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1. Introduction

Many examples have shown that String Theory inspires a deeper understanding of scat-
tering amplitudes in field theories, see e.g. [1,2,3,4]. The world—sheet viewpoint on point-
particle interactions offers useful guiding principles through the multitude of Feynman
diagrams. For example, tree-level subdiagrams of external particles arise when insertion
points of string states on the world—sheet collide. This is captured by the operator product
expansion (OPE) among vertex operators.

In this work, we study this mechanism in the context of ten-dimensional super Yang-
Mills (SYM) theory. Its superspace description benefits from the use of pure spinors [5,6],
and this formulation directly descends from the pure spinor superstring [7]. In previous
work, a family of so-called BRST building blocks was identified in the pure spinor formalism
[8,9] which encompasses the superfield degrees of freedom of several external particles.
These BRST blocks were argued to represent tree-level subdiagrams and led to an elegant
and manifestly supersymmetric solution for multileg tree-level amplitudes in SYM theory
[8] and the full-fledged open superstring! [9]. As initially suggested in [11], the driving

forces in these constructions were:

(i) The (iterated) OPE of gluon multiplet vertex operators
(ii) The action of the BRST operator on the OPE output to identify the symmetry com-
ponents in the cohomology
(iii) BRST-invariance of the full amplitude dictates the composition of BRST-covariant
tree diagrams
In step (ii), we benefit from the simple form of the BRST action on kinematic degrees of
freedom, based on the SYM equations of motion for the superfields [12,13]. This appears
to be special to the pure spinor formalism, at least we are not aware of an analogous
implementation in the Ramond-Neveu-Schwarz (RNS) [14] or Green-Schwarz (GS) [15]
framework.
The tree-level setup of [8,9] only made use of the mixed OPEs between one uninte-
grated vertex operator V and one integrated version U. In recent one- and three-loop-
calculations [16,17,18], on the other hand, it became clear that pieces of the OPE among

U vertices had similar covariant BRST properties leading to a simplified description of

L See [10] for an indirect derivation of open superstring trees among gluons, based on bosonic

gauge invariance and kinematic constraints from the RNS worldsheet prescription.
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the amplitudes. In the following, we will complete the list of such BRST-covariant OPE
ingredients and introduce multiparticle versions of the integrated vertex operator.

The multiparticle vertex operators are defined in terms of multiparticle superfields of
ten-dimensional SYM theory. The latter in turn are constructed recursively where the rule
for adding particles is extracted from the OPE among single particle vertex operators. The
BRST transformation of these vertex operators is equivalent to equations of motion for the
multiparticle superfields, which take the same form as their single-particle counterparts
[12,13], but are enriched by contact terms. It points to very fundamental structures of
SYM theory that these combinations of single-particle fields reproduce the “elementary”
equations of motions.

In more mathematical terms [19,20,21], the recursion rule fusing two multiparticle
superfields to a larger representative can be viewed as a Lie bracket operation which im-
plements the algebraic structure of tree level graphs. In particular, the aforementioned
contact terms present in multiparticle equations of motion directly realize the Lie symme-
tries of tree subdiagrams. This carries the flavour of a kinematic algebra which might shed
further light on the duality between color and kinematics [22] in ten dimensions®. More
specifically, the Lie symmetries of multiparticle BRST blocks imply kinematic Jacobi re-
lations within the corresponding tree subdiagrams.

The multiparticle superfields and their BRST properties turn out to guide the con-
struction of BRST-invariant kinematic factors. Together with the tight contraints from
zero-mode saturation, this allows to anticipate the structure of scattering amplitudes in
both field theory and string theory. As an example, we conclude this paper with an appli-
cation to one-loop amplitudes of the open and closed (type II) superstring. The pure spinor
formulation of the five graviton amplitude in [17] gave an example of how vector contrac-
tions between left- and right-moving superfields can be implemented in a BRST-invariant
way. The backbone of this superspace construction is a vectorial BRST cohomology ele-
ment which we recursively extend to higher multiplicity. From the field theory perspective,
this amounts to identifying loop momentum dependent parts of the numerators, see [25,26].

The limit of infinite string tension o’ — 0 leads to a worldline realization of the pure
spinor setup [27] (see also [28] for the RNS equivalent). It has been shown in [29] that
the worldline modifications of the worldsheet vertex operators and their OPEs give rise
to the same SYM tree amplitudes as previously obtained from superstring methods [8,9].
Accordingly, it would be interesting to find the worldline equivalent of the present BRST

block constructions.

2 See [23,24] for related work on the kinematic algebra in four and arbitrary dimensions.
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2. Review

2.1. Ten-dimensional SYM theory

Linearized super-Yang—Mills theory in ten dimensions can be described using the super-

fields® Ay (z,0), Apm(z,0), W (x,0) and F,,,(x,0) satisfying [12,13]

2D(ozA5) - 'YZ%Am DoAp = (vmW)a + kmAa 2.1)

1
Do Fyn = 2k () W)a  DaW? = 2(4™")o " Frun-

«

with gauge transformations dA, = D, and dA,, = k,,{2 for any superfield 2. The above
equations of motion imply that the superfields A,,, W and F™" can be derived from the
spinor superpotential A,

1 1 1
AT = g(Dva), we = _E’Yfréz,ﬁ(kmAﬁ — DgA™), Fpn= g(’Ymn)aﬁDBWa' (2.2)

The notion that the superfield A, is enough to derive the others will be used in the next

section to obtain a multiparticle generalization of the above equations of motion.

2.2. BRST building blocks from vertex operators

In the pure spinor formalism the massless sector of the open superstring (i.e. the gluon

multiplet) is described by the vertex operators
1
V =\"A,, U=00A, +11"A,, +d , WV + 5J\f""’"”}?’,?,m ) (2.3)

The superfields K € {Aq, Am, W, F,,} and the pure spinor ghost A\* carry conformal
weight zero whereas the worldsheet fields {06%, 11", d,, N™"} have conformal weight one.
When the superfields are on-shell and the pure spinor constraint (Ay™\) = 0 is imposed,

the vertices satisfy [7]
QV =0, QU =0V, (2.4)

3 Tt is customary to use a calligraphic letter for the superfield field-strength. However in this
paper calligraphic letters will denote the Berends—Giele currents associated to the superfields, see

section 4.



where Q = A*D,, is the BRST charge. The above fields obey the following OPEs [30,7],

D, K m
da(2i) K (2j) — : 7 (2i) K (25) — -k K’
Zij Zij
. Y™00) o m n m
%@H@%LfL 7 (2T () = — Lo,
- 25
5 sl '
da(2)0° () — 2= do(z1)da(z)) = — 22",
Zij Zij
55 mnyo
da(2)00°(2;) = =5, NN () - —5 ST
22 2z
and
N (21>Npq(zj) - N7 (0 (2:6)

2ij
where z;; = z; — z; are worldsheet positions. By K (x,#), we collectively denote any su-
perfield containing only zero-modes of 8% and whose = dependence is entirely given by the
plane wave factor? e**.

Starting with the recursive definition of

L L _
lim V'(2)U%(22) = =2, lim Lojgr pe1)1(21)UP(2p) = —2keleZDIPL = (g 7y

Zo—21 Z21 Zp—rZ1 Zpl

fermionic ghost-number one BRST building blocks were defined in [8,9] by removal of BRST

exact terms,

Ti23..p = Loiz1..p — Q(...). (2.8)

They transform covariantly under BRST variation, for instance
QT2 = (k' - k) T\ T, QTi23 = (k' - k*)(ThTos + TisTy) + (k2 - k*)T12Ts

at rank two and three. More generally,

p
QT2 p = Z Z (297 k) Tha o1 () T 18,\a} (2.9)
J=2 a€P(B;)
where 8; = {j+1,...,p} and P(5;) is the powerset of §;. Moreover, we identify T; = V;

for a single-particle label i and abbreviate multiparticle momenta by k237 = >0 k! .

4 To avoid factors of i in the formulae, we define ik™ = k™.
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Fig. 1 The correspondence of cubic graphs and BRST building blocks.

2.3. Lie symmetries of BRST building blocks
After removal of @) exact terms in (2.8), BRST building blocks Tis. , satisfy all the Lie

symmetries £, of tree-level graphs for 2 < k < p, where®

Lr=on+1: Ti2. mtin+2l..2n—112n.2n+1]]..]] — Lont1..n+2[n+1[...[3121]]..]] = 0

Lr=2n: Ti2. nm+1l...2n—22n—1,20]]..]] T Lon..nt+1[n[...[3121]]..]] = O- (2.10)

Defining the operator £x0 as the “Lie symmetry generator”, the first few examples of the

symmetries (2.10) are

0= Ly0T15 =T5 + Toy,
0= £30T23 = Th23 + To31 + T312, (2.11)

0= L40T234 = Th234 — T1243 + T3412 — T3401.

The symmetries (2.10) have been denoted “Lie” because a contraction of Lie algebra struc-

ture constants satisfies the same symmetries [16]°,
T1234 v o f12a2 fa23a3 fa34a4 . .fap_lpap (212)

and therefore the building blocks have the correct behavior to describe the kinematic

numerators of cubic graphs, see fig. 1.

® Throughout this work, antisymmetrization over N labels associated with external parti-
cles (as in (2.10)) does not contain an overall 1/N!. However, antisymmetrized Lorentz indices
m,n,p,...are presented in the convention A, = %(Amn — Anm).

6 Under the Dynkin bracketing operation, the building blocks satisfy T7(...1[1,2],3],....,p) = PT123..p
and therefore they belong to Lie(p). See e.g. Proposition 13.2.3 of [19].
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2.4. Lie symmetries versus BRST variations

It is crucial to notice the interplay between the BRST variations (2.9) and the Lie sym-

metries (2.10) of cubic tree level subdiagrams: At rank two and three, we have
Q(T12 + To1) =0, Q(Ti23 + To13) = Q(Th23 + T2s1 + T312) = 0, (2.13)

and the BRST variation (2.9) always has the precise form to make the sums in (2.10) BRST
closed. This closure even holds before the redefinitions (2.8) are performed, e.g. Q(L12 +
Ls1) = 0 for the direct outcome of the OPE (2.7). Any such BRST closed combination is
also BRST exact since its conformal weight ~ k7, is different from zero (unless p = 1).
As detailed in [8,9], this implies that BRST exact terms (such as Q(A; - A2) = Loy + L12))
can be subtracted in the definition of T2, given in (2.8). Therefore the Lie symmetries
obeyed by T2, are a consequence of the underlying BRST cohomology nature of the pure
spinor superspace expressions which will ultimately describe the scattering amplitudes.

