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ABSTRACT
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Doctor of Philosophy

INVESTIGATION OF THE MECHANISMS UNDERLYING THE
EFFECT OF OLEIC ACID AND DOCOSAHEXAENOIC ACID ON THE
DNA METHYLATION IN JURKAT CELLS

by José Eduardo Pérez Mojica

There is evidence that olive oil, rich in oleic acid (OA), and fish oil, rich in docosa-
hexaenoic acid (DHA), can modify the DNA methylation in human blood cells in
vivo. However, the mechanisms underlying such effect are not well understood. To
address this, a model to study DNA methylation changes was developed using the in
vitro treatment of Jurkat cells with OA or DHA. Analysis showed that 15 uM OA or
DHA treatment for eight days altered the DNA methylation of 563 or 1596 CpG sites
(294 or 508 increased), respectively, using the Infinium MethylationEPIC BeadChip.
Only 78 CpG sites were altered in common by both treatments. Further characte-
risation of 5 candidate CpG sites showed that DNA methylation changes were just
significant after the 3¢ day of DHA treatment which suggested and indirect mecha-
nism. Pathway analysis of genes with at least one CpG site with altered DNA methy-
lation by OA or DHA treatment (348 or 935, respectively) showed an enrichment of
genes under the control of peroxisome proliferator-activated receptor alpha (PPAR«)
in DHA-treated cells only. PPAR« has been reported to participate in the global hy-
permethylation of THP1 monocytes induced by arachidonic acid treatment. How-
ever, treatment of Jurkat cells with PPAR« agonist GW7647 or PPAR« antagonist
GW6471 showed no difference in the DNA methylation of 5 candidate CpG sites anal-
ysed here by pyrosequencing. Therefore, other factors related to DNA methylation
such as chromatin modification of histones and DNA motifs were investigated. Re-
sults showed that H3K4me3 was decreased in 5 candidate regions that changed DNA
methylation status. Motif analysis indicated that sequences in the proximity of CpG
sites that changed methylation were enriched in response elements including those

for transcription factor SP1 and SP3. To further characterise the participation of
transcription factors, transcriptome changes by OA or DHA were assessed using the
HumanHT-12 v4 Expression BeadChip. Analysis showed that DHA, but not OA treat-
ment, downregulated SP3 mRNA and altered the activity of different transcription
factors and enzymes. Together, results showed in this thesis suggest that DNA methy-
lation changes by OA or DHA showed specificity, took more than three days to be es-
tablished and may be associated with decrease H3K4me3 and the activity of different

transcription factors and enzymes.
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Chapter 1

Introduction

1.1 Fatty acids

Fatty acids are hydrophobic organic compounds formed by carboxylic acid and an
aliphatic chain that vary mainly from 4 to 28 carbons in nature . Fatty acids be-
long to the lipid family that has been increasing in number as more lipids have been
identified 2. The current international classification of lipids incorporated eukaryotic
and prokaryotic sources. Such classification includes in the same class fatty acids and
their conjugates? (available in http://www.lipidmaps.org). For this thesis, only

2 out of the 17 subclasses are referred as fatty acids. This 2 subclasses are the com-
monly known saturated (straight chain fatty acids in the current nomenclature) and
unsaturated fatty acids (Figure [L.1]).

Hydroperoxy FA

Unsaturated FA Hydroxy FA
Branched FA Oxo FA
Straight chain FA Epoxy FA
Dicarboxylic acids Fggr{jﬁgiadt:s& Methoxy FA
Mycolic acids Halogenated FA
Heterocyclic FA Amino FA
Carbocyclic FA Cyano FA

Thia FA Nitro FA

Figure 1.1: Current classification of fatty acids and conjugates includes 17
subclasses according to LIPID MAPS Lipidomics Gateway 2 (http://www.
lipidmaps.org). FA, fatty acids.


http://www.lipidmaps.org
http://www.lipidmaps.org
http://www.lipidmaps.org
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Saturated fatty acids do not have any double bond in their structure whereas unsa-
turated fatty acids do. Depending on the number of double bonds, unsaturated fatty
acids can be grouped as monounsaturated (MUFA), which have only one double bond;
or polyunsaturated fatty acids (PUFA), that have more than one double bond. Al-
ternatively, unsaturated fatty acids can be grouped according to the position of dou-
ble bonds relative to the carboxylic group (A) or the methyl carbon end (w or n) 8l
The most common groups of fatty acids by the position of double bonds are the n-

3, n-6 and n-9 families, also known as omega-3, omega-6 and omega-9, respectively
(Figure . Unsaturated fatty acids can also be classified in cis or trans fatty acids
according to the chemical orientation of the double bond. Usually, the trans configura-
tion is specified in fatty acids while the cis is assumed because it is the most recurring

type of double bond in nature.

In addition to the number of double bonds, saturated and unsaturated fatty acids can
be grouped depending on the total number of carbons which form the chain. Thus,
short-chain (< 8 carbons), medium-chain (6-8 to 12-14 carbons), long-chain (14-16
to 18-21 carbons) or very-long-chain fatty acids (> 18-21 carbons) is a terminology

[-10]

commonly used in the literature . The fatty acids included in each category may

vary because there is not an official agreement among researchers.

A typical nomenclature for fatty acids is writing the number of carbons that consti-
tute the fatty acid chain and the number of double bonds in the structure separated
by a colon. In the case of unsaturated fatty acids, the number of double bonds may
be followed by the correspondent omega w / n family. For example, oleic acid which is
an 18-carbon monounsaturated fatty acid with the double bond in omega-9 position is
written as 18:1n-9. Docosahexaenoic acid which is a 22-carbon polyunsaturated fatty
acid belonging to the omega-3 family is written as 22:6n-3 (Figure . In the case of
the trans configuration, the location of the double bond with ¢rans orientation can be
specified after the fatty acid abbreviation. For example, the trans isomer of oleic acid,

elaidic acid, can be written as 18:1 trans-9.

1.1.1 Fatty acid synthesis

Fatty acid synthesis de novo is a process widely spread in nature which is carried out
by prokaryote and eukaryotes organisms™H. This process has been shown to take
place in two different subcellular compartments, the cytosol and mitochondrial ma-
[T2413]

trix Fatty acid synthesis in the cytosol is referred as synthesis type I while that

in the mitochondrial matrix as synthesis type II.

Type I fatty acid biosynthesis is well characterised in human cells. This process is car-

ried out by a homodimer polypeptide coded by the fatty acid synthase gene (FASN) 4.
2
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w / n-reference A-reference

(0]
1 3 5 7 9
18:1n-9 \2/\4/\6/\8/=9\8/7\/5\4/3\)L oH 18149
6 2
Oleic Acid (OA)

0
2 4 6
20:4n-6 7/\3/\W8\@/3\)L OH 20:5A58,11,14,17
13 10 7 4 2

Arachidonic Acid (AA)

(0]
22:6n-3 7/2\3_/\_/\_/\_/\_/\_/\)1\ 22:6 A4,7,10,13,16,19
: _7918_15_12_98_765_432 OH :

1716 '~ 1413 = 11 10
Docosahexaenoic Acid (DHA)

Figure 1.2: Examples of n-3, n-6 and n-9 families of unsaturated fatty acids are DHA,
AA and OA, respectively. The n or w reference (in red) and the A reference (in blue)
are shown for each fatty acid.

FASN homodimer catalyses the condensation of acetyl-CoA with malonyl-CoA fol-
lowed by further cyclic reactions to extend the fatty acid chain two carbons per cycle

=]

using as substrate malonyl-CoA In vitro fatty acid synthesis using radio-labelled

[1-14Clacetyl-CoA and [2-14C]malonyl-CoA showed that the main product released

[15416]

from FASN homodimer was palmitic acid . Such fatty acid may account for ap-

proximately 90% of the total fatty acids released 1316l The stoichiometry of type I

fatty acid synthesis is summarised as follows 2.

[Acetyl — CoA] + 7 [Malonyl — CoA] + 14 [NADPH] + 14 [H]

!
[Palmitic Acid] + 7 [CO3] + 8 [CoA] + 14 [NADPY] + 6 [H30]

Palmitic acid can be further elongated to produce long-chain and very-long-chain
fatty acids by the action of different membrane-bonded elongases in the endoplas-
mic reticulum 7. Besides, palmitic acid (16:0) and stearic acid (18:0) can be desat-
urated by stearoyl-CoA desaturase (SCD) in mammalian cells to produce palmitoleic

acid (16:1n-7) and oleic acid (18:1n-9), respectively 18,

In humans, two isoforms of
SCD gene have been characterized so far. SCD1 that is present in metabolically ac-
tive tissue (mainly adipose) and SCDS5 which mRNA expression has been shown to
be lower or absent in some tissues compared with SCD11%20  Oleic acid (18:1n-9),
but not palmitoleic acid, has been shown to be further elongated to very long-chain

monounsaturated fatty acids 20:1n-9, 22:1n-9, 24:1n-9 and > 26:1. These are the only

3
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unsaturated fatty acids that have been shown to be synthesized by mammalian cells

de novollD. However, there is evidence that mammalian cells need polyunsaturated

fatty acids to perform normal functionsl. In humans, linoleic acid (18:2n-6) and a-

linolenic acid (18:3n-3) are considered as essential 223 and they serve as substrates

to synthesise other polyunsaturated fatty acids and lipid mediators by the cells 27

A summary of the very-long-chain fatty acids synthesis in humans is shown in Fig-

ure [1.3]
SFA MUFA n-6 PUFA
16:0 4 16:1 18:2 26 18:3
E6, (E3,E7) ¢ v E5, (E7)
180 4 18:1 20:4 45 20:3
E3, (E7) ¢ v E3, (E7, E6) E5,E2 ¥
20:0 20:1 22:4 22:5
E1, (E3,E7) ¢ v E1 E2 ¥ 4
22:0 22:1 24:4 L5 24:5
E1, (E3) ¥ v E1 E4 V v E4
24:0 24:1 v v
E1, (E4) ¥ v e = 26 > 26
26:0 v
E4, (E1) ¢ > 26
E4 ¥
> 26 n-3 PUFA
18:3 2% 18:4
v Elongation e v E5, (E7)
2 Desaturation E5, E220+'5 « 204
4 B-oxidation 22:5 22:6
e OVL i E2 ¥ 4
ELOVL isoenzyme 1-7 24-4 éﬁ 246
A Desaturase 5,6 or 9 E4 i i E4
Essential fatty acids > 26 > 26

Figure 1.3: Synthesis of long-chain and very long-chain fatty acids in humans require
different elongases and desaturases. Elongases in parentheses indicate weak catalytic

activity in the reaction. Diagram modified from Sassa and Kihara, 20147, FA, fatty
acids; SFA, saturated FA; MUFA, monounsaturated FA; PUFA, polyunsaturated FA;
ELOVL, Elongation of very long chain FA.

Type II fatty acid biosynthesis has been shown to produce fatty acids of length 6 to
18 carbons in Neurospora crassa, a member of the Kingdom Fungim. At present, it is
uncertain if type II fatty acid synthesis may take place and/or if this is metabolically

relevant in mammalian cells.
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1.1.2 Fatty acid oxidation

Fatty acid oxidation is the process of how fatty acids are broken down by the cells.
Evidence has been shown that fatty acid oxidation can take place in the mitochondrial

23] The oxidation of fatty acids has been shown to start by

matrix and peroxisomes
breaking down the «, 8 or w bond. Such types of fatty acid oxidation are known as
a-, - or w-oxidation, respectively. a- and w-oxidation release one carbon while (-
oxidation two carbons at a time because of the position of the double bonds that are

broken down.

The study of a-oxidation has been associated with the phytanic acid accumulation

26l Currently, the

identified in adults with the autosomal recessive Refsum disease!
identification of human phytanoyl-CoA 2-hydroxylase (PHYH) which catalyzes the
first step of phytanic acid oxidation2%28; the detection of a peroxisome targeted se-
quence in PHYH, that is recognized by peroxisomal biogenesis factor 7 (PEXT) 27 ip
peroxisomes; and the discovery that Refsum patients have mutations in PHYH 272930
or PEX7BI82 genes, suggests that a-oxidation is a process carried out exclusively by
peroxisomes in humans. a-Oxidation of fatty acids other than that of phytanic acid

has not been reported for humans.

In vitro experiments have been shown that fatty acids 12:0, 14:0, 16:0, 18:1n-9, 20:4n-
6; leukotriene By (LTBy4) and the phytyl tail of tocopherols and tocotrienols (vita-

min E) can undergo w-oxidation. This type of fatty acid oxidation has been shown to
be catalysed by substrate-specific cytochrome P450 family 4 (CYP4) members using
the human proteins expressed in Escherichia coli®¥3%  microsomes from baculovirus-
infected BTT-TN-5B1-4 cellsB9 or cell cultures /suspensions BE3T - Currently, CYP4A11,
CYP4A22 CYP4JF3 and CYP4,F2 genes have shown w-hydroxylase activity with spe-
cificity for individual fatty acids®336 Other CYP4 members have been identified;
however, the w-hydroxylase activity of these orphans has not been characterised yet B8,
The biological function of w-oxidation is unclear. It has been suggested that this may
be a rescue pathway to metabolise certain fatty acids when a-oxidation is deficient
such as phytanic acid in Refsum disease [38], Supporting evidence is the identification
of 3-methyladipic acid and 2,6-dimethyloctanedioic acid, both metabolites of phytanic

acid w-oxidation, in urine of patients with Refsum disease %40

In comparison with a- and w-oxidation, S-oxidation of fatty acids is well characterised

HI | In such process, fatty acids are broken down two carbons at a time

in human cells
inside the mitochondrial matrix or peroxisomes in the case of very long chain fatty
acids. Each cycle of the S-oxidation involves sequential hydrogenation, hydration, a
274 hydrogenation and thiolysis by Acyl-CoA dehydrogenases, enoyl-CoA hydratases,
3-Hydroxyacyl CoA dehydrogenases and 3-ketoacyl-CoA thiolases, respectively. The
specific enzymes catalysing such reactions dependent on the length of the fatty acid

chain and sub-cellular localisation of the process (mitochondria or peroxisomes). One

5
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difference between mitochondrial and peroxisomal -oxidation is that the latter is not
coupled with the generation of ATP through oxidative phosphorylation™. This is be-
cause electrons generated by peroxisomal S-oxidation are used to reduce Os generat-
ing HsOs instead of delivering them to the respiratory chain B3l The Hy0s in peroxi-
somes can be decomposed into HyO + O3 by the catalase and glutathione peroxidase

to maintain an equilibrium between production and scavenging 2

1.1.3 Fatty acid composition of human cells

Determination of the fatty acid composition of different tissues has been shown dif-

o [2HAG)

ferences among cell type For example, oleic acid in human adults represents

in average 18.5% of the total plasma lipids B4 43.5% of white adipose tissue trigly-

M comparison, docosa-

cerides #¥ and 6.5% of brain phosphatidylethanolamine
hexaenoic acid constitutes the 1.3% B4 of the total plasma lipids, 0.4% of white adi-
pose tissue triglycerides and 14% of brain phosphatidylethanolamine . A list of the
most abundant fatty acids in human plasma, adipose and brain tissue are shown in

Table [I11

There is evidence that the fatty acid composition of cells can be modulated by exo-

M7 This suggests that the fatty acid composition of cells is

genous fatty acids in vivo
a mixture of fatty acids synthesised by cells (endogenous) and those fatty acids taken
up (exogenous) from the environment. Some in vitro work suggests that exogenous
fatty acids are preferred over endogenous for membrane formation in proliferating hu-
man fibroblast, HeLa and NCI-H460 cells 8. However, the proportion in which both
endogenous and exogenous fatty acids contribute to the total lipids of cells is still un-
clear in vivo. Supplementation of individual fatty acids in the diet of healthy human
volunteers has shown that they incorporate differently into different lipid fractions

or tissuesH%50  Besides, there is evidence that different tissues also take a different
time to reach new constant levels of the fatty acids supplemented M5H9] Tt seems that
the new steady levels of fatty acids reached by supplementation are lost after stop-
ping this in a lipid-fraction or cell-type specific manner too™. The importance of the
fatty composition of cells is based on observations showing altered cell functions by

G152

a change in the fatty acid composition of cells To this respect, one of the best

biological functions studied is the differential production of prostaglandins after incor-

53]

poration of omega-6 or omega-3 fatty acids Some of the mechanisms and overall

effects of fatty acids on human health are explained in the next section.
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Table 1.1: Most abundant fatty acids in human plasma, adipose and brain tissue of

adult humans. B446]
Abbreviations
Trivial Name A-reference w /o Plasma®* WAT?  Brain®
reference

Myristic 14:0 14:0 0.9 2.8 0.4
Palmitic 16:0 16:0 23 21.5 8.3
Palmitoleic 16:1A9 16:1n-7 1.9 7.2 0.2
Stearic 18:0 18:0 7 3.4 36.9
Oleic 18:1A9 18:1n-9 18.5 43.5 8.8
cis-Vaccenic 18:1A11 18:1n-7 1.86 ND 3
Linoleic 18:2A9, 12 18:2n-6 32 13.9 0.4
~-linolenic 18:3A6, 9, 12 18:3n-6 0.8 0.8 ND
Gondoic 20:1A11 20:1n-9 0.1 ND 0.7
Eif;i“y 20:3A8, 11, 14 20:3n-6 1 0.2 1.6
Arachidonic 20:4A5, 8, 11, 14 20:4n-6 5.6 0.3 12.7
Adrenic 22:4A7, 10, 13, 16 22:4n-6 2.4 0.1 8.4
Osbond 22:5A4, 7, 10, 13, 16 22:5n-6 0.1 ND 2.7
DHA, Cervonic ~ 22:6A4, 7, 10, 13, 16, 19 22:6n-3 1.3 0.1 14

& = % of total fatty acids in plasma or tissue.; A, carboxylic group; w/n, omega; ND, no
detected

1.2 Effects of fatty acids on human health

The first observations which began to show the impact that fatty acids have on health
were reported in the early 1900’s. McCollum and Davis described the effect that a
diet prepared with or without lipids (either as egg’s ether-soluble extracts or but-

ter) had on the growth of rats. They showed that rats decreased weight during de-

B4 Six-

privation of lipids and partially recovered it when lipids were supplemented
teen years later, Burr and Burr showed that a fat-free diet starting at 21 days old
induced skin lesions in feet and tail of rats at the age of ~75 days®?. Rats showed
a further decline of weight at the age of ~150 days and imminent death by the age
of 253 days compared with lard-fed ratsP3. Detrimental effects of the fat-free diet
were not avoided by daily supplementation of 0.65 gm of ether-soluble yeast extracts
or with the non-saponifiable part of 70 mg cod liver oil. Only lard improved skin le-

sions and avoided animal death 53,
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Another breakthrough that advanced understanding of the functions that fatty acids
have on human health was the identification of prostaglandins (PG)E6l. These lipid
mediators drove to the discovery of 18:2n-6 and 18:3n-3 essentiality by a serial num-
ber of experiments which described that 1) prostaglandins were derived from 20:3n-6,
20:4n-6 and 20:5n-3 fatty acidsP? and that in turn, 2) these fatty acids were synthe-
sised from either linoleic acid (18:2n-6) or a-linolenic acid (18:3n-3)B860, There is
evidence that privation and later supplementation of essential fatty acids for at least
five weeks can basically correct signs and symptoms observed by their deficiency in
Wistar rats 662 However, the administration of PGE;, PGEy and PGFa, up to 7
weeks has not shown to alleviate all symptoms of the essential fatty acid deficiency in

63 The latter suggests that the ”essential function” of 18:2n-6

the same Wistar rats
and 18:3n-3 is not due to prostaglandins synthesis, at least in rats. The specific rea-
son why 18:2n-6 and 18:3n-3 are essential in mammals remains to be established. In
humans, deficiency of 18:3n-3 have been reported in patients undergoing gastric tube
feeding or parental nutrition 222364 and may not represent a problem for free-living
subjects. Implementation of a dietary intervention in 428 infants showed that 18:2n-
6 should represent at least 1.3% of the daily calories intake®. This is because 1.3%
18:2n-6 showed to avoid skin conditions and changes of the total fatty acids in serum
observed in those infants that followed a diet with 0.04% or 0.07% of the calories pro-
vided by 18:2n-6%5. In children and adults, it has been calculated using case-reports
studies that 18:3n-3 should constitute 0.2-0.6% of total calories as these concentra-
tions reverse symptomatology of deficiency in patients undergoing artificial nutrition

2223564 1f such dietarian recommendations are enough for humans to reverse

support
other possible effects that 18:2n-6 and 18:3n-3 deficiency may induce (e.g. altered

fatty acid composition of the rat brain) 61 is unknown.

The detrimental effect of saturated fat on the cardiovascular system is one commonly

661 Currently, this re-

known relationship that fatty acids have with human health
lationship is being revised and this is matter of debate as more recent meta-analysis
studies have not found any significant association between increased saturated fat con-
sumption and increased risk of coronary heart disease876Y  Instead, meta-analysis
studies have shown that replacement of saturated fats by unsaturated fats is associ-

72 Thus, it is possible that research

ated with decreased cardiovascular diseases 70
in this subject may have been asking the wrong question and rather than a detri-
mental effect of saturated fat, a beneficial effect of polyunsaturated fatty acids may
account for the link between saturated fat and cardiovascular disease identified in
some studies. On the contrary, an association that has been continuously identified
by different studies is the detrimental effect that trans fats have on cardiovascular
health 89 ¢rans fats can be synthesized due to industrial processing of food such as
hydrogenation of unsaturated fat, frying food using vegetable oil at high temperatures
and bacterial biohydrogenation of unsaturated fatty acids inside ruminants’ stom-

ach™!. Human clinical trials and meta-analysis have shown evidence that trans fats

8
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68Y74)

increase up to 16% the risk of coronary disease! and alter low-density lipopro-

tein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglyceride

BT The effect that ¢rans fats have on blood lipids has shown

levels in human blood
some specificity. For example, supplementation of c¢is-9, trans-11 conjugated linoleic
acid (CLA) in healthy men reduced LDL cholesterol without any significant change
in HDL levelst™. On the contrary, trans-10, cis-12 CLA was found to decrease HDL
cholesterol without changing LDL levels™. Other examples are the increased LDL
and HDL by 18:1trans-11, increased LDL and decreased HDL (large subfraction only)
by 18:1trans-9 and an absence of effect on LDL or HDL but decrease triglyceride lev-
els by cis-9, trans-11 CLA identified in a double-blinded, randomised, crossover feed-

17, Apart from clinical trials, there is evidence at population-level which has

ing tria
estimated a decrease in cardiovascular-related deaths after implementation of trans fat
reduction policies in Argentina™ and Denmark Y. Analysis of the different types of
public health policies, mostly in high-income counties, suggests that bans showed the

stronger approach to reduce trans fats consumption [

Another effect that fatty acids have shown on human health is a decrease risk of car-
diovascular disease by a diet rich in omega-3 fatty acids. The first trace of evidence
was reported in 1972 which showed lower levels of total lipids, total cholesterol and
triglycerides in 130 Greenland Eskimos (53 % females) compared with 130 (53 % fe-
males) Danish volunteers (including 25 female Greenland Eskimos living in Denmark) 81,
Greenland Eskimos were known to have a very low incidence of diabetes mellitus and
ischaemic heart disease and, although limited in number, the study allowed compar-
ison of female Eskimos living in Greenland (n = 35) and Denmark (n = 25)8. The
latter suggested that the low incidence of ischaemic heart disease in Eskimos was not
due to different genotype but environmental factors. Therefore, Greenland Eskimos
diet was then analysed (n = 7) showing differences in the fatty acid composition, in-
cluding 5.7 and 7.3 times more eicosapentaenoic acid (EPA) and DHA in Eskimos’

B2l EPA and DHA are omega-3 fatty acids that are found mainly in

diet, respectively
cold water fish such as salmon, mackerel, tuna and trout 3. At present, there is more
evidence that supports the hypothesis that omega-3 fatty acids can reduce the risk of
cardiovascular disease than that which has shown no significant effects®4. The lack
of cardioprotection by omega-3 fatty acids found in some studies may be related to

B586]  The cardioprotec-

68|

the already high fish consumption in the population studied

tive effect of omega-3 fatty acids has also been found in a meta-analysis®®!. Moreover,

some studies indicate that EPA and DHA supplementation may reduce the death rate

87

in patients with cardiovascular disease! Such outcome suggests that besides preven-

tion, these n-3 fatty acids may revert the cardiovascular damage®8. However, these

BT Currently, a beneficial effect of

findings have not been replicated by others studies
omega-3 fatty acids on cardiovascular health is widely accepted, although the effects

on mortality associated with cardiovascular events are still unclear.
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Efforts to elucidate the possible mechanisms underlying the effects of fatty acids in
human health have been carried out. A brief overview of the current knowledge is

summarised below.

1.2.1 Mechanisms

Fatty acids can modify cell functions by changing the composition and, consequently,
the biophysical properties of the membrane bilayer (8950 by providing substrates for
the synthesis of second messengers including eicosanoids, diacylglycerol and phospha-
tidic acid Y and by altering the transcription of target genes, primarily through the
action of ligand-activated transcription factors of the peroxisome proliferator-activated
receptor (PPAR) family P29l The precise effect on cell function seems dependent on
the structure of each fatty acid, and some of them may alter more cell functions than

others 87,

1.2.1.1 Modulation of lipid-derived metabolites

The different production of prostaglandins and other lipid-derived metabolites by dif-
ferent fatty acids substrates is a well-described process in murine and human cells of
the immune system. In vitro and ez vivo studies have shown that treatment of cells
with omega-6 fatty acids induces a higher inflammatory response measured by in-
crease pro-inflammatory lipid mediators and cytokines compared with an omega-3
fatty acid treatment B#98] Treatment of cells and mice with EPA and DHA have also
shown to increase specific lipid mediators which have the capacity to assist in the res-
olution of inflammation such as resolvins, protectins and maresins 2798 These out-
comes have been partially addressed and replicated in vivo in humans by clinical tri-
als. Supplementation with EPA and DHA for 8 weeks showed to increase EPA and
DHA-derived lipid metabolites levels in plasma and urine of healthy human volunteers
(n = 19)9). There is in vitro evidence showing that increase EPA and DHA-derived
lipid mediators leads to a decrease in those derived from AA as such fatty acids com-
pete for the same enzymesP% . A decrease in AA-derived lipid mediators has been
shown in cancer patients whose showed a decrease in plasma PGEs levels after one 1-
week supplementation with 2.4 ¢ EPA and 1.2 g DHA daily 1. PGE, is a pleiotropic

[102]

prostaglandin that is considered to have a role in chronic inflammation Inflamma-

tion processes have been not only associated with cancer but also with other patholo-

el03l Thus, the current evidence sup-

gies including diabetes and cardiovascular diseas
ports that EPA- and DHA-derived lipid metabolites may account, at least partially,

for the beneficial effects on human health observed in epidemiological studies.

There is evidence that altered lipid-derived metabolites levels observed in vivo after

EPA + DHA supplementation are lost sometime after stopping supplementation 2.

10
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The decrease in EPA- and DHA-derived metabolites is associated with the decreased
levels of these fatty acids in cells after stopping the supplementation . Therefore, ev-
idence suggests that the possible beneficial effect on human health of EPA and DHA

lipid-mediators may last as long as supplementation is continued.

1.2.1.2 Altered gene expression

The capacity of fatty acids to altered gene expression is well established. However,
there is not a strong agreement about which genes are modulated by fatty acids in
vivo. The study in vivo of altered gene expression by fatty acids in humans usually
involves fatty acid supplementation in the diet followed by the collection of blood
cells after a given time. The current evidence from clinical trials which have assessed
genome-wide transcriptome changes by fatty acids in human leukocytes is not conclu-
sive. Overall, altered transcripts by fatty acids do not show a specific pattern. A non-
stringent analysis of twelve studies carried out in this work including men and women
of all body mass index that followed supplementation during 1.5 to 6 months (one
study for 6 hours llO4J) and that assessed transcriptome changes in blood cells (mostly
peripheral blood mononuclear cells (PBMCs)) identified a greater agreement in only 4
transcripts. The most recurrent transcripts changing in three out of the twelve stud-
ies analysed were triosephosphate isomerase 1 (TPI1, up-regulated) [O5H107] - D40
(down-regulated ) F06108109 " ipicrosomal glutathione s-transferase 1 (MGST1, down-

B2I09LI0] 5 hypoxia-inducible factor 1 alpha subunit (HIF1A, down-

[TO54T09ITT]

regulated)

regulated) Such transcripts seem to be specifically regulated by n-3 fatty

acids except for HIF1A which has been reported to change after a high-oleic acid sun-

L Gene ex-

flower oil in the same fashion as omega-3 fatty acids supplementation
pression changes by fatty acids in human blood cells that were reported in at least

two out of the twelve studies analysed here are shown in Table

Table 1.2: Gene expression changes by fatty acids in human blood cells.
Observations from at least 2 out of 12 different clinical trials that have assessed
genome-wide transcriptome changes in human leukocytes 52104115l

No apparent omega-3 specificity

Up- ABCG1 ATP Binding Cassette Subfamily G Member 1
regulated  CCL3L3 C-C Motif Chemokine Ligand 3 Like 3
COXS8A Cytochrome C Oxidase Subunit 8A
DDIT4 DNA Damage Inducible Transcript 4
DGKQ Diacylglycerol Kinase Theta
DUSP1 Dual Specificity Phosphatase 1
FOS Fos Proto-Oncogene AP-1 Transcription Factor Subunit

11
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NDUFS6 NADH:Ubiquinone Oxidoreductase Subunit S6
PCNA Proliferating Cell Nuclear Antigen
TSC22D3 TSC22 Domain Family Member 3
UBAT Ubiquitin Like Modifier Activating Enzyme 7
Down- ADAMTSLA ADAMTS Like 4
regulated DUSP2 Dual Specificity Phosphatase 2
HIF1A Hypoxia Inducible Factor 1 Subunit Alpha
LILRA2 Leukocyte Immunoglobulin Like Receptor A2
Apparent/possible omega-3 specificity
Up- ALOX5AP Arachidonate 5-Lipoxygenase Activating Protein
regulated  ARID5B AT-Rich Interaction Domain 5B
BCL2 BCL2 Apoptosis Regulator
CBR3 Carbonyl Reductase 3
CBY1 Chibby Family Member 1 Beta Catenin Antagonist
CCR5 C-C Motif Chemokine Receptor 5 (Gene/Pseudogene)
CDC425E2 CDC42 Small Effector 2
CLK1 CDC Like Kinase 1
CXCR3 C-X-C Motif Chemokine Receptor 3
ECHDC1 Ethylmalonyl-CoA Decarboxylase 1
ECI1 Enoyl-CoA Delta Isomerase 1
FAM219B Family With Sequence Similarity 219 Member B
IVNS1ABP Influenza Virus NS1A Binding Protein
JUN Jun Proto-Oncogene AP-1 Transcription Factor Subunit
LOC80054 Uncharacterized
MAP3K5 Mitogen-Activated Protein Kinase Kinase Kinase 5
MAT2B Methionine Adenosyltransferase 2B
NFATC2IP Nuclear Factor Of Activated T Cells 2 Interacting Protein
PTGER4 Prostaglandin E Receptor 4
THRA Thyroid Hormone Receptor Alpha
TPI1 Triosephosphate Isomerase 1
Down- ADAMY9 ADAM Metallopeptidase Domain 9
regulated  ADCY4 Adenylate Cyclase 4
AHR Aryl Hydrocarbon Receptor
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ALDH4A1
BACH1

BRF1

CD40
CD55
CR1
CREB1
CREB5
CSF2RA
CSF3R
CYP51A1
FADS1
GCLM
GPX3
GSTP1
HBEGF
IL1R2
KIAA0319L
LDLR
LIMK1
MGST1
NRAS
POLR1D
PPARG
RAB11FIP2
RAMP?2
RSBN1L
SCD
SERPINB9
SNORA12
SNORD12C
SNORD13
TGFA
TLR2
VNN2
ZNF669
ZNF93

Aldehyde Dehydrogenase 4 Family Member Al
BTB Domain And CNC Homolog 1
BRF1 RNA Polymerase III Transcription Initiation
Factor Subunit
CD40 Molecule
CD55 Molecule (Cromer Blood Group)
Complement C3b/C4b Receptor 1 (Knops Blood Group)
CAMP Responsive Element Binding Protein 1
CAMP Responsive Element Binding Protein 5
Colony Stimulating Factor 2 Receptor Alpha Subunit
Colony Stimulating Factor 3 Receptor
Cytochrome P450 Family 51 Subfamily A Member 1
Fatty Acid Desaturase 1
Glutamate-Cysteine Ligase Modifier Subunit
Glutathione Peroxidase 3
Glutathione S-Transferase Pi 1
Heparin Binding EGF Like Growth Factor
Interleukin 1 Receptor Type 2
KIAA0319 Like
Low Density Lipoprotein Receptor
LIM Domain Kinase 1
Microsomal Glutathione S-Transferase 1
NRAS Proto-Oncogene GTPase
RNA Polymerase I And III Subunit D
Peroxisome Proliferator Activated Receptor Gamma
RABI11 Family Interacting Protein 2
Receptor Activity Modifying Protein 2
Round Spermatid Basic Protein 1 Like
Stearoyl-CoA Desaturase
Serpin Family B Member 9
Small Nucleolar RNA H/ACA Box 12
Small Nucleolar RNA C/D Box 12C
Small Nucleolar RNA C/D Box 13
Transforming Growth Factor Alpha
Toll Like Receptor 2
Vanin 2
Zinc Finger Protein 669
Zinc Finger Protein 93
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The predicted pathways affected by fatty acid supplementation have been shown a
better agreement than the individual transcripts with altered expression by fatty acids.
Considering the same previous twelve studies, pathways affected by fatty acids on cells
have been primarily related to energy flux (oxidative phosphorylation, S-oxidation and
peroxisomal oxidation), ubiquitin-related protein modifications (ubiquitination, ubi-
quinone biosynthesis, protein folding and maturation) and nuclear receptors (PPARs).
The greater agreement has been observed in immune response (chemokines and recep-
tors, NFB signalling), inflammation, cell cycle, survival and apoptosis 52104 TI2T14115]
Apoptosis induced by fatty acids specifically in cancer cells by EPA or DHA is one of
the main studied process. Growing evidence indicates that gene expression changes at
mRNA and protein level are associated with the induced apoptosis of cancer cells by
DHA treatment 126,

1.2.1.3 Epigenetic changes

Epigenetics is a relatively new field of research to understand how fatty acids induce
some effects on cells. Epigenetics integrates the different pathways by which cells ma-
nage a control of RNA expression that is not related with changes on the DNA se-
quence. Such control of gene expression persist after mitosis, and sometimes after
meiosis. The current knowledge about some epigenetic mechanisms is described in the

next section and how these can be altered by fatty acids is addressed in section

1.3 Epigenetics

Epigenetics study and refers to all those mechanisms that participate in the regula-
tion of gene expression that are not related to the sequence of the DNA. In order to
modulate gene expression, epigenetic mechanisms modify the instructions in the cell
through specific signals or marks. The combination of epigenetic marks established in
a particular cell is denominated epigenome. Alterations in the epigenome may be in-
herited through mitosis and/or meiosis. The heritable feature of the epigenetic marks
has attracted much attention, and it is widely studied, although there is still much to

understand 117

Epigenetics includes different mechanism acting at transcriptional or post-transcrip-
tional level. The most studied epigenetic modifications are DNA methylation, post-
translational modifications (PTM) of histones and non-coding RNAs 8119 - Cyr-
rent evidence shows that these epigenetic modifications are involved in differentiation,
genome stability, genomic imprinting and inactivation of the X chromosome 120021
Changes in the usual epigenetic marks of cells have been associated with diseases 118,

For example, cancer presents marked epigenetic changes characterised by a global
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DNA hypomethylation together with locus-specific DNA hypermethylation M8, The

current knowledge about DNA methylation is summarised next.

1.3.1 DNA methylation

DNA methylation is one of the epigenetic mechanisms which has shown to play a role
in the expression of genes at the transcriptional level. This mark is heritable, at least

mitotically, and could be regulated by environmental factors.

1.3.1.1 Establishment of DNA methylation

As its name indicates, DNA methylation describes the addition of a methyl group
into the DNA. So far in some mammals, including humans, this modification has been

122123] ' Relatively little is known

shown to occur in adenine and cytosine nucleotides!
about adenine DNA methylation while extensive experiments have been carried out on
cytosine methylation. Cytosine methylation occurs only at the position 5 of the base
(5-methylcytosine, 5mC). Most of the studies have focused on 5-methylcytosine that is
preceded by a guanine nucleotide in 5’ to 3’ direction compared to other nucleotides.
This locus is commonly known as CpG site which is the abbreviation of cytosine = C,
phosphate = p and guanine = G. For this reason, DNA methylation in a CpG context
is better understood compared to CpA, CpT or CpC methylation which are collec-

tively referred to as non-CpG methylation or CpH.

Cytosine DNA methylation by bacterial DNA methyltransferase (DNMT) Hhal is a
well described process that requires S-adenosyl methionine (SAM) as the universal
donor of methyl groups. In summary, DNA methylation involves successive chain re-
actions that end when the cytosine’s carbon at position 5 makes a nucleophilic attack
on the methyl group of a SAM 24128 (Figure . It is thought that the mechanism
is similar for all DNMTs as catalytic domains share some homology #2¥. In humans,
there have been identified three DNMTs with catalytic activity coded by DNMT1,
DNMTS3A and DNMT3B genes339  Crystal structure of the catalytic domain of hu-
man DNMT3A showed to interact with the DNA similarly to bacterial Hhal DNMT
which supports that DNA methylation reaction may be similar [131]

Northern blot analysis of DNMT1, DNMT3A and DNMTS3B has been shown a simi-
lar pattern of mRNA expression in human adult heart, skeletal muscle, colon, kidney,
liver, small intestine, placenta and PBMCsH33l Because of this, it is believed that a
common mechanism in differentiated cells regulates all three DNMTs. Some excep-
tions are brain, spleen and lung tissues showing DNMT1 expression alone; and thymus
tissue showing expression of DNMT1 and DNMT3B only 133, Different mRNA expre-
ssion of DNMTs has also been identified throughout the cell cycle in human cells. The
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Figure 1.4: Catalysis of 5-methylcytosine by bacterial Hhal DNA methyltrans-
ferase (DNMT, in blue) requires as substrate cytosine and S-adenosylmethionine
(SAM, in red) as co-factor. Biochemical evidence suggests that the sulfhydryl
group of a cysteine in the catalytic motif IV of DNMTs performs a nucleofilic at-
tack to cytosine’s carbon 6 (A). This forms a covalent bond cytosine-DNMT (B)
which induces protonation of cytosine’s carbon 3 (C) using a glutamine residue
in the catalytic motif VI of the DNMT. Protonation and deprotonation of cyto-
sine’s carbon 3 trigger a nucleophilic attack from cytosine’s carbon 5 to SAM’s
methyl group (CHs) (D, E). The covalent bond of the CHs with the cytosine (F)
facilitates deprotonation of cytosine’s carbon 5 (G) which resolves the covalent
bond between cytosine-DNMT (H, I). After the reaction, SAM is converted to S-
adenosylhomocysteine (SAH). References 1241261152
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synchronisation and G1 arrest of T24 bladder tumour cells and normal bladder fibrob-
last LD98 showed that expression of DNMT1, and to a lesser extent DNMT3A and
DNMT3B, peaked at S-phase34. The same synchronisation and G1 arrest of MCF7
breast cancer cells showed a similar high expression of DNMT1 and DNMT3B at S-
phase while levels of DNMT3A remained constant 134, This suggests that a higher
expression of mainly DNMT1 is probably required at the S-phase to methylate newly
synthesise DNA. Supporting this hypothesis is the preference that murine Dnmt1,

but not Dnmt3a or Dnmt3b, have to methylate hemimethylated DNA compared with
unmethylated DNA in vitrod39138]  The preference of DNMT1 for hemimethylated
DNA has also been observed in vitro using baculovirus-expressed human DNMT1 137
DNMT1 is the only DNA methyltransferase that binds with ubiquitin-like, containing
PHD and RING finger domains, 1 (UHRF1) which in turn, binds to hemimethylated
DNA during S-phase 38/, UHRF1 is required to maintain normal CpG methylation
as shown by a more than 70% decrease in DNA methylation of the intra-cisternal
A-type particle (IAP) and 34% decreased in LINE-1 repetitive elements in mouse
Uhrfl”/~ embryonic stem cells®33. Also, DNMTT1 is the only DNA methyltransferase
that binds to proliferating cell nuclear antigen (PCNA) 139, However, DNMT1-PCNA
binding rather than essential for copying the DNA methylation patterns in the newly
synthesised DNA, only improves the efficiency of the process which was calculated in a
two-fold increase using human HCT116 tumour cells3%. Because of DNMT1 prefer-
ence to methylate hemimethylated DNA and protein-protein interaction with UHRF1
and PCNA, DNMT1 is considered to mainly have a role in the maintenance of the
DNA methylation patterns.

