. 

151. Ames, B.N., M.K. Shigenaga, and T.M. Hagen, Oxidants, antioxidants, and the 
degenerative diseases of aging. Proc Natl Acad Sci U S A, 1993. 90(17): p. 7915-22. 

152. Jonkers, J., et al., Synergistic tumor suppressor activity of BRCA2 and p53 in a 
conditional mouse model for breast cancer. Nat Genet, 2001. 29(4): p. 418-25. 

153. Maddison, K. and A.R. Clarke, New approaches for modelling cancer mechanisms in the 
mouse. J Pathol, 2005. 205(2): p. 181-93. 

154. Politi, K. and W. Pao, How genetically engineered mouse tumor models provide insights 
into human cancers. J Clin Oncol, 2011. 29(16): p. 2273-81. 

155. Neel, B.G., et al., Avian leukosis virus-induced tumors have common proviral integration 
sites and synthesize discrete new RNAs: oncogenesis by promoter insertion. Cell, 1981. 
23(2): p. 323-34. 

156. Vennstrom, B., et al., Isolation and characterization of c-myc, a cellular homolog of the 
oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol, 1982. 42(3): p. 773-
9. 

157. Meyer, N. and L.Z. Penn, Reflecting on 25 years with MYC. Nat Rev Cancer, 2008. 8(12): 
p. 976-90. 

158. Eilers, M., et al., Chimaeras of myc oncoprotein and steroid receptors cause hormone-
dependent transformation of cells. Nature, 1989. 340(6228): p. 66-8. 

159. Armelin, H.A., et al., Functional role for c-myc in mitogenic response to platelet-derived 
growth factor. Nature, 1984. 310(5979): p. 655-60. 

160. Blackwell, T.K., et al., Sequence-specific DNA binding by the c-Myc protein. Science, 
1990. 250(4984): p. 1149-51. 

161. Nair, S.K. and S.K. Burley, X-ray structures of Myc-Max and Mad-Max recognizing DNA. 
Molecular bases of regulation by proto-oncogenic transcription factors. Cell, 2003. 
112(2): p. 193-205. 

162. Zeller, K.I., et al., An integrated database of genes responsive to the Myc oncogenic 
transcription factor: identification of direct genomic targets. Genome Biol, 2003. 4(10): 
p. R69. 

163. Kelly, K., et al., Cell-specific regulation of the c-myc gene by lymphocyte mitogens and 
platelet-derived growth factor. Cell, 1983. 35(3 Pt 2): p. 603-10. 



375 

 

164. Klinakis, A., et al., Myc is a Notch1 transcriptional target and a requisite for Notch1-
induced mammary tumorigenesis in mice. Proc Natl Acad Sci U S A, 2006. 103(24): p. 
9262-7. 

165. Dang, C.V., MYC on the path to cancer. Cell, 2012. 149(1): p. 22-35. 
166. Freytag, S.O., Enforced expression of the c-myc oncogene inhibits cell differentiation by 

precluding entry into a distinct predifferentiation state in G0/G1. Mol Cell Biol, 1988. 
8(4): p. 1614-24. 

167. Dang, C.V., et al., The c-Myc target gene network. Semin Cancer Biol, 2006. 16(4): p. 
253-64. 

168. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by 
defined factors. Cell, 2007. 131(5): p. 861-72. 

169. Murre, C., P.S. McCaw, and D. Baltimore, A new DNA binding and dimerization motif in 
immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989. 
56(5): p. 777-83. 

170. Amati, B., et al., Oncogenic activity of the c-Myc protein requires dimerization with 
Max. Cell, 1993. 72(2): p. 233-45. 

171. Grant, P.A., et al., The ATM-related cofactor Tra1 is a component of the purified SAGA 
complex. Mol Cell, 1998. 2(6): p. 863-7. 

172. Amati, B., et al., Function of the c-Myc oncoprotein in chromatin remodeling and 
transcription. Biochim Biophys Acta, 2001. 1471(3): p. M135-45. 

173. McMahon, B. and R.M. Hanson, A toolkit for publishing enhanced figures. J Appl 
Crystallogr, 2008. 41(Pt 4): p. 811-814. 

174. Nesbit, C.E., J.M. Tersak, and E.V. Prochownik, MYC oncogenes and human neoplastic 
disease. Oncogene, 1999. 18(19): p. 3004-16. 

175. Vafa, O., et al., c-Myc can induce DNA damage, increase reactive oxygen species, and 
mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell, 
2002. 9(5): p. 1031-44. 

176. Harris, A.W., et al., The E mu-myc transgenic mouse. A model for high-incidence 
spontaneous lymphoma and leukemia of early B cells. J Exp Med, 1988. 167(2): p. 353-
71. 

177. Alitalo, K., et al., Homogeneously staining chromosomal regions contain amplified 
copies of an abundantly expressed cellular oncogene (c-myc) in malignant 
neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci U S A, 1983. 
80(6): p. 1707-11. 

178. Yada, M., et al., Phosphorylation-dependent degradation of c-Myc is mediated by the F-
box protein Fbw7. EMBO J, 2004. 23(10): p. 2116-25. 

179. Zindy, F., et al., Myc signaling via the ARF tumor suppressor regulates p53-dependent 
apoptosis and immortalization. Genes Dev, 1998. 12(15): p. 2424-33. 

180. Honda, R. and H. Yasuda, Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase 
activity of Mdm2 for tumor suppressor p53. EMBO J, 1999. 18(1): p. 22-7. 

181. Kamijo, T., et al., Functional and physical interactions of the ARF tumor suppressor with 
p53 and Mdm2. Proc Natl Acad Sci U S A, 1998. 95(14): p. 8292-7. 

182. Eischen, C.M., et al., Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in 
Myc-induced lymphomagenesis. Genes Dev, 1999. 13(20): p. 2658-69. 

183. Poe, J.C., et al., A c-Myc and surface CD19 signaling amplification loop promotes B cell 
lymphoma development and progression in mice. J Immunol, 2012. 189(5): p. 2318-25. 

184. Chung, E.Y., et al., CD19 is a major B cell receptor-independent activator of MYC-driven 
B-lymphomagenesis. J Clin Invest, 2012. 122(6): p. 2257-66. 

185. Felsher, D.W. and J.M. Bishop, Transient excess of MYC activity can elicit genomic 
instability and tumorigenesis. Proc Natl Acad Sci U S A, 1999. 96(7): p. 3940-4. 



376 

 

186. Ray, S., et al., MYC can induce DNA breaks in vivo and in vitro independent of reactive 
oxygen species. Cancer Res, 2006. 66(13): p. 6598-605. 

187. Li, Q. and C.V. Dang, c-Myc overexpression uncouples DNA replication from mitosis. Mol 
Cell Biol, 1999. 19(8): p. 5339-51. 

188. Adams, J.M., et al., The c-myc oncogene driven by immunoglobulin enhancers induces 
lymphoid malignancy in transgenic mice. Nature, 1985. 318(6046): p. 533-8. 

189. Mori, S., et al., Utilization of pathway signatures to reveal distinct types of B lymphoma 
in the Emicro-myc model and human diffuse large B-cell lymphoma. Cancer Res, 2008. 
68(20): p. 8525-34. 

190. Zhu, D., et al., Deregulated expression of the Myc cellular oncogene drives development 
of mouse "Burkitt-like" lymphomas from naive B cells. Blood, 2005. 105(5): p. 2135-7. 

191. Langdon, W.Y., et al., The c-myc oncogene perturbs B lymphocyte development in E-mu-
myc transgenic mice. Cell, 1986. 47(1): p. 11-8. 

192. Alexander, W.S., J.W. Schrader, and J.M. Adams, Expression of the c-myc oncogene 
under control of an immunoglobulin enhancer in E mu-myc transgenic mice. Mol Cell 
Biol, 1987. 7(4): p. 1436-44. 

193. Langdon, W.Y., A.W. Harris, and S. Cory, Acceleration of B-lymphoid tumorigenesis in E 
mu-myc transgenic mice by v-H-ras and v-raf but not v-abl. Oncogene Res, 1989. 4(4): 
p. 253-8. 

194. Petock, J.M., et al., Crystal structures of Tcl1 family oncoproteins and their conserved 
surface features. ScientificWorldJournal, 2002. 2: p. 1876-84. 

195. Takizawa, J., et al., Expression of the TCL1 gene at 14q32 in B-cell malignancies but not 
in adult T-cell leukemia. Jpn J Cancer Res, 1998. 89(7): p. 712-8. 

196. Said, J.W., et al., TCL1 oncogene expression in B cell subsets from lymphoid hyperplasia 
and distinct classes of B cell lymphoma. Lab Invest, 2001. 81(4): p. 555-64. 

197. Kang, S.M., et al., Impaired T- and B-cell development in Tcl1-deficient mice. Blood, 
2005. 105(3): p. 1288-94. 

198. Narducci, M.G., et al., TCL1 participates in early embryonic development and is 
overexpressed in human seminomas. Proc Natl Acad Sci U S A, 2002. 99(18): p. 11712-7. 

199. Russo, G., et al., Molecular analysis of a t(14;14) translocation in leukemic T-cells of an 
ataxia telangiectasia patient. Proc Natl Acad Sci U S A, 1989. 86(2): p. 602-6. 

200. Narducci, M.G., et al., TCL1 is overexpressed in patients affected by adult T-cell 
leukemias. Cancer Res, 1997. 57(24): p. 5452-6. 

201. Sakashita, et al., Amplification of the TCL1 flanking region at 14q32.1 with no TCL1 gene 
transcription in a patient with peripheral T cell lymphoma. Leukemia, 1998. 12(6): p. 
970-1. 

202. Takizawa, J. and M. Seto, The TCL1 oncogene is not overexpressed in patients with adult 
T cell leukemia. Leukemia, 1999. 13(2): p. 314. 

203. Narducci, M.G., et al., Regulation of TCL1 expression in B- and T-cell lymphomas and 
reactive lymphoid tissues. Cancer Res, 2000. 60(8): p. 2095-100. 

204. Virgilio, L., et al., Deregulated expression of TCL1 causes T cell leukemia in mice. Proc 
Natl Acad Sci U S A, 1998. 95(7): p. 3885-9. 

205. Croce, C.M., Role of TCL1 and ALL1 in human leukemias and development. Cancer Res, 
1999. 59(7 Suppl): p. 1778s-1783s. 

206. Petock, J.M., et al., Structure of murine Tcl1 at 2.5 A resolution and implications for the 
TCL oncogene family. Acta Crystallogr D Biol Crystallogr, 2001. 57(Pt 11): p. 1545-51. 

207. Hoh, F., et al., Crystal structure of p14TCL1, an oncogene product involved in T-cell 
prolymphocytic leukemia, reveals a novel beta-barrel topology. Structure, 1998. 6(2): p. 
147-55. 



377 

 

208. Yuille, M.R., et al., TCL1 is activated by chromosomal rearrangement or by 
hypomethylation. Genes Chromosomes Cancer, 2001. 30(4): p. 336-41. 

209. Gaudio, E., et al., Heat shock protein 70 regulates Tcl1 expression in leukemia and 
lymphomas. Blood, 2013. 121(2): p. 351-9. 

210. Balatti, V., et al., TCL1 targeting miR-3676 is codeleted with tumor protein p53 in 
chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 2015. 112(7): p. 2169-74. 

211. Pekarsky, Y., et al., Tcl1 enhances Akt kinase activity and mediates its nuclear 
translocation. Proc Natl Acad Sci U S A, 2000. 97(7): p. 3028-33. 

212. Laine, J., et al., The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell, 2000. 
6(2): p. 395-407. 

213. Laine, J., et al., Differential regulation of Akt kinase isoforms by the members of the 
TCL1 oncogene family. J Biol Chem, 2002. 277(5): p. 3743-51. 

