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1. Introduction

As discussed in [1], the bi-adjoint cubic scalar theory with the Lagrangian1

L =
1

2
∂mφi|a∂

mφi|a +
1

3!
fijkf̃abcφi|aφj|bφk|c (1.1)

gives rise to double-color-ordered tree amplitudes m(A|B),

Mn =
∑

ai,bi∈Sn/Zn

tr(ta1ta2 . . . tan)tr(t̃b1 t̃b2 . . . t̃bn)m(a1, . . . , an|b1, . . . , bn), (1.2)

and a diagrammatic algorithm to compute them was described. It was also demonstrated

that these double-color-ordered amplitudes are related to the entries of the field-theory

inverse KLT matrix [2,3,4] as well as the field-theory limit of string tree-level integrals

[5,6,7]; thus providing an alternative method for their calculation which does not involve

inverting a matrix nor evaluating any integrals [6].

The algorithm to compute m(A|B) described in [1] involves drawing polygons and

collecting the products of propagators associated to cubic graphs which are compatible with

both color orderings. Their overall sign, however, requires keeping track of the polygons

orientation in a process that can be challenging to automate. The connection of these

double-color-ordered amplitudes with the Cachazo–He–Yuan approach [8] led to other

recent proposals for their evaluation [9,10,11] (see also [12]).

Given the importance of the double-color-ordered tree amplitudes for the evaluation

of the field-theory limit of string disk integrals, a fully recursive and algebraic algorithm

to compute them will be given in this paper. This will be done using the perturbiner

approach of [13] (recently emphasized in [14]) to derive recursion relations for Berends–

Giele double-currents from a solution to the non-linear field equation of the action (1.1).

The double-color-ordered tree amplitudes are then computed in the same manner as in the

Berends–Giele recursive method [15].

Two immediate applications of this new method are given. In section 4, the relation

between the inverse field-theory KLT matrix and double-color-ordered amplitudes observed

in [1] is shown to greatly simplify when the amplitudes are written in terms of Berends–

Giele double-currents. And in section 6, the efficient evaluation of the field-theory limit of

string tree-level integrals for various color orderings will lead to a closed formula for BCJ-

satisfying tree-level numerators [16] at arbitrary multiplicity, tremendously simplifying the

case-by-case analysis of [17].

1 In (1.1) and (1.2), fijk and f̃abc are the structure constants of the color groups U(N) and

U(Ñ) and ti, t̃a are their generators satisfying [ti, tj ] = f ijktk and [t̃a, t̃b] = f̃abct̃c.
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1.1. On notation

Multiparticle labels correspond to words in the alphabet {1, 2, 3, 4, . . .} and are denoted

by capital letters (e.g., A = 1243) while single-particle labels are represented by lower

case letters (e.g., i = 4). A word of length |P | is given by P ≡ p1p2 . . . p|P| while its

transpose is P̃ = p|P|p|P|−1 . . . p2p1. The notation
∑

XY =P means a sum over all possi-

ble ways to deconcatenate the word P in two non-empty words X and Y . For example,
∑

XY =1234 TXTY = T1T234 + T12T34 + T123T4. The shuffle product � between two words

A and B is defined recursively by [18]

∅�A = A�∅ = A, A�B ≡ a1(a2 . . . a|A|�B) + b1(b2 . . . b|B|�A) , (1.3)

and ∅ denotes the empty word. To lighten the notation and avoid summation symbols,

labeled objects are considered to be linear in words; e.g., T1�23 = T123 + T213 + T231.

Finally, the Mandelstam invariants are defined by

sP ≡ k2P = (kp1
+ kp2

+ · · ·+ kp|P|
)2. (1.4)

2. Review of Berends–Giele recursions for Yang–Mills theory

In this section we derive the Berends–Giele currents for Yang–Mills theory [15] from a

solution to the non-linear field equations. This approach has been recently emphasized in

[14] and resembles the perturbiner formalism of [13]. The same procedure will be applied

in the next section to the bi-adjoint cubic scalar theory (1.1).

