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Abstract

We investigate iterated integrals on an elliptic curve, which are a natural genus-
one generalization of multiple polylogarithms. These iterated integrals coincide
with the multiple elliptic polylogarithms introduced by Brown and Levin when
constrained to the real line. At unit argument they reduce to an elliptic analogue
of multiple zeta values, whose network of relations we start to explore. A simple
and natural application of this framework are one-loop scattering amplitudes in
open superstring theory. In particular, elliptic multiple zeta values are a suitable
language to express their low energy limit. Similar to the techniques available
at tree-level, our formalism allows to completely automatize the calculation.



1 Introduction

In recent years, we have witnessed numerous fruitful interactions between number theory and
particle physics. A particularly rich domain of intersection are iterated integrals, which promi-
nently appear in scattering amplitudes in field theories and string theories. For a large class
of Feynman and worldsheet integrals, multiple polylogarithms were recognized as a suitable
language to cast results into a manageable form, see e.g. refs. [1-4]. In a variety of cases, the
polylogarithms’ Hopf algebra structure [5-8] paved the way towards efficient manipulations and
the recognition of the simplicity hidden in the resulting scattering amplitudes.

However, a growing list of iterated integrals from various field and string theories implies that
multiple polylogarithms do not mark the end of the rope in terms of transcendental functions
appearing in scattering amplitudes. For example, multiple polylogarithms fail to capture the
two-loop sunset integral with non-zero masses [9-11], an eight-loop graph in ¢* theory [12,13] as
well as the ten-point two-loop N3MHV amplitude in N’ = 4 super-Yang-Mills (sYM) theory [14].
The sunset integral and its generalization have recently been expressed in terms of elliptic di-
and trilogarithms [10, 11, 15], whose connection to the language suggested below remains to be
worked out. Considering in addition their appearance in one-loop open-string amplitudes, the
situation calls for a systematic study and classification of the entire family of elliptic iterated
integrals?.

In the present article, we propose a framework for elliptic iterated integrals (or ells for
short) and the associated periods, elliptic multiple zeta values (eMZVs). The framework aims
at expressing scattering amplitudes in a variety of theories, and we here apply the techniques
to one-loop amplitudes in open string theory as a first example. The language employed in the
present article is primarily inspired by refs. [16,17], while refs. [18-22] contain further information
on the mathematical background.

As opposed to multiple polylogarithms, which can be defined using just one type of differ-
ential form, elliptic iterated integrals require an infinite tower thereof [16]. These differential
forms are based on a certain non-holomorphic extension of a classical Eisenstein-Kronecker se-
ries [23, 16|, and we show how they can be used to naturally characterize and label elliptic
iterated integrals as well as eMZVs. We investigate their relations, which results in constructive
algorithms to perform amplitude computations.

In the same way as multiple zeta values (MZVs) arise from multiple polylogarithms at unit
argument, the evaluation of iterated integrals along a certain path of an elliptic curve leads to
structurally interesting periods, the eMZVs [17] mentioned above. These are certain analogues
of the standard MZVs, which are related to elliptic associators [24] in the same way as MZVs are
related to the Drinfeld associator [25-27]. However, the precise connection is beyond the scope
of the current article. Given their ubiquitous appearance in the subsequent string amplitude
computation, we will investigate eMZVs and discuss some of their properties as well as their
Q-linear relations.

The description of string scattering amplitudes via punctured Riemann surfaces at various
genera directly leads to iterated integrals at the corresponding loop order. In particular, the disk
integrals in open-string® tree-level amplitudes closely resemble multiple polylogarithms. Initially
addressed via hypergeometric functions in refs. [34, 35|, the o’-expansion of disk amplitudes
finally proved to be a rich laboratory for MZVs. Their pattern of appearance has been understood

IThe elliptic iterated integrals discussed in this work shall not be confused with elliptic integrals determining
the arc length of an ellipse.

2In comparison to open-string amplitudes at tree-level, MZVs occurring in closed-string tree amplitudes [28,29]
are constrained by the single-valued projection, see [30,31] for mathematics and [32,33| for physics literature.



in terms of mathematical structures such as motivic MZVs [7,29] and the Drinfeld associator
[36-38]. Explicit expressions with any number of open-string states can be determined using
polylogarithm manipulations [3] or a matrix representation of the associator [38]. A variety of
examples are available for download at the website [39].

The calculation of one-loop open-string amplitudes involves worldsheet integrals of cylinder
and Mobius-strip topology [40]. In the current article, we focus on iterated integrals over a
single cylinder boundary and leave the other topologies for later. Recognizing the cylinder as a
genus-one surface with boundaries, it is not surprising that the o/-expansion of one-loop open-
string amplitudes is a natural, simple and representative framework for the application of ells
and eMZVs. We will explicitly perform calculations at four and five points for low orders in o’ in
order to demonstrate their usefulness. Higher multiplicities and orders in o’ are argued to yield
eMZVs and Eisenstein series on general grounds. In summary, one-loop string amplitudes turn
out to be an ideal testing ground for the study of eMZVs, in particular because they appear in
a more digestible context as compared to their instances in field theory.

This article is organized as follows: In section 2, we start by reviewing multiple polyloga-
rithms and show, how their structure suggests a generalization to genus one. The appropriate
differential forms and doubly-periodic functions are discussed and put into a larger mathematical
context in section 3. Section 4 is devoted to the application of ells and eMZVs to the four-point
one-loop amplitude of the open string, while section 5 contains a discussion of its multi-particle
generalization.

2 Iterated integrals on an elliptic curve

After recalling the definition of multiple polylogarithms as well as several conventions, we will
introduce elliptic iterated integrals (ells) as their genus-one analogues. While we will limit our-
selves to basic definitions and calculational tools in the current section, a thorough introduction
to the mathematical background of doubly-periodic functions will be provided in section 3.

2.1 Multiple polylogarithms

Multiple polylogarithms are defined by

z o dt

G(ai,az,...,an;2) E/ G(ag,...,anp;t) (2.1)
0o t—ay

where G(;z) = 1 apart from G(a@;0) = G(;0) = 0. Below, we will refer to @ = (a1, ...,ay) as

the label and call z the argument of the polylogarithm G. Powers of ordinary logarithms can be

conveniently represented in terms of multiple polylogarithms via

G(0,0,...,0;z) = —In" 2, G(1,1...,1;2) = —=In"(1 — 2z) and
N—— n! N—— n!
1
G(a,a,...,a;z):—‘ln” (1—2) . (2.2)
—~—— n! a

In addition, multiple polylogarithms satisfy the scaling property

G(kay, kag, ..., kan; kz) = G(ay,az,...,an;2) , kK#0, ap,#0, 2z#0, (2.3)

3The conventions for multiple polylogarithms used in this paper agree with those in refs. [5,29,41|. Other
aspects of multiple polylogarithms are discussed for example in references |42, 43].



whose interplay with a general shuffle regularization will be discussed below eq. (2.9). Another
property is referred to as the Holder convolution [44]: for a; # 1 and a, # 0 one finds

n

1 1
G(ay,...,ap;1) = Z(—l)kG<1 — Ay, 1 —ag; 1l — p) G(ak+1,...,an;p) (2.4)

k=0

for all p € C\ {0}. Multiple polylogarithms constitute a graded commutative algebra with the
shuffle product [5-8]

G(a,...,ar;2)G(Arg1y .-y Qrys; 2) = Z G(an(1)s -+ A(ris); 2) (2.5)
o€eX(r,s)
=G((a1,.. ) W (Qrg1s- .-, arps); 2)
where the shuffle X(r, s) is the subset of the permutation group S,4s acting on {ai,...,a,1s}
which leaves the order of the elements of the individual tuples {a1,...,a,} and {ay41,..., 0745}

unchanged. The unit element for shuffling is G(; z)=1.
MZVs are special cases of multiple polylogarithms with labels a; € {0,1} evaluated at argu-
ment z = 1:
Cnr,ome = (—1)"G(0,0,...,0,1,...,0,0,...,0,1;1), (2.6)

Ny ni

where the numbers below the underbraces denote the number of entries?.

From the definition (2.1) it is obvious that multiple polylogarithms diverge when either
a; = z or a, = 0. As discussed in refs. [5,6|, the general idea for regularizing the integrals
is to slightly move the endpoints of the integration by a small parameter and to afterwards
expand in this parameter. The regularized value of the polylogarithm is defined to be the piece
independent of the regularization parameter, which can be extracted using shuffle relations. For
the case where a; = z the regularized value can be obtained via

G(z,a2,...,an;2) = G(2z;2) G(ag, . ..,an; 2) — G(ag, z,a3, ..., an; 2)

— G(ag,as,z,a4,...,an;2) —...— Gl(ag,...,ap, z;2) (2.7)

where one defines

G(z,...,2;2)=0. (2.8)

The situation, where a,, = 0 can be dealt with accordingly

G(ay,az,...,an-1,0;2) = G(ay,az,...,an—1;2) G(0;2) — G(ai,az,...,0,a,-1;2)
—G(ay,az,...,0,an—2,an_1;2) — ... — G(0,a2,...,an_1;2), (2.9)

where now, however, G(0;z) = In(z) # 0. Although the above rewriting keeps the pure loga-
rithms explicit, it will nevertheless prove convenient in order to bypass subtleties of the identity
eq. (2.11) below. Multiple polylogarithms are understood to be shuffle-regularized in a way
compatible with eq. (2.3).

Regularization of multiple polylogarithms can be straightforwardly translated to MZVs. All
MZVs (p,,...n, With n, =1 are defined by their shuffled version eq. (2.7). Employing eq. (2.3),
one finds G(1,...,1;1) = 0 from eq. (2.8) immediately.

4Our convention for MZVs agrees with refs. |5,29,45).



2.1.1 Removing the argument z from the label

Starting from an arbitrary iterated integral, the corresponding polylogarithm can not always
be determined straightforwardly: whenever the argument appears in the label @, an integra-
tion using eq. (2.1) is impossible. Solving this problem requires a rewriting of the multiple
polylogarithm

G({0,a1,a9,...,an,z2};2) (2.10)

in terms of polylogarithms whose labels are free of the argument. In the above equation {a,b, ...}
refers to a word built from the letters a, b, ... . Polylogarithms of the special form G(@, z) with
a; € {0, z} can be rescaled to yield MZVs using eq. (2.3) provided that the last entry of @ is
different from zero. In a generic situation, the relation [3]

G(at,...,0i—1,2,0i41, ... 0n;2) = G(aj—1,01, ..., Gi—1,2,Qi11,...,0n;2) (2.11a)

—G(ai+1,a1,...,ai_l,é,ai+1,...7an;z) (211b)
z o dt .

—/ —G(a, ..., 04i—1,t,ai41,...,ap;t) (2.11c)
0o t—a;—1
zZ o dt .

+ 7G(a1,...,ai_l,t,aiH,...,an;t) (2.11(1)
0 t—aj
z dt

+/ G(ag,...,ai_l,t,ai_,_l,...,an;t) (2.116)
0o t—ay

allows to recursively remove the argument z from the labels of a multiple polylogarithm, because
the expressions on the right-hand side either have shorter labels or are free of z. A hat denotes
the omission of the respective label, and it is assumed that at least one a; # 0. The availability
of a recursive formula like eq. (2.11) is intrinsic to the moduli space of Riemann spheres with
marked points [46]. An explicit discussion including algorithms is ref. [47].