However, it was a matter of trial and error to find the BRST-“ancestors” of ()-closed
Ls; .. p1 combinations, such as (A; - A2) in the rank-two example and more lengthy expres-
sion at rank < 5 given in [9]. In the following section, we develop a constructive method to
generate these BRST completions in (2.8) without any guesswork. Moreover, our current
approach based on integrated vertex operators U; delays the need for redefinitions (2.8) to
rank three; all the rank-two BRST blocks will automatically be antisymmetric since they
follow from the simple pole of the OPE between two integrated vertices.

The BRST building blocks play a key role in the recursive BRST cohomology method
to compute SYM tree-level amplitudes [8,11] and in obtaining a manifestly local represen-
tation of BCJ-satisfying [22] tree-level numerators [32]. However, their explicit superspace
expressions in [9] following from the more and more cumbersome OPE computations (2.7)
become lengthy for higher rank and lack an organizing principle. We will describe a recur-
sive method in the next section to find compact representations and to completely bypass

the CFT calculations beyond rank two.

7 Recall that in a topological conformal field theory @by = Lo implies that if Q¢ = 0 and
Loon = hop, then ¢, = (1/h)Q(bods) for h # 0. See e.g. [31].
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1)2 \ 1)3
Sblbz ~
/ Sbyb2bs $B B

1)1

Fig. 2 Four superfield realizations Kp € {AZ, AZ W&, FE.} of cubic tree graphs
B = bibs...by. This generalizes the mapping in fig. 1 from previous work [8,9] where
only one representative T at ghost number one was given.

3. Pure spinor BRST blocks

In this section we will show how to recursively define multiparticle superfields AZ(z, ),
A% (z,0), Wg(x,0) and F7"(x,0). As we will see, the recursion is driven by the OPE
among two single-particle vertex operators and a system of multiparticle SYM equations
of motion which generalize the standard description of (2.1). Throughout this paper, upper
case letters from the beginning of the Latin alphabet will represent multiparticle labels, e.g.
B = b1bs. . .b, at rank p = |B|. In particular, whenever they are attached to a multiparticle
superfield Kp € {AB AB wWa FB 1 (without any hats or primes), the B = bybs...b,

carry the same Lie symmetries (2.10),

Lr=2n+1: Kio. nyint2).2n—12n2n+1))..)] — Kont1. mt2pnt1l.3121.. =0

Lr=2n: Ki2. nntil.2n—22n-1,2n]]..]] T Kon..nt1[n...[3121])..] = O- (3.1)

The superfields {AZ, AB 'Wea FB 1 of multiplicity p = | B| satisfying all the Lie symme-
tries £y for k < p will be referred to as BRST blocks®. Given the symmetry matching
relation

Kiogs.p ¢ f1202 poadas pasdes _ gop-ipey (3:2)

with color factors, the BRST blocks reproduce symmetry properties of Lie algebraic struc-
ture constants. The BCJ compatibility of the explicit tree-level numerators in [32] are based
on \*AP satisfying this symmetry matching. As described in the mathematics literature
[19,20], the associated cubic graphs shown in fig. 2 (planar binary trees in mathematical
jargon) can be mapped to iterated brackets and thereby give rise to a general construction

of a Lie algebra basis. More details are given in Appendix A.

8 Throughout this paper, we will distinguish BRST building blocks T as reviewed in section 2
from BRST blocks Kg € {AS, A W5, FZ } to be constructed in this section.
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The BRST variation of the multiparticle unintegrated vertex operator defined by
VB = A AB will be shown to have the same functional form as the BRST variation (2.9)
of Tp, thereby constituting a new representation of such objects. BRST-invariants built
from T do not change under a global redefinition Ty — Vg, hence the representations
are equivalent. From now on, Tz from [8,9] will not be used anymore and the new repre-

sentation Vp will take its place because it follows from simpler principles.

3.1. Rank two

The way towards multiparticle BRST blocks is suggested by the OPE between two inte-
grated vertex operators. This is the largest and only CFT computation relevant for this

work and has been firstly performed in [33],

UL (21)U%(22) —2pt *1 (aea [(K' - Ag) AL — (K? - A1) A2 + Do AZWP — D, AW
HI (k' - Ag)Ag, — (K2 - AN AT, + k2 (A W) — Ky, (AsWa) — (Wiy, Wa)]

1 1
tdo (K- AW — (K- A))W3 + Z(anwl)aﬂin - Z(Vm"WﬁaFﬁm}
%Nm” (k" As)F, — (K- A Fo,, — 2k 2 (Wi, Wa) — 2F7,  F3 a})

F(1 4k B2 F 2 [(A W) + (AaW7) — (A - Ag)]. (3.3)

Using the relation 0K = 00D, K + 11"k, K for superfields K independent on 00% and

k' k22

A%, we can absorb the most singular piece ~ z{, into total z7, 2o derivatives and

rewrite

1
UM (21)U%(20) = — 278 K71 [007AL2 + T AL 4 d W + SNTE] (3.4)

+0, (z;;l"*—l [%(Al Ay — (Alwz)}) N (z;;l"f—l [%(Al CAy) — (Azwl)})
where
A2 —% (ALK - A%) + AL (7" W) — (1 45 2)] (3.5)
A2 % (A2, — Al (K A%) 4 (W, W2) — (165 2)

1
Wiy = (" W), + WS (R - A = (145 2)
FJ2 = F2 (k% AY) + F2PEL + ki3 (Wiy Wa) — (145 2)

— HIZAY KA - (844D, A2 - ALA2).
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Note that the last line can be viewed as a multiparticle generalization of the field-strength

relation !, = k! A, — ki A,,, modified by the contact terms (k' - k?)(AL A2 — AL A2 ).
In the prescription for computing string amplitudes the vertex operators are integrated

over the worldsheet so the total derivatives can be dropped? and the composite superfields

in (3.5) can be picked up via

Uz - f T (20U (20) (3.6)
= 00°AZ +TI™A)? + do Wiy + %Nm”F,}ﬁL.

One can check using (2.1) that the above superfields satisfy

2D (AR = YA + (k' - k) (ALAG + AR A2) (3.7)
DoAY = (4, W'2), + k2A2 4 (K1 k%) (AL A% — A2 AL ) (3.8)

1
D WY, = Z(vm”)aﬁFrﬁ + (k- k) (AW — 2w (3.9)
DoFy2 =k 2(vaW ') o — ki (W) o + (K - K*)(ALF2,, — A2 ) (3.10)

+ (kl : kQ)(A}m(’ymW%a - Ai('ymwl)oz - A}n(’anQ)a + A?n(fynwl)a)?

which is a clear generalization of the standard equations of motion (2.1) with corrections
proportional to the conformal weight ~ 1 (k' 4+ k%)? = (k' - k?) of the superfields. Further-
more, the single-particle relations k™A = 0 and k,, (y™W;), = 0 imply that,

k’fﬁz‘ﬁf =0 (3.11)
ki (V"W)oo = (K- k) [A, (V"W ?)a — (1 ¢ 2)] (3.12)
BEN = (k' K)[A7 + AL (K- A%) — (1 + 2)]. (3.13)

In other words, the (supersymmetrized) Dirac and YM equations k! (y™W?), = 0 and
kmE: =0 for single-particle superfields are modified by the same kind of contact term
~ (k'-k?) as the field strength relation in (3.5) and the equations of motion (3.7) to (3.10).

Defining the rank-two unintegrated vertex operator as

V2 = \>Al2 (3.14)

9 In string calculations this cancellation involves a subtle interplay of BRST-exact terms and
total derivatives on the worldsheet, see [11] and [34] for five- and six-point examples at tree
level. One manifestation is the agreement of the superfields along with 91,02 in (3.4) with the
BRST-exact admixtures in Vi(z1)Uz(22) = 217" * 1 (Viz + Q[(A1Wa) — L (A1 - A2))).
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Kz K3 K23

Fig. 3 The essentials of the first rank three BRST block K123 € {A}f?’, ...} are captured
by combining K12 € {AL?, ATy, W%} and K3 € {A2, AT, W'}, At the level of diagrams,
this can be interpreted as grafting the trees associated with K12 and Ks.

analogously to V? = \*A¢ | one can show that

QV'? = (k' kK*)W Vs (3.15)
QU2 = ovV'2 + (k' K2)(V'U2 — V2UY), (3.16)

which generalizes (2.4) by contact terms and reproduces the BRST variation of the building
block Th2 of [8]. It is interesting to note that (3.16) is compatible with the standard
prescription relating integrated and unintegrated vertices, U2 = b_; V12 [35].

Note that all rank-two BRST blocks are antisymmetric and therefore U'? = —U?2!.

3.2. Rank three

Since the rank-two BRST blocks obey generalized SYM equations of motion one is tempted
to define the rank-three BRST blocks following a similar approach. We know from (2.1)
that the standard superfields A,,, W and F™" can be obtained from the spinor su-
perpotential A, by recursively computing covariant derivatives. We will show that the a
similar approach can be used to obtain their multiparticle generalizations starting from

the following ansatz for the superpotential,
- 1
Al = -5 [AZ (K" - A + A2 (" W), — (12 4 3)] . (3.17)

This is a direct generalization of the expression for A2 in (3.5) as obtained from the OPE
of UL(21)U?(22). We have now inserted two-particle data represented by Al2 k2 Al2 and
W75 into the OPE-inspired recursion. Once the BRST-trivial symmetry components are
subtracted from A2 (see section 3.2.1), the definition (3.17) can be interpreted in terms of
a “grafting” procedure defined for example in [21]. As illustrated in fig. 3, (3.17) amounts
to adjoining a further leg to the cubic graph associated with the BRST blocks K7, at rank

two, see Appendix A for more details.
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A short computation shows that the action of the covariant derivative can be written

in a form similar to (3.8) and therefore can be used to define A7,

Do AR + DA = 47 ALY
+ (k' K*)[ALAZT + AP AL — (1 ¢ 2)]

+ (k"2 B [AZAS — (12 4 3)] (3.18)
where
A = AR FS, — ARG A%+ (W) - (1268)] . (319

In turn, computing the covariant derivative of (3.19) and rewriting the result in a form

analogous to the standard equation of motion for A™ leads to the definition of Wi,

D A123 — (’7 W123> + k123A123
+ (k' K?)[ALAZ + APAZ — AP AL — A2 AP (3.20)
+ (K2 B (A2 AT, — AZALD)
where
1
Wity = —(k'? - A% )W, + Z(WW?’)“F,}SQ — (124 3)
1

4 5(1& B2 [WS(AY- A%) — (145 2)]. (3.21)

Computing the covariant derivative of (3.21) leads to the definition of F}23

mn?