214. Suzuki, A., et al., Critical roles of Pten in B cell homeostasis and immunoglobulin class 
switch recombination. J Exp Med, 2003. 197(5): p. 657-67. 

215. Pekarsky, Y., et al., Animal models for chronic lymphocytic leukemia. J Cell Biochem, 
2007. 100(5): p. 1109-18. 

216. Pekarsky, Y., et al., Tcl1 functions as a transcriptional regulator and is directly involved 
in the pathogenesis of CLL. Proc Natl Acad Sci U S A, 2008. 105(50): p. 19643-8. 

217. Ameyar, M., M. Wisniewska, and J.B. Weitzman, A role for AP-1 in apoptosis: the case 
for and against. Biochimie, 2003. 85(8): p. 747-52. 

218. Kriss, C.L., et al., Overexpression of TCL1 activates the endoplasmic reticulum stress 
response: a novel mechanism of leukemic progression in mice. Blood, 2012. 120(5): p. 
1027-38. 

219. Zanesi, N., et al., A Sleeping Beauty screen reveals NF-kB activation in CLL mouse model. 
Blood, 2013. 

220. Noguchi, M., et al., Proto-oncogene TCL1: more than just a coactivator for Akt. FASEB J, 
2007. 21(10): p. 2273-84. 

221. Palamarchuk, A., et al., Tcl1 protein functions as an inhibitor of de novo DNA 
methylation in B-cell chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci U S A, 2012. 
109(7): p. 2555-60. 

222. Kimby, E., et al., T lymphocyte subpopulations in chronic lymphocytic leukemia of B cell 
type in relation to immunoglobulin isotype(s) on the leukemic clone and to clinical 
features. Eur J Haematol, 1987. 38(3): p. 261-7. 

223. Gorgun, G., et al., E(mu)-TCL1 mice represent a model for immunotherapeutic reversal 
of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci U S A, 
2009. 106(15): p. 6250-5. 

224. Hofbauer, J.P., et al., Development of CLL in the TCL1 transgenic mouse model is 
associated with severe skewing of the T-cell compartment homologous to human CLL. 
Leukemia, 2011. 25(9): p. 1452-8. 

225. Chen, S.S., et al., Epigenetic alterations in a murine model for chronic lymphocytic 
leukemia. Cell Cycle, 2009. 8(22): p. 3663-7. 

226. Chen, S.S., et al., Epigenetic changes during disease progression in a murine model of 
human chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 2009. 106(32): p. 
13433-8. 

227. Herling, M., et al., High TCL1 levels are a marker of B-cell receptor pathway 
responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood, 2009. 
114(21): p. 4675-86. 

228. Lucas, D.M., et al., The novel deacetylase inhibitor AR-42 demonstrates pre-clinical 
activity in B-cell malignancies in vitro and in vivo. PLoS One, 2010. 5(6): p. e10941. 



378 

 

229. Zanesi, N., et al., Effect of rapamycin on mouse chronic lymphocytic leukemia and the 
development of nonhematopoietic malignancies in Emu-TCL1 transgenic mice. Cancer 
Res, 2006. 66(2): p. 915-20. 

230. Blunt, M.D., et al., The PI3K/mTOR inhibitor PF-04691502 induces apoptosis and inhibits 
microenvironmental signaling in CLL and the Emicro-TCL1 mouse model. Blood, 2015. 
125(26): p. 4032-41. 

231. Simonetti, G., et al., Mouse models in the study of chronic lymphocytic leukemia 
pathogenesis and therapy. Blood, 2014. 124(7): p. 1010-9. 

232. Liu, J., et al., Loss of p53 and altered miR15-a/16-1short right arrowMCL-1 pathway in 
CLL: insights from TCL1-Tg:p53(-/-) mouse model and primary human leukemia cells. 
Leukemia, 2014. 28(1): p. 118-28. 

233. Enzler, T., et al., Chronic lymphocytic leukemia of Emu-TCL1 transgenic mice undergoes 
rapid cell turnover that can be offset by extrinsic CD257 to accelerate disease 
progression. Blood, 2009. 114(20): p. 4469-76. 

234. Lascano, V., et al., Chronic lymphocytic leukemia disease progression is accelerated by 
APRIL-TACI interaction in the TCL1 transgenic mouse model. Blood, 2013. 122(24): p. 
3960-3. 

235. Widhopf, G.F., 2nd, et al., ROR1 can interact with TCL1 and enhance leukemogenesis in 
Emu-TCL1 transgenic mice. Proc Natl Acad Sci U S A, 2014. 111(2): p. 793-8. 

236. Santanam, U., et al., Chronic lymphocytic leukemia modeled in mouse by targeted miR-
29 expression. Proc Natl Acad Sci U S A, 2010. 107(27): p. 12210-5. 

237. Crick, F., Central dogma of molecular biology. Nature, 1970. 227(5258): p. 561-3. 
238. Thieffry, D. and S. Sarkar, Forty years under the central dogma. Trends Biochem Sci, 

1998. 23(8): p. 312-6. 
239. Hegde, P.S., I.R. White, and C. Debouck, Interplay of transcriptomics and proteomics. 

Curr Opin Biotechnol, 2003. 14(6): p. 647-51. 
240. Leroy, B., et al., The TP53 website: an integrative resource centre for the TP53 mutation 

database and TP53 mutant analysis. Nucleic Acids Res, 2013. 41(Database issue): p. 
D962-9. 

241. Eddy, J.A., et al., Relative expression analysis for molecular cancer diagnosis and 
prognosis. Technol Cancer Res Treat, 2010. 9(2): p. 149-59. 

242. Maher, C.A., et al., Transcriptome sequencing to detect gene fusions in cancer. Nature, 
2009. 458(7234): p. 97-101. 

243. Kozak, M., Some thoughts about translational regulation: forward and backward 
glances. J Cell Biochem, 2007. 102(2): p. 280-90. 

244. Silvera, D., S.C. Formenti, and R.J. Schneider, Translational control in cancer. Nat Rev 
Cancer, 2010. 10(4): p. 254-66. 

245. de Godoy, L.M.F., et al., Comprehensive mass-spectrometry-based proteome 
quantification of haploid versus diploid yeast. Nature, 2008. 455(7217): p. 1251-U60. 

246. Wilkins, M.R., et al., From proteins to proteomes: large scale protein identification by 
two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y), 1996. 
14(1): p. 61-5. 

247. Cox, J. and M. Mann, Is proteomics the new genomics? Cell, 2007. 130(3): p. 395-8. 
248. Gygi, S.P., et al., Correlation between protein and mRNA abundance in yeast. Mol Cell 

Biol, 1999. 19(3): p. 1720-30. 
249. Vogel, C. and E.M. Marcotte, Insights into the regulation of protein abundance from 

proteomic and transcriptomic analyses. Nat Rev Genet, 2012. 13(4): p. 227-32. 
250. Duncan, M.W., R. Aebersold, and R.M. Caprioli, The pros and cons of peptide-centric 

proteomics. Nat Biotechnol, 2010. 28(7): p. 659-64. 



379 

 

251. Altelaar, A.F., J. Munoz, and A.J. Heck, Next-generation proteomics: towards an 
integrative view of proteome dynamics. Nat Rev Genet, 2013. 14(1): p. 35-48. 

252. Gstaiger, M. and R. Aebersold, Applying mass spectrometry-based proteomics to 
genetics, genomics and network biology. Nat Rev Genet, 2009. 10(9): p. 617-27. 

253. Fagerberg, L., et al., Analysis of the human tissue-specific expression by genome-wide 
integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 
2014. 13(2): p. 397-406. 

254. Karas, M. and F. Hillenkamp, Laser desorption ionization of proteins with molecular 
masses exceeding 10,000 daltons. Anal Chem, 1988. 60(20): p. 2299-301. 

255. Hunt, D.F., et al., Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci 
U S A, 1986. 83(17): p. 6233-7. 

256. Wolters, D.A., M.P. Washburn, and J.R. Yates, 3rd, An automated multidimensional 
protein identification technology for shotgun proteomics. Anal Chem, 2001. 73(23): p. 
5683-90. 

257. O'Farrell, P.H., High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 
1975. 250(10): p. 4007-21. 

258. Hanash, S.M., et al., Lineage-related polypeptide markers in acute lymphoblastic 
leukemia detected by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A, 
1986. 83(3): p. 807-11. 

259. Shin, B.K., et al., Global profiling of the cell surface proteome of cancer cells uncovers an 
abundance of proteins with chaperone function. J Biol Chem, 2003. 278(9): p. 7607-16. 

260. Lopez, J.L., Two-dimensional electrophoresis in proteome expression analysis. J 
Chromatogr B Analyt Technol Biomed Life Sci, 2007. 849(1-2): p. 190-202. 

261. Gruber, K.A., et al., Fluorometric assay of vasopressin and oxytocin: a general approach 
to the assay of peptides in tissues. Proc Natl Acad Sci U S A, 1976. 73(4): p. 1314-8. 

262. Di Palma, S., et al., Recent advances in peptide separation by multidimensional liquid 
chromatography for proteome analysis. J Proteomics, 2012. 75(13): p. 3791-813. 

263. Switzar, L., M. Giera, and W.M. Niessen, Protein digestion: an overview of the available 
techniques and recent developments. J Proteome Res, 2013. 12(3): p. 1067-77. 

264. Washburn, M.P., D. Wolters, and J.R. Yates, 3rd, Large-scale analysis of the yeast 
proteome by multidimensional protein identification technology. Nat Biotechnol, 2001. 
19(3): p. 242-7. 

265. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. 
Science, 1989. 246(4926): p. 64-71. 

266. Kebarle, P. and U.H. Verkerk, Electrospray: from ions in solution to ions in the gas 
phase, what we know now. Mass Spectrom Rev, 2009. 28(6): p. 898-917. 

267. Yates, J.R., 3rd, et al., Automated protein identification using microcolumn liquid 
chromatography-tandem mass spectrometry. Methods Mol Biol, 1999. 112: p. 553-69. 

268. Hahne, H., et al., DMSO enhances electrospray response, boosting sensitivity of 
proteomic experiments. Nat Methods, 2013. 10(10): p. 989-91. 

269. Michalski, A., et al., Ultra high resolution linear ion trap Orbitrap mass spectrometer 
(Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation 
modes. Mol Cell Proteomics, 2012. 11(3): p. O111 013698. 

270. Kalli, A., et al., Evaluation and optimization of mass spectrometric settings during data-
dependent acquisition mode: focus on LTQ-Orbitrap mass analyzers. J Proteome Res, 
2013. 12(7): p. 3071-86. 

271. Makarov, A., Electrostatic axially harmonic orbital trapping: a high-performance 
technique of mass analysis. Anal Chem, 2000. 72(6): p. 1156-62. 

272. Wells, J.M. and S.A. McLuckey, Collision-induced dissociation (CID) of peptides and 
proteins. Methods Enzymol, 2005. 402: p. 148-85. 



380 

 

273. Olsen, J.V., et al., Higher-energy C-trap dissociation for peptide modification analysis. 
Nat Methods, 2007. 4(9): p. 709-12. 

274. Roepstorff, P. and J. Fohlman, Proposal for a common nomenclature for sequence ions 
in mass spectra of peptides. Biomed Mass Spectrom, 1984. 11(11): p. 601. 

275. Cox, J., et al., Andromeda: a peptide search engine integrated into the MaxQuant 
environment. J Proteome Res, 2011. 10(4): p. 1794-805. 

276. Yates, J.R., 3rd, et al., Method to correlate tandem mass spectra of modified peptides to 
amino acid sequences in the protein database. Anal Chem, 1995. 67(8): p. 1426-36. 