As an identity similar to eq. (2.11) will be crucial in deriving relations for ells in subsection 2.2
below, let us briefly comment on the application and generalization of eq. (2.11): If the argument
z appears multiple times in the label @, the first four terms on the right hand side (terms (2.11a)
to (2.11d)) have to be evaluated for each occurrence of z. The reduction will lead to expressions
where the labels of the polylogarithms on the right hand side are independent of z or shorter,
which is ensured by cancellations between neighboring terms. If a,, = z, the term (2.11d) has
to be dropped and the term (2.11b) needs to be altered to —G(0,ay,...,a;—1, 2; 2).

Multiple polylogarithms with a; = z require special attention as well. However, in order to
keep the exposition simple, we will assume that those polylogarithms have already been taken
care of by applying the shuffle regularization rule eq. (2.7).

The following examples (with a; # z) are typical relations derived from the above identity:

G(a1,0,z;2) = G(0,0,a1;2) — G(0,a1,a1; 2) — G(ai;2)Ce
G(a1,z,a2;2) = G(a1,a1,a2;2) — G(ag,0,a1;2) + G(ag,a1,a1;2) — Glag,a1,az;2) .  (2.12)

Proving eq. (2.11) is straightforward. It relies on writing the polylogarithm on the left hand
side as the integral over its total derivative and using partial fraction as well as relations (A.1)
to (A.3) in appendix A. Finally, let us note that eq. (2.11) preserves shuffle regularization. The
complete proof of eq. (2.11) as well as numerous examples are contained in section 5 of ref. [3].
A collection of identities between MZVs can be found in the multiple zeta value data mine [48].



2.2 TIterated integrals on an elliptic curve

In this subsection we are going to take a first look at ells. In the following exposition, we will
omit several mathematical details, which will be discussed in section 3 below. As ells will turn
out to be a generalization of the multiple polylogarithms discussed above, we will follow the
structure of the previous subsection closely.

In eq. (2.1), the differential dt is weighted by

1
t—ai’

(2.13)

which yields iterated integrals on the genus-zero curve C \ {ai,...,a,}. Here, we propose a
generalization to ells. An infinite number of weighting functions f( of weights n = 0,1,2, ...
is necessary, whose appearance will be justified and whose precise definition will be provided in
section 3. They lead to ells in the same way as does eq. (2.13) at genus zero. Accordingly, the
functions f( (z,7) are doubly periodic with respect to the two cycles of the torus, with modular
parameter 7 in the upper half plane

™) = ff™z+1,7) and ™ (z 1) = fO(z+7,7). (2.14)

Below, we are going to suppress the 7-dependence and will simply write f(”) (z). As will be
explained in subsection 3.3, the functions £ are known for all non-negative integer weights
n. In particular they are non-holomorphic and expressible in terms of the odd Jacobi function

01 (Za 7-)’ €.g.

I
FOR) =1, FOG) =06, (2,7) + 2m12i (2.15)
1 Im2z\2 1070, 7
f@(z) = 3 [(6 Inb(z,7)+ 2mImT> +9%In b (z,7) — 301,1((077))] (2.16)

where 9 and ’ denote a derivative in the first argument of #;. Their parity alternates depending
on the weight n:

F(=2) = (—1)"f"(z). (2.17)

The functions f( are defined for arbitrary complex arguments z. Restricting to real argu-

ments z, however, will not only simplify eqs. (2.15) and (2.16) but in addition lead to the system

of iterated integrals appropriate for the one-loop open-string calculations in sections 4 and 5

below. Hence, in the remainder of the current section, any argument and label of the ells to be

defined is assumed to be real. We will comment on the additional ingredients required for generic

complex arguments z and relate them to multiple elliptic polylogarithms in subsection 3.1.
Employing the functions £, ells are defined in analogy to eq. (2.1) via

P(mone ) = / dt F(t — ay) T (22 = 07 s1), (2.18)
0

where the recursion starts with I'(;z) = 1. Following the terminology used for f (") above, the
ell in eq. (2.18) is said to have weight >_;_; n;, and the number r of integrations will be referred
to as its length.

The definition of ells directly implies a shuflle relation with respect to the combined letters



A; = % describing the integration weights f(")(z — a;),
F(Al, Ao, Ar Z) F(Bl, Bo,... ,Bq; Z) =T ((Al, Ao, ... ,AT) LL (BI,BQ, cee Bq); Z) , (219)

where the shuffle symbol has been defined in eq. (2.5). Another immediate consequence of
definition (2.18) is the reflection identity

D(ala2arz) = (—1)mtmetetm p (o e s 2) (2.20)

Formally reminiscent of the Holder convolution in eq. (2.4), the above reflection identity is valid
for all arguments z € C\ {0}. It can be proven using the parity properties of the weighting
functions (™ in eq. (2.17) and a reparametrization of the integration domain. If all the labels
a; vanish, we will often use the notation

L(ni,ng,...,ne2) =T (70 G 755 2) - (2.21)

2.2.1 Elliptic multiple zeta values
Evaluating ells with all a; equal to 0 (or equivalently a; = 1 by the periodicity property
eq. (2.14)) at z = 1 gives rise to iterated integrals

£ (21)dzy £ (29)dzg ... f)(2,)d, (2.22)

0<2;<z;4+1<1

w(ni,na,...,ny)

= F(nTa - ey N2, N5 1)

which we will refer to as elliptic multiple zeta values or eMZV's for short. They furnish a natural
genus-one generalization of standard MZVs® as defined in eq. (2.6). The shuffle relation eq. (2.19)
can be straightforwardly applied to eMZVs

w(ni,ng, ...,np)w(ki, ko, ... ks) =w((ni,ne,...,ny) W(k1, k2, ..., ks)) , (2.23)
and the parity property eq. (2.17) of the functions f( implies the reflection identity

w(nl, N2y ooy Np—1, nr) = (_1)n1+n2+...+nrw(nm MNp_1y...,N2, nl) . (2.24)

Note that a similar set of w’s can be defined by an iterated integral along the path from 0 to 7
replacing the integration domain [0, 1] in eq. (2.22). They appear in the modular transformations
of eMZVs and naturally satisfy the properties eqgs. (2.23) and (2.24) as well. Likewise, the ells
defined in eq. (2.18) allow for a version with integrations on the path from 0 to 7.

Regularization. Among the family of functions f(™(z) used to define ells and eMZVs, only
f (1)(2) has a simple pole at zero and its images under the translations in eq. (2.14). Therefore,
iterated integrals of the form

(o a2t z) = / f("l)(zl —ap)dz; f(TLQ)(ZQ —ag)dzy .. .f(”r)(zr —ay)dz, (2.25)

0<2;<2;41<2

°In order to distinguish between eMZVs and MZVs, we will sometimes refer to the latter as standard MZVs.



with n;y = 1 or n, = 1 need to be regularized if either a; = 0 or a, = z. As with multiple
polylogarithms, the idea is to slightly move the endpoints of the integration domain by a small
parameter, and then to expand in this parameter. More precisely, one writes the integral

f("l)(zl —ap)dz f(”Q)(zQ —ag)dzy .. .f("r)(z,n —ay)dz, (2.26)

e<z;<z;4+1<z—¢€

as a polynomial in In(—2mie), where the branch of the logarithm is chosen such that we have
In(—i) = —%i. The regularized value of eq. (2.26) is then defined to be the constant term in
this expansion. The additional —27i in the expansion parameter In(—2wic) ensures that no
logarithms appear in the limit 7 — {00, and that eMZVs degenerate to MZVs. A thorough

treatment of this degeneration can be found in ref. [24] and will be exploited in ref. [49].

2.2.2 Removing the argument z from the label

As for the multiple polylogarithms, no arguments z are allowed in the labels {a; ...a,} in order
to perform the integration using eq. (2.18). Therefore we need to find relations, which trade ells
with one or multiple occurrences of the argument z in the label for ells where z appears in the
argument exclusively. The key idea for finding those relations is to write the ell as the integral
of its total derivative

2 d
NG :::Z:;z)=/0 dt =T (ay a0 f o) F T (o) 63 702 00T2) - (227)

This resembles the strategy at genus zero which led to the identity eq. (2.11) between multiple
polylogarithms. In the subsequent, we address additional features and subtleties intrinsic to the
elliptic case. The feasibility of this approach in the elliptic scenario is discussed in ref. [16], see
in particular theorem 26 therein.

Boundary terms. The boundary term at z = 0 usually drops out from eq. (2.27) due to the
vanishing volume of the integration domain. However, the special situation when all n; = 1
leads to the appearance of standard MZVs. As will be elaborated on in section 3, the function
@) is the only source of singularities in the integration variables, as can be seen from its leading
behavior f1)(z) = 2= 4+ O(z). Hence, the regime z — 0 reproduces multiple polylogarithms as
defined in eq. (2.1):

sodty, fhodt e dt,
Im I (L & d2) = lim ! / 2 /
0 0

z—0 ar? z—0Jg t1 —ay to — a9 ' t, — ar

:lli%G(al,ag,...,ar;z). (2.28)

If all a; € {0, z}, the scaling relation eq. (2.3) allows to rewrite the polylogarithms in terms of
MZVs (see eq. (2.6)), leading to

lim T (o b g 2) = G(bi,ba, ... by 1) chsnj?l , bje{0,1}. (2.29)
i

Partial derivatives. The total t-derivative in eq. (2.27) can be written in terms of partial
derivatives with respect to the arguments and the labels. This requires the elliptic analogues
of eqns. (A.1) to (A.3) listed below in order to arrive at shorter elliptic polylogarithms. The



derivative with respect to the argument

0

oy D(aasnarse) =™ —a) D (& 05 2) (2:30)

follows straightforwardly from eq. (2.18). Slightly more work using % f(t—a) = —% f@(t—a)
as well as eq. (2.30) is required for derivatives with respect to labels a,. Starting with the special

cases ¢ = 1 and ¢ = r one finds

0

87F (mmzmrotg) = — fO (g —ap) T (52 53 - 0 to)
aj
to
+ [ dtfM (= an) fM (E—an) T (85 e t) (2.31)
0
8 ni n n n Ny Ny ... Nyp—
Da F(all ag lar ;tO) = f( T)(_ar) r (a} ag ar_i ;tO)

T2 oy tr_2
—(H /0 dtjf<”f>(tj—aj>) /0 dt =1t — ap_1) It — ay). (2:32)

j=1
Deriving with respect to a label aq with ¢ # 1,7 yields

)
~— T (a} a3 7 arito)

Oay

a-l tg—1
=\ I aty £t —ag) | [ at 00— ag) F0rs =) T (3552 0
=170 0
q-2 ti—1 tq—2
- H/ dt; f09)(t; — ay) / dt fUr e (t = ag 1) [T (E—ag) T (i} 2 ar;t) - (2.33)
=170 0

Total derivatives. Summing the above partial derivatives with respect to the argument z
and the labels a4, total derivatives from eq. (2.27) can be expressed in a very efficient way. For
a single instance of a, = z, the special cases ¢ = 1 and ¢ = r give rise to
A pmone e gy todt () (¢ — ¢) f72) (¢ (73 nray d 2.34
dit() (toag...arvo)_ 0 f (_O)f (_a2) <a3~-~ar7) an ( )
d o M1 Tr e M1 Ty M
G T o iste) = f (o —an) T (05007 B ste) + 707 (=) T (3 2045 10)
T2 oty tr—2
(11 / dt; fO9(t; — aj) / dt fOD (¢ — ar_ ) f (= t) . (2.35)
=170 0

For g # 1,r, the integrand of eq. (2.27) takes the form

d nine ..n
e Mg—1 Mg Ng+1 -.- Ny . _ (nl) ng ... Ng—1 Ng Ng41 -.- N .
dto r ((ll az ... ag—1 to ag+1 .- Qr 7t0) - f (to - CL]_) r az ... ag—1 to ag+1 --- Qr 7t0

g1 .4 ta—
+ (H/J “at; F (1 —aj)) /q Lt F) (£ = t0) f) (1 agan) T (122005 1)(2:36)
j=170 "

=2 g tg—2 n n
- H/ dt; £ (t; — a;) / dt fUre1)(t —aga) fOO(E = to) T (alf] ol st) -
=170 0

Further examples with repeated appearances of ¢y are displayed in appendix B.1.



