arXiv:1308.6567v3 [hep-th] 14 Apr 2015

DAMTP-2013-50

The closed-string 3-loop amplitude and S-duality

Humberto Gomez' and Carlos R. Mafra*

t Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
T Instituto de Fisica Tedrica UNESP — Universidade Estadual Paulista
Caiza Postal 70532-2 01156-970 Sao Paulo, SP, Brazil

YDAMTP, University of Cambridge
Wilberforce Road, Cambridge, CB3 0WA, UK

The low-energy limit of the four-point 3-loop amplitude (including its overall coefficient) is
computed in both type ITA and IIB superstring theories using the pure spinor formalism.
The result is shown to agree with the prediction of the coefficient for the type IIB DSR*

interaction made by Green and Vanhove based on S-duality considerations.

August 2013

Temail: humgomzu@ift.unesp.br

temail: c.r.mafra@damtp.cam.ac.uk


http://arxiv.org/abs/1308.6567v3

Contents

Introduction
Definitions and conventions
2.1. Integration on pure spinor space
2.2. Four-point SYM amplitude and kinematics
2.3. Riemann surfaces
2.4. The amplitude prescription
The closed-string 3-loop amplitude
3.1. 12 d, zero-modes from the b-ghosts
3.2. 11 d, zero-modes from the b-ghosts
3.3. The low-energy limit D°R*
Perturbative calculations versus S-duality predictions
4.1. One- and two-loops
4.2. Three-loops

A A general formula for integration of pure spinors

B

Integration by parts

© N O ke W N

10
10
12
16
17
18
19
20
25



1. Introduction

Up to this day superstring amplitudes in ten-dimensional Minkowski space have never been
computed at genus higher than two. In this paper the low-energy limit of the genus three
amplitude for four massless states in closed superstring theory is computed (including its
overall coefficient) using the pure spinor formalism [1,2].

After the relatively straightforward pure spinor derivation of the two-loop amplitude®
in [4,5], the natural question was how well the formalism would behave at higher genus.
It is well-known by now that, in order to compute general amplitudes at genus higher
than two the original BRST-invariant regulator of Berkovits [2] needs to be replaced by
a more complicated scheme proposed by Berkovits and Nekrasov in [6]. Nevertheless, for
four massless states at genus three one can still use the original regulator for the terms
considered in this paper since they are F-terms and these were shown in [7] to be unaffected
by the divergences which require the new regulator.

In addition to the regulator, there is one more point to consider though. As recently
emphasized by Witten [8], to compute multiloop scattering amplitudes it is not sufficient
to represent the external states by BRST-invariant vertex operators of definite conformal
weight. The unintegrated vertex may have at most a simple pole singularity with the b-
ghost while the integrated vertex must have no singularities at all. Unfortunately this is not
the case for the massless pure spinor vertex operators of [1,2] and one would probably need
to use the vertices constructed in [9]. These vertices depend on the non-minimal variables
and therefore require the concomitant use of the Berkovits—Nekrasov regulator.

Luckily, we will show that the low-energy limit (of order DSR?*) of the genus-three
amplitude is not affected by these considerations because only the zero modes of the b-ghost
enter in the derivation. Any subtlety is deferred to terms of order D3 R* and higher.

With that in mind, one can proceed with the three-loop computation using the for-
malism as described in [2]. And ever since the normalizations for the pure spinor measures
were determined in [10] and systematically used in [11], keeping track of the overall nor-
malization does not pose additional difficulties. In doing so, the precise normalization of
the amplitude at order D%R* is shown to agree with the value predicted in 2005 by Green

and Vanhove using S-duality arguments [12].

! For the RNS derivation see the earlier works of D’Hoker and Phong, e.g. [3].

2



2. Definitions and conventions

The non-minimal pure spinor formalism action for the left-moving sector reads [2]

1 _ _ _ . _
S = / d?z (02™ 0z, + &' Padb” — /W, ON* — "W 0N, + &' s%Ory) | (2.1)
Eg

2o’

where A\ and Xg are bosonic pure spinors and r, is a constrained fermionic variable,
M™A) =0, (M™A) =0, (M™r)=0. (2.2)
The fields in (2.1) have the following space-time dimensions [10]
[@]=2, [z™] =1, [0 X7 s =1/2, [Pa>WasAa)Ta) = —1/2. (2.3)
The genus-g OPEs for the matter variables following from (2.1) are [13]
z"(2,Z) zp(w, W) ~ 6" G(z,w), pa(2) 0% (w) ~ 6°1(2, w), (2.4)

where the Green’s function G(z,w) is written in terms of the prime form E(z,w) and the

global holomorphic 1-forms w;(z) as [14]
G(zz,z])———ln}E (2, 2 ‘ +a'm Im/ ) (Im Q) Im/ (2.5)

and satisfies 20.,0.,G(z;, z;) = 216 (2 — 2;) — 7Q(21, 27), where

Nz, 2j) = Q5 = Z wr(z;)(Im Q) ;w0 (%;), (2.6)

and €27 is the period matrix which will be defined below. Furthermore,

2 0
n(zi, 2j) = nij = _J£G<Zi’z‘7)' (2.7)

The Green—Schwarz constraint d,(z) and the supersymmetric momentum I1"(z) are

41,< "0)a(07mD9), =9z™ + 5 (e)wae) (2.8)

and satisfy the following OPEs [15]

1
dg pa—a(mH) Oy —

m 11,
do(2)dg(w) ~ —%laﬂ_w o da(2) f(z(w), B(w)) ~ ZDj{U,

007 o K"f 29
Ao (w) ~ 222 (@) f(a(w), () ~ =5 =



where D, = aea %('yme)akm is the supersymmetric derivative and f(z,6) represents a

generic superfield. The b-ghost is given by [2] (see also [16,17])
b= 5N + ﬁ [20™ (AYid) — Ny (A7 00) — J5(X90) — (X5?0)] (2.10)

N Amnp
M [a (dYmnpd) 4+ 24N, 11, | —

192(M\X)2

Oé_/ (T’YTTMEDT> (X’ymd)an o (X’yquT)]YmnNQT
2 16(AN\)3 8(AN)

Y

and satisfies {@, b(z)} = T'(z) where the BRST charge @ and the energy-momentum tensor
T(z) are

1 _
Q= %(Aada +wW,), T(z) = —J&xm&vm — Pa00% + W, 0N + WO, — s¥Or,.