The Lagrangian of Yang–Mills theory is given by

L = −
1

4
tr(FmnF

mn), Fmn ≡ −[∇m,∇n] (2.1)

where ∇m = ∂m − Am(x) and Am(x) = A
a
m(x)ta is a Lie algebra-valued field with ta

the generators of a Lie group satisfying [ta, tb] = fabctc. The non-linear field equation

[∇m,Fmn] = 0 following from (2.1) can be rewritten in the Lorenz gauge ∂mA
m = 0 as

�A
n(x) = [Am(x), ∂m

A
n(x)] + [Am(x),Fmn(x)]. (2.2)

To find a solution to the equation (2.2) one writes an ansatz of the form [19,14]

A
m(x) ≡

∑

P

Am
P (x)tP , tP ≡ tp1tp2 . . . tp|P| (2.3)
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where the sum is over all words P restricted to permutations. One can check using a plane-

wave expansion Am
P (x) = Am

P ekP ·x that the ansatz (2.3) yields the following recursion,

Am
P = −

1

sP

∑

XY=P

[
AX

m(kX · AY ) +AX
n FY

mn − (X ↔ Y )
]
, (2.4)

where sP is the Mandelstam invariant (1.4), the field-strength Berends–Giele current is

Fmn
Y ≡ kmY An

Y − knY A
m
Y −

∑
RS=Y

(
Am

RAn
S − An

RA
m
S

)
and Am

i with a single-particle label

satisfies the linearized field equation �Am
i = 0.

It can be shown [20] that the recursion (2.4) is equivalent to the recursive definition

for the Berends–Giele current Jm
P derived in [15] using Feynman rules for the cubic and

quartic vertices of the Lagrangian (2.1). Note however that (2.4) contains only “cubic”

vertices; the quartic interactions are naturally absorbed by the non-linear terms of the

field-strength. This is conceptually simpler than previous attempts for absorbing those

quartic terms [21].

One can also show using either group-theory methods [22] or combinatorics of words

[14] that the currents Am
P satisfy

Am
A�B = 0, ∀A,B 6= ∅ ⇐⇒ Am

PiQ − (−1)|P|Am
i(P̃�Q)

= 0, (2.5)

which guarantees [23] that the ansatz (2.3) is a Lie algebra-valued field (the equivalence

between the two statements in (2.5) follows from the theorems proved in [23] and [24]).

Finally, the color-ordered tree-level n-point amplitude is given by [15]

AYM(1, 2, . . . , n) = s12...(n−1)A
m
12...(n−1)A

m
n . (2.6)

As a consequence of the Berends–Giele symmetry (2.5), the amplitude (2.6) manifestly

satisfies the Kleiss–Kuijf symmetry [25];AYM(P, 1, Q, n) = (−1)|P|AYM(1, P̃�Q, n). Alter-

native proofs of this statement are given in [26,27].

3. Berends–Giele recursions for the bi-adjoint cubic scalar theory

In this section we derive recursion relations for Berends–Giele double-currents using a

perturbiner expansion for the solution of the non-linear field equations obtained from the

bi-adjoint cubic scalar Lagrangian. These double-currents will then be used to compute

the tree-level double-color-ordered amplitudes.
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3.1. Berends–Giele double-currents

The field equation following from the Lagrangian (1.1) can be written as

�Φ = [[Φ,Φ]] , (3.1)

where we defined Φ ≡ φi|at
it̃a and [[Φ,Φ]] ≡ (φi|aφj|b−φj|aφi|b)t

itj t̃at̃b. Following [19,14], a

solution to the field equation (3.1) can be constructed perturbatively in terms of Berends–

Giele double-currents φP |Q with the ansatz,

Φ(x) ≡
∑

P,Q

φP |Q tP t̃Q ekP ·x, tP ≡ tp1tp2 . . . tp|P | (3.2)

