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In this letter, we present a formal solution to the non-linear field equations of ten-dimensional
super Yang–Mills theory. It is assembled from products of linearized superfields which have been
introduced as multiparticle superfields in the context of superstring perturbation theory. Their
explicit form follows recursively from the conformal field theory description of the gluon multiplet
in the pure spinor superstring. Furthermore, superfields of higher mass dimensions are defined and
their equations of motion spelled out.

INTRODUCTION

Super Yang–Mills (SYM) theory in ten dimensions can
be regarded as one of the simplest SYM theories, its spec-
trum contains just the gluon and gluino, related by six-
teen supercharges. However, it is well-known that its di-
mensional reduction gives rise to various maximally su-
persymmetric Yang–Mills theories in lower dimensions,
including the celebrated N = 4 theory in D = 4 [1].
Therefore a better understanding of this theory propa-
gates a variety of applications to any dimension D ≤ 10.
In a recent line of research [2, 3], scattering amplitudes

of ten-dimensional SYM have been determined and sim-
plified using so-called multiparticle superfields [4]. They
represent entire tree-level subdiagrams and build up in
the conformal field theory (CFT) on the worldsheet of
the pure spinor superstring [5] via operator product ex-
pansions (OPEs). Multiparticle superfields satisfy the
linearized field equations with the addition of contact
terms, i.e. inverse off-shell propagators. In this letter we
demonstrate that these off-shell modifications can be re-
summed to capture the non-linearities in the SYM equa-
tions of motion. The generating series of multiparticle
superfields as seen in (18) is shown to solve the non-linear
field equations spelled out in (4).
We also define superfields of arbitrary mass dimension

and reduce their non-linear expressions to the linearized
superfields of lower mass dimensions. This framework
simplifies the expressions of kinematic factors in higher-
loop scattering amplitudes, including the D6R4 operator
in the superstring three-loop amplitude [6].

REVIEW OF TEN-DIMENSIONAL SYM

The equations of motion of ten-dimensional SYM the-
ory can be described covariantly in superspace by defin-
ing supercovariant derivatives [7, 8]

∇α ≡ Dα − Aα(x, θ), ∇m ≡ ∂m − Am(x, θ). (1)

The connections Aα and Am take values in the Lie al-
gebra associated with the non-abelian Yang–Mills gauge

group. The derivatives are taken with respect to ten-
dimensional superspace coordinates (xm, θα) with vector
and spinor indices m,n = 0, . . . , 9 and α, β = 1, . . . , 16 of
the Lorentz group. The fermionic covariant derivatives

Dα ≡ ∂α + 1
2 (γ

mθ)α∂m, {Dα, Dβ} = γm
αβ∂m (2)

involve the 16× 16 Pauli matrices γm
αβ = γm

βα subject to

the Clifford algebra γ
(m
αβ γ

n)βγ = 2ηmnδγα, and the conven-

tion for (anti)symmetrizing indices does not include 1
2 .

The connections in (1) give rise to field-strengths

Fαβ ≡ {∇α,∇β} − γm
αβ∇m, Fmn ≡ −[∇m,∇n] . (3)

One can show that the constraint equation Fαβ = 0 puts
the superfields on-shell, and Bianchi identities lead to the
non-linear equations of motion [8],

{

∇α,∇β

}

= γm
αβ∇m

[

∇α,∇m

]

= −(γmW)α
{

∇α,W
β
}

= 1
4 (γ

mn)α
β
Fmn

[

∇α,F
mn

]

=
[

∇[m, (γn]
W)α

]

. (4)

In the subsequent, we will construct an explicit solution
for the superfields Aα, Am, Wα and Fmn in (4). The
main result is furnished by the generating series in (18)
whose constituents will be introduced in the next section.