277. Pappin, D.J., P. Hojrup, and A.J. Bleasby, Rapid identification of proteins by peptide-
mass fingerprinting. Curr Biol, 1993. 3(6): p. 327-32. 

278. Kall, L., et al., Semi-supervised learning for peptide identification from shotgun 
proteomics datasets. Nat Methods, 2007. 4(11): p. 923-5. 

279. Nesvizhskii, A.I. and R. Aebersold, Interpretation of shotgun proteomic data: the protein 
inference problem. Mol Cell Proteomics, 2005. 4(10): p. 1419-40. 

280. Nesvizhskii, A.I., et al., A statistical model for identifying proteins by tandem mass 
spectrometry. Anal Chem, 2003. 75(17): p. 4646-58. 

281. Bantscheff, M., et al., Quantitative mass spectrometry in proteomics: critical review 
update from 2007 to the present. Anal Bioanal Chem, 2012. 404(4): p. 939-65. 

282. Old, W.M., et al., Comparison of label-free methods for quantifying human proteins by 
shotgun proteomics. Mol Cell Proteomics, 2005. 4(10): p. 1487-502. 

283. Bondarenko, P.V., D. Chelius, and T.A. Shaler, Identification and relative quantitation of 
protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid 
chromatography-tandem mass spectrometry. Anal Chem, 2002. 74(18): p. 4741-9. 

284. Bantscheff, M., et al., Quantitative mass spectrometry in proteomics: a critical review. 
Anal Bioanal Chem, 2007. 389(4): p. 1017-31. 

285. Oda, Y., et al., Accurate quantitation of protein expression and site-specific 
phosphorylation. Proc Natl Acad Sci U S A, 1999. 96(12): p. 6591-6. 

286. Ong, S.E., et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple 
and accurate approach to expression proteomics. Mol Cell Proteomics, 2002. 1(5): p. 
376-86. 

287. Ong, S.E., I. Kratchmarova, and M. Mann, Properties of 13C-substituted arginine in 
stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res, 2003. 
2(2): p. 173-81. 

288. Kruger, M., et al., SILAC mouse for quantitative proteomics uncovers kindlin-3 as an 
essential factor for red blood cell function. Cell, 2008. 134(2): p. 353-64. 

289. Rose, K., et al., A new mass-spectrometric C-terminal sequencing technique finds a 
similarity between gamma-interferon and alpha 2-interferon and identifies a 
proteolytically clipped gamma-interferon that retains full antiviral activity. Biochem J, 
1983. 215(2): p. 273-7. 

290. Miyagi, M. and K.C. Rao, Proteolytic 18O-labeling strategies for quantitative 
proteomics. Mass Spectrom Rev, 2007. 26(1): p. 121-36. 

291. Gygi, S.P., et al., Quantitative analysis of complex protein mixtures using isotope-coded 
affinity tags. Nat Biotechnol, 1999. 17(10): p. 994-9. 

292. Zhang, R., et al., Fractionation of isotopically labeled peptides in quantitative 
proteomics. Anal Chem, 2001. 73(21): p. 5142-9. 

293. Schmidt, A., J. Kellermann, and F. Lottspeich, A novel strategy for quantitative 
proteomics using isotope-coded protein labels. Proteomics, 2005. 5(1): p. 4-15. 

294. Hsu, J.L., et al., Stable-isotope dimethyl labeling for quantitative proteomics. Anal 
Chem, 2003. 75(24): p. 6843-52. 



381 

 

295. Thompson, A., et al., Tandem mass tags: a novel quantification strategy for 
comparative analysis of complex protein mixtures by MS/MS. Anal Chem, 2003. 75(8): 
p. 1895-904. 

296. Ross, P.L., et al., Multiplexed protein quantitation in Saccharomyces cerevisiae using 
amine-reactive isobaric tagging reagents. Mol Cell Proteomics, 2004. 3(12): p. 1154-69. 

297. Choe, L., et al., 8-plex quantitation of changes in cerebrospinal fluid protein expression 
in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease. 
Proteomics, 2007. 7(20): p. 3651-60. 

298. Dayon, L., et al., Relative quantification of proteins in human cerebrospinal fluids by 
MS/MS using 6-plex isobaric tags. Anal Chem, 2008. 80(8): p. 2921-31. 

299. McAlister, G.C., et al., Increasing the multiplexing capacity of TMTs using reporter ion 
isotopologues with isobaric masses. Anal Chem, 2012. 84(17): p. 7469-78. 

300. Werner, T., et al., Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal 
Chem, 2014. 86(7): p. 3594-601. 

301. Karp, N.A., et al., Addressing accuracy and precision issues in iTRAQ quantitation. Mol 
Cell Proteomics, 2010. 9(9): p. 1885-97. 

302. Ow, S.Y., et al., iTRAQ underestimation in simple and complex mixtures: "the good, the 
bad and the ugly". J Proteome Res, 2009. 8(11): p. 5347-55. 

303. McAlister, G.C., et al., MultiNotch MS3 enables accurate, sensitive, and multiplexed 
detection of differential expression across cancer cell line proteomes. Anal Chem, 2014. 
86(14): p. 7150-8. 

304. Ow, S.Y., et al., Minimising iTRAQ ratio compression through understanding LC-MS 
elution dependence and high-resolution HILIC fractionation. Proteomics, 2011. 11(11): 
p. 2341-6. 

305. Savitski, M.M., et al., Delayed fragmentation and optimized isolation width settings for 
improvement of protein identification and accuracy of isobaric mass tag quantification 
on Orbitrap-type mass spectrometers. Anal Chem, 2011. 83(23): p. 8959-67. 

306. Shliaha, P.V., et al., Additional Precursor Purification in Isobaric Mass Tagging 
Experiments by Traveling Wave Ion Mobility Separation (TWIMS). J Proteome Res, 
2014. 13(7): p. 3360-9. 

307. Ting, L., et al., MS3 eliminates ratio distortion in isobaric multiplexed quantitative 
proteomics. Nat Methods, 2011. 8(11): p. 937-40. 

308. Wenger, C.D., et al., Gas-phase purification enables accurate, multiplexed proteome 
quantification with isobaric tagging. Nat Methods, 2011. 8(11): p. 933-5. 

309. Sandberg, A., et al., Quantitative accuracy in mass spectrometry based proteomics of 
complex samples: the impact of labeling and precursor interference. J Proteomics, 2014. 
96: p. 133-44. 

310. Savitski, M.M., et al., Measuring and managing ratio compression for accurate 
iTRAQ/TMT quantification. J Proteome Res, 2013. 12(8): p. 3586-98. 

311. Li, H., et al., Estimating Influence of Cofragmentation on Peptide Quantification and 
Identification in iTRAQ Experiments by Simulating Multiplexed Spectra. J Proteome Res, 
2014. 13(7): p. 3488-97. 

312. Hultin-Rosenberg, L., et al., Defining, comparing, and improving iTRAQ quantification in 
mass spectrometry proteomics data. Mol Cell Proteomics, 2013. 12(7): p. 2021-31. 

313. Hanash, S.M., S.J. Pitteri, and V.M. Faca, Mining the plasma proteome for cancer 
biomarkers. Nature, 2008. 452(7187): p. 571-9. 

314. Srivastava, S. and R.G. Srivastava, Proteomics in the forefront of cancer biomarker 
discovery. J Proteome Res, 2005. 4(4): p. 1098-103. 

315. Aebersold, R., et al., Perspective: a program to improve protein biomarker discovery for 
cancer. J Proteome Res, 2005. 4(4): p. 1104-9. 



382 

 

316. Diamandis, E.P., Mass spectrometry as a diagnostic and a cancer biomarker discovery 
tool: opportunities and potential limitations. Mol Cell Proteomics, 2004. 3(4): p. 367-78. 

317. Anderson, N.L. and N.G. Anderson, The human plasma proteome: history, character, 
and diagnostic prospects. Mol Cell Proteomics, 2002. 1(11): p. 845-67. 

318. Jones, K.A., et al., Immunodepletion plasma proteomics by tripleTOF 5600 and Orbitrap 
elite/LTQ-Orbitrap Velos/Q exactive mass spectrometers. J Proteome Res, 2013. 12(10): 
p. 4351-65. 

319. Patel, B.B., et al., Assessment of two immunodepletion methods: off-target effects and 
variations in immunodepletion efficiency may confound plasma proteomics. J Proteome 
Res, 2012. 11(12): p. 5947-58. 

320. Garbis, S.D., et al., A novel multidimensional protein identification technology approach 
combining protein size exclusion prefractionation, peptide zwitterion-ion hydrophilic 
interaction chromatography, and nano-ultraperformance RP chromatography/nESI-
MS2 for the in-depth analysis of the serum proteome and phosphoproteome: 
application to clinical sera derived from humans with benign prostate hyperplasia. Anal 
Chem, 2011. 83(3): p. 708-18. 

321. Al-Daghri, N.M., et al., Whole serum 3D LC-nESI-FTMS quantitative proteomics reveals 
sexual dimorphism in the milieu interieur of overweight and obese adults. J Proteome 
Res, 2014. 13(11): p. 5094-105. 

322. Ochs, R.C. and A. Bagg, Molecular genetic characterization of lymphoma: application to 
cytology diagnosis. Diagn Cytopathol, 2012. 40(6): p. 542-55. 

323. Love, C., et al., The genetic landscape of mutations in Burkitt lymphoma. Nat Genet, 
2012. 44(12): p. 1321-5. 

324. Di Lisio, L., et al., MicroRNA signatures in B-cell lymphomas. Blood Cancer J, 2012. 2(2): 
p. e57. 

325. Lenze, D., et al., The different epidemiologic subtypes of Burkitt lymphoma share a 
homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia, 
2011. 25(12): p. 1869-76. 

326. Blume, C.J., et al., p53-dependent non-coding RNA networks in chronic lymphocytic 
leukemia. Leukemia, 2015. 

327. Yustein, J.T., et al., Induction of ectopic Myc target gene JAG2 augments hypoxic 
growth and tumorigenesis in a human B-cell model. Proc Natl Acad Sci U S A, 2010. 
107(8): p. 3534-9. 

328. Xiao, W., et al., High-throughput RNA sequencing in B-cell lymphomas. Methods Mol 
Biol, 2013. 971: p. 295-312. 

329. Boyd, R.S., M.J. Dyer, and K. Cain, Proteomic analysis of B-cell malignancies. J 
Proteomics, 2010. 73(10): p. 1804-22. 

330. Ludvigsen, M., et al., Proteomic approaches to the study of malignant lymphoma: 
analyses on patient samples. Proteomics Clin Appl, 2015. 9(1-2): p. 72-85. 

331. Li, J., et al., Proteomic characterization of primary diffuse large B-cell lymphomas in the 
central nervous system. J Neurosurg, 2008. 109(3): p. 536-46. 

332. Fujii, K., et al., Protein expression pattern distinguishes different lymphoid neoplasms. 
Proteomics, 2005. 5(16): p. 4274-86. 

333. Kamper, P., et al., Proteomic analysis identifies galectin-1 as a predictive biomarker for 
relapsed/refractory disease in classical Hodgkin lymphoma. Blood, 2011. 117(24): p. 
6638-49. 

334. Braoudaki, M., et al., Protein biomarkers distinguish between high- and low-risk 
pediatric acute lymphoblastic leukemia in a tissue specific manner. J Hematol Oncol, 
2013. 6: p. 52. 



383 

 

335. Polati, R., et al., Tissue proteomics of splenic marginal zone lymphoma. Electrophoresis, 
2015. 36(14): p. 1612-21. 

336. Romesser, P.B., et al., Development of a malignancy-associated proteomic signature for 
diffuse large B-cell lymphoma. Am J Pathol, 2009. 175(1): p. 25-35. 