From (2.3) it follows that [Q] = [b] = [T] = 0.
The massless vertex operators are given by V(z,%) = kV(0) @V (0) €** and U(z,z) =
kU(0) @ U(A) e where
/

/
V(z) = \A,,  U(z) = 00A, + A, TI™ + %daW“ + %Nmn}"’”" (2.11)

and A,, A™, W F™" are the N = 1 super-Yang—Mills superfields in ten dimensions
satisfying [18]

Do+ DgAa =175 Am,  DaAp W)a + kmAq

= (Ym
1
4

DoFrn = 2kim (4] W )a, D WP = Z (4™ P Frn. (2.12)

The space-time dimensions of the superfields and the vertex operators are
[Aa] =1/2, [An] =0, [W]=-1/2, [Fmn]=-1, [V(2)]=[U(x)] =1 (2.13)

2.1. Integration on pure spinor space

The zero-mode measures for the non-minimal pure spinor variables in a genus-g surface

have space-time dimension zero and are given by [2,10,11]

AN Ty = Cx €ay...apg NS .. A6

dw] = cyp Toy...0s€ " Cdwayg - . . dWa,,

[ [

[AN T = ex 218500, .. . d Aoy [dW] Th, ...cs = Ci €ary...c06 AW . . . AT
[dr] = . T " ay...ay,0°° . .. D010 [ds"] = €5 Ty ay€® 01005, . 5
[d0] = ¢y d'%0 [dd'] = cqd'®d’.

(2.14)



The normalizations are

_ 11
0= (V)" n (S
2/ 11!'\4x2 2 11151
6
e = (g’>22_<z49 )11/2 O = (g)ﬂz—ll/g
A 2/ 111\ 472 2 /111 (2m)tt 9
o/\"2R 2m\l1/2 o 2( )11/2R_1 (2'15)
L Co EE YT S
27 1115144 * T2/ 2s11rsl (N2 Y
[« 27 \16/2 o \—4
 (CT () e
where A, = [ d?z,/g is the area of the genus-g Riemann surface and
1
Zy=—o——  g>1 (2.16)
det(2Im Q)
The tensors Ty, ..o, and T in (2.14),
Torasasasas = (AY™)ar (AY"™)az (M) ag (Vmnp) asas (2.17)

= (M) (™)™ (M) (Ymmp)

Taloé20¢30¢4055

are totally antisymmetric due to the pure spinor constraint (2.2) and satisfy T -T =

5!26(AN)2. As explained in [11], setting R? = 2\1/2” fixes the normalization of pure spinor
tree-level amplitudes to be same as in the RNS computations of [19].
Using the above measures and the results of [10] one can show that the integration

over an arbitrary number of pure spinors A% and g is given by

A N1T12T
g> B+m—+n) 0 .« (2.18)

AN [N e~ PV AN ™A ANy g = (2
J1anidme Do) R = (52) —r TR

where Tﬁl ‘5" are the y-matrix traceless tensors discussed in the Appendix A and I'(x) is

the gamma functlon Using T a1, a? =1 it follows that [11]

/ [AN[AN (O e~ N = (%)”%. (2.19)

For an arbitrary superfield M (\, X, 0, r) we define

_ o= (N =(r0) _
(MOX,0,7)) (n.g) = / [d0][dr][dA][dN = M(\X,0,1), (2.20)
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which implies in particular that

(A369)), (2.21)

27 )5/2<02/ )2 I'(8+n)

395 _oTp (2T
(% =2'R (5 7

where (A\360°) = (Ay™0)(Ay"0)(AyP0)(04mnpf) and the pure spinor bracket (...) in the
right-hand side is normalized as ((A36°)) = 1 [1]. The subscript g will be dropped whenever
there is no chance for confusion.

From (2.9) and (2.8) follows that

/
7 ()T (Z;) ~ %nm” (2%5(2)(zi —zj) — WQ(zi,zj)> : (2.22)
But using (2.22) directly leads to a mixing between left- and right-movers. Instead, one
can keep the two sectors separate by expanding IT™(z) = II"(z) + > IIPwi(z) and
computing the holomorphic square with

/

i, = —%nm"w (Im Q)7 ). (2.23)

Using this prescription, contributions containing a single IT7" or ﬁ;n vanish.

We use conventions where the (anti)symmetrization over n indices includes a factor of
1/n!, the generalized Kronecker delta is dg! g™ = [ﬂol‘l x ~6g:] and satisfies 05! g = (z)
where d = 10 or d = 16 for vector or spinor indices respectively. The integration over 6 is
given by fd160 gt ... 016 = ¥ 16 and XM T5e, 5 g = 1115! 5;1123

The partition of 3-loop d, zero-modes is denoted by (N7, N3, N3)4 and indicates that

an expression contains N factors of d!,. Furthermore, we define

(G_T_dI)EEOtl...OtleTal- d] ‘_‘dI

Q5 Mo aie ?

(Ard'd”) = Oy™™Pr) (d Ymnpd”). (2.24)
Two integrals frequently used in the next sections are summarized here,

a] Yo Pag oy Pas

/[ddf](e.T.dI) dl dl dl dl dl =11'5'cqTo,apasasas
(2.25)

/ [dd")(e- T -d")dl dl dl (d'y™"Pd’) = 1115196 c4 (M ™) oy (M) as (M ag -
2.2. Four-point SYM amplitude and kinematics

In [19,11] the amplitudes in the Neveu-Schwarz (NS) sector were written using the kine-

matic factor K defined as

K = F""FpmFPIRIP 4 e ppm P4 pap o pmn prm pid pav (2.26)
— 4(FPFyPFPEI™ 4 P EP FPURS™ 4 PRy FPURE™)
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where F,,,, = kmne, — knen, is the field-strength. Since the amplitudes in the pure spinor

formalism are manifestly supersymmetric one can rewrite K as follows
K = —2%2880 A%, 512523 (2.27)

where A4, is the ten-dimensional SYM amplitude normalized as A{Y, = (V1 Ea34) [20]
and s;; = k' - kJ are the Mandelstam invariants. Furthermore k% - k* = 0 is the massless
condition and k! + ---+ kl =0 is the momentum conservation relation. In order to keep
the momentum expansion formulee of section 4 legible, we use the following definitions [21],

/ /

_ 22 2 2 2 _ 23 3 3 3 92.98
o2 =35 (812 + 873 +514), 03 = 5 (812 + 873 + 574) (2.28)

and note that o3 = 3(a’/2)3s12513514.

2.3. Riemann surfaces

A holomorphic field with conformal weight one in a genus-g Riemann surface , can be
expanded in a basis of holomorphic one-forms as ¢(z) = ¢(z) + S wi(2)¢! and ¢! are
the zero modes of ¢(z). If {ar,bs} are the generators of the H;(X,,Z) = Z?9 homology

group, the holomorphic one-forms can be chosen such that for I, J =1,2,...,¢g
/ U)J(Z)dZZ(S[J, /wJ(z)dz:QU, / Wy Wy d2222ImQ[J (229)
ar br g

where ;7 is the symmetric period matrix with g(g+1)/2 complex degrees of freedom [22]
and d?z = idz A dzZ = 2 dRe(z)dIm(z). For the three-loop amplitude we define

A(zi; 25 21) = GIJKwI<ZZ')wJ<Zj)1UK(Zk), (2.30)