1
DoWiss = 5 (7"")a Fyi (3:22)
(kR [AL WS+ ABWY — (1 2)]

+ (K2 K [ARWY — (12 4 3)]
where (3.12) has been used to arrive at,

BN = (K APYFS 4+ F2 F2 o+ 2k2 (Wiy,, W) — (12  3)

alm* nla [m
1
(k) |G FR (AT A) 4 241, (Wi W) — (16 2)]. (3.23)

12



And finally,

Do Fod = 2k 2 (v W) a

kR [ALFS + ASFL, — (14 2)]

[AZFS, — (12 + 3)]

240, (Y)W *)a + 245 (Y W) a = (1 ¢ 2)]

2402 (Y W?)a — (12 ¢ 3)] . (3.24)

oy
—
o

??‘
w

The above equations give rise to a natural rank-three definition of multiparticle SYM
equations of motion: The non-contact terms in (3.18), (3.20), (3.22) and (3.24) perfectly tie
in with those in the two-particle equations of motion (3.7) to (3.10). Note that the contact
terms in D, AT55 and DoéWl’B23 are related via A% <+ W& where C denotes a multiparticle
label, see (3.20) and (3.22). The additional contact terms of the form A[‘i('ym]WC) in

D, F!23 have their two-particle analogues in the second line of (3.10).

3.2.1. Symmetry properties at rank three

The rank-three superfields defined above are manifestly antisymmetric in the first two
labels, so they satisfy £9 from (3.1). However, one can show using the explicit expressions

above that only a subset of the rank-three superfields satisfies £3,
£30A23 L0, £30AB 20, £30W0 = £30F23 =0, (3.25)

This explains the non-hatted notation for W, and F123: they are BRST blocks already.
To obtain BRST blocks for the other superfields they need to be redefined in order to
satisfy the symmetry £3. Fortunately, the underlying system of equations of motion greatly
simplifies this task.

To see this, note that since £3 o W4, = 0 equation (3.20) implies that,
Do (£30 AJ2) = k123 (£3 0 AL?). (3.26)

And it turns out that k123 can be factored out in the cyclic sum of A123,

£30 AThy =3k, Hyos, (3.27)
where
1 :
H'% = 5 (A" A%%) — (k2 — k) AD(A? - A%) + cyclic(123)] . (3.28)

13



Therefore the redefinitions
AL23 _ j128 _ 123123
AL23 = f123 Dn;le?, ’ (3.29)
imply that A% and A1?3 are BRST blocks since,
£o0 A2 = £,0 AYB — £, 0 A1 = £,0 A28 — (),
This is a significant simplification compared to the redefinition (2.8). The latter required an

“inversion” of the BRST charge on £30(La131+...) whereas (3.27) extracts the rank-three

redefinition Hjo3 from a straightforward £3 operation on the known expression (3.19) for

~

AT
It is easy to show that F}23 from (3.23) can now be rewritten as a field-strength using
the BRST block A3,

123 _ 1123 4123 _ 1123 4123
(R [ALAZ AL (1 6 2)
— (k- E°)[A2 A% — (124 3)]. (3.30)
Thus (3.23) satisfying the symmetry £3 o F'?®> = 0 can be understood as a property
inherited from A7%5 since the contact term structure of (3.30) is the same as in the equation

of motion D,A'23 from which the BRST symmetry was derived in the first place.

Defining rank-three vertex operators

Vigg = AYAP, U™ = 00°A + I AP + do Wiy, + %Nm”F,}ﬁf’ : (3.31)
it follows that (2.4) as well as (3.15) and (3.16) have a rank-three counterpart,
QVigs = (k' - k?)(ViVas + VisVa) + (K'2 - k) Vi Vs, (3.32)
QUiaz = OVias + (k' - k%) [Vilas + VisUs — (1 4 2)]
+ (k" k%) [Vi2Us — (12 <> 3)]. (3.33)

It is interesting to observe that £3 action translates to a total derivative
{123 4 {231 4 sl _ (96% Dy + TIMEL23) H123 — 9123, (3.34)

where U123 is related to U'?3 in the obvious way A123 «» A123 and A123 5 A123 The total
worldsheet derivative suggests that the failure of the £3 symmetries in (3.34) decouples
from string amplitudes and their SYM limit. In view of the diagrammatic interpretation of
K193 shown in fig. 3, the vanishing of U'?3 + U?3! + U312 can be viewed as the kinematic
dual of the Jacobi identity f12afa3b 4 f23afalb 4 g3la ga2b — () among color factors. This
indicates that the rank three superfields Ki23 of SYM carry the fingerprints of the BCJ

duality between color and kinematics [22].
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Kio3 Ky K234

Fig. 4 Up to £4 symmetry redefinitions, the recursions (3.35) to (3.37) yield rank-four
BRST blocks K234 by combining Kj23 with K4. At the level of diagrams, this can be
interpreted as grafting the associated trees.

3.3. Rank four

The patterns from the discussions above suggest how to proceed. The following superfields

AR = A AN + AR P, - (123 6 4)], (3.35)
i 1
A}334 — 5 |:A11)23F;)1m - A7133<]{7123 . A4) + (W123,ymw4) . (123 o 4)] (336)
1o 1 rs a o
Wihay = 1(7 WHFI2 _ (B123 . AN, — (123 > 4)
1 X §
5 (K | Wg (AL AY) + W (AT A% — (16 2)]
1
+ 5 (k2 k) [W;(AH AN — (12 4 3) (3.37)

manifestly satisfy the £5 and £3 symmetries of (3.1). In general, by using the fully redefined
BRST-blocks Al2--P~1 ATy -1 and W5 in the recursive definition of Al2-P there
is only one novel Lie symmetry to impose at each rank. This is much more economic
compared to the p — 1 redefinitions to arrive at T2, in [9] (which additionally required
“inverting” the BRST charge and were much more laborious). Once the last Lie symmetry
£4 is enforced in section 3.3.1, the recursions (3.35) to (3.37) for Kj234 can be given a
grafting interpretation similar to rank three, see fig. 4 and Appendix A.

The rank-four definitions (3.35) to (3.37) are guided by the same key principles ap-
plied at rank three: repetition of the recursive pattern (3.17), (3.19) and (3.21) as well
as multiparticle equations of motion as in (3.18), (3.20) and (3.22). Straightforward but

tedious calculations show that

DaAéQ?A + D6A3234 — '72%121117334
+ (k' R [ALAZH ¢ AL A% 4+ AL AT 4 A AZ — (1 6 2)]
+ (k"2 k) [A AR + AP AS — (12 3)]

15



+ (k' kY [AZPAL — (123 & 4)] (3.38)
D A1234 — (’}’ W1234> + k,1234A1234

+ (k' K [ALAZY + AP A% + AR A + AV AZ — (145 2)]

+ (k"2 BP) [AZ AR + AP AR, — (12 6 3)]

+ (k' kY [ALP AL, — (123 < 4)] (3.39)
DCMWZLB234 = E(an)aﬁﬁgff

(kR [AL W, + AP+ ABWS + AR — (14 2)]

+ (k2B [ARWY, + AW — (12 & 3)]

+ (K2 EH[ABW] - (123 + 4)] (3.40)

for some F1234 whose form is not important at this point. Note that the rank-three su-
perfields in the terms proportional to (k'23 - k%) are the true BRST blocks and not their

hatted versions.

3.3.1. Symmetry properties at rank four

The hatted superfields appearing in the right-hand side of (3.38) to (3.40) can be rewritten
in terms of BRST blocks by using the rank three redefinitions A}f?’ = A}f?’ + D, His3 and
fl}f?’ = A}f?’ + k}f?’H 123. The terms containing H;;; can be manipulated to the left-hand

side in order to redefine the rank-four superfields. The outcome is,

Kiysy = Kig34 — (k' - k%) (Ko Hyzs — K1Hass) — (k' - k°) H104 K (3.41)
where K P denotes any of the BRST blocks, [AZ, AP W&]. For example,

ABE = A1 (K1 k%) (A2 Higa — AL Hoza) — (K2 - k) Hi94 A2, (3.42)

After the redefinitions of (3.41) it turns out that the superfield W35, satisfies all the Lie

symmetries (3.1) up to rank four,
Lo 0Wigsy = £30Wigsy = £40Wis3y =0, (3.43)

and therefore W, = W{5s, is a BRST block.
Since Wibs, satisfies (3.43), it immediately follows from the contact term structure of
(3.39) that (3.26) has the following rank-four analogue

Do (£40 ARPY) = E1234 (£, 0 A1) (3.44)
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Furthermore, a straightforward calculation shows that k234 factorizes in £4 o A/1234,
£40 A2 _ g 12301230 (3.45)

and the explicit expression for Hyo34 is displayed in Appendix C.
Hence, the redefined superfields

A1234 — A/1234 . k,1234H1234 (346)
A1234 — A/1234 - D H1234

obey the required BRST symmetries:

£ o A1234 £ o A1234 £ o A1234 _ 0
(3.47)
£a0 AP = £30 AP = £4,0 AP =0,

and therefore define rank-four BRST blocks.
Once the expression for A7i., is known the superfield F1234 can be written down

immediately in field-strength form,
Fl234 _ 1234 1234 11234 41234

) (AL + AT, DAL+ AL — ()

+ (k'2 - k%) [A,lfAf’ff + ARAA3 — (m n)]

+ (k' K [ARAL, — AP AL (3.48)
A straightforward but tedious calculation then shows that its expected equation of motion
indeed holds,

Do F1234 — 12340, yy/1234y  p1234(, pp1284y

(k') [ALFE + ARS + ADEZ, + ALFZ — (162)

(k12 R [ARF, + AR, - (12 0 3)]

(012 ) A1, — AR

(kLR [2A[n(fym]W234)a + 2413 (W)

+ 24 (Y W) + 243 (g W) — (1 2)}
(1212 [ 2412 (W) + 2412 (3, W2 — (12 5 3)|

+ (K123 [2A123(7m] W4, — (123 & 4)} . (3.49)

[n
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That is why the explicit form of F[5%, was not strictly needed, one can directly write its
BRST-block expression at the end of the redefinition procedure.

