
ar
X

iv
:1

50
5.

02
74

6v
2 

 [
he

p-
th

] 
 3

 N
ov

 2
01

5

DAMTP–2015–25

Two-loop five-point amplitudes of super Yang–Mills and supergravity

in pure spinor superspace

Carlos R. Mafra† and Oliver Schlotterer⋆

†DAMTP, University of Cambridge

Wilberforce Road, Cambridge, CB3 0WA, UK

⋆Max–Planck–Institut für Gravitationsphysik

Albert–Einstein–Institut, 14476 Potsdam, Germany

Supersymmetric integrands for the two-loop five-point amplitudes in ten-dimensional su-

per Yang–Mills and type II supergravity are proposed. The kinematic numerators are

manifestly local and satisfy the duality between color and kinematics described by Bern,

Carrasco and Johansson. Our results are expected to reproduce the integrated two-loop

amplitudes in dimensions D < 7. The UV divergence in the critical dimension D = 7

matches the low-energy limit of the corresponding superstring amplitudes and is written

in terms of SYM tree amplitudes.

May 2015

† email: c.r.mafra@damtp.cam.ac.uk
⋆ email: olivers@aei.mpg.de

http://arxiv.org/abs/1505.02746v2


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. BCJ duality between color and kinematics . . . . . . . . . . . . . . . 3

2.2. Ten-dimensional SYM . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3. Multiparticle superfields . . . . . . . . . . . . . . . . . . . . . . . 5

2.4. Pure spinor superspace . . . . . . . . . . . . . . . . . . . . . . . 6

3 Field-theory amplitudes and BRST cohomology at two-loops . . . . 7

3.1. BRST properties of kinematic numerators . . . . . . . . . . . . . . . 8

3.2. The SYM two-loop four-point amplitude . . . . . . . . . . . . . . . . 9

3.3. Five-point building blocks in pure spinor superspace . . . . . . . . . . 10

4 The two-loop five-point amplitudes in SYM and supergravity . . . 11

4.1. Color factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2. Planar cubic graphs and superspace numerators . . . . . . . . . . . 12

4.3. Planar two-loop amplitudes in SYM . . . . . . . . . . . . . . . . . 14

4.4. Non-planar cubic graphs and superspace numerators . . . . . . . . . 14

4.5. Non-planar two-loop amplitudes in SYM . . . . . . . . . . . . . . . 16

4.6. Two-loop amplitudes in supergravity . . . . . . . . . . . . . . . . 17

5 UV divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1. Two-loop UV divergences in SYM . . . . . . . . . . . . . . . . . . 17

5.2. Two-loop UV divergences in supergravity . . . . . . . . . . . . . . 19

5.3. UV divergence and R-symmetry . . . . . . . . . . . . . . . . . . 20

6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . 21

A Diagrammatic bookkeeping of BRST variations . . . . . . . . . . . 23

B Comparison with the four-dimensional solution . . . . . . . . . . . 26

C One-loop UV divergences . . . . . . . . . . . . . . . . . . . . . . . 26

C.1. One-loop UV divergences in SYM . . . . . . . . . . . . . . . . . 27

C.2. One-loop UV divergences in supergravity . . . . . . . . . . . . . . 28

1



1. Introduction

Tree-level and one-loop scattering amplitudes of ten-dimensional super Yang–Mills (SYM)

have been recently determined using a method based on two fundamental principles: local-

ity and BRST invariance [1,2,3]. Locality refers to the expansion of amplitudes in terms of

cubic graphs with definite propagator structure [4,5], and BRST invariance is a property

of pure spinor superspace that guarantees manifest supersymmetry and gauge invariance

[6]. Even though the notion of BRST invariance is motivated by the pure spinor formalism

of the superstring [6], pure spinor variables are long known to simplify the description of

ten-dimensional SYM [7], as will be corroborated once more by this paper.

In the subsequent, we will describe the two-loop extension of this method and use it

to derive the five-point two-loop integrand of ten-dimensional SYM in an intuitive manner.

In doing so, we follow closely the organization found in a beautiful paper by Carrasco and

Johansson [8] which makes the symmetry between color and kinematic degrees of freedom

[4,5] manifest and thereby leads to the supergravity integrand without any extra effort

[9]. As an additional benefit of the pure spinor superspace representation, the kinematic

numerators are manifestly local due to the very nature of our method (bypassing the inverse

Gram determinants in [8]) and do not require any constructive input from unitarity.

As the main result of this paper, the color-dressed five-point two-loop amplitude of

SYM in ten dimensions will be explicitly constructed in (4.15), following the guidelines

of the method described in section 3. The polarization dependence is furnished by two

local kinematic building blocks T12,3|4,5 and Tm
1,2,3|4,5 written in pure spinor superspace

and inspired by string theory whose bosonic components can be downloaded from [10].

Thanks to their compatibility with the Bern–Carrasco–Johansson (BCJ) duality between

color and kinematics [4,5], the corresponding supergravity amplitude is a straightforward

corollary [9] and given in (4.16).

Since our results are formulated in ten dimensions, standard dimensional reduction

gives rise to their lower-dimensional counterparts [11]. In section 5, the UV divergences of

maximally supersymmetric SYM and supergravity in the two-loop critical dimensionD = 7

are written in terms of SYM tree amplitudes. As a consistency check [12], the superspace

expression for the supergravity UV divergence in (5.9) matches the low-energy limit of

the closed-string amplitude [13]. However, type IIB superstring two-loop amplitudes vi-

olate the U(1) R-symmetry as a consequence of S-duality [14,15,13] while supergravity

and its two-loop UV divergence in D = 7 dimensions conserve it. This apparent paradox
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Fig. 1 The Jacobi identity implies the vanishing of the color factors associated to a triplet of

cubic graphs, Ci + Cj + Ck = 0. In the above diagrams, the legs a, b, c and d may represent

arbitrary subdiagrams. The BCJ duality states that their corresponding kinematic numerators

Ni(ℓ) can be chosen such that Ni(ℓ) +Nj(ℓ) +Nk(ℓ) = 0.

is resolved by the prefactor (7 − D) in the R-symmetry violating components that ap-

pears once the ten-dimensional superstring kinematic factor is dimensionally reduced to

involve a D-dimensional dilaton state. The same mechanism applies to the one-loop UV

divergence, where a prefactor of (8−D) along with a D-dimensional dilaton reconciles S-

duality properties of the superstring amplitude [16,13] with R-symmetry of supergravity,

see appendix C.

2. Review

2.1. BCJ duality between color and kinematics

Bern, Carrasco and Johansson (BCJ) proposed an organization scheme for gauge theory

amplitudes based on cubic vertices where color and kinematic degrees of freedom enter on

completely symmetric footing [4,5]:

Ag−loop
n =

∫ g
∏

j=1

dDℓj
(2π)D

∑

Γi

Ni(ℓ)Ci
∏

k Pk,i(ℓ)
(2.1)

The sum is understood to encompass all “cubic” graphs Γi with n external legs, g loops

and only trivalent vertices as well as appropriate symmetry factors to avoid overcounting.

The propagators Pk,i(ℓ) refer to the squared momentum in the kth internal line of the ith

graph. The color tensors Ci are obtained by dressing each vertex of Γi with a factor of fabc,

the structure constants of the gauge group, and each internal line by δab. Finally, the kine-

matic numerators Ni(ℓ) encode the dependence on polarizations and (external or internal)

momenta k, ℓ. They furnish the only ingredient of (2.1) that cannot be immediately read

off from the graphs, and they will be in the main focus of this work.
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Triplets of color tensors Ci, Cj, Ck associated with diagrams i, j, k that differ in only

one propagator (see fig. 1) vanish due to the Jacobi identity

fabef cde + f bcefade + f caef bde = 0 (2.2)

valid for any gauge group. The BCJ conjecture [4,5] states that amplitudes in (2.1) can

be represented such that for any vanishing color triplet Ci + Cj + Ck, the corresponding

kinematic decorationsNi(ℓ)+Nj(ℓ)+Nk(ℓ) of diagrams i, j, k vanish as well. This statement

is illustrated in fig. 1 and understood to hold for any value of the loop momenta ℓ. Of course,

the momentum in the four external lines represented by a, b, c, d and the subdiagrams

beyond them have to be the same in the three graphs i, j, k.