Since the ansatz (3.2) contains the plane-wave factor ekP ·x (as opposed to ekQ·x), in order to

have a well-defined multiparticle interpretation φP |Q must vanish unless P is a permutation

of Q, i.e. φP |Q ≡ 0 if P \ Q 6= ∅. Plugging the ansatz (3.2) into the field equation (3.1)

leads to the following recursion

φP |Q =
1

sP

∑

XY=P

∑

AB=Q

(
φX|AφY |B − (X ↔ Y )

)
, φP |Q ≡ 0, if P \Q 6= ∅, (3.3)

where sP is the multiparticle Mandelstam invariant (1.4) and the single-particle double-

current2 satisfies the linearized equation �φi|i(x) = 0; therefore φi|i(x) = φi|ie
ki·x with

k2i = 0 can be normalized such that φi|i = 1. Since the right-hand side of (3.3) is antisym-

metric in both [XY ] and [AB], the combinatorial proof of the Berends–Giele symmetry

(2.5) given in the appendix of [14] also applies to both words in the double-currents φP |Q,

φA�B|Q = 0 ⇐⇒ φAiB|Q = (−1)|A|φi(Ã�B)|Q, (3.4)

and, in particular, φAi|Q = (−1)|A|φiÃ|Q (with similar expressions for the symmetries

w.r.t the word Q in φP |Q). The symmetries (3.4) generalize the standard Berends–Giele

symmetry (2.5) to both sets of color generators and guarantee that the ansatz (3.2) is a

(double) Lie series [23], thereby preserving the Lie algebra-valued nature of Φ(x) in (3.1).

Using φi|j = δij a few example applications of the recursion (3.3) are given by

φ12|12 =
1

s12

(
φ1|1φ2|2 −φ2|1φ1|2) =

1

s12
, φ12|21 =

1

s12

(
φ1|2φ2|1−φ2|2φ1|1) = −

1

s12
(3.5)

as well as

φ123|123 =
1

s123

(
φ12|12 + φ23|23

)
=

1

s123

( 1

s12
+

1

s23

)
, (3.6)

φ123|132 =
1

s123
φ23|32 = −

1

s23s123
.

In the appendix B, the Berends–Giele double-current φP |Q is given an alternative repre-

sentation in terms of planar binary trees and products of epsilon tensors.

2 In a slight abuse of notation, the single-particle double-current φi|i(x) in the ansatz (3.2) is

not the same field appearing in the Lagrangian (1.1); it corresponds to its linearized truncation.
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3.2. Double-color-ordered amplitudes from Berends–Giele double-currents

Without loss of generality, one can use that m(R|S) is cyclically symmetric in both words

R and S to rewrite an arbitrary n-point amplitude as m(P, n|Q, n), where |P | = |Q| =

n− 1. Therefore, a straightforward generalization of the gluonic amplitude (2.6) using the

Berends–Giele double-currents yields a formula for the double-color-ordered amplitudes3

(recall that φn|n = 1),

m(P, n|Q, n) = sPφP |Q . (3.7)

It is easy to see using the symmetries (3.4) obeyed by the double-currents that the Kleiss–

Kuijf relations are satisfied independently by both sets of color orderings. Since the double-

currents φP |Q obey the recursion relation (3.3), the computation of double-color-ordered

amplitudes is easy to automate and their overall sign requires no additional bookkeeping4.

4. The field-theory KLT matrix and its inverse

In this section we demonstrate that the entries of the inverse field-theory KLT matrix

[2,3] (also called the momentum kernel matrix [4]) are equal to the Berends–Giele double

currents and therefore are easy to compute. This computational simplicity is important

because, apart from applications related to gauge and gravity amplitudes, the field-theory

KLT matrix and its inverse relate [7] the local and non-local versions of multiparticle super

Yang–Mills superfields5

M1A =
∑

B

S−1[A|B]1V1B , V1A =
∑

B

S[A|B]1M1B, (4.1)

with manifold applications in recent developments within the pure spinor formalism applied

to the computation of scattering amplitudes in both field- and string theory [5,30,31,32].