In contrast to Dnmtl, Dnmt3a and Dnmt3b have been shown similar efficiencies to
methylate DNA templates that were either hemimethylated or unmethylated in vitro135136]
Both DNMT3A and DNMT3B can bind to DNMT3L, which sequence is homologous
to the DNMT3 family but lacks the PWWP and the catalytic domain. DNMT3A and
DNMT3B showed to increase their methyltransferase activity at least two-fold upon
interaction with DNMT3L in vivo using co-transfection of expressing vectors in hu-
man 293 c18 kidney cells % Human DNMT3B1 and DNMT3A2 were the isoforms
that showed a more significant increase in activity when co-expressed with DNMT3L
in comparison with DNMT3A or DNMT3B2H40 | Tnitial worked showed that murine
Dnmt3L increased the affinity of Dnmt3a to bind DNA B4 Currently, crystallog-
raphy resolution of human DNMT3L have shown that two DNMT3L can bind to a
DNMT3A homodimer (DNMT3L-DNMT3A-DNMT3A-DNMT3L)H3 | The catalytic
domain of DNMT3A within the complex is maintained in an auto-inhibitory form un-
til recognition of the H3K4me0 histone mark ®3U. This mechanism is also supported
by peptide interaction assays of DNMT3L with unmodified and modified histone tails
which showed binding of DNMT3L only with H3K4me0, but not H3K4mel, H3K4me2
or H3K4me3™2 In other words, DNMT3L-DNMT3A tetramer showed binding to
chromatin when H3K4 was unmethylated (Kq = 2.1) and decreased when this residue
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was methylated (H3K4mel Kq = 36.5, H3K4me2 K4 > 500, H3K4me3 Kq > 500) 142,
The lack of recognition of methylated H3K4 by DNMT3L may explain the low DNA

143]  The crystal struc-

methylation levels in regions enriched with H3K4me2 in vivo
ture of DNMT3L-DNMT3B-histone complex has not yet been resolved. However, be-
cause of the high homology between DNMT3B and DNMT3A, it is possible that a

similar mechanism is involved.

Besides the methylation status of H3K4, emerging evidence shows that H3K36me3

may play a role in the direction of de novo DNA methylation in cells. Crystal struc-
ture of the PWWP domain of human DNMT3A and DNMT3B expressed in Escherichia
coli have shown interaction with H3K36me3144 The genomic profiling of mouse
Dnmt3a2, Dnmt3b1, H3K36me3 and RNA pol II occupancies have shown a global
overlap ™5 This suggests that DNA methylation by Dnmt3 may be mediated by
H3K36me3 marks, at least partially 1431 Further support for this hypothesis is the
observation that regions deprived of the H3K36me3 in mouse stem cells, which be-

come rich in H3K36me3 and transcriptionally active upon differentiation, also increase
Dnmt3b occupancy 143

The activity of all three Dnmts is essential for normal development as knockout mice
of these enzymes fail to reach adult life. Dnmt1-specific knockout mice died during

146 - Similarly, Dnmt3b-specific knockout mice died at different stages

147

mid-gestation !
before birth as a result of multiple developmental defects Dnmt3a knockout mice
were the only ones that developed to term. However, mice did not reach more than
four weeks of age™7. Evidence from knockout mice suggests that each Dnmt has a

specific and temporary role in the establishment of cytosine DNA methylation.

1.3.1.2 DNA demethylation

The removal of methyl groups from the DNA can be passively or actively accomplished.
Passive DNA demethylation describes the loss of methyl groups by a failure in the
copying of DNA methylation patterns in the newly synthesised DNA. This can be
achieved by drugs, such as 5-azacytidine and 5-aza-2’-deoxycytidine, which are usually

sH48 - Currently, there are a few examples of passive DNA

used for research purpose
demethylation in mammalian cells. For instance, mouse embryos at two-, four- and
eight-cell stages have shown approximately one-half decreased on DNA methylation.
Such a decrease is observed only in the metaphase chromosomes of maternal origin

49~ A passive demethylation mech-

using immunofluorescence for 5- methylcytosine
anism of the maternal genome is supported precisely by a decreased DNA methyla-
tion associated with cell division compared with the paternal genome which is rapidly
demethylated by the first metaphase in mice Y. DNA demethylation of the maternal
genome in human embryos may not be passive as there has not been observed a pro-

gressively decreased in methylation between two- and eight-cell stages, nor significant
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differences between DNA methylation of the paternal and maternal pronuclei 221

In contrast to passive demethylation of the DNA, active demethylation is the process
by which the activity of enzymes removes methyl groups. There are different pos-
sible mechanisms implicated in active demethylation, and they can be divided into
two types for practicality. One type involves removal of the methylated cytosine alone
and further insertion of an unmethylated cytosine by base excision repair (BER) me-
chanisms; or removal of several nucleotides, including the methylated cytosine, fol-
lowed by insertion of new nucleotides by nucleotide excision repair (NER) or non-
canonical mismatch repair (ncMMR) mechanisms. The second type of active DNA
demethylation involves serial chemical modifications of the methylated cytosine start-
ing by methylcytosine dioxygenases (TET family) enzymes that lead to removal of the
methyl group without excision of the bases. There are examples of this type of active

[53HT54) However,

DNA demethylation in mammalian cells using in vitro experiments
current evidence shows that the majority of DNA demethylation is a mixture of chem-

ical modification of the methyl group followed by excision/mismatch repair.

BER, NER and MMR pathways are better known for repairing damaged DNA during
all phases in the cell cycle. In this manner, BER, NER and MMR assured that DNA
has no damaged bases or mismatches that could cause otherwise mutations or DNA
breaks during DNA replication. The implication of these pathways on active DNA
methylation in mammalian cells comes from evidence in plants ™53, However, BER,
NER and MMR are currently not understood in the context of active DNA demethy-
lation in mammalian cells. For reasons of clarity, only evidence from mammalian cells

is reviewed below regarding active DNA demethylation.

BER pathway has shown to start by DNA glycosylases which achieve the removal of
a damaged base primarily due to oxidation, deamination or alkylation B5®157  In the
context of DNA demethylation, human thymine DNA glycosylase (TDG) has shown
to recognise and excise 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), but not
5-hydroxymethylcytosine (5hmC) in vitro. 5{C, 5caC and 5hmC are all modifications

H58159] - Quch evidence suggests that active

originated from 5-methylcytosine (5mC)
demethylation by BER pathway is possible in human cells. Besides, single-turnover ki-
netics of TDG base excision activity showed that processing of guanine-5fC mismatch
was 40% faster than guanine-thymine mismatch B3, This suggests a possible main

functional role of TDG on DNA demethylation.

NER pathway has also been implicated in active DNA demethylation. This is because

the crystal structure of DNA with 5fC showed a change in the DNA’s double helix

160]

compared with unmodified cytosinel Such change in the DNA’s structure sug-

60l which is a type of DNA damage that may be re-

gested a helical underwinding
solved by NERH6I S far, there is not a single clear example showing DNA demethy-

lation mediated by NER mechanisms in mammalian cells.
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Figure 1.5: DNA demethylation in mammalian cells can be carried out by pas-
sive or active mechanisms. Passive DNA demethylation describes the failure in the
copy of DNA methylation patterns in a newly synthesised DNA strand after repli-
cation. In comparison, active DNA demethylation refers to mechanisms indepen-
dent of DNA replication. This type of demethylation can be achieved by chemical
modification of the 5-methylcytosine by ten-eleven translocation (TETs) enzymes
and possibly other proteins yet to be identified. Alternatively, 5-methylcytosine
may be removed by DNA damage repair pathways and replaced by an unmethy-
lated cytosine. At present, most of the DNA demethylation in mammalian cells
seems to start with TET modification of the 5-methylcytosine and end with DNA
damage repair pathways.
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It has also been suggested that active DNA demethylation can be achieved through
ncMMR B2 Tn contrast to the canonical pathway, ncMMR is an S-phase-independent
process which can be activated by N-methyl-N’-nitro-N-nitrosoguanidine (MNNG ) 163,
This carcinogenic agent has shown to demethylate non-CpG cytosines in the telomera-
se reverse transcriptase (TERT) promoter using normal human gastric cells from a 42
old volunteer 164 Although the study included a single sample and the mechanisms
of TERT promoter demethylation were not addressed, this may represent the only
association of ncMMR pathway with active DNA demethylation in human cells. At
present, further experimental work needs to prove the involvement of a ncMMR path-

way on active DNA methylation.

Active DNA demethylation by chemical modifications of the methylated cytosine was
first reported in mammalian cells with the identification of human TET proteins func-
tion by Tahiliani et al., in 200919 Since then, different in vitro experiments showed
that TETs mediates the conversion of 5mC to 5hmC, 5fC and 5caC E58165H167 Ty
role of mammalian TET proteins in DNA demethylation was further supported by de-
creased or increased levels of 5bhmC, 5fC and 5caC upon downregulation or upregula-

H65167] - Regulation of TET proteins is still poorly

tion of TETs proteins, respectively
understood. At present, there is evidence that vitamin C can change the effect that
mouse Tetl overexpression or deficiency have on MEFs’ somatic cell reprogramming

68|

by an unknown mechanism Also, there has been identified that promoters of tu-

mour suppressor genes of human solid-tumour samples were on average hypermethy-

169]

lated in hypoxic tumours compared with non-hypoxic ones! In vitro experiments

showed that hypoxia induced decreased TET activity which in turn resulted in hy-

169 SQuch results suggest that

permethylation of candidate gene promoters analysed |
hypoxia in human and mouse tumours cells is another factor that may regulate TET

activity.

There is some evidence showing that deamination mediated by activation-induced
cytidine deaminase (AICDA or AID) may participate on DNA demethylation 162
However, reported outcomes are contradictory and current evidence is not conclu-

sive about the direct involvement of AICDA on DNA demethylation 262 Spontaneous
deamination of 5mC, but not unmethylated cytosine, leads to thymine ™™ which may
be then removed by TDG and followed the BER pathway. Further research needs to
address if AICDA can actively deaminate 5mC which may followed then the BER
pathway.

1.3.1.3 DNA methylation patterns and function in cells

In normal cells, the total amount of 5mC accounts for up to approximately 1% of all
nucleotides in the human genome with some variations between tissues 74, Besides

tissue-specific methylation, 5mC is not randomly distributed in the DNA. Most of the
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5-methylcytosine is observed on repetitive elements, which comprise more than 50% of

[I72H174)

the total CpG sites in humans . Low levels of methylation (hypomethylation)

of repetitive elements have shown to increase their expression and insertion into new

U7 - Therefore, DNA methylation is such sequences is believed to

maintain chromosome structure and genome stability of normal cells 70

genomic locations

Associations between cytosine methylation with gene expression have been described
for intragenic regions, specifically gene bodies. Although the majority of intragenic
regions are CpG-poor, methylation of these CpG sites frequently occurs 170 Differ-
ent studies have identified a positive correlation between intragenic DNA methyla-

1784179]

tion with gene expression Therefore, it has been suggested that hypermethy-

lation of the gene body may help to avoid spurious transcripts that may otherwise ex-

< [180].

pres In humans, such positive correlation seems to apply only to genes with low

and medium-high levels of expression. The most highly expressed genes in humans

show lower levels of intragenic methylation than medium-high expressed genes170

(Figure [1.6)).

Another association between DNA methylation and gene expression has been iden-
tified in clusters of CpG sites. These clusters are known as CpG islands (CpGi) and

[181]

are usually unmethylated Although there is no general agreement, a CpGi can

be defined as a sequence larger than 200 bp constituted mostly by cytosines and gua-
nines with a CpG nucleotide frequency of more than 0.6 of the total C+G content 182
CpGi are present in approximately 70% of human gene promoters B8 Increased methy-
lation (hypermethylation) of normally unmethylated CpGi in promoters has been re-
lated to decreased expression of such genes and vice-versa 183184 Therefore, it has
been suggested that promoter methylation has an inverse relationship with transcrip-
tion (Figure . However, evidence has also shown that the majority of CpGi remain
unmethylated even when genes are not expressed or when they are located in intra-

[L43185]

genic regions Thus, it is possible that the relationship between promoter CpG

methylation with gene expression may be due to the high number of genes with CpGi

[181]). At present, evidence suggests that CpG islands are

at promoter regions (70%
protected from methylation in some way not well understood no matter their genomic

location.

Cytosine methylation in a CpG context has been more studied than non-CpG me-
thylation (or CpH) in cells. In human cells, it has been shown that both CpG and
CpH methylation levels are cell-type specific. In average, reported CpG methylation
varied from approximately 70% to 85% while CpH methylation from 0 to 8% using
whole-genome bisulphite-sequencing (WGBS) of neuronal, brain and embryonic stem

179Y1861187]

cells! . However, other studies have shown in general lower levels. Average

CpG and CpH methylation varied from 55%-70% and 0%-3%, respectively, using re-
duce bisulphite sequencing representation of 20 human embryonic or induced stem

88|

cells lines and 10 different somatic cell types Such differences may arise due to
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High % CpG Methylation Low
A)
Promoter
Low Actively transcribed genes High
Low % CpG Methylation High Low

B)
Gene body

Figure 1.6: The relationship between expression of genes and 5-
methylcytosine (5mC) of CpG sites at promoters shows that when one
increases the other decreases (A). In contrast, 5mCpG at body regions
increases while expression increases up to a medium-high level. After
this, 5bmCpG start to decrease while expression keep increasing (B).

the different methods™ and cell types used. What seems clear is that averaged lev-
els of CpH methylation are much lower than those in a CpG context. A more detailed
analysis of the current evidence suggests that even when the average CpH methyla-
tion is much lower than that on CpG sites, the total number of CpH sites may be

1794187] For in-

comparable or greater than the total number of methylated CpG sites!
stance, WGBS of the human embryonic stem cell line H1 showed that 25% of the to-
tal 5-methylcytosines were in CpH context 27 . An even higher percentage has been
identified in human oocytes which CpH number reached up to 60% of the total 5-
methylcytosines at mature metaphase I using single-cell WGBS 87 The reason un-
derlying the low average CpH methylation and the moderate-to-high number of me-
thylated CpH sites seems to be due to two factors. The first one is a higher number of
CpH sites compared with the ~28 million CpG sites in the haploid human genome 174
The second one is that the majority of 5-methylcytosine in CpH sites have been shown
to be hypomethylated (10-40% methylated) compared with CpG sites which are mostly
hypermethylated (80-100%). Therefore, average methylation levels of CpG or CpH

sites are just a reference, but not indicative of the genome-wide spreading of DNA
methylation (Figure [1.7)).

Although cytosine methylation in a CpG context has been studied for years, its bi-
ological function is still not entirely understood. In mammalian cells, most of the

functions of DNA methylation derives from evidence on candidate genes or specific
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Figure 1.7: 5-Methylcytosine (5mC) patterns in the human genome show clusters
of CpG sites (CpG islands) and a great number of CpH sites. Considering that
the level of methylation is 100% in all 5mC, only one time the CpG island and 20
times the remaining sequence in the diagram, the DNA methylation profile would
be as follows. 68% 5mCpG/CpG, 70% 5mCpG/total>mC, 1.4% 5mCpH/CpH,
30% 5mCpH /total>mC. Total number of CpG sites in such hypothetical sequence
represents 0.8% of total nucleotides (410/53708). Total number of 5mC (5mCpG
+ 5mCpH) represents 0.7% of total nucleotides (400/53708). The DNA methy-
lation patternmmm, total number of CpG sites™ and total number of
5mC ™ of the hypothetical sequence is similar to what has been reported at the
genome level for humans.
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processes which relate DNA methylation with the expression of genes. One example
is the participation of DNA methylation in the control of IGF2 and H19 expression.
In vitro and in vivo experiments in mice have shown that Igf2 and H19 expression
are under imprinted-control regions which depending on its methylation status allow
the binding of CCCTC-binding factor (CTCF) 093] The binding of CTCF mod-
ulates in turn enhancer activity to either Igf2 or H19 gene; thus, controlling their
expression P29 - A gimilar mechanism has been described in vitro using human

195]

cells! Besides, control of the imprinted region by DNA methylation is further sup-

ported by the hypomethylation or hypermethylation observed in Silver-Russell 126197

or Beckwith-Wiedemann 19819 gyndromes which are characterised by undergrowth or
overgrowth, respectively. It is clear that DNA methylation is not the only mechanism

involved in such syndromes as not all patients showed a significant change in DNA

methylation 126199

The consequence that altered DNA methylation of a single CpG site may have on cells
illustrates the importance of DNA methylation changes and their effect on gene ex-
pression. An example is the in vitro regulation of kriippel-like factor 2 (KLF2) by
low-density lipoproteins (LDL) using human umbilical vein endothelial cells (HU-
VEC) 200 Experiments showed that 200 M /ml LDL induced downregulation of
KLF2 mRNA; upregulation of DNMT1 mRNA and DNMT1 activity; recruitment of
methyl-CpG-binding protein 2 (MeCP2) into KLF2 promoter; and displacement of
myocyte enhancer factor-2 (MEF2) from KLF'2 promoter, which positively regulates
KLF?2 transcription 22 Sequence analysis of KLF2 promoter showed that MeCP2
binding site overlapped with that of MEF2. MeCP2 has been shown to recognise and
bind to a single methylated CpG pair R0 Thuys, although experiments did not ad-
dress DNA methylation directly, Kumar et al., showed evidence which suggested that
the methylation status of a single CpG is associated with the control of KLF2 expre-
ssion 209 Besides, the downregulation of KLF2 mRNA, treatment with LDL induced
downregulation of thrombomodulin (THBD), nitric oxide synthase 3 (NOS3) and up-
regulation of serpin family E member 1 (SERPINE1). As THBD and NOS3 are pos-
itively regulated while SERPINE1 negatively regulated by KLF2, evidence indicated

2001 Sych observa-

that KLF2 downregulation led to dysregulation of its target genes!
tions have shown the consequences that altered DNA methylation on a few CpG sites
may have. In comparison, other in vitro experiments have been shown that the DNA
methylation effect on gene expression is achieved until methylation is spread over sev-
eral cytosines202. Therefore, the effect that DNA methylation has on cell functions

depends on each specific case.

Altered DNA methylation have been shown a relationship with activity of some tran-
scription factors. For instance, there is evidence that the dynamic interaction be-
tween SP1/SP3, TP53 and DNMT1 modulate the expression of the survivin gene in

[2034204]

vitro Reported evidence showed that the luciferase gene coupled with the hu-
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man survivin promoter increased reporter activity when SP1 or SP3 constructs were
co-expressed in Drosophila SL2 cell line (naturally deficient in Sp proteins) 204, The
increased luciferase activity induced by SP1 or SP3 was repressed in cells express-

ing DNMT1 or TP53 constructs. Further characterisation of the system showed that
stimulation of TP53 activity by doxorubicin increased TP53 occupancy and recruited
DNMTT1 into the proximal survivin promoter 223, Doxorubicin treatment also showed
to increase DNA methylation of survivin promoter which was dependent on TP53 ex-
pression because TP53 knockdown did not show the change in methylation 2% Al-
though there are still some gaps in how this system works, regulation of the survivin
gene suggests that interaction between SP1/SP3, TP53 and DNMT1 may direct DNA

methylation to specific regions.

The importance to study DNA methylation changes lay on associations showing al-
tered DNA methylation in some diseases. For instance, the global DNA hypomethy-
lation and locus-specific hypermethylation in cancer is a well described process 209
Besides, other non-communicable diseases such as diabetes and atherosclerosis have
shown different DNA methylation patterns compared with normal tissue 29207 [f a]-
tered DNA methylation is mainly a cause or consequence of gene expression changes

or the pathological condition itself is still unclear.

Overall, current evidence has shown that DNA methylation by its own does not ge-

20822091 ' The relationship between this

nerally control the expression of genes in cells
epigenetic mark and gene expression should be interpreted within the particular ge-
nomic, epigenomic and cellular context. Other epigenetic marks which have shown

an association with DNA methylation and gene expression are the post-translational

modifications of histones. Some of these modifications are reviewed next.

1.3.2 Post-translational modification of histones

Post-translational modifications (PTM) of histones mainly include acetylation, me-
thylation, phosphorylation, ubiquitination, sumoylation and ADP-ribosylation 210,
Such modifications are laid on different but specific positions of the N-terminal tails of

2101 - Similar to DNA methylation, histone modifications have been associated

histones!
with the expression of genes. Evidence shows that the combination of different PTMs,
instead of a single type, is what creates a code that associates with transcription. For
instance, actively transcribe genes show high levels of tri-methylation (me3) in the
histone 3 at lysine 4 (H3K4) and H3K27 acetylation (ac). In contrast, inactive genes

are enriched with H3K27me3 and show a lack of acetylation 219,

The most studied PTMs of histones are acetylation and methylation. The addition of
acetyl groups in histones tails is only possible at lysine amino acids by histone acetyl-

transferase (HAT) enzymes. Different in vitro experiments have shown that hypera-
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cetylation of histones disrupts chromatin structure, increases the rate of degradation

 PITH214)

by DNAse I enzyme and increases RNA polymerase transcriptio . Disruption

of the chromatin structure was only achieved when 100%, but not 23% of the lysine

R Therefore,

residues, were acetylated using purified core histones from HeLa cells
in vitro evidence supports that histone hyperacetylation allows a permissive chromatin
structure that facilitates transcription possibly by neutralising the positive charge of
lysine residues. On the contrary, histone deacetylase (HDAC) enzymes can deacetylate
lysines within the histone tails. Histone deacetylation is thought to restore the posi-
tive charge of lysines in histone tails; thus, DNA is firmly attached to histones which

215l Similar to acetylation, methylation of

have been shown to impair transcription
histones occurs only on certain amino acids, lysines and arginines. Histone methyla-
tion at lysine or arginine residues is mediated by lysine methyltransferases (KMT)
and protein arginine methyltransferases (PMRT) families, respectively. The methy-
lation marks are more diverse than acetylation as lysines or arginines may be mono-
methylated, di-methylated or tri-methylated 216,

One of the features of histone modifications is that proteins with particular domains
can identify specific marks. Histone acetylation may be recognised by proteins with
a bromodomain while histone methylation by proteins with a chromodomain. For in-
stance, chromo-ATPase/helicase-DNA-binding (CDH1) has two chromodomains that
cooperate to interact with H3K4me3 in human cells 2. CDH1 have been shown

to be indispensable for pluripotency in mouse stem cells as this is required to keep

the chromatin in an open state (euchromatin) 218,

The underlying mechanism how
CDHI1 induce an euchromatin state in mouse fibroblast and a possible connection with

H3K4me3 is unknown.

Each histone modification has its own particular patterns in the genome. For this the-
sis, only H3K4me3 patterns will be addressed. It is widely accepted that H3K4me3 is
an epigenetic mark associated with actively transcribed genes. The latter is because
immunoprecipitation of H3K4me3 followed by sequencing of 46 different human cell
types, including transformed and non-transformed cells showed an H3K4me3 enrich-
ment around the transcription start site (TSS) of actively transcribed genes 2192211
So far, in vitro experiments using human cells have identified five lysine methyltrans-
ferases and five lysine demethylases which can mediate methylation or demethylation

of H3K4me3, respectively 222

. In addition to the enzymes that catalyse the methy-
lation reaction, there is evidence that some other proteins are required for the estab-
lishment of H3K4me3 in vivo. For example, SET domain containing 1A (SETD1A)
histone lysine methyltransferase has been recovered within a complex by immunopre-
cipitation of flagged CXXC finger protein 1 (CFP1) expressed in HEK293 cells 223]
Disruption of CFP1 expression has been shown to decrease global H3K4me3 levels in
mouse embryonic stem cells 223224 Such evidence suggests a direct participation of

CFP1 in the establishment of H3K4me3 mark. This is further supported by immuno-
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precipitation of CFP1 or H3K4me3 and subsequent sequencing which showed simi-

224]  The genomic occupancy of CFP1

lar occupancy of both proteins in the genome!
and H3K4me3 was significantly reduced, but not abolished, in CFP17/~ mouse embry-
onic stem cells, specially H3K4me3 levels of highly expressed genes 224, The latter

indicates that CFP1 is required for usual H3K4me3 patterns but not essential for the

H3K4me3 establishment.

Although there is an evident association between H3K4me3 and actively transcribed
genes, the H3K4me3 function is still unclear. Reduction of H3K4me3 levels by CFP1
depletion has shown little effect on gene expression in mouse cells 224 CFP1 is a pro-
tein that physically interacts with SETD1A lysine methyltransferase and binds to only
unmethylated CpG sites in double-stranded DNA in vitro223. Thus, it is possible
that H3K4me3 association with actively transcribed genes is because CFP1 direction
to gene promoters as the majority (70%) are CpG-rich P81l and are generally unmethy-
lated B434185] Ty addition to CFP1, there is evidence that SETD1A interacts with WD
repeat domain 82 (WDR&2) protein 2261 WDRS2, in turn, has a domain that inter-
acts with RNA polymerase 11228 Depletion of WDR82 by small interfering RNA has
also been shown to reduce H3K4me3 levels which did not affect gene expression or
RNA polymerase IT occupancy on six candidate genes using HEK-293 cell line 2261,
Overall, current evidence suggests that H3K4me3 at active promoters may result pri-
marily as a consequence of SETD1A-containing complex interaction with RNA poly-
merase II and CFP1. It is not yet discarded the possibility that indeed H3K4me3 may
facilitate transcription. There is experimental work that showed H3K4me3 recognition
by TATA-Box binding protein-associated factor 3 (TAF3) using HeLa S3 cells 227,
TAF3 is a subunit of the transcription factor TFIID, and its binding to H3K4me3
showed to promote the formation of the preinitiation complex of transcription in a

228 Further work is needed to verify if this may hap-

cell-free transcription system
pen in vivo and if this may be a general feature or just applicable for some candidates
genes as the reduction of H3K4me3 have shown no effect on gene expression at the

genome-wide level 2241

1.3.3 Epigenetic changes by fatty acids

In vitro treatment of THP1 monocytes and HUVEC showed that 100 uM OA de-
creases whereas 100 uM arachidonic acid (AA) increases global DNA methylation of
229 However, a tendency to decrease global DNA methylation has
also been reported in HUVEC cells by 3 uM AA treatment 2302311 Qyuch differences

may be due to the different methods employed to determine global DNA methyla-

cells after 24 hours

tion. DNA hypermethylation by 100 uM AA was assessed by an antibody targeting

5mC B29 while the null effect or trend to decrease global DNA methylation by 3 xM

2304231

AA was measured by Hpall restriction enzyme Antibody-based methods may
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be a better approach for global DNA methylation as Hpall only provides the methy-
lation status of 5-CCGG-3’ sequences. Therefore, the current evidence supports that
AA induces DNA hypermethylation of cells.

DNA methylation changes by fatty acids have also been studied in candidate genes.

In wvitro treatment with 3 uM AA for 24 hours has also been shown to decrease DNA
methylation in the promoter region of kinase insert domain receptor (KDR) using HU-
VECE3U Moreover, ez vivo treatment with 500 M palmitate or 500 xM oleate for
48 hours increased promoter methylation of PPAR~y coactivator 1 alpha gene in hu-
man primary monocytes compared with untreated cells32. Comparison of 100 uM
OA or 100 uM EPA treatment showed that EPA, but not OA, demethylates a sin-

gle CpG site within the promoter region of CCAAT enhancer binding protein delta
(CEBPD) 233 Demethylation by EPA treatment in CEBPD promoter showed to fa-
cilitate the binding of transcription factor Sp1R233l These pieces of evidence suggest
that similar to the modulation of prostaglandins and gene expression changes; there is
some specificity in the altered DNA methylation induced by different fatty acids. In
addition, these experiments show that epigenetic changes by fatty acids possibly have

an impact in gene expression.

The effect of fatty acids on DNA methylation has also been studied in vivo. In rats,
fish oil treatment for 9 weeks has shown to induce methylation changes in the liver
fatty acid desaturase 2 (Fads2) gene, encoding A6 desaturase. Such changes corre-
lated inversely with Fads2 mRNA expression in the liver 234 The DNA methylation
and mRNA expression changes were reverted after 4-weeks of stopping fish oil treat-

234 However, offspring of dams that underwent the same fish oil

ment in adults rats
treatment including 14 days preconception, 20 days of pregnancy and 28 days of lac-
tation did not reverse the DNA methylation changes in Fads2 gene after 11-weeks of

t1234 Such results indicated that epigenetic changes at develop-

stopping the treatmen
ing stages by fish oil may possibly reprogramme expression patterns of Fads2 in rats.
Reprogramming of DNA methylation patterns in humans by fatty acids has been ad-
dressed experimentally in other candidate regions239236  QOne study showed that 400
mg DHA /day supplementation from gestation week 18-22 to birth increased methy-
lation (< 1%) of long interspersed nuclear elements (LINE) in umbilical cord blood
of smoker mothers23% . Another study showed that 800 mg DHA /day supplementa-
tion from gestation week 20 to birth increase methylation of a single CpG in female
(< 3%), but not male children blood cells. However, there were raised some concerns

237 essentially because changes in DNA methylation were small and

about the results
may represent an artefact of the pyrosequencing 238 or the Illumina HumanMethylation-
450K BeadChip used. At present, evidence of the reprogramming of DNA methylation

patterns by any fatty acid in human cells is unclear.

To date, there are only three studies that provide direct evidence of an in vivo asso-
ciation of the fatty acids effect on the DNA methylation of human cells 232241 - Ope
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study showed an association between total saturated, monounsaturated or polyunsa-
turated fatty acids with the global DNA methylation of cells using peripheral blood

in a cohort of 15 men 239

Other study showed that supplementation for 12 weeks
with either omega-3 fatty acids or olive oil altered the DNA methylation on specific
CpG sites within the promoter region of FADS2 and ELOVLS genes using PMBCs
of healthy volunteers (n = 20)[240, The effects observed were different between fatty
acids and sex which suggested that DNA methylation was altered in a fatty-acid and

240)

sex-specific manner! Furthermore, supplementation with 1.9-2.2g EPA plus 1.1g

DHA daily for 6 weeks showed to change the DNA methylation of 308 CpG sites using

241 Thus, evi-

blood leukocytes in a cohort of 36 overweight and obese volunteers
dence suggests that olive oil and omega-3 fatty acids modulate DNA methylation with

specificity in humans.

There is another study that has also addressed in vivo DNA methylation changes by
fatty acids in humans. However, volunteers followed hypercaloric diets that led to a

t/2421 Changes in body weight have also been associated with DNA

difference in weigh
methylation changes in PBMCs 243l and adipose tissue 244!, Thus, it is difficult to

evaluate if the effect reported is due to the fatty acids or the overfeeding.

At present, there is only one study reporting possible mechanisms by which fatty acids
may alter the DNA methylation in cells. Silva-Martinez et al., showed that altered
DNA methylation induced by 100 M arachidonic acid (AA) treatment was reduced
by a 1-hour pre-treatment with 10, 100, and 200 p M S-oxidation inhibitor etomoxir
or inhibited by 0.5 4 M PPAR« inhibitor GW6471, but not with PPAR~ inhibitor
GW9662 in THP1 cells?2. The same pre-treatments with etomoxir, GW6471 or
GW9662 did not reduce or inhibit the altered DNA methylation by 100 M OA us-

2291 The same study assessed the involvement of Situ-

ing the same THP1 monocytes
ins on the DNA methylation induced by OA or AA treatment using wild-type mouse
embryonic fibroblasts (MEFs), SIRT17/~, SIRT27/- or SIRT6/~ MEFs. Results showed
that only SIRT1 knockout essentially abolished the altered DNA methylation induced
by both OA or AA in wild-type MEFs. Currently, in vitro evidence in human and
mouse cells suggests that S-oxidation, PPARa and SIRT1 are involved in AA-induced
global DNA hypermethylation while only SIRT1 is associated with OA-induced DNA
hypomethylation. Participation of different proteins suggests that there may not be

a single way how fatty acids induce changes in the DNA methylation. A summary

of the evidence showing the fatty acids effect on DNA methylation in human cells is

shown in Figure [1.8

Some studies have also shown that fatty acids can modulate PTMs of histones such as
acetylation 245 At present, it is well accepted that short-chain fatty acids, foremost
butyrate, increases global acetylation of histones through inhibition of histone deace-
tylases 245! Also, there is evidence showing that S-oxidation of long-chain and very-

long chain fatty acids can increase acetylation levels of proteins including histones by
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generating more available acetyl groups. In wvitro acylation of histones including
acetyl-, butyryl-, malonyl-, in the presence or absence of eukaryotic HATs showed that
a proportion of the changes in histone were not mediated by HATs247 | This suggests
a certain level of unspecific effect of fatty acids on histone marks which seems to be
different for diverse types of acylations of histones. In the specific case of acetylation,
in vitro experiments have estimated that approximately 85% of the total acetylation is
mediated by HATs 247

In vivo
A) gDNAm associated with FA levels
B) Altered DNAm of candidate genes by olive or fish oil
C) Altered DNAm in 308 CpG sites by EPA + DHA

In vitro

/ D) Etomoxir or GW6471, but no GW9662

impairs AA-induced global hypermethylation

@ E) Etomoxir, GW6471 or GW9662 have no
effect on OA-induced global hypomethylation

Figure 1.8: Current evidence of the effect of fatty acids on DNA methylation
(DNAm) in human cells shows that global DNAm (gDNAm) has a relationship
with total fatty acids (FA) in peripheral blood cells23 (A). Human clinical trails
have been shown that olive oil or omega-3 fatty acids EPA4+DHA can induce al-
tered DNA methylation on candidate genes in white blood cells 240:241] (B, O).
In witro experiments have been shown that etamoixir (a S-oxidation inhibitor) or
GW6471 (a PPAR« inhibitor), but not GW9662 (a PPARy inhibitor), reduce or
inhibit the effect of arachidonic acid (AA) on the global DNAm in THP1 mono-

cytes. The same inhibitors have not been shown to reduce significantly the effect
of oleic acid (OA) on DNA methylation in THP1 monocytes 229,

Besides global changes in acetylation of histones, information about the specific residues
of the histone tails that are modified by fatty acids is currently limited. Incubation
with 30 uM DHA for two days showed to increase acetylation levels of H3K4 and de-
creased methylation levels of H3K4, H3K9, H3K27M H3K36 and H3K79 in human
neuroblastoma M17 cells 248, Specific changes of histone marks are important because
they have shown a different association with gene expression. The relationship be-
tween histone marks and DNA methylation induced by fatty acids has not yet been

addressed.
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1.4 Aims and rationale

Currently, the molecular mechanisms underlying the effect of fatty acids on the DNA
methylation are not well understood. Therefore, this research project sought to elu-
cidate such mechanisms using the in vitro treatment of Jurkat cells with OA or DHA.
These two fatty acids were chosen as they are major components of olive oil and omega-
3 fatty acids which have been shown to induce altered DNA methylation of human
PBMCs in vivo2 Jurkat cell line was selected as growing conditions are similar to
that of blood cells (suspension) and are T-cells which constitute a significant compo-
nent of PBMCs.

1.5 Research hypotheses

1.5.1 Hypothesis 1; OA and DHA induce mainly different locus-specific
DNA methylation changes at the genome-wide level

At the global level, treatment of THP1 cells with 100 uM AA showed to induce global
DNA hypermethylation while 100 4M OA induced global DNA hypomethylation. In
candidate genes, treatment with 100 uM EPA, but not OA, showed to alter DNA
methylation status of CCAAT / enhancer-binding protein delta promoter in U937

cells 2331

Results of the only study addressing locus-specific DNA methylation changes
at the genome-wide level did not reach statistically significance22). Therefore, the
current evidence suggests specificity on the effect of fatty acids on the DNA methyla-
tion, but the degree of such specificity at the genome-wide level is still unclear. This
work addressed such specificity with the hypothesis that OA and DHA induce mainly

different locus-specific DNA methylation changes at the genome-wide level.

1.5.1.1 Aim 1

To develop a model for studying the fatty acid effect on DNA methylation using the
human T-cell line Jurkat. Once a model was established, locus-specific DNA methy-
lation changes induced by OA or DHA treatment at the genome-wide level were de-
termined. Description of the data provided evidence of the similarities and differences
(specificity) between the effect of OA or DHA treatment on the DNA methylation.
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1.5.2 Hypothesis 2; PPAR«a participates in the DNA methylation
changes induced by DHA

There is evidence showing that PPAR« activity was required for the effect of AA

on the global DNA methylation of THP1 monocytes22). On the contrary, the same
study showed that PPAR« activity was not required for the effect of OA on the global
DNA methylation in the same cells 2. The involvement of PPAR« in the altered
DNA methylation induced by other fatty acids such as DHA has not been previously
tested. Therefore, we hypothesise that PPAR« activity is required for the altered
DNA methylation induced by DHA.

1.5.2.1 Aim 2

To assess if PPAR« activity is required for the DNA methylation changes induced by
DHA. In order to do so, Jurkat cells were treated with the PPAR« agonist GW7647,
PPAR« inhibitor GW6471 and co-treated with PPAR« inhibitor GW6471 plus DHA.
After treatments, the DNA methylation was measured in candidate CpG sites identi-
fied here to change DNA methylation status by DHA treatment.

1.5.3 Hypothesis 3; transcription factors, other than from PPARa«,
are required for the effect of OA or DHA on the DNA methy-
lation

In wvitro treatment of THP1 cells with the PPAR« inhibitor GW6471 showed to com-
pletely block the global DNA hypermethylation induced by 100 uM AA 229 Similarly,
treatment of THP1 cells with the S-oxidation inhibitor etomoxir showed to signifi-
cantly decrease, but not block, the global DNA hypermethylation induced by 100 uM
AAB2 The same treatment using wild-type and Sirtl knockout MEFs showed that
Sirt1 knockout MEFs were not responsive to the global DNA hypermethylation in-
duced by AA compared with wild-type MEFs 222 Thus, current evidence suggests
that the activity of different proteins and pathways may be required for the altered
DNA methylation induced by fatty acids. This work attempt to look for proteins or
pathways associated with the DNA methylation changes induced by OA or DHA.

1.5.3.1 Aim 3

To determine altered transcription factors and pathways by OA or DHA treatment. In
order to do this, different approaches were covered. These included pathway analysis
using the genes with altered DNA methylation or mRNA expression to provide evi-

dence of a functional relationship between altered genes. Such analysis allowed to de-
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termine if altered genes were under the control of a specific transcription factor. Addi-
tionally, in silico analysis of the sequences near CpG sites that changed DNA methy-
lation were used to look for possible DNA motifs that may drive the recruitment of

transcription factors.