Fay identities. Having applied the above derivative identities, one is usually left with expres-
sions containing integrals of the form

/z dt F (¢ — ap) fO) (¢ — ag), (2.37)
0

where the integration variable appears in the argument of more than one function f(. In the
corresponding situation for multiple polylogarithms, with weights of the form eq. (2.13), one
would have used partial fraction identities

1 B 1 . 1
(t—a)(t—0b) (t—a)(a—0b) (t—0)(b—a)

in order to avoid the repeated appearance of the integration variable ¢t. Analogous relations for

(2.38)

the more general class of weighting functions f(™ are provided by Fay identities, which will be
put in a larger mathematical context in section 3 below. They relate products f() f(72) at
arguments x,t and x — t and thereby allow to systematically remove repeated appearances of
some integration variable. A simple example of a Fay identity relates products of functions f()
to a sum of functions f(®)

FO = 2)fO(@) = fU(E =) f V) = FOOF V@) + FO ) + FO ) + 12 (- 2) . (2:39)
The general relation, which is valid for complex arguments x,t as well,
(n1) K (ny—14j —j j
fO(E = 2) 02 () = —(—)m )+ 30 (T ) e @) f (- )
i J
7=0

. Z (m -1 +.7> (= 1ym+ plm=i) () plnart) (p) (2.40)

in turn allows to remove all repeated occurrences of the variable ¢. Iterating the above steps,
one can thus eliminate all arguments from the label of any ell recursively.

Result. Combining the Fay identity eq. (2.40) with the total derivatives in eqns. (2.34)
o (2.36) turns (2.27) into a recursive rule for removing the argument z from the label of
[ (a2 5r;2). In the equations below, all terms on the right-hand side are either free
of ag = z or have shorter labels. The special cases ¢ = 1 and ¢ = r yield

ny Ny ... Ny . n ni+ng 0 n3 ... ny .,
| S )—hmG(z ag,...,0p; % H(Snwl— — 1F< 1z Sns ”,z)

250 az 0 a3 ... ar

1 fng —1 + 3 ) .
+y (-ymH < . ) T (" " s ?)
j=0

J
2 -1 .
+Z< +]>/ dt 02t —ap) D ("0 ) (241)
j=0

D (a2 %52) = lim Gla,. . ar1, 2 2) Hénjw/ dt fo0(E—an) T (53 7 0m) Y se)

+04WT(%E:Z:w)+vnmrﬁ“ﬁmme*“a

Ap—1 ai ... ap_o 07
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(”T 1“)/ At frr D —ar ) T (500 )

( r—1 — 1 "‘j) (_1)nr+]1—w (nrfj Ny ... Np—2 Np—1+7 . Z) , (242)

ar—1 Qa1 ... Ar—2 Qr—1

5

while a, = z at a generic position ¢ # 1,7 can be addressed via

ni N2 ... Ng—1 Ng Ng41 - N | .
r (al az ... Gg—1 Z Qg1 ... Gr s ) - ;L}I%G(ala ceey Qg—1,%2,0g+1, - - - 7a7“72) H 6nj,1

ng ... Ng—1 Ng N LNy
+/ dtfnl t_al)F( : az_i tq agii .,.ar;t)

Ng+ng+L1 N1 ... ng—1 0 Ngeo ... Ny Ng+ng—1 N1 ... ng—2 0 Nge1 ... Ny
— (_1)nq T q T g+ q-— q+ Tea) 4+ (_1)nq r qTNg q a+ .
ag+1 a1 ... ag—1 0 agy2 ... ar? ag—1 a1 ... ag—2 0 ag4+1 ... ar?

Ng+1
n 1 + — j e N
+ Z ( q ]) / dtf Ng+1 J)(t — aq+1)F (nl ZZ,i nqtﬂ ZZE Z,» 7t>

j=0
e .
ng+1 — 1+ ; —j j
+Z< o J)(—l)”qﬂf(’ézﬁ e e e )
i=0 J
Ng—1
. |
- ( “)/ dt frar Dt —agy) T (G pe2 et vt )
§=0
Ngq .
Ng—1— 147 j —jni .. ng—2 Ng—1-+7] My
—Z<q j )<—1>”q”F(’éz_fZi e ) (2.43)

Situations with multiple successive appearance of a; = z are discussed in appendix B.

Examples. At length one, the reflection identity eq. (2.20) implies that
L(%2)=(-1)"T'(n;2), (2.44)

which covers all identities at this length. At length two, cases with n; = 0 or no = 0 are similarly
determined by eq. (2.20), so the simplest non-trivial application of eq. (2.27) is ' (1 };2). The
differential can be derived via eq. (2.31) and simplified using the Fay identity eq. (2.39) as well
as eq. (2.44),

S0 (30 = 2020+ fD 0 D0:1) 27D T (1) (2.45)

see eq. (2.21) for the notation on the right hand side. In combination with the boundary term

;%F( ;2) =G(1,0;1) = (o (2.46)
we find
T(Lli2) =21(0,2;2) + T(2,0;2) — 2T(1, 15 2) 4 (o (2.47)

which of course agrees with the general formula eq. (2.41). The same reasoning can be applied
recursively to obtain for example

D(Lt;2)=—-T(11§:2)=-T(0,3,0;2) = T(0,0,3;2) —30(1,1,1;2) + ['(2,0,1; 2)
L(1988;2) =2T(0,0,0,2;2) +T(0,0,2,0; z) — 2I'(0,0,1,1;2) + (2 T'(0, 0; 2) (2.49)
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as well as

r(Q1010:2)=21(0,0,0,2,0; 2) + '(0,2,0,0,0; 2) — 21'(0,1,0,1,0; 2) (2.50)
r(QL100:2)=T1(0,0,2,0,0;2) + T(0,0,0,2,0; 2) + T'(2,0,0,0,0; 2)
~T(1,0,1,0,0;z) — I'(1,0,0,1,0; 2) . (2.51)

In subsection 4.3 these relations turn out to be crucial to express the low energy expansion of
one-loop string amplitudes in terms of eMZVs.
The most general relation at length two following from eq. (2.41) reads

n9 o 1
L("%%52) = —(=1)" T(n +n2,0;2) + > (=1)™H ("1 . + T) C(ng —r,ny + 13 2)
r=0
= myar (M2 — 147
+> (1) . T(ny = 7,m2 + 73 2) + 0ny 10n,1C2 (2.52)
r=0

ny na2.,

and determines I' (" "7 ; z) through the shuffle identity and eq. (2.44). Analogous relations at
length three can be found in appendix B.3.

2.2.3 Relations among elliptic multiple zeta values

Apart from their application to string amplitudes, the above manipulations of ells are instru-
mental to derive relations among eMZVs beyond the obvious reflection and shuffle properties.
By definition eq. (2.22), ells with all labels a; = 0 yield eMZVs in the limit z — 1 of their
argument. At the level of labels a; = z, the limit z — 1 is equivalent to a; — 0 since the )
are periodic under z — z + 1, hence

lgrrif(ﬁi as ariz) =w(ng,...,no,n1), a; €{0,2}, ni,n. F1. (2.53)

Note that endpoint divergences caused by the simple pole in f!) might introduce additional
MZV constants similar to eq. (2.29), that is why the cases ni,n, = 1 are excluded explicitly.

At length two, for example, eq. (2.52) implies the following eMZV identity provided that the
limit z — 1 is non-singular:

no 1
w(nz,n1) = —(—=1)"w(0,n1 + ng) + Z(—l)m” <n1 * T)w(nl +r,ng—r)

r=0 r

ni _ 1

+) (=1 (m T w(ng+mr,ny—r), ni,ne#1. (2.54)

r
r=0

At low weights n;, the coefficients in eq. (2.54) are particularly simple such as

w(2,3) =w(0,5),  w(3,4) = —2w(0,7) +w(2,5) . (2.55)

Similar procedures can be carried out at higher length. Combining e.g. eq. (B.7) and a suitable
generalization thereof to length four leads to

0 =w(0,0,5) +w(0,1,4) + w(2,0,3) (2.56)
0 =10w(0,0,0,5) + 4w(0,0,3,2) + 2w(0,2,0,3) — w(2)w(0,3) — w(0,5) . (2.57)
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At length five, a combination of eqgs. (2.50) and (2.51) with the shuffle relation eq. (2.23) yields

w(0,1,0,1,0) = w(0,2,0,0,0) (2.58)
w(0,1,1,0,0) = w(2,0,0,0,0) — w(2)w(0,0,0,0) , (2.59)

which will be applied in subsection 4.3.

3 The functions (™ on the elliptic curve

In this section, we provide the definition and mathematical framework for the functions f(),
thereby supplementing our heuristic approach in section 2. Before doing so, let us start with
some mathematical motivation, in which we explain in particular why we need — in distinction
to multiple polylogarithms — an infinite number of them.

3.1 Motivation

The importance of multiple polylogarithms as defined in eq. (2.1) becomes evident, when
considering homotopy-invariant iterated integrals on the multiply punctured complex plane
C\ {ai1,...,an}: the value of any such integral evaluated on a path v depends on the homo-
topy class of the path only and is a C-linear combination of multiple polylogarithms.

Instead of the multiply punctured plane, let us now consider the complex elliptic curve
E. = C/(Z + Zr) with its origin removed (we write this as EX), where Im (7) > 0. One possible
definition of multiple elliptic polylogarithms is via iterated integrals on EX. Writing the canon-

ical coordinate on EX as z = s+ r7 with s, € R, such that r = %E Ejg

, two natural differential
forms on EX read
dz and v =2midr. (3.1)

These differential forms, however, are not sufficient to describe all iterated integrals on EX. Even
worse, iterated integrals employing the differential forms dz and v only will not be homotopy-
invariant in general, i.e. they will depend on the choice of a path in a given homotopy class.

Both problems are overcome simultaneously by supplementing eq. (3.1) by an infinite tower
of differentials f(")(z)dz constructed through a generating function [16]°

Qz,a,7) =Y fM(z)a"t, (3.2)

n>0

where f(9)(z) = 1. In particular, it has been proven in ref. [16] that every iterated integral in
v and dz can be uniquely lifted to a homotopy-invariant iterated integral over v and f (”)(z)dz.
Conversely, every homotopy-invariant iterated integral on EX arises in this way.

The form of the generating function and its coefficients f( in eq. (3.2) can be fixed by
constructing a doubly-periodic connection J satisfying the integrability condition

dJ+JAJ=0. (3.3)

This requirement singles out a unique completion of J = vXg+ dz X7 + ... to a formal power
series in non-commuting variables Xy and X; given by [16]

J = VX() - adXOQ(z, —adXD,T)(Xl)dZ . (34)

®Note that in ref. [16], Q(z, «,7) is defined as a differential form, i.e. includes dz.
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It follows from eq. (3.3) that every word in Xg, X7 in the formal power series

f: / J* (3.5)
k=0

is a homotopy-invariant iterated integral on EX, and one can prove that in fact every such
iterated integral arises in this way. Therefore, every homotopy invariant iterated integral on
EX can be written as a special linear combination of iterated integrals of the differential forms
f™(2)dz and v. The differential form v eq. (3.1), however, vanishes on the real integration path
v(t) € R. Hence, the setup in subsection 2.2 based on real variables leads to elliptic multiple
zeta values defined in ref. [17] without referring to the differential form v.