3 The convention for the sign of the Mandelstam invariants here is such that mhere(P,n|Q,n) =

(−1)|P |mthere(P,n|Q,n) in comparison with the normalization of [1].
4 An implementation using FORM [28] is attached to the arXiv submission.
5 The relations (4.1) apply for all types of SYM superfields (Aα, Am,Wα, . . .) [29]. The restric-

tion to VP in (4.1) was chosen for simplicity.
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4.1. The field-theory KLT matrix

The symmetric matrix S[P |Q] defined by

S[P |q1q2 . . . q|Q|] ≡

|Q|∏

j=2

j−1∑

i=1

s(P |qi, qj), s(P |qi, qj) ≡

{
sqiqj , qi < qj inside P
0, otherwise

(4.2)

gives rise to the KLT matrix S[A|B]i when the first letters on both words coincide

S[A|B]i ≡ S(i, A|i, B) . (4.3)

For example, the definition (4.3) for i = 1 leads to S[2|2]1 = s12 as well as

S[23|23]1 = s12(s13 + s23),

S[234|234]1 = s12(s13 + s23)(s14 + s24 + s34),

S[243|234]1 = s12(s13 + s23)(s14 + s24),

S[324|234]1 = s12s13(s14 + s24 + s34),

S[23|32]1 = s12s13,

S[423|234]1 = s12(s13 + s23)s14,

S[342|234]1 = s12s13(s14 + s34),

S[432|234]1 = s12s13s14.

4.2. The inverse KLT matrix

The inverse KLT matrix S−1[A|B]i can be computed from the entries (4.3) using standard

matrix algebra. However, this task quickly becomes tedious in practice and the direct

outcome of the matrix inversion usually requires further manipulations to be simplified.

Fortunately it was proven in [1] that the entries of S−1[A|B]i correspond to the double-

color-ordered amplitudes6,

S−1[A|B]i = −m(i, A, n− 1, n|i, B, n, n− 1), |A| = |B| = n− 3, (4.4)

completely bypassing the tedious matrix algebra necessary to invert the KLT matrix (4.2).

With the Berends–Giele representation of double-color-ordered amplitudes (3.7) the com-

putation of S−1[A|B]i does not require the extra labels n− 1, n since (4.4) simplifies to

S−1[A|B]i = φiA|iB . (4.5)

To see this one uses the Berends–Giele amplitude formula (3.7) in (4.4) to obtain

S−1[A|B]i = −siA(n−1)φiA(n−1)|(n−1)iB = (−1)|A|siA(n−1)φ(n−1)Ãi|(n−1)iB (4.6)

= (−1)|A|φ(n−1)|(n−1)φÃi|iB = φiA|iB .

6 The overall sign in (4.4) is different than in [1] due to differences in conventions.
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In the first line the label (n− 1) has been moved to the front using (3.4)

φiA(n−1)|P = (−1)|A|+1φ
(n−1)(ĩA)|P

= −(−1)|A|φ(n−1)Ãi|P , (4.7)

and in the second line the condition φP |Q = 0 unless P is a permutation of Q implies that

siA(n−1)φ(n−1)Ãi|(n−1)iB = φ(n−1)|(n−1)φÃi|iB . For example,

S−1[23|23]1 = φ123|123 =
1

s12s123
+

1

s23s123
, S−1[23|32]1 = φ123|132 = −

1

s23s123
,

S−1[32|32]1 = φ132|132 =
1

s13s123
+

1

s23s123
, (4.8)

which agrees with the results of [7]. Higher-multiplicity examples follow similarly.