A" (24, 25 215 21) = €TE (Tw) P (24, 25)w g (z1)wie (21),

where (ITw)7*(z;, z;) = HP'wr(2)wr(z;), (no sum in I). It follows that A™(z;, z;; 2; 21) is

symmetric in (ij) and antisymmetric in [kl] and satisfies
7 wr(2:) Az 25 21) = A" (24, 255 215 21) + A" (24, 205 205 25) + A" (2, 205 255 2) - (2.31)

Furthermore, the period matrix extends a lattice called the Jacobian variety [14,22], J =
CY9/(Z9 4+ Q7Z9), which is invariant under the modular group Sp(2g,7Z). And finally, we

define A
/ E/Hdzzi. (2.32)
2y i=1



2.3.1. Moduli space

The moduli space M, is defined as the space of inequivalent complex structures on the
Riemann surface X,. It is well known that its complex dimension is dim¢(M,) = 3g — 3,
for g > 1. We denote the complex coordinates on this space by 7; for i =1,...,3g9 — 3.
For genus two and three the dimension of the moduli space is the same as the dimension
of the period matrices, i.e., 3¢ —3 = g(g + 1)/2 for g = 2,3. So there is a one-to-one map
between inequivalent complex structures and inequivalent period matrices. This means
that for genus g = 2,3 the scattering amplitude can be written in terms of the period
matrix instead of the moduli coordinates and Beltrami differentials. This rewriting can be

achieved using the identities [14]

[ w52 [ Hd%

00 00
G 5:3 /Edm”’
(2.33)
where the Beltrami differential is given by pZ, = 9,v7 and v7(z,%) is a small complex
structure deformation.
However the factor H?S J d?>Q;; is not invariant under the modular transformation
Sp(6,Z). In general, the Sp(2g, Z)-invariant measure for the genus-g moduli space is

dig = 2.34
Hg (det Tm Qp5)9+1’ (2.34)

and this is precisely the measure that will be obtained from first principles in the next
section for genus g = 3.

The corresponding volume of the inequivalent period matrix space is given in [23]

g

kE—1)!

Vol, = / dg = 292+1(27r)9(9+1)/2 H ﬁ|32k| : (2.35)
My k=1 '

where By, are the Bernoulli numbers and the extra 29(971/2 factor in (2.35) compared
to the original formula in [23] is due to a different convention for d?Q;; (see e.g. [19]). In
particular,

2m 473 2676

VOll = ?, VOIQ = ﬁ, VOL?, = W . (236)



2.4. The amplitude prescription

The prescription to compute the multiloop n-point closed-string amplitude was given in

2] and it becomes?.

Ag _ /i464>\/
M

for three loops and four points. M3 is the fundamental domain of the genus-three Riemann

Hd% / N (b)) UM (=1) - U )| (2.37)

3]1

surface. The b-ghost insertion is

1 .
(b, pj) = o /dzyjbzzuﬁ, j=1,...,6. (2.38)

After the non-zero modes are integrated out using their OPEs, the pure spinor bracket

(...) denotes the integration over the zero-modes®
3
(..)= / [d0)[dr][dN][dN] H dd"[ds!][dw!][dw"] (2.39)
and A is the BRST regulator discussed in [2] which can be written as

N = i o~ OX)=(w' @)~ (ro)+(s"d") (2.40)
I=1

After the integration over [dd!][ds!][dw!][dw!] is performed, the remaining variables
)\Q,Xg, 6% and r, have conformal weight zero and therefore are the same ones which need
to be integrated in the prescription of the tree-level amplitudes. Using the Theorem 1 from
Appendix A all correlators at this stage of the computation reduce to pure spinor super-
space expressions [24] whose component expansions can be straightforwardly computed
[25,26]. In particular, the last correlator to evaluate is a combination of the zero mode

integration of tree-level pure spinor variables (2.21) and z™

\/_ a’\—1 n)\2
_2<2> (M

3726 ) OB 2 Z(sy).

(2.41)

4
|<(/\395>>(n,g)|2<H eikj~mj> _ (271‘)10(5(10)(k)

2 In the first version of this paper, we argued for an overall symmetry factor 1 /3 for the three-
loop amplitude. We thank Edward Witten for explaining to us that such factor was incorrect.

3 The definition of the pure spinor bracket here should not be confused with the standard zero
mode integration ((\*0°)) = 1 of [1]. Since the context makes the distinction clear, we chose not

to distinguish the notation.



where 6119 (k) = 610 (3. k™) and Z(s;;) is the Koba Nielsen factor
Z(sij) = exp ( — Z si;G (2, zj)> (2.42)
i<j

Given the above conventions, the space-time dimension of the closed-string n-point am-
plitude is independent of the genus; [A,] = n(2 + [k]). One can show that unitarity [27]

requires k2e~2* = (a//2)72v/22877, so [k] = —2 and the amplitudes are dimensionless.

3. The closed-string 3-loop amplitude

At genus three there are (16,16,16)4 zero-modes of d, and (11,11,11)s zero-modes of
s®. The factor e(@'s") in the regulator (2.40) is the only source of s* zero-modes so the

integration over [ds!] brings down (11,11, 11)4 zero-modes,

D P | (U
I=1 no I=1

The remaining (5,5,5)4 must come from the b-ghosts and the external vertices. Since the
number of d, zero-modes from the external vertices and from each b-ghost can be at most
four and two respectively, there are only two possibilities for the b-ghosts: they provide
11 or 12 d, zero modes. Note that these possibilities lead to integrations over pure spinor

variables which can be regularized using the original procedure of Berkovits [2].
In the following we decompose the amplitude (2.37) according to the two different

b-ghost sectors as A3 = A1 + A12 and evaluate each sector in turn.

3.1. 12 d,, zero-modes from the b-ghosts

In this sector there is no chance for OPE singularities between the b-ghosts and the ex-
ternal vertices and therefore (b, ) is still a well-defined measure [8]. To see this note
that if six b-ghosts provide twelve d, zero modes, each one of them must pick the term

(AY™Pr) (dYpmnpd) /(192(AX)?) in (2.10). The zero-mode part of each (dy,npd)(y) factor is

(dl%nnpdl)wl (y)wi(y) + 2(d17mnpd2)w1 (y)wa(y) + Q(dl%nnpdg)wl (y)ws(y)

+(d27mnpd2>w2(y>w2(y> + 2(d27mnpd3)w2(y>w3(y> + (d37mnpd3)w3(y>w3(y>a
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and a short computation using (2.33) gives,

6

T =, [ | 2]’ 2

j=1

/ 3
_ 6_ 2
where ¢, = (%) @rany and

Baaa) = (Ardtd" ) (Ard*d?*)(Ard* d®)(Ard?d®) (rd?d®) (Ard3d?). (3.3)

Note that B4 44 is totally symmetric in the zero-mode labels (123). Since w! and w!

appear only in the regulator N their integration is straightforward

[ Hostistcoe - 63 o ”

(2m)33 78

Defining (if B(; 4,y does not contain an index m one omits it altogether on both sides)