Although homotopy invariance is generically lost for the iterated integral over the forms
F(z1)dz; ... f)(z,)dz, on the punctured elliptic curve EX, its value at the real path [0, 1]
as in eq. (2.22) can in fact be written as a Z-linear combination of coefficients of words in
eq. (3.5), again evaluated on the path [0, 1]. In particular, this shows that the eMZVs associated
with the path [0, 1] [17] are periods of the fundamental group of EX.

Hence, the ells defined by eq. (2.18) coincide with the elliptic polylogarithms defined in
ref. [16] when restricted to the real line. They can be lifted to honest homotopy-invariant
iterated integrals on the punctured elliptic curve by means of the differential form v defined
in eq. (3.1). However, generic combinations of f (”)(z)dz accompany several words in Xy, X3
in eq. (3.5) and therefore allow for various homotopy-invariant completions using v. Iterated
integrals over v and dz, on the other hand, correspond to a single word in eq. (3.5) and therefore
have a unique uplift via f">1)(z)dz towards the elliptic polylogarithms of ref. [16].

3.2 Doubly-periodic functions and generating series

In this section, we define the functions f(™ through a generating series, closely following ref. [16].
In the sequel, z and « are complex coordinates on EX. Simultaneously, o will be used as a formal
expansion variable below. The modular parameter often appears in the combination

q=erm (3.6)

where Im (7) > 0 translates into |g| < 1, relevant for convergence issues.

3.2.1 Some doubly-periodic functions

A general reference on doubly-periodic functions is ref. [23]. Let 6; denote the odd Jacobi
function” defined by

(e.9] oo oo
01(z,7) = 2iq'/® sin(7z) H (1—¢ H ez g H(l —e 2yl | (3.7)
j=1 j=1 j=1
subject to the following periodicity properties

O(z+1,7)=—01(2,7) , 01(z+7,7) = — T2 (2, 7) . (3.8)

"The subsequent definitions of f( are unchanged by z-independent rescalings of ;. Hence, the current setup
is consistent with refs. [16,50|, which rely on 6(z,7) = 2ig"/*? sin(r2) H;’;l(l — ¥z gd) H] (1 —e?m5gd).
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For j > 1 we also define the Eisenstein function E;(z,7) and the Eisenstein series e;(1) by®

1 1

Ej(z,7) = Z —_— e;(1) = Z —_— (3.9)
el (z+m+nt)l = (m+nt)J
(m,n)#(0,0)
which are related to the function 6;(z,7) via
0 0 .
— In(01(2,7)) = E1(z,7) , —FEi(2,7) = —jEjt1(z,7) . (3.10)

0z 0z
3.2.2 The Eisenstein-Kronecker series
The Eisenstein-Kronecker series F'(z, o, 7) is defined by [51, 16]

01(0,7)01(2 4+ a, 7)
01(2,7’)61(&,7’) ’

F(z,a,7) = (3.11)
where ' denotes a derivative with respect to the first argument. Taking the logarithmic derivative
of eq. (3.11) together with the Taylor expansion Ei(a,7) =  — Y20 a7ej1(7) leads to the
following alternative representation [52,50]

Pz a,7) = éexp (— v T g - ej(T))) (3.12)

=1

in terms of the Eisenstein functions and Eisenstein series defined in eq. (3.9). The periodicity
properties of the @;-function in eq. (3.8) imply that the Eisenstein-Kronecker series is quasi-
periodic,

F(z+1,a,7) = F(2,,7), Fz+7,a,7)=e ™ (2,0,7) . (3.13)

Moreover, the representation (3.12) together with the Fay trisecant equation [53] yields the Fay
identity

F(z1,00,7)F (22,00, 7) = F(21,00 + ag,7)F (22 — 21,2, T)

+ F(z2,00 + ag,7)F (21 — 22,1, T) . (3.14)

3.2.3 Restoring double periodicity and modularity

The quasi-periodicity of the Eisenstein-Kronecker series under z — z + 7 as given in eq. (3.13)
can be lifted to an honest periodic behavior by defining

Qz,a,7) = exp <2m’ai$ Ej_;

>F(z,a,7'). (3.15)
Clearly, the resulting function Q(z, «, 7) is doubly-periodic in z,

Qz+1L,a,7)=Q0z+T1,0,7) = QUz,0,7) , (3.16)

8The two cases j = 1,2 require the Eisenstein summation prescription

N M
g am,n = lim lim E E Am,n -
N—o00 M— o0

m,n€’ n=—N m=—M
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and holomorphicity of the Eisenstein-Kronecker series eq. (3.11) gives rise to the differential

equation
e’

“Im(7)

0
%Q(z7 «, 7_) -

The latter implies that the connection J in eq. (3.4) satisfies the integrability condition eq. (3.3)

Qz,a,7) . (3.17)

and generates homotopy-invariant iterated integrals via the formal power series eq. (3.5) [16].
Upon taking the exponential in eq. (3.15) into account, the modular transformation proper-
ties of the Eisenstein-Kronecker series [52,54], can be translated into

Q( z o art +b

cr+d er+d et + d) = (e + Az 1) (3.18)

for (%) € SL(2,Z). The Fay identity eq. (3.14) for the Eisenstein-Kronecker series carries over
to

Q(z1, 00, 7) 22, a2, 7) = Q21,1 + a2, 7)Q(22 — 21, 02, T)

+ Q2,1 + o, 7)1 — 22,01, T) (3.19)

after multiplication with exp (111217?7) [a1Im (21) + aslm (22)]).

3.3 Definition and properties of the weighting functions f(”)
3.3.1 Definition of f(")

We define the functions f(") entering the ells eq. (2.18) through the following Taylor series in a,
o0

aQ(z,a,7) = Z ™ (z, 7)o" . (3.20)
n=0

They are real analytic on the punctured elliptic curve EX. As above, we will omit the argument
7 and write f (")(z) or often simply f(™. Their explicit form is conveniently captured by the
following functions” &,

I
E1(z,7) = Er(2,7) + 2mi -

() 7= (=1)"(en(r) = En(z,7)) Vn>2. (321)

These functions result in a simple representation of the generating series
afd(z,a, T) = exp Z —&i(z,7) |, (3.22)
— J
7j=1

and allow for a combinatorial interpretation of f (”)(z,T) in terms of the cycle index of the
symmetric group S,, (see appendix D).
Comparison with eq. (3.20) yields the following expressions for the lowest functions f(™

D=8
1
ﬂ”:jﬁ+&)

“Note that all &£, are meromorphic except for £ (due to the term Im (z)), and that £2(2) = —p(2) is the
Weierstrass function. Higher functions &£, at n > 3 are related to derivatives of the Weierstrass function, e.g.
E3 = —%8@ and €4 = e4 — ga%.
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1

F8) = o (€ + 38616 + 283) (3.23)
1

FO = (6l + 6676 + 86185 + 363 + 664)

1
FO) = o (E7 + 10E3Ey + 20E2E3 + 15E1E2 + 30184 + 206263 + 24E5) .

The functions & can be expressed in terms of In #; via eq. (3.10), which leads to the representa-
tions for f(1) and f® provided in eqs. (2.15) and (2.16). As shown in appendix D, the general
expression for f(™ following from eq. (3.22) reads

=3 6<zn:iai—n> f[ .g_jjj' (3.24)

a1,a2,...,an >0

and an equivalent recursive representation is given by

F) = Z g].f(n—j) ) (3.25)
j=1

S

3.3.2 Properties of f(”)

The functions f(™ inherit their double periodicity, the form of their antiholomorphic derivative as
well as their behavior under modular transformations from the generating series in eqns. (3.16),
(3.17) and (3.18):

Fe+1) = fO47) = () (3.26)
of ™ (z) B T (n—1)
9z  Im (T)f V) (3.27)
n z ar +b n on
1" ora) = T+ ") (3.28)

Likewise, the Fay identity eq. (3.19) implies for fi(;-l) =7 (")(zz- — zj):

m—1) p(n m) p(n—1 " (m—1 +r n—r) (m—1+r T (n—1 +r m—r) p(n—14r
fé>muﬁl&)=2( )ﬁ)ﬁ )+Z( , %f)ﬁ g

r=0 r r=0
(3.29)
This identity has been used repeatedly to derive relations among ells in section 2 (cf. eq. (2.40)
above).
Given the singular factor Zigg’zg = % + O(z) in the Eisenstein-Kronecker series eq. (3.11),

one can check that the residue at the simple pole of €2 at the origin is independent on «. Hence,
only f) has a simple pole at any z = k + 71 for k,l € Z whereas all other weighting functions
f#1) are regular on the entire elliptic curve:

lim zf™(2) = 6,1 . (3.30)

z—0

It is this property of the functions f(™, which is responsible for the z — 0 behavior stated in
eq. (2.29).
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3.3.3 g-expansions of f(™

The Eisenstein-Kronecker series eq. (3.11) is known to have the following power-series expansion
in ¢ = 2™ [23,16]

aF(z,a,7) =1+ macot(mz) — 2 Z Cone®F — 2mia Z ( 2mi(mztna) _ efQﬂi(szr”a))qm"
k=1 myn=1
o

=) g™ (2)a" . (3.31)

Disentangling the powers of « yields the holomorphic parts ¢\ of the functions f(, e

g (2) = 7 eot(rz) + 4m Z sin(27rmz) Z g (3.32)
m=1 n=1
g (z) = —2¢; + 872 Z cos(2mmz) Z ng™" (3.33)
m=1 n=1
¥ (z) = —8n® Z sin(2wmz) Z n2q™" (3.34)
where cot(nz) = = + O(z) captures the simple pole o . More generally, we fin
h 140 h le pole of f(). M 1l find
k oo oo
(k) (2 ) -1 mn
g (z)\kzu —2[¢x + G mz cos(2mmz) z:: ] (3.35)
g(k)(z)’ = ( )" i sin(2rmz) an Lgmn (3.36)
k=35,. k 1)! =

Im (z)

The non-holomorphic piece in f(™) consisting of factors Tm(r) Can be immediately restored via

n . k
f(”)(z) — Z Mg(n—@(g) ) (3.37)
k=0 K![Im (7)]
Even though the functions f(™ in the definition eq. (2.18) of ells are evaluated at real arguments
in the subsequent, we will keep track of the admixtures of Im (z) in eq. (3.37) for further
applications beyond this work. For example, another system of ells and eMZVs can be defined
for the path from 0 to 7 instead of the real interval [0, 1] whose properties are crucially affected
by the factors of Im (z) and the resulting modular properties.

4 The one-loop four-point amplitude in open string theory

Iterated integrals defined on an elliptic curve in subsection 2.2 appear naturally in superstring
theory. Calculating one-loop scattering amplitudes among open string states amounts to eval-
uating iterated integrals weighted by the functions f( defined in section 3. Accordingly, the
expansion of one-loop superstring amplitudes in the inverse string tension o/ involves eMZVs.
The o'-expansion of tree-level amplitudes in open string theory is well known to involve
standard MZVs, see e.g. ref. [34]. The pattern of their appearance is much simpler as compared
to the MZVs and polylogarithms in loop amplitudes of field theory and can be understood in
terms of motivic MZVs [29] as well as the Drinfeld associator [38]. Hence, it is not surprising
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Im (2) 4

N |+

t > Re (2)
z2 23 ZN 1

Figure 1: Parametrization of the cylinder worldsheet through the shaded region. The boundary under
investigation has real coordinates z; € [0, 1]. The identified edges inherited from the underlying torus at
7 = it are marked by = and |, respectively.

that one-loop string amplitudes furnish a perfect laboratory to study patterns and properties of
eMZVs.

