Reventilation episodes during the sapropel S1 deposition in the eastern Mediterranean based on holococcolith preservation

Alessandro Incarbona*1, Ramadan H. Abu-Zied2, Eelco J. Rohling3,4, Patrizia Ziveri5,6

1Università degli Studi di Palermo, Dipartimento di Scienze della Terra e del Mare, Via Archirafi 20-22, 90134 Palermo, Italy
2Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
3Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
4Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, United Kingdom
5Institute of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra 08193, Spain
6Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, Barcelona 08010, Spain

*Corresponding author: Alessandro Incarbona, e-mail: alessandro.incarbona@unipa.it; Telephone: +3909123864648

Abstract
Organic-rich layers (sapropels) represent the most pronounced perturbations to thermohaline circulation and environmental conditions in the eastern Mediterranean, in response to enhanced African monsoon activity and subsequent massive freshwater discharge into the basin. During the most recent event, sapropel S1 formed between 10.8 and 6.1 ka, when freshwater-driven stratification caused seafloor anoxia below ~ 1800 metres depth, as a result of both failure of deep water formation and enhanced productivity. Here we analyse coccolith assemblages from the open eastern Mediterranean that form a West-East transect across the basin. We focus on holococcoliths, which are specifically produced by coccolithophores as part of their life cycle during their haploid phase. Since holococcolith calcification is characterised by nano-crystals highly susceptible to dissolution we are testing their potential preservation under different bottom environmental conditions, including the effect of post-depositional oxidation. The comparison with benthic foraminifera in a core recovered close to Lybia reveals that holococcolith preservation is enhanced during seafloor reventilation and benthic foraminiferal repopulation in the middle to upper part of the record, before the actual sapropel termination. There are two such events of improved deep water oxygenation in the Aegean and Adriatic Seas at 8.2 and 7.4 ka. The latter episode marks the onset of the transition to restored circulation in the eastern Mediterranean Sea, due to resumption of deep water formation in the southern Aegean Sea and the conclusion of enhanced biogenic productivity.

Keywords
Coccoliths; preservation; DCM; Florisphaera profunda; Holocene.

1 – Introduction
Organic-rich layers, the so-called sapropels, have repeatedly been deposited on the eastern Mediterranean sea-floor during precession minima [Hilgen, 1991]. Enhanced summer insolation strengthened African monsoon precipitation and led to massive freshwater discharge, especially via the Nile River during S1, but during other sapropels also including large fluxes from currently dry river systems along the wider North African margin [Rossignol-Strick et al., 1982; Rohling et al., 2002, 2004; Osborne et al., 2008]. Deep water formation was prevented by freshwater buoyancy.
gain and a distinctive deep chlorophyll maximum (DCM) developed in the lower photic zone

[Rohling and Gieskes, 1989; Castradori, 1993; Kemp et al., 1999; Meier et al., 2004; De Lange et al., 2008; Rohling et al., 2015].

Sapropel S1 is the most recent organic-rich layer and is especially pronounced below 1800 m depth in the open eastern Mediterranean, between 10.8 and 6.1 kiloyears ago (ka) [De Lange et al., 2008; Grant et al., 2016]. Sapropel deposition was interrupted between 8.5 and 7.8 ka in the Aegean and Adriatic Seas [Castradori et al., 2003; Rohling et al., 2015]. Intermittent bottom water ventilation is evident from the occurrence of benthic foraminifera faunas within S1 in the Aegean and Adriatic Seas and on the edge of the basin, offshore Libya and Israel [Jorissen et al., 1993; Casford et al., 2003; Kuhnt et al., 2007; Abu-Zied et al., 2008; Schmiedl et al., 2010; Tesi et al., 2017]. The short time scales of benthic foraminiferal repopulation events suggest the absence of an extensively anoxic water column. Anoxia may instead have ‘draped’ the seafloor like a thin ‘blanket’, whose occurrence would be governed by the balance between advective oxygen supply and biological and chemical oxygen consumption [Casford et al., 2003].