D(p—l—ll q+11,r+11) = / H ddI] 6 T- dI) (p,q,7) (35)

and gathering the above results,

\/_2 10Tt 4>\ 24 szIJ 1772773774 2 A ik’ z?
b S (6 [ B v [
]:

(3.6)
The only non-vanishing contribution to the integral in (3.6) contains three d, from the

external vertices,

/

000U = (%) (W) (V) (@) s + (dTV33) (W) (A7) o
+ dW14)(dW2)(dW3> M4 + (dWQg)(dW1>(dW4> 123 (37)
+ (AWaa) (dW1)(dW3) n2a + (AW34) (dW1) (dW2) 1134]

—

/ 3
* (%)3 > 0w (21) AL (dW2)(dW3) (dW?) + (1 > 2,3,4)

where W;; denotes the BRST block [28],

1 , .
W5 = Z(’)/quj)aFipq + (kj - AW — (i <> 4) . (3.8)

]
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Since now only the zero modes contribute, each d,(z;) becomes dlwr(z;). Note that
D(15’15’15)d£‘déd5w](Zi)QUJ(Zj)wK(Zk) = D(15,15’15)déd%df’yA(zi;zj;zk) because the only
non-vanishing contribution has (1,1, 1)y zero-modes and H?Zl[ddl J(e- T -d) is totally

antisymmetric in the zero-mode labels [123]. Thus,

D(15’15’15)(dWw)(dW@(dWﬂ = (11! 5! )3963 Cg Tika(/\, X, T)A(Zj; Zks Zl>
D(15,15,15) (dW;) (dW;) (W) AT* = (11151)%96° ¢ LT, (A, A, 7)A(zj: 205 21)  (3.9)

where

Tijiea (A A, 1) = (Por) 4 ) (97 (™ Pr) Ay 475 ) (A Or)

< (Ay 9™ X) (AP I TEX) Ay a7 N (A Wiz ) (AP Wi ) (A W)

PaOU 1) = (P er) e ) (i) ey ™) (X vq”?‘)( vt r) (3.10)
YA W) (Ay

X (AT TN Ay PN Ay M4 N) (A W) (AP W) (A W ) AT

As shown in the Appendix A, it is always possible to rewrite the A Ant3 dependence
in (3.10) as (AX)"A3 when performing the zero mode integrals and therefore we write
Tijki(A A1) = (AN)°®T55 5.0 (A,7) and drop the (A, r) arguments from now on. Note that
T3k, is antisymmetric in [ij] and [kl] and L7}, is antisymmetric in [ijk].

Plugging the above results in (3.6) and using the identity (2.31) together with the
definitions M;; ;= si_leij’kJ, Xi; = (&'/2)si;mi; yields

V276 d*Qr L o
Az = K 4* / — / (K1) o (JTe™ ") (3.11)
92336 " Z; — =10 . (=3) H
where
K12 = Mig3.40(22; 23; 24) X12 + Mi3,2 aA(23; 225 24) X13 + Mia 2, 30(245 22; 23) X14
+ M3 1,40 (235 215 24) Xog + Moa 1,30 (245 215 23) Xoa + Msa 1900245 215 22) X34
+ A" (21, 22; 23; 24) [Lg@ + L%u} + A" (21, 235 225 24) [LT243 + Lg%u}
+ A™ (21, 245 223 23) [ L34 4 Lifsg1 | + A™ (22, 235 215 24) [ Ly 43 + LY} 40]
+ A" (29, 24; 21; 23) [Lgri34 + Lfﬁw} + A" (23, 24; 21; 22) [Lg}m + Lfﬁ%}. (3.12)
3.2. 11 d, zero-modes from the b-ghosts

By not using the Siegel-gauge vertex operators of [9] one could in principle face problems

with the consistency condition for (b, 1) discussed in [8]. However, in the low-energy limit

12



discussed here, this potential complication can be ignored since the only contribution comes
from terms in which the b ghost does not have singular OPEs*. To see this note that one

possibility to obtain 11 d, zero modes out of six b-ghosts is given by

()\X)—lZ
(192)6

(5)6 [™"2r) @y )] (3.13)

b —
where one of the dy(y;) is the non-zero-mode part dq(y;) and contracts through the OPE
(2.9) with an external vertex (y; denotes the position of the corresponding b-ghost). How-
ever this term is of order D®R* and there are no inverse powers of Mandelstam invariants
coming from the integration over the vertex positions since there are no simple pole singu-
larities among them [29], as they must contribute the four remaining d,, zero modes. The
claim that (3.13) leads to terms of order D® R* is easy to verify. The external vertices con-
tribute W* superfields, the OPE between dy (y) and one superfield W# gives D,W# and
each r, from (3.13) counts as a covariant derivative D,, because of the factor e~ ("?) in the
regulator A/. This gives kinematic terms proportional to (DI W*) = (KB3W3F) = k*F2
whose holomorphic square is D8 R*. The other possibilities of b-ghost singularities are sim-
ilarly analyzed. Therefore the terms which might be affected by the issues pointed out in
8] do not affect the leading order terms DS R* and will not be considered in the following.

When the b-ghosts have no singularities with the vertices and contribute 11 zero-modes

of d,, one possibility is

6 m g, 6 q rs mnp 5
Y T6(102)7 (5) rarsr) O )N (™7 (dmnp )] (3.14)
but it vanishes upon integration over [dw] because [[dw][dw]|w, e~ W) — (0 The other
possibility is
6 (AA) ° q mnp 5
" Sty (2) (Mgd)II [(Ay™"Pr) (dyrmnp )] (3.15)

where the II™(y) field is proportional to its zero modes IT! w;(y). In this case the integra-
tion over the positions of the b-ghosts can be carried out,
- 2 2 1 1 2
/Hd Tj‘(baﬂj)‘ = /d QIJ‘(M> (T3, B 4,0+ 112, B{} 5 4y +115, B(443))’ (3.16)
=1

4 We are grateful to Nathan Berkovits for discussions and for his comments on the draft at

this point.
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where ¢, = % =48(c’/2) ! ¢p, and

Bi5 44 =+ 200" dY) (Ardrd?) (Mrd* d®) (Ard?d?) (Ard?d®) (Ard*d?)
— (W™ d?) (Nrd dY)(Ard d®) (rd?d?) (Mrd?d?) (Ard3d®)
+ (MW" d®)rd dY)(Ard d?) (Ard*d*) (Ard?d®) (rd®d®) | (3.17)
while BEZ,Z%A) and BZLLA,B) are obtained from 38,4,4) by swapping d’ <> d? and d. < d3,
respectively. Furthermore, note that By , , is symmetric under d? < d3.