LINEARIZED MULTIPARTICLE SUPERFIELDS

In perturbation theory, it is conventional to study so-
lutions Aα, Am, . . . of the linearized equations of motion

{

D(α, Aβ)

}

= γm
αβAm

[

Dα, Am

]

= kmAα + (γmW )α
{

Dα,W
β
}

= 1
4 (γ

mn)α
βFmn

[

Dα, F
mn

]

= k[m(γn]W )α . (5)

Their dependence on the bosonic coordinates x is de-
scribed by plane waves ek·x with on-shell momentum
k2 = 0. In a gauge where θαAα = 0, the θ dependence is

http://arxiv.org/abs/1501.05562v2


2

known in terms of fermionic power series expansions from
[9, 10] whose coefficients contain gluon polarizations and
gluino wave functions.
As an efficient tool to determine and compactly rep-

resent scattering amplitudes in SYM and string theory,
multiparticle versions of the linearized superfields have
been constructed in [4]. They satisfy systematic modi-
fications of the linearized equations of motion (5), and
their significance for BRST invariance was pointed out
in [11]. For example, their two-particle version

A12
α ≡ − 1

2

[

A1
α(k

1 ·A2) +A1
m(γmW 2)α − (1 ↔ 2)

]

A12
m ≡ 1

2

[

A
p
1F

2
pm −A1

m(k1 ·A2) + (W 1γmW 2)− (1 ↔ 2)
]

Wα
12 ≡ 1

4 (γ
mnW2)

αF 1
mn +Wα

2 (k2 · A1)− (1 ↔ 2) (6)

F 12
mn ≡ F 2

mn(k
2 · A1) + 1

2F
2
[m

pF 1
n]p

+ k1[m(W 1γn]W
2)− (1 ↔ 2) ,

can be checked via (5) to satisfy the following two-particle
equations of motion:

{D(α, A
12
β)} = γm

αβA
12
m + (k1 · k2)(A1

αA
2
β +A1

βA
2
α) (7)

[Dα, A
m
12] = γm

αβW
β
12+km12A

12
α +(k1 · k2)(A1

αA
m
2 −A2

αA
m
1 )

{Dα,W
β
12} = 1

4 (γ
mn)α

βF 12
mn + (k1 · k2)(A1

αW
β
2 −A2

αW
β
1 )

[Dα, F
12
mn] = k12m (γnW

12)α − k12n (γmW 12)α

+ (k1 · k2)
(

A1
αF

2
mn +A1

[n(γm]W
2)α − (1 ↔ 2)

)

.

The modifications as compared to the single-particle case
(5) involve the overall momentum k12 ≡ k1 + k2 whose
propagator is generically off-shell, k212 = 2(k1 · k2) 6= 0.
The construction of the two-particle superfields in (6)

is guided by string theory methods. In the pure spinor
formalism [5], the insertion of a gluon multiplet state on
the boundary of an open string worldsheet is described
by the integrated vertex operator

U i ≡ ∂θαAi
α +ΠmAi

m + dαW
α
i + 1

2N
mnF i

mn . (8)

Worldsheet fields [∂θα,Πm, dα, N
mn] with conformal

weight one and well-known OPEs are combined with lin-
earized superfields associated with particle label i. The
multiplicity-two superfields in (6) are obtained from the
coefficients of the conformal fields in the OPE [4]

U12 ≡ −

∮

(z1 − z2)
α′k1·k2

U1(z1)U
2(z2) (9)

= ∂θαA12
α +ΠmA12

m + dαW
α
12 +

1
2N

mnF 12
mn ,

where α′ denotes the inverse string tension, and total
derivatives in the insertion points z1, z2 on the worldsheet
have been discarded in the second line. The contour in-
tegral in (9) isolates the singular behaviour of the U i

w.r.t. (z1 − z2) which translates into propagators k−2
12 of

the gauge theory amplitude after performing the α′ → 0
limit. In other words, OPEs in string theory govern the

pole structure of tree-level subdiagrams in SYM theory
obtained from the point-particle limit.
The CFT-inspired two-particle prescription (6) can be

promoted to a recursion leading to superfields of arbi-
trary multiplicity, see (3.54), (3.56) and (3.59) of [4].
Their equations of motion are observed to generalize
along the lines of