Here we examine coccolith assemblages in S1 from three cores along a West-East transect across the eastern Mediterranean Sea. These cores were previously investigated and elemental proxies provide a precise estimate of the original vertical extent of sapropel S1 layers, including in the Libya offshore site where benthic foraminifera persistently survived [Castradori et al., 2003; Meier et al., 2004; Möbius et al., 2010]. This study aims to assess paleoenvironmental changes across the eastern Mediterranean transect during sapropel S1 deposition. We pay special attention to coccolith preservation and selective dissolution of holococcoliths, because coccoliths produced during the holococcolithophore life stage seem to be especially prone to dissolution during early diagenesis [Thomson et al., 2004; Crudeli et al., 2006; Incar bona and Di Stefano, 2018]. Different processes occurred during S1 deposition may have altered the calcite saturation state, which at present is at supersaturated levels throughout the Mediterranean Sea [Schneider et al., 2007]: 1) increased primary productivity and water column oxygen shortage affect the extent and the strength of dissolution and thus the lysocline [Paulmier et al., 2011; Barker, 2016]; 2) the anoxic remineralization of C$_{org}$ by sulphate reduction establishes an alkaline environment in interstitial pore waters, below the water/sediment interface [Ten Haven et al., 1987; Thomson et al., 2004]; 3) gypsum precipitation by Ca released by dissolving biogenic carbonate and SO$_4$ released from pyrite oxidation [Cita et al., 1977; Calvert, 1983; Ten Haven et al., 1987] occurs upon post-depositional diffusion of oxygen into the sediment [Van Santvoort et al., 1996; Thomson et al., 1999; De Lange et al., 2008]. Our study of the three cores in the West-East transect is ideal for assessing potential holococcolith sensitivity to different water column and bottom environmental conditions, to test the effect of post-depositional oxidation and to estimate the existence of vertical (depth) offsets determined by aggressive pore water dissolution.

2 – Local setting
The Mediterranean Sea oceanographic circulation flows through three vertical layers in an overall anti-estuarine pattern. Surface waters from the Atlantic Ocean occupy the first 100-200 m depth (Modified Atlantic Water – MAW) and undergo severe evaporative salt-enrichment while they flow eastward [POEM group, 1992; Millot, 1999]. The northern branch of MAW in the Sicily Channel (Atlantic-Ionian Stream) enters the eastern Mediterranean Sea and feeds the Mid-Mediterranean Jet (MMJ) [Robinson et al., 1999] (Fig. 1). MAW describes a large cyclonic gyre into the eastern Mediterranean basin [Pinardi and Masetti, 2000]. The MMJ flows to the central Levantine Sea and then it turns northwards becoming the Cilician Current and the Asian Minor Current [POEM group, 1992; Pinardi and Masetti, 2000; Malanotte-Rizzoli et al., 2014]. Our cores 562 and 569 are located within or very close to mesoscale anticyclonic gyres, core 563 is close to the MMJ path (Fig. 1).

Levante Intermediate Water (LIW) forms in winter due to surface cooling and evaporation near Rhodes [Malanotte-Rizzoli and Hecht, 1988]. LIW flows throughout the Mediterranean basin between 200 and 600 m depth and is a basic requisite for deep water formation. Eastern
Mediterranean Deep Water (EMDW) forms in the Adriatic and Aegean Sea and fills the Ionian and Levantine Sea bottom (Fig. 1) [POEM group, 1992]. Deep water formation in the Adriatic and Aegean Seas is promoted by winter heat flux loss, when northerlies blow [Josey et al., 2011; Rohling et al., 2015]. The eastern Mediterranean Sea is severely oligotrophic. Primary productivity reflects the nutrient depletion [Krom et al., 1991, 2010] and is relatively enhanced in winter, and very low in summer due to deepening of the thermocline and nutrientline [Klein and Coste, 1984; Allen et al., 2002; D’Ortenzio and D’Alcalà, 2009]. Satellite analysis defines 562, 563 and 569 core sites as ‘No Bloom’ areas, with chlorophyll maxima centred between December and March [D’Ortenzio and D’Alcalà, 2009].

3 – Material and Methods

Multicores 562 (Gulf of Sirte, 32.774°N, 19.191°E, 1391 m water depth), 563 (South of Crete, 33.718°N, 23.499°E, 1881 m water depth) and 569 (Eratothesian seamount, 33.452°N, 32.576°E, 1294 m water depth) were recovered during R/V Meteor cruise M51-3 (Fig. 1). A short sedimentological description is available in Meier et al. [2004] for 562 and 569. Both cores are made of nannofossil ooze with minor amounts of quartz and clay. The mismatch between Ba/Al and total organic carbon, δ¹⁵N and aminoacid curves clearly testifies to the occurrence of a post-depositional oxygenation front marked by the Mn/Al peak, but there is no a conclusive evidence for an S1 base, because the core did not reach that deep [Meier et al., 2004; Möbius et al., 2010] (Fig. 2). No lithological description is available for core 563, but even in this case a clear post-depositional oxygenation front is visible from elemental proxies [Möbius et al., 2010] (Fig. 2).