337. Gkiafi, Z. and G. Panayotou, Comparative proteomic analysis implicates COMMD 
proteins as Epstein-Barr virus targets in the BL41 Burkitt's lymphoma cell line. J 
Proteome Res, 2011. 10(7): p. 2959-68. 

338. Fernandez, M. and J.P. Albar, 2D DIGE for the analysis of RAMOS cells subproteomes. 
Methods Mol Biol, 2012. 854: p. 239-52. 

339. Gurtler, A., et al., The inter-individual variability outperforms the intra-individual 
variability of differentially expressed proteins prior and post irradiation in 
lymphoblastoid cell lines. Arch Physiol Biochem, 2014. 120(5): p. 198-207. 

340. Klanova, M., et al., Downregulation of deoxycytidine kinase in cytarabine-resistant 
mantle cell lymphoma cells confers cross-resistance to nucleoside analogs gemcitabine, 
fludarabine and cladribine, but not to other classes of anti-lymphoma agents. Mol 
Cancer, 2014. 13: p. 159. 

341. Ghobrial, I.M., et al., Proteomic analysis of mantle-cell lymphoma by protein 
microarray. Blood, 2005. 105(9): p. 3722-30. 

342. Huang, X., et al., Quantitative proteomics reveals that miR-155 regulates the PI3K-AKT 
pathway in diffuse large B-cell lymphoma. Am J Pathol, 2012. 181(1): p. 26-33. 

343. Rolland, D., et al., Global phosphoproteomic profiling reveals distinct signatures in B-cell 
non-Hodgkin lymphomas. Am J Pathol, 2014. 184(5): p. 1331-42. 

344. Pighi, C., et al., Phospho-proteomic analysis of mantle cell lymphoma cells suggests a 
pro-survival role of B-cell receptor signaling. Cell Oncol (Dordr), 2011. 34(2): p. 141-53. 

345. Deeb, S.J., et al., Super-SILAC allows classification of diffuse large B-cell lymphoma 
subtypes by their protein expression profiles. Mol Cell Proteomics, 2012. 11(5): p. 77-89. 

346. Deeb, S.J., et al., N-linked glycosylation enrichment for in-depth cell surface proteomics 
of diffuse large B-cell lymphoma subtypes. Mol Cell Proteomics, 2014. 13(1): p. 240-51. 

347. Christopherson, R.I., et al., Mechanisms of action of fludarabine nucleoside against 
human Raji lymphoma cells. Nucleosides Nucleotides Nucleic Acids, 2014. 33(4-6): p. 
375-83. 

348. Hofmann, A., et al., Surfaceome of classical Hodgkin and non-Hodgkin lymphoma. 
Proteomics Clin Appl, 2015. 9(7-8): p. 661-70. 

349. Diez, P., et al., Integration of Proteomics and Transcriptomics Data Sets for the Analysis 
of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome 
Project. J Proteome Res, 2015. 

350. Boyd, R.S., et al., Protein profiling of plasma membranes defines aberrant signaling 
pathways in mantle cell lymphoma. Mol Cell Proteomics, 2009. 8(7): p. 1501-15. 

351. Fujii, K., et al., Proteomic study identified HSP 70 kDa protein 1A as a possible 
therapeutic target, in combination with histone deacetylase inhibitors, for lymphoid 
neoplasms. J Proteomics, 2012. 75(4): p. 1401-10. 

352. Eagle, G.L., et al., Total proteome analysis identifies migration defects as a major 
pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated 
chronic lymphocytic leukemia. Mol Cell Proteomics, 2015. 14(4): p. 933-45. 

353. Alsagaby, S.A., et al., Proteomics-based strategies to identify proteins relevant to 
chronic lymphocytic leukemia. J Proteome Res, 2014. 13(11): p. 5051-62. 

354. Glibert, P., et al., Quantitative proteomics to characterize specific histone H2A 
proteolysis in chronic lymphocytic leukemia and the myeloid THP-1 cell line. Int J Mol 
Sci, 2014. 15(6): p. 9407-21. 



384 

 

355. Kashuba, E., et al., Proteomic analysis of B-cell receptor signaling in chronic lymphocytic 
leukaemia reveals a possible role for kininogen. J Proteomics, 2013. 91: p. 478-85. 

356. O'Hayre, M., et al., Elucidating the CXCL12/CXCR4 signaling network in chronic 
lymphocytic leukemia through phosphoproteomics analysis. PLoS One, 2010. 5(7): p. 
e11716. 

357. Miguet, L., et al., Proteomic analysis of malignant B-cell derived microparticles reveals 
CD148 as a potentially useful antigenic biomarker for mantle cell lymphoma diagnosis. J 
Proteome Res, 2009. 8(7): p. 3346-54. 

358. Barnidge, D.R., et al., Quantitative protein expression analysis of CLL B cells from 
mutated and unmutated IgV(H) subgroups using acid-cleavable isotope-coded affinity 
tag reagents. J Proteome Res, 2005. 4(4): p. 1310-7. 

359. Barnidge, D.R., et al., Protein expression profiling of CLL B cells using replicate off-line 
strong cation exchange chromatography and LC-MS/MS. J Chromatogr B Analyt 
Technol Biomed Life Sci, 2005. 819(1): p. 33-9. 

360. Cochran, D.A., et al., Proteomic analysis of chronic lymphocytic leukemia subtypes with 
mutated or unmutated Ig V(H) genes. Mol Cell Proteomics, 2003. 2(12): p. 1331-41. 

361. Perrot, A., et al., A unique proteomic profile on surface IgM ligation in unmutated 
chronic lymphocytic leukemia. Blood, 2011. 118(4): p. e1-15. 

362. Voss, T., et al., Correlation of clinical data with proteomics profiles in 24 patients with B-
cell chronic lymphocytic leukemia. Int J Cancer, 2001. 91(2): p. 180-6. 

363. Boyd, R.S., et al., Proteomic analysis of the cell-surface membrane in chronic 
lymphocytic leukemia: identification of two novel proteins, BCNP1 and MIG2B. 
Leukemia, 2003. 17(8): p. 1605-12. 

364. Adeghe, A.J. and J. Cohen, A better method for terminal bleeding of mice. Lab Anim, 
1986. 20(1): p. 70-2. 

365. Papachristou, E.K., et al., The shotgun proteomic study of the human ThinPrep cervical 
smear using iTRAQ mass-tagging and 2D LC-FT-Orbitrap-MS: the detection of the 
human papillomavirus at the protein level. J Proteome Res, 2013. 12(5): p. 2078-89. 

366. Levin, Y., The role of statistical power analysis in quantitative proteomics. Proteomics, 
2011. 11(12): p. 2565-7. 

367. Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of 
large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57. 

368. Bausch-Fluck, D., et al., A mass spectrometric-derived cell surface protein atlas. PLoS 
One, 2015. 10(3): p. e0121314. 

369. de Souza, J.E., et al., SurfaceomeDB: a cancer-orientated database for genes encoding 
cell surface proteins. Cancer Immun, 2012. 12: p. 15. 

370. Beroukhim, R., et al., The landscape of somatic copy-number alteration across human 
cancers. Nature, 2010. 463(7283): p. 899-905. 

371. Strasser, A., et al., Novel primitive lymphoid tumours induced in transgenic mice by 
cooperation between myc and bcl-2. Nature, 1990. 348(6299): p. 331-3. 

372. Ian Cumming, O.L., A method of sorting cells, in European Patent Register. 2011. 
373. Geiger, T., et al., Comparative proteomic analysis of eleven common cell lines reveals 

ubiquitous but varying expression of most proteins. Mol Cell Proteomics, 2012. 11(3): p. 
M111 014050. 

374. !!! INVALID CITATION !!! {Besson, 2011 #78;Chang, 2011 #79;Voisin, 2011 #80;Geiger, 
2012 #526}. 

375. Steen, H. and M. Mann, The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell 
Biol, 2004. 5(9): p. 699-711. 



385 

 

376. Pan, C., et al., Comparative proteomic phenotyping of cell lines and primary cells to 
assess preservation of cell type-specific functions. Mol Cell Proteomics, 2009. 8(3): p. 
443-50. 

377. Colley, S.M., P.A. Tilbrook, and S.P. Klinken, Increased transcription of the E mu-myc 
transgene and mRNA stabilisation produce only a modest elevation in Myc protein. 
Oncogene, 1997. 14(22): p. 2735-9. 

378. Asano, S., M. Mishima, and E. Nishida, Coronin forms a stable dimer through its C-
terminal coiled coil region: an implicated role in its localization to cell periphery. Genes 
Cells, 2001. 6(3): p. 225-35. 

379. Galkin, V.E., et al., Coronin-1A stabilizes F-actin by bridging adjacent actin protomers 
and stapling opposite strands of the actin filament. J Mol Biol, 2008. 376(3): p. 607-13. 

380. Mueller, P., et al., Regulation of T cell survival through coronin-1-mediated generation 
of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. 
Nat Immunol, 2008. 9(4): p. 424-31. 

381. Foger, N., et al., Requirement for coronin 1 in T lymphocyte trafficking and cellular 
homeostasis. Science, 2006. 313(5788): p. 839-42. 

382. Pollard, T.D. and G.G. Borisy, Cellular motility driven by assembly and disassembly of 
actin filaments. Cell, 2003. 112(4): p. 453-65. 

383. Haraldsson, M.K., et al., The lupus-related Lmb3 locus contains a disease-suppressing 
Coronin-1A gene mutation. Immunity, 2008. 28(1): p. 40-51. 

384. Honore, B., S. Buus, and M.H. Claesson, Identification of differentially expressed 
proteins in spontaneous thymic lymphomas from knockout mice with deletion of p53. 
Proteome Sci, 2008. 6: p. 18. 

385. Sreedhar, A.S., et al., Hsp90 isoforms: functions, expression and clinical importance. 
FEBS Lett, 2004. 562(1-3): p. 11-5. 

386. DeSouza, L.V., et al., Endometrial carcinoma biomarker discovery and verification using 
differentially tagged clinical samples with multidimensional liquid chromatography and 
tandem mass spectrometry. Mol Cell Proteomics, 2007. 6(7): p. 1170-82. 

387. DeSouza, L.V., et al., Absolute quantification of potential cancer markers in clinical 
tissue homogenates using multiple reaction monitoring on a hybrid triple 
quadrupole/linear ion trap tandem mass spectrometer. Anal Chem, 2009. 81(9): p. 
3462-70. 

388. Koopman, G., et al., Annexin V for flow cytometric detection of phosphatidylserine 
expression on B cells undergoing apoptosis. Blood, 1994. 84(5): p. 1415-20. 

389. Juin, P., et al., c-Myc-induced sensitization to apoptosis is mediated through 
cytochrome c release. Genes Dev, 1999. 13(11): p. 1367-81. 

390. Johansson, H.J., et al., Retinoic acid receptor alpha is associated with tamoxifen 
resistance in breast cancer. Nat Commun, 2013. 4: p. 2175. 

391. Sheng, Q., et al., Preprocessing Significantly Improves the Peptide/Protein Identification 
Sensitivity of High-resolution Isobarically Labeled Tandem Mass Spectrometry Data. 
Mol Cell Proteomics, 2015. 14(2): p. 405-17. 

392. Yan, X.J., et al., B cell receptors in TCL1 transgenic mice resemble those of aggressive, 
treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 
2006. 103(31): p. 11713-8. 

393. Rickert, R.C., New insights into pre-BCR and BCR signalling with relevance to B cell 
malignancies. Nat Rev Immunol, 2013. 13(8): p. 578-91. 

394. Post, S.M., et al., p53-dependent senescence delays Emu-myc-induced B-cell 
lymphomagenesis. Oncogene, 2010. 29(9): p. 1260-9. 