Once a gauge theory amplitude (2.1) has been cast into such a “BCJ form”,

Ci + Cj + Ck = 0 ⇒ Ni(ℓ) +Nj(ℓ) +Nk(ℓ) = 0 , (2.3)

then the corresponding gravity amplitude follows from trading color tensors for a second

copy of the kinematic numerators, Ci → Ñi(ℓ) [9]

Mg−loop
n =

∫ g
∏

j=1

dDℓj
(2π)D

∑

Γi

Ni(ℓ)Ñi(ℓ)
∏

k Pk,i(ℓ)
. (2.4)

The second copy of Ñi(ℓ) does not need to stem from the same gauge theory or satisfy

the kinematic Jacobi identities (2.3). The polarization tensors of the resulting gravity

amplitudes (2.4) are then given by the tensor products of the gauge theory polarizations

contained in Ni(ℓ)Ñi(ℓ). We will apply this double-copy construction to the two-loop five-

point amplitudes in ten-dimensional SYM and the resulting type II supergravities, see

section 4.6. When dressed with non-supersymmetric numerators Ñi(ℓ) of pure Yang–Mills,

our results for Ni(ℓ) might serve as a convenient starting point to investigate two-loop

five-point amplitudes in half-maximal supergravity.

2.2. Ten-dimensional SYM

Ten-dimensional SYM can be described in a super-Poincaré covariant manner using a set of

superfields {Aα, A
m,Wα, Fmn} [17]. They depend on the ten-dimensional superspace co-

ordinates {xm, θα} with vector and spinor indices m,n = 0, 1, . . . , 9 and α, β = 1, 2, . . . , 16

of the Lorentz group. The linearized equations of motion [17] in momentum space1

DαAβ +DβAα = γm
αβAm, DαAm = (γmW )α + kmAα

DαFmn = 2k[m(γn]W )α, DαW
β =

1

4
(γmn)α

βFmn (2.5)

1 Our conventions for (anti-)symmetrizing n vector indices include a factor of 1/n!.

4



involve light-like momenta k2 = 0 via plane waves ek·x and fermionic covariant derivatives

Dα ≡
∂

∂θα
+

1

2
(γmθ)α , {Dα, Dβ} = γm

αβ∂m , (2.6)

with 16×16 Pauli matrices2 γm
αβ = γm

βα subject to the Clifford algebra γ
(m
αβγ

n)βγ = ηmnδγα.

The equations of motion (2.5) identify 8 + 8 on-shell degrees of freedom associated

with a gluon and gluino. Their polarizations are described by a transverse vector kmem = 0

and a spinorial solution to the massless Dirac-equation kmγm
αβχ

β = 0, respectively. In a

gauge where θαAα = 0, they enter the explicit θ-expansions via [18]

Aα = ek·x
(1

2
em(γmθ)α −

1

3
(χγmθ)(γmθ)α −

1

16
kmen(γpθ)α(θγ

mnpθ) + · · ·
)

. (2.7)

2.3. Multiparticle superfields

Ten-dimensional SYM arises from the massless sector of the open pure spinor superstring

[6]. Its ith scattering state is represented by the integrated vertex operator Ui which involves

all of {Ai
α, A

m
i ,Wα

i , F
i
mn} along with various worldsheet fields. In string calculations, the

latter act on additional vertex operators via operator product expansions (OPEs) and

build up so-called multiparticle superfields [19]

Aα
12 ≡ −

1

2

[

A1
α(k

1 ·A2) +A1
m(γmW 2)α − (1 ↔ 2)

]

A12
m ≡

1

2

[

A1
pF

2
pm − A1

m(k1 ·A2) + (W 1γmW 2)− (1 ↔ 2)
]

Wα
12 ≡

1

4
(γmnW 2)αF 1

mn +Wα
2 (k2 ·A1)− (1 ↔ 2) (2.8)

Fmn
12 ≡ Fmn

2 (k2 ·A1) + F
[m
2 pF

n]p
1 + k

[m
12 (W1γ

n]W2)− (1 ↔ 2) .

In the point-particle limit, these string-inspired generalizations of linearized SYM ac-

company the tree-level subdiagrams seen in fig. 2. They capture, for instance, the re-

ducible parts of the subsequent five-point two-loop amplitudes and have generalizations

{A12...p
α , Am

12...p,W
α
12...p, F

12...p
mn } to any number of states [19], see fig. 2. We will use multi-

particle labels such as B = 12 . . . p to keep the multiplicity of superfields unspecified, i.e.

Wα
B can become either Wα

1 or Wα
12 upon setting B = 1 or B = 12.

2 Pauli matrices frequently appear in their antisymmetrized combinations with symmetry prop-

erties γmnp

αβ = −γmnp

βα and γmnpqr

αβ = γmnpqr

βα which are normalized like γmn
α
β ≡ 1

2
(γmγn−γnγm)βα.

5



1

2

A12

α
, Am

12
,Wα

12
, Fmn

12

1

2 3 4
. . .

p

AB

α
, Am

B
,Wα

B
, Fmn

B

Fig. 2 Interpretation of multiparticle superfields as tree-level subdiagrams where the external

states are represented by multiparticle labels B = 12 . . . p.

The non-linear version of the equations of motion (2.5) are solved by the generating

series of multiparticle fields [20]. The non-linearities are reflected by the contact terms

∼ (k1 · k2) in their multiparticle equations of motion

2D(αA
12
β) = γm

αβA
12
m + (k1 · k2)(A1

αA
2
β + A1

βA
2
α)

DαA
12
m = (γmW 12)α + k12mA12

α + (k1 · k2)(A1
αA

2
m −A2

αA
1
m)

DαW
β
12 =

1

4
(γmn)α

βF 12
mn + (k1 · k2)(A1

αW
β
2 −A2

αW
β
1 ) (2.9)

DαF
12
mn = k12m (γnW

12)α − k12n (γmW 12)α + (k1 · k2)(A1
αF

2
mn − A2

αF
1
mn)

+ (k1 · k2)(A1
n(γmW 2)α − A2

n(γmW 1)α − A1
m(γnW

2)α + A2
m(γnW

1)α) ,

where the notation km12...p ≡ km1 + km2 + . . .+ kmp will be used throughout this work.

2.4. Pure spinor superspace

The physical components of superspace expressions in SYM can be conveniently extracted

using a bosonic pure spinor λα which is defined to obey [7]

(λγmλ) = 0 . (2.10)

Corollaries of this pure spinor constraint include (λγm)α(λγm)β = 0 = (λγmγpqλ) which

will frequently enter the subsequent manipulations. Pure spinor superspace is defined by an

extension of the standard ten-dimensional superspace coordinates {xm, θα} to {xm, θα, λα}

subject to the following component prescription [6]

〈(λγmθ)(λγnθ)(λγpθ)(λγmnpθ)〉 = 2880 . (2.11)

The order λ3θ5 is singled out by supersymmetry and the cohomology of the BRST operator

Q ≡ λαDα . (2.12)
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BRST-closed superfields QS(θ, λ) = 0 give rise to supersymmetric and gauge invariant

components 〈S(θ, λ)〉 under (2.11) whereas BRST-exact superfields E(θ, λ) = QΣ(θ, λ)

yield 〈E(θ, λ)〉 = 0 [6]. Expressions of order λ3θ5 with a different tensor structure as

compared to (2.11) are uniquely fixed by group theory since this tensor product contains

only one Lorentz scalar. The required group theory manipulations are automated in [21].

As the central idea of this work and preceding papers [1,2,3], scattering amplitudes

〈S(θ, λ)〉 in ten-dimensional SYM are proposed by constructing a BRST-invariant super-

field S(θ, λ) whose kinematic poles reproduce the expected Feynman diagrams. In this

approach, the superfield S(θ, λ) carries the kinematical data of state i through the super-

fields {Ai
α, A

m
i ,Wα

i , F
i
mn} whose equations of motion (2.5) determine the BRST variation.

For example, the unintegrated vertex operator of the superstring,

Vi ≡ λαAi
α , QVi = 0 , (2.13)

suffices to write down the three-point tree-level subamplitude in pure spinor superspace,

Atree(1, 2, 3) = 〈V1V2V3〉 = (e1 · e2)(e3 · k1) + em1 (χ2γmχ3) + cyc(1, 2, 3) . (2.14)

This sample calculation based on the θ-expansion (2.7) and the prescription (2.11) illus-

trates how all the component amplitudes are supersymmetrically embedded into BRST-

closed superfields such as V1V2V3. We will limit our subsequent discussion of two-loop

amplitudes to their superspace representatives since the component extraction for any

superfield numerator can be performed in an automated way [21,22], and the resulting

components can be downloaded from [10].