Coccolith analysis was carried out at 1 cm resolution, between 29 and 4 cm below sea floor (cmbsf) for core 562, between 30 and 5 cmbsf for core 563 and between 31 and 9 cmbsf for core 569. The coccolith analysis was carried out by observation with a polarized microscope at 1000 X magnification. Rippled smear slides were prepared following the standard procedure [Bown and Young, 1998]. A mean of 500 specimens within the entire assemblage was identified following the taxonomic concepts for living coccolithophores of Young et al. [2003] and Jordan et al. [2004].

Taxa were grouped in ‘placoliths’, ‘miscellaneous group’, ‘upper photic zone (UPZ) group’, ‘lower photic zone (LPZ) group’ and ‘holococcoliths’ [Di Stefano and Incarbona, 2004; Incarbona et al., 2010]. Placoliths include Emiliania huxleyi, small placoliths, small Gephyrocapsa, Gephyrocapsa muellerae and Gephyrocapsa oceanica. Miscellaneous group includes Helicosphaera spp., Syracosphaera histrica, Pontosphaera spp., Calcidiscus leptoporus, Coronosphaera spp., Braarudosphaera spp., Oolithus fragilis, Calcosolenia spp. and specimens of all the other species. UPZ group includes Syracosphaera pulchra, Umbellosphaera spp., Discosphaera tubifera, Rhabdosphaera spp. and Umbilicosphaera spp.. LPZ group includes F. profunda and a few specimens of Gladiolithus flabellatus. Holococcoliths include all the coccoliths produced during the holococcolithophore life stage.

Placoliths are r-strategist taxa: they grow and reproduce rapidly and bloom after nutrient fertilization [Young, 1994; Flores et al., 2000; Incarbona et al., 2010]. Among them, E. huxleyi is an opportunistic taxon that dominates today’s ocean assemblages [Young, 1994]. In the Mediterranean Sea, this taxon blooms in winter and spring, after vertical convection that fuels nutrients into the photic zone [Knappertsbusch, 1993; Di Stefano et al., 2011]. LPZ taxa and the species F. profunda peak in response to nutricline deepening within the photic zone [Molfino and McIntyre, 1990b, 1990a; McIntyre and Molfino, 1996; Beaufort et al., 1997]. UPZ and Miscellaneous taxa are K-strategists (low division rate) to weakly K-strategists [Young, 1994; Incarbona et al., 2010]. Holococcoliths are produced by coccolithophores during their haploid life phase. Although belonging to different species, they behave as a homogeneous group [Oviedo et al., 2015], preferring warm and oligotrophic surface waters [Kleijne, 1991; Knappertsbusch, 1993; Oviedo et al., 2015; D’Amario et al., 2017].
4 – Results

Emiliania huxleyi and *F. profunda* are the dominant taxa (Fig. 3-4). *Emiliania huxleyi* ranges between 37 and 68% in core 562, 41 and 65% in core 563, 33 and 64% in core 569 and is respectively 51, 52 and 48% on average. *Florisphaera profunda* ranges between 10 and 53% in core 562, 13 and 53% in core 563, 11 and 56% in core 569 and is respectively 30, 29 and 33% on average. Holococcoliths range between 1 and 16% (6% on average) in core 562, 1 and 14% (7% on average) in core 563 and 0 and 16% (5% on average) in core 569 (Fig. 4). Most of holococcolith specimens belong to *S. pulchra* HOL oblonga (*Calyptrosphaera oblonga*), as already observed in late Quaternary Mediterranean sediments [Crudeli et al., 2006; Di Stefano et al., 2015; Incarpona and Di Stefano, 2018]. All the other taxa are largely subordinate and account for less than 5% (Fig. 3). These taxa provide useful paleoecological information once grouped following their ecological preference (Fig. 4). Placoliths and LPZ curves are identical to those from the dominant *E. huxleyi* and *F. profunda* species and their correlation index is $R^2 = 0.70$, $R^2 = 0.85$ and $R^2 = 0.94$ respectively for core 562, 563 and 569. UPZ and Miscellaneous taxa show opposite trends between the eastern and western sites and a few abundance variations that overcome the error for a 95% confidence level (Fig. 4).