395. Kon, N., et al., Inactivation of arf-bp1 induces p53 activation and diabetic phenotypes in 
mice. J Biol Chem, 2012. 287(7): p. 5102-11. 



386 

 

396. Qiu, F., et al., Arginine starvation impairs mitochondrial respiratory function in ASS1-
deficient breast cancer cells. Sci Signal, 2014. 7(319): p. ra31. 

397. Miraki-Moud, F., et al., Arginine deprivation using pegylated arginine deiminase has 
activity against primary acute myeloid leukemia cells in vivo. Blood, 2015. 125(26): p. 
4060-8. 

398. Shan, Y.S., et al., Argininosuccinate synthetase 1 suppression and arginine restriction 
inhibit cell migration in gastric cancer cell lines. Sci Rep, 2015. 5: p. 9783. 

399. Changou, C.A., et al., Arginine starvation-associated atypical cellular death involves 
mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc Natl 
Acad Sci U S A, 2014. 111(39): p. 14147-52. 

400. Tan, G.S., et al., Novel proteomic biomarker panel for prediction of aggressive 
metastatic hepatocellular carcinoma relapse in surgically resectable patients. J 
Proteome Res, 2014. 13(11): p. 4833-46. 

401. Shan, Y.S., et al., Increased expression of argininosuccinate synthetase protein predicts 
poor prognosis in human gastric cancer. Oncol Rep, 2015. 33(1): p. 49-57. 

402. Tsai, W.B., et al., Resistance to arginine deiminase treatment in melanoma cells is 
associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-
1alpha/Sp4. Mol Cancer Ther, 2009. 8(12): p. 3223-33. 

403. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-14. 
404. Solana, R., et al., MHC class I antigen expression is inversely related with tumor 

malignancy and ras oncogene product (p21ras) levels in human breast tumors. Invasion 
Metastasis, 1992. 12(3-4): p. 210-7. 

405. Paulson, K.G., et al., Downregulation of MHC-I expression is prevalent but reversible in 
Merkel cell carcinoma. Cancer Immunol Res, 2014. 2(11): p. 1071-9. 

406. Friedmann-Morvinski, D. and I.M. Verma, Dedifferentiation and reprogramming: origins 
of cancer stem cells. EMBO Rep, 2014. 15(3): p. 244-53. 

407. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse 
embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76. 

408. Iacovelli, S., et al., Two types of BCR interactions are positively selected during leukemia 
development in the Emu-TCL1 transgenic mouse model of CLL. Blood, 2015. 125(10): p. 
1578-88. 

409. Cheung-Ong, K., G. Giaever, and C. Nislow, DNA-damaging agents in cancer 
chemotherapy: serendipity and chemical biology. Chem Biol, 2013. 20(5): p. 648-59. 

410. Bouwman, P. and J. Jonkers, The effects of deregulated DNA damage signalling on 
cancer chemotherapy response and resistance. Nat Rev Cancer, 2012. 12(9): p. 587-98. 

411. Rai, K.R., et al., Fludarabine compared with chlorambucil as primary therapy for chronic 
lymphocytic leukemia. N Engl J Med, 2000. 343(24): p. 1750-7. 

412. Wu, J., et al., The up-regulation of histone deacetylase 8 promotes proliferation and 
inhibits apoptosis in hepatocellular carcinoma. Dig Dis Sci, 2013. 58(12): p. 3545-53. 

413. Lee, H., et al., Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B 
(hEST1B) protein from ubiquitin-mediated degradation. Mol Cell Biol, 2006. 26(14): p. 
5259-69. 

414. Qian, Y., et al., DEC1 coordinates with HDAC8 to differentially regulate TAp73 and 
DeltaNp73 expression. PLoS One, 2014. 9(1): p. e84015. 

415. Yan, W., et al., Histone deacetylase inhibitors suppress mutant p53 transcription via 
histone deacetylase 8. Oncogene, 2013. 32(5): p. 599-609. 

416. Gao, S.M., et al., Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT 
signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in 
myeloproliferative neoplasms. Exp Hematol, 2013. 41(3): p. 261-70 e4. 



387 

 

417. Hu, E., et al., Cloning and characterization of a novel human class I histone deacetylase 
that functions as a transcription repressor. J Biol Chem, 2000. 275(20): p. 15254-64. 

418. Choudhary, C., et al., Lysine acetylation targets protein complexes and co-regulates 
major cellular functions. Science, 2009. 325(5942): p. 834-40. 

419. Tang, W., et al., Discovery of histone deacetylase 8 selective inhibitors. Bioorg Med 
Chem Lett, 2011. 21(9): p. 2601-5. 

420. Krennhrubec, K., et al., Design and evaluation of 'Linkerless' hydroxamic acids as 
selective HDAC8 inhibitors. Bioorg Med Chem Lett, 2007. 17(10): p. 2874-8. 

421. Balasubramanian, S., et al., A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-
34051 induces apoptosis in T-cell lymphomas. Leukemia, 2008. 22(5): p. 1026-34. 

422. Macheda, M.L., S. Rogers, and J.D. Best, Molecular and cellular regulation of glucose 
transporter (GLUT) proteins in cancer. J Cell Physiol, 2005. 202(3): p. 654-62. 

423. Polanski, R., et al., Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in 
small cell lung cancer. Clin Cancer Res, 2014. 20(4): p. 926-37. 

424. Diers, A.R., et al., Pyruvate fuels mitochondrial respiration and proliferation of breast 
cancer cells: effect of monocarboxylate transporter inhibition. Biochem J, 2012. 444(3): 
p. 561-71. 

425. Karunakaran, S., et al., SLC6A14 (ATB0,+) protein, a highly concentrative and broad 
specific amino acid transporter, is a novel and effective drug target for treatment of 
estrogen receptor-positive breast cancer. J Biol Chem, 2011. 286(36): p. 31830-8. 

426. Babu, E., et al., Deletion of the amino acid transporter Slc6a14 suppresses tumour 
growth in spontaneous mouse models of breast cancer. Biochem J, 2015. 469(1): p. 17-
23. 

427. Imai, H., et al., Inhibition of L-type amino acid transporter 1 has antitumor activity in 
non-small cell lung cancer. Anticancer Res, 2010. 30(12): p. 4819-28. 

428. Franklin, R.B., et al., ZIP14 zinc transporter downregulation and zinc depletion in the 
development and progression of hepatocellular cancer. J Gastrointest Cancer, 2012. 
43(2): p. 249-57. 

429. Zou, J., et al., hZIP1 zinc transporter down-regulation in prostate cancer involves the 
overexpression of ras responsive element binding protein-1 (RREB-1). Prostate, 2011. 
71(14): p. 1518-24. 

430. Franklin, R.B., et al., hZIP1 zinc uptake transporter down regulation and zinc depletion 
in prostate cancer. Mol Cancer, 2005. 4: p. 32. 

431. Henshall, S.M., et al., Expression of the zinc transporter ZnT4 is decreased in the 
progression from early prostate disease to invasive prostate cancer. Oncogene, 2003. 
22(38): p. 6005-12. 

432. Jin, J., et al., Knockdown of zinc transporter ZIP5 (SLC39A5) expression significantly 
inhibits human esophageal cancer progression. Oncol Rep, 2015. 34(3): p. 1431-9. 

433. Wu, L., et al., Zinc transporter genes and urological cancers: integrated analysis 
suggests a role for ZIP11 in bladder cancer. Tumour Biol, 2015. 

434. Li, M., et al., Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly 
contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad 
Sci U S A, 2007. 104(47): p. 18636-41. 

435. Zhang, Y., et al., ZIP4 regulates pancreatic cancer cell growth by activating IL-6/STAT3 
pathway through zinc finger transcription factor CREB. Clin Cancer Res, 2010. 16(5): p. 
1423-30. 

436. Tabarkiewicz, J. and K. Giannopoulos, Definition of a target for immunotherapy and 
results of the first Peptide vaccination study in chronic lymphocytic leukemia. 
Transplant Proc, 2010. 42(8): p. 3293-6. 



388 

 

437. Snauwaert, S., et al., RHAMM/HMMR (CD168) is not an ideal target antigen for 
immunotherapy of acute myeloid leukemia. Haematologica, 2012. 97(10): p. 1539-47. 

438. Gurski, L.A., et al., Hyaluronan (HA) interacting proteins RHAMM and hyaluronidase 
impact prostate cancer cell behavior and invadopodia formation in 3D HA-based 
hydrogels. PLoS One, 2012. 7(11): p. e50075. 

439. Augustin, F., et al., Receptor for hyaluronic acid-mediated motility (RHAMM, CD168) 
expression is prognostically important in both nodal negative and nodal positive large 
cell lung cancer. J Clin Pathol, 2015. 68(5): p. 368-73. 

440. Ishigami, S., et al., Prognostic impact of CD168 expression in gastric cancer. BMC 
Cancer, 2011. 11: p. 106. 

441. Nagel, S., et al., Coexpression of CD44 variant isoforms and receptor for hyaluronic acid-
mediated motility (RHAMM, CD168) is an International Prognostic Index and C-MYC 
gene status-independent predictor of poor outcome in diffuse large B-cell lymphomas. 
Exp Hematol, 2010. 38(1): p. 38-45. 

442. Gust, K.M., et al., RHAMM (CD168) is overexpressed at the protein level and may 
constitute an immunogenic antigen in advanced prostate cancer disease. Neoplasia, 
2009. 11(9): p. 956-63. 

443. Slavin, S. and S. Strober, Spontaneous murine B-cell leukaemia. Nature, 1978. 
272(5654): p. 624-6. 

444. O'Garra, A., et al., The BCL1 B lymphoma responds to IL-4, IL-5, and GM-CSF. Cell 
Immunol, 1989. 123(1): p. 189-200. 

445. Lohoff, M., F. Sommer, and M. Rollinghoff, Suppressive effect of interferon-gamma on 
the BCL1 cell-dependent interleukin 5 bioassay. Eur J Immunol, 1989. 19(7): p. 1327-9. 

446. Lasky, J.L. and G.J. Thorbecke, Characterization and growth factor requirements of SJL 
lymphomas. II. Interleukin 5 dependence of the in vitro cell line, cRCS-X, and influence of 
other cytokines. Eur J Immunol, 1989. 19(2): p. 365-71. 

447. Wen, X., et al., Transgene-mediated hyper-expression of IL-5 inhibits autoimmune 
disease but increases the risk of B cell chronic lymphocytic leukemia in a model of 
murine lupus. Eur J Immunol, 2004. 34(10): p. 2740-9. 

448. Rolink, A.G., et al., Characterization of the interleukin 5-reactive splenic B cell 
population. Eur J Immunol, 1990. 20(9): p. 1949-56. 

449. Wetzel, G.D., Interleukin 5 regulation of peritoneal Ly-1 B lymphocyte proliferation, 
differentiation and autoantibody secretion. Eur J Immunol, 1989. 19(9): p. 1701-7. 

450. Sanderson, C.J., Interleukin-5: an eosinophil growth and activation factor. Dev Biol 
Stand, 1988. 69: p. 23-9. 

451. Kopf, M., et al., IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and 
lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity, 
1996. 4(1): p. 15-24. 

452. Sato, S., et al., IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing 
proteins and activation of Bruton's tyrosine and Janus 2 kinases. J Exp Med, 1994. 
180(6): p. 2101-11. 

453. Coffer, P.J., et al., Analysis of signal transduction pathways in human eosinophils 
activated by chemoattractants and the T-helper 2-derived cytokines interleukin-4 and 
interleukin-5. Blood, 1998. 91(7): p. 2547-57. 