3. Field-theory amplitudes and BRST cohomology at two-loops

Multiloop superstring amplitudes computed with the pure spinor formalism give rise to

superspace expressions in the cohomology of the pure spinor BRST charge [23,24]. As

explained in [6], superfields in the BRST cohomology translate to gauge invariant and

supersymmetric component expansions. Since ten-dimensional SYM and type II super-

gravities arise in a certain limit of superstring theories, their scattering amplitudes belong

to the BRST cohomology as well. Multiloop integrands for these field-theory amplitudes

are strongly constrained by demanding BRST invariance and the propagator structure ex-

pected from Feynman diagrams. Together with a string-inspired set of admissible kinematic

building blocks, these requirements will allow us to fix the two-loop five-point amplitudes.
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3.1. BRST properties of kinematic numerators

Inspired by the discussion of section 2.1, multiloop amplitudes of ten-dimensional SYM

theory are organized in terms of cubic graphs

Ag−loop
n =

∫ g
∏

j=1

dDℓj
(2π)D

∑

Γi

〈Ni(ℓ)〉Ci
∏

k Pk,i(ℓ)
. (3.1)

Maximal supersymmetry suppresses any graph Γi with a triangle, bubble or tadpole sub-

diagram [25]. In the superspace setup of this paper, the numerators Ni(ℓ) will be given by

local pure spinor superspace expressions, whose form is suggested by the propagator struc-

ture Pk,i(ℓ) of its corresponding cubic graph. Requiring BRST invariance of the integrand

in (3.1) largely determines the mapping between cubic graphs and superspace numerators,

and the subsequent examples are completely fixed when assuming a string-inspired ansatz

for admissible kinematic building blocks.

If individual numerators are not BRST invariant by themselves, their BRST varia-

tions must lead to cancellations among different graphs to yield an overall BRST-invariant

integrand. That is only possible if the BRST variation QNi(ℓ) cancels one of its propaga-

tors Pk,i(ℓ). Therefore, the superspace expression of Ni(ℓ) is constrained by the following

requirement:

each term of QNi(ℓ) must contain a factor of Pk,i(ℓ). (3.2)

Otherwise the BRST variation of the integrand (3.1) would have a non-vanishing residue

at the simultaneous pole
∏

k Pk,i(ℓ) and could not vanish.

We will use the following notation to distinguish between superspace integrands and

integrated expressions,

A2−loop
n =

∫

dDℓ dDr

(2π)2D
〈A2−loop

n (ℓ, r)〉 (3.3)

A2−loop(1, 2, 3, . . . , n) =

∫

dDℓ dDr

(2π)2D
〈A2−loop(1, 2, 3, . . . , n|ℓ, r)〉 ,

where A2−loop(1, 2, 3, . . . , n) denotes the planar single-trace contribution of A2−loop
n in the

trace basis of Ci [26]. In the following sections we will use the method outlined above to

construct the SYM and supergravity five-point two-loop integrands. They lead to BRST-

closed integrated amplitudes once the freedom to shift or rename the integration variables

ℓ, r is taken into account3.

3 The diagrammatic bookkeeping of BRST variations in the appendix A automatically freezes

this freedom by means of the automorphism symmetries of the different integrand topologies after

the cancellation of propagators resulting from the BRST variation of the numerators.
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A2−loop(1, 2, 3, 4|ℓ, r) =

ℓ r

2

1

3

4

+

ℓ r

1

4

2

3

Fig. 3 The planar integrand of the SYM two-loop four-point amplitude.

3.2. The SYM two-loop four-point amplitude

Recall that the two-loop four-point amplitude of the pure spinor superstring [27,28,29] can

be written in terms of a single kinematic factor

T1,2|3,4 ≡
1

64
(λγmnpqrλ)F

mn
1 F pq

2

[

F rs
3 (λγsW4) + F rs

4 (λγsW3)
]

+ (1, 2 ↔ 3, 4)

QT1,2|3,4 = 0 , (3.4)

whose BRST invariance follows from the equations of motion (2.5) and the pure spinor

constraint (2.10). Since superstring amplitude reduce to SYM amplitudes in field-theory

limit, the most natural expression for the planar four-point two-loop integrand is given by

A2−loop(1, 2, 3, 4|ℓ, r) =
T1,2|3,4

ℓ2r2(ℓ+ r)2 (ℓ− k1)2(ℓ− k12)2 (r − k4)2(r − k34)2

+
T4,1|2,3

ℓ2r2(ℓ+ r)2 (ℓ− k4)2(ℓ− k41)2 (r − k3)2(r − k23)2
. (3.5)

The contributing double-box graphs are depicted in fig. 3, and BRST invariance of its

numerators is inherited from (3.4). Furthermore, it has been shown at the superspace level

that [30]

〈T1,2|3,4〉 = s212s23A
tree(1, 2, 3, 4) , (3.6)

hence, the amplitude (3.5) agrees with the result of [31]. The Mandelstam invariants are

sij ≡ (ki · kj) =
1

2
(ki + kj)

2 , si1i2...ip ≡
1

2
(ki1 + ki2 + . . .+ kip)

2 . (3.7)

A rigorous derivation of (3.5) as the field-theory limit of the two-loop open superstring

amplitude [27] is expected to closely follow the closed-string discussion in [32].
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3.3. Five-point building blocks in pure spinor superspace

By the aforementioned no-triangle property of maximal SYM [25], the two-loop five-point

amplitude involves double-box and penta-box diagrams along with their non-planar coun-

terparts. The numerators for the pentagon subdiagrams are known to depend linearly on

the loop momentum [8], and therefore the five-point amplitude will require vector building

blocks in addition to scalar building blocks.

For the scalar building block, one can use the multiparticle version of (3.4)

TA,B|C,D ≡
1

64
(λγmnpqrλ)F

mn
A F pq

B

[

F rs
C (λγsWD)+F rs

D (λγsWC)
]

+(A,B ↔ C,D) . (3.8)

The symmetry properties of T1,2|3,4 described in [27] do not depend on the single-particle

nature of the superfields and directly carry over to (3.8),

TA,B|C,D = TB,A|C,D = TC,D|A,B , TA,B|C,D + TB,C|A,D + TC,A|B,D = 0 . (3.9)

The latter follows from the gamma-matrix manipulation (λγ[mnpqrλ)(λγs])α = 0. For five

points, the BRST variation of (3.8) follows from multiparticle equations of motion (2.8),

QT12,3|4,5 = s12(V1T2,3|4,5 − V2T1,3|4,5) , (3.10)

and the terms without a factor of s12 drop out by virtue of the pure spinor constraint.

In analogy to the one-loop vector building block of [16], the scalar two-loop building

blocks (3.8) allow for a vector counterpart4 suitable to represent linear dependencies on ℓ,

Tm
1,2,3|4,5 ≡ Am

1 T2,3|4,5 +Am
2 T1,3|4,5 + Am

3 T1,2|4,5 +Wm
1,2,3|4,5 . (3.11)

The last summand Wm
1,2,3|4,5 is designed to cancel the term (λγmW1) within QAm

1 , i.e.

QWm
1,2,3|4,5 = −(λγmW1)T2,3|4,5 − (λγmW2)T1,3|4,5 − (λγmW3)T1,2|4,5 . (3.12)

In a symmetrization convention whereWα
(1F

mn
2) ≡ Wα

1 F
mn
2 +Wα

2 Fmn
1 , its explicit superfield

representation is given by

Wm
3,4,5|1,2 ≡

1

48
(λγpqγ

mW(1)F
pq

2) (λγrW5)(λγsW(3)F
rs
4)

−
1

128
(λγmW5)(λγpqγ

rW(1)F
pq

2) (λγstγrW(3)F
st
4) (3.13)

+
1

96
(W3γ

mstW4)(λγnpqrsλ)(λγtW5)F
np
1 F qr

2 + (5 ↔ 3, 4) .

4 The following definition can be generalized to multiparticle level Tm
1,2,3|4,5 → Tm

A,B,C|D,E if

the corresponding uplift of (3.13) is projected to the symmetries of (3.15).
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Fig. 4 The six topologies of two-loop five-point diagrams whose color factors are given in (4.1).

In a BCJ representation subject to (2.3), the numerators satisfy N (b) = −N (a) as well as N (f) =

N (e) = −N (d), and the explicit superspace expressions for N (d) and N (a) are given in (4.2) and

(4.3), respectively.

The BRST variation of Tm
1,2,3|4,5 in (3.11) then connects with the scalar counterpart (3.10),

QTm
1,2,3|4,5 = km1 V1T2,3|4,5 + km2 V2T1,3|4,5 + km3 V3T1,2|4,5 . (3.14)

The symmetries (3.9) of the scalar building block and the form of Wm
1,2,3|4,5 in (3.13) imply

Tm
1,2,3|4,5 = Tm

(1,2,3)|(4,5) , 〈Tm
1,2,3|4,5〉 = 〈Tm

3,4,5|1,2 + Tm
2,4,5|1,3 + Tm

1,4,5|2,3〉 . (3.15)

Note that the two-loop building blocks of this section are functionals of all the external

labels, e.g. Tm
i,j,k|p,q can be specialized to any permutation (i, j, k, p, q) of (1, 2, 3, 4, 5). This

surpasses the constraints on superspace numerators at tree-level [1,2] and one-loop [3]

where individual external legs need to be globally associated with unintegrated vertices

(2.13) or their multiparticle versions [19].