5 – Discussion

5.1 – DCM and sapropel productivity

In all three 562, 563 and 569 cores, there is an evident *F. profunda* abundance increase within the sapropel S1 layer (Fig. 5), which points to a deep nutricline and a distinctive DCM. DCM development has been reported in all micropaleontological groups [Rohling and Gieskes, 1989; Castradori, 1993; Kemp et al., 1999; Meier et al., 2004] and is thought to be the reason for increased productivity and increased biogenic barite accumulation in sapropels [Rohling and Gieskes, 1989; Rohling et al., 2015]. This agrees with similarity between the *F. profunda* and Ba/Al profiles from the three cores (Fig. 5; $R^2 = 0.65$ in core 562, $R^2 = 0.63$ in core 563 and $R^2 = 0.82$ in core 569). The dinoflagellate species Leonella granifera, a proxy for water stratification as a result of increased river input [Meier et al., 2004; Vink, 2004], shows the same pattern as *F. profunda* and Ba/Al in cores 562 and 569 [Meier et al., 2004]. *Florisphaera profunda* has been used as a proxy for paleoproductivity; more specifically, it was found to be inversely related to primary productivity in many low-latitude ocean settings [Beaufort et al., 1997; Hernández-Almeida et al., 2019]. This contrasts with enhanced productivity as inferred here for sapropel S1 by comparison with Ba/Al values. However, the behaviour of *F. profunda* in response to vertical column dynamics (stratification, upwelling and vertical convection) and in relation to productivity is not straightforward. There is a high correlation of organic carbon export and *F. profunda* fluxes in sediment traps of the Bay of Bengal and the Alboran Sea [Bárcecna et al., 2004; Stoll et al., 2007]. Even more importantly, an extensive review of the *F. profunda* abundance and primary productivity relationship in all the oceans led to the conclusion that, with very few local exceptions, there is no inverse correlation in the Mediterranean Sea [Hernández-Almeida et al., 2019].

Looking at the spatial distribution of single signals, *F. profunda*, Ba/Al and *L. granifera* [Meier et al., 2004] seem to be quite different in the three sites. Among others, the Ba/Al is a perfect bell-shaped curve in core 569 and is asymmetric in 562 and 563 (Fig. 5). *Florisphaera profunda* shows a single abundance decrease in the lower-middle S1 in 562 and 563 cores and high-frequency variability in 569 (Fig. 5). This suggests that, although the DCM and high productivity are widespread features in the eastern Mediterranean Sea, local signals were superimposed, likely due to meso-scale oceanographic activity and surface and subsurface water dynamics. This local overprinting is supported by different trends in single species and groups, such as miscellaneous and UPZ taxa (Figs. 3-4).

5.2 – Holococcolith preservation
There is a remarkable difference with the TOC pattern (as well as those of \(\delta^{15} \)N and the degradation index; Figure 2), which proves that there has been no influence of post-depositional sapropel oxidation ['burn down', Van Santvoort et al., 1996; Thomson et al., 1999; De Lange et al., 2008] on holococcolith preservation (Fig. 5). In other words, holococcoliths were already dissolved or preserved once the oxygen penetrated the water/sediment interface at the end of sapropel deposition.