Taking into account that ¢, = 48(a’/2)7! ¢y, and using the definition (3.5) leads to

the following expression for Ajq,

V22793 et 22 d*Qry - ik .z
A = 742 310(111 51)6 / 7 /24 <He ) (3.18)
j=1

2
X ‘<(H}71D?114,15,15) + H?nD?f5,14,15) + H?ans,m,M))UlU2U3U4>(_s)’ :

Each external vertex U? contribute through the term (o’ /2)(dW?*)(z;) and the integration

over the d zero-modes can be carried out by using the following formulae,
2?4715715)(d1W1)(d1W2)(d2W3)(d3W4) = +(1115!)96%¢] S35 (A, A, 7)
E?s,14,15)(d2wl)(dZWQ)(dIWB)(d3W4) —(11! 5!)396203 ST334(A, A, r)  (3.19)
E?5,15,14)(d3W1)(d3W2>(d1W3)(d2W4> +(11151)%96% ] ST334(X, A, 1)

where
S (AN 1) = SN, r) + SET LN ) — S X, ) (3.20)
1234\ 7Y 1234 (A 1234 (A 1243 (R

and
1 m m_a N N N N
St ) = 2 (™ N) N pr ™) Mmanape ™) Mimansps ™) Nimanaps™) Mimsnsps )
azﬂl1n1plm3)\)()\,ya3m2n2p2m5A)()\,yn3m4n4p4n5>\)
Wiy 10203 J172) (AyP3 W 3) (AyPs W)

X (A
x (
ST N T) = 96 (™™ X) Ny s ™) Nmarapa™) Nmgapa ™) Nimsnapa ™) Nimanaps )
(
(

X

)\,ym1 manap2ms )\) ()\,yn3m4n4p4n5 )\)
YW H P2 (AP W2 ) (P ) (3.21)

X

Note from the definition (3.19) that S1%,,()\, A, 7) is symmetric in the particle labels (12)

and antisymmetric in [34]. The explicit expression for Sg% 4+(A, A, 1) is symmetric in (12) and
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antisymmetric in [34] whereas ng%()\,x, ) is symmetric in (12), so (3.20) indeed has the
required symmetries. According to the procedure of Appendix A we write S73., (A, \, 1) =
(AN)6S., (N, 7) and drop the arguments (), 7) in the following.

After expanding do (2) = da(2)+dLw;(z) and using (3.19) together with the symmetry

properties of S7%3, it is a matter of bookkeeping the permutations to arrive at

a’\4 —
(T3, DYty 15.15) F 100, D5 1415y H, Dills 1510 U UPUP U = (§> (11151)% 967 ¢ (AX)°KCyy
(3.22)

where

i1 =+ S1534A™ (21, 225 235 24) + S1504 A™ (21, 235 225 24) + ST403 A" (21, 245 225 23)
+ 89514 A" (22, 235 215 24) + Sou13A" (22, 245 215 23) + S3410A™ (23, 243 215 22) -

(3.23)

Finally,
A 444 V2r" O/ 6 [ d*Qpy 2 T ik
w=ntet e (5 [ G [ e Phen T 7) was

Therefore from (3.11) and (3.24) the three-loop amplitude A3 = A5 + A11 becomes

/ 2 4 o
A=t L (5[ e L (CRERT () B

(3.25)
where (2.16) has been used,
F =+ M3 40 (22; 235 24) X192 + Mi3,2.40(23; 22; 24) X13 + Mia,2 30 (24; 225 23) X4
+ Mas 1,4A (235 215 24) Xog + Moa 1,30 (245 215 23) Xoa + Msa1 2A (245 215 22) Xaa
T =+ T334 A" (21, 22; 235 24) + T{504 A" (21, 23; 225 24) + T{4os A (21, 24; 225 23)
+ To51 4 A" (22, 235 215 24) + Togy3A™ (22, 245 215 23) + Tayg10A™ (23, 245 213 22)  (3.26)
and (the other 777, follow from relabeling),
m m m 5 m
Ti534 = L340 + L334y + 551234 : (3.27)

The factor 5 in (3.27) is due to (...)(_2) = 5(...)(—3) and follows from (2.21). The factor
1/2 accounts for the different overall normalizations of (3.24) and (3.11).
After using (2.41) the three-loop amplitude (3.25) becomes

/i464>\ o 2
A= 06 W) gt (5) [ ey o, 719+ (7] 26
(3.28)
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3.3. The low-energy limit DS R*

Since the superfields in F and T have component expansions terms of order k*F2 =~ and
K3F2  one might naively expect that only (|7|?) in (3.25) contributes to the low-energy
limit of order D%R*. However some integrals in (|F|?) contain kinematic poles which re-
duce its contribution from D3R* to DSR*. In fact, the integration by parts identities of
Appendix B show that®

/

/E4<|f|2>z(sij> - —n(%) () /E V12 (20; 23: 22) B (213 235 24) + O(a'?)

/

- —127r<%> () det (2Im Q) + O(a?) (3.29)
where
T 2 T 2 T 2 T 2 T 2 T 2
K= |T231,4 i |To4 13| n |T34,1,2 i T12.3.4] n |T13.2.4 i |T14,2,3 (3.30)
523 S24 534 S12 S13 S14

is such that (K) is also of order DS R%.

To compute the low-energy limit of f24|T|QI(sij) it will be convenient to use the

symmetry relations®

TBM + T§Y24 + T2n§14 =0, T1n2134 = T27711347 ng34 = _T1n2143 (3~31)

to eliminate T755,, 1154, and 153, from (3.26) (using, for instance, 1155, = T14as + Tot13)-

Doing this and applying (2.31) one arrives at

3 3 3
T = T{ZQS Z HTwI(Zl>A234+T27213 Z H}an(zg)A134+T§Z12 Z H’Inwf(zg)A124 . (332)
I=1 I=1 I=1

® In the first version of this paper the result of the integral f24 Q12A(22; 235 24) A(21; 235 24)
was incorrectly stated as 36 det(2Im ) instead of 12 det(2Im€?). Using a notation where X;; =
Im Q; s, the definitions (2.6) and (2.30) imply that the integral is

:/ w](Zl)X;lej(22)GKLMwK(Zz)wL(Zg)wM(ZAL)GPQRWP(El)@Q(§3)ER(E4)
3y
= 24X[pXI_J1XJKEKLMEPQRXLQXMR = 24XPKXQLXRMEKLMEPQR =12 det(2 Im Q)

where X;; Xsx = 01, Xpx XorXrme*MeP@R = 31det(X) and det(2X) = 2% det(X) have
been used. A similar mistake in the calculation of f24|7'|2 led to an incorrect overall coefficient
for the low-energy limit which was bigger by a factor of 3.

6 We thank Piotr Tourkine for pointing out the first symmetry relation in (3.31) and Oliver

Schlotterer for emphasizing its role in simplifying the expression of 7 and £ - L.