Defining rank-four vertex operators

1
V1234 — /\aAa234, U1234 — 690‘14}!234 + HmA71334 + dO‘I/Vloz234 + _NmnF1234 (350)

2 mn Y

it follows that

QVizsa = (k' - k*) [ViVasa + VizaVa + VizVas + ViaVas]

+ (k" k%) [Vi2Vas + Vi24 V3]

+ (K2 kN VigsVy (3.51)
QUiazs = OVigsa + (k' - k%) [ViUasa 4 VisUszs + ViqUss + VizaUs — (1 43 2)]

+ (k' - k%) [VioUss + VioaUs — (12 =+ 3)]

+ (k2% k%) [VaasUs — (123 <5 4)]. (3.52)

And similarly as at rank three, it is interesting that the failure of the £4 symmetry to hold
for the primed superfields is equivalent to a total derivative in the integrated vertex U’!234
(i.e. U121 with A1234 5 A1234 and Al23% 5 A/1234) Due to the general expectation for
worldsheet derivatives to decouple from string amplitudes, this is another example for the
fundamental role played by Lie symmetries. More specifically, £4 compatibility of U234
is a kinematic equivalent of Jacobi identities among permutations of f12¢fa3b f4¢ Hence,
also the rank four BRST blocks satisfying £4 o K1234 = 0 point towards the BCJ-duality

[22].
3.4. Recursive construction at general rank
Suppose that all the BRST blocks up to rank p — 1 are known
(A AR W Fon ™y, 1<k<p—1 (3.53)

together with the superfields His. x for 3 < k < p — 1 used in their construction. The
following steps can be used to obtain the explicit expressions for the rank-p BRST blocks:

18



1 . Define a set of rank-p superfields Ko, , = {AL2-P=1 A12-p=1 Wf’é,,,p_1} as follows,

- 1
ACIXQ...p — _5 [AaZ...p—l(kIZ...p—l . Ap) + A}s...p—l(vmwp)a o (12 Cp— 1o p)}

—_

A}n?p —— [A;Q...p—lFrzl)m + Afn(kp . A12...p—1) + <W12...p—1,ymwp) . (12 cop— 1 < p):|

— N

Wiy =7 (VWP EZ P~ — (R12P7H AW, —(12.p—1 & p)  (3.54)

=~

p—1
=D > (KITRRNW  n(AP A — (120~ 1 e )]

J=26€P(v;)
where the set 7, = {j +1,...,p — 1} contains the p — j — 1 labels between j and p
and P(v;) is its power set. Note that they manifestly obey all the £}, symmetries up
to rank k = p — 1, but not (yet) £,.
One can check that the superfields K 12...p satisfy equations of motion of the form (3.60)
whose right-hand side contains not only lower-rank BRST blocks but also their hatted

versions, for example,
2D(aﬁé§345 _ 7&”514}3345 (3.55)
(KRR [ALAZ 4 ATAZIS | ALAZS 4 4L 424
+AAT + AP AT+ AP AP 4+ A4S — (1 6 2)]
SRIALIEES [Aclff‘i%% 4 A324A%5 4 A325A%4 4 A3245A% — (12 & 3”
+ (k;123 . k4) [AgsA%L% + ACIXQ?’E’A% — (123 4)}
+ (123 k) [AR23 AT — (1234 5 5)] .

However, they can be redefined Klgn‘p — K15, such that equations of motion for Ki,

are written entirely in terms of BRST blocks with rank less than p. This leads to the second

step:

2 . Redefine the superfields according to

p—1

Kiy y=Kiz p=Y > (KT W) [Hy o1 qsyp Kjpney — (1205 =1 6 j)]
J=26€P(v;)
(3.56)

with the constraints H; = H;; = 0. For example,
Klosa5 = Kiosas
— (k" k*) [H1345 K2 + H145K93 + Hi35 K4 — (1 4 2)]
— (k' - k°) [Hi245 K3 + Hi25 K34 — H345K 1]
— (k' - k%) [Hi235K4] .
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At this point it turns out that W{g , satisfies all the rank-p Lie symmetries, i.e.
LyoWiy , =0, 2<k<p. (3.57)

Therefore W5 , = Wi, , will be the definition of the spinor field-strength BRST
block.

As a consequence of (3.57), the following equations will hold,

Da(£p OA;}E”‘;D) — krlf...pfp OASQ"'p,

. (3.58)
"Ep © Afg...p = pkg...pH12wp
where the second equation can be regarded as the definition of His. ).
3 . The rank-p BRST blocks are defined as,
AéZ...p — AIO}Z..p o DaH12...p (359>
A12...p — All2...p o k12...pH12...p
Wiy o= Wiz

12...p _ 1.12...p 412...p 12...p 412...p

p -
F30 ST (ringor - y) 2412 10) i ()
J=26eP(B;)

where the set 5; = {j + 1,7+ 2,...,p} contains the p — j labels to the right of j
and P(f;) denotes its power set. Note that they satisfy all the Lie symmetries up to
rank p.

It is conjectured that the BRST blocks defined in the three-step procedure above will

satisfy the multiparticle equations of motion,

2D(o Ay P = AN (3.60)
p ' s
#3003 (kiojor - ky) [ARIRE AZ 0N g9 <—>j)]
J=20€P(By)
DaAg...p = (fymWIQ...p)a + kgpAclfp
p
+> D, (kizjo1ky) [A}lf"']_l’{é} ATy — (12,7 =14 j)]
J=26€P(B;)
B 1 mny\ [ pl2..p
DaWIQ...p = 1(7 )Oé an
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p
+§; z(: )(k:mmj_l ;) [ACIXQ..J—L{(;} Wigae — (12,05 =14 j)
J=26€P(B;

DOéFlrrZL.??.p = 2k£g..p(7n]W12...p>a

p
0D (hizyr k) (AP B
j:25EP(,Bj)

+ 2“4[17;...3‘—1,{6} (Vm]ij{ﬂj\é})a —(12...7-1¢ J)] .

Furthermore, defining the multiparticle vertex operators as

1

VB =)AB  UB =00°A8 £ 1™ AB + A W§ + §Nm”F£n : (3.61)
one can show using the equations of motion (3.60) that they satisfy

p . .
QVia.p = Z Z ("7 ) Via o1 ey Viisi\a}s (3.62)

J=2 aeP(B;)
P
QUia..p =0Via. p+ Z Z ("7 k) Vg o1 ey Ujighay —(12...5 =14 j)].
J=2 a€P(B;)

It is interesting to note that there is an alternative definition'® of the rank-p BRST
blocks AL%+P and Al?-P in (3.59) which does not require the explicit knowledge of the
rank-p Hia , (assuming it exists). One can simply project AQQ---P and A;}f"'p into the
kernel of £,,0, for example, use 2 A/1234 4 1 (A1243 — A3412 4 A13421) rather than (3.46) as
a definition for A123* and similarly for A1234. This is convenient since it allows to get the
complete set of rank p BRST blocks using His. x with k£ <p— 1.

We have explicitly constructed BRST blocks up to rank four using the steps above.

Furthermore, preliminary checks also indicate that this construction works for rank five.

4. Berends—Giele currents

In the 1980’s, Berends and Giele introduced the concept of gluonic tree amplitudes with one
off-shell leg and found a recursive construction for these so-called “currents” [36]. Physical

amplitudes are easily recovered by removing the off-shell propagator (as represented by

10 T fact, this is the representation chosen in all the checks performed with a computer.
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R 1(12___,, 2

Fig. 5 From cubic diagrams K4 to Berends—Giele currents K 4.

the dots in fig. 5) from the current. In the following, we construct ten-dimensional super-
space representations of Berends-Giele currents from multiparticle SYM superfields. The
particular combinations of rank-p superfields is firstly guided by the cubic diagrams of a
p + 1 tree amplitude. Secondly, it turns out that the contact terms of their multiparticle
equations of motion (3.60) simplify when following the diagrammatic intuition.

This construction has been partially realized in [8] for the superpotential A2 which
suffices to determine the SYM tree amplitude from a supersymmetric Berends—Giele re-
cursion. In the superspace setup, the divergent off-shell propagator is cancelled by the
BRST charge, see section 5.1. At one-loop level [16], Berends—Giele currents from the field
strengths W1, ,, F13" , were assembled to BRST-invariant kinematic factors. We shall
now provide a unified discussion of all the Berends—Giele currents associated with the
multiparticle superfields of the previous section.

For each multiparticle superfield Kp € {AZ A" W& F@nl with B = 12...p we
define a ghost-number zero Berends-Giele current K € {AZ, AR W Fun} as follows:
Firstly decorate the cubic diagrams represented by K with their propagators and secondly
combine the propagator-dressed diagrams such that they resemble a color-ordered Yang—
Mills tree amplitude with an off-shell leg [36], see fig. 5!!. As pointed out in [37], this is

implemented through the inverse momentum kernel [38,39]'2

ICIG’(ZB...p) = Z 5_1[0|P]1 Ki,023..p) » (4.1)

PESp_1

11 See Appendix A.3 for a more mathematical approach to this diagrammatic construction.
12 In the conventions of [37], S[o|p]: is symmetric under exchange of ¢ and p. For example, the

rank two and three versions of its inverse are given by

_ 1 _ 1 1 _ 1
STH2I12lh = —, ST'[23|23: = + . STU23132)1 = — .
S12 5125123 5123523 5123523
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NN N

K(1,21,3], K[1,12,3]],4 K[1,2],13,4]]
312312331234 323312331234 512583451234 S34523451234 323323481234

Fig. 6 The Berends—Giele current Ki234 of (4.2) is given by the sum of the superspace
expressions associated with the above five cubic graphs with one leg off-shell. The map-
ping between the cubic graphs and BRST blocks is introduced in section 3, fig. 2 and
explained in more detail in appendix A.

where o € S,_1, and the momentum kernel S[-|-]; is defined as

v _
S12p, - 3DPpl205 Dot EH sLJP—i—ZQ Jorkp)sj, k )
Jj=2 =

We use the shorthands s;; = k' - k7 and i, = p(4), and the object 6(j,, k,) equals 1 (zero)
if the ordering of the legs j,, k, is the same (opposite) in the ordered sets p(2,...,p) and
o(2,...,p). In other words, it keeps track of labels which swap their relative positions in

the two permutations p and o. At rank r < 4, for example,

Ko K23 K391
Kio=—,  Kig= + ; (4.2)
512 5125123 5235123
1 K234 Kso1y  Kioppa  Kszao K3241
Ki234 = ( + + + + )
51234 \S125123 5235123 512534  S345234 5235234

and fig. 6 illustrates that the given expression for K234 reproduces the five cubic diagrams
in a color-ordered SYM five-point amplitude with an off-shell leg.