{

D(α, A
123
β)

}

= γm
αβA

123
m + (k12 · k3)

[

A12
α A3

β − (12 ↔ 3)
]

+ (k1 · k2)
[

A1
αA

23
β +A13

α A2
β − (1 ↔ 2)

]

(10)

for suitable definitions of A123
α and A123

m , see (3.17), (3.19)
and (3.29) of [4].
Multiparticle superfields can be arranged to satisfy

kinematic analogues of the Lie algebraic Jacobi relations
among structure constants, e.g. A123

α +A231
α +A312

α = 0.
They therefore manifest the BCJ duality [12] between
color and kinematic degrees of freedom in scattering am-
plitudes, see [13] for a realization at tree-level. Together
with the momenta k12...j ≡ k1 + k2 + . . . + kj in their
equations of motion, this suggests to associate them with
tree-level subdiagrams shown in the subsequent figure [4]:

2

1
k12

3
k123

4
. . .

p

k12...p
. . . ↔















A123...p
α

A123...p
m

Wα
123...p

F 123...p
mn

The cubic-graph organization of superfields already ac-
counts for the quartic vertex in the bosonic Feynman
rules of SYM. This ties in with the string theory origin
of n-particle tree-level amplitudes where each contribu-
tion stems from n− 3 OPEs.
Berends–Giele currents: As a convenient basis of
multiparticle fields KB ∈ {AB

α , A
m
B ,Wα

B , F
mn
B } with mul-

tiparticle label B = 12 . . . p, we define Berends–Giele cur-
rents KB∈{AB

α ,A
m
B ,Wα

B,F
mn
B }, e.g. K1 ≡ K1 and [4]

K12 ≡
K12

s12
, K123 ≡

K123

s12s123
+

K321

s23s123
(11)

with generalized Mandelstam invariants s12...p ≡ 1
2k

2
12...p.

Berends–Giele currents KB are defined to encompass all
tree subdiagrams compatible with the ordering of the ex-
ternal legs in B. The propagators s−1

i...j absorb the ap-
pearance of explicit momenta in the contact terms of the
equations of motion such as (7) and (10).
As illustrated in the following figure, the three-particle

current in (11) is assembled from the s- and t-channels
of a color-ordered four-point amplitude with an off-shell
leg (represented by . . .):

K123 =

2

1

s12
3

s123
· · · +

3

2

s23

1

s123. . .

In contrast to the bosonic Berends–Giele currents in [14],
the currents KB manifest maximal supersymmetry, and
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their construction does not include any quartic vertices.
A closed formula at arbitrary multiplicity [4, 15] involves
the inverse of the momentum kernel1 S[·|·]1 [16],

K1σ(23...p) ≡
∑

ρ∈Sp−1

S−1[σ|ρ]1 K1ρ(23...p) , (12)

with permutation σ ∈ Sp−1 of legs 2, 3, . . . , p.
The combination of color-ordered trees as in (11) and

(12) simplifies their multiparticle equations of motion [4]
{

D(α,A
B
β)

}

= γm
αβA

B
m +

∑

XY=B

(

AX
α AY

β −AY
αA

X
β

)

(13)

[

Dα,A
B
m

]

= kBmAB
α + (γmWB)α +

∑

XY=B

(

AX
α AY

m −AY
αA

X
m

)

{

Dα,W
β
B

}

= 1
4 (γ

mn)α
βFB

mn +
∑

XY=B

(

AX
α Wβ

Y −AY
αW

β
X

)

[

Dα,F
mn
B

]

= k
[m
B (γn]WB)α +

∑

XY=B

(

AX
α Fmn

Y −AY
αF

mn
X

)

+
∑

XY=B

(

A
[n
X(γm]WY )α −A

[n
Y (γm]WX)α

)

.