Benthic foraminiferal peaks within sapropel S1 of core 562 (Fig. 5) have contributed to formulation of the ‘blanket’ hypothesis; i.e. the occurrence of a thin anoxic layer on the seafloor occasionally displaced by intermittent dense water production and bottom ventilation in the Adriatic and Aegean Seas and in the basin edges [Casford et al., 2003; Kuhnt et al., 2007; Abu-Zied et al., 2008; Triantaphyllou et al., 2016]. The comparison between holococcolith and benthic foraminifera abundances reveals the presence of three different steps in the upper part of the record (Fig. 5). The oxyphilic benthic foraminifera peak at 17.5 cmbsf (Si in Fig. 5) correlates with the sapropel interruption in the Adriatic and Aegean Seas centred at about 8.2 ka [Casford et al., 2003], likely due to monsoon activity weakening and/or northerly air outbreaks that led to surface cooling and temporary deep water formation [Rohling et al., 1997, 2015, 2019; Mercone et al., 2001; Casford et al., 2003]. A small, but statistically significant (Fig. 4), peak in holococcoliths is found in the oxidised S1 in all cores and attests to improved preservation in coincidence with the reventilation episode at 8.2 ka (Fig. 5). Above 13.5 cmbsf, a peak in the absolute number of benthic foraminiferal specimens is again associated with improved holococcolith preservation. This horizon, which occurred well before the end of sapropel deposition, is especially relevant because also indicate the final decline of a distinct DCM combined with high primary productivity, as visible in F. profunda and Ba/Al patterns (Fig. 5). Thus, this level highlights the beginning of the transition from sapropel to modern environmental conditions in the eastern Mediterranean Sea, characterised by oligotrophic conditions with a short phytoplankton blooming (placolith-bearing species among coccolithophores) centred around winter/early spring [Ziveri et al., 2000; Auliaherliaty et al., 2009; D’Ortenzio and D’Alcà, 2009; Oviedo et al., 2015; D’Amaro et al., 2017]. The subsequent step at 10.5 cmbsf, at the end of sapropel S1, led to persistent oxygen availability on the seafloor, re-population of oxyphilic benthic foraminifera assemblages and the preservation of holococcoliths that were resistant to pre-diagenetic dissolution [Kleijne, 1991]. The sequence described above is perfectly compatible with the occurrence of distinct reventilation episodes at 8.2 and 7.4 ka in the Aegean and Adriatic Seas, before the termination of sapropel deposition at 6.6-6.3 ka [Filippidi et al., 2016]. Both the 8.2 and 7.4 ka events would be caused by cool and arid conditions that led to improved deep water oxygenation and benthic foraminiferal repopulation.

Though benthic foraminifera were not analysed in cores 563 and 569, we assume that enhanced holococcolith preservation is still able to provide evidence of seafloor oxygen availability. On this basis, the three steps are identified in the upper part of the holococcolith record in cores 563 and 569 (Fig. 5). The only exception concerns an apparently missing holococcolith peak in core 569 at around the 8.2 ka event, which might be explained by the fact that this site is deeper than the 1800 m depth limit below which persistent anoxia dominated throughout S1 [De Lange et al., 2008]. Benthic foraminifera are usually present throughout the sapropel S1 layer in the Aegean Sea and the Adriatic Sea [Jorissen et al., 1993; Casford et al., 2003; Kuhnt et al., 2007; Abu-Zied et al., 2008; Schmiedl et al., 2010], which indicates a continuous supply of (seasonal to interannual) oxygen from today’s deep water formation sites that did not reach the open eastern Mediterranean Sea in sufficient volume. However, the three steps described above are still recognisable in the open eastern Mediterranean in terms of minor differences in benthic foraminifera assemblages, abundances, and derived oxygen indices on the eastern Mediterranean margin (Levantine Sea cores SL 112 and LC31) [Schmiedl et al., 2010]. This suggests that the occurrence of a discrete number of oxygen availability phases across the open eastern Mediterranean Sea since the sapropel interruption, in sites that were above or close to the 1800 m depth limit of permanent anoxia. Although detailed chronological constraints remain to be established for these events, the sequence...
of improved deep water oxygenation in the Adriatic and Aegean Seas [Filippidi et al., 2016] may provide a suitable explanation for this phenomenon.

Holococcoliths have a distinct preference for warm and oligotrophic water [Oviedo et al., 2015] and may be able to adapt to ongoing Mediterranean climate change, where surface water would be characterised by relatively high calcite saturation state, high temperature, stratification and nutrient limitation [D’Amario et al., 2017]. In accordance with their ecological preference, holococcoliths are especially abundant in eastern Mediterranean water samples [Oviedo et al., 2015; D’Amario et al., 2017]. Even though the Mediterranean waters are supersaturated with respect to calcite [Schneider et al., 2007], holococcolith diversity and abundance are reduced in surface sediments [Kleijne, 1991; Knappertsbusch, 1993], because of disaggregation into microcrystals and lysocline/seaﬂoor dissolution.