1.5.4 Hypothesis 4; DNA methylation changes induced by fatty acids
are associated with altered H3K4me3 enrichment

Treatment with 40 uM oleate plus 40 M palmitate showed to alter H3K4me3 and
H3K9me3 enrichment of C57BL/6J mice primary hepatocytes 249 The effect of fatty
acids on histone marks has also been observed in vivo using adipose tissue from off-

250

spring of dams that followed a high-fat diet Besides the evidence in mice, there

is evidence that fatty acids can altered the enrichment of certain histone marks in hu-

248

man cells! In wvitro treatment with DHA for two days showed to increase acetyla-

tion of H3K4 and decrease methylation of H3K4, H3K9, H3K27 H3K36 and H3K79

218] The occupancy of tri-methylated

residues in the neuroblastoma M17 cell linel
H3K4 is the only histone mark available in ENCODE for Jurkat cells. Therefore,

we asked if DNA methylation changes induced by OA or DHA were associated with
altered H3K4me3. The relationship between altered DNA methylation and altered
H3K4me3 enrichment (or any other histone mark) induced by fatty acids has not been

reported before.

1.5.4.1 Aim 4

To map all significantly altered CpG sites identified by the DNA methylation BeadAr-
ray with H3K4me3 occupancy in the Jurkat’s genome. To further characterise such
relationship chromatin immunoprecipitation of H3K4me3 and subsequent qPCR was

carried out to know if H3K4me3 increased or decrease in candidate regions which
showed altered DNA methylation by OA or DHA.
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Materials and General Methods

2.1 Materials

All reagents and chemical used in experiments and their correspondent supplier are
shown in Table

Table 2.1: List of reagents and chemicals used.

Reagent /chemical Supplier
Agarose Sigma-Aldrich, Dorset, UK
BlueJuice Life Technologies, Renfrewshire, UK

Butyrated hydroxytoluene
ChIP-IT Control Kit - Human
ChIP-IT Express Enzymatic kit
Chloroform

Cignal PPAR Reporter (luc) Kit
CpGenome universal methylated DNA
DNA- and RNA-free water
DNase I kit

Docosahexaenoic acid (DHA)
Dual-Luciferase® Reporter Assay
System

Eicosapentaenoic acid (EPA)
EpiTect Control DNA

Ethanol

EZ DNA Methylation-Gold™ Kit

Fetal bovine serum

Sigma-Aldrich, Dorset, UK

Active Motif, La Hulpe, Belgium
Active Motif, La Hulpe, Belgium
Sigma-Aldrich, Dorset, UK

Qiagen, Manchester, UK

Millipore, Watford, UK

Fisher Scientific, Loughborough, UK
Sigma-Aldrich, Dorset, UK
Sigma-Aldrich, Dorset, UK

Promega, Southampton, UK

Sigma-Aldrich, Dorset, UK

Qiagen, Manchester, UK

Fisher, Leicestershire, UK

Cambridge Bioscience, Cambridge, UK
Life Technologies, Renfrewshire, UK
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Formaldehyde (16%, w/v),
methanol-free

FuGENE HD Transfection Reagent
GE Healthcare streptavidin

sepharose™ high-performance (34 pm)
GelRed™ 10 000X in water

geNorm

Glycerol

Glycine

GW6471, PPAR«a antagonist
GW7647, PPAR«a agonist

Hexane

Histone H3K4me3 antibody (pAb)
HotStarTaq DNA Polymerase
KAPA2G Robust HotStart ReadyMix
L-glutamine

M-MLV Reverse Transcriptase Kit
Methanol

mirVana™ miRNA Isolation Kit with
phenol

Sodium chloride (NaCl) 1 M
Nonadecanoic acid

O’GeneRuler 1 kb ladder Plus DNA
Ladder

Oleic acid (OA)

Opti-MEM™ Reduced Serum Medium
Penicillin and streptomycin
Phosphate-buffered saline (PBS)
Potassium bicarbonate (KHCO3)
Potassium carbonate (K2CO3)

Primers (own design)

Primers (QuantiTect)
PyroMark annealing buffer
PyroMark binding buffer
PyroMark Gold Q96 Reagents
PyroMark Gold Q96 Reagents
PyroMark Q96 Capillary Tip
PyroMark Q96 Reagent Tip

Life Technologies, Renfrewshire, UK
Promega, Southampton, UK
Fisher Scientific, Loughborough, UK

VWR International, Leicestershire,
UK

Primer Design, Chandler’s Ford, UK
Sigma-Aldrich, Dorset, UK
Bio-Rad, Watford, UK
Bio-Techne, Oxfordshire, UK
Bio-Techne, Oxfordshire, UK
Sigma-Aldrich, Dorset, UK

Active Motif, La Hulpe, Belgium
Qiagen, Manchester, UK

KAPA Biosystems, London, UK
Sigma-Aldrich, Dorset, UK
Promega, Southampton, UK
Sigma-Aldrich, Dorset, UK

Life Technologies, Renfrewshire, UK

Sigma-Aldrich, Dorset, UK
Sigma-Aldrich, Dorset, UK

Life Technologies, Renfrewshire, UK

Sigma-Aldrich, Dorset, UK
Life Technologies, Renfrewshire, UK
Sigma-Aldrich, Dorset, UK
Sigma-Aldrich, Dorset, UK
Sigma-Aldrich, Dorset, UK
Sigma-Aldrich, Dorset, UK
Eurofins Genetic Services,
Wolverhampton, UK
Qiagen, Manchester, UK
Qiagen, Manchester, UK
Qiagen, Manchester, UK
Qiagen, Manchester, UK
Qiagen, Manchester, UK
Qiagen, Manchester, UK
Qiagen, Manchester, UK
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PyroMark wash buffer Qiagen, Manchester, UK
QTAamp DNA Blood Mini Kit Qiagen, Manchester, UK
QuantiFast SYBR Green I PCR Kit Qiagen, Manchester, UK
Random nonamers Sigma-Aldrich, Dorset, UK
RNase A Sigma-Aldrich, Dorset, UK
RPMI-1640 medium Sigma-Aldrich, Dorset, UK
Sodium Acetate (3 M, pH 5.2) Sigma-Aldrich, Dorset, UK
Sulphuric acid (H2S04) Sigma-Aldrich, Dorset, UK
Supelco® 37 Component FAME Mix Sigma-Aldrich, Dorset, UK
Toluene Sigma-Aldrich, Dorset, UK
Tris-acetate-EDTA (TAE) Life Technologies, Renfrewshire, UK
Trypan Blue Sigma-Aldrich, Dorset, UK

2.2 Cell culture management

2.2.1 Cell culture and treatments

Jurkat cells, a human T-lymphocyte cell line, were maintained in RPMI-1640 medium
supplemented with 9% (v/v) foetal bovine serum, 2 mM L-glutamine, 100 U/ml peni-
cillin and 100 pg/ml streptomycin in a 5% (v/v) CO2 atmosphere at 37°C. Cell den-
sity was invariably maintained lower than 1x10° cells/ml. Cell cultures were treated
with either OA or DHA dissolved in 90% (v/v) ethanol. Concentrations used in fatty
acid treatments were 15 uM OA or 15 uM DHA, otherwise specified. Jurkat cells were
also treated with a peroxisome proliferator-activated receptor alpha (PPAR«) agonist
(0.2 uM GW7647), a PPAR« antagonist (2 uM GW6471) and co-treated with 2 M
GW6471 PPAR« antagonist plus 15 pM DHA. PPAR« agonist and antagonist were
dissolved in absolute ethanol. Concentration of GW7647 or GW6471 used in experi-
ments has shown to activate or abolish PPAR« activity, respectively 251252 - Control
treatment in all experiments consisted in addition of only the vehicle, ethanol, at same
concentration used in fatty acid or PPAR« treatments. The final concentration of
ethanol in cell cultures was < 0.05% (v/v) in all experiments carried out. Cells were
treated for eight days, otherwise specified. Culture cell media was replaced every 72

hrs with fresh treatment media in all experiments performed.

2.2.2 Cell proliferation

Cell proliferation was assessed by the fold change in cell count during treatments. Cell

counting was conducted using Coulter Counter (Z1; Coulter Electronics, Luton, UK).
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The cell pellet was obtained after a 5 minute centrifugation at 212 g. Pellet was re-
suspended in cell media three times with micropipette and 10 ul were pipette into
diluvial (Elkey Laboratory, UK). 10 ml of Isoton were then added to diluvial (1:1000
dilution) using a bottle-top dispenser to disaggregate the cells. Standard manufac-
turer’s instructions and calculi were carried out as follows. Two reads were combined
to obtain the number of cells in 1 ml of the 1:1000 dilution as each read by Coulter
Counter was the total number of particles (> 6 um < 24 pm) in 500 pl. This number
was then multiplied by the dilution factor (1000) and by the volume in ml of the re-
suspension of the pellet to obtain the total number of cells. Formula used to obtain

total number of cell per ml was:

isoton (pl)

Cells/ml = (1°¢ + 2™ read) x ( > x total cell suspension (ml)

(2.1)

cell aliquot counted (ul)

When the difference between the first and second read in the Coulter Counter was
higher than 100, isoton dilution was shaken to ensure the break down of cell aggre-
gates. Samples were then read until a difference less than 100 between the two reads
was archived. Fold change was obtained dividing the number of cells/ml after treat-

ment by the number of cells/ml seeded.

lls/ml after treatment
Fold change in cell count = <ce s/ml after treatmen )

cells/ml seeded

2.2.3 Cell viability

Cell viability was assessed by the Trypan Blue exclusion method. This method was
based on the principle that cell membrane integrity changed following cell death 253,
After cell suspension was mixed with Trypan Blue, live cells with an integrate cell
membrane remained unstained while death cells allowed the take-up of the dye. Cell
pellet was obtained after a 5 minutes centrifugation at 212 g. Pellet was then resus-
pended in cell media three times with micropipette and a 10 ul aliquot was pipette
into a microtube. 90 ul of Trypan Blue stain were added to the aliquot (1:10 dilution)
and mixed by pipetting five times. Mixture was incubate for 1-2 minutes at room
temperature. 15 pl of this mixture were then added to each chamber of a hemocy-
tometer. Cells in both chambers of the haemocytometer were counted using a hand
tally counter (Fisher Scientific) and Olympus light microscope with the Olympus
SPlan 10x objective lens. The mean of unstained and stained cells in both chambers
was then calculated. Unstained cell number was divided by the total number of cells

and multiply by 100 to obtain cell viability percentage. The formula used was:

Cell viability — ( unstained cells

100 2.3
total cells (unstained + 3tained)> . (23)
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2.3 Nucleic acid analysis

2.3.1 RNA extraction

Total RNA was extracted using the mirVana™ miRNA Isolation Kit with phenol ac-
cording to the manufacturer’s instructions. The kit provided all reagents/supplies ex-
cept for chloroform, ethanol and DNA- and RNA-free water. The protocol combined
organic2¥ and solid-phase extraction 2. Frozen cell pellets were lysed with 600 sl
Lysis/Binding buffer and 60 ul miRNA Homogenate Additive after a 10 minute incu-
bation on ice. 600 pl of acid phenol:chloroform (1:1) were then added, samples mixed
and centrifuged at 21130 g for 10 minutes at room temperature. The upper phase was
then transferred to a new microtube and 1.25 volumes of absolute ethanol added and
mixed. Mixture was pipette to the filter cartridge (containing silica glass) and cen-
trifuged 15 seconds at 9408 g. Filter was washed once with 700 pl Wash Solution 1
and then twice with 500 ul Wash Solution 2/3. DNA- and RNA-free water was then
added to the filters and incubated for 2 minutes. Samples were centrifuged for 20 sec-
onds at 21130 g to obtain the total RNA, including very small RNA species. Samples
were stored at —80 °C and maintained on ice when used, avoiding thaw-freezing cy-

cles.

2.3.2 DNA extraction

DNA extractions were performed using QIAamp DNA Blood Mini Kit according to
manufacturer’s instructions. The kit provided all reagents/supplies except for phos-
phate-buffered saline (PBS, 10 mM PO4%, 138 mM NaCl, 2.7 mM KCl, pH 7.4 at
25°C), RNase A (20 ul, 20 mg/ml), ethanol and DNA- and RNA-free water. Frozen
cell pellets were resuspended and incubated for 2 minutes at room temperature with
180 pl PBS plus 20 ul RNase A to avoid any possible RNA contamination. Cells were
then lysed by adding 20 ul Proteinase K (600 mAU/ml), 200 ul Buffer AL and a 10
minute incubation at 56 °C. 200 pl absolute ethanol were then added, mixed and lysates
loaded to columns. DNA was immobilised into columns after 1 minute centrifugation
at 6000 g and then washed once with 500 ul Buffer AW1, repeating centrifugation.
Samples were further washed with 500 ul Buffer AW2 and centrifuged at 21130 g for
3 minutes to completely remove wash solution. DNA- and RNA-free water was then
added to columns. Samples were incubated for 5 minutes at room temperature prior
centrifugation for 1 minute at 6000 g to elute DNA. Samples were stored at 4 °C for
short-term (up to 24 hrs), —20°C for middle-term (up to 1 month), or —80°C for
long-term (up to 3 years).
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2.3.3 Quantity and quality assessment of nucleic acids

RNA and DNA concentration and purity was assessed using a NanoDrop® ND-1000
full-spectrum (220-750nm) spectrophotometer (Thermo Scientific). Nucleic acid con-
centrations were calculated with a modified Beer-Lambert equation solved for concen-
tration, which employed ultraviolet (UV) light absorbance of samples at 260 nm. All
concentrations were calculated automatically by the default software in NanoDrop®.
Nucleic acid purity was assessed by a 260 nm / 280 nm ratio of absorbance close to
1.8 for DNA and around 2.0 for RNA, whereas a 260 nm / 230 nm ratio of absorbance
in the range of 2.0-2.2 was a target for both. Further RNA and DNA purity was eval-

uated by agarose gel electrophoresis.

2.3.4 Agarose gel electrophoresis

RNA, DNA and PCR amplicons were run on agarose gels to measure purity, integrity
and quantity qualitatively. 1% gels (1 g agarose in 100 ml 1x Tris-acetate-EDTA (TAE))
were used for RNA and DNA samples, whereas 2% gels were used for PCR ampli-
cons. Agarose was dissolved in 1x TAE by microwave heating and then cooled down
at room temperature for a maximum of 5 minutes. 7 pl 100,000x GelRed in water
were then added and mixed. Agarose was poured into a mould with combs inserted,
and was let to gelatinise. Every electrophoresis was run with 1x TAE buffer using 4
ulb O’GeneRuler 1 kb ladder Plus DNA Ladder as size reference. Samples were mixed
with 1x BlueJuice (Bromophenol Blue) loading dye prior to load samples into gels.
Agarose gels were run at 120 V for a maximum of 10 minutes in RNA samples or be-
fore the loading dye migrated the total length of the gel in DNA samples. RNA pu-
rity was assessed by the presence of mainly two bands corresponding to 28S and 18S
rRNA when exposing gels to UV light. DNA and PCR amplicons purity was assessed
by the presence of only one band when exposing gels to UV light. In all instances, in-
tegrity was assessed by the sharpness of bands, whereas quantity by the brightness of
bands compared to each other (Figure [2.1)).
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Figure 2.1: Nucleic acids on a typical agarose gel. Image shows, left to right,
O’GeneRuler ladder, total RNA with no very small species of RNA, total RNA includ-

ing very small species of RNA, degraded RNA, genomic DNA and degraded genomic
DNA.
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2.4 Standard and quantitative polymerase chain reaction

2.4.1 Primer design, synthesis and optimisation of annealing
temperature

Bespoke primers were designed using the primer designing tool in The National Cen-
ter for Biotechnology Information (NCBI) website. This tool used the free software
Primer3 to design PCR primers. Primer3 calculated the melting temperatures, propen-
sity to form harpins and dimers in candidate primers according to the user-specified

2564257]

constraints! Once designed, primers were aligned to the NCBI human genome

database and selected if they were potentially specific to the sequences of interest [258]

For ChIP-qPCR experiments, bespoke primers were designed using DNA as template
and the Human Reference Sequence Build 37 (same as Infinium Human Methyla-
tionEPIC BeadChip). Details of all primers used for ChIP-qPCR and optimised a-
nnealing temperatures are shown in Table

Table 2.2: Primers used for ChIP-qPCR.

Target b
Size

DMP ID / Primer Sequences (5’-3") Temp? (bp)
gene P

Fwd TGCATCTGTGTTGTCCCTTTTGTA
17058565 64°C 69
& Rev TGAATGGTCACCGTTTTACGTTCAG

Fwd GGCGGTGATAACATTCTTCGGT
15707568 64°C 110
6 Rev AGCCTGGATGGAACCCTGAGA

Fwd AGGACGCGCCCCTCTTTCTCA
17016559 66°C 92
& Rev GGACCTGTGTTGATGTGGCCGT

Fwd AAGGCTGCGAAGAGACGCAC
07203320 68°C 77
® Rev AAGCTCTCAGCCCTCCCTCTG

Fwd CTGCGTCACTGCCCTGCATC
18492804 64°C 68
6 Rev CCAATGCGGTACCACCCCAAGA

DMP; differential methylated position; Fwd, forward primer; Rev, reverse primer; * =
annealing temperature; ® = amplicon size. DMP ID according to 850k DNA Methyla-
tionEPIC BeadChip.

For RT-qPCR experiments, bespoke primers were designed using RNA as template
and the Human Reference Sequence Build 38 (same reference as Illumina HumanHT-
12 v4 Expression BeadChip) using spanning exon-exon junctions to avoid PCR arte-
facts. Details of all primers used for RT-qPCR (designed or purchased) and optimised
annealing temperatures are shown in Table
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Table 2.3: Primers used for RT-qPCR.

Target ) Exon SizeP
Primer Sequences (5’-3’) i Temp?

Gene location (bp)
CD79A QT00998354 NA 60°C 104
HMGCS1 QT00055531 4/5 60°C 123
ID1 QT01002757 NA 60°C 131
IGF2R  QT00080549 39/40 60°C 105
MSMO1 QT01007986 NA 60°C 93
PER2 QT01011892 18/19 60°C 83
TOX?2 QT01864380 NA 60°C 88
RPL13A QT00089915 5/6/7 60°C 161

2
GZMA Fwd TGTGCTGGGGCTTTGATTGC 60°C 76
Rev TGACCTGGGACCTTTTGTTCA 2/3
Fwd ACGTTTACCCTCGATGCTCT 6 o
HMGCR Rev AGCTGACGTACCCCTGACAT 6/7 60°C 7
20
LSS Fwd CGTTATTTGCAGAGTGCCCAG 60°C 88
Rev CCTCGATGTCAGGATGCCG 20/21
Fwd ATTAAGGGTGTGGGCCGAAG 2/3 .
RPS18 Rev TGGCTAGGACCTGGCTGTAT 4/5 60°C 20

a b

Fwd, forward primer; Rev, reverse primer; * = annealing temperature; © = amplicon size;
CD79A, CD79a Molecule; HMGCS1, 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1; ID1, Inhibitor
Of DNA Binding 1, HLH Protein; IGF2R, Insulin Like Growth Factor 2 Receptor; MSMO1,
Methylsterol Monooxygenase 1; PER2, Period Circadian Clock 2; TOX2, TOX High Mobil-

ity Group Box Family Member 2; RPL13A, Ribosomal Protein L13a; GZMA, Granzyme A;
HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA Reductase; LSS, Lanosterol Synthase; RPS18, Ri-
bosomal Protein S18. Sequences of purchased primers (QuantiTect®) were not available. NA; No

available information.

For standard RT-PCR, experiments, bespoke primers were designed same as RT-qPCR

primers. Details of primers used and optimised annealing temperatures are shown in

Table 2.4

Table 2.4: Primers used for standard RT-PCR.

Target . Exon SizeP
Primer Sequences (5-3) ) Temp?
Gene location (bp)
5
PPARG Fwd GGTGTATGACAAGTGCGACC 54°C 112

Rev AATCGCGTTGTGTGACATCC 5/6

Fwd, forward primer; Rev, reverse primer; ® = annealing temperature; > = amplicon size;

PPARa, Peroxisome proliferator-activated receptor alpha.
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All bespoke primers were synthesised by Eurofins Genomics using High Purity Salt-
Free (HPSF) oligo purification. PCR annealing temperature for each primer was op-
timised by a PCR gradient using 10 ng/ul cDNA, 1.25 units HotStartTaq DNA Poly-
merase, 1x PCR buffer, 16 mM MgCls, 0.2 uM of each forward and reverse primer
and 200 uM of each deoxynucleoside triphosphates (ANTP’s) in a 25 ul final volume
reaction. All reagents, except from dNTP’s, were provided with the HotStartTaq DNA
Polymerase. PCRs were carried out with an initial 95 °C incubation for 15 minutes to
activate polymerase with subsequent amplification for 35 cycles using a Veriti Ther-
mal Cycler (Applied Biosystems). Each cycle included denaturation at 95°C for 45
seconds, annealing from 48 to 63 °C for 45 seconds and elongation at 72 °C for 60 sec-
onds. A final incubation at 72°C for 10 minutes was performed as final step. PCR
amplicons were then run in an agarose gel as described previously (section [2.3.4)) to

assess specificity and the best annealing temperature.

2.4.2 cDNA or DNA qPCR

qPCR was carried out in a 10 pul final volume reaction using QuantiFast SYBR Green
I PCR Kit, bespoke forward/reverse primers (0.3 uM/each) and 15 ng/ul cDNA or 15
ng/ul DNA for RT-qPCR or ChIP-qPCR experiments, respectively. Reactions were
performed using a LightCycler® 480 Real-Time PCR System (F. Hoffmann-La Roche
Ltd). To activate HotStarTaq Plus DNA Polymerase provided with SYBR Green I,
pre-incubation at 95 °Cfor 5 minutes was performed prior 40 cycles amplification.
Each cycle included denaturation at 95 °C for 10 seconds to separate double-stranded
DNA (dsDNA) and a combined annealing/extension step at 60 °C for 30 seconds to
prime template and synthesise the complementary strand. This two-step PCR was
according to the SYBR, Green I protocol. After each elongation step, SYBR Green I
fluorescence was measured at 530 nm. As the fluorescence of SYBR Green I dye is en-
hanced up to 100-fold when intercalated into dsDNA, the fluorescence measured was

proportional to the quantity of product synthesised by the primers.

To ensure that SYBR Green I fluorescence reads were reflecting specifically the PCR,
amplicon of interest, a melting curve was performed. This technique was based on

the principle that every dsDNA product has a particular meting temperature 259
Hence, the melting curve analysed all possible dsDNA products in samples (specific,
non-specific and primer-dimers). When qPCR reactions were gradually heated up to
95°C, all dsDNA products were separated into single-strands. This triggered a de-
crease in fluorescence that was measured and plotted as inverse. Specificity of qPCR
reactions was assessed by the presence of a single peak in the melting curve which was
achieved with all primers used, otherwise re-design or not used. Melting curves were
obtained after denaturation at 95°C for 15 seconds with a ramp rate of 4.8°C/s and

annealing at 60 °C for 1 minute with a ramp rate of 2.5°C/s. Fluorescence data was
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acquired twice every 1°C change in temperature. Cycle threshold (Ct) values were
given by default LightCycler® 480 software with the same manually fixed fluorescence
background in all samples. All gPCR reactions were performed in duplicate (technical

replicate).

2.4.3 Data analysis of ChIP-qPCR experiments

After qPCR was performed, the % input was then calculated using the Ct values.
First, the adjusted input to 100% was obtained as follows.

Adjusted input = Duplicate average Ct value of input — logy(dilution factor)

(2.4)
input d (ul) x 100
where dilution factor = input used () (2.5)
sample used (ul)
Duplicated averaged Ct values of samples were then used to obtain the % input.
% input — 100 x 2(Adjusted input — duplicate averaged Ct of samples) (26)

The % input of H3K4me3 of cells treated with either vehicle ethanol (control), OA

or DHA was then tested with IBM SPSS® version 22.0.0.0, 64-bit edition. Treatment
means versus controls were compared by Student’s T-test or one-way ANOVA with
Dunnett’s post hoc test. The selection of the statistical analysis was dependent on the

number of groups involved in the analysis.

2.4.4 Data analysis of RT-qPCR experiments

mRNA levels were calculated using the Ct values by the standard curve method 260
and then normalised to RPL134 and RPS18 expression (discussed in section [6.3.7)).
The standard curve for each gene was performed and included 5 known concentrations
ranging from 4x (20 ng/ul) to 1/4x (1.25 ng/ul) the concentration of samples (1x =

5 ng/ul). After qPCR was carried out in the standard curve, the base 10 log-form of
the concentrations in x-axis were plotted against the correspondent Ct values in the
y-axis. Log-transformed concentration allowed a more symetrical data to apply linear
regression. The equation of the slope of the linear regression was then obtained (For-
mula and solved for x (concentration) (Formula [2.8)). Data was raised to power 10
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and the abundance of mRNA was obtained.

Yi=pXi+e (2.7)

where

Y;= regressand or Ct value

X,;= regressors or abundance/expression of mRNA
(1= parameter vector

€; = error term

Ct value —e; )

FExpression of mRNA of interest = 10( f1 (2.8)
The expression of the mRNA was then divided by the square root of RPL13A expres-
sion multiplied by RPS18 expression (Formula . This relative expression reduced
the possible variability of the mRNA of interest due to different amounts of template

in samples and variations in RT efficiency.

concentration of mRNA of interest)

relative expression of mRNA of interest = <
VRPL13A x RPS18

(2.9)

Relative expression of mRNA in cells treated with either control vehicle, OA, EPA or
DHA were tested with IBM SPSS® version 22.0.0.0, 64-bit edition. Treatment ver-
sus control means were compared by one-way ANOVA with Dunnett’s post hoc test
on the log transformed data as gene expression have shown to be not normally dis-
tributed 261

2.5 Pyrosequencing

Measurement of DNA methylation by pyrosequencing involved several steps as de-

234 DNA was bisulphite treated to serve as a template for PCR am-

scribe elsewhere
plification of a region of interest using bespoke primers. PCR amplicons were then

sequenced through a light-base method (pyrosequencing). As unmethylated cytosines,
but not methylated ones, changed with bisulphite treatment. Changes observed in the

sequences were proportional to the changes in DNA methylation.

2.5.1 Primer design

Primer design was performed using 500 bp up- and downstream the CpG site of in-

terest and PyroMark Assay Design version 2.0.1.15 (Qiagen). The 1002 bp sequence
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corresponded to the same strand and genome build of probes in the MethylationEPIC
BeadChip. Designed primer sets included a 5’ biotin-label forward or reverse primer,
its complement and a sequencing primer. Primer synthesis was carried out by Eu-
rofins Genomics using High Purity Salt-Free (HPSF) and High-performance liquid
chromatography (HPLC) purification methods for non- and biotin-label primers, re-

spectively. Details of primers used for pyrosequencing are shown in Table

Table 2.5: Primers used for pyrosequencing.

Target Sizeb
ize

Cytosine Primer Sequences (5’-3) Temp?
D (bp)

Fwd TGTATATATTTGATAGGAGGGAAAGT
€g26292058 Rev BIO-ACACCCCTTAAAATCATCCTATATATTAC 57°C 162
Seq TTTAAGGTGTGTGTTAGA

Fwd GTGTTTTTTGAGAGGAAATGGGTGATAAT
cg05475386  Rev BIO-TACATTACACAAACCTTATTAAACATTACC 57°C 121
Seq GGTTTTTTAATAGAAGGA

Fwd AGGGTAAAGTTTGAGGGTATTTGT
cg27188282 Rev BIO-ATCTTCTTCCCAAAACATCTTCTC 62°C 165
Seq TGTTTTTGTGATTTAATTTATTATTTAAG

Fwd BIO-TTAGGTAGATGGGGGAGTTGG
cg06989443 Rev ACAAACAAACAAATAATTCCCCCTTACA 57°C 246
Seq CTAAAAACAACTATTTATTCCCT

Fwd BIO-TTTTGTTATTATTTAGATTGTGGTTTGG
cg22518417 Rev ACCCAACCTTCTAATCTTTTCATAA 57°C 79
Seq AAAAAACATTAATACTTATATACT

Fwd, forward primer; Rev, reverse primer; Seq, sequencing primer; BIO-,

b

biotin-labeled primer; * = annealing temperature; ® = amplicon size.

2.5.2 Bisulphite conversion of DNA

DNA samples (1 ug) were bisulphite converted using EZ DNA Methylation-Gold™
Kit according to the manufacturer’s instructions. Additionally, 1 pg of human unme-
thylated (EpiTect Control DNA) and methylated DNA (CpGenome universal methy-
lated DNA) were also treated with bisulphite as control. The reaction involved denat-
uration of DNA, bisulphite treatment (sulphonation and deamination) and desulfona-
tion. In this manner, unmethylated cytosines turned into uracils whereas methylated
cytosines remained the same after bisulphite treatment. Samples were eluted in 60 ul
elution buffer provided by the kit and store at —80°C.
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2.5.3 PCR

PCR was carried out in a 25 ul final volume reaction using 2 ul of bisulphite treated
DNA (< 12.5 ng/ul), 12.5 ul KAPA2G Robust HotStart ReadyMix Kit and 1 ul of
primers (10 uM/each). The reaction was performed using a Veriti 96 well Thermal
Cycler (Applied Biosystems). PCR started with a 95°C incubation for 3 minutes to
activate polymerase with subsequent amplification for 45 cycles. Each cycle included
denaturation at 95 °C for 15 seconds, annealing at a specific temperature for 15 se-
conds and elongation at 72°C for 30 seconds. Annealing temperatures were selected
after a PCR gradient and pyrosequencing optimisation was performed (Table .
PCR products were stored at 4 °C until further processing.

2.5.4 DNA pyrosequencing

Pyrosequencing was carried out using GE Healthcare streptavidin sepharose high-
performance beads (34 pum), PyroMark binding buffer, 1x PyroMark wash buffer, 96-
well plates, 70% (v/v) ethanol, denaturation solution (8 g NaOH / 11 dH20), Pyro-
Mark Q96 HS Sample Prep Thermoplate, PyroMark annealing buffer, PyroMark Q96
HS tips and PyroMark Gold Q96 Reagents which included deoxythymidine (dTPP),
deoxyadenosine alfa-thio triphosphate (dATPaSs), deoxycytosine (dCTP), deoxygua-
nine (dGTP) triphosphates, enzyme and substrate.

In a 80 pl final volume reaction, 2 ul beads, 38 ul binding buffer, 10 ul PCR product
and 30 pl dH20 were mixed for a minimum of 5 minutes using a plate shaker. The
process bond double-stranded biotin-labeled PCR, amplicon to beads which strands
were then separated using a Vacuum Workstation (Biotage) following the manufac-
ture’s instructions. The separation of strands included the capture of double-stranded
biotin-labeled PCR amplicon with a vacuum tool and serial flushes with 70% (v/v)
ethanol, denaturation solution and wash buffer. The now single-strand biotin-labeled
PCR amplicon was annealed after 80 °C incubation for 2 minutes using 12 ul anneal-
ing buffer with sequencing primers (0.3 pM) on a thermoplate. Samples were cooled
down for a minimum of 5 minutes at room temperature prior pyrosequencing was car-
ried out using a PyroMark MD instrument (Biotage). The final output was analysed
using Pyro Q-CpG version 1.0.9 software (Biotage). Percent methylation of CpG sites
of interest was determined by comparison of peak’s height between dTPP or dATPaS
and dCTP or deoxyguanine dGTP. This depended if sequencing primer amplification
was on the forward or reverse strand, respectively. dTPP and dATPaS peaks repre-
sented unmethylated cytosines while dCTP and dGTP methylated ones. An example
of each case is shown in Figure

Human unmethylated, methylated DNA, NTC and bisulphite conversion controls were

run and used in each pyrosequencing run. An additional bisulphite conversion effi-
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ciency control was used and consisted in the measurement of DNA methylation of a
cytosine that was not followed by a guanine (CpG), and therefore, expected to be to-
tally unmethylated. Bisulphite conversion efficiency in samples was indicated by the
absence of a peak in the pyrogram after adding dCTP or dGTP (Figure . Cut-
offs to consider a pyrosequencing run successful were unmethylated control showing

< 10% methylation, methylated control > 70% methylation and bisulphite conversion
efficiency > 95%.

A1 TATYGATTGGTAATATATAGGATGATTTT

3500
3000
2500
2000
1500
1000
S00
0

A5 TACRCCALACCACAATCTAAATAATAACA

3500
3000
2500
2000
1500
1000
S00
0

Figure 2.2: A typical pyrogram. Intensity of light is shown in the y-axis whereas nu-
cleotide dispensation order in the x-axis, starting with enzyme (E) and substrate (S)
signals. DNA methylation of the CpG site of interest and bisulphite conversion effi-
ciency control is shown with a grey or yellow background, respectively. Pyrosequenc-
ing was performed using sequencing primers to amplify forward (top) or reverse (bot-
tom) strands. T or A was expected when cytosines were unmethylated otherwise C or
G. Comparison between un- and methylated signals indicated methylation percentage
in the CpG site of interest (blue box).
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2.6 Pathway analysis

Pathway analysis was carried out using Ingenuity® Pathway Analysis (IPA®, QIA-
GEN Bioinformatics) built version: 400896M, content version: 28820110 (release date:
2018-09-24). Such analyses were carried out to identify possible pathways altered

in OA or DHA-treated cells using all significant transcriptome or DNA methylome
changes identified by BeadArrays. Analyses were performed using annotated genes in
IPA® database, all node types (e.g. ligand-dependent nuclear receptor, microRNA),
all data sources (e.g. protein-protein interactions, Gene Ontology) with experimen-
tally reported data in humans only. IPA® predicted activation and/or inhibition of
canonical pathways, toxicity-related categories (ToxList), upstream regulators and

downstream effects on biological functions of cells.

Predictions carried out using IPA® were based on the enrichment of significantly al-
tered genes in a specific pathway and the agreement of the direction of change on
gene expression compared with published data. Enrichment was determined by a p-
value whereas agreement by a z-score. The p-values were calculated by Fisher’s ex-
act test right-tailed. This test examined if the overlap of significantly altered genes
and the genes associated within a specific pathway/function in IPA® database was
due to chance2 A minus logarithm (-log) p-value greater than 1.3 (equivalent to
p-value < 0.05) was considered significant. The use of the -log(p-value) rather than
p-value values was obtained by default in the software and was maintained for display-
ing purposes. The z-score of the significant pathways/functions was then calculated.
The z-score was determined by the likelihood of the directional effect of one molecule
to another in the dataset of interest. This was according to all information found in
the software database. Positive z-scores indicated a possible activation while a nega-
tive value designated a possible inhibition. The more distant a z-score was from zero,
the stronger the prediction was262. In this work, a z-score higher or lower than 1 or
-1 was considered as a significantly activation or inhibition, respectively. A representa-

tion of the analyses performed in IPA® is shown in Figure [2.3

2.6.1 Gene expression changes

To explore altered pathways by gene expression changes, duplicated transcripts re-
gardless variants were removed. In addition, some transcripts that were not recognised
by IPA® software were also discarded from analysis. The direction of change of genes
(up- and downregulated) was included in the analysis. The final dataset that was used
to predict molecules and pathways related to expression changes consisted of 82 tran-
scripts (37 up-regulated) in OA treatment and 445 transcripts (218 up-regulated) in
DHA treatment.
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Figure 2.3: Overview of pathway analysis performed in IPA®. Significantly altered
pathways were calculated according to enrichment of genes in a specific pathway /cate-
gory with a -log(P-value) > 1.3 from Fisher’s exact test. In addition, IPA® calculated
a z-score based on the direction of change of published data compared with the input
genes. The z-score accounted for similarities/discrepancies of the input data (altered
transcripts by OA or DHA) with the experimental evidence in the IPA® database.
Positive z-scores indicated a possible activation while negative values suggested a pos-
sible inhibition of the pathway. The same Fisher’s exact test and z-scores were used
to predict upstream regulators and downstream effects of altered transcripts on cells.
The diagram shows hypothetical genes downregulated (green circles), upregulated (red
circles) or genes that did not change expression (blue circles) by the treatments. For
example, if reported evidence has been shown that a upstream regulator only lead to
activation (arrows), but the input data showed a downregulation (gene 2 in group of
genes 1-2) or a lack of effect in target genes (genes 15 and 16 in group of genes 13-
16), the possibility of such gene to be an upstream regulator was low (z-score close

to 0). In the perfect scenario, an upstream regulator that has been reported to acti-
vate genes 8, 10 and 11 while inhibiting gene 9 would find the same information in
the input data (A). Similarly, the downstream effects were predicted. Assuming that
a particular biological function (downstream effect) is under control of genes 7-12 (B).
The ideal scenario would be that expression of genes that inhibit (blunt arrows) that
biological function should be downregulated (gene 9) or not change (gene 7 and 12),
while genes that induce a particular effect should be upregulated (gene 8, 10 and 11).
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2.6.2 DNA methylation changes

Only DNA methylation changes in intragenic regions were considered to explore al-
tered pathways by DNA methylation changes. Intragenic regions consisted of all ge-
nomic locations that form part of gene. These locations included promoter regions (up
to 1500 bp), 5’ UTRs, exons, introns and 3’ UTRs. When a single gene changed DNA
methylation in more than one CpG site within the same gene, this was considered as
one altered gene. When a single CpG site was part of two genes, both genes were in-
cluded in the analysis. Any duplicate gene regardless variants and some others that
were not recognised by IPA® database were discarded from analysis. The direction of
change was not included in the analysis (increased or decreased DNA methylation).
Only a list of genes significantly changing DNA methylation in each treatment was
used. The final dataset that was used to predict pathways and upstream regulators re-
lated to genes with altered DNA methylation by fatty acids consisted of 348 genes in
OA treatment and 935 genes in DHA treatment.
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Chapter 3

A Model to Investigate the
Effects of OA or DHA on DNA
Methylation in Cells

3.1 Introduction

The main aim of the current work was to understand how fatty acids alter the DNA
methylation of human cells. The capacity of fatty acids to alter the DNA methyla-
tion has been identified in candidate genes using PBMCs from human volunteers after
supplementation with olive oil or omega-3 fatty acids for 8 or 12 weeks249. Since OA
and DHA are major constituents of olive oil or omega-3 fatty acids, respectively, they
were selected to study their effects on the DNA methylation. In order to investigate
the underlying mechanisms, a robust model such as a cell culture was needed. There-
fore, Jurkat cells were selected because they are an immortalized human cancer cell
line that grows fast (they duplicate cell number approximately every 30 hours). Be-
sides, they are lymphocytes which are the major component of PBMCs 283l and their
growing conditions are similar to those of PBMCs during fatty acid supplementation

in humans (a cell suspension exposed to fatty acids in media).

The concentrations of OA and DHA in plasma lipids of healthy adults are on aver-
age 1285 uM and 88 uM, respectively B4, Such physiological concentrations have been
shown to decrease the viability of different human cancer cell lines in vitro26%265 I
the specific case of Jurkat cells, no significant effect on viability has been detected
after 1-day treatment with concentrations lower than 200-250 M OA or 15-50 pM
DHA R64266-268] ' However, those concentrations could reduce the cell viability if the
duration of treatment is increased 267, Available evidence suggests that the effects of
fatty acids on cell viability is determined by the concentrations used, the type of fatty

acid treatment, the duration of treatment and the cell type 2642662267269270]  Tpere-
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fore, different concentrations and different duration of treatments were tested to ex-
pose the cells to OA or DHA with the highest dose and time without affecting cell

survival.

In vitro treatment of cells with fatty acids has also shown to modify the fatty acid
composition of treated cells®. Such changes are reported to be dependent of the time,
cell-type and dose of the treatment until treated fatty acids reach a new steady state
of concentration ®3. The increment of particular fatty acids may also increase the
concentration of their derivative fatty acids by conversion or retro-conversion depend-

271 Incorporation of fatty acids into cell membranes is needed for

21}

ing on the cell type
most of the fatty acid effects on cells®. The same may also be true for their effects on

the DNA methylation. However, this is unknown.