Iterated integrals in one-loop open string amplitudes occur on the boundaries of a two-
dimensional worldsheet of either cylinder or Mobius-strip topology [40]. They describe confor-
mally inequivalent configurations of inserting open string states on the respective boundaries.
As a first field of application for eMZVs, we will entirely focus on cylindrical worldsheets in
this work with all integrations confined to one boundary!’. As shown in figure 1, this situation
can be described by a torus with purely imaginary modular parameter 7 = it with ¢ € R. The
cylinder boundaries are then parametrized by Re (z;) € [0, 1] with Im (z;) = 0 and Im (z;) = £,
respectively. The configuration of interest with one boundary empty is captured by real insertion
points z; € R.

4.1 The four-point amplitude

For massless open-string excitations in ten dimensions — gluons and gluinos — supersymmetry
requires at least four external states for a non-vanishing one-loop amplitude, so the simplest
case to be studied below is the four-point function [58,59],

string

o0
AI_IOOp(l, 2,3,4) = 31252314%}1?2(1, 2, 3,4)/ dt Iype(1,2,3,4) (4.1)
0
1 24 23 22 4
Iipe(1,2,3,4) E/ dz4/ dZ3/ dzz/ dz1 6(21) Hexp (s Pjk] - (4.2)
0 0 0 0 ik

The entire polarization dependence is captured by the four-point tree amplitude of sYM field
theory, see [60] for its tensor structure. The worldsheet integral Iyu(1,2,3,4) depends on the
external momenta k; through dimensionless Mandelstam invariants

sij = o (ki + kj)? (4.3)

10The interplay between open string worldsheets of different topologies is crucial for the cancellations of infinities
[55] and anomalies |56,57] which occur for gauge group SO(32).
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where momentum conservation and the mass-shell condition k? = 0 leave two independent Sij,
S34 = S12, S14 = S23 , S13 = S24 = —S12 — S23 . (4.4)
The dependence on worldsheet positions z; € [0, 1] enters through the genus-one Green function

2
— il m i — 25 2 . .
TIm (T) [I (zl J)] (4 5)

1
2

01(zi — 25, 7)
01(0,7)

P(zi—zj))=-In

which is related to the singular function f()(z; — zj) in eq. (2.15) via

1
0.P(2) = 5 fV(2). (4.6)
The non-holomorphic piece in fM(z) = Zig:g + 27Ti%$i drops out for the present cylinder

parametrization where all vertices are inserted on the boundary with real coordinate xz. Fur-
thermore, reality of all insertion points allows to rewrite eq. (4.6) as

0, P(x) = fW(x). (4.7)

where we have used 0, = %(ax —i0y) and z = z + iy with z,y € R. Integrating along a real
path, we find

Pyj = P(z; — zj) = /: du fO(u — ;) = /Ozx] dvf(v) . (4.8)

The endpoint divergence as u — x; can be dealt with through the regularization prescrip-
tion eq. (2.26) which heuristically amounts to limxi_)xj P;; = 0. Note that the dependence of
Lipt(1,2,3,4) on s;; and ¢ = e 2™ is suppressed for ease of notation.

Accordingly, the differential form v ~ dIm (z) in eq. (3.1) required for homotopy invariance
does not contribute to the cylinder integrals under consideration. However, the admixtures of
ﬁ;l—f_ in f( are crucial for modular invariance of closed-string amplitudes and cylinder diagrams
with open string states on both boundaries.

Translation invariance on genus-one surfaces can be used to fix z; = 0. In addition, the

N-point integration measure which appears for N =4 in eq. (4.2),

1 ZN 23 22
/ E/ dzN/ dzN_l.../ dzz/ dz19(z1) , (4.9)
12...N 0 0 0 0

is invariant under cyclic shifts z; — 2;411modn and, up to a sign (—l)N , under reflection z; —
ZN+1—i- Some features of the one-loop N-point amplitudes are discussed in section 5. Their
integrand then involves factors of f (“’i)(zj — z1,) with overall weight Y, w; = N — 4.

As another generalization of the one-loop amplitude eq. (4.1) in ten spacetime dimensions,
one could consider supersymmetry-preserving compactifications on a torus. For each circular
dimension of radius R, the associated momentum components are quantized and contribute a
correction factor of Y00 e~m*mR*/a" {4 the t-integrand [61]. Since this does not affect the
zj-integrations within Iy,¢(1,2,3,4) and the resulting eMZVs, the subsequent results on the
o/-expansion are universal for any torus compactification to spacetime dimensions D < 10.

20



4.2 The o’-expansion

In this section, we investigate the o/-expansion of the ¢-integrand in eq. (4.1),

Iipi(1,2,3,4) / H Z j(si5Pig)"™ (4.10)
1234

1<j n; —0

which encodes the low-energy effective action for the gluon supermultiplet. Expanding in o
amounts to Taylor expanding the exponential in eq. (4.2) in all the Mandelstam invariants s;;
defined in eq. (4.3) as well as the corresponding worldsheet Green function P;; given by eq. (4.6).

In addition to the power-series expansion in o discussed in the subsequent, the integration
region of large t in the amplitude eq. (4.1) gives rise to logarithmic, non-analytic momentum
dependence. The associated threshold singularities in s;; are for instance crucial to make contact
with the Feynman box integral in the sYM amplitude arising in the point-particle limit [61].
Mimicking the low energy-analysis of closed string one-loop amplitudes [62-65], we separate the
analytic from the non-analytic parts of the amplitude and do not keep track of the non-analytic
threshold singularities.

The simplest monomials in P;; inequivalent under cyclic shifts and reflections of the vertex
positions z; integrate to

— 1 1 _
Co = 1 s 1 = P12 s Cy = P13 . (411)
1234 1234 1234

At second and third order in o/ one finds

1
i = B Ph 3= PioPy 2= / PioP3y
1234 1234 123
9 1 2 2 _ _
cy = 5 P, = P3Py = P12P13 (4.12)
1234 1234
as well as
3 = 1 3 31 2 3 _
a=g P cy = o P12P34 ; Cy = Pio P13 Ps3
1234 1234
1
C% = — P13 Cg = — / P12P13 s C?D = / P12P13P14
1234 1234
= P P. 3=_ Py P? 3 = Py P3P
3— 124723 , C7—2 124773 C11 = 12473414713
1234 1234
Ci = 5 P13P24 y C% = P12P23P34 y C?Q = / P13P24P12 . (413)
1234 1234 1234

As will be demonstrated in section 4.3, eMZVs defined in eq. (2.22) are the natural language
to describe the above ¢! and to understand the linear combinations appearing after applying
momentum conservation eq. (4.4):

I4pt(1, 2, 3,4) =cy + 2(0% - C%) (512 + 523) + (20% + 20% — C% — Ci) (5%2 + %812823 + 833)

1
+ = (—2¢F + 143 + ¢ — 7¢3) 519803 + 2(c3y — 263 — &3+ 2¢3 + ¢} — 2¢3) s12523 (512 + 593)

1
+ (263 + 263 — 2¢3 + 63 4 23 — 8¢ — 2¢3) (s12 + 523) (595 + 512803 + 533) + O(?). (4.14)

A first flavor of relations among cz (and thus ultimately among eMZVs) can be obtained by
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exploiting cyclic and reflection properties of five-point integrals such as

/ Py505 Po3 =/ P5102P3 = / Py5Pr3 =/ P Pi3 = c=ci, (4.15)
12345 12345 1345 1345
see eq. (4.9) for the measure [}55,-. Similar methods imply that

2t=ci+ch, d=c, dy=c, =+, i +cdy=cd+c,, (4.16)
these relations have been used to eliminate 2, c2 as well as c2, c3, ¢}y, ¢}y from eq. (4.14).

Note that the o'-expansion of closed string one-loop amplitudes has been analyzed along
similar lines in refs. [62-65]. Since each closed-string insertion point z; is integrated over the
entire torus E,, integrals involving propagators with a free endpoint vanish and therefore much
fewer closed-string counterparts of the coefficients C’Z arise.

4.3 Elliptic multiple zeta values

In this section we convert the constituents of the o/-expansion, czj defined by eqns. (4.11), (4.12)
and (4.13), to eMZVs. This will provide a characterization of the particular linear combinations
of C‘Z which appear in eq. (4.14) along with various powers of sj2 and sa3.

The leading term ¢ in eq. (4.11) can be straightforwardly evaluated to yield % and furnishes
a special case of

w(0,0,...,0) = =, (4.17)

which follows from multiple insertions of 1 = f()(z;). Nevertheless, it will prove instructive for
the comparison with higher orders in o’ to express ¢y as an unevaluated eMZV:

1 24 =3
CQZ/O f(O)(z4)d24/0 f(o)(Z3)dZ3/0 FO(z2) dzy

=T1(0,0,0;1) = w(0,0,0). (4.18)

Below, we will repeatedly apply the definitions eq. (2.18) and eq. (2.22) of ells and eMZVs,

respectively, in order to express the other integrals ¢/ in the same fashion.

4.3.1 First order in P;;: integrals ci1

At linear order in s;;, we substitute P; = [57 f()(w) dw according to eq. (4.6) and z; = 0 into
the definitions eq. (4.11) and find

_/ 7O (24 dz4/ FO (2 dz3/0'z3 FO(25) dzs /022 £

=1(0,0,0,1;1) = w(1,0,0,0) (4.19)

cl :/0 f(o)(Z4)dZ4/0 FO(2) dz /:3 £ (25) dzs /OzS O (w) dw

_ / "0 () ey / ® 1O (24) dzg T(0; 25) T(1: 23)
0 0

1 24
_ f(o)(Z4)d24/ FO (25) dzs [D(1,0; 23) + (0, 1; 23)]
0 0
—T(0,0,0,131) + T(0,0,1,0: 1) = w(1,0,0,0) + (0, 1,0,0) . (4.20)
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The second line of eq. (4.20) makes use of the shuffle product eq. (2.19) for ells. Equivalence of
eq. (4.19) with the cyclically shifted integrand

1 24 23 24
P14 = ‘/0 f(o) (24) dZ4/0 f(o) (2’3) d23 /() f(o)(ZQ) dZQ /0 f(l)(w) dw
= w(1,0,0,0) 4+ w(0,1,0,0) + w(0,0,1,0) (4.21)

1234

can be checked using antisymmetry w(0, 1,0,0) + w(0,0,1,0) = 0 following from eq. (2.24).

4.3.2 Second order in P;;: integrals c?

At quadratic order in s;;, the rewriting Pi; = IS D (w)dw = —lej fW(w)dw allows to
straightforwardly address any quadratic monomial in Pja, Pi3, P14 along the lines of eqs. (4.19)
and (4.20):

&t =w(1,1,0,0,0) (4.22a)
s =w(1,1,0,0,0) + w(1,0,1,0,0) + w(0,1,1,0,0) (4.22b)
3 = —w(1,0,0,0,1) (4.22¢)
g = 2w(1,1,0,0,0) +w(1,0,1,0,0) . (4.22d)

Then, egs. (4.15) and (4.16) can be used to determine the remaining two c? in eq. (4.12):

2 = 20(1,1,0,0,0) + w(1,0,1,0,0) — w(1,0,0,1,0) (4.23a)

Note that the integration limits [;7... in the representation of Py; can be traded for — lej -

This is equivalent to applying a shuffle relation eq. (2.23),
0=w()w(1,0,0,0) = 2w(1,1,0,0,0) + w(1,0,1,0,0) + w(1,0,0,1,0) + w(1,0,0,0,1)  (4.24)
0=w(l)w(0,1,0,0) = w(1,0,1,0,0) + 2w(0,1,1,0,0) + w(0,1,0,1,0) + w(0,1,0,0,1) , (4.25)

where w(1) vanishes by the reflection identity eq. (2.24).