Momenta kB ≡ k1 + k2 + . . . kp are associated with
multiparticle labels B = 12 . . . p, and

∑

XY =B instructs
to sum over all their deconcatenations into non-empty
X = 12 . . . j and Y = j + 1 . . . p with 1 ≤ j ≤ p − 1.
E.g. the three-particle equation of motion of A123

α reads
{

D(α,A
123
β)

}

= γm
αβA

123
m (14)

+A1
αA

23
β +A12

α A3
β −A23

α A1
β −A3

αA
12
β ,

and a comparison with (10) highlights the advantages of
the diagram expansions in (11). Superfields up to multi-
plicity five satisfying (13) were explicitly constructed in
[4] and there are no indications of a breakdown of (13)
at higher multiplicity.
The symmetry properties of the KB can be inferred

from their cubic-graph expansion and summarized as [23]

KA�B = 0, ∀A,B 6= ∅ , (15)

where � denotes the shuffle product2 [17]. For example,

0 = K1�2 = K12 +K21

1 The momentum kernel is defined by [16]

S[σ(2, 3, . . . , p)|ρ(2, 3, . . . , p)]1 =

p∏

j=2

(s1,jσ +

j−1∑

k=2

θ(jσ , kσ)sjσ ,kσ
)

and depends on reference leg 1 and two permutations σ, ρ ∈ Sp−1

of additional p − 1 legs 2, 3, . . . , p. The symbols θ(jσ, kσ) keep
track of labels which swap their relative positions in the two per-
mutations σ and ρ, i.e. θ(jσ , kσ) = 1 (=0) if the ordering of the
legs jσ, kσ is the same (opposite) in the ordered sets σ(2, 3, . . . , p)
and ρ(2, 3, . . . , p). The inverse in (12) is taken w.r.t. matrix mul-
tiplication which treats σ and ρ as row- and column indices.

2 The shuffle product in KA�B is defined to sum all Kσ for per-
mutations σ of A ∪B which preserve the order of the individual
elements of both sets A and B.

0 = K1�23 = K123 +K213 +K231 (16)

0 = K12�3 −K1�32 = K123 −K321 ,

and symmetries (15) at higher multiplicity leave (p− 1)!
independent permutations of K12...p. Any permutation
can be expanded in a basis of K1σ(23...p) with σ ∈ Sp−1

through the Berends–Giele symmetry

KB1A = (−1)|B|K1(A�Bt) , (17)

where |B| = p and Bt = bp . . . b2b1 for a multi particle
label B = b1b2 . . . bp. Since the Berends–Giele current
K12p is composed from the cubic diagrams in a partial
amplitude with an additional off-shell leg, (17) can be
understood as a Kleiss–Kuijf relation among the latter
[24].

GENERATING SERIES OF SYM SUPERFIELDS

In order to connect multiparticle fields and Berends–
Giele currents with the non-linear field equations (4), we
define generating series K ∈ {Aα,A

m,Wα,Fmn}

K ≡
∑

i

Kit
i +

∑

i,j

Kijt
itj +

∑

i,j,k

Kijkt
itjtk + . . . (18)

=
∑

i

Kit
i + 1

2

∑

i,j

Kij [t
i, tj ] + 1

3

∑

i,j,k

Kijk[[t
i, tj ], tk] + · · ·

where ti denote generators in the Lie algebra of the non-
abelian gauge group. Hence, the generating series in (18)
adjoin color degrees of freedom to the polarization and
momentum dependence in the linearized multiparticle su-
perfields KB . The second line follows from the symmetry
(15), which guarantees that K is a Lie element [17].

As a key virtue of the series K ∈ {Aα,A
m,Wα,Fmn}

in (18), they allow to rewrite the Dα action on Berends–
Giele currents KB ∈ {AB

α ,A
m
B ,Wα

B,F
mn
B } in (13) as non-

linear equations of motion,

{

D(α,Aβ)

}

= γm
αβAm + {Aα,Aβ}

[

Dα,Am

]

=
[

∂m,Aα

]

+ (γmW)α + [Aα,Am]
{

Dα,W
β
}

= 1
4 (γ

mn)α
β
Fmn + {Aα,W

β}
[

Dα,F
mn

]

=
[

∂[m, (γn]
W)α

]

+ [Aα,F
mn]

− [A[m, (γn]
W)α] , (19)

where [∂m,K] translates into components kmBKB.