16



After setting Z(s;;) = 1 (since there are no kinematic poles), the contribution of f24(|T|2)

to the low-energy limit require the following integrals

/

/ HTﬁT}wI(zl)EJ (21)A234Z234 = —367T77mn (%) det(2 Im Q) (333)
Yy
—n o — mn Oé/
/ 7 ywr (21)w,(22) AgzaAsa1 = —127n <§>det(2 ImQ).
p3
and yields
/
T2 = —127?(%)det(2 mQ)L- L (3.34)
P3P
where
L-L =T+ T 4 [Ts | + |T50 412 + T35 + | Ti0 )% (3.35)
1234 1324 1423 2314 2413 3412

Therefore the low-energy limit of the three-loop amplitude (3.28) is given by

G N am 7r d*Qr
Ag — _(27T)105(10)<]{7) <§> <IC + E . £> f§4e —22937 52 72 /M (det(2 Im Q))4
3

10 £(10 a8 A\ 44X mGe

where the integral is 2712 Vol and we used (g = 7°/945. A long calculation gives [25]
(K+L-L)=-23"57%(s3, + 53, + s3,) KK (3.37)
irrespective of whether it is for type ITA or IIB, confirming the theorem of [7]. Therefore

7TC6 o’ \6 —
Ay = (2m) 10810 (k) et T2 (§> (3, + 83, + s3,) KK (3.38)

is the low-energy limit of the type IIA and IIB three-loop amplitude.

4. Perturbative calculations versus S-duality predictions

We first review the one- and two-loop comparisons between S-duality predictions and
perturbative amplitude calculations of [21,19] using our conventions. After that we extend
their analysis to include the three-loop result (3.38). We will find that the amplitude we
computed in (3.38) agrees with the prediction of Green and Vanhove [12].
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4.1. One- and two-loops

The closed-string massless four-point amplitudes at genus 0, 1 and 2 computed in [11]

(including their overall coefficients) are given by (see also [19]),

a'\3 . _ \/§
Ay = (2)106010) (1) (5) KE ke 522 By(si) (4.1)
NS — 1 d*r
_ 10 5(10) @ 4 g
Ar = (2m)%800 (k) (5 ) KR & S /M 7 Bilsusl)
A V2 d*Q
_ 10 £(10) a 4 2\ 1J N
Ay = (2)10500) (k) ( - ) KRR 35 | ey 26l

where” [21,19],

[(—a's12/2)T(—a’s13/2)T(—a’s14/2)
[(1+ a's12/2)T(1 + a’/s13/2)T(1 4+ a’s14/2)

3 2
:—+2C3+C502+—C§O'3+"'
g3 3

Bo(sij) =

= d?z 3 €
31(8ij|7)=/HT—21(8ij)=2 <1+§U3+“'
=2

82(32‘]‘|Q) = /;4 mﬂsw) = 270‘2 —+ -

Plugging in the volume of the moduli spaces (2.36) one obtains the following low-energy

expansions,
Ao = (2m)"9610) (k) (%,)3KF ke 2 2£5 [% +2C3 + G502 + gc??as +oe (4.3)
Ay = (27)19600) (1) (%/)3KF/@4 S [1 4 %03 4o (4.4)
Ay = (21)19509) (1) (%/)3KFK462>\ 2\6/27;35 [02 e (4.5)

The SL(2,7Z)-duality predictions for the perturbative effective action are [32,33,12]

2
s’ = ¢ /dloaz\/—g R (2¢ze™2¢ + 2%) , (4.6)
597 = / dVz/—g DR (2¢5e7%¢ + §<4e2¢) , (4.7)
, 4
59 = / d"Vx/—g DR*(4¢e™2? 4 8(a(s + ggcge%’ + §¢6e4¢). (4.8)

7 Bo(sij) here is 5=C(s,t,u) from [11]. Furthermore, see [30] for a recent attempt to evaluate

non-leading terms at two-loops and [31] for an elegant way to rewrite the tree-level expansion.
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where the precise definitions of R*, D*R* and DSR* and the constants Cf1,2,33 will not
be needed in the following discussion since only the ratios of the interactions at different
loop orders will be important.
Matching the ratios of the o’ % interactions at one-loop and tree-level leads to a relation
between e? and e,
V224r4e2d 2072

_ 26 _ 20\ /59072 49
— e e e, )
3¢3 3¢3 (4.9)

where the left-hand side follows from the amplitudes while the right-hand side from the

effective action (4.6). Now one can compare the S-duality predictions for the amplitudes
at order o/® and o/® (denoted with a Latin capital A%") and the perturbative results.

For the a'® interaction, the ratio between the two-loop and tree-level interactions in
the effective action (4.7) is %e‘w and leads to the prediction

o a2

Ag - AO 3(5

Oé/ 3 —\/§<4
2) %37 7%

(27)10600) (k) gte2? ( (4.10)
which agrees with the two-loop perturbative calculation (4.5) (recall that ¢4 = 7*/90).
For the o’° interaction, the ratio between the one-loop and tree-level terms following

from the effective action (4.8) is 2¢3/(3€2? = (2 /(3v/22°12€?* and implies

16

(2)105019) () (i/)gKF 26 (4.11)

AO{
1 2 29373 737

which agrees with the one-loop perturbative calculation (4.4), in accord with the analysis
of [21].

4.2. Three-loops

Similarly, the ratio between the three-loop and tree-level terms of (4.8)

16
2(6 66 _ \/§2147T6C6 6X -Ag
e R ve R
(3 G3 AS

predicts the following three-loop amplitude

/ NS
A9 = (2m)105010) (k) (%) KK e 7;—? 73, (4.12)

in complete agreement with the first principles perturbative calculation (3.38).
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Appendix A. A general formula for integration of pure spinors

Component expansions of a general ghost-number-three pure spinor superspace expression
of the form A1 ... A¥+3}X5 ... Ag, fg;;;;ng(Q, r) can be computed most conveniently by
first rewriting it in the form (AN)"A* ... A*3 f,  ,.(0,7). Doing that allows the straight-
forward application of the formula (2.21) and the identities listed in the appendix of [34].
The case n = 1 was discussed in [35], now the solution for general n will be presented.
Let Tgllgs denote a SO(10)-invariant tensor which is symmetric and v-traceless in

both sets of indices. When 7 is even there is (n/2 + 1)-dimensional basis [36],

n/2
S =D oA, (A1)
k=0

(n) _ (a1 QAn 2k Qn—2k4+10%n—2k+2 Qp—100)
Tk - 6(51 e 66n72k (7 ) >Bn72k+lﬁn72k+2 o (’)/ ) ’)/)Bn—lﬁn) ’

and (7 - 'y)gllg; = Yo' 275 5,- Imposing the y-traceless condition leads to a recurrence

relation for the coefficients c,gn) [37] and the normalization condition Tg! " = 1 relates

the coefficient cén) with the dimension of the pure spinor representation N,, = dim([0000n)),

(n) (n—=2k)(n—2k—1) () (n)
= — — 1 N’I’L7 A~2
Ck—l—l S(k i 1)(7’L —k+ 2) ¢ s G / ( )
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where®

1 2 2 2
N, = 302400(n+7)(n+6)(n—|—5) (n+4)*(n+3)*(n+2)(n+1) (A.3)

= 16,126,672, 2772, 9504, 28314 . ..

When m = n—11is odd, the tensor 73!"3™ can be obtained from (A.1) by contracting

. . . QY. O O
a pair of indices; Tig! g™ =T g/ g™ " 1.