Using the Berends–Giele representation of the inverse KLT matrix (4.5), the first

relation in (4.4) simplifies to

M1A =
∑

B

φ1A|1BV1B, (4.9)

and therefore provides an efficient algebraic alternative to the diagrammatic method to

compute MP described in the appendix of [29].

5. The field-theory limit of tree-level string integrals

The n-point open-string amplitude computed using pure spinor methods in [5] can be

written in terms of (local) multiparticle vertex operators VP [29] as

A(Σ) =
∑′

XY =2...n−2

〈V1XV(n−1)Ỹ Vn〉ZΣ(1, X, n, Y, n− 1)(−1)|X| + P(23 . . . n− 2), (5.1)

where the deconcatenation in
∑′

XY includes empty words and ZΣ(N) is given by [7],

ZΣ(1, 2, 3, . . .n− 1, n) ≡
1

vol(SL(2,R))

∫

Σ

dz1dz2 · · ·dzn

∏n
i<j |zij |

α′sij

z12z23 · · · zn−1,nzn1
. (5.2)

The factor 1/vol(SL(2,R)) compensates the overcounting due to the conformal Killing

group of the disk7 and the region of integration Σ is such that zσi
< zσi+1

for all i = 1 to

i = |M | − 1. The pure spinor bracket 〈. . .〉 is defined in [33] but will play no role in the

subsequent discussion.

7 It amounts to fixing three coordinates zi, zj and zk and inserting a Jacobian factor |zijzjkzki|.
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As pointed out in [1], the field-theory limit of the string disk integrals (5.2) is given

by the double-color-ordered amplitudes,

lim
α′→0

ZP (Q) = (−1)|P|m(P |Q) . (5.3)

For example (I = 123 . . . n),

lim
α′→0

ZI(1243) = (−1)4m(1234|1243) = s123φ123|312 = −
1

s12
(5.4)

lim
α′→0

ZI(12354) = (−1)5m(12345|12354) = −s1234φ1234|4123 =
1

s12s123
+

1

s23s123
,

which agree with (C.1) and (C.5) of [7]. Higher-multiplicity examples follow similarly.

So the SYM tree amplitudes with color ordering Σ obtained from the field-theory limit

of the string amplitude (5.1) are given by

ASYM(Σ) =
∑′

XY =2...n−2

〈V1XV(n−1)Ỹ Vn〉m(Σ|1, X, n, Y, n−1)(−1)|Y |+1+P(23 . . . n−2). (5.5)

It was shown in [17] that a set of BCJ-satisfying numerators for SYM tree amplitudes

can always be obtained from the field-theory limit of the string tree-level amplitude (5.1),

and explicit expressions for numerators up to 7-points were given in that reference. Since

the Berends–Giele algorithm to evaluate the double-color-ordered amplitudes is easy to

automate, one can quickly obtain higher-point BCJ numerators this way. Studying their

patterns leads to a proposal for a general formula giving BCJ-satisfying tree-level numer-

ators for arbitrary multiplicities. This will be done in the next section.

6. Tree-level SYM amplitudes with manifest BCJ numerators

For the canonical ordering Σ = 123 . . . n it is easy to see that (5.5) reproduces the pure

spinor n-point SYM amplitude formula derived in [30]

ASYM(1, 2, . . . , n) = 〈E12...n−1Vn〉, EP ≡
∑

XY =P

MXMY , (6.1)

whereMX denotes the Berends–Giele current (4.9) associated with the multiparticle vertex

VX [29]. As discussed in [17], the amplitude (6.1) is the supersymmetric generalization of

the standard Berends–Giele recursions [15] and leads to an alternative proof of the Kleiss–

Kuijf relations [25] (originally proven in [26]).
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To prove that (5.5) reduces to (6.1) when Σ = 123 . . . n, note thatm(Σ|1, X, n, Y, n−1)

simplifies when X and Y are also canonically ordered (which is the case for (5.5)),

m(12 . . . n|1, X, n, Y, n−1) = s12...n−1φ12...n−1|Y (n−1)1X = −φ1X|1XφY (n−1)|Y (n−1). (6.2)