454. Adachi, T. and R. Alam, The mechanism of IL-5 signal transduction. Am J Physiol, 1998. 
275(3 Pt 1): p. C623-33. 

455. Mainou-Fowler, T. and A.G. Prentice, Modulation of apoptosis with cytokines in B-cell 
chronic lymphocytic leukaemia. Leuk Lymphoma, 1996. 21(5-6): p. 369-77. 



389 

 

456. Clutterbuck, E., et al., Recombinant human interleukin 5 is an eosinophil differentiation 
factor but has no activity in standard human B cell growth factor assays. Eur J Immunol, 
1987. 17(12): p. 1743-50. 

457. Keshishian, H., et al., Multiplexed, Quantitative Workflow for Sensitive Biomarker 
Discovery in Plasma Yields Novel Candidates for Early Myocardial Injury. Mol Cell 
Proteomics, 2015. 14(9): p. 2375-93. 

458. van Winden, A.W., et al., Serum degradome markers for the detection of breast cancer. 
J Proteome Res, 2010. 9(8): p. 3781-8. 

459. Karczmarski, J., et al., Pre-analytical-related variability influencing serum peptide 
profiles demonstrated in a mass spectrometry-based search for colorectal and prostate 
cancer biomarkers. Acta Biochim Pol, 2013. 60(3): p. 417-25. 

460. Yang, J., et al., Identification of potential serum proteomic biomarkers for clear cell 
renal cell carcinoma. PLoS One, 2014. 9(11): p. e111364. 

461. Davidson, M.B., et al., Pathophysiology, clinical consequences, and treatment of tumor 
lysis syndrome. Am J Med, 2004. 116(8): p. 546-54. 

462. Wossmann, W., et al., Incidence of tumor lysis syndrome in children with advanced 
stage Burkitt's lymphoma/leukemia before and after introduction of prophylactic use of 
urate oxidase. Ann Hematol, 2003. 82(3): p. 160-5. 

463. Otrock, Z.K., H.A. Hatoum, and Z.M. Salem, Acute tumor lysis syndrome after rituximab 
administration in Burkitt's lymphoma. Intern Emerg Med, 2008. 3(2): p. 161-3. 

464. Ludwig, A.K. and B. Giebel, Exosomes: small vesicles participating in intercellular 
communication. Int J Biochem Cell Biol, 2012. 44(1): p. 11-5. 

465. Shimizu, K., et al., Integrity of intracellular domain of Notch ligand is indispensable for 
cleavage required for release of the Notch2 intracellular domain. EMBO J, 2002. 21(3): 
p. 294-302. 

466. Inlay, M.A., et al., Ly6d marks the earliest stage of B-cell specification and identifies the 
branchpoint between B-cell and T-cell development. Genes Dev, 2009. 23(20): p. 2376-
81. 

467. Flach, H., et al., Mzb1 protein regulates calcium homeostasis, antibody secretion, and 
integrin activation in innate-like B cells. Immunity, 2010. 33(5): p. 723-35. 

468. Herold, T., et al., High expression of MZB1 predicts adverse prognosis in chronic 
lymphocytic leukemia, follicular lymphoma and diffuse large B-cell lymphoma and is 
associated with a unique gene expression signature. Leuk Lymphoma, 2013. 54(8): p. 
1652-7. 

469. Oing, C., et al., Aberrant DNA hypermethylation of the ITIH5 tumor suppressor gene in 
acute myeloid leukemia. Clin Epigenetics, 2011. 2(2): p. 419-23. 

470. Hamm, A., et al., Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain 
(ITIH) genes in multiple human solid tumors: a systematic expression analysis. BMC 
Cancer, 2008. 8: p. 25. 

471. Burkhart, J.M., et al., The first comprehensive and quantitative analysis of human 
platelet protein composition allows the comparative analysis of structural and 
functional pathways. Blood, 2012. 120(15): p. e73-82. 

472. Kawai, T., H. Sanjo, and S. Akira, Duet is a novel serine/threonine kinase with Dbl-
Homology (DH) and Pleckstrin-Homology (PH) domains. Gene, 1999. 227(2): p. 249-55. 

473. Dinchuk, J.E., et al., Absence of post-translational aspartyl beta-hydroxylation of 
epidermal growth factor domains in mice leads to developmental defects and an 
increased incidence of intestinal neoplasia. J Biol Chem, 2002. 277(15): p. 12970-7. 

474. Yoshimura, S., et al., Family-wide characterization of the DENN domain Rab GDP-GTP 
exchange factors. J Cell Biol, 2010. 191(2): p. 367-81. 



390 

 

475. Zhu, M., et al., Molecular cloning of a novel gene encoding a membrane-associated 
adaptor protein (LAX) in lymphocyte signaling. J Biol Chem, 2002. 277(48): p. 46151-8. 

476. Chen, J., et al., CD22 attenuates calcium signaling by potentiating plasma membrane 
calcium-ATPase activity. Nat Immunol, 2004. 5(6): p. 651-7. 

477. Jackson, T.A., et al., FcR-like 2 Inhibition of B cell receptor-mediated activation of B cells. 
J Immunol, 2010. 185(12): p. 7405-12. 

478. Nuckel, H., et al., FCRL2 mRNA expression is inversely associated with clinical 
progression in chronic lymphocytic leukemia. Eur J Haematol, 2009. 83(6): p. 541-9. 

479. Li, F.J., et al., FCRL2 expression predicts IGHV mutation status and clinical progression in 
chronic lymphocytic leukemia. Blood, 2008. 112(1): p. 179-87. 

480. Zhu, Z., et al., FCRL5 exerts binary and compartment-specific influence on innate-like B-
cell receptor signaling. Proc Natl Acad Sci U S A, 2013. 110(14): p. E1282-90. 

481. Kazemi, T., et al., Fc receptor-like 1-5 molecules are similarly expressed in progressive 
and indolent clinical subtypes of B-cell chronic lymphocytic leukemia. Int J Cancer, 2008. 
123(9): p. 2113-9. 

482. Owczarek, S. and V. Berezin, Neuroplastin: cell adhesion molecule and signaling 
receptor. Int J Biochem Cell Biol, 2012. 44(1): p. 1-5. 

483. Owczarek, S., et al., Neuroplastin-55 binds to and signals through the fibroblast growth 
factor receptor. FASEB J, 2010. 24(4): p. 1139-50. 

484. Wu, R.P., et al., Nrf2 responses and the therapeutic selectivity of electrophilic 
compounds in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 2010. 107(16): p. 
7479-84. 

485. Jitschin, R., et al., Mitochondrial metabolism contributes to oxidative stress and reveals 
therapeutic targets in chronic lymphocytic leukemia. Blood, 2014. 123(17): p. 2663-72. 

486. Broggini, M., et al., Aplidine, a new anticancer agent of marine origin, inhibits vascular 
endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine 
loop in human leukemia cells MOLT-4. Leukemia, 2003. 17(1): p. 52-9. 

487. Cuadrado, A., et al., JNK activation is critical for Aplidin-induced apoptosis. Oncogene, 
2004. 23(27): p. 4673-80. 

488. McCaig, A.M., et al., Dasatinib inhibits B cell receptor signalling in chronic lymphocytic 
leukaemia but novel combination approaches are required to overcome additional pro-
survival microenvironmental signals. Br J Haematol, 2011. 153(2): p. 199-211. 

489. Berton, G., et al., Beta 2 integrin-dependent protein tyrosine phosphorylation and 
activation of the FGR protein tyrosine kinase in human neutrophils. J Cell Biol, 1994. 
126(4): p. 1111-21. 

490. Lanasa, M.C., et al., Final results of EFC6663: a multicenter, international, phase 2 study 
of alvocidib for patients with fludarabine-refractory chronic lymphocytic leukemia. Leuk 
Res, 2015. 39(5): p. 495-500. 

491. Jordaan, G., W. Liao, and S. Sharma, E-cadherin gene re-expression in chronic 
lymphocytic leukemia cells by HDAC inhibitors. BMC Cancer, 2013. 13: p. 88. 

492. Bachmann, S.B., et al., DTX3L and ARTD9 inhibit IRF1 expression and mediate in 
cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells. 
Mol Cancer, 2014. 13: p. 125. 

493. Dayal, S., et al., Suppression of the deubiquitinating enzyme USP5 causes the 
accumulation of unanchored polyubiquitin and the activation of p53. J Biol Chem, 2009. 
284(8): p. 5030-41. 

494. Jakob, S., et al., Nuclear protein tyrosine phosphatase Shp-2 is one important negative 
regulator of nuclear export of telomerase reverse transcriptase. J Biol Chem, 2008. 
283(48): p. 33155-61. 



391 

 

495. Dunphy, J.L., et al., The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling 
endocytosis of beta1 integrins. Curr Biol, 2006. 16(3): p. 315-20. 

496. Bensaad, K., et al., TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 
2006. 126(1): p. 107-20. 

497. Potting, C., et al., TRIAP1/PRELI complexes prevent apoptosis by mediating 
intramitochondrial transport of phosphatidic acid. Cell Metab, 2013. 18(2): p. 287-95. 

498. Giordano, F., et al., PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions 
mediated by the extended synaptotagmins. Cell, 2013. 153(7): p. 1494-509. 

499. Wu, J., et al., Identification of substrates of human protein-tyrosine phosphatase 
PTPN22. J Biol Chem, 2006. 281(16): p. 11002-10. 

500. Geraghty, D.E., et al., Mapping HLA for single nucleotide polymorphisms. Rev 
Immunogenet, 1999. 1(2): p. 231-8. 

501. Ojha, J., et al., Deep sequencing identifies genetic heterogeneity and recurrent 
convergent evolution in chronic lymphocytic leukemia. Blood, 2015. 125(3): p. 492-8. 

502. Hamblin, T., Chronic lymphocytic leukaemia: one disease or two? Ann Hematol, 2002. 
81(6): p. 299-303. 

503. McCarthy, B.A., et al., A seven-gene expression panel distinguishing clonal expansions 
of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes. 
Immunol Res, 2015. 

504. Razzaq, T.M., et al., Functional regulation of tissue plasminogen activator on the 
surface of vascular smooth muscle cells by the type-II transmembrane protein p63 
(CKAP4). J Biol Chem, 2003. 278(43): p. 42679-85. 

505. Gupta, N., et al., Identification and characterization of p63 (CKAP4/ERGIC-63/CLIMP-
63), a surfactant protein A binding protein, on type II pneumocytes. Am J Physiol Lung 
Cell Mol Physiol, 2006. 291(3): p. L436-46. 

506. Conrads, T.P., et al., CKAP4/p63 is a receptor for the frizzled-8 protein-related 
antiproliferative factor from interstitial cystitis patients. J Biol Chem, 2006. 281(49): p. 
37836-43. 

507. Nikonov, A.V., et al., Climp-63-mediated binding of microtubules to the ER affects the 
lateral mobility of translocon complexes. J Cell Sci, 2007. 120(Pt 13): p. 2248-58. 

508. Dejgaard, K., et al., Organization of the Sec61 translocon, studied by high resolution 
native electrophoresis. J Proteome Res, 2010. 9(4): p. 1763-71. 

509. Pepin, G., M.P. Perron, and P. Provost, Regulation of human Dicer by the resident ER 
membrane protein CLIMP-63. Nucleic Acids Res, 2012. 40(22): p. 11603-17. 

510. Schweizer, A., et al., Reassessment of the subcellular localization of p63. J Cell Sci, 1995. 
108 ( Pt 6): p. 2477-85. 

511. Shahjee, H.M., et al., Antiproliferative factor decreases Akt phosphorylation and alters 
gene expression via CKAP4 in T24 bladder carcinoma cells. J Exp Clin Cancer Res, 2010. 
29: p. 160. 

512. Li, S.X., et al., CKAP4 inhibited growth and metastasis of hepatocellular carcinoma 
through regulating EGFR signaling. Tumour Biol, 2014. 35(8): p. 7999-8005. 