The ghost-number zero Berends-Giele currents K € {Al2-P AT pWis o F15"
generalize the ghost-number one analogues M3, studied in [8,9] which correspond to the

unintegrated multiparticle vertex as
VA=A = M, (4.3)

One can show using the equations of motion (3.60) that the BRST charge acts on Berends—

Giele currents of any ghost number by simple deconcatenation of labels

QM. p, = ZM12...ij+1...p, (4.4)
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as well as

p—1
QATy =M™ Wiz p) + k5 Vizp+ Y Via jAT = Vier p AT ;) (45)
j=1
1 =
QW = 7 (AMmn)*Fi37, + > Vi Wiy = Vigr. Wi )
j=1
p—1

QF5" , = 2k£72n...p<)\,yn]W12...p) + > Ve 3 F = Vivr.pFio ;)
j=1

p—1
+ D 2[Al S OWi ) — AT 0 )]
j=1
By comparing the above equations with (3.60) one sees that the kinematic poles in
the definition of the Berends—Giele currents absorb all the explicit kinematic invariants
(k12-9=1.k7) from the right-hand side of the BRST variations. The extra simplicity of (4.4)
and (4.5) compared to (3.60) suggests that the Berends—Giele basis of tree subdiagrams is

particularly suitable for a systematic construction of BRST-invariants, see section 5.

4.1. Symmetries of Berends—Giele currents

Under the momentum kernel multiplication (4.1), the Lie-symmetries of the multiparticle
superfields K12, are mapped to a different set of Berends—Giele symmetries of KCy2.. p,

Kiz+Ko1 =0, Koz —Ks21 = K123 + Kaz1 + K312 =0,

which leave the same number (p—1)! of independent components at rank p. Universality of
the momentum kernel implies that any of the K12, shares the same symmetry properties

as Mia._, discussed in [8,9], namely!3

Kisyiqar = (1)K aupr - (4.6)

The notation {87} represents the set with the reversed ordering of its ns elements and
L denotes the shuffle product. Furthermore, the convention K 4u8... = ZUEaLLIB K. {o1..
has been used. The multiparticle label B in Kp now carries Berends—Giele symmetries

(4.6) rather than the Lie symmetries (3.1) of the associated Kp.

13 As a consequence, we have Kawp =0,V a, .
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The symmetry properties (4.6) of rank-p currents can be viewed as rank-(p+1) Kleiss—
Kuijf relation [40] obeyed by Yang—Mills tree amplitudes where the last leg p+1 is off-shell
and not displayed, leaving (p — 1)! independent components. Note, however, that the off-
shell-ness of one leg in the diagrammatic interpretation of Berends—Giele currents obstructs
an analogue of the BCJ relations [22] among Yang—Mills tree amplitudes.

On the other hand, an interesting perspective on BCJ relations is opened up when the
recursions (3.54) for BRST blocks are rewritten in terms of Berends—Giele currents. This
observation is presented in Appendix B, which leads to a simplified rewriting of one-loop

kinematics in terms of SYM amplitudes as compared to [16].

5. Application to the one loop cohomology

In this section, we explore examples at one-loop how the universal multiparticle equations
of motions (3.60) and the simplified contact terms in the Berends—Giele picture (4.4) and
(4.5) facilitate the construction of BRST invariants. The scalar BRST cohomology at
one-loop has been investigated in [16] and identified in the non-anomalous part of open
string amplitudes. The trial-and-error construction of the invariants’ expansion in terms
of Berends—Giele currents is now replaced by a clean recursion. The same mechanisms are
applied to novel vectorial invariants which play a key role in closed string amplitudes at
one loop, e.g. for S-duality [17] and for loop momentum dependence in the numerators of
the field theory limit [26].

5.1. Tree level SYM amplitudes

AYM

As shown in [8], tree amplitudes of ten-dimensional SYM theory take an elegant form

in pure spinor superspace,
AYM<1727'~'7n) = <E12...n—1Vn> . (51)

The central object Ei5..,_1 belongs to the BRST cohomology in the momentum phase
space of n massless particles'®. Its explicit form can be written in terms of the Berends—

Giele currents associated with the (generalized) unintegrated vertex Vy4 as follows,

p—1
Eio = ZMIQ...ij+1...p~ (5.2)
=1

14 The restriction on the momentum phase space follows from the fact that the solution

Mi2. n—1in Fi2..n—1 = QMi2..n—1 is proportional to a divergent propagator 51*21”%_1.
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The pure spinor bracket (...) in (5.1) denotes a zero-mode integration prescription of
schematic form (\36°) = 1. It extracts the gluon and gluino components of the enclosed
superfields [7] as has been automated in [41]. The explicit form of the SYM amplitudes in
terms of polarization vectors and gaugino wavefunctions up to multiplicity eight can be
downloaded from [42].

The BRST cohomology techniques that were used in [8] to cast the SYM scattering
amplitudes into the form (5.1) also played a crucial role in obtaining the general solution

of the n-point tree-level amplitude of massless open superstrings [9].

5.2. Scalar BRST blocks at one-loop

In [16] the pure spinor zero-mode saturation rules in one-loop amplitudes of the open
superstring were used to obtain an effective prescription to identify contributing pure spinor
superspace expressions: The zero modes of d,dgN™" extracted from the external vertices
are replaced by (MyI™),(M™)s . This prescription leads to the BRST-closed expression
(AW H (MW FE in the four-point amplitude [43] and motivates the following higher-

point definitions®®,

T B.C (MY Wa) Ay WB)FE™ + (C <+ A, B), (5.3)

Wl Wl

My B.c (A Wa) Ay Wi)FE™ + (C < A, B). (5.4)

Using the universal form of QWg and QF 5™, one sees that the BRST variation of (5.4) is
given by deconcatenation of the multiparticle indices. Regardless of the ranks |A|, |B| and
|C|, the pure spinor constraint projects out all terms in (4.5) with an explicit appearance

of A*, and we are left with the BRST-covariant expression

A1

QMA,B,C = Z (Mal...ag Mag+1...a|A‘,B,C - Mag+1...a|A‘ Mal...ag,B,C) + (A & B7 C) .
(=1
(5.5)

Note that Q7123 = QM; 23 = 0 and that T4 p.c and M4 g ¢ are totally symmetric in
A, B and C.

15 T4 B,c and M4 g ,c were denoted by TAT%T@ and MAM%M’C? in [16], and the representation

of W4 and Fg given in the reference is different from the current setup.
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5.3. Scalar BRST cohomology at one-loop

The definition (5.4) of building blocks M4 p,c was used in [16] to construct BRST invari-
ants Cy|4,p,c With up to eight particles by trial and error. We will now present a recursive
method to generate them for arbitrary ranks.

The results of [16] suggest that each term of the form M; M4 p ¢, with i a single-

particle label, can be completed to a BRST-closed expression of the schematic form

Cija,B,c = MiMa g c + Z Migsy fisy (M) . (5.6)
{o}#0

As a defining property of the BRST completion for M; M4 g c, particle ¢ always enters
in a multiparticle Berends—Giele current Mp. This is formally represented by a sum over
(non-empty) ordered subsets {J} of the labels {a;}, {b;}, {c;} in A, B, C which join particle
i in M¢sy. The functions f(sy represent the accompanying linear combinations of building

blocks M4 g c.
Nilpotency Q% = 0 implies that QM4 g ¢ is also BRST closed, and the form of (5.5)

suggests that it can be expanded as

QMA,B,C - Ca1|a2...a‘A|,B,C - Ca‘A||a1...a|A‘,1,B,C + (A AN B7 C) ° (5'7>

We have picked up all the terms M;Mp g r in (5.5) with single-particle label ¢ and pro-
moted them to BRST completions C;p g r. Examples of (5.7) can indeed be checked to
hold once the explicit expressions for Cjp g r are generated. At five points for instance,

Ol|23,4,5 = M1M23’4’5 + M12M3’4’5 — M13M2’4’5 (tO be derived ShOI‘tly) allows to verify
QMi23.45 = MiMag a5+ MioMs 45 — MozMi a5 — M3Mig a5 (5.8)
= Clj23,4,5 — C3j12,4,5-
Now we turn towards the explicit construction of the BRST completion fs3(M. . .) in (5.6).

The task is to cancel terms like Mi(ca|A\|a1---a|A\—1’Bac — Ca1|a2...a|A‘,B,C> as they appear
in Q(M;Ma,B,c) by (5.7). In order to determine f5y(M. . .) with this property, we define

a linear concatenation operation ®; acting on the multiparticle labels of Berends-Giele

currents M4 as follows,

Mi ®a1 Malag...a‘A| = Mia1a2...a|A‘ . (5'9)
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of

the Berends—Giele currents, we have to specify the leg a; appearing next to the con-

In order to ensure that the concatenation ®,, preserves the KK symmetries Ma1a2...a| Al

catenating label ¢ on the right hand side: For example, Mj3s # —Mjo3 implies that
M; ®3 M3y # —M; ®9 Mas even though Mss = —Mass. The definition (5.9) would be
inconsistent with linearity of ®; if the subscript j is unspecified. The ®; action on addi-

tional Mp ¢, p building blocks is defined to be trivial,
Mi ®a1 (Malag a‘A|MB C, D) (M ®a1 Ma1a2...a|A‘)MB,C,D'

As we will see in the following Lemma, there is a neat interplay between action of the

BRST charge and the ®; operation defined in (5.9).

Lemma 1. If Cj4,p,c as defined by (5.6) is BRST closed, then its concatenation satisfies
Q(M; ®; Cjja,B,c) = MiCjja,B,c- (5.10)

For example, Cyj3.45 = MaM3 45 is BRST closed and My ®2 Co345 = M12M3 45
satisfies Q(M1 ®2 Cgj3.4,5) = M1 MaM3 45 = M1Cyj345.

Proof. BRST closure of Cj 4, p,c amounts to the following ghost number four statement
Cjlapo) =Y Moy Fioy(M.M...) =0
{o}

with linear combinations F(,y of ghost number three objects M.M. . .. Since M, are
independent for different sets {c}, the F{,y must vanish individually. Using the deconcate-

nation formula (4.4), one can rewrite the left hand side of (5.10) as follows:

QM @ Cjlanc) = Q(MyMasc+ 3 Mijsyfsy(M....))

{8}#0
= MM;Mapc+ Y MMy foy(M..)+ Y Moy Frop(MM.. )
(6}70 {0}
= M{M;Mapc+ S Mo (M.}
{6}40

- MiCj|A,B,C’ .

In the first step, we have isolated the first term of QM; 5y = M; M5y +. .. and the second
step made use of F,1 =0V {o} as argued above. []
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The following recursive definition can be checked to generate BRST closed expressions

for arbitrary ranks

Cija,B,c = MiMa B o+ [Mi®a,Ca, |ag...a 41, B.0—Mi®a 4, Cay s ar..aja)1,B,.0F(A & B,C)] .