4. The two-loop five-point amplitudes in SYM and supergravity

In this section, we assemble the five-point two-loop amplitudes from the six topologies of

cubic diagrams without triangles [8] depicted in fig. 4.

4.1. Color factors

The color factors C
(a)
12345, . . . , C

(f)
12345 associated to the diagrams of fig. 4 encompass seven

factors of fabc, the structure constants of the gauge group. Their contractions follow from

11



Fig. 5 The numerator for the general massive double-box is given by TA,B|C,D in (3.8).

dressing each cubic vertex5 of the diagram with a factor of fabc and each internal line with

a Kronecker delta in the adjoint representation of the gauge group,

C
(a)
12345 = f4ecf5befa1hf badf cdgfgj3fh2j ,

C
(c)
12345 = f1acf2hcfadgf b4jfed5fgj3fhbe ,

C
(e)
12345 = f4ecf5dbfajhf beaf cdgfgj3fh12 ,

C
(b)
12345 = f4def b5cfa1hf cdgfebafgj3fh2j ,

C
(d)
12345 = f4ecf5befajhf badf cdgfgj3fh21 ,

C
(f)
12345 = f12cfadbf bj5f cagfe3dfghefh4j .

(4.1)

Using the procedure described in [26] they can be translated into a trace basis lead-

ing to color structures of the form N2
cTr(t

1t2t3t4t5), Tr(t1t2t3t4t5), NcTr(t
4t5)Tr(t1t2t3),

Tr(t4)Tr(t5)Tr(t1t2t3) and NcTr(t
5)Tr(t1t2t3t4). The gauge group is left completely general

at this point such that its generators ti are not necessarily traceless. The number of colors

Nc stems from the trace of the identity matrix.

4.2. Planar cubic graphs and superspace numerators

The BRST cohomology principle (3.2) suggests the scalar multiparticle building block

TA,B|C,D in (3.8) to furnish a massive double-box numerator, see fig. 5. This conjec-

tural identification is based on the fact that all the ℓ-independent propagators in fig. 5

are canceled by some summand of QTA,B|C,D, see e.g. (3.10). Moreover, the symmetry

TA,B|C,D = TA,B|D,C is compatible with the no-triangle property and the kinematic Jacobi

identity:

A

B C

D

0 =

A

B C

D

=

A

B D

C

-

5 The color factors C
(b)
12345, C

(e)
12345 and C

(f)
12345 contain an extra minus sign w.r.t. [8] due to our

choice of drawing graphs without crossing lines.
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The dictionary in fig. 5 implies that the planar five-point double-box in fig. 4(d) is repre-

sented by the numerator

N
(d)
12,3|4,5 ≡ T12,3|4,5 . (4.2)

The scalar and vector BRST transformations in (3.10) and (3.14) allow to construct a

candidate for the penta-box numerator of fig. 4(a) as

N
(a)
1,2,3|4,5(ℓ) ≡

1

2
(ℓm + ℓm − k123m )Tm

1,2,3|4,5 +
1

2
(T12,3|4,5 + T13,2|4,5 + T23,1|4,5) . (4.3)

This expression is designed from the cohomology principle (3.2) since ℓ-dependent propa-

gators are canceled under the BRST variation,

QN
(a)
1,2,3|4,5(ℓ) =

1

2

(

V1T2,3|4,5

[

ℓ2 − (ℓ− k1)
2
]

+ V2T1,3|4,5

[

(ℓ− k1)
2 − (ℓ− k12)

2
]

+ V3T1,2|4,5

[

(ℓ− k12)
2 − (ℓ− k123)

2
]

)

. (4.4)

Both the composition (4.3) from scalar and vector superfields and the form of the BRST

variation (4.4) resemble the one-loop pentagon numerator, see (4.5) and (4.6) of [3].

As illustrated in fig. 6, the numerator in (4.3) depends on the averaged loop momentum

ℓm + (ℓm − k123m ) from the two terminal edges of the pentagonic worldline segment. This

makes sure that the numerator inherits the reflection symmetry of the cubic diagram in

fig. 4(a) [8],

N
(a)
1,2,3|4,5(ℓ) = −N

(a)
3,2,1|5,4(k123 − ℓ) . (4.5)

Also, the symmetry of N
(a)
1,2,3|4,5(ℓ) in 4, 5 is compatible with the no-triangle property:

Finally it is easy to show the kinematic Jacobi identity [8]

N
(d)
12,3|4,5 = N

(a)
1,2,3|4,5(ℓ)−N

(a)
2,1,3|4,5(ℓ) , (4.6)

which interlocks antisymmetrized penta-boxes with double-boxes.
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ℓ r

T12,3|4,5

4

5

3

1

2 rℓ

ℓ− k123
4

5

3

1

2

N
(a)
1,2,3|4,5(ℓ, r)

Fig. 6 The mapping between the double-box and penta-box graphs and superspace numerators.

The vertical bar in the notation . . . | . . . separates the two worldline segments.

4.3. Planar two-loop amplitudes in SYM

The numerators (3.8) and (4.3) for planar double-box and penta-box diagrams are sum-

marized in fig. 6 and satisfy the BRST cohomology principle (3.2). Hence, we propose the

following single-trace five-point integrand for (3.3):

A2−loop(1, 2, 3, 4, 5|ℓ, r) =
1

ℓ2r2(ℓ+ r)2

[ N
(a)
1,2,3|4,5(ℓ)

(ℓ− k1)2(ℓ− k12)2(ℓ− k123)2 (r − k5)2(r − k45)2

+
N

(d)
12,3|4,5

k212(ℓ− k12)2(ℓ− k123)2 (r − k5)2(r − k45)2
(4.7)

+
N

(d)
5,12|3,4

k212(ℓ− k5)2(ℓ− k512)2 (r − k4)2(r − k34)2
+ cyc(1, 2, 3, 4, 5)

]

.

Given that cyc(1, 2, 3, 4, 5) instructs to add the four cyclic images of (1, 2, 3, 4, 5), the

expression in (4.7) is manifestly cyclic, and its BRST invariance is easily checked with a

diagrammatic bookkeeping of the associated integrals, see the appendix A for more details.

4.4. Non-planar cubic graphs and superspace numerators

In contrast with the one-loop level [25], single-trace subamplitudes at two-loops are no

longer sufficient to infer the kinematic structure associated with all color tensors. Candidate

expressions for the non-planar diagrams in term of the planar numerators can be obtained

from the BCJ duality and have been worked out for the five-point two-loop case in [8].

Non-planar double-boxes follow from the no-triangle property and the kinematic Jacobi

relation shown in fig. 7,

N
(e)
12,3|4,5 = N

(f)
12,3|4,5 = −N

(d)
12,3|4,5 . (4.8)
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Fig. 7 The derivation of N
(e)

12,3|4,5
= N

(f)

12,3|4,5
= −N

(d)

12,3|4,5
from a kinematic Jacobi identity and

the no-triangle property. A similar analysis leads to N
(b)

1,2,3|4,5
= −N

(a)

1,2,3|4,5
.

The numerators for non-planar penta-box diagrams are obtained from a sequence of similar

BCJ moves and given by [8]

N
(b)
1,2,3|4,5(ℓ) = −N

(a)
1,2,3|4,5(ℓ) (4.9)

N
(c)
1,2|4,3|5(ℓ, r) = N

(a)
1,2,5|3,4(ℓ) +N

(a)
3,4,5|1,2(r) (4.10)

=
1

2
(ℓm + ℓm − k125m )Tm

1,2,5|3,4 +
1

2
(rm + rm − k345m )Tm

3,4,5|1,2

+
1

2
(T12,5|3,4 + T25,1|3,4 + T15,2|3,4 + T34,5|1,2 + T35,4|1,2 + T45,3|1,2) .

As a non-trivial consistency condition on the superspace numerator (4.10), one can check

its compatibility with the BRST principle (3.2) through the BRST variation

2QN
(c)
1,2|4,3|5(ℓ, r) = V5T1,2|3,4

[

(ℓ+ r + k5)
2 − (ℓ+ r)2

]

(4.11)

+ V1T2,5|3,4

[

ℓ2 − (ℓ− k1)
2
]

+ V2T1,5|3,4

[

(ℓ− k1)
2 − (ℓ− k12)

2
]

+ V3T4,5|1,2

[

r2 − (r − k3)
2
]

+ V4T3,5|1,2

[

(r − k3)
2 − (r − k34)

2
]

.