Therefore the field-theory limit of the string tree amplitude given in (5.5) becomes

ASYM(12 . . . n) =
∑′

XY =2...n−2

〈V1XV(n−1)Ỹ Vn〉φ1X|1XφY (n−1)|Y (n−1)(−1)|Y | + P(23 . . . n− 2)

=
∑′

XY=2...n−2

〈M1XMY (n−1)Vn〉 =
∑

XY =1...n−1

〈MXMY Vn〉 = 〈E12...n−1Vn〉, (6.3)

where φY (n−1)|Y (n−1) = φ(n−1)Ỹ |(n−1)Ỹ was used before applying (4.9) to identify M1X =
∑

P φ1X|1PV1P and M(n−1)Ỹ =
∑

P φ(n−1)Ỹ |(n−1)PV(n−1)P = (−1)|Y |MY (n−1). Note that

the permutations over 23 . . . n− 2 do not act on the labels corresponding to the canonical

ordering in φ1X|1X such that φ1X|1XV1X + P(23 . . . n− 2) =
∑

P φ1X|1PV1P .

However, for general color orderings (5.5) and (6.1) no longer manifestly coincide. For

example, the field-theory limit of the string amplitude (5.5) with ordering 12435 is

ASYM(1, 2, 4, 3, 5) =
〈(V12V43 + V123V4)V5〉

s12s124
−

〈(V1V423 + V13V42)V5〉

s24s124
+

〈V12V43V5〉

s34s12

−
〈V1V432V5〉

s34s234
−

〈V1V423V5〉

s24s234
, (6.4)

while the field-theory formula (6.1) yields

ASYM(1, 2, 4, 3, 5) = 〈E1243M5〉 = 〈
(
M124M3 +M12M43 +M1M243

)
M5〉 (6.5)

=
〈V124V3V5〉

s12s124
+

〈V421V3V5〉

s24s124
+

〈V12V43V5〉

s12s34
+

〈V1V243V5〉

s24s34
+

〈V1V342V5〉

s34s234
.

One can see from (6.5) and (6.4) that the numerators generated by the SYM amplitude

formula (6.1) are mapped to the following BCJ-satisfying numerators in the string theory

amplitude,
V124V3 → V12V43 + V123V4,

V421V3 → −V1V423 − V13V42,

V1V243 → −V1V423,

V1V342 → −V1V432.
(6.6)

Comparing the field-theory limit of the string amplitude (5.5) for various orderings with the

outcomes of the SYM amplitude (6.1), one can check that the BCJ-satisfying numerators

following from the string tree amplitude can be obtained by a mapping ◦ij defined by

ViAjB ◦ij VC ≡
∑

α∈P (γ)

ViAαVjβ , γ ≡ {B, ℓ(C)}, β ≡ γ\α, (6.7)

VAiB ◦ij VCjD ≡ VAiBVCjD
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acting8 on the field-theory numerators given by the SYM amplitude (6.1). In (6.7), P (γ)

denotes the powerset of γ, ℓ(C) is the left-to-right Dynkin bracket [18],

ℓ(c1c2c3 . . . c|C|) ≡ [[. . . [c1, c2], c3], . . . , ], c|C|] (6.8)

and ℓ(C) is considered a single letter in the definition of the powerset of γ = {B, ℓ(C)};

the number of elements in P (γ) is 2|B|+1.