Remarkably, they are equivalent to the non-linear SYM
field equations (4) if the connection in (1) is defined
through the representatives Aα and Am of the generat-
ing series in (18). In other words, the resummation of
linearized multiparticle superfields {AB

α , A
m
B ,Wα

B , F
mn
B }

through the generating series (18) of Berends–Giele cur-
rents (12) solves the non-linear SYM equations (4).
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Given that the multiparticle superfields satisfy [4]

Fmn
B = k

[m
B A

n]
B −

∑

XY=B

(Am
XAn

Y −Am
Y An

X) (20)

kBm(γmWB)α =
∑

XY=B

[

AX
m(γmWY )α −AY

m(γmWX)α
]

kBmFmn
B =

∑

XY=B

[

2(WXγnWY ) +AX
mFmn

Y −AY
mFmn

X

]

,

the above definitions are compatible with (3) and

[

∇m, (γm
W)α

]

= 0 ,
[

∇m,Fmn
]

= γn
αβ

{

W
α,Wβ

}

,

(21)
whose lowest components in θ encode the Dirac and
Yang-Mills equations for the gluino and gluon field.
A linearized gauge transformation in particle one,

δ1A
1
α = DαΩ1, δ1A

1
m = k1mΩ1, (22)

can be described by a scalar superfield Ω1, it shifts the
gluon polarization by its momentum. The gluino com-
ponent and the linearized field strengths are invariant
under (22), δ1W

α
1 = δ1F

mn
1 = 0, whereas Berends–Giele

currents of multiparticle superfields with B = 12 . . . p
transform as follows [18]:

δ1A
B
α =

[

Dα,ΩB

]

+
∑

XY=B

ΩXAY
α , δ1W

α
B =

∑

XY=B

ΩXWα
Y

δ1A
B
m =

[

∂m,ΩB

]

+
∑

XY=B

ΩXAY
m, δ1F

mn
B =

∑

XY=B

ΩXFmn
Y .

(23)

The multiparticle gauge scalars Ω12...p are exemplified in
appendix B of [18] and gathered in the generating series

L1 ≡ Ω1t
1+

∑

i

Ω1i[t
1, ti]+

∑

j,k

Ω1jk[[t
1, tj ], tk]+. . . (24)

This allows to cast (23) into the standard form of non-
linear gauge transformations,

δ1Aα =
[

∇α,L1

]

, δ1W
α =

[

L1,W
α
]

(25)

δ1Am =
[

∇m,L1

]

, δ1F
mn =

[

L1,F
mn

]

,

such that traces w.r.t. generators ti furnish a suitable
starting point to construct gauge invariants.

HIGHER MASS DIMENSION SUPERFIELDS

The introduction of the Lie elements K and their asso-
ciated supercovariant derivatives allow the recursive def-
inition of superfields with higher mass dimensions,

W
m1...mkα ≡

[

∇m1 ,Wm2...mkα
]

, (26)

F
m1...mk|pq ≡

[

∇m1 ,Fm2...mk|pq
]

,

where the vertical bar separates the antisymmetric pair
of indices present in the recursion start Fpq. Their com-
ponent fields are defined by

W
m1...mkα ≡

∑

B 6=∅

tBWm1...mkα
B , (27)

F
m1...mk|pq ≡

∑

B 6=∅

tBF
m1...mk|pq
B ,

with tB ≡ t1t2 . . . tp for B = 12 . . . p. They inherit the
Berends–Giele symmetries (15) and can be identified as

Wm1...mkα
B = km1

B Wm2...mkα
B (28)

+
∑

XY=B

(

Wm2...mkα
X Am1

Y −Wm2...mkα
Y Am1

X

)

,

F
m1...mk|pq
B = km1

B F
m2...mk|pq
B

+
∑

XY=B

(

F
m2...mk|pq
X Am1

Y −F
m2...mk|pq
Y Am1

X

)

.