Moreover, (4.10) satisfies the required self-symmetries [8]. For example, a rotation by 180◦

(with a simultaneous flip of the vertex next to particle 5) maps the diagram to itself up to

relabellings:

N
(c)
1,2|4,3|5(ℓ, r) = −N

(c)
4,3|1,2|5(k34 − r, k12 − ℓ) (4.12)

This is respected by the expression in (4.10) provided that6

k5m〈Tm
3,4,5|1,2 + Tm

1,2,5|3,4〉 = 〈T15,2|3,4 + T25,1|3,4 + T35,4|1,2 + T45,3|1,2〉 . (4.13)

Clearly, the difference of the superfields on the two sides is BRST closed, and a component

evaluation confirms (4.13). In fact, any BRST-closed and local expression obtained from

6 Surprisingly, (4.13) is also the condition for BRST invariance of the corresponding closed

string five-point amplitude at two loops.
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permutation of T12,3|4,5, k
1
mTm

1,2,3|4,5 or k4mTm
1,2,3|4,5 is checked to have vanishing compo-

nents, i.e. any element in the BRST cohomology formed from the above two-loop building

blocks requires kinematic poles.

The above numerators N (a), . . . , N (f) can be mapped to the four-dimensional coun-

terparts of [8] by identifying each permutation of T12,3|4,5 and Tm
1,2,3|4,5 with certain spinor

helicity expressions specified in the appendix B. This mapping is only of formal nature and

does not result from a (straightforwardly applicable) dimensional reduction and special-

ization to four-dimensional spinor-helicity polarizations: The ten-dimensional superspace

numerators are local expressions of polarizations and momenta while the spinor-helicity

expressions of [8] contain highly non-local inverse Gram determinant factors.

4.5. Non-planar two-loop amplitudes in SYM

The color-dressed SYM amplitude follows from assembling the six topologies of cubic

diagrams depicted in fig. 4 [8]. In a shorthand notation for the propagators

I
(a)
1,2,3,4,5 ≡

1

ℓ2r2(ℓ+ r)2(ℓ− k1)2(ℓ− k12)2(ℓ− k123)2 (r − k5)2(r − k45)2

I
(b)
1,2,3,4,5 ≡

1

ℓ2r2(ℓ+ r)2(ℓ− k1)2(ℓ− k12)2(ℓ− k123)2 (r − k5)2(ℓ+ r + k4)2

I
(c)
1,2,3,4,5 ≡

1

ℓ2r2(ℓ+ r)2(ℓ− k1)2(ℓ− k12)2 (r − k3)2(r − k34)2(ℓ+ r + k5)2
(4.14)

I
(d)
1,2,3,4,5 ≡

1

k212ℓ
2r2(ℓ+ r)2(ℓ− k12)2(ℓ− k123)2 (r − k5)2(r − k45)2

I
(e)
1,2,3,4,5 ≡

1

k212ℓ
2r2(ℓ+ r)2(ℓ− k12)2(ℓ− k123)2 (r − k5)2(r + ℓ+ k4)2

I
(f)
1,2,3,4,5 ≡

1

k212ℓ
2r2(ℓ+ r)2(ℓ− k12)2(ℓ+ r + k3)2 (r − k5)2(r − k45)2

,

we have

A2−loop
5 (ℓ, r) =

1

2
N

(a)
1,2,3|4,5(ℓ)C

(a)
12345 I

(a)
1,2,3,4,5 +

1

4
N

(b)
1,2,3|4,5(ℓ)C

(b)
12345 I

(b)
1,2,3,4,5

+
1

4
N

(c)
1,2|4,3|5(ℓ, r)C

(c)
12345 I

(c)
1,2,3,4,5 +

1

2
N

(d)
12,3|4,5C

(d)
12345 I

(d)
1,2,3,4,5 (4.15)

+
1

4
N

(e)
12,3|4,5C

(e)
12345 I

(e)
1,2,3,4,5 +

1

4
N

(f)
12,3|4,5C

(f)
12345 I

(f)
1,2,3,4,5 + sym(1, 2, 3, 4, 5) .

The notation sym(1, 2, 3, 4, 5) instructs to sum over all the 120 permutations of (1, 2, 3, 4, 5),

and the symmetry factors 1
2 and 1

4 avoid overcounting in the permutation sum [8]. The

coefficients of all inequivalent trace configurations in (4.15) following from (4.1) are checked

to be independently BRST invariant, i.e. the complete color-dressed amplitude (4.15) is

BRST closed. More details can be found in the appendix A.
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4.6. Two-loop amplitudes in supergravity

Since the color-dressed two-loop five-point SYM amplitude (4.15) is written in terms of

numerators which satisfy the BCJ color-kinematics duality, the corresponding supergravity

integrand is readily obtained by squaring its numerators [9]

M2−loop
5 (ℓ, r) =

1

2
|N (a)

1,2,3|4,5(ℓ)|
2 I

(a)
1,2,3,4,5 +

1

4
|N (b)

1,2,3|4,5(ℓ)|
2 I

(b)
1,2,3,4,5

+
1

4
|N

(c)
1,2|4,3|5(ℓ, r)|

2 I
(c)
1,2,3,4,5 +

1

2
|N

(d)
12,3|4,5|

2 I
(d)
1,2,3,4,5 (4.16)

+
1

4
|N

(e)
12,3|4,5|

2 I
(e)
1,2,3,4,5 +

1

4
|N

(f)
12,3|4,5|

2 I
(f)
1,2,3,4,5 + sym(1, 2, 3, 4, 5) ,

where |N (i)|2 is a shorthand for N (i)Ñ (i) with i = a, b, c, d, e, f . The amplitude (4.16)

describes type IIB or type IIA supergravity if the SO(10) Weyl spinors within the “right-

moving” numerators Ñ (i) have the same or opposite chirality as compared to the “left-

movers” N (i). BRST invariance with respect to the left-movers N (i) is inherited from the

SYM amplitude (4.15) since the accompanying right-moving numerators Ñ (i) satisfy all

the Jacobi identities of the color factors C(i). The argument extends to the right-moving

BRST variation upon exchange of N (i) and Ñ (i).

5. UV divergences

In this section, we compute the UV divergences of the above two-loop five-point ampli-

tudes in SYM and supergravity and rewrite the kinematic factors in terms of SYM tree

amplitudes. They are confirmed to match the low-energy limit of the corresponding su-

perstring amplitudes. For completeness and comparison across different loop-orders, we

provide a dimension-agnostic representation of the one-loop five-point UV divergences in

the appendix C.

5.1. Two-loop UV divergences in SYM

In the above BCJ representation of the two-loop five-point SYM amplitude, the kinematic

numerators are at most linear in the loop momentum. Together with the no-triangle prop-

erty, this implies that the double-box diagrams dominate in the UV regime of large ℓ2.
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In an expansion around the two-loop critical dimension D = 7 − 2ǫ [33], the planar and

non-planar box graphs contribute as follows in the UV [31,34],

∫

d7−2ǫℓ d7−2ǫr (2π)4ǫ−14

ℓ2r2(ℓ+ r)2 (ℓ− k1)2(ℓ− k12)2 (r − k4)2(r − k34)2
= −

π +O(ǫ)

20(4π)7ǫ
≡ V (P) (5.1)

∫

d7−2ǫℓ d7−2ǫr (2π)4ǫ−14

ℓ2r2(ℓ+ r)2(ℓ+ r + k3)2 (ℓ− k1)2(ℓ− k12)2 (r − k4)2
= −

π +O(ǫ)

30(4π)7ǫ
≡ V (NP), (5.2)

whereas penta-box diagrams are regular in the dimensional regularization parameter ǫ.

The superspace representations for the single-trace subamplitudes (3.5) and (4.7) yield

the following UV divergence in the critical dimension D = 7:

A2−loop(1, 2, 3, 4)
∣

∣

∣

UV
= V (P)〈T1,2|3,4 + T4,1|2,3〉 = −V (P)〈T1,3|2,4〉 (5.3)

A2−loop(1, 2, 3, 4, 5)
∣

∣

∣

UV
= −V (P)

〈T12,4|3,5

s12
+

T23,5|1,4

s23
+

T1,34|2,5

s34
+

T2,45|1,3

s45
+

T51,3|2,4

s51

〉

The associated counterterm is the supersymmetrized operator Tr(D2F 4 + F 5) which also

finds appearance in the tree-level effective action of the open superstring at order α′3

[35,36]. Superspace arguments of [30] and a component evaluation via [21] confirm that

the kinematic factors in (5.3) are related to SYM tree amplitudes via

A2−loop(1, 2, 3, 4)
∣

∣

∣

UV
= V (P)s12s13s23A

tree(1, 2, 3, 4) (5.4)
(

A2−loop(1, 2, 3, 4, 5)
A2−loop(1, 3, 2, 4, 5)

)

∣

∣

∣

UV
= V (P)M3 ·

(

Atree(1, 2, 3, 4, 5)
Atree(1, 3, 2, 4, 5)

)

.