The explicit expressions for the first few tensors read as follows,

(6% 1 (6%
511 - E(;Bll ’
oo _ L[5t gaz) i( V)5 8e (A.4)
BiB2 T 19g | A1 B2 16 T V)i, | .
ai...q 1 (a as) 3 (x aza3)
BiBs = gro [5611 08, 509 (7'7)622533)] )

... 1 Qi _6044) 16(0415042 (041042 043044)

a4 ( 043044) 1
,31~~~5f T 9772 [5/31 Bs Z (B1 “ Bz (’)/ ’ ’y>/5354) + ﬁ(’y ' 7)(,3152 (7 ' ’y>/5354) )

Using the integration formula of [10,11] and the above 7-traceless tensors it follows that?

(A.5)

O T - A\ 120(8 +m +n)
_(>‘>‘) myar | \%n R — 79 ] ...00
[N RO xRy R, = (52 ) PR e

To see this it is enough to check that the right-hand side of (A.5) has the same symmetries
of the left-hand side and it is correctly normalized.
Let us define the tensor T 747 by [40]

——=01...05

Nadgh, TOV0108 s, (A.6)

where T°'"7° is given in (2.17). Since one can take o0

(afy) indices it follows from (A.4) that

® to be 7-traceless in the

arasasB1B2B3;01...05 1 —aiasas;01...05
Toipass T = &3t : (A7)

Theorem 1. Let f(A”+3,Xn,9) be a general superfield with ghost-number +3, then

(FOMBX0)) gy = (ONFN,0%)) (A.8)

8 N, can be obtained from (1 +¢)(14+4t+t*)(1—t)"tP =1+ > oq Nat™ [38,39].
9 Note that all numbers in (2.18) have a geometrical meaning. The number 8 is the ghost
anomaly (the first Chern class of the projective pure spinor space), 11 is the complex dimension

of the pure spinor space and 12 is the degree of the projective pure spinor space [10,38].
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where

FO®,07) = 672\ NP2 p\Pa TLegnss glaelna o gor g,

B1---Bn+3 Y 01...0n43;01...05

Proof. Integrating the right-hand side of (A.8) over [dr| and [df] using the measures of
(2.14) and the definition (2.20) yields

RHS = 11!5! ¢,.cq /[d)\] [dX]e_O‘X) 672(AN) T3 AP \B2 \Bs P WO

Y17273501...05 01...0n+3 B4---,Bn+3
X T T 1---Bn+3 fgl...0n+3;51...55'

Given that the 7 tensors are normalized such that Tgllg: = 1 the integration over the

pure spinors A and \ using (A.5) leads to
Ay

RHS = 11! 5! ¢,c <—)
2T

H I'(8+m+n) 6727—,61,32,33T’Y172’Y3;51---55

01...0n Ba...0n
302400 LANERE T i fo) s

B1---Bn+3 4 01...0n43;01...05

Ag H P<8 +m+ n) 7B1B2B3;01...05 —01...0n43 pB4---Pnis
N 11' 5‘ e (g) 302400 T Tﬁl"'IB/’LIB fo’l«««0'n+3;61---55 (Ag)

where (A.7) has been used in the second line. However it is easy to show that the evaluation
of the left-hand side of (A.8) is equal to (A.9), finishing the proof.

For completeness, note that oo defined in (A.6) is proportional to the pure
spinor correlator (A*A\? X791 . .095) (n,g)- Indeed, a short computation shows that
o )2 ( o )5/2 ['(8+n) R —apvyio1...05

AN\ Lo = (= — T : Al
( Jing) (2 A,/ 302400 672 (A.10)

As a consistency check, multiplying both sides by 7%1755272 5, (Ymnp)s,65 recovers (2.21),

m n a'\2 7 2m\3/2 I'8+n
(")) )y = (5 ) ()27 R
2 A, 7!
where we used that 777" Vorsy V5, Vs, (Ymnp)ssss = 5160960 [41].
As an example, the function f(A%, X, 0) = A2 \¥2 \@3 NV )\ g faﬁiazasm (0) can be easily
rewritten according to the Theorem 1 by using
X123y 2 « « « 0%
6T2X7 AT ATT L0 = S {O5INXTAT + (ay ¢ az, ag, )} (A.11)

1

12 ()\’)’m>51 {,-ya10¢2 )\043 )\044 + ,.),%1043/\&2 /\Ot4 + 7%1044 )\042 )\043

m

+ ,yoézota MY\ 7042044 AXT\XB 7%3044)\041 22 }:| )

m m
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A.1 Factoring (AN)® from L7y, (M N, ) and Tia3.4(\ A7)

Because of the constraint (2.2) the definition (3.10) can be written as

Lf234()\, X, 7“) = (/\’YG’Yb’)/CT) (/\’)’d f?“) ()\,yadefm)\) (X,yn,ym,ypr> (X,yqrsr) ()\,ynqrsu/\>
X (99" r) ey i) (A P97 X) [ W) (AP W) (M W) AZ] - (A.12)

Applying the identity (Aymnpr) (Ay@™™PPN) = 48(AN) (Ay2ybr) — 48(My2yPA) (Ar) and using

the pure spinor constraint gives

Ligga (N, A 1) = =483 (AN 2 (A v ) (M 97er) (AyPy'r) (A.13)
X (A Y ) A W) ey 0 (M W) Ny iy "y ) (A" W3 ) A

where we also renamed indices. Using
A" APA ) (AP 2) = =Py ) (P W) — (AP X) (r P W), (AL14)
in the last three factors and doing straightforward algebra yields,

Tasa(A A, 1) = 487 8(AN)°Q (A.15)
+ (Ay*y? M) (ry W) (ry W) Ay T W)

M) (ry W) (W) (ry T W)
YOV PW ) (ry W) (ry T W)

) )( )

)( ) )

) )( )

S8

r)
AYy%r)

(
+
+ (i) (M yer
(
+

(Ayy°r)

(Mcver)

( )

— (M) (M)
)

)

(A

9
9

/\’)/a’)’d)\ r’y“le r deW2 r ch3
T’}/abWI T”}/deWQ r cfw3

,r,,_yabwl (,r,,_ydew2 T’)/CfW3

2
2

v

) )
Moy r) (At )
AYY°A)
7r)(

2

(
(
(MyTr
(
(A

I (

(
(
(
+ (A ytr (M vy (

)
+ 483800 (M) X ) W) (T2 (7 )

It is easy to check that (A.15) is totally antisymmetric in [123] as required. The terms
proportional to (AX)® Q will be rewritten using (A.11) and we identified (A\r) = Q because of
the factor e~ (" in A/. Despite the explicit appearance of the BRST charge in some terms,
they are not BRST-trivial because of the remaining factor X\. However, since Q2 = 0 and the
difference between (Ay*v?r) and (Ay%?r) is proportional to (), one can replace all factors of
(AY2v%7) by (Ay??r). Doing this replacement is also allowed in the last term because there
are no factors of A, so the BRST charge vanishes in the cohomology. Similarly, (Ay%y9\)
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can be substituted by (Ay?9)) since the difference is BRST-trivial due to the resulting
factor of Q(AX)S. Therefore (A.15) becomes

Tasa(A A, 1) = 48% 8(Fi23 + Fy12 + Fagi — Gizs — Gsi2 — Gag1 + Higs) Af (A.16)
where

Fiog = ()\X)SQ(/\'y“dr)()\'ycer)()\’ybfr)(r'y“le)(r’ydeWz)(X’ych?’) , (A.17)
Gio3 = ()\X)E’Q()qcer)()war)()q“dX)(rv“le)(rvdeWQ)(rych:)’) , (A.18)
Hizs = (O r) (A r) T (ry W (ry W)y W?2) . (A19)

It is not difficult to show that Hio3 is totally antisymmetric in [123] whereas Fio3 and G123
are antisymmetric in [12].