Note from (28) that the non-linearities in the defini-
tion of higher mass superfields do not contribute in the
single-particle context with Wm1...mkα

i = km1

i Wm2...mkα
i

whereas the simplest two-particle correction reads

Wmα
12 = km12W

α
12 +Wα

1 A
m
2 −Wα

2 A
m
1 . (29)

Equations of motion at higher mass dimension:

The equations of motion for the superfields of higher mass
dimension (26) follow from

[

∇α,∇m

]

= −(γmW)α and
[

∇m,∇n

]

= −Fmn together with Jacobi identities among
iterated brackets. The simplest examples are given by

{

∇α,W
mβ

}

= 1
4 (γpq)α

β
F
m|pq −

{

(Wγm)α,W
β
}

,
[

∇α,F
m|pq

]

= (Wm[pγq])α −
[

(Wγm)α,F
pq
]

, (30)

which translate into component equations of motion

DαW
mβ
B = 1

4 (γpq)α
βF

m|pq
B +

∑

XY=B

(AX
α Wmβ

Y −AY
αW

mβ
X )

−
∑

XY=B

[

(WXγm)αW
β
Y − (WY γ

m)αW
β
X

]

,

DαF
m|pq
B = (W

m[p
B γq])α +

∑

XY=B

(AX
α F

m|pq
Y −AY

αF
m|pq
X )

−
∑

XY=B

[

(WXγm)αF
pq
Y − (WY γ

m)αF
pq
X

]

. (31)

In general, one can prove by induction that

{

∇α,W
Nβ

}

= 1
4 (γpq)α

β
F
N |pq −

∑

M∈P(N)
M 6=∅

{

(Wγ)Mα ,W(N\M)β
}

[

∇α,F
N |pq

]

= (WN [pγq])α −
∑

M∈P(N)
M 6=∅

[

(Wγ)Mα ,F(N\M)pq
]

.

(32)
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The vector indices have been gathered to a multi-index
N ≡ n1n2 . . . nk. Its power set P (N) consists of the 2k

ordered subsets, and (Wγ)N ≡ (Wn1...nk−1γnk).
The higher-mass-dimension superfields obey further re-

lations which can be derived from Jacobi identities of
nested (anti)commutators. For example, (3) determines
their antisymmetrized components

W
[n1n2]n3...nkβ =

[

W
n3...nkβ ,Fn1n2

]

(33)

F
[n1n2]n3...nk|pq =

[

F
n3...nk|pq,Fn1n2

]

.

Moreover, the definitions (26) via iterated commutators
imply that

F
[m|np] = 0, F

[mn]|pq + F
[pq]|mn = 0 , (34)

and the gauge-variations δ1∇m = [L1,∇m] and (25) yield

δ1W
α
N =

[

L1,W
α
N

]

, δ1F
N |pq =

[

L1,F
N |pq

]

. (35)

Manifold generalizations of (21), (33) and (34) can be
generated using these same manipulations.

OUTLOOK AND APPLICATIONS

The representation of the non-linear superfields of ten-
dimensional SYM theory described in this letter was mo-
tivated by the computation of scattering amplitudes in
the pure spinor formalism. Accordingly, they give rise to
generating functions for amplitudes. For example, color-
dressed SYM amplitudes at tree-level M(1, 2, . . . , n) in-
volving particles 1, 2, . . . , n are generated by

1

3
Tr〈VVV〉 =

∞
∑

n=3

(n− 2)
∑

i1<i2<...<in

M(i1, i2, . . . , in) . (36)

As firstly pointed out in the appendix of [19], the gen-
erating series V ≡ λαAα involving the pure spinor λα

satisfies the field equations QV = VV of the action
Tr

∫

d10x〈12VQV− 1
3VVV〉 [20] with BRST operator Q ≡

λαDα. The zero mode prescription of schematic form
〈λ3θ5〉 = 1 extracting the gluon- and gluino components
is explained in [5] and automated in [21]. With n = 3 or
n = 4 external states, for instance, assembling the com-
ponents V B ≡ λαAB