The 2× 2 matrix M3 has been introduced in [37] to describe the momentum dependence

of the α′-corrections in open superstring tree-amplitudes [38] (see also [39,40]). Its entries

are given by

M3 ≡

(

m11 m12

m21 m22

)

,
m12 = −s13s24(s1 + s2 + s3 + s4 + s5) (5.5)

m11 = s3[−s1(s1 + 2s2 + s3) + s3s4 + s24] + s1s5(s1 + s5)

with m21 = m12

∣

∣

2↔3
and m22 = m11

∣

∣

2↔3
as well as si ≡ si,i+1 subject to s5 = s15. As a

main virtue of writing the UV divergence (5.4) in terms of Atree(. . .), it is agnostic to the

choice of kinematic variables and can be adapted to any spacetime dimension by choosing

the appropriate representation of the SYM tree.
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Upon combination with the non-planar sector, the color-dressed amplitude (4.15) for

traceless gauge group generators Tr(ti) = 0 yields the UV divergence

A2−loop
5

∣

∣

∣

UV
=

[

V (P)N2
c + 12(V (P) + V (NP))

]

×
{

(

Tr(t1t2t3t4t5)
Tr(t1t3t2t4t5)

)T

·M3 ·

(

Atree(1, 2, 3, 4, 5)
Atree(1, 3, 2, 4, 5)

)

+ (2, 3|2, 3, 4, 5)
}

(5.6)

− 12Nc(V
(P) + V (NP))

{

Tr(t1t2t3)Tr(t4t5)

× s245
[

s24A
tree(1, 3, 2, 4, 5)− s34A

tree(1, 2, 3, 4, 5)
]

+ (4, 5|1, 2, 3, 4, 5)
}

after expanding the color factors Ci in a trace basis. The notation (a1, a2|a1, a2, . . . , an)

instructs to sum over all possible ways to choose two elements out of the set (a1, a2, . . . , an),

for a total of
(

n
2

)

terms. The coefficients of the multitrace color structure Tr(t1t2t3)Tr(t4t5)

stem from the kinematic factor

〈T12,3|4,5

s12
+

T23,1|4,5

s23
+

T31,2|4,5

s13

〉

= s245
[

s24A
tree(1, 3, 2, 4, 5)−s34A

tree(1, 2, 3, 4, 5)
]

, (5.7)

which reduces to the four-dimensional expression s45
(

γ12

s12
+ γ23

s23
+ γ31

s31

)

in [8] under the

mapping (B.1). Similarly, the single-trace kinematic factor in (5.3) is mapped to the spinor

helicity expression β12345 +
γ12

s12
(s35 − 2s12) + cyc(1, 2, 3, 4, 5) from [8] under (B.1).

5.2. Two-loop UV divergences in supergravity

According to their BCJ construction, the penta-box numerators in the supergravity ampli-

tude (4.16) involve up to two powers of loop momentum whereas double-box numerators

remain independent on ℓ. Accordingly, the leading UV contributions in D = 7− 2ǫ dimen-

sions are given by

M2−loop
4

∣

∣

∣

UV
= 2(V (P) + V (NP))

{

∣

∣〈T1,2|3,4〉
∣

∣

2
+
∣

∣〈T1,3|2,4〉
∣

∣

2
+

∣

∣〈T1,4|2,3〉
∣

∣

2
}

(5.8)

M2−loop
5

∣

∣

∣

UV
= 2(V (P) + V (NP))

{

∣

∣〈T12,3|4,5〉
∣

∣

2

s12
+

∣

∣〈T12,4|3,5〉
∣

∣

2

s12
+

∣

∣〈T12,5|3,4〉
∣

∣

2

s12

+
∣

∣〈Tm
3,4,5|1,2〉

∣

∣

2
+ (1, 2|1, 2, 3, 4, 5)

}

. (5.9)

As a consistency check of the proposed supergravity amplitude (4.16), the above UV di-

vergences have to agree with the low-energy limits of the two-loop closed superstring

amplitudes [12]. Indeed, the kinematic factors in (5.8) emerge in the low-energy limits at
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four-points [27] and five-points7 [13]. The polarization dependence can be written in terms

of SYM tree subamplitudes: At four points, the superspace arguments of [30] imply that

∣

∣〈T1,2|3,4〉
∣

∣

2
+
∣

∣〈T1,3|2,4〉
∣

∣

2
+
∣

∣〈T1,4|2,3〉
∣

∣

2
= (s212 + s213 + s223)

∣

∣s12s23A
tree(1, 2, 3, 4)

∣

∣

2
, (5.10)

and a ten-dimensional type IIB component evaluation at five points yields [13]

∣

∣〈T12,3|4,5〉
∣

∣

2

s12
+

∣

∣〈T12,4|3,5〉
∣

∣

2

s12
+

∣

∣〈T12,5|3,4〉
∣

∣

2

s12
+
∣

∣〈Tm
3,4,5|1,2〉

∣

∣

2
+ (1, 2|1, 2, 3, 4, 5)

∣

∣

∣

D=10

IIB

= 2

(

Ãtree(1, 2, 3, 5, 4)
Ãtree(1, 3, 2, 5, 4)

)T

· S0 ·M5 ·

(

Atree(1, 2, 3, 4, 5)
Atree(1, 3, 2, 4, 5)

)

×

{

1 : h5

−3
5 : φh4 . (5.11)

The 2 × 2 matrix M5 with entries of order s5ij has been introduced in [37] to describe

the (α′)5-correction to the open five-point superstring tree-level amplitude [38] and can be

downloaded from the website [41]. The matrix

S0 ≡

(

s12(s13 + s23) s12s13
s12s13 s13(s12 + s23)

)

(5.12)

captures the Mandelstam invariants in the field-theory limit of the KLT relations [42]. The

shorthands h5 and φh4 in (5.11) refer to type IIB components with zero and two units of

R-symmetry charge such as five gravitons h5 or four gravitons and one (axio-)dilaton φh4,

respectively.

5.3. UV divergence and R-symmetry

As seen in (5.9) and (5.11), the UV divergence of the supergravity two-loop five-point

amplitude is given by the same superspace expression that arises in the low-energy limit

of the corresponding closed-string amplitude computed in [13]. Furthermore, the string

amplitude for R-symmetry violating states such as φh4 does not vanish; its characteristic

coefficient −3/5 in (5.11) agrees with expectations from S-duality considerations for the

type IIB string [15,13]. These facts give rise to worry that the two-loop UV divergence in

supergravity might violate the R-symmetry as well.

7 The five-point superstring computation in [13] leads to a different representation of TA,B|C,D

and Tm
1,2,3|4,5 in terms of the non-minimal pure spinor variables [24]. However, BRST-invariant

expressions do not depend on the representation of their composing building block.
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However, that is not the case8. To see this, note that the two-loop UV divergence

of supergravity occurs in the critical dimension D = 7 whereas the string φh4 amplitude

(5.11) is computed in D = 10. Furthermore, recall that the graviton polarization hmn is the

traceless part of e(mẽn) while the dilaton wavefunction (δmn − kmkn − knkm)φ covers the

trace part with respect to the little group whose reference momentum km satisfies k ·k = 0

and k · k = 1 [43]. Care must be taken when amplitudes involving dilatons are computed

in general dimensions D, since the dimensional reduction of the little group trace yields

e · ẽ = (D − 2)φ . (5.13)

Note that the four-dimensional dilaton state is tied to R-symmetry anomalies in D = 4

supergravities with N ≤ 4 supersymmetry, see e.g. [44].

In fact, using the component form of the building blocks T12,3|4,5 and Tm
1,2,3|4,5 avail-

able to download in [10] one can check that the kinematic factor (5.11) in D dimensions

becomes9

∣

∣〈T12,3|4,5〉
∣

∣

2

s12
+

∣

∣〈T12,4|3,5〉
∣

∣

2

s12
+

∣

∣〈T12,5|3,4〉
∣

∣

2

s12
+
∣

∣〈Tm
3,4,5|1,2〉

∣

∣

2
+ (1, 2|1, 2, 3, 4, 5)

∣

∣

∣

D

IIB

= 2

(

Ãtree(1, 2, 3, 5, 4)
Ãtree(1, 3, 2, 5, 4)

)T

· S0 ·M5 ·

(

Atree(1, 2, 3, 4, 5)
Atree(1, 3, 2, 4, 5)

)

×











1 : h5

(7−D)

5
: φh4

.(5.14)

Therefore, the φh4 contribution vanishes in the critical dimension D = 7 relevant for the

two-loop supergravity UV divergence, and the R-symmetry violation is circumvented.