The experiments in this chapter aimed to establish a working model to study the ef-
fect of fatty acids on DNA methylation. Since the effects of fatty acids on cell viabil-
ity may represent a confounding factor, different concentrations of fatty acids were
tested to avoid this. The fatty acid changes in cell media and cells were analysed to

asses the effectiveness of the treatments used.

3.2 Materials and methods

Treatment of Jurkat cells with OA or DHA was carried out as described in section [2.2.1
Cell viability was determined by Trypan Blue exclusion (section [2.2.3). Measurement

of fatty acids in cell media and cells was carried out by gas chromatography (GC, sec-

tion [3.2.1)).

3.2.1 Gas chromatography
3.2.1.1 Extraction, methylation and resolution of fatty acids

Cells (8x10%) were washed three times with PBS and resuspended in 0.8 ml of 0.9%
(w/v) NaCl. 1 M NaCl (1.0 ml) and 2:1 (v/v) chloroform:methanol 2 (5.0 ml) con-
taining butylated hydroxytoluene antioxidant (50 mg/1) were added to the cell suspen-
sion or to 0.8 ml RPMI-1640 medium containing 9% (v/v) FBS, 2 mM L-glutamine,
100 U/ml 10 penicillin and 100 pg/ml streptomycin. Nonadecanoic acid was added

as internal standard for medium (5 pg) and cells (15 pg). Samples were vortexed and
then centrifuged at 753 g for 10 minutes at room temperature. The lower phase was
recovered and dried under nitrogen. The dried extract was dissolved in toluene, and
fatty acids methyl esters (FAME) were synthesised by incubation with 2% (v/v) sul-
phuric acid in methanol at 50°C for 2 hours 273,
adding 1 ml of a solution containing 0.25 M KHCOj3 (25.03 g/1) and 0.5 M K,CO3

The reaction was neutralised by
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(69.10 g/1). 1 ml hexane was then added, samples mixed and then centrifuged at 188 g
for 2 minutes at room temperature. The upper phase (hexane) was transferred to a
glass tube and dried under nitrogen. FAME were resuspended in 75 ul of hexane and
resolved on a BPX-70 fused silica capillary column (32 m x 025 mm x 25 ym; SGE
Analytical Science) using an Agilent 6890 gas chromatograph equipped with flame
ionisation detection (Agilent Technologies Ltd). The fatty acid composition of all sam-
ples at specific time points was determined in a single run when possible. At the be-
ginning of each GC run, a blank sample and authentic FAME standards were run as
controls (Supelco® 37 Component FAME Mix).

3.2.1.2 Analysis of data

Chromatograms obtained from GC were analysed using Chemstation software. An ex-
ample chromatogram of Jurkat cells is shown in Figure [3.1] Fatty acids were identified
by their retention times peaks compared with authentic standards. Automated inte-
gration was used and was checked manually. The area of all peaks in chromatograms
was quantified; however, only peaks detected in more than 95% of all samples were
included in the analyses. These peaks were considered as the total lipids in samples

and were used to calculate fractional concentration (%) of each fatty acid using equa-

tion B.11

(3.1)

k it t
Fractional concentration (%) = (ar;z of peaf Olfl n el:es ) 100
area of all peaks

To calculate the amount of each fatty acid (ug) in 8x10° cells, the area of the peak of

the internal control added (15 pug nonadecanoic acid) was used as the reference (Equa-
tion .

area of peak of interest

) x internal standard added (ug)
(3.2)

Fatt d =
atty acid (ug) <area of internal standard

Finally, to calculate the fatty acid concentration in cell media (xM) the amount of the
fatty acid of interest was calculated using Equation (5 pg nonadecanoic acid as
reference) followed by the Equation

fatty acid of interest (ug) x ( L )

volume of sample (1)

(3.3)

trati M) =
Concentration (pM) Molecular weight of fatty acid of interest (g/mol)

The amounts of internal standard used for cells (15 pug) or medium (5 ug) were se-
lected after optimisation to obtain an area of the peak of the internal standard similar

to the area of peaks of fatty acids in samples.
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3.2.2 Statistical analysis

All statistical analyses were carried out using IBM SPSS® version 22.0.0.0, 64-bit edi-
tion. In 1-day treatments, the Student’s T-test was used to compare the viability be-
tween control and OA or DHA-treated cells at the different concentrations tested. In
8-days and 10-days treatments, two-way ANOVA with Dunnett’s post hoc test was
used to compare the viability and proliferation of OA or DHA-treated cells versus con-
trols. The Student’s T-test was used to compare the fatty acid composition changes

between control, OA or DHA-treated cells and treatment media.
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3.3 Results

3.3.1 The effect of OA or DHA on the cell viability and proliferation

Treatment of cells with OA at the concentrations tested (7.5 to 30 uM) did not alter
cell viability significantly after 1 day of treatment compared with the control treat-
ment (vehicle ethanol < 0.01% (v/v)). Similarly, there was no significant effect on
cell viability by incubation with 7.5 uM or 15 uM DHA. However, incubation with
22.5 uM or 30 pM DHA induced a significant decrease in cell viability after 1 day of
treatment (4 to 9% points) compared with controls (Figure [3.2)). Therefore, in order
to ensure the greatest effect of fatty acids on cells without reducing cell viability, the

15 uM concentration was selected for subsequent experiments.

1001
80+
60 -

401

% Viable cells

20+

0 75 15 225 30 75 15 225 30
FA Concentration (M)
m CTRL m OA m DHA

Figure 3.2: Viability of Jurkat cells after OA or DHA treatment for 1 day at different
concentrations ranging from 7.5 uM to 30 uM. Data are the mean % of viable cells +
standard error of the mean (n = 3 per concentration per treatment). Controls versus
treatments means were compared by one-way ANOVA with Tukey HSD post-hoc test
per treatment and those which differed significantly are indicated by *P < 0.05, **P

< 0.01 or P < 0.001. FA, fatty acid.

Cells were incubated then with 15 M OA or 15 uM DHA for 10 days. Treatment of
cells with 15 uM OA did not alter cell viability during a 10-day incubation. In con-
trast, DHA treatment induced a significant decrease in cell viability after the 5% day
of treatment (> 4% points). The viability of cells decreased by 15% to 19% points
compared with controls between day 9 and 10 (Figure .

Same to cell viability, 15 uM OA treatment did not alter cell proliferation during a
10-day incubation. However, 15 uM DHA treatment induced a time per treatment
effect on proliferation of cells (Figure [3.4).
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Figure 3.3: Viability of Jurkat cells during 15 uM OA or 15 puM DHA treatment for
10 days. Data are mean + standard error of the mean (n = 3 replicates per treatment
per time point). Control versus treatments means were compared by two-way ANOVA
with time as a repeated measure and treatment as a fixed factor. Means that differed
significantly are indicated by *P < 0.05, **P < 0.01 and ***P < 0.001.
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Figure 3.4: Proliferation of Jurkat cells during 15 uM OA or 15 uM DHA treatment
for 10 days. Data are mean + standard error of the mean (n = 3 replicates per treat-
ment per time point) of the fold change in cell count between cells seeded and cells
harvested. Control versus treatments means were compared by two-way ANOVA with
time as a repeated measure and treatment as a fixed factor. Means that differed sig-
nificantly are indicated by *P < 0.05, **P < 0.01 and ***P < 0.001.
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Because cell viability decreased three times more at day 9 (15% points) compared
with day 8 (4% points) in DHA-treated cells, a period of 8 days was selected for fur-
ther experiments. 15 pM OA or 15 uM DHA treatments were performed again for 8
days increasing the number of cultures replicates (n = 12 per treatment). Similar to
previous experiments, the viability decreased significantly only in DHA-treated cells.
After the 8" day of incubation with 15 uM DHA the cell viability decreased signifi-
cantly 4% points compared with vehicle control (Figure [3.5). DHA treatment, but not
OA treatment, decreased the fold change in cell count between cells seeded and cells

harvested compared with the control treatment (Figure [3.6]).
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Figure 3.5: Viability of Jurkat cells during 15 uM OA or 15 yuM DHA treatment for
8 days. Data are mean + standard error of the mean (12 replicates per treatment per
time point). Control versus treatments means were compared by two-way ANOVA
with time as a repeated measure and treatment as a fixed factor. Means that differed
significantly are indicated by *P < 0.05, **P < 0.01 and ***P < 0.001.
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Figure 3.6: Proliferation of Jurkat cells during 15 uM OA or 15 uM DHA treatment
for 8 days. Data are mean + standard error of the mean (12 replicates per treatment
per time point) of the fold change in cell count between cells seeded and cells har-
vested. Control versus treatments means were compared by two-way ANOVA with
time as a repeated measure and treatment as a fixed factor. Means that differed sig-
nificantly are indicated by *P < 0.05, **P < 0.01 and ***P < 0.001.
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3.3.2 The effect of OA or DHA treatment on the fatty acid composi-

tion of cells

Fatty acids in treatment media were measured to corroborate the concentrations used.
OA treatment media increased the amount of OA (17 uM, 2.2 fold) while DHA treat-
ment media increased the amount of DHA (14 pM, 6.1 fold) compared with control

media (Figure .
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Figure 3.7: Fatty acid composition of control (black bars), OA (A) or DHA (B) treat-
ment media (n = 18 / treatment). Data are mean £ standard error of the mean. Con-
trol versus treatments means were compared by Student’s T-test per time point and
those which differed significantly indicated by *P < 0.05, **P < 0.01 and ***P <
0.001.

To test the effectiveness of fatty acid treatments the total cell lipids were measured af-
ter the 3'Y and 8" day of incubation. OA treatment induced a significant increase in

the amount of OA (2.9 fold), 16:0 (1.2 fold) and 20:1n-9 (4.4 fold) after 3 days of incu-
bation. This was accompanied by decreased amounts of 16:1n-7 (-1.3 fold). Except for
16:0, all significant differences identified at the 3'4 day remained the same after 8 days
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of incubation with OA (Figure [3.8).

DHA treatment induced a significant increase in the amount of DHA (11.9 fold), 16:0
(1.5 fold), 18:0 (1.4 fold), 20:3n-6 (2.1 fold), 20:5n-3 (3.8 fold) and 22:5n-3 (2.2 fold)
after 3 days of incubation. This was accompanied by decreased amounts of 16:1n-7
(-1.26 fold), 18:1n-9 (-1.1 fold) and 18:1n-7 (-1.26 fold), although this only reached
significance after 8 days of incubation with DHA (Figure .
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Figure 3.8: Changes in fatty acid composition of Jurkat cells by 15 uM OA (A) or 15
uM DHA (B) after 3 (n = 4 replicate cultures) or 8 (n = 7 replicate cultures) days of
incubation. Data are mean =+ standard error of the mean. Control versus treatments
means were compared by Student’s T-test per time point and those which differed sig-
nificantly indicated by *P < 0.05, **P < 0.01 and ***P < 0.001. FA, fatty acid.
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3.4 Discussion

In order to study the mechanisms of how fatty acids alter the DNA methylation, a
robust model was needed. Treatment of Jurkat cells with OA or DHA was tested as
a model of study. Different concentrations and times of treatment were explored to
avoid cytotoxic effects of fatty acids and at the same time to induce the major effect
possible on cells. The fatty acid composition of cells was then measured to asses the
effectiveness of OA or DHA treatment.

3.4.1 The effect of OA or DHA on cell viability and proliferation

The results agreed with several studies that have been shown a decrease survival of
different human tumour cells and cell lines in a dose and time-dependent manner by
an in vitro treatment with DHA, but not OA at the same concentration 269274275
After testing different concentrations and duration of treatments, 15 uM OA or DHA
for 8 days were selected as working conditions. Although this concentration and time
significantly decreased the viability of DHA-treated cells (< 5% points), the overall

viability of Jurkat cells was not affected (> 90% viable cells).

Several mechanisms to explain the cell death of cancer cells by DHA have been des-
cribed. They include an increase in lipid peroxidation 2761 induction of procaspase-3
clavage 2™ lower production of prostaglandin EqHOI275278] 414 altered expression of

genes that control the cell cycle 119,

These mechanisms are still not completely un-
derstood and were not assessed mainly because they were beyond the scope of the
current work and because the cell viability dropped less than 5% points. Such small
decrease may restrict the experimental measurement of the different process possibly
altered by DHA. Reports addressing the mechanisms of cell death induced by DHA

generally show a reduction in the cell viability of more than 40% points 276277

DHA, but not OA treatment, decreased the number of cells that were harvested in
comparison with the control treatment. This suggested that DHA treatment decreased
cell proliferation, which is in agreement with reported evidence 268, Cell cycle arrest
by DHA has been associated with increased ceramide formation and cyclin-dependent
kinase (CDK) inhibitor 1A protein expression, together with decreased phosphory-
lation of RB transcriptional corepressor 1, CDK2 activity and cyclin A2 protein lev-

els [266]

. The latter in a time-dependent manner. Results in this work support the
time-dependent effect on Jurkat cells’ proliferation as there was identified a signifi-
cant time-dependent decrease in the cell count after DHA treatment. The effect on
cell proliferation specifically by DHA, but not OA treatment, suggests that different
molecular mechanisms were altered. Therefore, there is a possibility that such differ-
ences may trigger or influence different changes in cells, including DNA methylation

changes. This is currently unknown.
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3.4.2 The effect of OA or DHA treatment on the fatty acid composi-
tion of cells

OA or DHA treatment increased the concentration of the fatty acid supplemented in
Jurkat cells (Figure [3.8). In addition to these, the amounts of other fatty acids were
also altered by the fatty acid treatments. Such changes were observed since the 3™

8th

day of treatment and remained virtually unchanged after the day.

Treatment with OA decreased the total amount (ug) of 16:1n-7 in cells. This mono-
unsaturated fatty acid, together with OA, are products of 16:0 and 18:0 desaturation
by stearoyl-CoA desaturase (SCD), respectively 18, There is evidence that OA can de-
crease SCD1 mRNA expression using mice hepatocytes 279 Thus, it is possible that
the decreased amounts of 16:1n-7 in OA-treated cells were due to an end-product inhi-
bition of SCD1 by the increased amounts of OA. Further analysis of the transcriptome
changes in chapter |§| support this (Appendix . Changes in the expression of SCD1
by OA treatment using human cells are not usually tested in studies addressing gene
expression changes by OA. Because of this, it was not possible to compare the findings

observed in this work.

OA-treated cells also showed an increment in the amount of 20:1n-9. In mammalian
cells, OA can undergo two-carbon elongation to synthesise 20:1n-9 mainly by elonga-

2801 The approximately 4.5 fold increase

tion of very long chain (ELOVL) 3 enzyme!
in 20:1n-9 concentration and the 30% decrease in the OA|20:1n-9 ratio (ug|ug) in OA-
treated cells suggested a possible activation of the elongation process presumably by

activation of ELOVL3 (Figure [3.9).

18:0 18:0
A | B |
16:0 — sCD1 —» 16:1n-7 16:0 — SCD1 P
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v H
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Figure 3.9: Model to explain changes in the amount of fatty acids (blue arrows) in-
duced by OA treatment in Jurkat cells (B) compared with control treatment (A). Pos-
sible mechanisms (red dotted lines) underlying such alterations may include activation
(red dotted arrows) and inhibition (red dotted blunt arrows) of ELOVL3 and SCDI,

respectively.
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Treatment with DHA increased the amount of 20:5n-3 and 22:5n-3 in cells. One possi-
ble explanation is that some DHA was retroconverted to 20:5n-3 and 22:5n-3. Retro-
conversion of DHA has been described in a few human cell cultures as it is not usu-
ally reported 271281
was calculated that this was retroconverted to 22:5n-3 by 7% and to 20:5n-3 by 6%.

In both instances, DHA had to lose a double bond plus two carbons in the case of

Taking into account the increased amount of DHA in cells, it

20:5n-3 retroconversion. The widely accepted mechanisms of DHA biosynthesis in
mammalian cells has been shown that DHA retroconversion is a peroxisomal func-

tion 2814282

Besides, DHA treatment has been shown to increase elongation and the
number of peroxisomes using human fibroblasts deficient in peroxisomal enzymes acyl-
CoA oxidase 1 or 2-enoyl-CoA hydratase/D-3- hydroxyacyl-CoA dehydrogenase, bi-

n233 Thus, evidence suggests that DHA may stimulate peroxisome

functional protei
function that led to peroxisomal retroconversion of DHA. However, it is difficult to
conclude on the possible mechanisms that were activated or inhibited to achieve DHA

retroconversion considering only the fatty acid composition changes in Jurkat cells.

DHA incorporation into cell phospholipids has been widely described to occur with a
concomitant decrease of arachidonic acid (AA)284 . An altered level of AA has impli-
cations in cellular functions as it is the primary precursor to produce eicosanoids 234
In the current experiments, there were no changes in the amounts of AA in both, OA
or DHA-treated cells. Differences between the literature and results in this work may
arise because the majority of reports have been analysed the fractional concentration
(%) [284-286] jnstead of amounts reported here. Net increase of any fatty acid can lead
to an apparent reduction in the proportion of others which concentration remained

the same. Alternatively, the current work analysed total lipids in cells which may not

reflect the specific decreased AA levels reported in cell phospholipids.

Finally, there was identified a different increase in the amounts of OA or DHA in
treated cells in spite of the same concentration added to treatment media (15 pM OA
or DHA). Such differences were not entirely explained by the corresponding amounts
of fatty acids in treatment media. For example, DHA treatment media, which was
supplemented with 15 yM DHA, showed a similar total concentration of OA, AA

and DHA. However, the amount of DHA in DHA-treated cells was 2 times more than
OA and 5 times more than AA. Besides this, the total amount of OA and DHA in
cells were different before fatty acid treatments. Both, different fatty acid uptake and
unequal initial concentration of fatty acids may influence the higher fold increase in
DHA identified in DHA-treated cells compared with the fold increase in OA observed
in OA-treated cells. A different fold change increase in OA or DHA in Jurkat cells
may potentially influence fatty acid effects on cells such as DNA methylation changes.
This is currently unknown and future experimental work should consider the differen-

tial uptake and initial concentration of fatty acids in cell media to address this.

Overall, fatty acids treatments are in agreement with evidence showing that composi-
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tion of cells can be modulated accordingly to exogenous fatty acids treated or supple-
ment ¥, The time required to incorporate fatty acids into cells has been shown to be
cell type specific. In our experimental conditions, fatty acids changes in cells reached
new steady-state levels before the 3'4 day of treatment which remained constant until
the 8" day.

3.5 Conclusions

15 pM OA or 15 uM DHA for 8 days showed to be the highest concentration and
longest time to treat Jurkat cells without compromising the cell viability (> 90%
viable cells). OA and DHA were incorporated, elongated, or retroconverted to oth-
ers fatty acids which reached new steady-state levels before the 3" day of treatment.
Changes in the fatty acid composition of cells indicated that treatments worked, there-
fore, this suggested that such treatments were appropriate for studying the effects of
fatty acids on cells. One effect of particular interest in the current project is the im-
pact that OA or DHA may have on the DNA methylation. Altogether, results sug-
gested that 15 uM OA or 15 uM DHA treatment for 8 days using the Jurkat cell line
was a suitable model to study the effects of fatty acids on the DNA methylation. Un-
derstanding the effect of OA or DHA on the DNA methylome may help to elucidate

the underlying mechanisms of such effects.
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Chapter 4

The Effect of OA or DHA
Treatment on DNA Methylation
in Jurkat Cells

4.1 Introduction

The effect of fatty acids on the DNA methylation has been investigated mainly on

[231}2334240)

candidate genes showing specificity . The specific effect of individual fatty

acids on such candidates genes may not be representative of the genome. One of the

main difficulties to carry out whole-genome analysis is a large number of loci

(74

(/28,000,000) that can be potentially methylated in the human genome Never-

theless, genome-wide studies using BeadArrays are an alternative. To date, only four
studies have reported the effects of fatty acids on the DNA methylation of human cells

2292418242287 Two of them included a single fatty acid

using BeadArrays technology
treatment, therefore, results were unable to provide evidence about the specificity of
effects by different fatty acids P23 Another study analysed the in vivo effect of

e242l  However, besides the different

palm and sunflower oil on human adipose tissu
fatty acid composition, these oils have also different bioactive components 288 which
may have an impact on the results obtained. In addition, volunteers followed a hyper-
caloric diet that led to a difference in weight 242, Changes in body weight have also

243 thuys, complicating the evaluation

been associated with DNA methylation changes
of the actual effect of fatty acids. The only study that have addressed the specificity
of DNA methylation changes by individual fatty acids found no statistically signifi-

cant effects by BeadArrays, although a difference on DNA methylation was identified

229

by pyrosequencing in selected locil Therefore, there is still uncertainty about the

fatty acids specificity to induce altered DNA methylation of cells at the genome level.
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The experiments in this Chapter aimed to determine the effect of OA and DHA on
the DNA methylome using DNA methylation BeadArrays. All significantly altered
loci were analysed in the first instance to obtain the global changes on DNA methyla-
tion. Then, pathways analysis was performed using CpG sites within genic regions to
investigate any possible functional relationship of the genes that showed altered DNA
methylation by OA or DHA treatment. Finally, the time required for fatty acids to es-
tablish DNA methylation changes was addressed. BeadArrays results were validated
by pyrosequencing.

4.2 Materials and methods

Cultures and treatments of Jurkat cells were carried out as described in section 2.2.11
DNA extractions were performed according to section Quality and quantity of
DNA was assessed by NanoDrop and agarose gel electrophoresis, respectively (sections
and . BeadArray hybridisation and analysis was carried out as described in
section Pathway analysis was performed according to section Pyrosequenc-

ing was done as indicated in section [2.5)

4.2.1 BeadArray analysis of DNA methylation

DNA methylation was determined using the Illumina Human MethylationEPIC Bead-
Chip covering more than 850,000 methylation loci per sample. An overview of the

analysis that was carried out is shown in Figure 4.1

4.2.1.1 Samples & BeadChip hybridisation

After DNA extraction, samples from different cell culture replicates treated with vehi-
cle control, OA or DHA for 8 days were selected (n = 4 per treatment group) accord-
ing to the highest DNA yield obtained. DNA samples were diluted to 50 (£5) ng/ul
and sent for 850k MethylationEPIC analysis to Dr Michael Kobor’s laboratory in the
Centre for Molecular Medicine and Therapeutics, BC Children’s Research Hospital
(BCCHR) Institute, University of British Columbia, Vancouver, Canada. To avoid
batch effects, the samples were distributed to a specific position between and within
BeadChips 289 (Figure . In accordance with Dr Michael Kobor’s laboratory qual-
ity control procedures, the DNA samples were bisulphite converted using the zymo
EZ DNA Methylation Kit (Zymo Research, D5002) with the incubation conditions
that manufacturer recommended to use for the Illumina Methylation BeadArray (in-

cubation of samples in a thermocycler at 95°C for 30 seconds, 50 °C for 60 min for
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< Treatment with OA or DHA >

DNA

|

< Microarray Hybridisation >
< .IDAT files >

< RGChannel set >

Removal of poor quality samples/probes and
cross-reactive probes

C Funnorm >
|
C M- and B-values >

)

C Batch effect correction with ComBat >

/ \
< M-values B-values >

( DMPs by dmmeder >/ DMRs by bumphunter >

> 5% difference in P-value < 0.05 and
methylation cutoff g-value < 0.05

CSignificantIy altered DMPs or DMRS>

Figure 4.1: MethylationEPIC BeadArray; overview of analysis workflow using R pack-
age minfi. Funnorm, Functional Normalisation; DMPs, differentially methylated posi-
tion; DMRs, differentially methylated regions.
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16 cycles). Bisulphite-converted DNA was then hybridised to beads on BeadChip
followed by a single-base extension using labelled dideoxynucleotides triphosphates
(ddATP, ddTTP, ddCTP, ddGTP) which inhibited DNA polymerase once added.
Cy3-Green fluorophore was used for ddCTP and ddGTP whereas Cy5-Red for ddATP
and ddTTP. The correspondent green and red intensities in each bead allowed the
quantification of DNA methylation. In type I probes, the red and green channels cor-
responded to both unmethylated and methylated loci, respectively. In type II probes,
the red channel corresponded to methylated whereas the green channel to unmethy-

lated loci22 . Red and green channels intensities were analysed in-house.

BeadChip 1 BeadChip 2
CTRL DHA
not used

DHA not used
CTRL

not used
CTRL
not used DHA

Figure 4.2: MethylationEPIC BeadArray; sample distribution on BeadChip to avoid
batch effects.

4.2.1.2 Quality controls & normalisation

Raw data were analysed using the R package minfi version 1.18.6 22 with Methylation-
EPIC annotation ilm10b2.hgl9 0.3.0 and the R version 3.3.0 of the IRIDIS 4 High-
Performance Computing Facility at the University of Southampton, Southampton,

UK. Standard quality controls and normalisation procedures were followed for the

data pre-processing. The first step was reading the raw data (.IDAT files) to obtain

a dataset containing the raw fluorescence in the green and red channels (RGChan-

nel set). Poor quality samples/probes were excluded from the analysis according to

a mean detection p-value > 0.05 at sample/probe level of the absolute signal (methy-
lated + unmethylated) compared with background. The list of cross-reactive probes
reported by Chen et al.,22] were also excluded from the analysis. Quality controls
were given by adequate bisulphite conversion of DNA, extension and hybridisation
controls. Moreover, the relationship of log? median intensities of the total methylated
and unmethylated signals was evaluated to asses an overall quality of samples as pro-

posed by Aryee et al. 2. Normalisation was carried out using functional normali-
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sation (Funnorm) which has shown to perform better than others by reducing batch

effects 294

. Funnorm pre-processing started with the coupling of the RGChannel set
to Infinium I or Infinium II probes. This process transformed the green and red flu-
orescence signals in the RGChannel set to raw unmethylated and methylated signals
(Methyl set). This Methyl set was further processed to normalise raw methylation sig-
nals across all probes into a number that was proportional to the degree of methy-
lation in each locus (Ratio set). Such number ranged between 0 to 1 in case of the
B-values (representing 0% to 100% DNA methylation, respectively) or between - infin-
ity to + infinity in case of M-values. The Ratio set was then mapped to the genome
to add genomic coordinates to each locus (Genomic Ratio Set). The S-values and
M-values were further corrected for any possible batch effect using ComBat function
in Surrogate Variable Analysis (SVA) R package version 3.22.0. ComBat correction
has been shown to be particularly robust in experiments with small sample sizes (n <
10) 29! such as the current study.

4.2.1.3 Statistical analysis of DNA methylation BedChip

OA or DHA samples were individually compared with controls using the function
dmpFinder within the R package minfi to obtain differentially methylated positions
(DMPs). dmpFinder computed significant DMPs using an F-test of the M-values be-
tween treatment groups (categorical phenotype). The M-values were used to obtain
all DMPs as they have more detection power and higher true positive rate in low and

high methylated locus 2%,

All significant P-values were corrected by multiple testing
using the Benjamini and Hochberg False Discovery Rate (FDR) 29 which gave a g-

value. To further increase confidence in the results a cutoff greater than 5% change in
DNA methylation (> 0.05 -value) was also used. In summary, the cutoffs to consider
a DMPs significant in the present work were a P-value < 0.05, a g-value < 0.05 and a

B-value > 0.05.

OA or DHA samples were also compared individually with controls using the function
bumphunter within the R package minfi to obtain differentially methylated regions
(DMRs). bumphunter function computed DMRs using a t-statistic test of S-values 298!
and 100 permutations at each genomic location. The S-values were used to obtain sig-
nificant DMRs as there was no option available to perform analysis with the M-values.
The cutoffs to consider a DMRs significant were a P-value < 0.05 and a g-value <

0.05 within each genomic region.

4.2.1.4 Validation of results

DMPs were validated by pyrosequencing as described in section [2.5
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4.3 Results

4.3.1 Quality control of samples and BeadArray processing

DNA samples showed an average 260/280 ratio of 1.8 (£0.1) and 260/230 ratio of
2.2 (£0.2) which indicated an absence of protein, phenol or other contaminants in
the samples. There were no signs of DNA degradation according to agarose gel elec-
trophoresis. Also, DNA fragments in samples were > 2 Kb which fulfilled require-
ments by the BeadChip manufacturer, lllumina. (Figure [4.3).

j— CTRL— }— OA — }— DHA —j

Figure 4.3: MethylationEPIC BeadArray; DNA integrity of samples
used as per 250 ng/ul DNA from control (CTRL), OA or DHA-
treated cells (n = 4 culture replicates per treatment) run in a 1%
agarose gel alongside 1 Kb ladder (3 ul) for 30 min at 120 volts.

DNA samples were sent off for DNA analysis using MethylationEPIC BeadArray and
raw data returned. In-house analysis showed that there were no outlier samples identi-
fied by a detection p-value > 0.05. Poor quality probes (1,038 and 1,047) and cross-
reactive probes (28,928 and 28,931) were removed from datasets which left a total
number of 836,870 and 836,858 probes for analysis in OA or DHA group, respectively.
Extension and hybridisation controls were similar across samples as expected. The
log?-transformed median intensities of unmethylated signals plotted against methy-
lated signals showed a good sample index as proposed by Aryee21! (Figure .

Raw array signals were normalised using Funnorm which clustered together the (-
densities of all samples as expected (Figure . Normalised signals were used to
carry out a principal component analysis (PCA) to identify any factor related to the
DNA methylation signals of samples. PCA identified a clustering of samples by the
BeadChip used for analysis, thus, suggesting a batch effect (Figure B). Because of
this, ComBat tool was implemented to lose such batch effect. PCA carried out after
ComBat was applied showed that the batch effect was effectively removed from the
data (Figure C). Adjusted DNA methylation signals were then used to identify sig-
nificantly changes on DNA methylation of OA or DHA-treated cells compared with

controls.
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Figure 4.4: MethylationEPIC BeadArray; quality report showing bisulphite conversion
(A, B), extension (C) and hybridisation (D) controls in each sample. The log? median

o
ae}

Unmeth Median Intensity (Log?)
11
|

O Bad, with sample index

oo

o®

T
" 13
Meth Median Intensity (Log2)

intensities of total methylated and unmethylated signals (E) showed that all samples
were above the cutoff threshold (dotted line).
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Figure 4.5: MethylationEPIC BeadArray; 5-density distribution before (A) and after
(B) normalisation using Funnorm pre-processing within minfi R package.
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Figure 4.6: MethylationEPIC BeadArray; principal component analysis (PCA) showed
a batch effect on the raw signals of samples (A). The batch effect was partially cor-
rected after Funnorm pre-processing (B) and was lost after application of the Combat

tool (C).
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4.3.2 Do OA or DHA treatment induce the same effect on the DNA
methylome?

An unsupervised principal component analysis dendrogram using all analysed cy-
tosines (> 836,857) failed to show a complete divergence between treatment groups
(Figure A). Nevertheless, the same analysis using only cytosines which DNA methy-
lation was significantly altered by 15 uM OA or 15 uM DHA treatment (P < 0.05,
g-value < 0.05, AB > 0.05) showed a complete clustering of samples. This indicated
that although DNA methylation changes represented a small fraction of the cytosines
analysed, they were enough to cluster all biological replicates to the correspondent
treatment without any outliers (Figure B).

A Height B Height

0.0022 0.0024 0.0026 0.0028 0.0030 0.0032 0.0034 0.02 0.04 0.06 0.08 0.10 0.12
L | | | | | | L | | |
DHA. 2

| |
CTRL. 1 —
DHA. & DHA. 4 :)T
DHA. 1 DHA. 1 :}J
DHA. 4 DHA. 3
CTRL. 3 CTRL. 1
DHA. 2 :} CTRL 2

CTRL. 2 CTRL. 4

OA. 4 :} CTRL. 3

Figure 4.7: MethylationEPIC BeadArray; cluster dendogram of samples using M-
values of all (> 836,857) cytosines analysed in BeadArray (A) or only those cytosines
which DNA methylation was significantly altered by 15 uM OA or 15 uM DHA treat-
ment after 8 days of incubation (B).

Treatment with 15 uM OA significantly altered the DNA methylation levels of 563
CpG sites. The 52% (294/563) of the altered loci showed increased methylation (Figu-

re [I3).

Treatment with 15 uM DHA significantly altered the DNA methylation levels of al-
most three times more CpG sites (1596) compared with OA (563). Of these, 32%
(508/1596) showed increased methylation (Figure [4.8)).
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Only 78 CpG sites showed altered DNA methylation levels by both treatments. This
represented 14% (78/563) of total changes induced by OA or 5% (78/1596) by DHA
treatment. All 78 loci showed altered DNA methylation with the same direction of
change, either increase or decreased, by OA or DHA. The 33% (26/78) of the altered
CpG sites by both treatments showed increased methylation, while the methylation
level of the remaining 67% (52/78) was decreased.

1000+

OA only
= DHA only
m OAor DHA

7504

500+

Number of Loci

2504

Direction of Change of DNAmM

Figure 4.8: Number and direction of change of CpG sites with significantly
altered DNA methylation (DNAm) after treatment with OA or DHA for 8
days (P < 0.05, q < 0.05, A > 0.05). OA or DHA alone increased DNAm of
268 or 482 CpG sites whereas decreased DNAm of 217 or 1036 CpG sites, re-
spectively. Both treatments increased DNAm of 26 CpG sites and decreased
DNAm of 52 CpG sites.

The genomic location and magnitude of change in methylation (%) of all significantly
altered loci by OA or DHA are shown in Appendix [A]
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4.3.3 Do OA or DHA treatment induce DNA methylation changes in
specific regions in the genome?

In addition to the differentially methylated positions (DMPs or CpG sites), analysis
of DNA methylation data was performed to identify possible differentially methylated
regions (DMRs) by OA or DHA treatments. None of the possible DMRs passed the
FDR cutoff (q < 0.05). Therefore, all significantly DMPs were grouped and analysed

according to their location in the genome to evaluate a possible pattern.

The majority of DNA methylation changes induced by OA treatment were located
in intergenic regions (Figure A). This was in comparison with changes in genic
regions defined hereafter as sequences from -1,500 bp of the transcription start site
(TSS) until the 3’ untranslated region (UTR) of genes. All the significantly altered
loci were also analysed according to the location of CpG islands (CpGi), their shores
and shelves. These three genomic locations were collectively defined as CpGi-related
regions. Analyses showed that the majority of DNA methylation changes induced by
OA treatment were located outside CpGi-related regions (Figure B).

Same as OA treatment, the majority of DNA methylation changes induced by DHA
treatment were located in intergenic regions compared with changes in genic regions
(Figure A). Analysis of all the significant DNA methylation changes by DHA ac-
cording to CpG islands also showed that the majority of altered CpG sites were lo-
cated outside CpGi-related regions (Figure B).

The same analyses were then carried out grouping all significantly altered CpG sites
according to the change on DNA methylation, either increase or decrease. Analyses
showed that CpG sites that increased DNA methylation by OA or DHA were mainly
located within intergenic regions and outside CpGi-related regions (Figure C, D).
In the same manner, CpG sites that showed decreased DNA methylation by OA or
DHA treatment were also primarily located within intergenic regions and outside
CpGi-related regions (Figure E, F).
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Figure 4.9: Genomic location of CpG sites that showed altered DNA methylation
(DNAm) by OA or DHA treatment according to genic/intergenic regions (A, C, E)

or to CpG islands (CpGi)-related regions (B, D, F). The total number of significantly
altered CpG sites (A, B), only those that showed increased methylation (C, D) or only
those that showed decreased methylation (E, F) were primarily located within inter-
genic regions and outside CpGi-related regions.

81



Chapter 4. The Effect of OA or DHA Treatment on DNA Methylation

4.3.4 Do OA or DHA treatment alter the same genes?

Treatment with 15 uM OA for 8 days changed the DNA methylation status of at least
one CpG site of 345 different genes. In comparison, treatment with 15 uM DHA for

8 days changed the DNA methylation status of at least one CpG site of almost three
times more genes (n = 988). Only 52 genes were altered by both treatments which
represented the 15% of total genes altered by OA (52/345) and the 5% of total genes
altered by DHA (52/988) (Figure [4.10]). A gene was defined as the genomic region
from -1,500 bp of the transcription start site (T'SS) until the 3’ untranslated region
(UTR) of an annotated gene.

Lists with the top ten genes with altered DNA methylation by OA or DHA treatment
are shown in Table [£.1] and Table respectively.

1000~
8001 = OAonly

= DHA only
6001

B OAor DHA

400+

2001

Number of Genes with
Altered DNA Methylation

0-

OA DHA

Figure 4.10: Number of genes with at least one CpG site that showed al-
tered DNA methylation by OA (blue bar), DHA (red bar) or both treatments
(black region).
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Table 4.1: Top 10 genes with altered DNA methylation by OA treatment

Change in )
ID Gene Symbol Gene Region
DNAm

cg10841253 -17 CLNK Body
cgl7175279 -14 MTAP TSS1500
cg07548325 -12 No Consensus?® No Consensus”
cg04310488 -12 SLC22A2 Body
cg07091719 -11 TBX15 Body
cg04390689 12 EGLN1 Body
cg17446583 13 BCAT1 Body
cg19336448 14 KSR2 Body
cg21970086 16 PRUNE2 Body
cg07372659 16 CDKAL1 Body

CLNK, cytokine dependent hematopoietic cell linker; MTAP, methylthioadenosine phosphory-
lase; KSR2, kinase suppressor of ras 2; SLC22A2, solute carrier family 22 member 2; TBX15,
T-box 15; EGLNI1, egl-9 family hypoxia inducible factor 1; BCAT1, branched chain amino acid
transaminase 1; KSR2, kinase suppressor of ras 2; PRUNEZ2, prune homolog 2; CDKAL1, CDK5
regulatory subunit associated protein 1 like 1. * = STON1-GTF2A1L readthrough or stonin 1
(STON1), ®* = 5UTR or TSS1500

Table 4.2: Top 10 genes with altered DNA methylation by DHA treatment

Change in )
1D Gene Symbol Gene Region
DNAm

cg25254444 -17 IFNAS TSS1500
cgl17564498 -15 EXOC4 Body
€g26292058 -14 RGS1 TSS1500
cg05475386 -13 MSRB3 Body
cg10841253 -12 CLNK Body
cg04730456 11 HSPBAP1 Body
cg05060085 12 TMEM18 Body
cg03435901 13 IL17RD 3UTR
cg25576961 13 TTC23 Body
cg14348664 19 CDKN2A No Consensus?®

IFNAS, interferon alpha 8; EXOC4, exocyst complex component 4; RGS1, regulator of G protein
signaling 1; MSRB3, methionine sulfoxide reductase B3; CLNK, Cytokine Dependent Hematopoi-
etic Cell Linker; TMEM18, Transmembrane Protein 18; IL17RD, Interleukin 17 receptor D;
TTC23, tetratricopeptide repeat domain 23; HSPBAP1, HSPB1 associated protein 1. * = 3'UTR
or body
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4.3.5 Do altered genes are related to particular pathways or biologi-
cal functions?

The total number of genes with altered DNA methylation by OA or DHA were analy-
sed using Ingenuity® Pathway Analysis (IPA®) to determine a biological relationship
between altered genes. From the total number of altered genes by OA or DHA (345 or
988) 348 and 935 different genes were mapped by the software and used for pathways

analysis, respectively.