α of VVV in (36) with the appropriate
number of labels yields

M(1, 2, 3) = Tr(t1[t2, t3])〈V 1V 2V 3〉 (37)

2M(1, 2, 3, 4) = Tr(t1t2t3t4)
〈V 12V 3V 4

s12
+

V 23V 4V 1

s23

+
V 34V 1V 2

s34
+

V 41V 2V 3

s41

〉

+ perm(2, 3, 4) .

The pure spinor representation of ten-dimensional3 n-
point SYM amplitudes is described in [2]. Further details

3 See [25] for expressions in D = 4 upon specification of helicities.

and generalizations to superamplitudes with a single in-
sertion of supersymmetrized operators F 4 or D2F 4 will
be given elsewhere [22].
The multiparticle superfields of higher mass dimen-

sions can be used to obtain simpler expressions for higher-
loop kinematic factors of superstring amplitudes. For
example, the complicated three-loop kinematic factors
generating the matrix element of the (supersymmetrized)
operator D6R4 [6]

MD6R4 =
|T12,3,4|2

s12
+ |Tm

1234|
2 + (1, 2|1, 2, 3, 4) (38)

can be equivalently represented by

T12,3,4 ≡ 〈(λγmWn
12)(λγnW

p

[3)(λγpW
m
4] )〉

Tm
1234 ≡ 〈Am

(1T2),3,4 + (λγmW(1 )L2),3,4〉 (39)

L2,3,4 ≡
1
3 (λγ

nW
q

[2)(λγ
qW

p
3 )F

np

4] 〉 .

In (38), the notation (A1, . . . , Ap | A1, . . ., An) instructs
to sum over all possible ways to choose p elements
A1, A2, . . . , Ap out of the set {A1, . . ., An}, for a total of
(

n
p

)

terms. The tensor products of left- and right-moving

SYM superfields in |T12,3,4|2 = T12,3,4T̃12,3,4 are under-
stood to yield superfields of type IIB or type IIA super-
gravity. Accordingly, the component polarizations of the
supergravity multiplet arise from the tensor product of
gluon polarizations and gluino wavefunctions within the
SYM superfields.
The low-energy limit of the three-loop closed string

amplitude given in (38) is proportional to the (α′)6 cor-
rection of the corresponding tree-level amplitude which
in turn defines the aforementioned D6R4 operator.
It would be interesting to explore the dimensional re-

duction [1] of the above setup and its generalization to
SYM theories with less supersymmetry or to construct
formal solutions to supergravity field equations along
similar lines.
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[15] J. Brödel, O. Schlotterer and S. Stieberger, Fortsch.

Phys. 61 (2013) 812, arXiv:1304.7267.

[16] N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sonder-
gaard and P. Vanhove, JHEP 1101, 001 (2011),
arXiv:1010.3933.

[17] R. Ree, Ann. Math. 68, No. 2 (1958), 210–220.
[18] C.R. Mafra and O. Schlotterer, arXiv:1408.3605.
[19] P.A. Grassi, A. Mezzalira and L. Sommovigo,

arXiv:1111.0544.
[20] N. Berkovits, JHEP 0109, 016 (2001), hep-th/0105050.
[21] C. R. Mafra, arXiv:1007.4999
[22] C.R. Mafra and O. Schlotterer, work in progress.
[23] F. A. Berends and W. T. Giele, “Multiple Soft Gluon

Radiation in Parton Processes,” Nucl. Phys. B 313, 595
(1989).

[24] R. Kleiss and H. Kuijf, “Multi - Gluon Cross-sections and
Five Jet Production at Hadron Colliders,” Nucl. Phys. B
312 (1989) 616.

[25] J. M. Drummond and J. M. Henn, JHEP 0904, 018
(2009) [arXiv:0808.2475 [hep-th]].