6. Conclusion and outlook

In this paper the two-loop five-point amplitudes of both SYM and type II supergravity

in ten dimensions were computed using the BRST cohomology method of [1,2,3]. The

supersymmetric kinematic numerators are manifestly local, and their derivation follows

8 We thank John-Joseph Carrasco and Henrik Johansson for helpful email correspondence on

this point.
9 The dimensional reduction of this component calculation is performed after expanding the

contracted ten-dimensional Levi-Civita bilinears εmn1n2...n9εmp1p2...p9 = −9!δ
[n1

p1 δn2
p2

· · · δ
n9]
p9 due

to the contractions 〈Tm
... 〉〈T̃

m
... 〉 between left- and right-moving superfields. If state 1 is chosen to

be a D-dimensional dilaton, then the only dependence on D stems from e1 · ẽ1 = (D − 2)φ.
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an intuitive mapping between cubic graphs and superspace building blocks as guided by

their BRST variation. Inspired by the BCJ-satisfying four-dimensional representation of

[8], ten-dimensional numerators for all the planar and non-planar diagrams were written

down in a form compatible with the color-kinematics duality.

The compatibility of the BRST principle (3.2) with the color-kinematics duality has

already been encountered for tree-level n-point numerators [45] and one-loop five-point

numerators [3]. Both of these cases emerge naturally from the field-theory limit of the

corresponding superstring amplitudes, in the same way as the resulting BCJ subamplitude

relations at tree-level [4] have an elegant derivation from string theory [46,47]. This suggests

that the superstring is a convenient starting point to understand the duality between color

and kinematics in a broader context, see e.g. [48] for an example at reduced supersymmetry.

The string theory derivation of this work’s results is an open problem since the genus-

two five-point worldsheet correlator in [13] was determined only in the low-energy limit.

Still, the kinematic building blocks T12,3|4,5 and Tm
1,2,3|4,5 have an alternative representation

in [13] in variables of the non-minimal pure spinor formalism [24] which gives rise to the

same component expansions when combined in a BRST-invariant manner. In particular,

their appearance in the UV divergence (5.8) of the supergravity amplitude and the low-

energy limit of the closed superstring is identical, confirming the general expectation of

[12]. Once the completion of the correlator in [13] beyond the low-energy limit is achieved,

it would be desirable to reproduce the present field-theory amplitudes, using for example

the techniques of [32]. Also, a derivation from the non-minimal pure spinor version of the

ambitwistor string [49] would be desirable.

It would also be interesting to study the higher-point construction of the two-loop

SYM amplitudes. In this case, a sequence of BRST-covariant tensorial building blocks is

required to describe higher powers of loop momentum in (n ≥ 6)-gon subdiagrams. At one

loop, the analogous tensors have been found in [50] and used in the BRST cohomology

derivation of the six-point one-loop SYM amplitude in [3]. Furthermore, the general form

of the BRST principle (3.2) motivates to assemble higher-loop amplitudes in the same

manner as described in this paper. The four-point BCJ representations at three and four

loops in [5] and [51] are expected to provide valuable guidance. For the design of superspace

numerators, the superfields of higher-mass dimensions constructed in [20] will play an

essential role, and the low-energy limit of the three-loop superstring amplitude in [52]

constrains the leading ℓ-dependence in the numerators.
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Appendix A. Diagrammatic bookkeeping of BRST variations

In order to verify the BRST invariance of the integrands (4.7) and (4.15), it is convenient

to devise a diagrammatic bookkeeping for the effect of the numerators’ BRST variation on

their associated loop integrals. This exploits the central requirement (3.2) that each sum-

mand in the BRST variation of a particular numerator must contain an inverse propagator

of its associated integral. The need of redefining loop momenta to see the cancellation

among different terms is bypassed once the remaining propagators are represented by a

graph and manipulated through its automorphism symmetries.

To understand how this comes about, recall the BRST variation of the planar penta-

box numerators N
(a)
1,2,3|4,5(ℓ) defined in (4.3),

QN
(a)
1,2,3|4,5(ℓ) =

1

2

(

V1T2,3|4,5

[

ℓ2 − (ℓ− k1)
2
]

+ V2T1,3|4,5

[

(ℓ− k1)
2 − (ℓ− k12)

2
]

+ V3T1,2|4,5

[

(ℓ− k12)
2 − (ℓ− k123)

2
]

)

. (A.1)

Therefore, the combined effect of the BRST variation on the product of N (a) and its

associated penta-box propagators is given by

2QN
(a)
1,2,3|4,5(ℓ)

ℓ2r2(ℓ+ r)2(ℓ− k1)2(ℓ− k12)2(ℓ− k123)2 (r − k5)2(r − k45)2

=
1

r2(ℓ+ r)2(r − k5)2(r − k45)2
×

{ V1T2,3|4,5

(ℓ− k1)2(ℓ− k12)2(ℓ− k123)2
, (A.2)

+
−V1T2,3|4,5 + V2T1,3|4,5

ℓ2(ℓ− k12)2(ℓ− k123)2
+

−V2T1,3|4,5 + V3T1,2|4,5

ℓ2(ℓ− k1)2(ℓ− k123)2
+

−V3T1,2|4,5

ℓ2(ℓ− k1)2(ℓ− k12)2

}

,
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Fig. 8 Five topologies of integrals occurring in the BRST variation of individual graphs

whose diagrammatic interpretation is given in the following figure:

So it is clear that out of the six terms in (A.2) only two distinct integral topologies occur.

Together with remaining graphs in fig. 4, the BRST variation of the color-dressed five-

point two-loop amplitude in (4.15) turns out to be captured by the five integral topologies

J (α1), . . . , J (α5) depicted in fig. 8. Given the shorthands I(a), . . . , I(f) in (4.14), they arise

from the following BRST variations

2QN
(a)
1,2,3|4,5(ℓ)I

(a)
1,2,3,4,5 = V1T2,3|4,5

(

J
(α1)
1,2,3,4,5 − J

(α2)
1,2,3,4,5

)

+V2T1,3|4,5

(

J
(α2)
1,2,3,4,5 − J

(α2)
2,3,1,5,4

)

+ V3T1,2|4,5

(

J
(α2)
2,3,1,5,4 − J

(α1)
3,4,5,1,2

)

2QN
(b)
1,2,3|4,5(ℓ)I

(b)
1,2,3,4,5 = V1T2,3|4,5

(

J
(α3)
1,2,3,4,5 − J

(α4)
1,2,3,4,5

)

+V2T1,3|4,5

(

J
(α4)
1,2,3,4,5 − J

(α4)
2,3,1,4,5

)

+ V3T1,2|4,5

(

J
(α4)
2,3,1,4,5 − J

(α3)
3,2,1,4,5

)

2QN
(c)
1,2|4,3|5(ℓ, r)I

(c)
1,2,3,4,5 = V1T2,5|3,4

(

J
(α3)
1,3,4,5,2 − J

(α5)
1,2,5,4,3

)

+V2T1,5|3,4

(

J
(α5)
1,2,5,4,3 − J

(α3)
2,4,3,5,1

)

+ V3T4,5|1,2

(

J
(α3)
3,1,2,5,4 − J

(α5)
3,4,5,2,1

)

+V4T3,5|1,2

(

J
(α5)
3,4,5,2,1 − J

(α3)
4,2,1,5,3

)

+ V5T1,2|3,4

(

J
(α1)
5,4,3,1,2 − J

(α1)
5,1,2,4,3

)

2QN
(d)
12,3|4,5I

(d)
1,2,3,4,5 = (V1T2,3|4,5 − V2T1,3|4,5) J

(α2)
1,2,3,4,5

2QN
(e)
12,3|4,5I

(e)
1,2,3,4,5 = (V1T2,3|4,5 − V2T1,3|4,5) J

(α4)
1,2,3,4,5 (A.3)

2QN
(f)
12,3|4,5I

(f)
1,2,3,4,5 = (V1T2,3|4,5 − V2T1,3|4,5) J

(α5)
1,2,3,4,5 ,
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Fig. 9 When multiplied by their corresponding integrands of (4.14), the BRST variations of the

non-planar penta-box numerators N
(b)

1,2,3|4,5
and N

(c)

1,2,3|4,5
admit a diagrammatic interpretation.