(5.11)
Q-invariance follows from (5.7) and Lemma 1 (using the definition Cyjp 4, = 0 for single-
particle slots). The are 7— 2k terms in (5.11) where & is the number of single-particle slots
among A, B, C. Since M;®; increases the multiplicity of Cjp g r on the right hand side
by one, we can regard (5.11) as a recursion in |A| + |B| + |C|. Its first applications up to
multiplicity 1+ |A| + |B| 4 |C| = 6 are listed below

Cli2,34 = Mi1Ma 34 (5.12)
Chj23as = MiMa3 g5 + M1®2C 345 — M1®3C3)2,4.5
= MiMa3z 45+ MiaM3z 45 — Mi3Ms 45
Chj23a,5.6 = M1Mazy 56 + M1®2C2 3456 — M1®4C4)23 5.6
= MiMasa 56+ MioMss s+ MiosMsse — MioaM3 56
— My4Ma3 56 — MisoM3 5.6 + MiazMs 56
Chj23,45,6 = M1M23 456 + M1®2C%45,3,6 — M1®3C3145,2,6 + M1®4Cyj2356 — M1®5C5)23,4,6
= M1 Ma3 456 + MioMys 36 — MiaMus 26 + MiaMoz 56 — MisMasz 46
+ MioaM3z 56 — MizgaMs 56 + MiaoMsz 5.6 — MisaMs3 46

— Myos M3 4.6 + Mi3zsMa a6 — MiazMs 56 + Misz Mo 46 ,

and higher-rank expressions are easily obtained as well. Even though the number of terms
in C1234,5,6 and C1j23 45,6 can be reduced by virtue of the Berends—Giele symmetry Mioq+
M40 = —Ms14, we keep the expression in the form M7, compatible with further recursion
steps (5.11).

As detailed in Appendix B, the Cy4 p ¢ boil down to linear combinations of SYM
tree amplitudes [16]. Nevertheless, their component expansion up to multiplicity seven can

be downloaded from [42].
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5.4. Vector BRST blocks at one-loop

In the five-point closed string computation of [17] the zero mode saturation in the left /right-

mixing sector where the b-ghost contributes 1I"™d,dg led to the definition

1
W45 = E()\’YnW2)()\’YpW3)(W4’Yman5> +(2,312,3,4,5), (5.13)
which satisfies
QW217’13’4’5 = —()\’)/mWQ)TgA,g) — (2 < 3, 4, 5) (514)
The notation (41,142 | 71, . . ., i) means a sum over all possible ways of choosing two indices
i1 and 79 out of iq,...,1,, for a total of (g) terms. Furthermore, another type of left /right-

mixing zero-mode saturation was possible which required taking II"™d,dgN,, from the
integrated vertex operators, leading to terms of the form A5'T3 4 5. The key observation in

[17] was that the vectorial superfield
155 45 = A3 T35+ (24 3,4,5) + W35 4 5 (5.15)
has a BRST variation in which the vector index is carried only by momenta
QTY5 45 =ky'VoTs 45+ (2 > 3,4,5). (5.16)

This fact played a crucial role in demonstrating BRST invariance of the closed-string five-
point amplitude [17] because it allows the BRST variation of the terms contracting left-
and right-movers to factorize and cancel the variation of the holomorphic squared terms.

To generalize this construction to higher multiplicity one defines

1
WA”:B,C’,D = E(A’anA>(/\7pWB)(WC’ymanD) + (A7 B|A7 B: C: D)
TEB,C,D = A’Z-LTB’C7D + (A e B, O, D) + WIZ-jB,C,D (5.17)

with multiparticle labels A, B, C, D as well as their Berends—Giele counterparts,

1
Wis.c.p = 15 (A" Wa) (M We) Wer™ " Wp) + (4, B|A, B, C, D)

MEB,C,D EAZLMB’C’,D+(A(—>B,C,D>+W‘ZI;B’C,D, (518)
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which are totally symmetric in A, B, C, D. The BRST variations (4.5) — in particular the
universality of the non-contact terms to arbitrary A, B, C' and D — imply that

QWL .c.p = —(M"Wa)Mp,c,p (5.19)
|A|—1
+ Z aj_t,.l a‘A|,B,C,D - Maj+1”‘a|A\W;rf...aj,B,C,D) + (A < B, C, D)
QMi'pcp=FkiMaMpcp (5.20)
|[Al—1
+ Z ag+1 .aja,B,C,D Maj+1 a|A\Mm aj,B,C,D) + (A < B,C, D) .

The vectorial building block M}' - p causes the first explicit appearance of multipar-
ticle vector superfield A’g, see (5.18). Its multiparticle equation of motion in (4.5) is re-
quired to derive (5.20) at arbitrary multiplicities |A],...,|D]. With Mg = A*AZ and the

7, F'™ constituents in the definition (5.4) of M4, ¢ p, we have by now seen all the four
superfields {AZ, A W FE™} in the multiparticle vertex operator Up entering one-loop
BRST blocks.

5.5. Vector BRST cohomology at one-loop

It is interesting to study vectorial uplifts MaMp c.p — MAM?,C,D,Z' of the scalar BRST
invariants C| 4, g,c as given by (5.12). The deconcatenation terms due to the second line of
(5.20) drop out from the BRST variation, but the contributions from the first line remain

where the free vector index is carried by external momenta k™. The first example
Bllogas =MiMs,5 QBfjss45=— (k3" E1aMs a5+ (2 < 3,4,5)] (5.21)

obtained from (|34 appeared in the context of the five point closed string amplitude

[17]. Tts six point generalization
Bllos a6 = MiMys 456+ Mi @2 Byjs 4 56 — M1 Q3 Bijs 456
resembles C|23 4 5 and satisfies,
QBfja3.45,6 = —k3 Er1saMas6 + k3 ErasMys6 + [kT'ViClias s+ (4 < 5,6)] . (5.22)

The higher-multiplicity examples are similarly analysed. The fact that the k]"* coefficients
in both (5.21) and (5.22) are Q-exact!® hints the existence of vectorial BRST invariants.

16 Recall that E12.,.p = QMlz,.,p and V4Cl|23’5’6 = Q(M4 ®1 Cl|23,5,6) by Lemma 1.
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Vector BRST invariants can be constructed using the same procedures as in the scalar
case. We assume that each superspace expression M;M}'p - p with single-particle label

admits a BRST-invariant completion of the form

Ci'y oo = MiMZ'p o p+ Z Migsy i3y (KM, M™ ) . (5.23)
{5}0

Any term in the sum over ordered subsets {6} of AU B U C U D incorporates label i in a
multiparticle M;¢sy. The accompanying ff’g} denote vector combinations of building blocks
Mg r g p (see (5.18)) and ki Mg rc.

Then, as already argued in the scalar case, @?> = 0 and the assumed uniqueness of
the BRST completions (5.6) and (5.23) implies that the BRST variation (5.20) can be

rewritten as

QMEB,C,D = Cﬂlag...a‘A|,B,C,D_O;TA| |a1...a|A‘,1,B,C,D+6|A|,1k;ni Oa1|Bvo7D+(A A B7 07 D)'

(5.24)
In the single-particle case |A| = 1, the first line of (5.20) generates the defining term
M;Mp cp of a scalar invariant (5.6), and the definition C’%BCD = 0 must then
be used to suppress the first two terms of (5.24). We take advantage of (5.24) to
rewrite Q(M;M}'p ¢ p) in terms of M;CT'y o p  and M;Cjp,c,pkE - Hence, the BRST
completions ffg} in (5.23) are determined by the BRST ancestors of M;Cj g c p and
MiO;‘?B,C’, p.p- The former are already known from Lemma 1, and the latter can be easily
found by the same properties of the concatenation operation (5.9). Similar to the scalars

Mg .c,p, the ®; action on vector BRST blocks is defined to be trivial,
M; Xay (Mc?:az a‘A|MB C,D E) (M Xay Mawz---am\)MgL,C,D,E'

Lemma 2. If C%Y) -, as defined by (5.23) is BRST closed, then its concatenation

satisfies
Q(M; ®; Ci{a p.o.p) = MiCils .c.p- (5.25)

Proof. The arguments used in the proof of Lemma 1 can be repeated for vectorial combi-

nations ffs, of K™ M. . and M at ghost number two as well as

Q( ;?A,B,CD Z {U}F{O-} kmMM MMin’ ’ ) =0.
{o}
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The ghost-number-three objects F{T}} built from K™ M.M. .. and M. M again vanish by

independence of the M,y such that

Q(M; ®; Cjia p,c.p) = Mi{MJMZI,B,c,D + D Mj{(;}f{"g}} + > Mijio Fioy
{6}#£0 {0}
= MiCjja,p,c.p

by (5.23). L]
Then, again in analogy with the scalar case, a recursive definition of vector invariants

can be obtained from (5.24) as follows,

Ciapop=MMZpcp+ [0aj1kl Mi ®a, CayiB.0.D (5.26)

(3

+Mz ®a1 $|a2...a|A‘,B,C,D_Mi ®G\A| ;r‘LA||a1...a|A‘_1,B,C7D+(A<_)B7C7D>] .

BRST invariance follows from (5.24) and Lemma 2. In view of the four slots A, B,C, D,
the bracket [...] on the right hand side of (5.26) contains 8 —n terms where n is the number
of single-particle slots.

The first non-trivial applications of (5.26) are easily checked to be BRST closed,

Cllazas = MMy 4 5+ (k3 My @3 Coz a5 + (2 <+ 3,4,5)]
= M1 M3 45+ [kanle?,A,s + (24 3,4,5)] (5.27)
Cllagase = MiMs3 456+ M1 ®2 055 456 — M1 Q@3 C55 456
+ [k My @4 Cyjaz 5,6 + (4 4+ 5,6)]
= MiMj3 456+ MioMs7y 56— MisM3ly 56
+ [k§* Moz My 5.6+ (3 <> 4,5,6)] — [ky' MisoMase + (2 <> 4,5,6)]
+ [k MiaMos 5.6 + MisoMs 5.6 — MiagMa 5.6 + (4 < 5,6)]

and higher-multiplicity analogues are also straightforward to obtain. Component expansion

up to multiplicity seven are available from [42].

6. Conclusion and outlook

In this work, we have constructed multiparticle vertex operators U'2-? through a recur-
sive prescription described in subsection 3.4. This generalizes and streamlines the ear-

lier construction of BRST-covariant building blocks in [8,9]. The coefficients of conformal
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weight-one fields {00, 11", d,, N™"} in Up are interpreted as multiparticle superfields
Kp € {AB AB W& FB 1 of ten-dimensional SYM with shorthands B = 12...p for ex-
ternal p-particle trees. Their equations of motions are shown to have the same structure
as their single-particle relatives — see (3.60) versus (2.1). In addition, they are enriched by
contact terms where the multiparticle label B is distributed into two smaller subsets.