Poor holococcolith preservation within S1 may be explained by pre-diagenetic (lysocline) dissolution. The vertical lysocline extent and the calcite saturation state are affected by processes acting during sapropel deposition, including productivity variations and oxygen shortage [Paulmier et al., 2011; Barker, 2016]. Since primary productivity was higher during S5 deposition than during S1 deposition, and since euxinia extended toward shallow levels near the base of the photic layer [Rohling et al., 2006, 2015], different coccolith selective preservation might be expected in S5 than in S1. However, the coccolith distribution pattern during S5 is identical to S1, with no or rare holococcoliths and the preservation of delicate umbelliform species (i.e. D. tubifera and Umbellosphaera spp.) [Principato et al., 2006], which suggests that lysocline dissolution was ineffective or negligible in explaining holococcolith absence in sapropel layers.

Late Quaternary sapropels are associated with high concentrations of aragonite, alternating with high-Mg calcite in underlyng and overlying marls, both thought to be early diagenetic products [Calvert and Fontugne, 2001; Thomson et al., 2004]. During S1 deposition, anoxic remineralization of Corg by sulphate reduction would have enhanced sediment pore water alkalinity and thus enhanced diagenetic aragonite precipitation [Thomson et al., 2004]. However, the only study dealing with interstitial sapropel waters indicates that the pH was signiﬁcantly lower than in surrounding marls, due to anaerobic bacterial activity [Ten Haven et al., 1987]. The role of bacterial activity in driving different seafloor preservation was identiﬁed through comparison of sediment trap and surface sediment coccolith assemblages in the Gulf of California [Ziveri and Thunell, 2000]. There, a considerable number of species is lost (dissolved), and coccoliths show etching and fragmentation, on the anoxic seaﬂoor due to organic acid production by bacteria and subsequent acidification of the water/sediment interface or of the top centimetres of the sediment column. In contrast, coccoliths are well preserved and the taxonomic composition of coccolithophores is much more similar to that observed in trap samples where bottom conditions are aerobic.

Scanning electron microscope (SEM) observation of coccoliths shows a prevalence of overgrowths in marls, and a prevalence of fragmentation/etching in S1 sediments [Crudeli and Young, 2003; Crudeli et al., 2004]. This further supports that oxygen availability on the seafloor is key to holococcolith preservation in marls, and even within sapropel layers after episodes of reventilation. We also argue that holococcolith dissolution in S1 was limited to the top few centimetres of the sediment column, speciﬁcally < 9 cm in core 562, < 7 cm in core 563 and < 8 cm in core 569. These estimates relate to the thickness of the post-depositional sapropel ‘burn down’ (Fig. 2), which did not affect holococcolith preservation because they were already dissolved at the time of the initial oxygen penetration into the water/sediment interface.

The signal of F. profunda and Ba/Al decrease that marks the transition to modern eastern Mediterranean environmental conditions is widespread recorded, and is attributed to productivity decline in the photic zone, with limited to no impact of the seafloor oxygenation state. The abrupt decrease of F. profunda is seen throughout the Ionian, Adriatic, Aegean, and Levantine Seas [Giunta et al., 2003; Principato et al., 2003; Triantaphyllou et al., 2009b, 2009a, 2010, 2016; Incarbona et al., 2011; Incarbona and Di Stefano, 2018]. In cores 562, 563, and 569, this horizon resides 3-4 cm before the end of S1 deposition (Fig. 5). Assuming that the base of the sapropel is
very close to the base of sediment recovery at sites 562 and 563, and that S1 formed between 10.8 and 6.1 ka [Grant et al., 2016], we infer that the transition lasted about 750-1000 years. This duration estimate is much larger than a previous estimate of 100-200 years for re-oxygenation of the water column below 1500 m [Casford et al., 2003]. However, the latter likely is an underestimate because it ignores the inventory of reduced chemical species in the water column that would need to be overcome, as well as the oxygen demand involved in re-oxidation ("burn down") of the sapropel after re-oxygenation of the overlying water column [Casford et al., 2003]. Alternatively, the recovery of seafloor oxygenation may have suffered from a lower rate of dense water production, and consequently limited oxygen supply, relative to that involved in modern EMDW circulation. In any case, the 750-1000 years taken by the transition is compatible with the interval between restored deep water formation in the Aegean Sea (7.4 ka) and the end of sapropel deposition (6.3 ka) [Filippidi et al., 2016].