4.3.3 Integration techniques for Ps3, Poy, P34

Green functions Pj; where both indices describe a leg to be integrated (legs 2,3,4) are more
difficult to integrate. Their integral representation eq. (4.6) inevitably gives rise to iterated
integrals T' (ol 7 4" ; 2z) with the argument appearing in the labels, that is a; = z. Integration
over z3 and z4 then requires the techniques of subsection 2.2.2, in particular the recursion
formulee eq. (2.41) to eq. (2.43).

The simple corollary I' (1 3;2) = —=T'(§ §; 2) of the reflection identity eq. (2.20) is sufficient
to integrate P»3 and to reproduce eq. (4.19) from a different cyclic representative. The quadratic

case 05 Ji934 P12 P34, on the other hand, requires more effort. One obtains

PraPsy = / f(o)d24/ fo 724)dw/ f(o)ng),/ 3f(0)d22/ © 0 () du
1234 A ) A

—/O FO(za)dzs T (L 3065 2)

= 2w(1,1,0,0,0) — 2w(2,0,0,0,0) — w(0,2,0,0,0) — (2w(0,0,0) , (4.26)
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where I’ (zl4 99 (1);24) has been reexpressed via eq. (2.49) in the last step. In order to reproduce
the result of eq. (4.23b), —w(1,0,0,0,1), one needs to combine the shuffle relations eqs. (4.24)
and (4.25) with egs. (2.58) and (2.59). The desired result then follows from the constant eMZVs
in eq. (4.17) and w(2) = —2{2 which is a special case of

_J —2¢, : meven
w(n)—{ 0 Cmodd (4.27)

The expression for w(n) can be inferred from order ¢° in the expansions egs. (3.35) and (3.36).

4.3.4 Third order in P;;: integrals c?

Starting from the third order in Mandelstam variables, relations such as eq. (4.16) are no longer
sufficient to reduce the complete list of ¢} in eq. (4.13) to elementary integrals over monomials
in P2, P13 and Pi4. Instead, the inevitable factors of Pag, Poy and P34 require the procedure
described in eq. (4.26) together with the recursive identities eq. (2.41) to (2.43) in order to
rearrange the labels of the ells. This allows to reduce integrals over arbitrary monomials in P;;
with 1 <17 < j <4 to eMZVs. The integrals cg’, which are cubic in P;;, give rise to

& =w(1,1,1,0,0,0) (4.28a)
3 =w(1,1,1,0,0,0) + w(1,1,0,1,0,0) + w(1,0,1,1,0,0) + w(0,1,1,1,0,0) (4.28b)
s = —w(1,1,0,0,0,1) (4.28¢)
3 = 6w(1,1,1,0,0,0) + 3w(1,1,0,1,0,0) +w(1,0,1,1,0,0) + w(1,1,0,0,0,1) (4.284)
¢ = —w(1,1,0,0,0,1) (4.28¢)
cg = 3w(1,1,1,0,0,0) +w(1,1,0,1,0,0) (4.28f)
¢ =3w(1,1,1,0,0,0) + 2w(1,1,0,1,0,0) 4+ w(1,0,1,1,0,0) (4.28g)
3 = 2w(2,0,0,0,0,1) + w(0,2,0,0,0,1) — 2w(1,1,0,0,0,1) — Cow(1,0,0,0) (4.28h)

3 =2w(2,0,0,0,1,0) + 2w(2,0,0,0,0,1) + w(0,2,0,0,1,0) + w(0,2,0,0,0,1)

—2w(1,1,0,0,1,0) — 2w(1,1,0,0,0,1) — Cw(1,0,0,0) — (w(0,1,0,0) (4.28i)
o= —2w(1,1,0,0,0,1) — w(1,0,1,0,0,1) (4.28j)
¢ = —2w(1,1,0,0,0,1) —w(1,0,1,0,0,1) (4.28K)
3y = —2w(2,0,0,0,0,1) — w(0,2,0,0,0,1) 4+ Cw(1,0,0,0)

—2w(1,0,1,0,0,1) — 2w(1,1,0,0,0,1) , (4.281)

where the occurrences of (3 can be traced back to eq. (2.47).

4.3.5 Assembling the results

Momentum conservation only admits particular linear combinations of cZ in the four-point am-
plitude eq. (4.14). It turns out that for all cases considered divergent eMZVs with the singular
integrand f() in the first or last position drop out. Up to third order in sij, we have

Iipi(1,2,3,4) = w(0,0,0) — 2w(0,1,0,0) (s12 + s23) + 2w(0,1,1,0,0) (s34 + 533) (4.29)
— 2(4)(07 1,0,1, 0) $12823 + G5 (S?Q + 28%2823 + 2812833 + 833) + 6273 812823(812 + 823) + (’)(o/4)
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with

4
B5 = 5 [£(0,0,1,0,0,2) +(0,1,1,0,1,0) — (2,0,1,0,0,0) ~ ¢x(0,1,0,0)] (4.30)
1 1
fra = —5w(0,0,1,0,2,0) + gw(O, 1,0,0,0,2) + 5w(0,1,1,1,0,0)
4 10
+20(2,0,1,0,0,0) + 50(0,0,1,0,0,2) + 50(0,1,0,0) , (4.31)

and the pattern at higher orders is under investigation. The above expressions for 85 and 323
are obtained using various eMZV relations using the methods of subsection 2.2.3.

4.4 On the g-expansion of eMZVs and the string amplitude

The evaluation of eMZVs as initiated in eq. (4.17) and eq. (4.27) will be pursued systematically
in [49,66,67]. In this section, we give a glimpse of non-trivial g-dependence in simple cases and
provide consistency checks for the constant piece of the low energy expansion eq. (4.29) of the
four-point amplitude.

4.4.1 The simplest g-expansions

To determine the g-expansions of the simplest eMZVs, we start from the expansions of f() and
@ spelled out in eq. (3.37), which in turn is based on eqs. (3.32) and (3.33). Using the integrals
in appendix C, we arrive at

(3 3 o 1

0,1,0,0) = == + g 4.32
w(0,1,0,0) = 8<2+27T Zn:lmgq (4.32)
as well as

0(0.1.1,0.0) = &2 mn LSS 433
SO1100 = 5l S g S (4.3

m,n ,TL:1

e .

w(0,1,0,1,0) = ——+—2 Z -3 > —5d"™" (4.34)

m,n m,n=1

A systematic method is under investigation and will appear in [67]. Note that the ¢g-dependence
of all the examples above can be expressed in terms of the function ELi,, ,, introduced in section 8
of ref. [11] at arguments z =y = 1.

4.4.2 The constant piece of eMZVs and the o’-derivative

The t-integration in the four-point amplitude eq. (4.1) is divergent unless the choice of gauge
group SO(32) leads to cancellations between the cylinder and the Mobius-strip diagram [55].
The divergence is interpreted as a zero-momentum dilaton propagating to the vacuum and
therefore proportional to the derivative of the tree level amplitude with respect to o’ [58]. The
latter is given by

Atree (193 4) = I'(1+ 512)0'(1 + s93)
Y (1 + s12 + s23)

string

AS(1,2,3,4) (4.35)
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with o/-expansion

[(1 + s12)T(1 4 s23) s wCh ok . N
=X —1)"=—= + s55 — (812 + So
I'(1+ s12 + s23) P ,;2( ) k [T + 855 — (512 + 523)"]

=1 — (2512523 + (3512593(512 + 523) — (a512523(535 + i812523 + 535) (4.36)

+ C5812823(8%2 + 23%2323 + 2812853 + 5%3) - C2C3(812823)2(812 + s23) + 0(06/6) .

In the representation of the one-loop amplitude given in eq. (4.29), the divergence originates
from the constant part of the eMZVs’ power series expansion in ¢ = e?™7™ = ¢ =27, A systematic
method to extract the constant term of eMZVs will be described in ref. [49]. The resulting

divergence in the above result is given by

Aiéi?ﬁé’(l, 2,3,4) ‘div = 512503 AYS(1,2,3,4) I4p1(1,2,3,4) ‘qo
=53 s12523 AV (1,2, 3, 4){2{2 — 3(3(s12 + s23) + 4y (3%2 4 i312323 + 3%3) (4.37)

— 5(5(851‘)2 + 28%2823 + 2812833 + 833) + 5C2(3812823(812 + S23) + O(a’4)} ,

which is consistent with the o’-derivative of the tree amplitude [58] upon comparison with
eq. (4.36),

"0
=2 O e (1934). (4.38)

div 272 9o/ string

Ao (1 93 1)

string

5 Multi-particle one-loop string amplitudes and f(

This section is devoted to one-loop amplitudes involving five and more open string states. We
firstly provide the five-point extension of the four-point o/-expansion in eq. (4.29). It is secondly
demonstrated that the doubly-periodic functions () defined in section 3 naturally enter the
calculation of one-loop amplitudes with any number of external legs.

5.1 The five-point open string amplitude

In the same way as the four-point open string amplitude in eq. (4.1) allows to factor out the
polarization dependence via AY$5(1,2,3,4), one can express the five-point string amplitude in
a basis of color-ordered trees of YM theory [68]. BCJ relations [69] single out two independent
subamplitudes AY$3(1, p(2,3),4,5) with permutation p € S, and for convenience, we consider
the same color orderings in the one-loop string theory counterparts:

ARER(1.0(2,3),4,5) = [ at 3 In(olp) AR (1,9(2.3).4.5). (51)
PES?2

The 2 x 2 matrix Ispi(0|p) is the generalization of the four-point scalar integral Iup(1,2,3,4).
It can be assembled from the kinematic factors which were simplified in ref. [68] using the pure
spinor formalism [70],

5
Z I5Pt(1‘p)AtYr'§/?(lap(273)747 5) = / Hexp [Sklpkl} (52)
pES> 12345 k<l

X [s23f83) (Chppsas) + (23 ¢> 24,25, 34,35, 45)]
(Cljaza,5) = 545 (S24 AYS9(1,3,2,4,5) — s34 A¥5(1,2,3,4,5)) . (5.3)
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The integration measure [j,3,- is defined in eq. (4.9), the functions fl-(jl) = f(z —z;) stem from
OPE contractions among the worldsheet fields and the five-point Mandelstam invariants eq. (4.3)
can be cast into a five-dimensional basis via momentum conservation, e.g. s13 = S45 — S12 — So3.