4.3.5.1 OA pathways

The genes with altered DNA methylation induced by OA were significantly enriched
(-log(P-value) > 1.3) in ”Amyotrophic Lateral Sclerosis Signalling”, ”Aryl Hydrocar-
bon Receptor Signalling” and ”Clathrin-mediated Endocytosis Signalling” canonical
pathways, among others (Figure . The analysis of the same genes using as ref-
erence molecular associations of clinical pathology endpoints (ToxList) showed that
”Aryl Hydrocarbon Receptor Signalling”, ”"Xenobiotic Metabolism Signalling” and
"RAR Activation” categories were also significantly enriched (Figure . Ultimately,
the genes with altered DNA methylation by OA treatment were also analysed to iden-
tify possible downstream effects on cells accordingly to the functions of the altered
genes. Analysis showed that the genes with altered DNA methylation induced by OA
treatment were enriched in genes which functions were related to ”Stimulation of Nat-
ural Killer Cells”, "Hematopoiesis of Leukemia Cell Lines” and "Trafficking of lympho-

cytes” downstream effects, among others (Figure [4.12)).
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Figure 4.11: Canonical pathways related to genes with altered DNA methylation by
OA treatment. The level of significance (dotted line) was according to an enrichment
of genes in a specific pathway with a -log(P-value) > 1.3 from Fisher’s exact test using

IPA®.
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Figure 4.12: ToxList (A) and downstream effects (B) related to genes with altered
DNA methylation by OA treatment. The level of significance (dotted line) was ac-
cording to an enrichment of genes in a specific category/effect with a -log(P-value) >
1.3 from Fisher’s exact test using IPA®.
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4.3.5.2 DHA pathways

The genes with altered DNA methylation induced by DHA were significantly enriched
in ”Synaptic Long-Term Potentiation”, ”Synaptic Long-Term Depression” and ”Pro-
tein Kinase A Signalling” canonical pathways, among others (Figure . The anal-
ysis of the same genes using as reference molecular associations of clinical pathology
endpoints (ToxList) showed that ”Cardiac Hypertrophy”, ”Cardiac Fibrosis” and
"PPARa/RXRa Activation” categories were also significantly enriched (Figure .
The genes with altered DNA methylation induced by DHA treatment were also en-
riched in genes which functions were related to ”"Leukemogenesis”, "Rett Syndrome”

and ”Proliferation of pro-T3 thymocytes” downstream effects, among others (Fig-

ure .
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Figure 4.13: Canonical pathways related to genes with altered DNA methylation by
DHA treatment. The level of significance (dotted line) was according to an enrich-
ment of genes in a specific pathway with a -log(P-value) > 1.3 from Fisher’s exact test
using [PA®.
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Figure 4.14: ToxList (A) and downstream effects (B) related to genes with altered
DNA methylation by DHA treatment. The level of significance (dotted line) was ac-
cording to an enrichment of genes in a specific category /effect with a -log(P-value) >
1.3 from Fisher’s exact test using IPA®.
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4.3.5.3 OA and DHA common pathways

The genes with altered DNA methylation induced by both, OA or DHA treatment,

2 ”

were significantly enriched in ”Opioid Signalling Pathway”, ”S-methyl-5’-thioadenosine
Degradation IT” and ”Axonal Guidance Signalling” canonical pathways, among oth-
ers (Figure . In contrast, ToxList analysis did not show any significantly altered
category by both treatments. Analysis of downstream effects showed that the genes
with altered DNA methylation induced by both OA or DHA treatments were enriched
in genes with functions related to "Chemotaxis of B-lymphocytes derived cell lines”,

” Abnormal morphology of plasma cells”, ” Accumulation of natural killer cells” and
”Abnormal quantity of lymphocytes” (Figure .

OA

A Opioid Signalling Pathway
m DHA

S-methyl-5'-thioadenosine Degradation |1
Axonal Guidance Signalling

Netrin Signalling

Corticotropin Releasing Hormone Signalling
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B Chemotaxis of B-lymphocyte derived cell IinesH |
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.

Accumulation of natural killer cells-—’

Abnormal quantity of lymphocytes-
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Figure 4.15: Canonical pathways (A) and downstream effects (B) related to genes
with altered DNA methylation by both, OA or DHA treatment. The level of signifi-
cance (dotted line) was according to an enrichment of genes in a specific pathway /ef-
fect with a -log(P-value) > 1.3 from Fisher’s exact test using IPA®.
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4.3.6 Validation of the MethylationEPIC BeadChip

The measurement of DNA methylation status of candidate CpG sites was carried out
by pyrosequencing to validate BeadArray results. Pyrosequencing was performed tar-
geting 5 CpG sites that showed a significant change in DNA methylation levels by
DHA, as the magnitude of changes with this treatment showed to be greater com-
pared with OA. Selected CpGs included three that decreased (ID ¢g26292058, cg05475386
and cg27188282) and two that increased (IDs cg06989443 and ¢g22518417) DNA methy-
lation by DHA treatment. Such CpG sites were within the top twenty changing DNA
methylation and were chosen by a sequence context that allowed primer design to per-
form pyrosequencing. Locus ID ¢g26292058 was also significantly altered by OA treat-
ment, although the change in DNA methylation was the half (-7%) of that induced by
DHA (-14%) according to BeadArray results.

Pyrosequencing of the 5 CpG sites showed that DNA methylation in DHA-treated
cells was significantly altered in the same direction of change as Bead Array results
(Figure . DNA methylation in OA-treated cells showed decreased levels on CpG
ID ¢g26292058, same as BeadArray results, although this did not reach statistical sig-
nificance (Figure A). In line with BeadArray results, all other CpG sites analysed
in OA-treated cells did not show any significant change on DNA methylation (Fig-
ure [4.16) B, C, D, E).

A B C D E
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S 0.0- 0.0 0.0- 0.0 0.0
©
2 201 -2.0- -2.0- -2.0- -2.04
=
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Figure 4.16: Pyrosequencing of 3 CpG sites that decreased (A = ID ¢g26292058,

B = ID ¢g05475386, C = ID ¢g27188282) and 2 CpG sites that increased (D = ID
cg06989443, E = ID ¢g22518417) DNA methylation by DHA after 8 days of treatment
(n = 6 biological replicates per treatment) according to BeadArray analysis. Data are
the mean difference (A) in the absolute change in DNA methylation (% points) be-
tween treatments and controls + standard error of the mean. Treatment versus con-
trol means were compared by Student’s T-test and those which differed significantly
are indicated by *P < 0.05, **P < 0.01 or ***P < 0.001.

91



Chapter 4. The Effect of OA or DHA Treatment on DNA Methylation

Significant changes in the absolute difference of DNA methylation between treatments
and controls by pyrosequencing (A Methylation (%)) were smaller than those ob-
served in the BeadArray analysis. Different methods have different sensitivities/speci-
ficities to detect changes in samples with a specific variability of the method itself.
Therefore, 10 technical replicates of a single sample were carried out in each pyrose-
quencing assay to assure that DNA methylation changes by pyrosequencing, although
small, were reliable. Results showed that the standard error of the mean (SEM) of
the 10 technical replicates were at least 6 times lower than the difference observed

by fatty acid treatments (pyrosequencing AMet (%); Table . This indicated that
DNA methylation changes measured by pyrosequencing were not due to variability

of the method. BearArray AMet (%) of the 5 CpG sites analysed were similar to py-
rosequencing DNA methylation measurements only when results form the latter were
analysed as a percentage of controls (Table .

Table 4.3: Validation of DNA Methylation Bead Array by pyrosequencing

BeadArray Pyrosequencing Tech. Rep.
D Treatment
AMet (%) % of Control ~ AMet (%) SEM
€g26292058 -7 -3 -1.2 0.38 OA
€g26292058 -15 -16 -4.5 0.38 DHA
cg05475386 -13 -14 -3.6 0.36 DHA
cg27188282 -11 -7 -4.0 0.59 DHA
cg06989443 12 17 3.5 0.17 DHA
cg22518417 11 14 3.2 0.19 DHA

Comparison of DNA methylation measurements between bead array and pyrosequencing. The
standard deviation of the mean (SEM) of 10 technical replicates in each pyrosequencing assay is
shown. AMet = difference in DNA methylation.
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4.3.7 At what time during the 8 days of treatment are the
DINA methylation changes induced?

Pyrosequencing of the same CpG sites used for the Bead Array validation was carried
out after the 34 and 6" day of treatment to assess the time when DNA methylation

changes were established.

DHA-treated cells failed to show any significant change in the DNA methylation levels
of all 5 CpG sites analysed at the 3'4 day of treatment when compared with controls.
Pyrosequencing of the 5 CpG sites showed the same direction of change in methyla-

6'" day of treatment, although only three reached

tion as BeadArray results by the
statistical significance (Figure A, B, D). The methylation levels of the remaining
two CpG sites showed to be significantly different just until the 8" day of treatment

(Figure C, E). In all 5 CpG sites analysed, the mean methylation levels after the

8" day showed the greatest decrease or increase on DNA methylation compared with

the respective methylation levels after the 6" day of treatment. In summary, results
showed that the DNA methylation changes by DHA were established after the 3™ day

of treatment in three loci (Figure A, B, D) and after the 6 day of treatment in

two loci (Figure C, E).

OA-treated cells failed to show any significant change on DNA methylation levels of
all 5 CpG sites at the 3'4, 6'* or 8" day of treatment when compared with controls
(Figure . Nevertheless, significant changes on DNA methylation were observed
in two CpG sites by the 6" day compared with the methylation levels at the 3'4 day
of the same OA treatment (Figure A, D). The remaining loci analysed did not
show any significant change in the DNA methylation by OA treatment in any day

(Figure B, C, E).
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Figure 4.17: Pyrosequencing of 5 candidate CpG sites at the 3"4 (n = 8 biological
replicates per treatment), 6" (n = 8 biological replicates per treatment) and 8% (n
= 6 biological replicates per treatment) day of treatment. Data are the mean differ-
ence (A) in the absolute change in DNA methylation (% points) between treatments
and controls + standard error of the mean. The methylation levels in each treatment
were compared by one-way ANOVA with Tukey post-hoc test. Those which differed
significantly to each other (P < 0.05) are indicated by a different letter.
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4.4 Discussion

DNA methylation changes induced by 15 uM OA or 15 uM DHA treatment were eval-
uated using the Infinium MethylationEPIC BeadChip and results validated by pyrose-
quencing. CpG sites with altered methylation showed specificity and a greater propor-
tion of them were located within intergenic regions. Results suggested that the DNA

8th

methylation changes by DHA were induced between the 3'¢ and day of treatment.

4.4.1 OA or DHA specificity on the DNA Methylome

In this work, the effects of OA or DHA on the DNA methylome agreed with current
evidence showing that different fatty acids have different capacities to alter DNA me-
thylation levels 22%2302332401 ' Djfferential effects between OA and DHA were identified
in the number of altered CpG sites, the direction of change in the DNA methylation
of such CpG sites, the number of genes that changed DNA methylation and the biolo-

gical function of the altered genes.

OA treatment showed to alter the DNA methylation of a lower number of CpG sites
and genes compared with DHA. Therefore, this suggests that the epigenetic effect
of OA was smaller than that of DHA. Such differences may be related to the lower
degree/number of effects that OA induces on cells compared with DHA at the same
concentration LO02642995302]  Thege include lower gene expression changes M, 1o-
wer immunomodulatory effects 2998300 ' Jower cell membrane rafts disruption B01#02)
absence to affect eicosanoid production®® and absence to alter cell proliferation or

264 Except for the decreased global DNA methylation in

cell viability of cancer cells
THP1 monocytes 224 the effects of OA on the DNA methylome has not been well de-
scribed. Only a few studies have reported the modest or null effect that OA has on

[2333803] - One of the main obser-

some candidate loci compared with other fatty acids
vations in the current work was the specificity that OA showed concerning CpG sites,
genes and biological functions that were altered. At the time this thesis was written,
there was not found in the literature evidence to explain the enrichment of genes with
altered DNA methylation in all canonical pathways, ToxList categories and down-
stream effects. However, some possible explanations based on indirect relationships

will be discussed.

OA treatment, but not DHA, showed to change the DNA methylation of genes re-

lated to "Retinoic Acid Receptor (RAR) Activation” pathway. RAR«a works as a het-
erodimer with Retinoid-X Receptor a (RXRa) to modulate the transcription of genes (509
Upon treatment with 1 uM all-trans retinoic acid, native RAR« has shown to interact
with SIRT1 in vivo using H1299 cells. Besides RAR«, SIRT1 has shown to interact

with DNA methyltransferase 1 (DNMT1) and modulate its activity 209306 Because

OA can bind to human RXRaBY | there is a possibility that such event may alter
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RARa/RXRa heterodimer which in turn may in some way induced RAR«a-SIRT1-
DNMT1 interaction (Figure . A possible recruitment of DNMT1 to genes under
the control of RAR«a may explain the enrichment of genes with altered DNA methy-
lation in the RAR activation pathway identified in this work. At present, the possible
interaction of RARa-SIRT1-DNMT1 in the same complex has not been reported.

RAR/RXR activation has also been shown to alter transcription through the displace-
ment of DNMT3A alongside TETs recruitment to carry out active demethylation on

308] ' Therefore, there is a possi-

a candidate gene using mouse embryonic fibroblast!
bility that activation of RAR/RXR, presumably by OA treatment, may induce active
DNA demethylation on RAR/RXR regulated genes. Such a hypothesis has not been

addressed here or elsewhere. A model proposed to explain DNA methylation changes

induced by OA is shown in Figure 4.18

OA
RARa/RXRa Activation
¥ R}
Displacement of DNMT3A Recruitment of SIRT1

. v

Recruitment of TETs on .
targeted genes Recruitment anc_l gltered
DNMT1 activity

v v

Specific decrease in DNAmM Specific increase in DNAm

Figure 4.18: Possible mechanisms involved in the altered DNA methylation
(DNAm) induced by OA in Jurkat cells may be related to RARa/RXRa ac-
tivation. The diagram shows the current evidence (in black) coupled with the
possible relationship with DNA methylation changes induced by OA (in red).
RARa, retinoic acid receptora; RXRe, retinoid-X receptor a; DNMT1, DNA
methyltransferase 1; DNMT3A, DNA methyltransferase 3A; SIRT1, Situin 1;
TETs, ten-eleven translocation proteins.

DHA treatment decreased the DNA methylation of the majority of CpG sites that
were altered. Thus, this suggested that DHA treatment mainly activated DNA de-
methylation processes in cells. Active DNA demethylation can be achieved by either
direct removal of the methylated base (BER) or region (NER or ncMMR) and en-
zymatic chemical modifications of the methylated base to remove the methyl group
by specific enzymes (e.g. TETs). BER, NER and ncMMR are DNA repair mecha-
nisms that are activated upon DNA damage. There is evidence that DHA can induce
DNA damage specifically in cancer cells by accumulation of reactive oxygen species

(ROS) B9 Moreover, DHA treatment has also been shown to decrease gene expres-
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sion of DNMTsBX - Therefore, it is possible that the marked decrease on DNA methy-
lation by DHA may be a consequence of the failure of DNMTs to establish usual DNA
methylation patterns following DNA damage and DNA repair, at least in some extent
(Figure A). This may be related to the time-dependent decreased in cell prolif-
eration identified only in DHA-treated cells (discussed in Chapter 3). DNA damage
may decrease cell proliferation due to a cell-cycle arrest to allow time to repair such
DNA damageBM . Thus, it is possible that a higher need for DNA repair mechanisms
in DHA-treated cells may induce a loss of DNA methylation.

DNA demethylation as a consequence of DNA damage is further supported by the
time required for DHA to induce ROS accumulation and altered DNA methylation.
ROS accumulation has been shown to take place after a 24-hour treatment with 25
M DHA in MCF-7 cells 312 a breast cancer adenocarcinoma cell line. Meanwhile,
the DNA methylation was shown to be significantly altered only after the 3" day of
treatment in the present work. However, the time required for the 5 CpG sites anal-
ysed may not be representative of all significant changes. Besides, pyrosequencing re-
sults suggested that altered DNA methylation may change at different rates in differ-
ent CpG sites. This hampers the formation of a clear time course of the DNA methy-
lation changes to suggest that they were a consequence of DNA repair mechanisms.
Furthermore, the downregulation of DNMTs induced by DHA has not always been

observed and even upregulation have been reported in some cell types B

The probable decrease on DNA methylation as a consequence of DNA damage, DNA
repair and consecutive failure to copy DNA patterns would not explain per se the ob-
served increase in DNA methylation by DHA. However, it has been shown that ox-
idative damage induced by 2 mM HsOs treatment can relocate DNMT1 occupancy

to GC-rich regions in HCT116 cellsB%!. Therefore, relocation of DNMT1 by DHA
treatment would explain both an increase and decrease of DNA methylation in specific
CpG sites (Figure A). Oxidative stress can occur by concentrations > 100 nM
Hs0O4 according to Sies B3 1f DHA can induce H-5O4 concentrations able to trigger

oxidative stress and relocate DNMT1 occupancy is currently unknown.

Besides DNA damage and DNMT1 relocation, the current results do not discard the
possibility that decreased or increased DNA methylation were a consequence of di-
verse effects that DHA may have on cells. For instance, DHA treatment altered DNA
methylation of genes related to apoptosis and cell death. In the previous Chapter, it
was discussed how DHA treatment had a slight effect on cell death (< 5%), which
was not enough to compromise the viability of cells (> 90% viable cells). Therefore,
results in this work suggest that DNA methylome changes may be associated with a
small decrease in cell viability. Currently, there is evidence suggesting that DHA may
decrease cell viability of cancer cells through gene expression changes ™8, If DNA
methylation changes were involved in altered expression of genes related to cell via-

bility and cell death will be assessed and discussed in Chapter [6]
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Genes that significantly changed DNA methylation by DHA were also enriched in
genes that form part of the "PPAR« / RXRa Activation” pathway. Of all signifi-
cantly enriched pathways that were identified, only PPAR« has been involved in the
DNA methylation changes induced by fatty acids 229303] However, there has not been
reported a participation of PPAR« in the altered DNA methylation induced by DHA
so far. DHA can bind and activate both PPARa and RXRa nuclear receptors B07314]
Similar to the suggested model for OA, it is possible that specificity of the effect of
DHA was mediated by PPAR«a/RXRa activation, the direction of the heterodimer

to response elements and further recruitment of TET1 enzyme to the complex (Fig-
ure B). Such a mechanism has been identified for PPAR~y/RXRa heterodimer in
a candidate regionm and would explain the genome-wide specificity of altered loci
by different fatty acids. A hypothesis proposed to explain altered DNA methylation
by DHA is that this fatty acid may activate PPARa/RXRa and recruit TET proteins
on site. This hypothesis may explain the decrease, but no the increase in DNA methy-
lation (Figure [4.19B).

A DHA B DHA
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DNA damage PPARa/RXRa Activation
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BER, NER, ncMMR DNMT1 relocation TET1 recruitment?
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Figure 4.19: Possible mechanisms involved in the DNA methylation (DNAm)
changes induced by DHA in Jurkat cells may be related to reactive oxygen
species (ROS) accumulation (A) and PPARa/RXRa activation (B) trig-
gered by the same DHA treatment. The diagram shows the current evidence
(in black) couple with the possible relation to DNA methylation changes by
DHA (in red). BER, base excision repair; NER, nucleotide excision repair;
ncMMR, non-canonical mismatch repair; DNMT1, DNA methyltransferase
1; TET1, ten-eleven translocation; PPARa, peroxisome proliferator-activated
receptor alpha; RXRa, retinoid X receptor alpha.
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4.4.2 Biological significance of OA or DHA effect on the DNA Methy-

lome

Associations between DNA methylation and gene expression have been described
when DNA methylation is established at the promoter or body region of genes I7817HI83184]
However, the results indicated that the majority of DNA methylation changes by OA

or DHA were located within intergenic regions. This observation was conserved even

when altered loci were analysed separately by those that decreased or those that in-

creased DNA methylation. Intergenic regions contain regulatory elementsB such as

B16] " silencers BT | differentially methylated regions ™ and a broad range

enhancers
of different non-coding RNAs that can modulate gene expression P18, Therefore, it

is possible that fatty acids treatments may affect some of these regulatory elements.
Currently, there is still uncertainty about how to locate regulatory elements using only
bioinformatic methods. For this reason, once regulatory elements are predicted they

[316]

should be validated experimentally *. An approached base on DNA motifs will be

explored and discussed in the following Chapter.

Analysis of altered CpG sites according to CpG islands showed that there was a higher
proportion of DNA methylation changes in genomic regions outside such regions. This
is in agreement with studies showing that CpG islands are, at least in part, resistant
to methylation P19, Tt is believe that such protection is given by the DNA sequence

rich in CpG dinucleotides, although the exact mechanism remains unknown [319]

Downstream effects analysis showed that the second most probable effect in cells treated
with DHA was "Rett Syndrome”. This neurological and developmental disorder is
originated by mutations on the methyl-CpG-binding protein 2 (MEPC2) gene B20,
There is evidence showing that omega-3 supplementation (EPA + DHA) improves
clinical severity, oxidative stress and inflammation markers in patients with Rett Syn-
dromeB2I822 - Fyurther studies are needed to address the impact that altered DNA

methylation induced by DHA may have on genes associated with Rett Syndrome.

4.4.3 Limitations of DNA methylation analysis

Pathways and biological functions related to genes with altered DNA methylation by
OA or DHA treatment were predicted using IPA®. This software used a knowledge
database that was designed for mRNA expression changes. However, DNA methyla-
tion changes alone should not be taken as an indicator for gene expression. The lo-
cation of altered CpG sites P71 the number of altered CpG sites, the degree

of change in methylation 233 and the interplay between other epigenetic marks influ-
ence the modulation of the mRNA gene expression through DNA methylation. It is
difficult to interpret pathway analysis in isolation as DNA methylation alone does not

imply changes in expression, activity or function of the genes/pathways.
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The coverage of the 850k DNA MethylationEPIC BeadArray only represents < 3% of
the total CpG sites in the human genome ™ that potentially may alter their DNA
methylation status by fatty acids. Thus, it is possible that the number of loci and
genes altered by OA and DHA reported here were bias by the Bead Array coverage.
Besides, it is not discarded the possibility that DNA methylation changes can have

a different distribution across the genome instead of the one reported in the current

work (intergenic > genic).

Overall, the tendency of OA or DHA to mainly alter intergenic regions and CpG sites
outside CpGi-related regions needs to be confirmed by experiments with higher cov-
erage of the human DNA methylome. The number of genes, pathways and biological
functions related to genes that altered their DNA methylation status by OA or DHA

should be taken with caution, just as a hint for further investigation.

4.5 Conclusions

Treatment with 15 uM OA or 15 pM DHA for 8 days altered the DNA methylation
of individual CpG sites in a treatment-specific manner. Nevertheless, both fatty acids
seemed to alter preferentially intergenic regions and CpG sites that were not related
to CpG islands. DNA methylation changes required more than 3 days to be estab-
lished and they were associated with activity of different pathways and transcriptional
factors, including PPAR« in DHA-treated cells. Therefore, evidence suggests that ac-
tivation of diverse pathways and transcription factors may be part of the mechanisms
by which fatty acids may alter the DNA methylation of cells. To address such hypoth-
esis, the possible participation of PPAR« and other transcription factors in the al-
tered DNA methylation induced by OA or DHA was explored in the next Chapter.
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Chapter 5

Mechanisms Underlying The

Effect of OA or DHA Treatment
on DNA Methylation in Jurkat
Cells

5.1 Introduction

Different fatty acids have been shown to modify the DNA methylation of cells 22%233240]

However, the underlying mechanisms are not well understood. In the previous Chap-
ter, the genes whose methylation was altered by DHA, but not OA, showed enrich-
ment in the "PPARa/RXRa Activation” pathway. PPAR« is a nuclear receptor that
can be activated by fatty acidsBM. Thus, this suggested that activation of PPAR«
may be a mechanism by which fatty acids may alter the DNA methylation of cells.
This hypothesis has previously been tested by Silva-Martinez et al., using THP1 mono-
cytes treated with OA or AA and PPARa or PPAR~y inhibitors22). Experiments
showed that only PPAR« inhibitor significantly impaired the effect of AA, but not
OA, on the global DNA methylation 2% Whether PPAR« can also mediate the effect
of DHA on DNA methylation has not been tested before.

In contrast to DHA, pathways analysis of genes with altered DNA methylation in-
duced by OA did not identify an enrichment of genes under PPAR«a control. Such re-
sults are in agreement with the current evidence suggesting that a PPAR« does not
mediate the altered DNA methylation induced by OAR2¥. This also indicates that
there may be more than one transcription factor or pathway underlying the effect

of fatty acids on the DNA methylation of cells. Recently, it has been hypothesised

that some short DNA sequences may modify the usual methylome patterns through
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cell-type specific proteinsB23 . However, if DNA motifs are associated with the DNA
methylation induced by fatty acids has not been addressed. Besides, if such putative

DNA motifs may recruit specific transcription factors it is unknown.

In addition to transcription factors, we hypothesised that other factors such as chro-
matin modifications were associated with the altered DNA methylation induced by
OA or DHA treatment. Such hypothesis was based on evidence that has shown in-
creased acetylation of H3K4 and decreased methylation of H3K4, H3K9, H3K27 H3K36
and H3K79 by 30 uM DHA treatment for 2 days using human M17 cell line 48] - Of
all these residues, methylation of H3K4 [324i325] | 113K 920803268327 ;). 13K 36 444328

and global acetylation of H3 have shown an interplay with DNA methylation B2
Currently, the occupancy of H3K4me3 is the only histone mark available for Jurkat
cells in ENCODE. Therefore, H3K4me3 was selected to carry out experiments that
sought to elucidate if DNA methylation changes induced by OA or DHA had a rela-
tionship with the local enrichment of this histone mark. Understanding the effect of
OA or DHA treatment on H3K4me3 levels may provide evidence about the epigenetic
context and mechanisms involved on the DNA methylation changes induced by fatty

acids.

The experiments in this Chapter aimed to characterise three possible ways through
which fatty acids may accomplish to alter DNA methylation of cells. Firstly, PPAR«
involvement in the altered DNA methylation induced by DHA was tested using treat-
ments with PPAR« agonists or PPAR«a antagonists. Secondly, it was sought if DNA
methylation changes by OA or DHA were associated with specific DNA motifs or
other transcription factors using motif analysis. Finally, experiments assessed if CpG
sites with altered DNA methylation also changed H3K4me3 enrichment using chro-

matin immunoprecipitation assays.

5.2 Materials and methods

Cell culture and treatment of Jurkat cells was carried out as described in section [2.2.1
DNA extractions were performed according to section Quality and quantity of
DNA was assessed by NanoDrop and agarose gel electrophoresis, respectively (sec-
tions and . Luciferase reporter assay was carried out as described in sec-
tion Pyrosequencing was conducted as indicated in section Motif analy-

sis was carried out as described in section Chromatin immunoprecipitation was
performed according to section
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5.2.1 Luciferase reporter assay

Luciferase reporter assay was carried out to confirm the activation of PPAR« by ag-

onist GW7647 in Jurkat cells. An overview of the method followed is shown in Fig-
ure B.11

J ~(TATA TATA
& S
&L z %
W/ \2 %
Positive g PPRE Negative
Control I Reporter Control
%
+ + +
CMV-E 5 CMV-E 4, CMV-E 4
> 22
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| ! |
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' Y
PPARa agonist Control treatment
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N e
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Figure 5.1: Overview of luciferase reporter assay. Diagram of the firefly luciferase
gene under the control of the a human cytomegalovirus immediate early (CMV-IE)
enhancer/promoter B30 (A) or under the control of tandem repeats of the PPAR re-
sponse element (PPRE) and a TATA-box (B) or under the control of TATA-box only
(C). The construct with the firefly luciferase gene was co-transfected with a construct
containing the Renilla luciferase gene under the control of CMV-IE enhancer/pro-
moter in all instances as indicator of transfection efficiency.
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5.2.1.1 Transfection and treatment of cells

Cells were transfected using FuGENE HD Transfection Reagent, Opti-MEM™ Re-
duced Serum Medium and Cignal PPAR Reporter (luc) Kit following manufacturers’
instructions. The recommended FuGENE-reagent:plasmid-DNA ratio for Jurkat cells
of 6:1 (v/w) at 0.05 ug DNA developed by Promega was used and implemented as fol-
lows. Transfection complexes were prepared with 0.05 pg of either positive (100 ng/ul,
n = 6), negative (100 ng/ul, n = 6) or PPRE plasmid (100 ng/ul, n = 12) in Opti-
MEM:FuGENE HD (15.5:1, v/v) to a final volume of 5 pl per transfection. Complexes
were incubated for a minimum of 30 minutes at room temperature before they were
added to 3x10% cells in 100 pl of growth medium using 96-well conical bottom plates.
Cells were then incubated for 24 hours in a 5% (v/v) CO2 atmosphere at 37°C. A
further incubation for 3, and 6 hours was carried after cells were treated with either
0.2 uM PPAR« agonist GW7647 dissolved in absolute ethanol. Ethanol at the same
concentration was used in the positive and negative controls. In all instances, trans-
fection complexes included a Renilla luciferase gene plasmid under the control of a hu-
man cytomegalovirus immediate early (CMV-IE) enhancer/promoter B30 which served
as the internal control of transfection. The firefly luciferase gene in the transfection
complexes was either under inducible control of a TATA box and a PPAR response el-
ement (PPRE) (reporter); or under constitutive control of a TATA-box and CMV-IE
enhancer/promoter (positive control); or under non-inducible control of a TATA-box

only (negative control). The Dual-Luciferase® assay was then performed.

5.2.1.2 Dual-Luciferase® assay

Luciferase reporter experiments were performed using the Dual-Luciferase® Reporter
Assay System following the manufacturer’s instructions. This kit provided all reagents
except for PBS, 70% (v/v) ethanol and dH20. Cells were recovered from a 96-well
plate and pipetted into microtubes. A 10 ul aliquot was then obtained from each sam-
ple to test cell viability as described in section [2.2.3] The remaining cells were centri-
fuged at 212 g for 3 minutes at room temperature and the cell medium discarded. Cell
pellets were washed twice with PBS before 20 ul of 1x lysis buffer was added. Cells
were then lysed by mixing with a pipette up and down 10 times, an incubation for

15 minutes at room temperature and 3 freeze/thaw cycles using dry ice. Lysed cells
were placed into a white opaque 96-well plate to read the luciferase activity on the
Varioskan flash luminometer (Thermo Fisher Scientific) as follows. Luminometer’s in-
jectors were washed with 1.5 ml of 70% (v/v) ethanol and further 1.5 ml of dH20.
After 100 pl of 1x firefly luciferase assay reagent II (LARII) was added to each plate,
the luminescence was measured. The firefly luciferase luminescence was then quenched
with concomitant activation of the Renilla luciferase using 100 ul of 1x Stop and Glo®

reagent. All steps by the Varioskan flash luminometer were automated.
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5.2.1.3 Data analysis

The luminescence in each sample was adjusted for the transfection efficiency by di-
viding the firefly luciferase luminescence by the Renilla luciferase luminescence. The
relative luminescence of the PPRE construct is shown in Equation [5.1] as an example

of the calculi.

firefly luminescence

Relative PPRE activity = ( ) x PPRE luminescence (5.1)

Renilla luminescence

The relative luminescence of all constructs was adjusted to the mean of the relative
luminescence of PPRE construct with control treatment (vector ethanol). After this
adjustment, the mean values of cells transfected with the PPRE construct treated
with PPAR« agonist GW7647 versus control treatment were compared by Student’s
T-test. The relative firefly luciferase luminescence of the positive and negative con-
trol was assessed but not considered by statistical analysis. The mean cell viability
between the positive control, negative control and PPAR« agonist GW7647 was com-
pared by one-way ANOVA with Tukey HSD post-hoc test.

5.2.2 DNA motif analysis

Motif analysis was carried out to assess a possible enrichment of DNA motifs proxi-
mal to CpG sites that were differentially methylated by the fatty acid treatments. An

overview of the steps followed is shown in Figure |5.2

5.2.2.1 DNA sequences used

DNA sequences next to a CpG site that significantly changed DNA methylation (p-
value < 0.05, g-value < 0.05, S-value > 0.05) by OA or DHA treatment were used

for motif analysis. All sequences analysed were 122 base pairs (bp) in length and in-
cluded 60 bp upstream and 60 bp downstream the CpG site of interest. Such length
was selected in order to find motifs that may be directly associated with altered DNA
methylation. All sequences were grouped and analysed either by treatment and direc-
tion of change in methylation or by treatment, the direction of change in DNA methy-
lation and genomic location (promoter region, gene body and intergenic region). Se-
quences allocated to the promoter region included those CpG sites with altered DNA
methylation up to 1500 bp upstream the transcription start site whereas sequences
allocated to the gene body included CpG sites from the 5’'UTR to the 3’UTR. The se-
quences that overlapped over two genomic locations were discarded from the analysis.

The number of sequences in each group is shown in Table Control sequences used
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Differentially methylated loci by Loci with no change by
DNA methylation microarray DNA methylation microarray
— 60 bp ——— 60 bp — — 60 bp —}— 60 bp —
Analysed by treatment Control sequences
éngllg/escet%rl?yg;rsha;r:gegt + direction of change (n=1,000 and 10,000
+ genomic location and 100,000)

C Exclusion of sequences with no consensus Iocation)

MEME tool
(Dlscrlmlnatlve analysis)

Replication of results by HOMER tool
(Discriminative analysis)

v

Comparison of motifs by MEME and
HOMER using STAMP

v

Comparison with known motifs
using Tomtom and HOCOMOCO

Figure 5.2: Overview of motif analysis workflow carried out in sequences where spe-
cific loci showed to significantly change DNA methylation by fatty acid treatments.
MEME, Multiple Expectation maximisation algorithm for Motif Elicitation; HOMER,
Hypergeometric Optimisation of Motif EnRichment; STAMP, similarity, tree- build-
ing, and alignment of DNA motifs and profiles; HOCOMOCO, HOmo sapiens COm-
prehensive MOdel COllection.
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were the same length (122 bp) that did not change DNA methylation significantly (p-
value > 0.05) in response to fatty acid treatment. Control sequences were randomly
selected from the same genomic location (promoter, gene body or intergenic region) as

the target sequences analysed.

5.2.2.2 Identification of DNA motifs

DNA motif analysis was carried out using Multiple EM (Expectation maximisation
algorithm) for Motif Elicitation (MEME) and Hypergeometric Optimisation of Motif
EnRichment (HOMER), both tools publicly available. De novo motif discovery was
performed using discriminative analysis with ZOOPS scoring (zero or one occurrence
per sequence). This compared sequences within the DNA methylationEPIC BeadChip
that changed DNA methylation significantly (target sequences) with those which did
not change (control sequences). Both tools analysed the most frequent DNA sequence
patterns to predict an ungapped motif using different algorithms components. MEME
used expectation maximisation, maximum likelihood ratio based and greedy search
while HOMER a cumulative binomial distribution. Putative ungapped DNA motifs
were then compared with control sequences which assigned a score or P-value that
was then corrected for multiple testing. The resulted Expect value (E-value) indicated
the number of times that the identified motifs in target sequences were expected to
match as well or better in the control sequences. The lower the E-value, the lower
expectancy of a motif that was associated with methylation change being present in

control sequences B317333]

MEME analysis was carried out using online MEME Suite Version 4.11.4 (http://
meme-suite.org) with a background model of second order, without random subsam-
pling, a motif length restriction to 6 and 30 nucleotides and a search not restricted to
palindromes. Discriminative Regular Expression Motif Elicitation (DREME) analysis
was also carried out as part of the tools available in the MEME Suite. DREME em-
ployed a Fisher’s Exact Test to calculate the P-value and correspondent E-value which
evaluated the enrichment of short motifs (up to 8 bases) in target sequences relative
to the control sequences 33, The cutoff to consider a motif significantly enriched by
both MEME and DREME analyses was an E-value > 1x1071°.

HOMER analysis was performed using Version 4.9 with homer2 executable, the den-
ovo command, cumulative binomial distribution and a motif length restriction same as
the significant motifs identified by MEME. The cutoff to consider a motif significantly

enriched was an E-value > 1x10710,
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Table 5.1: Groups and number of DNA sequences used in the DNA motif analysis.

Treat- Direction of Genomic # of Sequences
ment Change Location Analysed
OA A 269
Groups by treat- b ny
o OA n Any 294
ment and direction
DHA U Any 1088
of change
DHA 0 Any 508
OA [} Promoter 40
OA T Promoter 40
OA () Gene body 111
OA T Gene body 130
OA Int i i 104
Groups by treatment, s Hergenic Tesion
L OA T Intergenic region 114
direction of change
. . DHA [} Promoter 127
and genomic location
DHA T Promoter 54
DHA U Gene body 476
DHA T Gene body 254
DHA U Intergenic region 427
DHA T Intergenic region 181

[ indicates a decrease in DNA methylation; {} indicates an increase in DNA methylation. Se-

quences which genomic location was not specific for only one were excluded from the analysis

5.2.2.3 Comparison of DNA motifs between MEME, HOMER and known

motifs

The motifs identified by MEME and HOMER were compared using similarity, tree-
building, and alignment of DNA motifs and profiles (STAMP) tool B3%335l - The com-
parison of motifs was performed using the recommended default parameters. These
were column comparisons with Pearson’s correlation coefficient using an ungapped
Smith-Waterman algorithm with the iterative refinement option for the alignment.
The ungapped Smith-Waterman method aligned first the core of motifs without the
allowance of gaps and then the edges of the motif using the Smith-Waterman algo-
rithm 336 (Figure . Once an alignment was constructed, it was removed from the
current alignment and added again to the remaining sequence to be aligned. This it-
erative refinement was employed to avoid any influence of the nearby sequence (local

minima) in the alignment 234 (337

, which is a common problem The Pearson’s cor-
relation coefficient then measured the agreement in the covariance of the nucleotides
in the sequencesB34 derived from the alignments (Figure . The Pearson’s correla-
tion coefficient has been shown to perform better than normalised Euclidean distance,

Spearman rank correlation and the sum of products B33,
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A
B
Smith-Waterman algorithm C
Pearson’s r
AGCCT Alignment
ojo0fojo0|0fo0 A GCCT
T(0]|O - G CC -
G|O 1 G CC
Cc|o0 111 A GCCT G CC
C|O 111 - - - CC¢cC
C|oO 11110

Figure 5.3: Diagram of DNA motif comparison/alignment. Sequences of different
lengths were aligned and scored according to the matches in nucleotides (hypotheti-
cal score 0 = not aligned, 1 = aligned) as shown in A. Alignments constructed were
removed from the sequences and put back in a different position to avoid influences
from the local environment (iterative refinement). The multiple alignments were
transformed into position specific scoring matrices (PSSMs) which were then com-
pared by Pearson’s correlation coefficient (data not shown). Essentially, this means
that Pearson correlation measured the agreement of the nucleotides in the sequences
(B). The best fit in the alignments, if any, was then obtained (C) (E-value < 0.05).
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The motifs identified by MEME and HOMER that were significantly similar to each
other using STAMP tool (E-value < 0.05) were then compared individually to known
motifs using the Tomtom tool B3 and the core collection of the HOmo sapiens COm-
prehensive MOdel COllection (HOCOMOCO) v11B40 (available in http://meme-suite.
org/tools/tomtom). The similarity of significant motifs with HOCOMOCO motifs

was carried out using the Pearson’s correlation coefficient to score even the unaligned
nucleotides (columns) in both, the input and HOCOMOCO motifs. This resulted in

a single score of all nucleotides included in a motif by an E-value. In addition to the
E-value, Tomtom computed the g-values for each match as a second type of multiple-
testing correction. The cutoff to consider a motif comparison significant was an E-

value < 0.05 and g-value < 0.05.