513. Graham, S.A., et al., Prolectin, a glycan-binding receptor on dividing B cells in germinal 
centers. J Biol Chem, 2009. 284(27): p. 18537-44. 

514. Oellerich, T., et al., The B-cell antigen receptor signals through a preformed transducer 
module of SLP65 and CIN85. EMBO J, 2011. 30(17): p. 3620-34. 

515. Kaetzel, C.S., et al., The polymeric immunoglobulin receptor (secretory component) 
mediates transport of immune complexes across epithelial cells: a local defense 
function for IgA. Proc Natl Acad Sci U S A, 1991. 88(19): p. 8796-800. 

516. Song, W., et al., Stimulation of transcytosis of the polymeric immunoglobulin receptor 
by dimeric IgA. Proc Natl Acad Sci U S A, 1994. 91(1): p. 163-6. 



392 

 

517. Eiffert, H., et al., Determination of the molecular structure of the human free secretory 
component. Biol Chem Hoppe Seyler, 1991. 372(2): p. 119-28. 

518. Park, J., et al., Discovery and Validation of Biomarkers That Distinguish Mucinous and 
Nonmucinous Pancreatic Cysts. Cancer Res, 2015. 75(16): p. 3227-35. 

519. Niu, H., K. Wang, and Y. Wang, Polymeric immunoglobulin receptor expression is 
predictive of poor prognosis in glioma patients. Int J Clin Exp Med, 2014. 7(8): p. 2185-
90. 

520. Liu, F., et al., COLORECTAL Polymeric Immunoglobulin Receptor Expression is Correlated 
with Hepatic Metastasis and Poor Prognosis in Colon Carcinoma Patients with Hepatic 
Metastasis. Hepatogastroenterology, 2014. 61(131): p. 652-9. 

521. Wang, X., et al., Polymeric immunoglobulin receptor expression is correlated with poor 
prognosis in patients with osteosarcoma. Mol Med Rep, 2014. 9(6): p. 2105-10. 

522. Fristedt, R., et al., Expression and prognostic significance of the polymeric 
immunoglobulin receptor in esophageal and gastric adenocarcinoma. J Transl Med, 
2014. 12: p. 83. 

523. Ai, J., et al., The role of polymeric immunoglobulin receptor in inflammation-induced 
tumor metastasis of human hepatocellular carcinoma. J Natl Cancer Inst, 2011. 103(22): 
p. 1696-712. 

524. Zhou, Y., et al., Free radical stress in chronic lymphocytic leukemia cells and its role in 
cellular sensitivity to ROS-generating anticancer agents. Blood, 2003. 101(10): p. 4098-
104. 

525. Fiskus, W., et al., Auranofin induces lethal oxidative and endoplasmic reticulum stress 
and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res, 
2014. 74(9): p. 2520-32. 

526. Garcia-Manero, G., et al., Phase 1 study of the histone deacetylase inhibitor vorinostat 
(suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and 
myelodysplastic syndromes. Blood, 2008. 111(3): p. 1060-6. 

527. Van Damme, M., et al., HDAC isoenzyme expression is deregulated in chronic 
lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics, 
2012. 7(12): p. 1403-12. 

528. Byrd, J.C., et al., A phase 1 and pharmacodynamic study of depsipeptide (FK228) in 
chronic lymphocytic leukemia and acute myeloid leukemia. Blood, 2005. 105(3): p. 959-
67. 

529. Lucas, D.M., et al., The histone deacetylase inhibitor MS-275 induces caspase-
dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia, 2004. 
18(7): p. 1207-14. 

530. Fabris, S., et al., Molecular and transcriptional characterization of 17p loss in B-cell 
chronic lymphocytic leukemia. Genes Chromosomes Cancer, 2008. 47(9): p. 781-93. 

531. Ferreira, P.G., et al., Transcriptome characterization by RNA sequencing identifies a 
major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res, 
2014. 24(2): p. 212-26. 

532. Hartmann, T.N., et al., Circulating B-cell chronic lymphocytic leukemia cells display 
impaired migration to lymph nodes and bone marrow. Cancer Res, 2009. 69(7): p. 3121-
30. 

533. Barrington, R.A., et al., Involvement of NFAT1 in B cell self-tolerance. J Immunol, 2006. 
177(3): p. 1510-5. 

534. Akerlund, J., A. Getahun, and J.C. Cambier, B cell expression of the SH2-containing 
inositol 5-phosphatase (SHIP-1) is required to establish anergy to high affinity, 
proteinacious autoantigens. J Autoimmun, 2015. 62: p. 45-54. 



393 

 

535. Lanham, S., et al., Differential signaling via surface IgM is associated with VH gene 
mutational status and CD38 expression in chronic lymphocytic leukemia. Blood, 2003. 
101(3): p. 1087-93. 

536. Mockridge, C.I., et al., Reversible anergy of sIgM-mediated signaling in the two subsets 
of CLL defined by VH-gene mutational status. Blood, 2007. 109(10): p. 4424-31. 

537. Delgado, P., et al., Essential function for the GTPase TC21 in homeostatic antigen 
receptor signaling. Nat Immunol, 2009. 10(8): p. 880-8. 

538. Krysov, S., et al., Surface IgM of CLL cells displays unusual glycans indicative of 
engagement of antigen in vivo. Blood, 2010. 115(21): p. 4198-205. 

539. Kaucka, M., et al., Post-translational modifications regulate signalling by Ror1. Acta 
Physiol (Oxf), 2011. 203(3): p. 351-62. 

540. Cho, S.H., et al., PARP-14, a member of the B aggressive lymphoma family, transduces 
survival signals in primary B cells. Blood, 2009. 113(11): p. 2416-25. 

541. Tanigaki, K. and T. Honjo, Regulation of lymphocyte development by Notch signaling. 
Nat Immunol, 2007. 8(5): p. 451-6. 

542. Wang, L., et al., SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N 
Engl J Med, 2011. 365(26): p. 2497-506. 

543. Oscier, D.G., et al., The clinical significance of NOTCH1 and SF3B1 mutations in the UK 
LRF CLL4 trial. Blood, 2013. 121(3): p. 468-75. 

544. Landau, D.A., et al., Evolution and impact of subclonal mutations in chronic lymphocytic 
leukemia. Cell, 2013. 152(4): p. 714-26. 

545. Berry, W.L. and R. Janknecht, KDM4/JMJD2 histone demethylases: epigenetic regulators 
in cancer cells. Cancer Res, 2013. 73(10): p. 2936-42. 

546. Strahl, B.D., et al., Methylation of histone H4 at arginine 3 occurs in vivo and is 
mediated by the nuclear receptor coactivator PRMT1. Curr Biol, 2001. 11(12): p. 996-
1000. 

547. Khoury-Haddad, H., et al., PARP1-dependent recruitment of KDM4D histone 
demethylase to DNA damage sites promotes double-strand break repair. Proc Natl Acad 
Sci U S A, 2014. 111(7): p. E728-37. 

548. Fu, L., et al., HIF-1alpha-induced histone demethylase JMJD2B contributes to the 
malignant phenotype of colorectal cancer cells via an epigenetic mechanism. 
Carcinogenesis, 2012. 33(9): p. 1664-73. 

549. Kim, J.G., et al., Histone demethylase JMJD2B-mediated cell proliferation regulated by 
hypoxia and radiation in gastric cancer cell. Biochim Biophys Acta, 2012. 1819(11-12): 
p. 1200-7. 

550. Zhao, L., et al., JMJD2B promotes epithelial-mesenchymal transition by cooperating 
with beta-catenin and enhances gastric cancer metastasis. Clin Cancer Res, 2013. 
19(23): p. 6419-29. 

551. Ye, Q., et al., Genetic alterations of KDM4 subfamily and therapeutic effect of novel 
demethylase inhibitor in breast cancer. Am J Cancer Res, 2015. 5(4): p. 1519-30. 

552. Cho, J.H., et al., Arginine methylation-dependent regulation of ASK1 signaling by 
PRMT1. Cell Death Differ, 2012. 19(5): p. 859-70. 

553. Li, B., et al., miR-503 suppresses metastasis of hepatocellular carcinoma cell by 
targeting PRMT1. Biochem Biophys Res Commun, 2015. 464(4): p. 982-7. 

554. Zhang, T., et al., Inhibition of Nonsmall Cell Lung Cancer Cell Migration by Protein 
Arginine Methyltransferase 1-small Hairpin RNA Through Inhibiting Epithelial-
mesenchymal Transition, Extracellular Matrix Degradation, and Src Phosphorylation In 
Vitro. Chin Med J (Engl), 2015. 128(9): p. 1202-8. 

555. Avasarala, S., et al., PRMT1 Is a Novel Regulator of Epithelial-Mesenchymal-Transition 
in Non-small Cell Lung Cancer. J Biol Chem, 2015. 290(21): p. 13479-89. 



394 

 

556. Infantino, S., et al., Arginine methylation of the B cell antigen receptor promotes 
differentiation. J Exp Med, 2010. 207(4): p. 711-9. 

557. Xie, Y., et al., Virtual screening and biological evaluation of novel small molecular 
inhibitors against protein arginine methyltransferase 1 (PRMT1). Org Biomol Chem, 
2014. 12(47): p. 9665-73. 

558. Wan, Y. and C.J. Wu, SF3B1 mutations in chronic lymphocytic leukemia. Blood, 2013. 
121(23): p. 4627-34. 

559. Su'ut, L., et al., Trisomy 12 is seen within a specific subtype of B-cell chronic 
lymphoproliferative disease affecting the peripheral blood/bone marrow and co-
segregates with elevated expression of CD11a. Br J Haematol, 1998. 101(1): p. 165-70. 

560. Hu, Z., et al., GEP100/Arf6 is required for epidermal growth factor-induced ERK/Rac1 
signaling and cell migration in human hepatoma HepG2 cells. PLoS One, 2012. 7(6): p. 
e38777. 

561. Xie, C.G., et al., Down-regulation of GEP100 causes increase in E-cadherin levels and 
inhibits pancreatic cancer cell invasion. PLoS One, 2012. 7(5): p. e37854. 

562. Menju, T., et al., Engagement of overexpressed Her2 with GEP100 induces autonomous 
invasive activities and provides a biomarker for metastases of lung adenocarcinoma. 
PLoS One, 2011. 6(9): p. e25301. 

563. Carey, G.B., et al., IL-4 protects the B-cell lymphoma cell line CH31 from anti-IgM-
induced growth arrest and apoptosis: contribution of the PI-3 kinase/AKT pathway. Cell 
Res, 2007. 17(11): p. 942-55. 

564. Planelles, L., et al., APRIL promotes B-1 cell-associated neoplasm. Cancer Cell, 2004. 
6(4): p. 399-408. 

 

  



395 

 

 

10.0 APPENDIX  

 

 

 

  



396 

 

Appendix A1. Confirmation of the multi-feature weighting approach using machine 

learning. Provided and described courtesy of Yawwani Gunawardana:  

Linear regression approach was employed to observe whether the features weights obtained by 

our ad-hod method have achieved the optimum solution. In fact, this is a machine learning 

approach which obtains optimum weight values with respect to linear prediction. Suppose we 

have a set of 𝑚 samples ({𝒙𝒊 , 𝑦𝑖)}𝑖=1,…,𝑚  where 𝒙𝒊 𝜖 ℝ𝑛 and 𝑦𝑖  𝜖 ℝ are input and targets 

respectively. Here the weights are obtained by minimizing the squared loss between the target 

and the regression prediction 𝑓(𝑥) =  〈𝒘, 𝒙〉 + 𝑏  as given below; 

min
𝑤,𝑏

 {𝑦 − (〈𝒘, 𝒙〉 + 𝑏)}2

 
, 

where 𝒙 represents the input matrix of covariates, 𝑦 is the response vector and 𝒘 is the unknown 

weight vector which minimizes the loss function. Five input features variables were normalized 

to zero mean and one standard deviation before performing the linear regression. The table 

below shows the correlation between the weights described in Chapter 4 and the new weights 

obtained by the linear regression model. We observe that these two weight vectors are highly 

correlated (R = 0.96). Therefore, weights obtained by our ad-hoc technique have essentially 

reached to the optimal solution.  
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Appendix A2. The SPIQuE user guide  

 

SPIQuE – user guide 

SPIQuE is designed to assist in the determination of differentially 

expressed proteins from isobaric-tagged proteomics data by the 

calculation of quality-weighted statistics and ratios. 