From the mathematical point of view, the only novel five-point ingredient as compared to
the four-point amplitude is the extra factor of fi(jl) = 0Pj; in the integrand of eq. (5.2). Thanks
to the embedding of f(!) into the framework of ells eq. (2.18), the o/-expansion of the integrals
J19345 fi(jl) [12<,exp [s1Pw] in eq. (5.3) is again captured by eMZVs. The detailed discussion
of kinematic poles as well as the order-by-order treatment of the exponential will be discussed
elsewhere; here we simply quote the final result:

Ispi(olp) = [ = w(0,0,0)Py — 2w(0,1,0,0)Ms — 5w(0,1,1,0,0) P,

— (2w(0,1,0,1,0) + 2w(0,1,1,0,0)) Ly + O(a®)] (5.4)

o,p ’
Up to weight two at order O(a*), the eMZV content is the same as in the four-point expansion
eq. (4.29). The accompanying 2 x 2 matrices P;, M;, L; are indexed by permutations p, o, and
their entries are polynomials of degree ¢ in Mandelstam variables. The representatives P; and
M; already appear in the o/-expansion of open-string tree amplitudes, along with even and odd
Riemann zeta values (;, respectively [29]. Given that the low-energy limit of one-loop amplitudes
at any multiplicity has the mass dimension of s%A%}ﬁfj(. ..), the eMZV coefficients of P;, M;, L;
have weight ¢ —2. This amounts to a shift of —2 in weight in comparison to the MZV coefficients
of P;, M; at tree level.
They are available at the website [39] whereas L4 reads

2 2 2 2 2 2 2
(L4)11 = 812823 + 2512823524 + 512594 + 2812823834 + 2812813823834 + 2812823834

2 2 2 2
+ 2579524534 + 512513524534 + 2512523524534 + S79534 + 2512513534

+ 3%3532)4 + 2812523834 + 2813823834 + 553534 (5.5)
(La)12 = —s13524(3512523 + S13523 + 833 + 25125924 + 513524 + 523524
+ 3512534 + 2513534 + 3523534) (5.6)
and (Ly)2e = (L4)11]2<_>3 and (L4)o1 = (L4)12‘2<_>3. The relabelling 2 <+ 3 refers to the 4, j along

with the Mandelstam invariants s;;.
The four-point one-loop amplitude eq. (4.29) can be cast into the same form as eq. (5.4)
upon setting Ly — 0 and

2
2 1 2
Py — —s12523, M3 — s12823 (s12 + s23), Py— — 5 $12523 (512 + 4512523 + 523) , (5.7)

in agreement with the four-point open string tree eq. (4.35). The pattern of eMZVs at higher
orders in o/ as well as the properties of the novel matrices L; are left for further projects.

5.2 Functions £ from the RNS formalism

In this subsection we will show that the doubly-periodic functions f( for any n are naturally
generated in the one-loop amplitude computation using the RNS formalism [71-73]. Their
emergence in the parity-even and parity-odd sectors turns out to follow two separate mechanisms.
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5.2.1 Parity-even RNS amplitudes

In the parity-even sector of the RNS computation, the functions f(™) arise from the summation
over the even spin structures of the fermions on a genus-one worldsheet. We also take this
opportunity to use the method of refs. [74,75] to write down explicit results for the N-point spin
sum for N > 7.

Definition of Vj(x1,...,zn). In the subsequent we use the variables z; = 2 — 241 for
t = 1,..., N with the condition zy4; = 21 such that Z —1x; = 0. Using the shorthand
Q; = aQ(z;,a) it follows from eq. (3.30) that the aP-component of €5 ---Qy has at most p
simultaneous single poles in the variables x;. This suggests the following definition

Vp(JL'l,ZUQ,...,l'N)E(ngg...QN) ai”. (5.8)
For example, with fi(n) = ) (z),
>
Vi(zy,...,z5) = Zfl( )
Vo, Zf2)+ 3 Y
1<7,<]
7
Voo oan) =300+ Y PR+ 1210 + 5 YRy
i=1 1<z<] 1<i<j<k
8 8
Vilon, s = 31 VARV CE LY U SR P LIl e
1<i<y 1<i<j<k<l
Y AR+ O+ 2 rV D) (5.9)
1<z<j<k
Interestingly, the anti-holomorphic recursion eq. (3.27) implies that V,(z1,...,2n) is holomor-
phic; %%(wl, ...,zn) = 0. Equivalently, the non-holomorphic factors Im (z;) in Vy,(z1,...,zn)

trivially vanish because of the condition "%, z; = 0. One can therefore replace & (x,7) by
Ei(x,7) and fl-(n) — ggn) in the notation of subsection 3.3.3 to establish manifest holomorphic-
ity.

Note that the functions in eq. (5.8) were also used in [76] to cast one-loop correlation functions
among arbitrary numbers of Kac-Moody currents into a closed form.

Spin sums in one-loop amplitudes. In the computation of parity-even one-loop amplitudes
in the RNS formalism the bosonic worldsheet fields can be straightforwardly integrated out to
yield products of (), possibly after integration by parts. Worldsheet fermions, on the other
hand, give rise to the following spin sums,

QN(xl, e ,QTN)

4
S (1) (W) Sy(21)Su(@s) .. Sulen),  (5.10)

v=1,2,3
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where Z “1x; =0, S, is the Szego kernel and v denotes the even spin structure with associated
Jacobi theta functions 60, 03,04 [77-79,53],

01(0,7)0,41(z,7)

Sulz) = 0,100,701 (z,7)

(5.11)

A method to evaluate such sums was presented in ref. [74] and its explicit results at N < 7 can
be written in terms of f(1)(z), the Weierstrass function p(z) and its derivatives d*gp(z),

Q4(x1,...,x4) =1

5
Gs(a1,...,25) = > f(xy)
j=1
1 Wz
Go(ors---vm0) = 5{ (0 F0wp) =3 pla)}
j=1 J=1
1 7 3 7 7
Gr(ars. . var) = o (0 10) = 3 dola) - 33 10) (3 o). (512)
j=1 j=1 j=1 J=1
One can show that the above results are naturally described by the elliptic functions Vj,(z1,...,zn),
QN(arl,...,xN):VN_4(x1,...,a:N), 4§N§7 (513)

An alternative method was used in [80,81] to express Gy in terms of single derivatives of the
bosonic Green function. The equivalence of the expression for Gg given in these references with
eq. (5.12) can be verified through the Fay identity eq. (2.39).

Although the results for N > 8 were not written down explicitly in ref. [74], they also take

a natural form when expressed in terms of elliptic functions V,(z1,...,zn),
Gs(x1,...,x8) = Vi(z1,...,28) + ey
Go(x1,...,m9) = Vs(x1,...,29) + 3e4Vi(x1,. .., 29)
Gio(z1,...,x10) = Vs(x1,...,210) + 3e4Va(x1, ..., z10) + 10eg
Gii(z1, .., o11) = Va(xg, ..., 211) + 3eaVa(x1, ..., 211) + 10egVi (21, . .., 211)
Gio(z1,...,m12) = Vs(x1,...,212) + 3e4Va(x1, ..., x12) + 10e6Va (21, . .., 212) + 42e5 . (5.14)

The factors of the Eisenstein series e; eq. (3.9) can be systematically computed as well. Following
ref. [75], we define Qo(p) = 1, Q1(p) = p and Qr41(p) = p**). For example,

Qa(p) = 3'* — 392

Q(p) = 5lp” — 18g2p — 12g3

Qu(p) = Tlp* — 1008g2p? — 720930 + 993

Q5(p) = 9!p® — 90720920 — 64800g30? + 3024930 + 237649293 , (5.15)

where the Weierstrass equation (p/)? = 40> — gop — g3 has been used to rewrite the 2k'h
derivative of p as a polynomial in p. In the above equation, go = —4(s152 + s253 + $351) = 60ey,
g3 = 4515953 = 140eg are the elliptic invariants and s; are the branch points of the genus-one
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elliptic curve y? = 4(z — s1)(z — s2)(z — s3) satisfying s1 + s + s3 = 0. Defining

1 [(s1—53)Qx(s2) + (53 — 52)Qr(51) + (52 — 51)Qr(53)]
(Qk — 1)' (81 — 83)(83 — 82)(82 — 81)

F2k74 = — 5 k > 4 (516)

straightforward calculation leads to!!
F4 = 364, F@ = 1066, Fg = 4268, F10 = 168610, F12 = 627612 + 96?1 y

which precisely captures the factors of e; in eq. (5.14). We have explicitly checked up to N = 12
that the spin sums can be uniformly written as,

|58 +1

gN(.Tl,...,SUN) :VN74($1,...,xN)+ Z F2k+2VN_2]€_6(SC1,...,$N). (5.17)
k=1

5.2.2 Parity-odd RNS amplitudes

The parity-odd sector of the RNS computation entirely stems from the unique odd spin structure
at genus one where the worldsheet spinors obey anti-periodic boundary conditions along both
torus cycles and acquire a zero mode. The worldsheet integrand is governed by zero-mode
saturation and, probably as a common feature with the Green-Schwarz or pure spinor formalism,
OPE contractions of the worldsheet fields which generate N — 4 factors of fl-(jl) where fi(;l) =
F (zi = 2).

For six points, the direct evaluation of the OPEs gives rise to a quadratic factor fi(;) ,gll)
for various combinations of labels capturing the behavior of the singularities as the vertices
collide. However, we know from the Fay identity eq. (2.39) that these quadratic combinations
are not linearly independent and therefore one is naturally led to higher-weight f(™)’s when
considering a minimal basis of integrals to evaluate. The simplest example where a higher-
weight f(™ is generated this way is fl(%)fl(;) + fz(;,)f%) + féi)f?g) = fl(? + fz(g) + fﬁ) which can
be viewed as generalizing the genus-zero partial fraction identity eq. (2.38). The non-vanishing
of the right-hand side provides an important distinction between one-loop and tree-level string
amplitudes and it is ultimately related to the gauge anomaly cancellation mechanism in the
superstring [56,57]. It can be shown that the parity-odd part of the six-point amplitude as
firstly computed in ref. [82] can be entirely written in terms of f (@) i.e. that any appearance of
) can be removed via eq. (2.39).

More generally, the N —4 powers of f() in the N-point amplitude allow, via the Fay identity,
the generation of f®) with up to p = N — 4. In this way the need for a general integration
method for the type of iterated integrals on an elliptic curve considered in this paper is justified.

"' The Eisenstein series es, e10 and ej2 can be written in terms of e4 and eg as follows

3 2 5 18 3 25 2
?64, €10 = —e4€p, €12 ey + ——eg.

e = 11 143 143

The general formula is written in terms of dy = (2k + 3)kleog+a

_3n+6 "\ /n
dpto = Mo 2 (k) didn—k .
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6 Discussion and further directions

In this article, we have proposed an organization scheme for elliptic iterated integrals and elliptic
multiple zeta values (eMZVs), where the key definitions are provided in egs. (2.18) and (2.22).
The infinite family of doubly-periodic functions f(™ appearing in the integrands of section 2 are
put into a mathematical context and are related to multiple elliptic polylogarithms in section 3.
As a first natural and simple application of this framework, we have identified eMZVs in the
o/-expansion of one-loop scattering amplitudes in open string theory. The leading orders in the
low-energy behavior of the four- and five-point amplitudes in terms of eMZVs are presented in
egs. (4.29) and (5.4). Divergent eMZVs turn out to cancel from our results.

Having demonstrated the potential of the formalism for an initial example, there are nu-
merous open questions to be pursued in the near future. Most obviously, the eMZV content of
the low energy expansion of cylinder amplitudes needs to be understood for higher orders in
o/, which can be done conveniently using the new techniques. Furthermore, the contributions
from the cylinder configuration with open string insertions on both boundaries as well as from
the Mobius-strip topology shall be determined in terms of the iterated integrals introduced in
subsection 2.2. The g-expansion of eMZVs exemplified in section 4.4.1 offers a promising ap-
proach to systematically perform the ¢-integration in eq. (4.1) after summing all topologies for
the gauge group SO(32) [55].

On the mathematical side, the network of relations between eMZVs explored in subsec-
tion 2.2.3 will be further investigated in refs. [49,66,67|. A suitable coaction along the lines of
refs. [5-8,16] might lead to a natural basis choice for eMZVs and might allow to further identify
patterns in the one-loop string amplitudes. In the same way as the Drinfeld associator was
instrumental in understanding the pattern of MZVs [29] in open string tree-level amplitudes [37]
and finally allowed to completely determine their o/-expansion in ref. [38], the elliptic associators
discussed in ref. [24] might encode the structure of the o/-expansion at one-loop. Furthermore,
in refs. [83,84] so-called multiple modular values are discussed whose possible relation to the
eMZVs studied here needs to be explored.