5.2.3 Cross-linked chromatin immunoprecipitation coupled with qPCR

Cross-linked chromatin immunoprecipitation coupled with qPCR was carried out to
investigate if CpG sites that showed altered DNA methylation by OA or DHA treat-
ment were associated with altered H3K4me3 enrichment. An overview of the method

is shown in Figure

< Treatment with vector ethanol, OA or DHA >
¥
< DNA-protein cross-linking >

s < 50 pl aliquot >
C Obtention of chromatin > / v
v CReverse cross—linking>
v

<Enzymatic shearing of the chromatin>

— (DNA concentration quantification>

— (DNA shearing assessment>

< Chromatin immunoprecipitation (10 ug / sample) >
¥ v
< IgG Ab (negative control)> <H3K4m93 Ab (used also as positive control)>
v v
< Reverse cross-linking >

v
< Proteinase K treatment >—> gPCR

Figure 5.4: Overview of cross-linked chromatin immunoprecipitation coupled with
qPCR. Ab, antibody; qPCR, quantitative polymerase chain reaction.
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5.2.3.1 DNA-protein cross-linking

Cross-linking of samples was performed following protocols used by the ENCODE
Consortium B4, After treatment with fatty acid vector (ethanol), OA or DHA (n =
8 cultures replicates per treatment) for 8 days, 2x107 cells in cell media were made up
to 1.5 ml with 1x PBS in 2.2 ml microcentrifuge tubes. 100 ul of 16% methanol-free
formaldehyde (w/v) was added to obtain a final concentration of 1% formaldehyde.
Samples were then incubated for 10 minutes on a roller mixer at room temperature to

342l The reaction was stopped after 1-minute incubation

343]

cross-link DNA with proteinsk
with glycine at a final concentration of 0.125 M at room temperature Samples
were then centrifuged (376 g, 2 minutes, 4°C) and the supernatant discarded. Cell
pellets were washed with 2 ml cold (4°C) 1x PBS, repeating centrifugation and the
discard of the supernatant. Cell pellets were snap-frozen in liquid nitrogen and stored

at —80°C until further used.

5.2.3.2 Preparation of chromatin

An enzymatic method was preferred over sonication to shear the chromatin in order
to minimise systematic variation. Enzymatic shearing of the chromatin has shown to
be a reliable option 4. Nevertheless, enzymes preferentially target sequence-specific
locations B#5#46 which possibly could lead to a bias in nucleosome positioning stud-
iesB4 - Ag this is not the purpose of the current project, the enzymatic method pre-

sented no disadvantage.

The isolation and shearing of the chromatin were carried out using ChIP-IT Express
Enzymatic kit following manufacturer’s instructions. The kit provided all reagents
needed except for glycine. Frozen cell pellets were prepared for lysis by addition of

1 ml 1x Lysis Buffer supplemented with 5 ul protease inhibitor cocktail (PIC) and

5 pl of 100 mM phenylmethylsulfonyl fluoride (PMSF). PIC and PMSF were mixed
by gently pipetting and samples incubated on ice for 30 minutes. The cell lysis was
then carried out by freeze-thaw cycles using liquid nitrogen to freeze samples and a
water bath at 40 °C to thaw samples. A minimum of 8 freeze-thaw cycles were car-
ried out or more until the samples turned cloudy, which indicated the cell membrane
disruption. The samples were then centrifugated at 2352 g for 10 minutes at 4 °C,
the supernatant discarded and the pelleted nuclei resuspended in 350 ul Digestion
Buffer supplemented with 1.75 ul PIC and 1.75 ul PMSF. Samples were then incu-
bated for 5 minutes at 37°C. 17 ul Enzymatic Shearing Cocktail (200 U/ml) in 50%
(w/v) glycerol was added to samples and mixed by vortex. The samples were incu-
bated for another 20 minutes at 37 °C period in which they were mixed by vortex ap-
proximately every two minutes. The shearing of the chromatin was stopped by adding

7 pl of 0.5 M EDTA followed by a 10-minute incubation on ice. The samples were
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then centrifuged at 21130 g for 10 minutes at 4°C to pellet the cell debris. The su-
pernatant (sheared chromatin) was recovered and pipetted into a new microcentrifuge
tube. 50 ul of each sample was placed into a new PCR tube to assess the shearing of
the chromatin (size of fragments) and the DNA concentrations (section be-
fore proceeding with the immunoprecipitation (section . Samples were stored
at —80°C until further use.

5.2.3.3 Reverse cross-linking of aliquots to assess DN A concentrations

Reverse cross-linking to asses DNA concentrations was performed using the same
reagents provided by ChIP-IT Express Enzymatic kit plus phenol Tris-EDTA (TE)-
saturated (10 mM Tris (HCl-adjusted), 1 mM EDTA, pH 8), chloroform, 3 M Sodium
Acetate pH 5.2, ethanol and DNA- and RNA-free water. 150 ul dH20 followed by 10
ul 5 M NaCl were added to each 50 ul aliquot (from section . Samples were in-
cubated overnight at 65°C using a Veriti Thermal Cycler (Applied Biosystems) to re-
verse the cross-links. Once nucleic acids and proteins were separated, 1 ul of RNase A
(10 pg/pl) was added and samples incubated for 15 minutes at 37 °C to degrade any
possible RNA in samples. Protein degradation was then carried out by the addition of
10 pl of Proteinase K (0.5 pg/pl) and incubation for 90 minutes at 42°C. After this,
samples were placed in 1.5 microcentrifuge tubes to isolate the DNA (clean-up) using
a phenol/chloroform method provided in the kit as follows. 200 ul of 1:1 phenol-TE-
saturated:chloroform was added to samples, vortex mixed and centrifuged at 21130 g
for 5 minutes. The supernatant was transferred into a new 1.5 microcentrifuge tube.
20 pl 3 M sodium acetate pH 5.2 and 500 ul 100% ethanol were then added. Samples
were vortex mixed, incubated at —80 °C for 2 hours and then centrifuged at 21130 g
for 10 minutes at 4°C. The supernatant was discarded, 500 ul of 70% (v/v) ethanol
added to samples and centrifugation repeated for just 5 minutes. The supernatant was
discarded again, the pellet air-dried and then resuspended in 20 ul DNA- and RNA-
free water. Chromatin shearing was assessed by agarose gel electrophoresis as de-
scribed in section 2.3.4l DNA concentration was assessed as described in section 2.3.3]
and concentrations used to back-calculate the concentration of the sheared chromatin

in samples using Equation [5.2]

Chromatin (ng/ul) = (DNA after clean — up (ng/pl) X% Resuspension volume (ul)) (5.2)

Volume of aliquot used for clean — up (ul)
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5.2.3.4 Chromatin immunoprecipitation and reverse cross-linking of sam-

ples

ChIP was carried out using reagents and a magnet provided by the ChIP-IT Express
Enzymatic Kit and ChIP-IT Control Kit-Human following manufacturers’ instruc-
tions. The latter kit provided an RNA polymerase II mouse monoclonal antibody
(mAb) as a positive control, a bridging antibody (Ab) (1 ug/ul) to facilitate binding
of RNA polymerase II to magnetic beads, a mouse immunoglobulin G (IgG) Ab as a
negative control and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) primers to
carry out a control PCR amplification. In addition, histone H3K4me3 polyclonal anti-
body (pAb) (isotype IgG, host rabbit) was used to target the histone mark of interest.

Frozen samples containing the sheared chromatin were thawed on ice. 20 ul were then
transferred to a PCR tube (input DNA) while 10 pg of sheared chromatin were trans-
ferred to another PCR tube for the immunoprecipitation. ChIP reaction was carried
out using 25 ul protein G magnetic beads, 20 ul ChIP buffer 1, 61 to 150 ul (10 ug)
of sheared chromatin, 2 pl PIC, up to 197 ul dH20 and 3 pl H3K4me3 pAb (1 pg/pl)
added last for a final volume reaction of 200 ul. Negative control reactions were pre-

pared as previously described using 190 pl dH20 and 10 pl IgG (0.2 pug/ul).

After ChIP reactions were prepared, the PCR tubes were placed into 50 ml tubes to
immobilise them and to allow samples to mix on a roller mixer during an overnight
incubation at 4°C. The PCR tubes were centrifuged to collect drops on lids and the
beads were then collected on the tubes side using a magnetic bar. The supernatant
was removed, discarded and serial washes performed as follows. The first 3 times with
200 pl ChIP Buffer 1 and then 2 times with 200 pl ChIP Buffer 2. The washed beads
were resuspended in 50 pl Elution Buffer AM2 and incubated 15 minutes at room
temperature on a roller mixer. 50 pl of Reverse Cross-linking Buffer were then added
and mixed by pipetting. The magnetic beads were collected again using the magnetic
bar and the supernatant transferred to a new PCR tube. The sheared chromatin was
placed on ice while 88 ul of ChIP Buffer 2 and 2 ul 5 M NaCl were added to the 20 ul
input DNA aliquot. Both, the ChIP samples and DNA input aliquot were incubated
for 15 minutes at 95 °C using a Veriti 96 well Thermal Cycler (Applied Biosystems).

2 pl Proteinase K (0.5 pg/ul) were then added, mixed and samples incubated for 60
minutes at 37°C. Reaction was stopped by adding 2 ul of Proteinase K Stop Solution.

Samples were stored at —20 °C until further use.

5.2.3.5 Mapping of H3K4me3 and selection of regions

All CpG sites that significantly changed DNA methylation by OA or DHA were mapped
to the genome in order to look for any overlap with H3K4me3 mark. The mapping of

CpG sites and H3K4me3 mark was carried out using the WashU Epigenome Browser P47
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v46.1 (available in https://epigenomegateway.wustl.edu) which is part of the Roadmap
Epigenomics Project. The mapping was performed using the human hg!9 assembly

from ENCODE, same as MethylationEPIC BeadArray. The cutoff to consider an over-

lap valid was a difference > 10 between the ChIP-seq input DNA raw signals and the
ChIP-seq H3K4me3 raw signals. 5 candidate regions with the top difference located in
promoter regions were selected for analysis. Bespoke primers were designed using the
primer design tool in the NCBI website as described (section [2.4.1). Primer sets for
ChIP-qPCR were named after the ID of probes in the DNA methylation BeadArray.

A diagram of the sequences analysed is shown in Figure |5.5

5.2.3.6 gqPCR and statistical analysis

qPCR was carried out as described in section [2.4.2
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Figure 5.5: Genomic locations of primers ID ¢g17058565 (A), cg15707568 (B),
cgl7016559 (C), cg07203320 (D), cg18492804 (E) used for ChIP-qPCR. The diagram
shows the raw signal peaks of H3K4me3 occupancy in Jurkat cells (in green) and the
genes (in blue) near the regions that were amplified by each primer set (black paral-
lel lines). Genomic locations, H3K4me3 occupancy and genes according to assembly
hg19 from ENCODE using Integrative Genomics Viewer version 2.3.91 available in
http://www.broadinstitute.org/igv.
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5.3 Results

5.3.1 Does PPAR«a mediate the altered DNA methylation induced
by DHA?

The involvement of PPAR«a on DNA methylation changes induced by DHA has not
been tested before. Therefore, this work sought to address this using PPAR«a ago-
nist/antagonists treatments. To conduct such experiments, it was first tested the gene
expression of PPAR« in Jurkat cells. PCR using bespoke primers for PPARa showed
that cells expressed this transcription factor (Figure [5.6).

A B

500 bp —»

75 bp—>

Figure 5.6: Representative 2% agarose gel after a PCR using primers
for PPAR« (112 bp expected amplicon size) and Jurkat cells cDNA
(A) or reverse transcriptase control (B).

After verifying PPARa mRNA expression in cells, it was tested if PPAR« agonist
GW7647 efficiently increased the activity of PPAR«. For this purpose, Jurkat cells
were transfected with a luciferase reporter construct under the control of PPAR res-
ponse element (PPRE) tandem repeats. Transfected cells treated with 0.2 uM PPAR«
agonist GW7647 showed to induce a 2-fold increase in luciferase activity after 3 hours
incubation compared with transfected cells treated with vector ethanol (Figure A).
There was not identified a further change in luciferase activity in transfected cells af-
ter 6 hours of treatment with 0.2 uM PPAR« agonist GW7647 (Figure B). The
transfection of Jurkat cells with the different constructs and subsequent treatments
did not show any statistical difference in cell viability between controls and treatments
(Figure . Therefore, results suggested that the treatment of Jurkat cells with 0.2
uM PPARa agonist GW7647 was adequate to study the participation of PPAR« ago-
nist in DHA-induced DNA methylation changes.
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Figure 5.7: Relative firefly / Renilla luciferase gene luminescence (n = 3 cul-
ture replicates per group) after treatment with PPAR« agonist GW7647
showed a 2.2 or 2.3 fold change increase compared with control (CTRL)
treatment (vector ethanol) at the 3" (A) or 6'" hour (B) of incubation, re-
spectively. Data are the relative luminescence values adjusted to the mean
luminescence values of cells transfected with the PPRE construct and treated
with the vector ethanol + standard error of the mean. Treatment versus con-
trol means were compared by Student’s T-test and those which differed sig-
nificantly are indicated by *P < 0.05, **P < 0.01 or ***P < 0.001.
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Figure 5.8: Cell viability after transfection of constructs and treatment with
0.2 uM PPAR« agonist GW7647 or vector ethanol. Data are the mean % of
viable cells after 3 and 6 hours of incubation (n = 6 culture replicates per
group) =+ standard error of the mean. The means of all groups were com-
pared by one-way ANOVA with Tukey HSD post-hoc test and those which
differed significantly are indicated by *P < 0.05, **P < 0.01 or ***P < 0.001.
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Jurkat cells were then treated with 15 uM DHA, 0.2 uM PPAR« agonist GW7647, or
2 uM PPAR« antagonist GW6471 for 8 days. Cells were also co-treated with 15 yM
DHA plus 2 uM PPAR«a antagonist GW6471 for the same period of time. The con-
centrations used for treatments with PPAR« agonist GW7647 or antagonist GW6471
were higher than the ECsp value according to manufacturer’s (0.006 uM and 0.24 uM,
respectively). After 8 days of incubation, there was no significant difference in the cell
viability between controls (vector ethanol), 0.2 uM PPAR« agonist GW7647 and 2
uM PPARa antagonist GW6471 treatment. Jurkat cells showed a statistically signif-
icant decreased in cell viability only after 15 uM DHA treatment (3.6% A points) or
15 uM DHA plus 2 uM PPAR«a antagonist GW6471 co-treatment (4.2% A points)
after the 8" day of treatment (Figure .

801 ™ = CTRL
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2 <~ GW7647

©

S 407 - GW6B471

= ol /- DHA+ GW6471
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Figure 5.9: Cell viability after treatment with 0.2 uM PPAR« ag-
onist GW7647, 2 uM PPAR« antagonist GW6471, 15 uM DHA

or 15 uM DHA plus 2 uM PPAR« antagonist GW6471 for 8 days.
Data are the mean of cell viability absolute % points + standard er-
ror of the mean using Typan blue exclusion. Treatment versus con-
trol means were compared by one-way ANOVA with Dunnett’s post
hoc test and those which differed significantly are indicated by *P <
0.05, **P < 0.01 or ***P < 0.001.

After dismissing any effect on cell viability by PPAR« agonist or antagonist, the DNA
methylation was measured in the same 5 CpG sites analysed for BeadArray valida-
tion (previous Chapter). Treatment with 15 uM DHA or co-treatment with 2 uM
PPAR« antagonist GW6471 showed to significantly alter the DNA methylation of

the 5 CpG sites analysed (Figure . In contrast, treatment with 0.2 uM PPAR«
agonist GW7647 or 2 uM PPAR« antagonist GW6471 did not induce any significant
change on DNA methylation of any CpG site analysed (Figure .
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Figure 5.10: The effect of PPAR« agonist GW7647 and PPAR« antagonist GW6471
on 5 candidate CpG sites (A = ID ¢g26292058, B = ID ¢g05475386, C = ID
cg27188282, D = ID ¢g06989443, E = ID ¢g22518417) that showed altered DNA
methylation by DHA after 8 days of treatment. Data are the mean difference (A) in
the absolute change on DNA methylation (% points) between treatments and controls
(n = 8 culture replicates per treatment) + standard error of the mean. Treatment ver-
sus control means were compared by one-way ANOVA with Dunnett’s post hoc test
and those which differed significantly are indicated by *P < 0.05, **P < 0.01 or ***P
< 0.001.

119



Chapter 5. Mechanisms Underlying The Effect of OA or DHA Treatment on DNA Methylation

5.3.2 Do DNA motifs mediate the DNA methylation induced by OA
or DHA?

There were identified DNA motifs in the proximity of CpG sites (60 bp upstream and
60 bp downstream) that significantly changed DNA methylation by OA treatment us-
ing MEME tool. Nevertheless, the three most significant motifs identified using 1x103

control sequences were different from those motifs identified using 1x10* or 1x10° con-
trol sequences (Table . Analysis of the same sequences grouped by the direction of
change on DNA methylation (decrease or increase) also showed enrichment of specific

motifs. Again, the three most significant motifs were not the same when using 1x103,

1x10% or 1x105 control sequences (Table .

Similar to OA treatment, there were identified DNA motifs in the proximity of CpG
sites that significantly altered DNA methylation status by DHA treatment (122 bp
long) using MEME tool. The significant motifs identified using 1x10% control sequen-
ces were different from those motifs identified using 1x10% or 1x10° control sequences.
Two motifs that were identified using 1x10% control sequences were also identified us-
ing 1x10° control sequences (Table . Analysis of the same sequences grouped by
the direction of change on DNA methylation (decrease or increase) also showed enrich-
ment of DNA motifs. Again, identified motifs using 1x10® control sequences were dif-
ferent from those motifs that were identified using 1x10% or 1x10° control sequences.

The most significant motifs using 1x10 or 1x10° control sequences were the same (Ta-

ble .

The MEME tool used for motif analysis was specialised in the identification of long
DNA motifs (up to 30 bp). In order to look for shorter DNA motifs, the DREME
tool (part of the MEME Suite) was also employed. DREME analysis specialised in
the identification of short DNA motifs (up to 8 bp). DREME results showed that the
most significant motifs identified were not the same using 1x102, 1x10* or 1x10° con-
trol sequences (Table . However, motifs identified in DHA-altered sequences using
1x10% and 1x10° control sequences showed greater similarities (DHA = 5) than motifs
identified using 1x103 and 1x10* (DHA = 0) or 1x10® and 1x10° controls sequences
(DHA = 0). The latter was not identified in OA-altered sequences (Table [5.3).

120



Chapter 5. Mechanisms Underlying The Effect of OA or DHA Treatment on DNA Methylation

Table 5.2: The three most significant DNA motifs in sequences close to a CpG site
that changed DNA methylation by OA or DHA treatment using MEME tool.
Analysis was carried out using 1x103, 1x10% or 1x10° control sequences.

Sequences
Group Motif with motif (%)
1x10%  1x10* 1x10°
OA all SSCBSSSVNGKKGCTGGGGNBRSVSGBGKG 19 - -
TTTTWNTWTTTTTWTTWKWKW 20 - -
GAGCYGAGATCACGCCACTRCACTCCAGC 1 - -
CGYRGTGGCTCACGCCTGTAATCCCAGCWM - 3 -
CCMSBBCHCSSCMCHSCCCCCCVSSCHSS - 21 -
AAAAAAAAWAAVAAMWMRAAA - 14 -
CCMSCVCCCCCMOSCCYRSSC - - 19
CTGTARTCCCAGCWMYTYGGGAGGCYRAG - - 3
AAAAWAAAAAAAAMRWARAAW - - 13
OA | GVVGSMSBVGGDGBSTGKGRGSGSRSSGGG 222 228 -
CTYNGCCTCCCAANKWGCTGGGAYTRCAG 2 2 -
GVKGSCBSGSGGKSBGKGSDSGGGSCKGG - - 17
OA 1 CGYRGTGGCTCACGCCTGTAATCCCAGCWC 4f - 4f
CHSCASBSAGCCSVGVCCMCBCCSSBGCMC 16¢ - 16¢
TTDTTTTTTTWTTTT 194 184 -
SCCBSSBNVRGDGCTGGGVKKRSRGGSRBG - 27 -
ASWCCAGCCTGGGBDACAGAGYGAGACYC - 3 =
TTBTWTTHTTTTTTTHTTTTT - - 16
DHA
Al GGCYRGGCGTGGTGGCTCACGCCTGTAA 2 - -
RCACACACACRCACRCACRCACACACRCAC 2 - -
TCRGCCTCCCAAAGTGCTGGG 2 - -
RCCTGTAATCCCAGCACTTTGGGAGGCYGA -
GYGTGYGYGTGTGTGTGYSTGTGTGTGTGT - 2b 2b
TTKTTTTNTTTTBTTWTWTWW - 10 -
SCKSSYCBMSCYBCCSSCKCCCYVGYCYS - -
DHA | GCYRGGCRYGGTGGCTCACGCCTGTAATC 3 - -
CGGGRGSBBGGGGSRSSVSSVGSRSNYSDGG 11 - -
CCAGCACTTTGGGAGGCYGAG 2 - -
GGCRTGGTGGCTCACGCCTGTAATCCCAGC - 2 2
BSCBGGCGCCCBSCBCCNSCCCCGSSCC - 7 7
TTTGGGAGGCYGAGGCRGGHG - 2 2
DHA ¢t GMSGSGGSGGYVSKGGSRGGSWGGSNRS 18 - -
CTGTAATCCCAGCWMYTYGGGAGGCTGAGG 2 - -
GCTGGGATTACAGGYGTGMGCCACCRCGCC - 2 2
GMSGBGGSGGHVSNGGSGVGSWGGRBRSSB - 14¢ 18¢

The symbol ‘]’ indicates that only sequences near a CpG site that decreased DNA methylation

were analysed. The symbol 1’ indicates that only sequences near a CpG site that increased DNA
methylation were analysed. K=GorT; Y =CorT;S=CorG;W=AorT; R=A orG;
M=AorC; B=mnot A; D =Not C; H= Not G; V= Not T; N or X = any base. Superscripts

indicate that motifs have a mismatch in 2 = P, 4 = ©4 7 = © bases or a difference in length of 6

bases =

f
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Table 5.3: The three most significant DNA motifs in sequences close to a CpG site
that changed DNA methylation by OA or DHA treatment using DREME tool.
Analysis was carried out using 1x103, 1x10% or 1x10° control sequences.

Sequences with motif (%)
Group Motif 1x103 1x10% 1x10°
Target CTRL Target CTRL Target CTRL

OA all AHAWA 74 49 - - - -
WTAW 57 36 - - 59 41
ANAWAA - - 57 33 - -
WAWAW - - 63 43 -
AAWAW - - - - 66 43
OA | AHAWA 74 49 79 52 79 52
WATW 59 35 - - - -
OA 1 AAAAWD 49 24 49 26 - -
ATWWT - - - - 58 34
DHA all TAHWW 78 56 - - - -
TWWW 79 62 - - - -
ATTWW - - 63 41 - -
ATWW - - 74 56 70 52
TWWA - - 43 29 44 30
WATWW - - - - 67 45
DHA | TAWHW 81 57 - - - -
WAAW 79 62 - - - -
WATWW - - 70 45 70 45
WITTWW - - 61 40 61 40
WTWW - - 74 59 - -
ASWWA - - - - 70 55
DHA 1 KAAAW - - 72 52 72 53

The symbol ‘]’ indicates that only sequences near a CpG site that decreased DNA methylation
were analysed. The symbol 1’ indicates that only sequences near a CpG site that increased DNA
methylation were analysed. K=GorT; Y =CorT;S=CorGW=AorT;R=Aor G;M
=AorC;B=mnot A; D= Not C; H= Not G; V = Not T; N or X = any base.

Overall, MEME and DREME results showed a low agreement between motifs identi-
fied using a different number of control sequences. Besides, both tools showed a higher
agreement between motifs identified in DHA-altered sequences using 1x10* and 10°
control sequences. Such evidence suggested that motifs were dependent on the num-
ber of sequences used as control, at least in part. In order to increase the reliability

of results motif analysis was continued using only the greatest number of control se-
quences. Therefore, motif analysis was continued using only 1x10° control sequences.
This was the greater number it was possible to work with according to the number of

sequences included in the DNA Methylation BeadArray.
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The same motif analysis that was previously carried out was then performed grouping
sequences by genomic regions (promoter, body and intergenic region). There were mo-
tifs identified in each genomic region except in promoter sequences containing a CpG
site differentially methylated by OA treatment (data not shown). After this, motifs
analysis was performed using HOMER tool with the aim to replicate the significant
motifs identified by MEME and DREME analyses. Only those motifs that were simi-
lar between MEME or DREME and HOMER tool (E-value < 0.05) were considered in
this work as significantly enriched motifs. Such motifs were then compared (aligned)
with known response elements in order to identify possible transcription factors that
may bind to them (Table and [5.6)). All other DNA motifs that were not co-
mmon between MEME and HOMER analyses or between DREME and HOMER anal-

yses were discarded and are not shown.

Common DNA motifs by MEME and HOMER analyses were identified in sequences
containing CpG sites differentially methylated by OA treatment with some excep-
tions. The exceptions were sequences that decreased methylation in the body or inter-
genic regions and all gene promoter sequences. The majority of DNA motifs identified
were significantly similar to response elements (E-value < 0.05) of mainly zinc-finger
transcription factors (Table . In addition to the common DNA motifs identified by
MEME and HOMER, there were also common DNA motifs identified by DREME and
HOMER analyses. Common short DNA motifs by DREME and HOMER tools were
essentially identified only by analyses carried out using sequences regardless of the

genomic location. In all instances, the significantly enriched short DNA motifs were

A/T-rich (Table [5.6).

MEME and HOMER tools also identified common significantly enriched motifs in se-
quences proximal to CpG sites differentially methylated by DHA treatment with some
exceptions. The exceptions were sequences that decrease methylation in the body or
those that increase DNA methylation in the promoter, body and intergenic regions
(Table . The majority of DNA motifs identified were significantly similar to re-
sponse elements (E-value < 0.05) of mainly zinc-finger transcription factors. DNA
motifs identified using only promoter sequences regardless of the direction of change
in methylation were similar to response elements that were not predicted in any of the
other genomic locations. Such response elements identified were similar to those of
forkhead box J3 (FOXJ3), PR/SET domain 6 (PRDMS6), androgen receptor (AR) and
sex determining region Y (SRY) (Table [5.5). Common short DNA motifs by DREME
and HOMER analyses were identified essentially in all genomic locations analysed ex-
cept in sequences that increase methylation in the promoter, body or intergenic re-
gions. Besides, there were not identified common DNA motifs in promoter sequences
when the analysis was carried out regardless of the direction of change of methylation.
Similar to DNA motifs in OA-altered sequences, significantly enriched short DNA mo-
tifs in the sequences altered by DHA were A/T-rich (Table [5.6)).
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Table 5.4: List of DNA motifs identified in sequences altered by OA which were
significantly similar between MEME and HOMER analysis (E-value < 0.05).
Identified DNA motifs were compared with known motifs using HOMOCOCO v11.

Group Motifs by MEME or HOMER Similar to binding site of
OA any all CCNSNNCCCCCNNNCCYNSNC® SP2* | SP3*, SP1?, ZN467*
WT1?*, MAZ®, KLF3?, PATZ1*

ANCTCYTGYNMSSMASGTCTSP

SP1%, SP2?,

OA any | GNKGSCNSNNNSKSNGKCGSNSNGNSNKGG?*
SP32P, ZN281P

CTNNNAGNATGCCGGGTGGCGGTGTGGAP

SP2?* SP32b KLF3?*

OA any T CNGCNSNSAGCCNNNNNCNNNCCNSNNCMC?
USF2°, SpP1P

ACKNYCYSGGGSCSGSCRCSTSGCCGCYCCP

ARKTGCTGGGATTACAGGCGTGAGCCAC*
GNCAASCNGNNGGGTGNNGGNKAARNGCCGP )

SP1?®, SP2*, SP3*, PATZ1?,
ZN467*, MAZ*, WT1?,
VEZF1?, KLF15%, KLF9*
KLF3*

OA body all SNNCNNCCNNGNCNNNCCNSNCYNCNS*
NNNANYCCNGNNGTNWCGNNYCCGMNTTCCP

VEZF1%, ZN467*, ZN341%,
KLF3?®, SP2®, PATZ1*
SP3*, WT1*, MAZ?

OA body 1 GNRGKNAGSNNRGNGSAGG?
GCANTSARSNGAGANCANNYY?

OA int all ~ GYGGTGGNKCRYRCCTGTARTCCCAGC*
NGGAKTNKANCTGNAGNCNTWNSNANNAP )

NNSNNYCNNCNGCCNSNSCSYCCMNRN® N0 WL St
NTAMTACNTNTNNCCYNCCCCYNNCMNNP 70°, WTI®, 5P3

OA int  YTYGGGAGGCYRAGGCRGRCGGRTCRCKT® . .
SCNGNSWGGGANGNGNGNGGNGCCNCTGN® ZNT70%, WT1

GGGATTACAGGCGYGAGCCACYRC*
MRGNNTRRANMTNYAKRMCTKWNYANNNRP B

GYRGTGGCTCRCGCCTGTAATCCC*
ATGRMNWATNYCTGTCWNWMNMNNP B

All DNA motifs shown were those identified by MEME or HOMER tool in sequences located in any
genomic region (any), the promoter (prom), the body (body) or the intergenic region (int) which
showed an expected (E)-value < 0.05 using STAMP tool. The E-value indicated the number of bet-
ter alignments expected to match by chance. ® = data by MEME analysis; ® = data by HOMER
analysis. All similarities between DNA motifs and response elements were significant (P < 0.0001,
E-value < 0.05 and g-value < 0.05). The code for A, C, G and T nucleotides with the different sym-
bols are the same as Table and Name and details of transcription factors shown here are

described in Table [5.1]
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Table 5.5: List of DNA motifs identified in sequences altered by DHA which were
significantly similar between MEME and HOMER analysis (E-value < 0.05).
Identified DNA motifs were compared with known motifs using HOMOCOCO v11.

Group Motifs by MEME or HOMER Similar to binding site of
DHA  SNNSNNSNNSCYNCCNNCNCCCNNGNCNC? SP1?, SP2*, SP3* MAZ®
any all ASKGCNGGCASNGKGSCYNCCASCACNNNMP PATZ1?, ZN467*, ZN341*

KLF15*, VEZF1?, ZBT17*

DHA GGNSNGGGGSNGGNGSNGGGSNCNNGG* SP17P, SP2*, SP3*, SP4® ZN263",

any J RGAGGNGGNNGNGGMGGGAGNP ZN467°P, ZN341P, ZN770°, WT12P,
MAZP, KLF3?*, KLF15%®, PATZ1%®,

TAF1%P
CNCCYGCCTCGGCCTCCCAAA® SP1P, ZN770*P, ZN263P, ZN341" |
NCTCCCKCCNCNNCCNCCTCY? ZN467°, PATZ1®, KLF15°, WT1P,

EGRI1®, TAF1®, MAZP

GCTGGGATTACAGGCGTGAGCCACCACGCC?
NGCAATACTGATATGACNCCCP

DHA GGCGYGGTGGCTCACRCCTGTAATCCCAGC®
any T NARYCCAGMNNCYGGRNCWYNNCTGRRRNP

CCNCCNNSYCNSNNCNNCCNNSNS? SP1?%, SP2*, SP3*, PATZ1?,
NARYCCAGMNNCYGGRNCWYNNCTGRRRN® 7ZN281%, ZN341%, ZN467*, MAZ?,
WT1?, VEZF1*, KLF15*, ZBT17*

DHA  GCTCAYRCCTGTAATCCCAGCACTTTGGGA® ZN250*
body all NYAGNCACNNNNANNCYCNNCTMNNNAGANP

DHA CCTCCCAAAGTGCTGGGATTACAGGCGTG? ZN250%, IKZF1?*
int all TGNGNGNCGNAGGNCNCCGTGCCCGNCNT®
CSNNNNCNNSCCCNCRSSNCNNNNNNS? SP1?, SP2?, SP3*, MAZ?",
AGCACSNSNCTSTCYCANCNNMMNYCCCNP ZN467* EGR1?, PATZ1%P,

WT1?, VEZF1??, KLF1?

DHA  GGCKNACGCCTGTAATCCCAGCWMTTTGGG*
int | NGNNTGTMATANCANTANNNYNNKNGWNAP

DHA AAWAAAAWANANAAMAWWNAA®? FOXJ3*®, PRDM6*,
prom all NNNNNNNNNNNAAAAAAANNAANNAAAANNP AR® SRY®

DHA  GNNNNSNNGNSGGGSGNGGGRGNNNNSNSS? SP1®, SP2?, SP3?,
prom | GMGMCSAKNAGGGRCRANGSNNCMAGRGGCP ZN467*, PATZ1?

All DNA motifs shown were those identified by MEME or HOMER tool in sequences located in any
genomic region (any), the promoter (prom), the body (body) or the intergenic region (int) which
showed an expected (E)-value < 0.05 using STAMP tool. The E-value indicated the number of bet-
ter alignments expected to match by chance. * = data by MEME analysis; ® = data by HOMER
analysis. All similarities between DNA motifs and response elements were significant (P < 0.0001,
E-value < 0.05 and g-value < 0.05). The code for A, C, G and T nucleotides with the different sym-
bols are the same as Table and Name and details of transcription factors shown here are
described in Table 5.7
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Table 5.6: List of DNA motifs identified in sequences altered by OA or DHA which
were significantly similar between DREME and HOMER analysis (E-value < 0.05).

Group Motifs in common Group Motifs in common
OA any all AAWAW® DHA any all WATTW?
AAAAAP AATTT®
TTAW? WAAT?
TTAAP AAATT®
OA any | TWTNT* DHA any | WAATW*
TTTTT® NTATAP
TWTNT? TTTTW?
TATAT® TTTTAP
OA any 1 AAAAT® DHA any * KAAAW?
AAAATP TMAAAP
ATTTT? WTTTM?
TTTTT® AATTT®
OA body all ARAAWA? DHA body all TTAWN?
AAAAAAP TTATAP
- ATTT?
- ATTTP
OA body | - DHA body | NWTAA®
- TATAAP
- AATW?
- AAATWP
OA body 1 ARAAWA® DHA body 1 -
AARAAAP -
OA int all - DHA int all ATTTW?
- ATTTAP
- TAAA?
- TAAATP
OA int | - DHA int | ATTTW?
- AATTT®
- TTTKA®?
- TTTTAP
OA int 1 N DHA int 1 N
OA prom all N DHA prom all §
OA prom | - DHA prom | WATTNT®
- AATNTTP
- WATTNT?
- ATTTATP
OA prom 1 DHA prom 1

All DNA motifs shown were those identified by DREME or HOMER tool in sequences located in
any genomic region (any), the promoter (prom), the body (body) or the intergenic region (int) which
showed an expected (E)-value < 0.05 using STAMP tool. The E-value indicated the number of bet-
ter alignments expected to match by chance. ® = data by DREME analysis; ® = data by HOMER
analysis. All similarities between DNA motifs and response elements were significant (P < 0.0001, E-
value < 0.05 and g-value < 0.05). The code for A, C, G and T nucleotides with the different symbols
are the same as Table [5.2 and [5.3]
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Table 5.7: List of DNA-binding proteins which response elements were significantly
similar to motifs identified in sequences close to CpG sites that changed DNA
methylation by OA or DHA treatment.

Domains able to

Name Symbol  Significant by bind DNA2
Androgen receptor AR DHA ZF-C4
Early growth response 1 EGRI1 DHA ZF-C2H2
Forkhead box J3 FOXJ3 DHA Fork-head
IKAROS family zinc finger 1 IKZF1 DHA ZF-C2H2
Kruppel-like factor 1 KLF1 DHA ZF-C2H2
Kruppel-like factor 3 KLF3 OA or DHA ZF-C2H2
Kruppel-like factor 9 KLF9 OA ZF-C2H2
Kruppel-like factor 15 KLF15  OA or DHA ZF-C2H2
MYC associated zinc finger protein MAZ OA or DHA ZF-C2H2
POZ/BTB and AT hook containing A.T. hook,

PATZ1  OA or DHA

zinc finger 1 ZF-C2H2
PR/SET domain 6 PRDMG6 DHA ZF-C2H2
Spl transcription factor SP1 OA or DHA ZF-C2H2
Sp2 transcription factor SP2 OA or DHA ZF-C2H2
Sp3 transcription factor SP3 OA or DHA ZF-C2H2
Sp4 transcription factor SPh4 DHA ZF-C2H2
Sex determining region Y SRY DHA HMG box
TATA-box binding protein associated
factor 1 TAF1 DHA HMG box
Upstream transcription factor 2, C-fos
. ] USF2 OA bHLH and L-Z
interacting
Vascular endothelial zinc finger 1 VEZF1  OA or DHA ZF-C2H2
Wilms tumour 1 WT1 OA or DHA ZF-C2H2
Zinc finger and BTB domain containing
17 ZBT17 DHA ZF-C2H2
Zinc finger protein 250 ZN250 DHA ZF-C2H2
Zinc finger protein 263 ZN263 DHA ZF-C2H2
Zinc finger protein 281 ZN281 OA or DHA ZF-C2H2
Zinc finger protein 341 ZN341 OA or DHA ZF-C2H2
Zinc finger protein 467 ZN467  OA or DHA ZF-C2H2
Zinc finger protein 770 ZN770  OA or DHA ZF-C2H2

ZF-C4, zinc finger type Cys4; ZF-C2H2, zinc finger type Cys2-His2; A.T. hook, adenine-thymine
hook; HMG box, high mobility group box; bHLH, basic helix-loop-helix; L-Z, leucine-zipper. * =
data from UniProt Knowledgebase (UniProtKB) using only manually annotated records extracted

from literature and further computational analysis.
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5.3.3 Does H3K4me3 enrichment is altered on CpG sites that showed
altered DNA methylation?

All CpG sites that significantly changed DNA methylation by OA or DHA treatment
were mapped together with the H3K4me3 occupancy, specifically in Jurkat cells, using
ENCODE. The analysis showed that 6.4% (36/563) of the CpG sites that were dif-
ferentially methylated by OA treatment overlapped with H3K4me3 occupancy (23/36
increased). Analysis of each genomic location showed that there was a higher over-
lap between altered CpG sites and H3K4me3 in the promoter region (23.2%, 19/82)
compared with the gene body (5.1%, 13/253) or intergenic regions (2.7%, 2/218) (Fig-
ure [5.11). 10 CpG sites with altered DNA methylation by OA were not included in

this analysis because there was not identified a consensus location of those CpG sites.

Similar to OA, 7% (123/1596) of CpG sites that were differentially methylated by
DHA treatment overlapped with H3K4me3 occupancy (55/123 increased). Analysis
of each genomic location showed that there was a higher overlap between altered CpG
sites and H3K4me3 occupancy in the promoter region (22.4%, 41/183) compared with
the gene body (9.6%, 61/772) or intergenic regions (4.8%, 16/608) (Figure [5.11)). 33
CpG sites with altered DNA methylation by DHA were not included in this analysis

because there was not identified a consensus location of those CpG sites.

m OA = DHA

changes in each region

H3K4me3 overlap as % of total

Genomic Region

Figure 5.11: Overlap between CpG sites that were differentially methylated
by OA or DHA treatment and H3K4me3 occupancy in Jurkat cells according
to ENCODE. Data are percentages of the number of differentially methylated
CpG sites that showed an overlap with H3K4me3 occupancy in comparison to
the total number of altered CpG sites in each genomic region.
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In order to validate the overlap between altered CpG sites with H3K4me3 and to fur-
ther explore if H3K4me3 enrichment was altered, immunoprecipitation of the chro-
matin was carried out targeting H3K4me3. Optimisation of the method showed that
the best time for enzymatic shearing of the chromatin was 20 minutes as this time
produced brighter bands of size around 150 base pairs (Figure . Besides, optimi-
sation showed that H3K4me3-immunoprecipitated chromatin amplified GAPDH gene
which was used as positive control of ChIP reactions (Figure [5.13)). Because of the lat-
ter, the RNA polymerase II immunoprecipitation, which is usually employed as posi-
tive control, was not carried out in the actual samples. Instead, GAPDH amplification
in H3K4me3-immunoprecipitated chromatin was used as a positive control for ChIP
reactions.
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Figure 5.12: Optimisation of the time
needed for chromatin shearing was ad-
dressed by enzymatic incubation for 5, 10,
15 or 20 minutes at 37°C. A no control
enzyme was also performed in the same
conditions for 10 minutes. All samples
were mixed by vortex every 2 minutes dur-
ing the incubation. Reverse cross-linking
was then performed and samples run in an
1% agarose:TAE gel (w/v).