Generally, iTRAQ and TMT quantitations are assigned to proteins by averaging the ratios from 

corresponding peptide spectrum matches (PSMs). Giving equal consideration to all quantitations results in 

compressed ratios due the effects of precursor co-isolation. Approaches where data are filtered are 

detrimental to any statistical analyses. 

SPIQuE allows users to upload their own data and uses a carefully defined multi-feature weighing model 

to maximise the emphasis of those quantitations with the highest probability of low co-isolation. As 

described in ‘Quality-Weighted Statistics Promotes Differentially Expressed Protein Determination by 

Isobaric Tag Quantitation’, this weighting improves the ratios and statistics for isobarically tagged 

experiments.  

Through SPIQuE this weighing can be easily implemented to generate proteome-wide ratios and statistics 

to assist in defining differentially expressed proteins. Options are available for normalisation, statistical 

testing, group testing and PSM quality weighting all available through the online SPIQuE interface. 

SPIQuE is designed primarily for use with iTRAQ and TMT data, but has applicability to other forms of 

multiplex labelling. It has so far been tested with 4-plex, 6-plex, 8-plex and 10-plex data. 

All that is required is a list of PSMs with raw reporter intensity values, features and a protein accession 

number - easily exportable from many proteomics software.  

  

Statistical 
Processing for Isobaric 
Quantitation Evaluation
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Quick Guide: 

The recommended setting are as default and the following weightings are recommended: 

PEP (5 -), isolation interference (10 -), ion injection time (9 -), intensity (3 +) and charge (5 -) 

Data input 

SPIQuE reads data from a comma delimited .csv file containing all the PSMs and their associated reporter 

ion intensities from any given iTRAQ-, TMT- or similarly-labelled bottom-up experiment. Once exported 

from the users search software eg. MaxQuant, Proteome Discoverer, Protein Pilot etc. the PSMs can be 

formatted using Excel, or similar spreadsheet software, to match the description below, see also example 

data. The sheet can then be saved as a .csv file and uploaded to www.spiquetool.com. 

When selecting the PSMs for export it is recommended to turn off filters such as those that disregard 

quantitations where co-isolation is >30%, as these still have statistical value and will be compensated for 

by the weighting. 

PSM Features 

SPIQuE’s secondary feature is to apply PSM-specific weightings to the ratio and statistical calculations to 

give the greatest emphasis to PSMs with the least co-isolation and highest quality. While the weighting is 

optional, it provided a superior output, as demonstrated in ‘Quality-Weighted Statistics Promotes 

Differentially Expressed Protein Determination by Isobaric Tag Quantitation’. Minimally recommended, 

is the use of a measure of co-isolation eg. ‘isolation interference’. The use of a further correlating feature 

such the precursor intensity or ion injection time improves the output further. The use of other features 

such as pep score or equivalent measure of peptide match probability can also improve the weighting 

efficiency. Favouring peptides with a charge state of +2 also improves the weighting. For recommended 

weighting factor see ‘user defined settings’. 
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Required .csv file formatting  

• 1 PSM per row (ungrouped peptides with used quantitations) 

• Column 1; protein or protein group accession number 

• Column 2+; raw reporter ion intensities 

• Then; features used for weightings (up to 8 features)  

Other columns/rows may cause the algorithm to fail. 

 

User defined settings 

After successful upload, SPIQuE will read the headers of the file and the data in the first line of 

each column. Based on the data, it will try to automatically assign these as either a feature or a 

reporter. The unique protein identifier from the first column should be set as ‘ignore’. 

Feature weighting and correlation 

Feature weightings are proportional to one another eg. 1 and 5 would give the same result as 10 

and 50. The correlation defines whether the feature correlated positively or negatively with 

quality and isolation purity eg. higher precursor intensity correlates positively with the 

probability of a reliable quantitation. Recommended values are as follows: 
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Other options 

Normalisation  

Median is typically recommended for most data, but options for normalising by the mean and 

scaled mean absolute deviation are included 

Statistical test 

T-test provides a quick (1-15 minutes per ratio), statistical test to determine whether the values 

for any given protein and any given ratio demonstrates a significant difference in expression 

levels. It is improved by the use of weightings. P-values are provided before and after multiple 

test correction. 

Permutation testing is a far slower (3-12 hours per ratio) test of significance but typically gives 

more proteins significantly regulated at p<0.05. Permutation testing takes all the associated 

ratios for a protein and compares these with random samples of the data as a whole. The number 

of permutations designates the number of samplings performed. The p-value is then calculated as 

the number of times the sampling returns the random numbers as more regulated than the 

protein’s quantitation over the number of times they are not. E.g. when only 2 of 1000 

permutations return a greater regulation than the protein tested, the p-value of this observation 

would be 0.002.  

While more permutations returns more accurate p-values, for the majority of purposes, 1000 

permutations should be sufficient when a p-value of 0.05 is considered significant. Time taken is 

proportional to the number of permutations.  Permutations take approximately 100+ times longer 

than T-testing and are not improved by weightings, but offers a good alternative to t-testing. 

 

Replace missing values 

In some circumstances missing values are of biological interest and proteins with low intensities 

or substantial differential expression can be identified as statistically significant by inserting the 

minimum detected reporter intensity. 

Final exponential weighting 

The emphasis of the final weighting factor (between 0 and 1) can be manipulated by raising it to 

a power. E.g. 13 = 1, 0.13 = 0.001. An increase in the exponential weighing factor increases the 

number of significantly regulated proteins. However this also increases the number of false 

significant regulations. A value of 1 is recommended. 
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Output files 

Once the analysis is complete, the following files will be available for download as a 

compressed archive file. Unzipping this file will provide: 

Protein ratios and significance values – for each user defined ratio. Again as .csv files, 

best opened as a spreadsheet 

Accession numbers – derived from the input file 

Log2_’reporterA:reporterB’ – the log 2 (ratio) calculated from the weighted, 

individual PSM ratios.  

Use =2^[num] to convert to ratios 

neglog10_p ‘reporterA:reporterB’ – the negative log 10 of the uncorrected p-values  

neglog10_padj ‘reporterA:reporterB’ – the negative log 10 of the multiple-test 

corrected p-values – these are the most statistically sound values 

use =10^[num] to convert to p-values, or filter at -log10 (0.05) = 1.301 to get 

significantly regulated proteins (p<0.05)  

Peptide counts – the number of individual quantitations used to derive the ratio and p-

value for each protein 

Mean and SD of weights – the mean and standard deviation of all the weighting factors 

of the PSMs used to derive the ratios and statistics. 
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Other files 

Settings.csv – The experimental design file containing the user defined inputs required by R and 

are defined on the first page of the interface. This provides a reference of these initial settings. 

W_Name is the name assigned for within R, W_Value is the weighting factor specified for that 

feature and Sub_Vector specifies if the correlation of a feature is positive (1) or negative (-1) 

(see Feature weighting and correlation) 

 

Weighting_Results.csv – This details the weighting breakdown for each PSM. Each feature is 

scored by percentile ranking and the weighting factor for each feature is used to generate a final 

cumulative weighting score ‘Weight_Formula_Result’. This score is further percentile ranked to 

give a score between 0 and 1 ‘Final_Weighting’. 

 

Input.csv – the input file used for the analysis  
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Appendix A3. Determination of the linear phase of quantitative WB protein detection. WB 

detection was conducted for lysates of WT B cells and lymphoma (Eµ8 - Eµ-myc-derived 

lymphoma cell line) evaluating detection of 10-60 µg of protein loaded. The lower portion of 

each graph shows the linear portion of the upper graph with a trend line fitted and correlation 

coefficient described. This was conducted for all 10 candidates and GAPDH, as described in 

Chapter 3. 
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Appendix A4. The expression of the 10 validation candidates and myc in Eµ-myc 

lymphoma and pre-lymphoma samples, relative to WT B cells. WB of lysates derived from a 

pool of splenic B cells from three WT mice (WT), a pool of splenic B cells from three Eµ-myc 

mice prior to any tumour development (Eμ-myc) and five individual Eµ-myc-derived lymphoma 

cell line lysates (Eμ6, Eμ8, Eμ13, Eμ14 and Eμ15).  GAPDH serves as a loading control for each 

WB. 
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Appendix A5. Comparison of the MS-determined and WB-determined ratios of protein 

expression.  Ratios of protein expression in splenic isolated B cells from pre-neoplastic Eµ-myc 

mice (Eµ-myc) and Eµ-myc-derived cell lines from spontaneous splenic tumours (Eµ 6-15) were 

determined relative to wildtype B cells (WT) for WB- determined (open bars) and MS-

determined (closed bars) quantitation methods. 



409 

 
 



410 

 

Appendix A6. The correlation of PSM features with the co-isolation score. The co-isolation 

scores described in Section 2.20.3 and Section 4.4 for each E. coli PSM were plotted against 

each respective PSM feature. 
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Appendix A7. B-cell and B-cell tumour samples collected for MS analysis. The 

characteristics of the B cells isolated from of WT, Eµ-myc and Eµ-TCL1 splenocytes. Cellularity 

was determined by coulter counter and CD19+ CD3- cell percentages after B-cell isolation by 

flow cytometry as described in Section 2.7 and 2.14. Cell death was determined by PI exclusion 

described in Section 2.14.2. ND – not determined. 
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Appendix A8. WB and immunophenotyping of Eµ-TCL1 tumours. Relative splenic B-cell 

protein expression of WT and terminal Eµ-TCL1 determined by; A. flow cytometry. B. Western 

blotting. These characterisations were performed by Matthew Carter. 
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Appendix A9. Gene ontology term enrichment analysis of the Eµ-myc and Eµ-TCL1 

tumours. GO term enrichment p-values (Benjamini-corrected) were determined for those 

proteins with significant differential regulation (RS>0.5 or < -0.5, p<0.05) in all 4 tumour pools 

using DAVID with all fully quantitated proteins as background. Significantly enriched GO terms 

(p<0.05) were visualised with REVIGO. These are separated into biological processes, cell 

components and molecular function. The circle size is proportional to the -log10 (term 

enrichment p-value), the colour indicates the GO term frequency amongst all mouse genes, and 

the axis of the plot are based on semantic space, clustering terms that are more frequently co-

annotated together. 
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Appendix A10. Pathways identified as significantly enriched from the proteins regulated in 

Eµ-myc, Eµ-TCL1 and both tumours. Significantly (p<0.05), differentially expressed (Rs>0.5 

or < -0.5) proteins in Eµ-myc, Eµ-TCL1 and both tumours were analysed using DAVID to 

identify significantly enriched pathways. Red headers highlight those pathways enriched from 

overexpressed proteins and green headers for underexpressed proteins. Shaded values indicate 

significance after multiple test correction 
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Appendix A11. Pathways identified as significantly enriched by IPA from the proteins 

determined as significantly regulated in CLL. IPA canonical pathway analysis of upregulated, 

downregulated and all regulated proteins and the subsequent enrichment values and p-values.  

 