In multi-particle one-loop open string amplitudes, the pure spinor formalism, in particular
the ingredients of ref. [85] are expected to yield a compact description of the kinematic factors
associated to the functions f(™. While the precise superspace kinematic factors along with
various powers of f(1) have been derived in ref. [68], the kinematic companions of f ("22) in the
higher-point amplitudes are currently under investigation.

Finally, it would be desirable to find a similar scheme for organizing the o/-expansion of closed
string one-loop amplitudes. In particular, the worldsheet integrals investigated in refs. [63-65]
might allow for a description in terms of eMZVs and their counterpart defined with respect to
the other cycle of the torus. The peculiar linear combinations of torus integrals appearing in
the o/-expansion of closed-string amplitudes call for an explanation along the lines of the above
finding that divergent eMZVs drop out from the open-string expansions.
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Appendix

A Derivatives of multiple polylogarithms w.r.t. the labels

The proof of the recursion in eq. (2.11) relies on the derivatives of multiple polylogarithms
eq. (2.1) with respect to their labels ai, ag, ..., a, [5]:

0 1

%G(ﬁ; z) = Z_alG(ag,...,an;z). (A.1)
aiiG@Z) _ ai_ll_%a(...,ai_l,...;z) + ai_l%G(...,am,...;z)

_ (ai,la_iji)_(;itlawl)G('”7%”';Z) , i#1n (A.2)
azn(;(a; 2) = an_ll_anc(. e, am; 7) — (%_f"%;mc(. an17) . (A3)

B Identities for iterated integrals

This appendix provides further relations to integrate ells whose argument occurs in the labels.

B.1 Total derivatives

The following identities generalize eqns. (2.34) to (2.36) for multiple successive occurrences of
the argument ¢y in the label. If the first k labels match the argument, one can show that

d ny ng ... g Nkg41 -.. N
dito r ( to to ... to Qg1 - Qp ;t0> (B'l)

k—1 tj—1 th_1
= ( 11 / dt; f9)(t; — to)) / dt £ (t — t0) fU ) (t — apar) T (ari2 oarst) -
=17 0
For a terminal sequence of a; = tg, we find

d N1 oo Np—q1 Np ... Npr Ny . Np—1 Np ... Npr
o r (ai aﬁ,i toe o to ;to) = f(nl)(to —a)l (a; aj,i t(f o to Qto)

r—2 bin1 te—2

- <H / dtjﬂ”ﬂ(tj—aj))/ dt =Dt — agq) fO(E—t0) T ("4 7 st)
Jj=17 0

+ F0 (o) T () et b " i) (B.2)

Finally, an intermediate sequence of a; = to ranging from j =p to j = ¢ withp # 1 and ¢ # r
can be addressed via

d ni .. n
e Np—1 Np ... Ng Ng41 ... Ny . o (nl) ng ... Np—1 Np ... Ng Ng41 ... Ny .
dt() r (a1 .. ap—1 to ... to ag+1 ... ar 7t0> - f (to - al) r az ... ap—1 to ... to agt1 ... Qr 7t0
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p—2 tizt
- (H / dt; f09)(t; — aj))
tp—2 n Mg N e N
x /0 Tt e (4 — ) FOR) (2 — to)P( e ;t)

(pl_[ / dt; fm)(t —aj)><qH / dt; f™9)(t; —t0)> (B.3)

J=p )
tg—1 n n
X/ dt f0 (t —t0) fe) (¢ — agea) T (0l 7 arst)
0

Cases with multiple disconnected sequences of a; = to can be treated along similar lines.

B.2 Recursive removal of the argument from the labels

On the basis of eqns. (B.1) to (B.3), we can generalize the recursions eqns. (2.41) to (2.43) to
situations where several successive instances of the argument occur among the labels. If the first
k labels match the argument, one can show that

D(% 20wl Tane) =lm Gz, 2 apg, a5 2) [ dnja
(=) [t ) (¢ = g g) T (7 G (B.4)
ak+1 t ... t 0agy2 ... ap” :
0
Nk+1 .
nk—1+] Z 41— Ny ... Ng_1 NEp+jn LNy

+ Z < ; ) /0 dt f(nk+1 ])(t _ ak+1)F( e e Tk a:ii o ;t)

J=0

ng .
Ng+1 — 147 P [* —j e Mo +5 Nitg o mr
+ Z ( ; )(1)nk+1/0 dt f(nk J)(t — ak+1) I (ntl nkt 1 nl;Zilj le:; ZT ;t) .
Jj=0

For a terminal sequence of a; = z, we find
T
Ny ... Ng—1 Ny .. Ny T .
F(al e Qp_1 Z e Z 72) = ll_l’}%G(al,...,CLg_l,Z,...,Z,Z) H(Snj,l
n2 ... Ng_1 Ng ... Ny
+/ dt fm) t—al)T( 2 apq t ot 375)

+ (_1)ng/ dt f(anrne—l)(t —ap_) T (Zi ng—2 0 nzt+1 T;r ,t) (B.5)

..apg—20

Ne—1

_ Z (W H])/ dt fO I —ag ) T () 0 Y )

ng
-3 ("f 1 ﬂ)( y [Can D a) T (e )
7=0

0 [T (B )

Finally, an intermediate sequence of a; = z ranging from j =p to j = ¢ withp # 1 and g # r
can be addressed via

N ... Np—1 Np ... Ng Ng41 ... Np | .
r (al e Qp—1 Z .. Z Qg1 e ar 3% ) - l%G(ala s ,(lp_l,Z, o ‘7Z7aq+17 .- .,CLT,Z) H 571]',1
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+/ At fO (¢t —a) T (2t Ty e )

(0 [T forme e )T (i ) (B.6)

.ap—20 .t agy1 ... ar
Np—1
np — 1+] Ny ... Np—2 Np+j n Mg e My
_Z< )/ dtfnpl J(t_ap 1)F( 1...a§_§ pt thrl... tqaZIi...aT7t)
j=0 J
np .
np—1_1+] 44 z —j N1 . Mp—2 Mp—1+J Npt1 .. Ng N .My
- Z ( ] (_1)np I 0 dt f(np j)(t - apfl) r (ai ...a:;,; Zz;pi1 pt+1 tq aZIi .ar ’t)
j=0

— / dt f nq+nq+1)(t _ aq-i-l) T ("1 e Mp—1 Np .. nqt_l 0ng42 ... nr 't)

e ap—1 t ... 0 ag+2 ... ar?

Ng+1

Nng — 1 )
+ Z ( L “) / S e Y B A (e et

nq+1_1+j 44 # —j N1 Np—1 Np - Ng—1 Ngp1+] N e Ny
+ Z ( ] )(_1)nq J 0 dt f(nq ])(t - aq+1) I (ai az,i tp qt ! Lé:;il aZii .. Qr 7t) :
Jj=0

These relations reproduce eqns. (2.41) to (2.43) for k =1, p = q and ¢ = r, respectively.

B.3 Eliminating labels a; = z at length three

The generalization of eq. (2.52) to length three is governed by

no ny— 14 .
L ("8 85 2) = —(30p, 00,00, + Co 2571@571“4-]( ! i T T(ns - ji2)
j_

ni . _ 1 -
— (=1)™ T(n1 + n2,0,n3;2) + »_(—1)"*+ <n2 . +‘]> L(n1 = j,na2 + j,m3; 2)
=0 J
2 fni—1+j . .
- Z(—l)m”( ! ; J [(n2 — j,n1 +n3 +34,0; 2) (B.7)

= (M =147\ X, k(i 1+k , :
+Z<1 . j)Z(—l) 1“+k<1 jk )F(nz—J,ns—k,n1+J+k;z)

=0 J k=0

"2 nt—1+7 ity ni+j ny—1+k ] ]
+Z<1 ) ]>Z(—1) A I D(ng —j,m+j — kyng + ks 2)

j=0 J k=0

The reflection identity (2.20) allows to infer T' ("} "2 ¢ ;2) = (—1)mtnetns [ ("3 T2 ML ) and

permutations in the labels are covered by shuffle relations.

C Trigonometric integrals

This appendix gathers trigonometric integrals relevant for the evaluation of eMZVs. The result
in eq. (4.32) for w(0,1,0,0) relies on

1 Z4 23
/0 dZ4/0 d23/0 dzg sin(2mnzy) 29 = 8?2713 (C.1)
1 24 23 3C3
/ d24/ d23/ dzp cot(mzg) 20 = 5 , (C.2)
0 0 0 4

34



and the eMZVs relevant at order 5 - as given by eq. (4.33) and eq. (4.34) are based on

/ d25/ dz4/ d23/ dzz/ dz; cos(2mnz) = 247r2n2 - 167T4n4 (C.3)

/ d25/ d24/ d23/ dzg cos(2mnze) 2o 247T2n2 + 47r4n4 . (C.4)

D Cycle index of the symmetric group and the f™ functions

This appendix highlights the connection between the explicit expansion of the doubly-periodic
functions £ in (3.23) with the cycle index of the symmetric group S,. For general references,
see [86,87].

Cycle structures. Every permutation g € S, of X = {1,...,n} can be written as the product
of disjoint cycles with lengths ay,...,a, such that n = > 7" ; a;. This integer partition of n is
represented by A = 191292 .. . n% and is called the cycle structure of the permutation. Therefore
the total number of cycle structures for the permutations in S, is given by the integer partition
P(n) =1,2,3,5,7,.... Note that the number of terms in each ™ s also P(n). Furthermore,
if A = 1%12% . n% is a partition of n (denoted by A F n), the number of permutations with

cycle structure A is [86]
n!

Note that the coefficients of the monomials ' ... £ in f (") given by eq. (3.24) are reproduced

(D.1)

by the formula (D.1) with the corresponding cycle structure. This observation can be made
more precise with the definition of the cycle index of the symmetric group S, [86],

1

Z(Sn;sl,...,sn):m Z 2(g; 81, 8n) » (D.2)
geSy
where 2(g;$1,...,5,) = $7'85%...s% and a; counts the number of cycles of length i in the

permutation g. One can see from the first few examples!'?

Z(Sl,Sl) = 851
1
Z(SQ,Sl, .. .,82) = 5(8% —+ 82)

1
Z(Sg,81,...,83) §(51+38182+283)

1
— (s} + 65259 + 85153 + 353 + 6s4)

Z(S47817"'7S4): 4|(

that the cycle index of S,, captures the expansions in (3.23). More precisely, theorem 1.3.3 of [88]

ia”Z(Sn;El,..., —exp(ijj ) (D.3)

n=0

can be written as

and comparing (3.22) with (D.3) leads to,

F) = Z2(S,: &1, ..., En)

12In addition, it is convenient to define Z(So) = 1.
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=311 " A =172 non, (D.4)

Furthermore, one can also show that [87],

6f(n)(zv7_) _ 1 (n—p)
og, o T )

Note, in particular, that (D.5) yields an alternative proof of (3.27),

of ™ (z,7) B of ™ (z,7) 0&; B T (n-1)
A T u: - e e LA (D-6)

Symmetric polynomials. The cycle index of the symmetric group 5, also provides a recipe
for expressing the complete symmetric function h; in terms of the power sum function pj, i.e.,
hy, = Z(Sn;p1,p2,--.,pn) |86]. Therefore the functional form of h,, matches that of f (") and one
can exploit the well-known relation nh, = >i* | pihp—; from the theory of symmetric functions
to obtain the corresponding recursion formula eq. (3.25) for f(™),
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