GAPDH
8_
Figure 5.13: Antibody testing for chro- 6
matin immunoprecipitation assays was -
performed using IgG as a negative con- 3
trol, RNA Pol II as a positive control —Co 4
or H3K4me3 antibody. RNA Pol IT and =
H3K4me3 immunoprecipitated samples 24
showed a higher GAPDH amplification by
qPCR according to the % input (n = 1 per
antibody). The qPCR was performed in 0 | \\' Q;
triplicate and averaged in each sample. O Qo\ b‘(&
o oF
& &
ChiP
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After optimisation, ChIP was then performed in Jurkat cells treated with 15 uM OA
or 15 uM DHA for 8 days. Immunoprecipitated chromatin was then used as template
to carry out qPCR in 5 candidate regions which showed the greatest H3K4me3 en-
richment according to ENCONDE. Candidate regions analysed included 2 regions
containing a CpG site with altered DNA methylation by OA and 4 regions contain-
ing a CpG site with altered DNA methylation by DHA. Genomic details of the candi-
date loci analysed and the respective change in the DNA methylation of the CpG sites

within such loci are shown in Table (.8

Table 5.8: Details of candidate regions analysed by ChIP experiments

. ) ) Altered Change in Change
Primers ID Genomic region . .

CpG site? DNAm? induced by?®
cgl7058565 Promoter of POLQ cgl7058565 +6 OA
cgl5707568 Promoter of ATP5J cgl5707568 +6 DHA
cgl7016559  Promoter of ATXN10  ¢gl7016559 -6 OA or DHA
cg07203320 Promoter of COPB2 ¢g07203320 -5 DHA
cg18492804 Body of CGRRF1 cg18492804 -9 DHA

# = according to DNA methylation BeadArray results. POLQ, DNA Polymerase Theta; ATP5J,
ATP Synthase Peripheral Stalk Subunit F6; ATXN10, Ataxin 10; COPB2, Coatomer Protein
Complex Subunit Beta 2; CGRRF1, Cell Growth Regulator With Ring Finger Domain 1

ChIP-qPCR results showed that treatment with OA decreased H3K4me3 enrichment
in the proximity of the 2 regions analysed. However, none of them reached statistical
significance (Figure A and C). One of the candidate regions examined contained
a CpG site that increased while the other a CpG site that decreased DNA methyla-
tion by OA treatment (Table [5.8).

DHA-treated cells also showed decreased H3K4me3 enrichment in all 4 regions anal-
ysed. Only 3 changes were statistically significant. One of the significant changes over-
lapped with a CpG site that increased DNA methylation whereas the other two sig-
nificant changes overlapped with CpG sites that decreased DNA methylation by DHA

treatment (Figure B, D, E, Table 5.8).

Both OA or DHA treatment amplified GAPDH positive control primers without any
statistically significant difference (Figure [5.14)).
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Figure 5.14: H3K4me3 enrichment in the proximity of 2 CpG sites that increased

(A, B) and 3 CpG sites that decreased (C, D, E) DNA methylation by OA (A, C) or
DHA treatment (B, C, D, E). GAPDH amplification (F) served as positive control in
the same samples analysed. Data are means of 8 culture replicates per treatment +
standard error of the mean. Treatments versus controls means were compared by Stu-
dent’s T-test (A, B, D, E) or by one-way ANOVA with Dunnett’s post-hoc test (C, F)
and those which differed significantly are indicated by *P < 0.05, **P < 0.01, ***P <
0.001.
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5.4 Discussion

Three possible mechanisms to explain how fatty acids may alter the DNA methylome
were evaluated in this Chapter. Results suggested that PPAR« activity did not me-
diate the DNA methylation changes induced by DHA treatment. However, a rela-
tionship was identified between the altered DNA methylation induced by OA or DHA
with DNA motifs and H3K4me3 enrichment.

5.4.1 The relationship between DNA methylation changes and PPAR«
activity

There is evidence that PPAR« activity mediates the effect of arachidonic acid, but
not OA, on the global DNA methylation of THP-1 monocytes 222, This suggests that
different fatty acids may use different mechanisms to induce altered DNA methyla-
tion of cells. Currently, it is unknown if PPAR« activity mediates the effect of DHA
on DNA methylation of cells because this has not been tested. To address this, Jurkat
cells were treated with PPAR« agonist and PPAR« antagonist and the DNA methyla-
tion measured by pyrosequencing in candidate CpG sites previously identified to alter
DNA methylation status by DHA treatment.

Treatment of cells with a PPARa-specific agonist failed to show any significant change
in the DNA methylation of all 5 CpG sites that were analysed. Besides, co-treatment
of cells with DHA plus a PPAR« antagonist did not block DHA effects on the DNA
methylation. Such results indicated that PPAR« activity may not be involved in the
altered DNA methylation induced by DHA treatment at these CpG sites. The 5 can-
didate CpG sites that were analysed here may not be representative of all 1596 di-
fferentially methylated CpG sites by DHA treatment. Thus, results do not discard

the possibility that methylation levels of others CpGs may be mediated by PPAR«.
Overall, the current findings suggest that PPAR« activity alone does not account for
all DNA methylation changes by DHA treatment.

5.4.2 The relationship between DNA methylation changes and DNA

motifs

The sequences containing a CpG site with altered DNA methylation by OA treatment
were enriched with different DNA motifs. Such DNA motifs were identified in all ge-
nomic regions analysed except for promoter regions. Besides, there was not identified
any DNA motif in those sequences which contained CpG sites that decreased DNA
methylation in the intergenic and body regions. Therefore, motif analyses suggested
that there was specificity in the genomic regions where DNA motifs may possibly in-
fluence DNA methylation changes by OA. The DNA motifs identified in the present
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work supports the hypothesis that DNA sequence may influence DNA methylation
323

patterns[
The sequences containing CpG sites with altered DNA methylation induced by DHA
were also enriched in some DNA motifs. Analyses showed that DNA motifs were not
present in all genomic regions. Therefore, this suggested again some specificity in the
location of the DNA motifs identified. DNA motifs in sequences with CpG sites dif-
ferentially methylated by DHA showed some similarities with those DNA motifs iden-
tified in sequences differentially methylated by OA. Nevertheless, promoter sequences
with altered DNA methylation by DHA showed enrichment of DNA motifs very dif-
ferent from those identified in intergenic or body regions. DNA motifs in promot-

ers were similar to response elements of FOXJ3, PRDM6, AR and SRY. These data
suggested activity of such transcription factors may be related to DHA specificity on
DNA methylation.

The majority of response elements identified in OA or DHA-altered sequences were
zinc-finger proteins belonging to the Sp/KLF family. The most studied member of
the family in human cells is the ubiquitously expressed SP1. There is evidence that

1204 Thus, it is possi-

this transcription factor can physically interact with DNMT
ble that SP1 may direct this DNA methyltransferase to SP1 response elements (Fig-
ure . This mechanism may explain, at some extent, the specificity of fatty acids
on the DNA methylation and the enrichment of SP1-like response elements identified

in the proximity of such changes.

A Fatty acids B
&~ =D

DNMT1
- <= sp1 | DNMTI
(P Unmethylated cytosine Other SP1 partners

? Methylated cytosine

Figure 5.15: A possible mechanism to explain altered DNA methylation in-
duced by OA or DHA according to motif analysis may involved SP1 activity
and other proteins that physically interact with it. Increased DNA methy-
lation by fatty acid treatment (A) may involve a swap of SP1 partners for
DNA methyltranferase 1 (DNMT1). The reverse process may explain the de-
creased DNA methylation (B).
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It has been shown that SP1 activity can be regulated by post-translational modifica-
tions and interactions with other proteins such as protein 53 (TP53 or P53) B4 Mu-
tations of TP53 that leads to gain of function have been shown to regulate fatty acid
metabolism by modulation of 5’ adenosine monophosphate-activated protein kinase

(AMPK) in human cancer cell lines 350!

show a role of TP53 in the modulation of fatty acid metabolism B5152  AMPK serves
[353]

. This is in agreement with animal studies that

as an energy sensor in cells
[354]

which has been shown to be regulated by palmitic
acid in rat L6 muscle cells If AMPK regulation by palmitic acid was mediated by
TP53 was not addressed in the study. At present, it is not well understood how these
pathways may interact each other after fatty acid exposure on human cells. Moreover,
it has not been tested how fatty acids may influence SP1-TP53 or SP1-DNMT1 in-
teractions or another mechanism that may alter SP1 activity. Such experiments may
provide some information about how fatty acids may modify the DNA methylation of

cells.

5.4.3 The relationship between altered DNA methylation and de-
creased H3K4me3 enrichment induced by fatty acids

There is evidence that fatty acids can alter post-translational modifications of his-
tones 492501 Studies addressing this have been focused on histone acetylation 243}
while relatively little is known about the effect on histone methylation. Specifically

in H3K4, a decrease in global H3K4me2 levels has been observed after incubation with

[248] ' Results in the cur-

30 uM DHA for 2 days using human neuroblastoma M17 cells
rent work are in agreement with such evidence and indicate that besides H3K4me2,

H3K4me3 mark is also decreased by DHA treatment in human cells.

There is a possibility that the decreased H3K4me3 enrichment on the 5 candidate re-
gions analysed here led to complete demethylation of the lysine residue (H3K4me0).
Unmethylated H3K4 may then provide a docking site for DNMT3A which can directly
recognise and bind to H3K4me0, but not H3K4me3 B2 This process has been well
described in vitro at the structural level for human DNMT3A 31 and may explain
the increased DNA methylation by fatty acids in regions rich in H3K4me3 mark (Fig-
ure A). This scenario implies that demethylation of H3K4me3 to H3K4me0 was
the first step to induce changes on DNA methylation in cells. The possibility that
DNMT3A mediates the altered DNA methylation by fatty acids may also explain
why the majority of altered CpG sites did not overlap mainly with H3K4me3 mark.
Current results support that H3K4me3 histone mark may protect the chromatin from

DNA methylation changes as it has been suggested 131#328]

The possible DNA methylation changes mediated by DNMT3A activity does not ex-
plain the decreased H3K4me3 enrichment in regions containing CpG sites that de-

creased DNA methylation. This suggests that there may be more than one way in
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which DNA methylation and chromatin modifications induced by fatty acids inter-
act. At present, there is no direct evidence to explain the decreased DNA methyla-
tion alongside decreased H3K4me3 levels. Nevertheless, it is known that H3K4 can be
acetylated (H3K4ac) instead of methylated and cumulative evidence has been shown
that fatty acids may increase acetylation of histones 247, Global acetylation of H3 and
H4 have been shown an inverse relationship with DNA methylation in vitro using hu-

3554356]

man cells! This inverse relationship may be explained by methyl-CpG binding

domain (MBD) proteins recruitment to the methylated CpG sites that in turn recruit

BETH359] - Acetylation and methylation of the same lysine residue

histone deacetylases
are mutually exclusive marks. Therefore, it is possible that fatty acids may increase
acetylation of histones which in turn decreases H3K4me3 enrichment by depleting

H3K4 residues. If a probable increase in histone acetylation may be a cause or con-

sequence of decreased DNA methylation by fatty acids is unknown.

A Fatty acids B Fatty acids KDM?
¥ KDM? N ™ H3Kames
H3K4me3 demethylation Decreased DNA demethylation
* methylation )'KDM? *
H3 acetylation
DNMT3A _y H3k4me0 increases € H3K4me0
recognises *
l Less HDACs recruitment
Increased DNA methylation Less binding of MBD proteins

Figure 5.16: Possible mechanisms to explain the altered DNA methyla-

tion and reduced H3K4me3 enrichment by OA or DHA in Jurkat cells

may be related to (A) recognition of H3K4me0, but not H3K4me3 by
DNMT3A I312485825] 1 (B) increased levels of acetylation of histone 3 (H3)
induce by fatty acids24D which may decrease H3K4me3 indirectly by deplet-
ing free unmodified H3K4 residues. The diagram shows the current evidence
(in black) couple with possible mechanisms involved (in red). KDM, Lysine
Demethylase; DNMT3A, DNA Methyltransferase 3 Alpha; HDACs, histone
deacetylases; MBD, methyl-CpG binding domain.

In the present work, OA or DHA treatment decreased, not abolish, H3K4me3 en-
richment in the candidate regions that were analysed. If the degree of altered DNA
methylation and H3K4me3 enrichment such regions were enough to induce an effect

on genes that are close remains unknown.
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5.4.4 Limitations of the experiments

Luciferase experiments showed little difference on the relative firefly / Renilla lumines-
cence between the negative control compared with control treatment (vector ethanol).
This made luciferase assays not suitable to test the effectiveness of the PPAR« antag-
onist GW6471 in our experiments. The antagonistic effect of GW6471 has been shown
to be mediated by the increase binding of PPAR« with nuclear receptor corepressor
(NCOR) 1 and NCOR2252, The PPAR« antagonist GW6471 was used and stored

accordingly to manufacturer’s instructions.

Motif analysis was carried out using the sequences of the Infinium MethylationEPIC
BeadChip. The sequences analysed by this BeadArray are not random sequences in
the genome. There is a possibility that there are other DNA motifs that may influence
the DNA methylation induced by fatty acids which were not predicted in the current
work. The predicted binding of transcription factors should be interpreted as a possi-
bility, and further work is needed to validate this experimentally as any other in silico

analysis.

5.5 Conclusions

The effect on DNA methylation induced by DHA in Jurkat cells may be independent
of PPAR« activity. However, the effect on DNA methylation induced by both, OA
or DHA treatment, showed a relationship with decreased H3K4me3 mark and enrich-
ment of DNA motifs. Results suggest that decreased enrichment of H3K4me3 may
be associated with DNMT3A activity and possibly with histone acetylation that may
occur in the same lysine residue. DNA motifs identified were GC-rich and similar to
response elements of transcription factors that were mostly members of the Sp/KLF
family. The data suggest that the activity of some transcription factors may be in-
volved in the epigenetic effect of fatty acids. One approach to asses the activity of
transcription factors on a genome-wide scale is analysing changes in the transcrip-
tome. Thus, to further explore the epigenetic effect of OA or DHA treatment, the ex-

pression of the transcriptome was assessed and will be discussed in the next Chapter.
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Chapter 6

The Effect of OA or DHA
Treatment on the Transcriptome
and its Relation with the DNA

Methylome.

6.1 Introduction

In the previous Chapter,analyses indicated that sequences proximal to CpG sites that
changed DNA methylation by OA or DHA treatment were enriched with some DNA
motifs. Such motifs were similar to the core binding site of some transcription factors
which were, in the majority, members of the Sp/KLF family. Thus, this evidence sug-
gested that activity of transcription factors may be related to the epigenetic effect of
fatty acids. This hypothesis is supported by in vitro evidence which has shown that
some transcription factors identified here by DNA motifs analysis, such as SP1, can
physically interact with DNMTs B8 SP1 has been shown to bind the promoter re-
gion and downregulate MYC associated zinc finger protein (MAZ) gene expression in
a DNA methylation-dependent manner using human cell linesB8 . Therefore, evidence
suggests that activity of transcription factors may direct DNA methyltransferases to
the their response elements. Which transcription factors were altered in Jurkat cells
by OA or DHA treatment? This is unknown.

Currently, it is well known that fatty acids can modulate the expression of the trans-
criptome. Transcriptome changes may be used to assess the altered activity of tran-
scription factors genome-wide in silico. Furthermore, little is known about the rela-
tionship between the transcriptome and DNA methylome changes induced by fatty

acids. The genome-wide studies addressing this relationship have included DNA me-
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thylation data with confounding factors24 or have not reached statistically signifi-

[229:287)

cance results . Therefore, there is still uncertainty in the possible relationship

between the transcriptome and DNA methylome changes induced by fatty acids.

This Chapter aimed to assess the transcriptome changes induced by fatty acids us-
ing BeadArrays. Altered transcripts allowed to address the genome-wide relationship
between altered DNA methylation and altered gene expression by OA or DHA treat-
ment. To further explore this relationship, similarities in the biological function of
genes with altered DNA methylation and altered expression by fatty acids was sought
by comparisons of pathways analyses. Finally, transcriptome changes by fatty acid
treatments were analysed to predict transcription regulators of such changes. The dif-
ferentially expressed transcripts by BeadArray analysis were validated by qPCR in

candidate genes.

6.2 Materials and methods

Cell cultures and treatments of Jurkat cells were carried out as described in section [2.2.1
Extraction of RNA was carried out as described in section Quantity and quality
of RNA was assessed by NanoDrop and agarose gel electrophoresis as indicated in sec-
tions [2.3.3[ and respectively. BeadArray analysis of gene expression was carried
out as describe below (section . Validation of BeadArray results was performed

by RT-qPCR as detailed in section [6.2.2

6.2.1 BeadArray analysis of gene expression

Analysis of gene expression was determined using the Illumina HumanHT-12 v4 Ex-
pression BeadChip covering more than 47,000 transcripts per sample. An overview of

the analysis that was carried out is shown in Figure [6.1

6.2.1.1 Samples and sample quality assessment

RNA samples from different culture replicates treated with control, OA or DHA for 8
days were selected (n = 9 per treatment) and pooled using the same amount of RNA
(n = 3 pooled samples per treatment). Pooled samples were then diluted to 50 (£5)
ng/pl concentration. The integrity of samples was assessed by capillary electrophoresis
by Dr Bastiaan Moesker at Southampton General Hospital, United Kingdom, using
an Agilent 2100 Bioanalyzer (Agilent Technologies). The capillary electrophoresis gen-
erated an electropherogram for each sample (Figure that was used to asses sam-
ples quality. This was given by the automated calculation of a RNA integrity number
(RIN) score ranging from 0 to 10, being 10 the least degraded B6Il The RIN score was
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< Treatment with OA or DHA >

}

RNA

|

Quality assessment by
Bioanalyzer

( BeadChip hybridization >

}

CQuaIity controls and normalisation of data>

Significantly altered transcripts by Wilcoxon rank
statistic with 100 permutations (P < 0.05).

C > 1.2 fold-change cutoff >

|

< Differentially altered transcripts >

Figure 6.1: Illumina HumanHT-12 v4 Expression BeadChip; overview of anal-
ysis workflow.
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calculated using the 28S/18S rRNA ratio, the absence of transcripts between the 185
and 5S rRNA and other parameters not publicly available. This procedure allowed a

standardised and automated evaluation of the integrity of RNA in samples.
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Figure 6.2: A typical electropherogram run of RNA (A) shows the length in nu-
cleotides (nt) in ascending order in the x-axis and fluorescence (FU) in the y-axis.
The area of the peaks are proportional to the quantity of RNA of a specific size. (B)
Representation of how the electropherogram would look like on an agarose gel.

6.2.1.2 Expression BeadChip hybridisation

After quality assessment of RNA, samples were sent for BeadArray analysis to the
Genome Centre at the Barts and The London School of Medicine and Dentistry, Lon-
don, United Kingdom. In accordance with the company’s quality control procedures
RNA samples were processed for hybridisation using Illumina® TotalPrep™ RNA
Amplification Kit. This included all reagents to perform reverse transcription of the
mRNA fraction, second-strand synthesis and in vitro transcription using biotinylated
uridine triphosphates following the manufacturer’s instructions. The complemen-
tary RNA (cRNA) synthesised after in vitro transcription was hybridised to beads on
BeadChip containing the complementary transcript-specific sequences. Serial washes
at high temperature, room temperature, using ethanol and a second wash at room
temperature were carried out to remove unspecific hybridization. Cy3-conjugated
streptavidin was then added to samples and bound to biotin-labelled cRNA. The flu-
orescence of Cy3 in each bead of the Expression BeadChip was then measured. Such
fluorescence was proportional to transcript levels. All samples were analysed using a
single BeadChip to avoid batch effects.
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6.2.1.3 Quality controls and normalisation

Quality controls and normalisation were carried out by the Genome Centre at the
Barts and The London School of Medicine and Dentistry. At the sample level, the
background, high hybridisation and all genes intensity quality controls were performed.
At the probe level, the number of detected genes either at 0.05 or 0.01 significance
were evaluated. The raw expression values were normalised using quantile normal-
isation. This method was implemented to make gene expression distributions of each
sample the same length and was used because it has shown to reduce the non-biological

origin variation [562)

6.2.1.4 Statistical analysis of BeadArray data

Expression values provided by the Genome Centre were analysed in-house to identify
differentially expressed transcripts and the expression fold change difference. Analy-
ses were carried out with the R package SAM 5.0 (Significance Analysis of Microar-
rays) B9l using RStudio Version 0.99.491 (2009-2015 RStudio, Inc. for Mac). The nor-
malised expression values of transcripts were tested using two class unpaired Wilcoxon
rank statistic permuting 100 times to obtain differentially expressed transcripts. Be-
cause of the small number of samples tested in each group (n = 3), the false discov-
ery rate (FDR) was not considered as a cutoff. This is because the FDR by its na-

1364J, which can not reach high

ture is linked to the P-value resulted of a statistical test
enough significant values using an n = 3 to implement FDR. Instead of the FDR, a

fold change cutoff > 1.2 was used to increase confidence in the results. A non-parametric
test was selected for analysis as this has been shown to perform better for obtaining
differentially expressed genesB%!. This is because the frequent presence of outliers

in gene expression experiments can alter the mean and diminished the sensitivity of

365 Tn addition, gene expression has been shown to be not normally

parametric tests|
distributed 281, Thus, the assumption of normality of parametric tests would not be

fulfilled.

6.2.1.5 Validation of results

Significantly altered genes identified by Illumina HumanHT-12 v4 Expression Bead-
Chip were validated by reverse transcription (RT) followed by quantitative polymerase
chain reaction (QPCR) as described below
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6.2.2 RT-qPCR

6.2.2.1 Reverse transcription

The RNA was extracted, quantify and quality assessed as described in section [2.3.1]
and respectively. In a 10 pl final volume reaction, 1 ug of each RNA sam-
ple was treated with 1 unit of DNase I for 15 minutes at room temperature using

1x reaction buffer (200 mM Tris-HCI pH 8.3, 20 mM MgClsy) to avoid any possible
DNA contamination. The reaction was then stopped by addition of 1 ul stop solution
(EDTA 50 mM) and denaturation of DNase I at 70 °C for 10 minutes using a ther-
mal cycler (Veriti 96, Applied Biosystems). The use of EDTA avoided RNA hydrol-
ysis catalysed by metal ions (Mg) present in the reaction buffer 366 After enzyme
inactivation, 1 ul of 9-base oligodeoxynucleotides with random sequences (random
nonamers) were added to samples and incubated at 70°C for 10 minutes to prime
the mRNAs using a thermal cycler (Veriti 96, Applied Biosystems). Samples were
chilled on ice straight after incubation to avoid secondary structure formation of mR-
NAs. Samples were then reverse transcribed using Moloney-murine leukaemia virus
(M-MLV) reverse transcriptase kit which provided all reagents. Following the manu-
facturers’ instructions, the RT was then carried out in a 25 ul final volume reaction
using 200 units of M-MLV, 1x reaction buffer (50 mM Tris-HC1 pH 8.3 at 25°C, 75
mM KCl, 3 mM MgCly and 10 mM DTT), adenine, cytosine, guanine and thymidine
triphosphates at 0.5 mM /each and the DNA- and RNA-free water to adjust volume.
The retrotranscription of samples was achieved after serial incubations at 21 °C for 10
minutes, 37 °C for 50 minutes and 90 °C for 10 minutes. cDNA was chilled on ice and
diluted with DNA- and RNA-free water to a concentration of 5 ng/ul (1 pug/200 ul).

6.2.2.2 Selection of reference genes

Selection of appropriate reference genes for Jurkat cells treated with vector ethanol,
OA or DHA was achieved using the geNorm B ¢ candidate reference genes were
analysed in 9 samples including control (vector ethanol), OA and DHA treatments.
Manufacturer’s instructions were followed with modifications in reaction volume, dye,
and DNA polymerase used as described (section . Primers used in geNorm were
provided by the kit with no available information about locations of the PCR ampli-
cons. After qPCR was performed (section , the Ct values were analysed in gbase-
PLUS (Biogazelle) version 3.0 to evaluate the gene expression variations across treat-

ments. Genes tested were commonly used reference genes in lymphocytes B685369

6.2.2.3 Quantitative PCR

qPCR, primers used and data analysis was carried out as indicated in section
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6.3 Results

6.3.1 Quality control of samples and BeadArray processing

RNA samples from 9 biological replicates per treatment (control, OA or DHA) were

pooled into different mixes which included 3 replicates per mix. Pooled RNA samples
(n = 3 per treatment) showed a RIN score above 9.4 in all instances (Figure [6.3).
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Figure 6.3: RIN score of pooled-samples used for gene expression BeadArray. Samples
were named after treatments with suffix _ 1, 2, 3, that corresponded to a specific
pool. Except for DHA 3, pooled samples were run in the same chip. The length in
nucleotides (nt) is shown in the x-axis whereas fluorescence (FU) in the y-axis.

RNA samples were sent off for transcriptome analysis and the normalised intensity

values returned. The background, high hybridisation and intensity of all genes quality

controls showed consistent hybridization signals across all samples which is expected

in array experimentsB70 (Figure . The number of genes detected in all samples
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with a detection p-value < 0.05 or < 0.01 were also similar in all treatments.
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Figure 6.4: Gene expression BeadArray; quality report. Samples were named after
treatments with suffix 1, 2, 3, that corresponded to a specific pooled sample.

At the sample level, background, high hybridisation controls and all genes inten-

sity showed to be similar in samples. At the probe level, the total number of genes
detected within samples showed also to be similar. Analysis was performed by the
Genome Centre at the Barts and The London School of Medicine and Dentistry (Lon-
don, UK).
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The raw signal distributions of expression values in samples were similar in the un-
normalised data. An improvement in the distribution of expression values was ob-
served after data was normalised using quantile normalisation (Figure . All quality
controls and normalisation of the data was carried out by the Genome Centre at the
Barts and The London School of Medicine and Dentistry (London, UK).
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Figure 6.5: Gene expression Bead Array; normalisation of data. Samples were named
after treatments with suffix _ 1, 2, 3, that corresponded to a specific pool. Fig-
ure shows the median values of the natural-logarithm averaged signal intensity before
(left) and after (right) quantile normalisation. Normalisation was performed by the
Genome Centre at the Barts and The London School of Medicine and Dentistry (Lon-
don, UK).
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6.3.2 Do OA or DHA treatment induce the same effect on the

transcriptome?

Treatment with OA significantly altered the mRNA expression levels of 97 transcripts.
The 51% (50/97) of the altered transcripts showed increased gene expression (Figure

Treatment with DHA significantly altered the gene expression of five times more trans-
cripts (502) compared with OA (97). Of these, 49% (248/502) showed increased ex-

pression levels (Figure [6.6]).

The expression of 36 transcripts showed to be altered by both treatments. Such trans-
cripts represented 37% (36/97) of total changes induced by OA or 7% (36/502) by
DHA treatment. All 36 transcripts showed altered gene expression with the same di-
rection of change, either increase or decrease, by OA or DHA. The 39% (14/36) of the
altered transcripts by both treatments showed increased expression while the expre-
ssion of the remaining 61% (22/36) was decreased (Figure [6.6)).

The name and magnitude of change in expression (fold change) of all differentially
altered transcripts by OA or DHA is shown in Appendix

250~
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= DHA only
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Figure 6.6: Number and direction of change of transcripts with altered gene
expression after treatment with OA or DHA for 8 days. OA or DHA alone
increased the expression of 33 or 234 loci whereas decreased the expression of
28 or 232 transcripts, respectively. Both treatments increased the expression
of 14 transcripts and decreased the expression of 22 transcripts.

The total number of mRNA transcripts with altered expression by OA or DHA were
analysed using IPA® to determine the possible biological functions altered in cells.
From the total number of altered transcripts by OA or DHA only 82 and 445 genes,

respectively, were mapped by the software and used for pathways analysis.
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The genes with altered expression induced by OA were significantly enriched (-log(P-
value) > 1.3) in ”Sulfate Activation for Sulfonation”, "Interferon Signalling” and "Rac
Signalling” canonical pathways among others (Figure . The analysis of the same
genes using as reference molecular associations of clinical pathology endpoints (ToxList)
showed that ”"Glutation Depletion - CYP Induction and Reactive Metabolites” was
the only category significantly enriched specifically by OA treatment (Figure . Ul-
timately, the list of genes with altered expression by OA treatment was also analysed
to identify possible downstream effects according to the biological functions of the al-
tered genes. Analysis showed that ”Concentration of Phosphatidylcholine”, ”Quantity
of Carbohydrate” and ”Viral Infection” were the top three downstream effects signifi-
cantly decreased, among others, by OA treatment (Figure .

A Sulfate Activation for Sulfonation 4
Interferon Signalling +

Rac Signalling

Oxidized GTP and dGTP Detoxification -
Rapoport-Luebering Glycolytic Shunt ~
Geranylgeranyldiphosphate Biosynthesis

Actin Nucleation by ARP-WASP Complex
Pentose Phosphate Pathway (Non-oxidative Branch) A
Ephrin B Signalling ~

Pentose Phosphate Pathway ~

Regulation of Actin-based Motility by Rho 4
Clathrin-mediated Endocytosis Signalling 4

3 2 1 0 1 2 3

Glutathione Depletion - CYP Induction 1 |

B and Reactive Metabolites I T T 1
3 2 -1 0 1 2 3

C Concentration of Phosphatidylcholine -
Quantity of Carbohydrate -

Viral Infection 1

Proliferation of Prostate Cancer Cell Lines -
Infection by RNA Virus +

HIV Infection -

Senescence of Cells

Replication of Influenza A Virus 1

Infection of Cell Lines -

3 2 1 0 1 2 3

Activation z-score

Figure 6.7: Canonical pathways (A), ToxList categories (B) and downstream effects
(C) related exclusively to the altered gene expression by OA. All pathways/categories
shown have a -log(P-value) > 1.3 by descending order from top to bottom calculated
by a Fisher’s exact test. The activation z-score indicates a predicted pathway activa-
tion (> 1) or inhibition (< -1) accordingly to the altered expression of genes in each
pathway /category.
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The genes with altered expression induced by DHA were significantly enriched in
"Cell Cycle: G2/M DNA Damage Checkpoint Regulation”, "Hypoxia Signalling in the
Cardiovascular System” and "AMPK Signalling” canonical pathways among others
(Figure . The analysis of the same genes using ToxList showed that ”Cell Cycle:
G2/M DNA Damage Checkpoint Regulation”, "Fatty Acid Metabolism” and ”Cardiac
Necrosis / Cell Death” were the top three categories enriched specifically by DHA al-
tered genes (Figure . Ultimately, downstream effects analysis showed that ”Cell
Proliferation of Tumour Cell Lines”, ”Cell Death” and ”Apoptosis” were the top three
downstream effects significantly altered (Figure .

The genes with altered mRNA expression induced by both, OA or DHA treatment,
were significantly enriched mainly in ”Superpathway of Cholesterol Biosynthesis” and
other canonical pathways related to fatty acid synthesis (Figure . For both treat-
ments, such lipid-related pathways were the most significantly altered canonical path-
ways of all. ToxList analysis showed that ””Cholesterol Biosynthesis”, ””LXR/RXR
Activation” and ”Aryl Hydrocarbon Receptor Signalling” were the categories enriched
by both treatments. The only downstream effect predicted on cells by both treatments
was the decreased in the "Concentration of Lipid” (Figure .
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Figure 6.8: Canonical pathways (A) and ToxList categories (B) related exclusively to
the altered gene expression by DHA treatment. All pathways/categories shown have
a -log(P-value) > 1.3 by descending order from top to bottom calculated by a Fisher’s
exact test. The activation z-score indicatef £ predicted pathway activation (> 1) or
inhibition (< -1) accordingly to the altered expression of genes in each pathway/cate-

gory.



Chapter 6. The Effect of OA or DHA Treatment on the Transcriptome
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Figure 6.9: Downstream effects related exclusively to the altered gene expression by
DHA treatment. All pathways shown have a -log(P-value) > 1.3 by descending order
from top to bottom calculated by a Fisher’s exact test. The activation z-score indi-
cates a predicted pathway activation (> 1) or inhibition (< -1) accordingly to the al-
tered expression of genes in each pathway/category.
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Figure 6.10: Canonical pathways (A), ToxList categories (B) and downstream effects
(C) related to the altered gene expression by both, OA or DHA treatment. All path-
ways shown have a -log(P-value) > 1.3 by descending order from top to bottom cal-
culated by a Fisher’s exact test. The activation z-score indicates a predicted pathway
activation (> 1) or inhibition (< -1) accordingly to the altered expression of genes in
each pathway/category.
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6.3.3 Do OA or DHA treatment induced changes in the expression
of transcription regulators?

Treatment with OA significantly altered the mRNA expression level of 5 transcription
regulators. In contrast, treatment with DHA significantly altered the mRNA expres-
sion level of 41 transcription regulators, including SP3 (Table .

Both treatments significantly altered the mRNA expression level of only two tran-
scription regulators. These were amino-terminal enhancer of split (AES), which showed
upregulation, while SUB1 homolog, transcription regulator (SUBI) showed downre-
gulation by both OA or DHA treatment (Table[6.1). The classification of an specific

gene into a transcription regulator category was according with IPA® database.

Table 6.1: Transcription regulators that showed altered expression by OA or DHA
treatment.

Gene
Gene Name Exp? By
Symbol

Actinin alpha 1 ACTN1 1.2 DHA
Amino-terminal enhancer of split AES 1.3>  OA/DHA

AF4/FMR2 family member 3 AFF3 1.21 DHA

Ankyrin repeat and SOCS box containing 8 ASB8 1.2 DHA

Activating transcription factor 5 ATF5 1.3 DHA

Basic leucine zipper ATF-like transcription factor

5 BATF3 1.25 DHA

Bromodomain containing 7 BRD7 -1.22 DHA

Basic transcription factor 3 BTF3 1.21 OA

Cullin associated and neddylation dissociated 1 CAND1 -1.23 DHA

CCAAT /enhancer binding protein epsilon CEBPE 1.5 DHA

Cytosolic iron-sulfur assembly component 1 CIAO1 1.23 DHA

Cytoskeleton associated protein 5 CKAP5 -1.21 DHA

cAMP responsive element binding protein 3 like 3 CREB3L3  1.24 DHA

CREB binding protein CREBBP 1.29 DHA

Deltex E3 ubiquitin ligase 1 DTX1 -1.34 DHA

E2F transcription factor 5 E2F5 -1.31 DHA

Eomesodermin EOMES -1.24 DHA

ETS proto-oncogene 1, transcription factor ETS1 -1.25 DHA

Fem-1 homolog C FEM1C -1.25 DHA

Far upstream element binding protein 3 FUBP3 -1.2 DHA

General transcription factor IIE subunit 1 GTF2E1 -1.27 DHA

General transcription factor IIIC subunit 3 GTF3C3  -1.22 DHA
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Helicase like transcription factor
High mobility group box 2
Heterogeneous nuclear ribonucleoprotein K
Inhibitor of DNA binding 1, HLH protein
Inhibitor of DNA binding 3, HLH protein
Interferon gamma inducible protein 16
Interferon regulatory factor 7
LRR binding FLII interacting protein 1
Mediator complex subunit 7
N(alpha)-acetyltransferase 15, NatA auxiliary
subunit
Nuclear receptor corepressor 2
Nuclear factor, erythroid 2 like 2
NK3 homeobox 1
Period circadian regulator 2
Proteasome 26S subunit, non-ATPase 10
RB transcriptional corepressor 1
Small nuclear RNA activating complex
polypeptide 4
Sp3 transcription factor
SUB1 homolog, transcriptional regulator
TATA-box binding protein associated factor 9
TOX high mobility group box family member 2
Teashirt zinc finger homeobox 3
X-box binding protein 1
Zinc finger protein 593
Zinc finger protein 91

Zinc ribbon domain containing 1

HLTF
HMGB2
HNRNPK
ID1
ID3
IF116
IRF7
LRRFIP1
MED7

NAA15

NCOR2
NFE2L2
NKX3-1
PER2
PSMD10
RB1

SNAPC4

SP3
SUB1
TAF9
TOX2

TSHZ3
XBP1
ZNF593
ZNF91
ZNRD1

-1.21
-1.22
1.21
-1.64
-1.45
-1.23
1.3
1.44
-1.2

-1.22

1.21
-1.21
1.73
1.46
-1.23
-1.28

1.2

-1.22
-1.3¢
1.2
1.74
1.31
-1.21
1.27
1.25
1.21

DHA
OA
OA

DHA

DHA

DHA

DHA

DHA

DHA

DHA

DHA
DHA
DHA
DHA
DHA
DHA

DHA

DHA
OA/DHA
OA
DHA
DHA
OA
DHA
DHA
DHA

2 — expression fold change; ® = 1.31 by OA or 1.33 by DHA; ¢ = -1.32 by OA or -1.24 by DHA.
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6.3.4 Do OA or DHA treatment induced changes in the activity of
transcription regulators?

IPA® software allowed to predict the possible activity of transcription regulators (TR)
using enrichment of altered genes which are known to be regulated by a specific TR
and the activation z-score. This analysis was carried out in the transcriptome data,
but not on DNA methylation data, as the fold change in expression is needed to pre-
dict the activity of the putative TRs.

The expression changes induced by OA treatment showed an enrichment on genes
regulated by Synoviolin 1 (SYVN1). The activity of SYVN1 was predicted to be de-

creased (Figure|6.11)).

The expression changes induced by DHA treatment showed an enrichment on genes
regulated by 42 different TRs. The three most significant were "Tumour protein P53
(TP53)”, "RAB, member RAS oncogene family-like 6 (RABL6)”, and "lysine demethy-
lase 5B (KDM5B)”. The activity of TP53 and KDM5B was predicted to be increased
while the activity of RABL6 decreased (Figure [6.11]).

Three TRs were predicted to be altered by the expression changes induced by both,
OA and DHA treatment. The activity of "Natriuretic peptide B (NPPB)” and "me-
ningioma expressed antigen 5 (hyaluronidase) (MGEA5)” were predicted to be increa-

sed while the activity of "mitogen-activated protein kinase 9 (MAPK9)” was decreased

(Figure [6.11)).
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A Synoviolin 1 (SYVN1) 4 !
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. = DHA
Tumor Protein P53 (TP53

)
B RAB, Member RAS Oncogene Family-Like 6 (RABLSG)
Lysine Demethylase 5B (KDM5B)

Androgen Receptor (AR)

MAX Interactor 1, Dimerization Protein (MXI1)

Heat Shock Transcription Factor 1 (HSF1)

High Mobility Group AT-Hook 1 (HMGA1)

Cyclin Dependent Kinase Inhibitor 1A (CDKN1A)

Spi-1 Proto-Oncogene (SPI1)

Mediator Complex Subunit 1 (MED1)

Activating Transcription Factor 6 (ATF6)

MicroRNA 223 (mir-223)

Forkhead Box O1 (FOXO1)

Prostate-Specific Transcript (Non-Protein Coding) (PCGEM1)
ELAV Like RNA Binding Protein 1 (ELAVL1)

Mitogen-Activated Protein Kinase 8 (MAPK8)
Phosphatidylinositol-4-5-Bisphosphate 3-Kinase (PI3K (complex))
Pyruvate Kinase M1/2 (PKM)

Tumor Protein P63 (TP63)

H2A Histone Family Member Y (H2AFY)

CD24 Molecule (CD24)

Insulin Like Growth Factor Binding Protein 2 (IGFBP2)

Triggering Receptor Expressed On Myeloid Cells 1 (TREM1)
Sirtuin 1 (SIRT1)
MicroRNA 483-3p (miR-483-3p)
Collagen Type XVIII Alpha 1 Chain (COL18A1)
Mitogen-Activated Protein Kinase 14 (P38 MAPK)
Secreted Phosphoprotein 1 (SPP1)
Interleukin 13 (IL13)
Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2)
Aurora Kinases (AURK group)
Anillin Actin Binding Protein (ANLN)
Wilms Tumor 1 (WT1)
Toll Like Receptor 9 (TLR9)
Estrogen Receptor 1 (ESR1)
Mitogen-Activated Protein kinase kinase (Mek)
Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1)
Cyclin Dependent Kinase Inhibitor 2A (CDKN2A)
Nuclear Protein 1, Transcriptional Regulator (NUPR1)
Neurogenin 1 (NEUROG1)
SATB Homeobox 1 (SATB1)
Transforming Growth Factor Beta 1 (TGFB1)

83 -2 1 0 1 2 3

C Natriuretic Peptide B (NPPB)-

Meningioma Expressed Antigen 5 (Hyaluronidase) (MGEA5)

Mitogen-Activated Protein Kinase 9 (MAPK9)-

3 2 4 0 1 2 3
Activation z-score

Figure 6.11: Possible transcription regulators of expression changes induced by OA,

DHA or both treatment. The transcription regulators shown have a -log(P-value) >
1.3 by descending order from top to bottom calculated by a Fisher’s exact test. The
activation z-score indicates a predicted pathway activation (> 1) or inhibition (< -1)
accordingly to the increased or decreased expression of the genes.
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6.3.5 Do genes with altered expression change also DNA methyla-

tion?