Fig. 10 The diagrammatic interpretation for the BRST variation of the double-boxes after mul-

tiplication by their corresponding integrands given in (4.14).

see fig. 9 and fig. 10 for a diagrammatic illustration of these identities. Using the BRST

variations (A.3), the kinematic identities (3.9) and the automorphism symmetries

J
(α1)
1,2,3,4,5 = J

(α1)
1,5,4,3,2 , J

(α2)
1,2,3,4,5 = J

(α2)
2,1,3,4,5 , J

(α3)
1,2,3,4,5 = J

(α3)
1,2,3,5,4 ,

J
(α4)
1,2,3,4,5 = J

(α4)
2,1,3,4,5 = J

(α4)
1,2,3,5,4 , J

(α5)
1,2,3,4,5 = J

(α5)
2,1,3,4,5 = J

(α5)
1,2,3,5,4 , (A.4)

one can show that (4.15) is BRST closed.
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Appendix B. Comparison with the four-dimensional solution

Just like the ten-dimensional numerators presented in the main text, the four-dimensional

numerators written in Table 1 of [8] are composed of scalar and vector building blocks.

The numerators can be mapped into each other once the building blocks are replaced as10

T12,3|4,5 → γ12(s45 −
1

2
s12) +

1

4
s12(γ23 − γ13) (B.1)

Tm
1,2,3|4,5 → γ45(k

m
5 − km4 ) +

1

2

[

γ12(k
m
2 − km1 ) + γ23(k

m
3 − km2 ) + γ31(k

m
1 − km3 )

]

,

where γij is built from spinor helicity expressions [i j] and δ8(Q) defined in [8],

γ12 ≡ δ8(Q)
[1 2]2[3 4][3 5][4 5]

εµνλρk
µ
1 k

ν
2k

λ
3k

ρ
4

. (B.2)

The denominator is totally antisymmetric in 1, 2, . . . , 5 and introduces a spurious singu-

larity in the determinant Det(kµi ) or the directed volume of the momenta kµ1 , k
ν
2 , k

λ
3 and

kρ4 with four-dimensional vector indices µ, ν, λ, ρ.

Given that this spinor helicity building block γij = −γji satisfies

0 = γ12 + γ13 + γ14 + γ15 (B.3)

0 = (γ12 + γ13)(s23 − s45) + γ23(s12 − s13) + γ45(s14 − s15) , (B.4)

one can straightforwardly check that the superspace identities

0 = 〈T12,3|4,5 + T12,4|5,3 + T12,5|3,4〉

0 = 〈Tm
3,4,5|1,2 + Tm

2,4,5|1,3 + Tm
1,4,5|2,3 − Tm

1,2,3|4,5〉 (B.5)

0 = 〈T15,2|3,4 + T25,1|3,4 + T35,4|1,2 + T45,3|1,2 − k5m(Tm
3,4,5|1,2 + Tm

1,2,5|3,4)〉

are all respected by the mapping in (B.1).

Appendix C. One-loop UV divergences

At one loop, the four-point UV divergences in SYM and supergravity are well-known

from [34,53]. Using the pure spinor superspace representation of the five-point one-loop

amplitudes in [3] and the identities in the appendix B of [19] we write the five-point UV

divergence in terms of SYM tree amplitudes.

10 The formal replacement rules in (B.1) do not imply that dimensional reduction of 〈T12,3|4,5〉

and 〈Tm
1,2,3|4,5〉 yields the combinations of γij on the right hand sides.
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C.1. One-loop UV divergences in SYM

The counting of loop momenta is identical in SYM amplitudes at one- and two-loops,

hence, the box diagrams dominate in the (8− 2ǫ) dimensional UV regime at one-loop via

∫

d8−2ǫℓ (2π)2ǫ−8

ℓ2(ℓ− k1)2(ℓ− k12)2(ℓ− k123)2
=

i+O(ǫ)

6(4π)4ǫ
. (C.1)

The UV divergence in the critical dimension D = 8 is characterized by a supersymmetrized

F 4 counterterm [53]. From the pure spinor superspace representations of the four- and five-

point one-loop amplitudes in SYM [3], one can extract the UV divergence,

A1−loop(1, 2, 3, 4)
∣

∣

∣

UV
=

i

6(4π)4ǫ
〈V1T2,3,4〉 (C.2)

A1−loop(1, 2, 3, 4, 5)
∣

∣

∣

UV
=

i

6(4π)4ǫ

〈V12T3,4,5

s12
+

V1T23,4,5

s23
+

V1T2,34,5

s34
+

V1T2,3,45

s45
+

V51T2,3,4

s51

〉

,

see [3] for the scalar one-loop building blocks TA,B,C . This reproduces the pure spinor

analysis of F 4 amplitudes in [54], and the same matching can be found for the six-point

one-loop amplitudes in [3]. An equivalent representation in terms of SYM tree amplitudes,

A1−loop(1, 2, 3, 4)
∣

∣

∣

UV
=

i

6(4π)4ǫ
s12s23A

tree(1, 2, 3, 4) (C.3)

(

A1−loop(1, 2, 3, 4, 5)
A1−loop(1, 3, 2, 4, 5)

)

∣

∣

∣

UV
=

i

6(4π)4ǫ
P2 ·

(

Atree(1, 2, 3, 4, 5)
Atree(1, 3, 2, 4, 5)

)

,

reproduces the (α′)2-correction to superstring tree amplitudes [38] with P2 defined by [37]

P2 ≡

(

s12s34 − s34s45 − s51s12 s13s24
s12s34 s13s24 − s24s45 − s51s13

)

. (C.4)

Together with the non-planar sector, the color-dressed one-loop amplitude with traceless

gauge group generators Tr(ti) = 0 gives rise to the UV divergence

A1−loop
5

∣

∣

∣

UV
=

iNc

6(4π)4ǫ

(

Tr(t1t2t3t4t5)
Tr(t1t3t2t4t5)

)T

· P2 ·

(

Atree(1, 2, 3, 4, 5)
Atree(1, 3, 2, 4, 5)

)

+ (2, 3|2, 3, 4, 5) (C.5)

+
i

(4π)4ǫ
Tr(t1t2t3)Tr(t4t5)s45

[

s24A
tree(1, 3, 2, 4, 5)− s34A

tree(1, 2, 3, 4, 5)
]

+ (4, 5|1, 2, 3, 4, 5) .

The kinematic factor along with the multitrace

〈V1T23,4,5

s23
+

V12T3,4,5

s12
+

V31T2,4,5

s13

〉

= s45
[

s24A
tree(1, 3, 2, 4, 5)− s34A

tree(1, 2, 3, 4, 5)
]

(C.6)

closely resembles the superfield structure of (5.7) and was denoted by C1|23,4,5 in [54,19].
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C.2. One-loop UV divergences in supergravity

The UV behavior of n-point supergravity amplitudes at one loop is affected by any p-gon

diagram with 4 ≤ p ≤ n. At four- and five-points, the leading UV divergence in dimensions

D = 8 − 2ǫ can be assembled from scalar box integrals and tensor pentagon integrals. In

the pure spinor representation of [3], this amounts to

M1−loop
4

∣

∣

∣

UV
=

i

(4π)4ǫ

∣

∣〈V1T2,3,4〉
∣

∣

2
=

i

(4π)4ǫ

∣

∣s12s23A
tree(1, 2, 3, 4)

∣

∣

2
(C.7)

M1−loop
5

∣

∣

∣

UV
=

i

(4π)4ǫ

{

∣

∣〈V1T
m
2,3,4,5〉

∣

∣

2
+

[

∣

∣〈V12T3,4,5〉
∣

∣

2

s12
+ (2 ↔ 3, 4, 5)

]

+
[

∣

∣〈V1T23,4,5〉
∣

∣

2

s23
+ (2, 3|2, 3, 4, 5)

]}

.

This is the low-energy limit of closed-string one-loop amplitudes, see [16,13] for the discus-

sion of the five-point kinematic factor as well as (5.12) and (5.5) for S0 andM3, respectively.

As discussed in section 5.3, the components with a D-dimensional dilaton and a graviton

depend explicitly on the dimension D via (5.13), and one gets

∣

∣〈V1T
m
2,3,4,5〉

∣

∣

2
+

[

∣

∣〈V12T3,4,5〉
∣

∣

2

s12
+ (2 ↔ 3, 4, 5)

]

+
[

∣

∣〈V1T23,4,5〉
∣

∣

2

s23
+ (2, 3|2, 3, 4, 5)

]
∣

∣

∣

D

IIB

=

(

Ãtree(1, 2, 3, 5, 4)
Ãtree(1, 3, 2, 5, 4)

)T

· S0 ·M3 ·

(

Atree(1, 2, 3, 4, 5)
Atree(1, 3, 2, 4, 5)

)

×











1 : h5

(8−D)

6
: φh4

, (C.8)

The factor (8 − D)/6 in the φh4 contribution implies that its five-point one-loop UV

divergence in (C.7) vanishes in the critical dimension and does not violate the R-symmetry

of type IIB supergravity, see the corresponding discussion along with the two-loop UV

divergence in section 5.3.
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