These multiparticle SYM fields furnish a kinematic analogue of the structure con-
stants f%%¢ of the color sector, and their Lie symmetries (3.1) guarantee that the tree-level
subgraphs described by Kp are compatible with the BCJ duality between color and kine-
matics [22]. Since the BCJ duality has been observed to hold in various dimensions, it will
be interesting to explore lower-dimensional setups for multiparticle equations of motion.

It is worth emphasizing that the Lie-algebraic nature of the BRST blocks is com-
pletely general and can be understood in terms of its basic SYM superfield constituents.
The particular combinations of single-particle superfields constituting their multiparticle
generalizations defined in this paper are suggested by OPE computations among vertex
operators in the pure spinor formalism. Moreover, they are in lines with the BRST coho-
mology organization of scattering amplitudes suggested in [11] and brought to fruition in
[8,9,16]. Given the general Lie symmetries obeyed by the multiparticle SYM superfields
and their appearance in the OPEs of vertex operators, it is therefore natural to suspect
that the BCJ duality between color and kinematics might be valid at the level of external
tree subdiagrams to all loop-orders [44].

In section 5, which is devoted to one-loop applications, the zero mode saturation of
the minimal pure spinor formalism [43] singles out some elementary combinations of Kp
with beneficial BRST properties — such as scalars M ¢ in (5.4) and vectors M}'p o p
in (5.18). We have derived recursions (5.11) and (5.26) to construct scalar and vectorial
cohomology elements at arbitrary multiplicity out of MpMa p.c and MgM}'p o p. We
can learn from the five-point results in [17,26] that vector invariants are crucial for one-
loop amplitudes among closed string states, where cross-contractions between left- and
right-moving worldsheet fields occur.

Since the number of left-right contractions is unbounded for multiparticle one-loop
amplitudes, the need for BRST invariants extends to tensors of arbitrary rank. The con-
struction of tensorial BRST-blocks generalizing Ma p.c and Mj'p o as well as their
BRST-invariant embedding into full-fledged closed string amplitudes is left for future work
[45]. Moreover, it remains to clarify how these tensors are related to the gauge anomaly of

open superstring amplitudes and its cancellation [46].
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For all of the aforementioned building blocks, the superspace representation in terms
of elementary SYM superfields is explicitly accessible from this work. So the zero mode
integration prescription of the schematic form (A\30°) = 1 [7] as automated in [41] allows
to derive supermultiplet components in terms of gluon polarization vectors and gaugino
wave functions. The gluon components of all the scalar and vector cohomology elements
up to multiplicity seven can be found on the website [42].

Finally, it is worthwhile to note that the (non-minimal) pure spinor formalism can be
interpreted as a critical topological string [47]. As shown in [48], the BRST cohomology of a
topological CF'T is endowed with a Gerstenhaber algebra structure and it would therefore
be interesting to investigate possible connections with the BRST covariance property of
multiparticle vertex operators. As pointed out by in [49], the associated Gerstenhaber
bracket among vertex operators is a promising starting point to relate string amplitudes of
different particle content. These references motivate further study of multiparticle vertex
operators in view of both mathematical structures and applications to scattering of massive

string states.
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OS acknowledge financial support by the European Research Council Advanced Grant No.
247252 of Michael Green. OS is grateful to DAMTP for hospitality during various stages
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Appendix A. Physics of BRST blocks versus Mathematics of cubic graphs

In this Appendix we connect the recursive construction of BRST blocks with mathematical
operations on planar binary trees, see [19,20,21] and references therein. As explained in
the references, a mapping between planar binary trees and iterated brackets gives rise to
an explicit Lie algebra basis construction. This will be used to manifest the Lie symmetries
(3.1) of the BRST blocks and emphasize their connection with cubic graphs which play a

central role for the duality between color and kinematics [22].
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A.1. Iterated bracket notation

The antisymmetry of a rank-two BRST block K,,,, can be made manifest with the nota-
tion K4, 4] = Kaya,- In general, the defining property of a rank-p BRST block to satisfy

all Lie symmetries £} with £ < p motivates the following notation with iterated brackets,

K[ah@] = Ka1a2 (Al)

K[[al,ag],ag] = K[alaz,ag] = Ka1a2a3

K[ [[a1,a2),a3),.. J,ap—1)sap] = Klaras...ap_1,a,] = Karas...ap -

The virtue of this bracket structure for the duality between color and kinematics was
already emphasized in [50]. The above notation reminds of the recursive definition of
BRST blocks which features a repeated antisymmetrization (aiag...a;—1 > a;) with
Jj =2,3,...,p. Moreover, they are in lines with the symmetry matching (3.2) with color

factors upon expanding the structure constants
K[[[“‘[[al7(12]7‘13]7“‘]70’]371]7@1)] > tr ([[[ o [[Tal,T@]?T%]v c ']7 Tap_l]v Tap]) . <A2)

Furthermore, more general bracketing patterns can always be brought to the canonical
form (A.1) by using the antisymmetry and Jacobi identity satisfied by the brackets. For

example,

Ki1,12,3,4 = —K7[2,3),1),4) = —K2314 (A.3)

K1,2),13,41 = K[[11,2),3],4] — K7[[1,2],4],3] = K1234 — K1243 -

Using the iterated bracket notation introduced above the explicit expressions for the
Lie symmetries (3.1) can be easily reproduced. To see this one uses the antisymmetry
of the outer commutator to write K4 g = —K|p, 4] (here A and B represent arbitrary
combinations of brackets acting on the multiparticle labels) and applies the conventions
(A.1). For example, the £4 symmetry in (3.1) is reproduced by K1 93,4 = —K[[3,4],1,2]]>
which implies that K934 — K1043 = —K3412 + K3491.
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Ki,2),3) 1,[4,5]]

Fig. 7 Examples of the mapping between cubic graphs with one leg off-shell and BRST
blocks. Together with the conventions (A.1), the fact that the BRST blocks furnish an
explicit representation of the “Jacobi identity of trees” of the type discussed in [22]
becomes manifest.

A.2. Diagrammatic representation of BRST blocks and their recursion

In the mathematics literature, such as [19,20,21] and references therein, there is a well-
known mapping between planar binary trees'” and iterated brackets which is used to
construct an explicit Lie algebra basis [20]. Given the iterated bracket convention discussed
above, this can be immediately borrowed to create a mapping between cubic graphs with
one leg off-shell and BRST blocks!'®, see fig. 7. The algorithm is as follows. First index the
external legs with the labels {1,2,...,n} from left to right and, starting from the left, for
each vertex associate the bracket [A, B] where A and B represent the labels to the left and
to the right of the vertex (which may already be partially bracketed themselves).

Given the mapping described above, it is interesting to consider the effect of the
grafting [19,21] operation of trees in their associated BRST block images. The grafting of
two planar binary trees t4 and tp is represented by t4 V tp and joins the roots (i.e. the
off-shell leg) of t4 and tp to create a new root. It is not difficult to see that if K4 and
Kp are the BRST blocks associated with t4 and tp then t4 V tp is mapped to K4 pi,
see fig. 8. Note that the definition of A23-? in section 3 can be interpreted (up to the
redefinitions by His. ,) as the grafting of two trees with multiplicity p — 1 and 1.

A.3. Diagrammatic construction of Berends—Giele currents

It is possible to find the explicit expressions of Berends—Giele currents g in terms of

BRST blocks Kp with a diagrammatic prescription which uses the mapping discussed

17 The precise definitions can be found in [19,20]. But for our purposes, a planar binary tree is
nothing more than a cubic graph with one leg off-shell.

18 This prescription was already hinted (up to an overall sign) in the diagrammatic derivation
of the symmetries obeyed by the building block T discussed in [9]. The mapping now extends to
the whole class of multiparticle superfields K € {AZ, A%, W&, Fa™}.
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ai as ajA| b1 bg b|B\ ay ... aja .- b|B|

V =
K\ Kp Kia,p
Fig. 8 The grafting operation on trees and its corresponding mapping in terms of BRST
blocks.
1 2 3 1 2 3
Ki,2),3] K1, [2,3)]
S$128123 5238123

Fig. 9 A diagrammatic derivation of the Berends—Giele current Ki23. The two cubic
graphs correspond to the two possibilities of bracketing three external legs, [[12]3], [1[23]]
and give rise to the expression Ki23 = sfi 132;23 + 321212;123 under the mapping described

below together with the conventions (A.1).

above. This can be used as an alternative to the inverse momentum kernel formula given
in (4.1).

The Berends—Giele current with multiplicity p is obtained by the sum of the expres-
sions associated with all the p + 1 cubic graphs with one leg off-shell, whose total number
is given by the Catalan number C),_;. It is convenient to recall that the Catalan number
Cp—1 represents the number of different ways that p factors can be bracketed and each
possibility has a direct representation in terms of cubic graphs. To each graph a BRST
block Kj(.. ..j,..] is assigned with the corresponding bracketing (which reflects the vertex
structure). In addition, an inverse Mandelstam invariant should be multiplied for each
non-external edge.

The two possibilities of bracketing three external legs, namely [[12]3] and [1[23]], give
rise to the expression for 23 under the mapping described above, see fig. 9. Similarly,

the five different bracketing possibilities of four external legs
[[[12]3]4], [[1[23]]4], [[12][34]], [1[2[34]]], [1[[23]4]] (A.4)

and their corresponding mapping in terms of cubic graphs and BRST blocks leading to
the expression Ki234 were depicted in fig. 6. Higher-multiplicity examples are similarly
handled.
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A.4. Different superfield representations versus Lie symmetries

The definition of the hatted BRST blocks at multiplicity p has an explicit antisymmetriza-
tion of the form 12...p — 1 <> p, where p is a single-particle label. As discussed above,
the resulting BRST block is represented by a iterated bracket where the second slot of
the outer bracket is a single-particle label. This motivates to check the outcome of a more
general hatted superfield definition featuring a multiparticle label instead of p. As the
brief discussion below suggests, the result is compatible with a linear combination of the
“standard” BRST blocks following from the iterated bracket notation.

To see this, consider a rank-four hatted BRST block with the symmetry structure
(12 <> 34) instead of (123 <> 4) as in (3.35). For example,

A 1
AR A = AR (2 A% + AR, — (12 ¢ 34)|. (A.5)
It is not difficult to show that ‘7[[1,2]7[3’4” = )\O‘A[o[él’z]’[?”ém satisfies

QWi 2,3y = (k' B) [VaVaar — (1 43 2)] + (- k) [VaViga — (3 ¢ 4)] + (K2 - k) Via Vi .
(A.6)
where the equation of motion for D(aflﬁ) was contracted with A*\? for the sake of sim-

plicity. Therefore the redefinition
Vi = Vipanpay + (B k) [VaHsar — (1 < 2)] + (K° - k) [VaHiza — (3 < 4)] (A7)
satisfies

QV1,2],13,4)) = QV1234 — QV1243 . (A.8)

This is compatible with the expectation from the bracket notation since Vi 9], 3,4) =
Vi234 — Vi2as, see (A.3).