Let us rewrite the superfield Fio3 using the Theorem 1. Since the y-matrix traceless
tensors are normalized such that 7;%t-:* = 1, the factor (A)® is inert under the appli-
cation of the theorem and one can use (A.11) directly. Furthermore, all terms which still
contain an explicit BRST charge after using (A.11) will be BRST-trivial because of the
factor (AX)®. So in fact only four terms in (A.11) are non-vanishing when applied to Fia3.
After straightforward algebra and discarding BRST-exact terms,

2 —
Fiag = o2 ()| = (™) (0 r) Q0 r) (ry " W) (ry W) (ry T W)

ORI () () () (4 )
+ E(Mder)(M“f ) () (ry W) (ry W) (ry T W) (A.20)

which implies that Fio3 = —ﬁngg (and similarly G123 = ﬁngg). Plugging these results
into (A.16) and taking into account the total antisymmetry of H,;, one finally obtains

Li23 = (48340/11) Hy23. Identical manipulations apply to Ti23.4, S0

— 48340  —
Tasa (A A1) = — AN MY ) (M Per) (A ®er) (ry W) (ry W 2) (ry S W3) A
By 483 40+ 6 af be de ab cd ef
Tia34(N A1) = 1 (AN (MY ) (A" r) (A5 er) (ry " Waz) (ry““Ws) (ry® Wy )

(A.21)
Similar manipulations can be used in S7%5,(A, A, 7) but for historic reasons we computed the
five covariant derivatives before rewriting it with the factor (AX)%. The resulting expression

is not particularly illuminating and was therefore omitted.
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Appendix B. Integration by parts

Noting that one can replace A(z;; zx; 21) X1, by A(21; 2x; 21) X1, in (3.26) because U;U; ~
(dWi5)(25)ni5 = (dWij)(2i)ni; it is straightforward to show that the identities which elim-

inate Xq; and Ylj are given by

A(1,3,4)A(2,3,4) X19X 10 = A(1,3,4)A(1,3,4)(Xa3 + Xog)(Xa23 + Xo4)
+ A(1,3,4)A(2,3,4)512Q21 — A(1,2,4)A(1,3,4) 593030
+ A(1,2,3)A(1, 3,4) 5240
A(1,3,4)A(1,2,4)X15X 13 = (X3 + Xoa)(— X3 + X34)A(1,3,4)A(1,2,4)
+ 523003A(1,3,4)A(1,2,4),
A(1,3,4)A(1,2,4) X 19X 05 = [(X23 + Xo4)Xo3 — 523003 | A(1,3,4)A(1,2,4),
A(1,3,4)A(1,2,3) X 15X 34 = (Xo3 + Xo24) X34A(1,3,4)A(1,2,3), (B.1)

where we used that

0 Xji =50, 0iXji =5, 0:Xij = —5i;Q4i, 0, X5 = —54;Q; (B.2)

and defined Q;; = (o//2)7Q(2;, 2;). All other identities needed to write |F|? in a basis of
integrals follow from the above by relabeling. Applying them together with

implies that |F|? is equal to

+|Cs2,1,4|% (X253 X 23 — 5230023) A(1,3,4)A(1, 2, 4) (B.4)
— |Cou.1.32(X2aX 24 — 524Q024)A(1,3,4)A(1, 2, 3)

+ |C34.1.0/% (X34 X 34 — 534034)A(1,2,4)A(1,2, 3)

+032,1,4624,1,3X23724A(1,2 4)A(1,3,4) +O32,1,4é34,1,2X23734A(1 3,4)A(1,2,4)
+024,1,3632,1,4X24723A(1,3,4) (1,2,4) +024,1,3é34,1,2X24734A(1 3,4)A(1,2,3)

+ C34.12039.1.4 X34 X 23A(1,2,4)A(1, 3,4) +C34,1,2C~'24,1,3X34724A(1 2,4)A(1,3,4)
+S1QQ12|M12,3,4|2A(2,3 4)A(1,3,4) — 813@13|M1324|2A(2 3,4)A(1,2,4)

+ 51404 M1a 2,32 A(2,3,4)A(1, 2, 3) + 523003 Mas 1,47 A(1, 3,4)A(1, 2,4)

— 594Q04| Mo 1 3°A(1,3,4)A(1, 2, 3)

Y

) )

+834Qg4|M341 2|2A(1 2 4) (1 2 3)
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where we defined (the others follow from relabeling)
Cos1,3 = Mos13+ Mgz + Mizs.a. (B.5)

The o’-expansion of the above integrals has not been derived but one can argue from
the results of [42] that ;;7;; — Qijsi_jl and 7;;7;;, have no kinematic poles. Therefore
the leading-order contribution from (B.4) is given by the €;; terms and it follows from
relabeling of integration variables that they are all equal to & [ Q12A(2,3,4)A(1, 3,4) (the

sign is easy to obtain). Thus the low-energy limit of |F|? in (3.25) corresponds to!?

2 d?Q oy
—;Q;? ! M / Zg—ir(;]/HdQZszA (2,3,4)A(1,3,4)(K) _ 3)<H e =’ (B.6)

where we used Qp5 = m(a’/2)Q12 and defined,

T 2 T: 2 T 2 T 2 T; 2
IC:| 93.1 4| -l-‘ 24,1,3 +| 34.1,2] n +| 13,2.4] +\ 14,2,3

(B.7)
523 S24 534 S12 513 S14

B.1 Open superstring

In the case of the open superstring it is not difficult to argue that the corresponding

low-energy limit is

T5341+ 14123 n T3412+T12,34
523 8534

jclopen) _

(B.8)

The component expansion of (B.8) provides a good consistency check for the methods of

[25] since one recovers the o % interaction of the open superstring tree-level amplitude [43],

(Toz 4.1+ Tu12,3) n (T34,12+T12,3.4)

= 1344 - 40 - 48° - 2880 A} 4,512513523.  (B.9)
S23 S$34

10" The minus sign compensates the “convention” ik™ — k™ in the Koba—Nielsen factor.
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