The mapping (6.7) ensures that the labels i and j never belong to the same vertex

VA or VB in the product VA ◦ij VB . This corresponds to the label distribution in the string

theory formula (6.3) if i = 1 and j = n−1 and is the result of fixing the Möbius symmetry

of the disk. For example, in a five-point amplitude one chooses i = 1 and j = 4 to get,

V124 ◦14 V3 = V12V43 + V123V4 (6.9)

V142 ◦14 V3 = V1V423 + V12V43 + V123V4 + V13V42

V421 ◦14 V3 = −V1V423 − V13V42

Defining MX ◦ij MY by its action on the products of VA ◦ij VB from the expansion of MX

and MY given by (4.9) one can check a few cases explicitly that the following superfield is

BRST closed (Q is the pure spinor BRST charge [33])

E
(ij)
P ≡

∑

XY=P

MX ◦ij MY =⇒ QE
(ij)
P = 0, ∀i, j ∈ P. (6.10)

Assuming that E
(ij)
P is BRST invariant to all multiplicities, one is free to use this “gauge-

fixed” version of EP in the SYM amplitude formula (6.1) to obtain

ASYM(1, 2, 3, . . . , n) ≡ 〈E
(ij)
123...n−1Vn〉, i, j ≡ (1, n− 1) . (6.11)

By construction, the SYM amplitudes generated by the formula (6.11) manifestly coincide

with the field-theory limit of the string tree amplitude and therefore give rise to BCJ-

satisfying numerators for all n-point tree amplitudes. Incidentally, the powerset appearing

in the definition (6.7) naturally explains why the number of terms in BCJ-satisfying nu-

merators is always a power of two, as firstly observed in [17].

8 It suffices to define ◦ij as in (6.7) since the generalized Jacobi identity VAiB = −Viℓ(A)B [14]

can always be used to move the label i to the front.
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In the appendix A the mapping (6.7) is shown to be the kinematic equivalent of the

color Jacobi identity which expresses any cubic color graph in a basis where labels i and j

are at the opposite ends.
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Appendix A. Proof of manifest BCJ numerators

In this appendix we prove that the rewriting of field-theory numerators given by (6.7)

corresponds to the Jacobi identity obeyed by structure constants.

In a BCJ gauge of super Yang–Mills superfields, the multiparticle vertex operator VP

satisfies generalized Jacobi identities (see e.g. [18]) and therefore its symmetries correspond

to a string of structure constants [29]

VAiB = −Viℓ(A)B ⇐⇒ V1234...p ↔ f12a3fa33a4fa44a5 · · · fappap+1 , (A.1)

where ℓ(A) denotes the Dynkin bracket (6.8). Similarly, the symmetries of three vertices

are mapped to

ViAjBVCVn ⇐⇒ (−1)|C|F (i, A, j, B, n, C̃) , (A.2)

where F (A) is the multi-peripheral color factor [26]

F (1, 2, 3, . . . , (n− 1), n) ≡ f12a3fa33a4fa44a5 · · · fa(n−1)(n−1)n. (A.3)

Applying the generalized Jacobi identity (A.1) either once or twice, any multi-peripheral

color factor can be rewritten in the Del Duca–Dixon–Maltoni (DDM) basis of [26]

F (A, i, B, j, C) =

{
F (i, ℓ(A), B, ℓ̃(C̃), j), A 6= ∅, C 6= ∅
−F (i, B, ℓ̃(C̃), j), A = ∅, C 6= ∅

(A.4)

where ℓ̃(P ) = ℓ̃(P ). One can also derive a closed formula to arrive at the DDM basis while

keeping track of the relative positions of three labels (say i, j and n),

F (i, A, j, B, n, C) = −F (i, A, ℓ̃(C̃nB̃), j), C 6= ∅ (A.5)

=
∑

α∈P (γ)

(−1)|β|F (i, A, α̃, n, β, j), γ ≡ {ℓ(C̃), B̃}, β ≡ γ\α

11



where P (γ) is the powerset of γ and ℓ(C̃) is to be considered a single letter in P (γ). To

arrive at the second line one uses the identity9 (see [34])

ℓ(PnQ) =
∑

α∈P (γ)

(−1)|β|+1β̃ n α, P 6= ∅, γ ≡ {ℓ(P ), Q}, β ≡ γ\α (A.6)