Appendix B. BCJ relations and one-loop scalar cohomology elements

The scalar cohomology elements C|4,5,c constructed in section 5.3 were argued in [16]
to be linear combinations of SYM tree-level amplitudes multiplied by quadratic polynomi-
als of Mandelstam invariants. Momentum conservation as well as BCJ and KK relations
among color ordered SYM amplitudes AYM(...) [22,40] lead to a multitude of different

such representations for C'y 4, g ¢- In the following, we provide convenient representations
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Fig. 10 Diagrammatic interpretation of Mga, p.

at all multiplicities'® in the sense that the total number of terms is systematically re-
duced and inverse powers of Mandelstam invariants are avoided. As we shall see, these
AYM representations of C1)a,B,c are intriguingly related to BCJ relations among tree-level

amplitudes.

B.1. A shuffle formula for BCJ relations

Let us first define an operation S[A, B] which concatenates two multiparticle labels A and

B with Berends—Giele symmetries (see section 4.1) into one such set,

|Al |B|

— 2 : 2 : i—j+|A|—1
MS[A,B] == (_1) J | | Saz‘bj M(alag...ai_1L|_la‘A|a‘A|,1...ai+1)aibj(bj_1...b2b1LL|bj+1...b|B‘)-
i=1 j=1

(B.1)
One can interpret Mg(4,p) in (B.1) as attaching two Berends-Giele currents M4 and Mp to
a cubic vertex and expressing the resulting diagram in terms of M¢ at overall multiplicity

|C| = |A| + | B|, see fig. 10. For example,
Mg 21 = s12Ma2 (B.2)
MS[1,23] = s12M123 — 513 M132

Mg 234) = s12M1234 — 513(Mi324 + Mi342) + 514 Mi430

Msp12,34) = —813M2134 + S14M2143 + S23M1234 — 24 M1243 -

19" The explicit representation given at multiplicity five in [16] fails to satisfy the above criterion
of having local Mandelstam coefficients along with AY™(...). The six-point representation was
given only indirectly as an expansion in terms of A" 4, which represent the a/? corrections of the

string tree-level amplitudes.
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It turns out that the S[A, B] product defined by (B.1) can be used to generate BCJ
relations among tree amplitudes [22]. Recalling [8] that SYM tree amplitudes are given by

AYM(1,2, ... n) = (V1 Es3.. ), BCJ relations among A¥M can be written as
<V1ES[A,B]> =0, VAB, (B.3)
for example

0= (ViEspa4) = s23A"M(1,2,3,4) — 524 A™(1,2,4,3) (B.4)
0= (ViEg[a345) = 5234 ™(1,2,3,4,5) + s25AM(1,2,5,4, 3)
— 504(AYM(1,2,4,3,5) + AY(1,2,4,5,3))
0= (ViEsp23,45)) = 534 A " (1,2,3,4,5) — s35A(1,2,3,5,4)
— 594 AYM(1,3,2,4,5) + s05AYM(1,3,2,5,4).
0= (ViEsp3156)) = s23A™(1,2,3,4,5,6) — s26A™(1,2,6,5,4,3)
— 594(AYM(1,2,4,3,5,6) + AYM(1,2,4,5,3,6) + A¥™(1,2,4,5,6,3))
+ 595(AYM(1,2,5,6,4,3) + AYM(1,2,5,4,6,3) + A¥™(1,2,5,4,3,6)) .

Similar formulee for BCJ relations using shuffle products can be found in?° [3,4,51]. We
have explicitly verified that (B.3) holds up to multiplicity |A| 4+ |B|+ 1 = 7 using the data
from [42].

B.2. (Cija,B,c) from the BCJ shuffle formula

Since (B.3) also holds for A or B of the form S[C, D], we can iterate the product (B.1)
and generate further vanishing identities for SYM subamplitudes from Eggia, p),c]- Any
partition of A, B and C leads to an A¥M relation with local polynomials of degree two in

Mandelstam invariants. The examples

0= (ViEs(si2,3,41) = s23534AYM(1,2,3,4) — 593524 AM(1,3,2,4) (B.5)
0 = (ViEs(s(a,5),23)) = —s345a5A" " (1,2,3,4,5) + s355454 " ™(1,2,3,5,4)

+ 504545 AYM(1,3,2,4,5) — 505545 AYM(1, 3,2, 5, 4)
0 = (ViEss[5,6),234]) = —$56545 A" ™ (1,2,3,4,5,6) + s56506 A" (1, 2,3,4,6,5)

+ 55653547 M(1,2,4,3,5,6) — s5536 47 (1,2,4,3,6,5)

20" We thank Henrik Johansson for pointing out reference [51].
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+ s56535AYM(1,4,2,3,5,6) — s5e536 A7 1(1,4,2,3,6,5)
— 556525 A" M
0 = (ViEs(s[6,45),23]) = +51653447 " (1,2,3,4,5,6) + s5534 47 (1,2,3,4,5,6)
+ 546534 AYM(1,2,3,4,6,5) — 5465354 M (1,2,3,5,4,6
,2,3,5,6,4
— 8465364 ,2,3,6,5,4

1 1
( ( )
! ) ! )
(1 ) (1 )
— 546524 AYM(1,3,2,4,5,6) — s56504.AYM(1,3,2,4,5,6)
( ) ( )
( ) ( )
M ) M( )

( (
(1,4,3,2,5,6) + s56506 A" ™(1,4,3,2,6,5)

— 556535 A7M(1,2,3,5,4,6) — 5565354

YM(1,2,3,6,4,5) + sses36 A" M

— 546504 AYM(1,3,2,4,6,5) + sags254AYM(1,3,2,5,4,6
+ s56525AM(1,3,2,5,4,6) + s565254YM(1,3,2,5,6, 4

+846826A 132645—856826A 132654

can be checked to be a consequence of the BCJ relations [22]. Note that Egisia, p),c] in
the five-point example is chosen as (A, B,C = 4,5,23) rather than (A, B,C = 23,4,5) in
order to minimize the number of terms.

The motivation to delve on the redundant BCJ relations (B.5) in addition to (B.4)
stems from their intriguing connection with the A¥M representation of the scalar cohomol-

ogy elements Cy4 p,c. Up to six-points, we have

—(C1j2,3,4) = — 504503 AYM(1,3,2,4) (B.6)
—(C1|23,4,5) = —S45534A YM(1,2,3,4,5) + 545504 A7M(1,3,2,4,5)
—(Chj23a5.6) = —856505A M (1,2,3,4,5,6) + s56535A M (1,2,4,3,5,6)
+ 5565354V M(1,4,2,3,5,6) — s56505AYM(1,4,3,2,5,6)
—(Chj23.45,6) = —s46536 A M (1,2,3,6,4,5) + s56536 4 M (1,2,3,6,5,4)
+ 546526AYM(1,3,2,6,4,5) — 55652647 M(1,3,2,6,5,4) ,

and we observe that the expressions on the right hand side can be found by systematically
deleting subsets of the terms in (B.5): Only those terms in (Vi Eg(s(4,5),c]) are kept where
the Mandelstam bilinear takes the form s,,5,. with a € A, b € B and ¢ € C. The following

algorithm allows to translate any (C1j4,p,c) into SYM trees:

1. Reorder the labels A, B and C such that |A| < |B| < |C|.
2. Apply the formula (B.1) recursively to evaluate Egs(4,n),c]-
3. Substitute Ey,. ,, — AYM(1,09,...,04).
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4. Keep only the terms containing Mandelstams with labels distributed as in s4p54¢, with
single-particle labels a € A, b € B and ¢ € C. Delete terms of the form s,;spc.
5. The result is —(C4|4,5,c)-

We have explicitly checked with the data available from [42] that the algorithm above is
correct for all scalar cohomology elements up to multiplicity |A| + |B| + |C| + 1 = 7. For

example, it leads to

—(Chj2345,6,7) = —Se7S56AY 2,3,4,5,6,7) + sersas A(1,2,3,5,4,6,7)  (B.7)

+ s7546AYM(1,2,5,3,4,6,7) — sg7536AYM(1,2,5,4,3,6,7)
+ 567526 AXM(1,5,2,3,4,6,7) — sgrs36 AT ™M (1,5,2,4,3,6,7)

YM

—(Chjazase7) = —s578arAYM(1,2,3,4,7,5,6) + sersar AV (1,2,3,4,7,6,5)

M1, M1

( (

( (

YM YM

— 867836 (1 5 4 2 3 6 7>+867826 (1 5,4,3,2,6, 7)

( (

+ 557837 AYM(1,2,4,3,7,5,6) — sg7537.AYM(1,2,4,3,7,6,5)

+ s578537AYM(1,4,2,3,7,5,6) — sg7537.AYM(1,4,2,3,7,6,5)
M ) M )

—857827A 1432756+867827A 1,4,3,2,7,6,5

and a slightly longer 32-term representation of (C1)23 45,67) Which is commented out in the

TEX source.

It will be interesting to understand the origin of the intriguing patterns described in
this Appendix. They hint a deeper connection between the fusion of Berends—Giele currents
via (B.1) (see fig. 10 for a diagrammatic interpretation), general BCJ relations [22,51] and
the scalar cohomology elements (C|4,5,c) generating the non-anomalous kinematics in

one-loop amplitudes of the open superstring [16].

Appendix C. The explicit expression for His34
The Lie symmetry of rank-four BRST blocks is restored by the redefinition (3.46) with the
following expression for His34:

AH 1530 = H\5h, — H5hs + Higlo — Hig (C.1)
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By construction, it is the £, image of a more elementary expression
Lo usva3 a4y 112 a3yp02 44y, L4123 44
)+6(A ~A)(k:-A)—§(A - A% (k -A)—|—§(A - A%)

1

4

1 1 1
+§A1173A2Fﬁm+6(141'A23)(]€123'A4)—6(A2'A13)(]€123'A4)

1

4

+ (Hl(g)34 + Higy + Highs + Higly + HiDh, + H2(Z)31) (C.2)
with
= £ (AN A7) AD)(( - A%) — (R - %)) (©3)
(AT AR A (R - A7) — (52 A%)
+ % (A1 A%)[(K* - A%)(K' - AY) — (K- A%) (K- AY)]
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