6 – Conclusions
Coccolith assemblages from three cores (M51-3 562, 563 and 569) along a West-East transect across the open eastern Mediterranean Sea have been investigated. Data from the most recent sapropel layer (S1) reveal development of a distinct DCM, indicated by increased abundance of F. profunda. A strong correlation between F. profunda and Ba/Al in all cores supports previous reconstructions that productivity especially increased in the lower photic zone [Rohling and Gieskes, 1989; Castradori, 1993; Kemp et al., 1999; Meier et al., 2004].

Comparison with TOC, δ¹⁵N, degradation index, Ba/Al and Mn/Al proves conclusively that there was no influence of post-depositional sapropel oxidation on holococcolith preservation. Sapropel S1 holococcolith peaks in core 562 are associated with benthic foraminiferal repopulation episodes. The first episode can be correlated with sapropel interruption in the Adriatic and Aegean Seas. The second episode marks the onset of the transition to modern environmental conditions in the eastern Mediterranean Sea, coinciding with the final decline of high productivity. These two events are also visible in our other cores, except for the event associated with sapropel interruption in core 563, which is explained by the fact that this core was recovered from a site below the depth of permanent anoxia (De Lange et al., 2008). The two events are also compatible with reports of cool and arid conditions at 8.2 and 7.4 ka in the Aegean and Adriatic Seas [Filippidi et al., 2016].

Acknowledgments: AI acknowledges funding by Italian Ministry of Education, Universities and Research through grant PJ_RIC_FFABR_2017_161560.

Bibliographic references

Barker, S. B. T.-R. M. in E. S. and E. S. (2016), Dissolution of Deep-Sea Carbonates, in

Jorissen, F. J., A. Asioli, A. M. Borsetti, L. Capotondi, J. P. de Visser, F. J. Hilgen, E. J. Rohling, K. van der Borg, C. Vergnau

Robinson, A. R., J. Sellschopp, A. Warn (2003), Late Pleistocene POEM gro

Rohling, E. J., and W. W. Gieskes (1989), Late Quaternary changes in Mediterranean intermediate

Captions

Figure 1: Bathymetric map of the eastern Mediterranean Sea and cores location. The black arrow indicates the path of MAW. The black circles indicate the location of M51-3 562, 563 and 569 cores. AIS: Atlantic Ionian Stream. MMJ: Mid-Mediterranean Jet. CC-AMC: Cilician Current and Asian Minor Current. A: Adriatic Sea deep water formation site. B: Anticyclone in the Gulf of Sirte. C: Aegean Sea deep water formation site. D: Western Cretan Gyre and intermediate water formation site. E: Shikmona summer Gyre.

Figure 2: Downcore variations of geochemical and benthic foraminifera data at 562, 563 and 569 cores plotted versus depth (centimetres below sea floor - cmbsf). Black and dashed lines in Ba/Al and Mn/Al curves respectively refer to data from Möbius et al. [2010] and Meier et al. [2004]. The vertical dark grey band indicates the extent of visible sapropel S1. The vertical light grey band indicates the extent of burn down sapropel S1.

Figure 3: Downcore variations of selected coccolith species at 562, 563 and 569 cores plotted versus depth (centimetres below sea floor - cmbsf). Black lines are 3-pt running averages. Vertical bars show the 95 % confidence level error associated to the counting for each taxon. The vertical dark grey band indicates the extent of visible sapropel S1. The vertical light grey band indicates the extent of burn down sapropel S1.
Figure 4: Downcore variations of coccolith groups at 562, 563 and 569 cores plotted \textit{versus} depth (centimetres below sea floor - cmbsf). Black lines are 3-pt running averages. Vertical bars show the 95\% confidence level error associated to the counting for each taxon. The vertical dark grey band indicates the extent of visible sapropel S1. The vertical light grey band indicates the extent of burn down sapropel S1.

Figure 5: Downcore variations of coccolith taxa, geochemical and benthic foraminifera data at 562, 563 and 569 cores plotted \textit{versus} depth (centimetres below sea floor - cmbsf). Black and red lines in the benthic foraminifera plot respectively indicate absolute numbers of specimens and oxyphilic taxa percentage values. Si marks the sapropel interruption in the Adriatic and Aegean Sea. Vertical dashed lines mark the transition to modern environmental conditions in the eastern Mediterranean Sea. The vertical dark grey band indicates the extent of visible sapropel S1. The vertical light grey band indicates the extent of burn down sapropel S1.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.