Finally, combining the results above one gets

ViAjBVCVn → (−1)|C|F (i, A, j, B, n, C̃) (A.7)

= (−1)|C|
∑

α∈P (δ)

(−1)|β|F (i, A, α̃, n, β, j), δ ≡ {ℓ(C), B̃}, β ≡ δ\α

→ (−1)|C|+1
∑

α∈P (δ)

ViAα̃Vjβ̃Vn

=
∑

α∈P (γ)

ViAαVjβVn, γ ≡ {B, ℓ(C)}, β ≡ γ\α

= ViAjB ◦ij VCVn

where in the penultimate line we transposed the set δ (while considering ℓ(C) a single

letter) and used ℓ̃(C) = (−1)|C|+1ℓ(C) when ℓ(C) is part of a multiparticle label.

Therefore the expression (6.7) for the product ViAjB ◦ij VCVn is the kinematic coun-

terpart of the color identity (A.5).

Appendix B. Berends–Giele double-currents from scalar φ3 theory

In this appendix an alternative derivation of the Berends–Giele double-currents is given

which resembles the algorithm of [1].

The field equation �φ = φ2 of the standard scalar φ3 theory can be solved in a

perturbiner expansion as φ(x) =
∑

P φP e
k·xξP , where ξP = ξp1ξp2 . . . ξp|P| is an auxiliary

parameter and the coefficients φP obey the recursion relations of planar binary trees,

φi = 1, φP =
1

sP

∑

XY =P

φXφY , X, Y 6= ∅. (B.1)

It is straightforward to check that (B.1) gives rise to the recurrence relation for the Catalan

numbers, C0 = 1, Cn+1 =
∑n

i=0 CiCn−i, where Cn refers to the number of terms in the

pole expansion of φ12...n+1. Examples of φ123...n up to n = 4 are given by,

φ1 = 1, φ12 =
1

s12
, φ123 =

1

s12s123
+

1

s23s123
, (B.2)

φ1234 =
1

s1234

( 1

s12s123
+

1

s23s123
+

1

s12s34
+

1

s34s234
+

1

s23s234

)
.

9 When P = ∅, the sign factor is given by (−1)|β|.
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Note that the above binary trees naturally capture the kinematic pole expansion of “com-

patible channels” in a color-ordered tree amplitude.

The restriction of φP by an ordering given by a word A is denoted φP

∣∣
A
and is defined

by suppressing a term from φP if it contains any factor of sabcd... whose letters are not

adjacent in the word A. For example, if A = 1324 then

A = 1324 =⇒

{
s13, s23, s24, s123, s234, s1234 allowed
s12, s14, s34, s124, s134 not allowed

(B.3)

and the restriction of φ1234 by A = 1324 yields

φ1234

∣∣
1324

=
1

s1234

( 1

s23s123
+

1

s23s234

)
. (B.4)

Now define a sign factor as follows

ǫA|B ≡ ǫ(A|b1, b2)ǫ(A|b2, b3) . . . ǫ(A|bp−1, bp), ǫ(A|i, j) ≡

{
+1, i < j inside A
−1, i > j inside A

(B.5)

where “i < j inside A” is true if the letter i appears before j in A. For example,

ǫ(1324|1, 4) = +1 but ǫ(1324|4, 1) = −1. If P = 123 . . . p is the canonical ordering, the

sign factor simplifies to ǫ(P |Q) = ǫq1q2ǫq2q3 . . . ǫq|Q|−1q|Q|
where ǫij is the standard anti-

symmetric tensor; ǫij = +1 if i < j and ǫij = −1 if i > j.

One can check that the Berends–Giele double-currents (3.3) can be written as

φP |Q ≡ ǫ(P |Q)φP

∣∣
Q
. (B.6)

Comparing (B.6) with the algorithm of [1] one concludes that the cumbersome factor of

(−1)nflip of [1] admits a simpler representation in terms of epsilon tensors (this observation

was made en passant in [11]).
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