Treatment with OA altered both, the expression and DNA methylation of only one

gene while treatment with DHA altered the expression and DNA methylation of 10

genes (Table .

Table 6.2: Genes that showed altered expression and altered DNA methylation by

OA or DHA treatment.

Gene Accession b
Gene Name Exp®* Met® Locus® By
Symbol Number
Acetyl-CoA
ACACA NM_ 198836 -1.39 -5.22 Body DHA
carboxylase alpha
Argininosuccinate
ASS1 NM_ 000050 1.31 538 5'UTR DHA
synthase 1
Chromosome 6 open
] C60ORF223 NM_ 153246 -1.3  5.01 Body DHA
reading frame 223
Coiled-coil domain
o cCDC125  NM__176816 1.34 5.41  Body DHA
containing 125
Chloride
intracellular channel CLIC/ NM_ 013943 -1.24 -7.14 Body DHA
4
EPH receptor A3 EPHAS NM_ 005233 -1.38 5.12 TSS200 DHA
Heat shock protein
family A (Hsp70) HSPAY NM_ 002154 -1.27 -5.9 Body DHA
member 4
1st
Protocadherin 19 PCDH19 ~ NM_020766  -1.2 524 DHA
Exon
RAP1 GTPase
o i RAPIGAP NM_ 002885 1.23 523 5UTR DHA
activating protein
Septin 5 SEPTS NM__ 002688 1.22 9.9 Body DHA
Transmembrane
TMEM170B NM_ 001100829 -1.21  6.81  Body OA

protein 170B

 — Expression fold change, ® = A Methylation (%), © = Locus that showed a change in DNA

methylation by fatty acids.

156



Chapter 6. The Effect of OA or DHA Treatment on the Transcriptome

6.3.6 Do predicted pathways by transcriptome changes are also pre-
dicted by DNA methylome changes?

Treatment with OA altered mRNA expression and DNA methylation of genes that
belong to "Clathrin-mediated Endocytosis Signalling” canonical pathway and the
”Aryl Hydrocarbon Receptor Signalling” ToxList category. The downstream effect
that showed enrichment according to genes with altered expression and altered DNA
methylation by OA was only ”Viral Infection” (Figure .

Treatment with DHA altered the mRNA expression and DNA methylation of genes
that belong to ”Protein Kinase A Signalling”, "Phospholipase C Signalling” and ”Sig-
nalling by Rho Family GTPases” canonical pathways. In addition, ToxList analysis
showed an enrichment of genes in the "Mechanism of Gene Regulation by Peroxisome
Proliferators via PPAR”. The downstream effects that showed enrichment according
to genes with altered expression and altered methylation by DHA were "Cell Death”,

”Apoptosis” and "Colony Formation of Tumour Cell Lines” (Figure [6.13]).

A

Clathrin-mediated Endocytosis Signallingd |

3 2 1 0 1 2 3

B

Aryl Hydrocarbon Receptor Signalling |

3 2 -1 0 1 2 3

Viral Infection |

3 2 1 0 1 2 3
Activation z-score

Figure 6.12: Canonical pathways (A), ToxList categories (B) and
downstream effects (C) predicted by gene expression and DNA
methylation changes by OA. Data shown have a -log(P-value) > 1.3.
The activation z-score indicates a predicted pathway activation (> 1)
or inhibition (< -1) accordingly to the increased or decreased expres-
sion of genes.
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Protein Kinase A Signalling
Phospholipase C Signalling

Signaling by Rho Family GTPases

83 -2 1 0 1 2 3

Mechanism of Gene Regulation 1 |

by Peroxisome Proliferators via PPAR0 F——————F——
83 -2 1 0 1 2 3

C Cell Death
Apoptosis
Colony Formation of Tumor Cell Lines

3 2 -1 0 1 2 3
Activation z-score

Figure 6.13: Canonical pathways (A), ToxList categories (B) and
downstream effects (C) predicted by gene expression and DNA
methylation changes by DHA. Data shown have a -log(P-value)

> 1.3 by descending order from top to bottom calculated by a
Fisher’s exact test. The activation z-score indicates a predicted
pathway activation (> 1) or inhibition (< -1) accordingly to the in-
creased or decreased expression of genes.
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6.3.7 BeadArray validation

The first step to validate the expression BeadArray was the selection of suitable re-
ference genes. The genes tested were commonly used reference genes in lymphocy-

tes 08869 and included human actin beta (ACTB), beta-2-microglobulin (B2M), eu-
karyotic translation initiation factor 4A2 (EIF4A2), ribosomal protein L13a (RPL13A),
ribosomal protein S18 (RPS18) and succinate dehydrogenase complex flavoprotein
subunit A (SDHA).

geNorm analysis showed that all genes tested were stable (average geNorm M < 0.5)
and therefore suitable to use as reference genes B67371l (Figure . Results reco-
mmended the use of only two reference genes, the minimum allowed, as the used of
more did not represent an increase in stability (geNorm V < 0.15) (Figure . Tran-
scripts with the major stability denoted by the lower geNorm M in ascending order
were RPL13A, SDHA, B2M, RPS18, ACTB and EIF}A2 (Figure . However,
some transcript variants of SDHA and B2M showed changes in expression accord-

ing to BeadArray results. The changes in SDHA and B2M detected in the Bead Ar-
ray were significant, although the fold change was lower than the 1.2 cutoff (data not
shown). Because of this, the next more stable gene was used. RPL13A and RPS18

were selected as the reference for all qPCR experiments for mRNA expression.
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Figure 6.14: Average expression stability of reference genes tested in control, OA or
DHA-treated cells (n = 3 cultures replicated per treatment). geNorm M value denoted
the average pairwise variation of expression of each gene with all other genes analysed.
The lower M value, the more stable the transcript was among samples.
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Figure 6.15: Optimal number of reference genes. Reference genes analysed were
ranked from 1 to 6 according to geNorm M value. The geometric mean variation of
the two more stable was compared with the mean of the three more stable (V2/3).
The same was done for the third and fourth (V3/4), fourth and fifth (V4/5), fifth and
sixth (V5/6) more stable genes. Two reference genes showed to be enough to obtain a
geNorm V difference < 0.15.

After the selection of reference genes, bespoke primers were either bought or design.
The annealing temperature of designed primers was optimised by a temperature gra-
dient (Figure . The annealing temperature of purchased primers was already op-
timised by the provider (QuantiTect®, QIAGEN). The specificity of all primers was
checked by a single melting curve in every qPCR amplification (Figure .

N
O O O O O O G O
I R AN S

500 bp —

200 bp —»
75bp —»

Figure 6.16: Example of primer optimisation by PCR gradient. PCR, gradient ampli-
cons of RPS18 gene were run in an 2% (w/v) agarose/ TAE gel supplemented with
GelRed (7 p1/100 ml). PCR showed primers specificity as only one single amplicon
was observed around the size expected (205 bp). No template controls (NTC) were
performed only at 51 °C and 60°C. The same gradient was carried out for all other
primers that were designed.
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Figure 6.17: Example of melting and amplification curves of RPL13A (A, C) and
RPS18 (B, D). Melting curves (A, B) that showed a single peak were indicative of
primer specificity. The horizontal line in amplification curves (C, D) indicated the
background or noise band where the Ct values were obtained. The noise band was
manually set at the same level for all genes analysed.
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Once annealing temperatures were optimised and primer specificity was tested, qRT-
PCR in pooled samples was performed on 5 transcripts that showed upregulation

and 5 transcripts that showed downregulation by OA or DHA treatment. The selec-
tion of transcripts included the top altered genes and transcripts with different fold
changes in expression. In total, 13 transcript changes were tested. The expression fold
change by qPCR showed the same direction of change that the BeadArray in all 13
transcripts analysed, although only 10 reached statistical significance (Table .

Table 6.3: Candidate genes used to validate the gene expression BeadArray.

Gene Symbol BeadArray Fold Change qRT-PCR Fold Change
OA DHA OA DHA

GZMA - 2.3* - 4.6%*
CD79A - 1.8% - 1.8%*
TOX2 - 1.7* - 2.2%%
PER2 - 1.5% - 3. 2%
IGF2R - 1.3* - 1.3*
HMGCS1 -1.4%* -2.1% -1.8% -1.8%
HMGCR - -1.6%* - -1.5%*
ID1 - -1.6* - -1.6*
LSS -1.4%* -1.5% -1.2 -1.2
MSMO1 -1.3* -1.7* -1.2 -1.6%*

Treatment versus control means (n = 3 pooled samples per treatment) were compared by one-
way ANOVA with Dunnett’s post hoc test on the log transformed data and those which dif-
fered significantly indicated by *, P <0.05; ** P <0.01; *** P <0.001. Only the fold change
expression of significantly altered transcripts on BeadArray analysis are shown in Table. GZMA,
granzyme A; CD79A, CD79a molecule; TOX2, TOX high mobility group box family member

2; PER2, period circadian clock 2; IGF2R, insulin like growth factor 2 receptor; HMGCS1, 3-
hydroxy-3-methylglutaryl-CoA synthase 1; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase;
ID1, inhibitor of DNA binding 1, HLH protein; LSS, lanosterol synthase; MSMO1, methylsterol
monooxygenase 1.
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6.4 Discussion

Treatment with OA or DHA altered the transcriptome of Jurkat cells in a treatment-
specific manner. Genes that changed mRNA expression included different transcrip-
tion factors. Besides, pathway analysis suggested that OA or DHA altered the activity
some transcription regulators. The genes with altered transcription by OA or DHA
treatment essentially did not show DNA methylation changes induced by the same

treatments.

6.4.1 The effects of OA or DHA on Jurkat cells’ transcriptome

It is well documented that fatty acids can change the expression of cells. In agreement
with the literature, analysis support that OA has a lower effect on the transcriptome
than other fatty acids such as DHA at the same concentration. Also, data supports

B This specificity

that transcriptome changes by fatty acids are treatment-specific
may arise by the fatty acids themselves as they have been shown to activate nuclear
receptors (e.g. PPARs or RXRs) with different potencies B34 Thus, fatty acids
may alter the expression of particular genes by binding nuclear receptors differently,
which in turn would induce different effects on cells. On the contrary, the specificity
of gene expression changes may also be due to the different effects that OA or DHA
have on cells. For instance, DHA, but not OA, has been shown to serve as a precursor
of eicosanoids in vitro1%, DHA-derived eicosanoids and even the epoxy-metabolites
have shown to induce changes in gene expression of cells, although the exact mecha-

BT Together, differences in the nuclear receptor

nism is still not well understood
binding and altered functions in cells may explain the treatment-specific transcrip-

tome changes induced by OA or DHA treatment.

In this work, treatment with OA altered genes that showed a relationship with de-

creased infection of cells. It has been described that HIV infection B74

, influenza A
infection 7 and overall infection of human cells induce stress, apoptosis and cell
death BT6377 - This suggests that the mid-to-low concentration of OA treatment may
boost a good state of Jurkat cells at the gene expression level. This is further sup-
ported by the predicted decrease in the senescence of cells as a downstream effect of
the expression changes. Besides, OA has been shown to be essential for the optimal in
vitro growth of human primary lymphocytes stimulated with Concanavalin A B8 and

BT The current results suggest that the

to enable the growth of the Jurkat cell line
reported optimal growth of Jurkat cells induced by OA treatment may be mediated,

at least in part, at the gene expression level.

Treatment with DHA altered genes that were associated with three times more path-
ways compared with OA. This may be probably a reflection of the five times more

number of altered transcripts in the DHA-treated cells. Analysis showed that the
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most significantly enriched transcription regulators of transcriptome changes by DHA
were TP53 and RABL6. TP53 is a tumour suppressor gene which is one of the most

frequently altered genes in human cancers B30581

This gene can be activated upon
cell damage among other factors to promote arrest of the cell cycle and apoptosis,
which pathways were also predicted to be altered by DHA treatment 82, TP53 and
other proteins such as MAPKs (predicted as upstream regulator as well) have previ-
ously been reported to be involved in the effect that DHA has on cancer cells 383885l
Therefore, the current results support this and suggest that TP53, more than a pro-
tein involved, may be the major contributor to the decreased proliferation and sur-
vival of cancer cells induced by DHA treatment in Jurkat cells (discussed in Chapter

3).

The second most significant transcription regulator of altered genes by DHA treat-
ment was RABL6. The activity of RABL6 was decreased according to the pathway
analysis carried out. Knockdown of RABL6 has shown that this protein is essential
for the proliferation and survival of human osteosarcoma P80l and pancreatic can-

cer B8 Mutations in RABL6 gene were recently identified as a cause of steroid re-

388] At present, there is no

sistance in T-cell pediatric acute lymphoblastic leukemia k
available information about how DHA may change the expression of genes that are
controlled by RABL6. Given RABLG6 function, there is a possibility that RABL6 may
be also involved in the decreased proliferation induced by DHA treatment in Jurkat

cells. This hypothesis has yet to be tested.

Both fatty acid treatments altered the expression of genes which biological function

is involved in cholesterol and fatty acid biosynthesis. These pathways were the most
significantly enriched pathways of all identified in OA or DHA-treated cells. Path-
way analysis suggested that cells sensed the addition of OA or DHA to the cell me-
dia and counteracted this by decreasing endogenous lipid biosynthesis. This has been
previously reported and there is evidence that such decreased is mediated by regulat-
ing gene expression and proteolytic activation of SREBFsB8), Here, the activity of
SREBF1 decreased by DHA treatment according to the pathway analysis performed.
Altogether, transcriptome results are in agreement with reports that have been shown
a decrease in mRNA expression and proteolytic activation of SREBP-1 by unsatu-

rated fatty acidsB2.

6.4.2 Relationship between transcriptome and DNA methylome changes

There were identified 11 genes with altered gene expression and altered DNA methyla-
tion by fatty acid treatments. This low co-occurrence between expression and methy-
lation changes in genes is contrary to what has been suggested previously at a genome-

2204287)

wide level The difference may arise due to the different cell types used, the

concentration of the fatty acid treatments, the time of exposure and the different ap-
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proaches used for data analysis. Previous studies analysed the ex vitro treatment of
human pancreatic cells with 1000 xM palmitate for 2 days287 and the in vitro treat-
ment of THP-1 cells with 100 M OA or 100 uM AA for 1 day 229, Such studies ad-
dressed the genome-wide association of gene expression with DNA methylation us-
ing BeadArray results that were not statistically significant 2% or that were not val-
idated 287 In the current study Jurkat cells were treated with 15 M OA or 15 uM
DHA for 8 days and only statistically significant changes (p-value < 0.05, g-value <
0.05) greater than 5% change on DNA methylation were included in the analysis. All
these factors may influence the differences found in this study compared with previ-
ous reports. The results in the present work suggest that DNA methylation changes
induced by OA or DHA are not directly associated with the expression of genes.

Besides the 11 genes that showed altered DNA methylation and gene expression, there
were identify some similarities in the pathways altered by the fatty acid treatments.
For instance, DHA treatment showed to alter independently the DNA methylation
and mRNA expression of genes which function is related to ”Cell Death” and ”Apop-
tosis” as a downstream effect. However, individual genes that altered DNA methyla-
tion were not the same as those genes that altered mRNA expression. The same was
observed in all canonical pathways, ToxList categories and downstream effects. At
present, there is no evidence of such type of association between gene expression and
DNA methylation changes induced by fatty acids. The cause of this relationship is un-

known.

Transcriptome analysis showed that the mRNA expression of different transcription
regulators was altered by OA or DHA treatment. For instance, the transcription fac-
tor SP3 was decreased by DHA treatment. SP3 response elements were identified near
CpG sites with altered DNA methylation induced by OA or DHA treatment (dis-
cussed in Chapter . SP3 has been shown to physically interact with DNMT1 204
Therefore, evidence suggests that SP3 may participate in the DNA methylation changes

induced by fatty acids. The possible mechanism is described in the final discussion.

Finally, another possible relationship between altered gene expression and altered
DNA methylation may be mediated by KDM5B. This was the third most significant
transcription regulator of genes that showed altered expression by DHA treatment.
KDMS5B is lysine-specific demethylase and has been shown to act on H3K4me/2/3 oM
In mammals, the H3K4me3 histone mark is associated with CpG islands B339 which
are usually free of DNA methylation and located in approximately 74% of human pro-
moters 18189 Because of this, H3K4me3 is considered as a mark of actively transcri-
bed genes. The results suggest that DHA treatment increased in some way KDM5B
activity that in turn induced altered expression of KDM5B target genes. Given the
function of KDMS5B, altered gene expression induced by KDM5B may be mediated by
H3K4me3 demethylation. Unmethylated H3K4 can be recognised by DNMT3A and
promote, in theory, DNA methylation 25 as reviewed in Chapter |5l This hypothesis
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is further supported by ChIP experiments that showed a decrease in H3K4me3 enrich-
ment on regions proximal to CpG sites with altered DNA methylation (Chapter [5)).

6.4.3 Limitations of the BeadArray analysis

BeadArray analyses usually implement a correction for multiple testing such as the
false discovery rate (FDR). The nature of the FDR is linked to the P-value, result

364l Because of the P-values that can be achievable by a sta-

from a statistical test
tistical test with a sample size n = 3, the use of FDR as a cutoff was not suitable for
the analysis. To deal with the problem of small samples sizes in Bead Array experi-

B97398]  Tn the current work, samples from

ments, new alternatives have been proposed
9 cultures replicates were pooled to obtain 3 samples in each treatment which were
analysed using expression BeadArrays. There is evidence showing that pooling may
account for some of the variations in gene expression by reducing the noise 3% Be-
cause of this, in addition to statistical significance (P-value < 0.05) only a threshold of
1.2 in the fold change expression was used as a cutoff. The lack of a multiple testing
correction suggests that there is a possibility that some transcription changes reported
here may be false positives. Yet, there is confidence in the results as these were vali-
dated by qPCR. Besides, genes with altered mRNA expression identified here are in

agreement with reported evidence showing the effects of fatty acids on cells.

6.5 Conclusions

Fatty acid treatments altered the expression of the transcriptome in a treatment-
specific manner. Overall, OA treatment altered the expression of genes associated
with the basal growth of cells while DHA altered the expression of genes related to
apoptotic pathways. Analysis showed that genes with altered expression were not es-
sentially the same genes that changed DNA methylation. However, there was identi-
fied that OA or DHA altered the expression of genes with similar biological functions
to those genes which changed DNA methylation. Transcriptome analysis suggests that
the expression and activity of different transcription factors were altered by OA or
DHA treatment. Such transcription factors included KDM5B, which may account for
the decreased H3K4me3 enrichment previously observed in ChIP experiments, and
SP3 whose response elements were identified in sequences proximal to CpG sites with
altered DNA methylation. Thus, transcriptome data supports the hypothesis that ac-
tivity of different transcription factors may participate in the effect that OA or DHA
have on DNA methylation in Jurkat cells.
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Final Discussion, Conclusions and
Future Work

7.1 Final discussion

The experiments carried out in this work aimed to expand our current understanding
of the mechanisms involved in the effect of fatty acids on DNA methylation. In order
to do so, a combination of in vitro and in silico analyses were performed using Jurkat
cells treated with OA or DHA as a model. Overall, the effects of fatty acids showed
specificity in terms of the number and location of altered CpG loci. DNA methyla-
tion changed after the 3' day of treatment suggesting an indirect mechanism in which
H3K4me3, but not PPAR«, may be involved. Furthermore, a number of transcription
factors which possibly participate in the DNA methylation changes induced by OA or
DHA were identified .

7.1.1 Specificity of altered DNA methylation by OA or DHA treat-
ment

The specificity of fatty acids to induce DNA methylation changes has been reported
before in candidate genes223240 Iy yitro experiments have shown that 100 M EPA,
but not 100 uM OA treatment, induced demethylation of a single CpG in the pro-
moter of CCAAT /enhancer-binding protein delta using the human U937 leukaemia

233]

cell linel In vivo, supplementation with olive or fish oil for 12 weeks has shown

to differentially alter specific-locus DNA methylation levels of two candidates genes

2401 ' The specificity identified in candidate genes has also

analysed in human PBMCs
been suggested to occur at the DNA methylome level as treatment of THP-1 mono-
cytes with 100 uM OA or 100 uM AA showed to induce a global DNA hypomethyla-

tion or hypermethylation, respectively. However, global DNA methylation changes or
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in candidate genes do not provide details about genome-wide patterns. Experiments
carried out in the current work addressed this. Results were in agreement with cur-
rent evidence that shows specificity in the effect that different fatty acids have on
DNA methylation. OA treatment induced DNA methylation changes in a different
and lower number of CpG sites compared with DHA treatment. Besides, altered CpG
sites by OA were located mainly in different genes of those CpG sites altered by DHA
treatment. Despite these differences, both fatty acids altered mostly intergenic re-
gions. The preference of OA and DHA to alter the methylation status of intergenic
regions has not been reported before. Altered methylation of intergenic regions raises
questions about their possible function. Are fatty acids changing the expression of
non-coding RNAs? Regulatory regions? Future work will need to address such ques-
tions. Altogether, the findings in this work support the hypothesis that the genome-
wide effect on the DNA methylation induced by fatty acids at the locus-specific level

shows specificity.

The reason underlying OA or DHA specificity on DNA methylation is currently un-
known. OA is a MUFA of 18 carbons compared with DHA which is a PUFA of 22 car-
bons. Thus, it is possible that specificity may be associated with the chemical struc-
ture of fatty acids. Other possibility is that specificity on the DNA methylation changes
identified was related to the differential effects that OA and DHA have been shown on
cells. For instance, only DHA treatment induced a decrease in Jurkat’s cell viability
and proliferation in a time-dependent manner. Pyrosequencing of candidate CpG sites
showed that DHA treatment altered DNA methylation also in a time-dependent man-
ner. Therefore, it is probable that decreased cell viability and proliferation may be
associated with the effects on DNA methylation, at least to some extent. A relation-
ship between cell viability or/and cell proliferation with DNA methylation changes is
further supported by the low number of altered CpG sites by OA treatment, which
did not alter cell viability or proliferation. At the same time, the DNA methylation
changes identified in OA-treated cells indicated that an effect on cell viability or pro-

liferation was not essential for the epigenetic effect of fatty acids.

Another possibility to explain the different DNA methylation changes induced by OA
or DHA may be related to the differential gene expression induced by the same fatty
acids. In this work, DHA treatment showed to alter the gene expression of five-times
more genes compared with OA treatment. Similarly, DHA altered DNA methylation
of almost three-times more number of CpG sites compared with OA treatment. Be-
sides the number of CpG sites, genes with altered expression or DNA methylation

by DHA treatment were mainly different from those genes altered by OA treatment.
Thus, it is possible that some of the altered genes may lead to locus-specific DNA

methylation changes in a way still not understood.

Finally, there is a possibility that incubation of Jurkat cells with more than 15 M
OA may induce similar effects on DNA methylation as 15 yuM DHA treatment. This
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has been reported for the cell viability and proliferation effect on cells by OA or DHA

2641~ At present, a relative potency of fatty acids to alter DNA methylation

treatment
has not been addressed. Effects of fatty acids on DNA methylation is a relatively new
field of study of which not much is known. In the present work, the same dose of OA
or DHA was used as an initial approach. Specific effects of OA or DHA should be con-
sidered in such a context. Further experiments will need to address if specific effects
on DNA methylation induced by OA or DHA treatment may be related to a relative

potency of such fatty acids.

7.1.2 Time required by OA or DHA to induce DNA methylation
changes in Jurkat cells

In vitro studies that have been addressed DNA methylation changes induced by fatty
acids usually use 24-hour treatments 22923182334303400] * gy ch studies have identified
significant changes on DNA methylation in specific CpG sites of candidate genes or
changes at the global level. Thus, reported evidence suggests that altered DNA methy-

lation induced by fatty acids can be achieved since 24-hours after treatments.

In this work, pyrosequencing of five candidate CpG sites suggested that DNA methy-
lation changes by 15 uM DHA treatment were time-dependent. This is because three
of the CpG sites reached a statistical significance difference only after the 34 day

while the other two after the 6'" day of treatment. In all five CpG sites analysed, the

8th

most significant change in DNA methylation was identified after the day of treat-

ment. The majority of the reported evidence showing a change in DNA methylation

< 2202338034000 Ty, con-

in vitro after 24 hours used 100 pM fatty acid concentration
trast, in the present work 15 uM OA or DHA was used. Therefore, there is a possibil-
ity that the longer time required for fatty acids to alter DNA methylation identified
here was related to a lower concentration of fatty acids used. However, there is one
study showing that 3 uM AA treatment decrease DNA methylation of the KDR pro-
moter region after 24 hours incubation in human umbilical vein endothelial cells 231
Thus, it is possible that the concentration of the fatty acid treatments may not ac-
count for the time required for some CpG sites to change their DNA methylation sta-
tus. Alternatively, there is a possibility that particular fatty acids may need different
times to alter DNA methylation. This is still unclear. Altogether, current evidence
suggests that some CpG sites may change DNA methylation quicker than others. The
different time required for some CpG sites to change DNA methylation supports the
hypothesis that there is not a single mechanism (transcription factor, enzyme, path-

way, etc.) by which fatty acids induce altered DNA methylation.
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7.1.3 Possible transcription factors and pathways involved on the al-
tered DNA methylation by OA or DHA

In the current project, pyrosequencing of five candidate CpG sites after treatment
with DHA, 0.2 uM PPAR« agonist GW7647, 2 uM PPAR« inhibitor GW6471 or
DHA plus 2 uM GW6471 showed no significant effect of PPAR« activity on DNA
methylation changes induced by DHA. Therefore, evidence suggested that similar to
what has previously been reported for OA 229 PPAR« does not mediate altered DNA
methylation by DHA treatment. Instead of PPAR«, other transcription factors were
associated with the effect of DHA on DNA methylation. In silico experiments showed
that sequences up to 60 bp next to CpG sites with altered DNA methylation were en-
riched with response elements of different transcription factors. The majority of them
were members of the protein/Kriippel-like factor family which included SP1 and SP3.
Determination of transcriptome changes identified that SP3, but not SP1, was signif-
icantly downregulated by DHA treatment. SP1 and SP3 share over 90% homology in
their linear sequences B and both have shown to physically interact with DNMT1
through a conserved motif using HEK293 and Jurkat cells extracts, respectively 204
Besides, there is evidence that SP1 interacts with tumour protein 53 (P53 or TP53)
while DNMT1 can also interact with TP53 in vivo in human cells 223, TP53 interac-
tion with DNMT1 and SP1 requires different domains 223204 gyggesting that TP53

can interact with both proteins at the same time.

Results in this work suggest that interaction between SP1/SP3, TP53 and DNMT1
may be one of the primary mechanism mediating altered DNA methylation by DHA,
similar to what has been observed in the survivin gene in vitro 29320 The latter
hypothesis is supported by transcriptome data which indicated that TP53 activity
was increased while SP3 mRNA was downregulated in DHA-treated cells. Further-
more, there was identified an enrichment of SP1 and SP3 binding sites near CpG sites
that showed altered DNA methylation by DHA treatment. A model to explain DNA
methylation changes by DHA is shown in Figure However, further work needs to
address the direct participation of SP1, SP3, TP53 and DNMT1 as mediators of al-
tered DNA methylation induced by DHA. As an added note, there was not identified
any significant change in DNA methylation or expression of the survivin gene in the

current experiments.

In the case of OA treatment, the only clear evidence related to mechanisms was the
identification of response elements in the proximity of CpG sites with altered DNA
methylation. The majority of response elements identified in OA-treated cells were
similar to those detected in DHA-treated cells. However, there was not enough infor-
mation in the literature to generate a particular model to explain specifically DNA

methylation changes induced by OA treatment.
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DHA treatment
A B
&~ RSN

DNMT1 TPS3

SP1/5P3 <= sp1/sp3 || DAMT
(P —} ?TPSB

(P Unmethylated cytosine Other SP1/SP3 partners
? Methylated cytosine

Figure 7.1: Proposed mechanism underlying the altered DNA methylation induced
by DHA in Jurkat cells involves a crosstalk between SP1/SP3-TP53-DNMT1. Under
normal conditions transcription factors such as SP1/SP3 or TP53 can modulate the
expression of their targeted genes (A). However, under DHA stimulation SP1/SP3 or
TP53 may bind to genomic regions other than their usual and/or recruit DNMT1,
thus, increasing DNA methylation on site (B). The opposite process (B to A) may
explain also the DHA-induced demethylation. The model is based on the in vitro reg-
ulation of the survivin gene by doxorubicin treatment 223204 and the increased activ-
ity of TP53, the mRNA downregulation of SP3 and the enrichment of SP1 and SP3
response elements in sequences close to CpG sites with altered DNA methylation by
DHA identified in the current work.

As final remarks, DHA treatment also showed to alter DNA methylation of promoter
sequences enriched with the androgen receptor (AR) binding site. Pathway analysis of
transcriptome changes indicated that AR increased its activity after DHA treatment.
Therefore, data suggested that AR may participate in the altered DNA methylation
induced by DHA specifically at promoter regions. Similarly, sequences that changed
DNA methylation by OA or DHA treatment showed enrichment of Wilms tumour

1 (WT1) response element which activity was predicted to decrease in DHA-treated
cells. This suggested again that the activity of transcription factors may be related

to the DNA methylation changes induced by fatty acids. How the activity of AR and

WT1 may mediate DNA methylation changes is currently unknown.

Pathway analysis of transcriptome changes also predicted an increased activity of
SIRT1 by DHA treatment. This histone deacetylase showed to be required for the ef-
fect of OA or AA on the global DNA methylation of MEFs22% . Furthermore, SIRT1

[305]

has been shown to deacetylate DNMT1 in vitro and in vivo Deacetylation of
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DNMT1 has been shown to increase or decrease its methyltransferase activity depend-
ing on the residue that is deacetylated B%!. Results in this work are in agreement with
current evidence and support the hypothesis that SIRT'1 may participate in the DNA

methylation changes induced by fatty acids in human cells.

7.1.4 Relationship between altered DNA methylation and decreased
H3K4me3 enrichment by OA or DHA

Current evidence shows that fatty acids can alter specific histone marks in vitro and

249:250] ' T human cells, modification of histone marks by

in vivo using mouse cells
fatty acids has only been reported in vitro so far by one study 248, The study showed
that H3K4me2 enrichment decreased after 30 uM DHA treatment for two days us-

ing the neuroblastoma M17 cell line 248 Nevertheless, altered DNA methylation and
altered histones marks at the same genomic region by any fatty acid has not been ad-
dressed in human cells. Here, ChIP assays showed that 15 uM DHA treatment sig-
nificantly decreased H3K4me3 enrichment in 3 candidate regions with altered DNA
methylation induced by the same treatment. OA treatment showed the same trend to
decrease H3K4me3 enrichment on the 2 candidate regions analysed, but none of them
reached statistical significance. In silico analysis of all CpG sites that changed DNA
methylation by OA or DHA showed that only the 6% (36/563) or 7% (123/1596) of
these, respectively, overlapped with H3K4me3 occupancy according to ENCODE data.
Therefore, experiments carried out in this work suggest that altered DNA methylation

and reduce H3K4me3 enrichment induced by fatty acids may relate to a low degree.

Transcriptome changes induced by DHA suggested that lysine demethylase 5B (KDM5B)
activity, but not mRNA expression, was increased. Increased Kdm5b mRNA expres-
sion has been reported in mouse hepatocytes after the in vitro treatment with 40 uM
oleate plus 40 M palmitate for 24 hours4¥. Thus, there is a possibility that 15 pM
DHA treatment may induce a small increase in KDM5B mRNA beyond the detection
limits of the BeadArray. Another possibility is that DHA may induce just a change in
KDM5B activity rather than alter KDM5B expression. KDM5B overexpression has
been shown to demethylate H3K4me3/2/1, but not H3K9me3/2/1 or H3K36me3/2/1,
in vivo using Hela cells#2 . The increased activity of KDM5B induced by DHA treat-
ment may explain the decreased levels of H3K4me3 identified in regions with altered
DNA methylation by the same treatment. If H3K4me3 demethylation induced by

DHA showed genome-wide specificity remains unknown.

As discussed in detail in Chapter |5, decreased H3K4me3 may play a role in the DNA
methylation changes induced by OA or DHA. Such a hypothesis is based on in vitro

evidence suggesting that H3K4me0, but not H3K4me3, may be recognised by DNMT3A [131825]
Thus, there is a possibility that decreased H3K4me3 enrichment identified here may

increase H3K4me0 which in turn recruits DNMT3A to methylate the DNA.
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7.2 Conclusions

Experiments carried out in this thesis project showed that OA or DHA treatment at
the same concentration modified fatty acid composition, gene expression and DNA
methylation in a treatment-specific manner in Jurkat cells. Pyrosequencing of five
candidate CpG sites showed that the DNA methylation changes were established after
the 3! day of DHA treatment. PPAR« did not mediate the altered DNA methylation
of such candidate CpG sites. However, there is still unclear if the methylation status
of some other CpG sites was mediated by PPARa activity in DHA-treated cells.

In silico analysis carried out to identify other possible mechanisms by which OA or
DHA altered the DNA methylation showed that DNA motifs and differential activ-
ity and/or expression of different transcription factors may be involved. The genome-
wide approach that was employed here allowed the detection of different candidate
mechanisms. Available evidence suggests that the most feasible mechanism by which
OA or DHA induced changes on DNA methylation may involve crosstalk between
SP1/SP3-DNMT1-TP53 (Figure . Altogether, data support the hypothesis that
DNA methylation changes induced by OA or DHA treatments were associated with

the activity of different transcription factors.

Apart from transcription factors, altered DNA methylation induced by OA or DHA
showed a relationship with decreased H3K4me3 enrichment on candidate regions anal-
ysed. This suggested that there may be an interplay between altered DNA methyla-
tion and H3K4me3 changes induced by fatty acids. If one epigenetic mark was needed

for the other to take place should be assessed in future work.

At present, some of the most important public health problems in adults are non-
communicable diseases. Dietary fats have been shown a relationship with some of
them such as diabetes, cancer and atherosclerosis. The same non-communicable dis-
eases have also been shown to alter DNA methylation patterns in cells. Understanding
the underlying mechanisms by which fatty acids induce altered DNA methylation may
help to elucidate the functional consequences of these. Furthermore, the latter may
address the possible connection between altered DNA methylation patterns in diseases
with the effect of fatty acids on DNA methylation. Such information may be useful for

better dietary recommendations in order to improve human health.
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7.3 Future work

7.3.1 To investigate the possible cause of the fatty acid specificity on
the DNA methylome

Current evidence shows that different fatty acids induce diverse effects on DNA methy-
lation at the global level or candidate genes22%233234240 1y this work, it was shown
that such specificity is also observed at the genome-wide level for OA and DHA. To
explore the cause of such specificity, treatments with other fatty acids at the same
concentration and assessment of the DNA methylation changes using BeadArrays can
be carried out. The usage of palmitic (16:0), stearic (18:0), AA (20:4n-6) and EPA
(20:5n-3) in the first instance may indicate if specificity is related to the chemical
structure of fatty acids. Based on the hypothesis that the chemical structure is related
to the specificity of fatty acids it would be expected that palmitic and stearic acid,
both saturated, may alter similar CpG sites compared with EPA or DHA treatments.
Similarities and differences between treatments may indicate if the number of double
bonds, the position of double bonds or the number of carbons are associated with the
specificity of fatty acids to alter the DNA methylome. Also, as palmitic, stearic, AA,
EPA and DHA, but not OA, have shown to decrease cell viability of Jurkat cells at
the same concentration 284 such type of experiments may allow determining if de-
creased viability by DHA was related to the greater number of CpG sites altered in

the current experiments.

Similarly, determination of transcriptome changes induced by palmitic, stearic, AA,
and EPA would indicate if the number and/or specific altered transcripts show a re-
lationship with the DNA methylation changes induced by the same treatments. The
implementation of RNA-seq to determine transcriptome changes may serve also to

evaluate if fatty acid treatments alter the expression of non-coding RNAs.

It is possible to carry out the previously mentioned experiments using supplementa-
tion in humans. However, animal models or in vitro experiments still have some ad-
vantages considering the relatively little current knowledge in the subject. For ins-
tance, processing and metabolism of fats may be different between humans which
may impact the outcomes. Besides, reported evidence have shown that altered DNA
methylation occurred after 6 to 12 weeks of human supplementation with fatty acids 240242
The use of animal models can improve the control of metabolic differences but still,

it should be considered that treatments should last around 9 weeks which is the time

234 Here, experiments showed that 8 days was enough

implemented in previous reports
time to induce DNA methylation change by fatty acids. In vitro experiments may be

preferable until further characterisation of the system is accomplished.
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7.3.2 To characterise the time needed for fatty acids to induce DNA
methylation changes

Results of this work showed that 15 uM DHA required more than 3 days to signifi-
cantly alter DNA methylation of the five candidate CpG sites that were analysed. In
contrast, reported evidence has been shown that 100 uM OA, AA or EPA treatments
alter the DNA methylation after 24 hours in vitro229%233303400] - There is only one re-
port that has shown DNA methylation changes after 24 hours incubation using 3 pM
AA treatment 231, Therefore, it is unclear if the time required for DHA to altered the
DNA methylation was due to an intrinsic characteristic of the CpG sites analysed, the
different concentrations used in treatments or a particularity of DHA. To address this,
Jurkat cell treatments with DHA at different concentrations may be carried out for 8
days. After every 24 hours of incubation, DNA methylation by pyrosequencing can be
determined in the five CpG sites that were shown here to change DNA methylation
by DHA treatment. The implementation of concentrations higher than 15 yM DHA
showed a small but significant decrease in cell viability in a time-dependent manner in
our experimental model. Thus, concentration recommended for treatments would be
5, 15, 30 and 60 uM DHA as a maximum. The possible decreased in cell viability by
30 and 60 uM DHA treatments may also allow identifying if an effect on viability is
involved in the DNA methylation changes by DHA treatment.

Jurkat cells can be treated with different concentrations of EPA or AA, which have
been shown to modify the DNA methylation status of the CEBPD or KDR promoter,

[2312233] - Results would reaffirm if concentrations of fatty acid treatments

respectively
are associated or not with the time required to induce altered DNA methylation. Be-
sides, the comparison of the results may allow determining if the time needed for DHA

to alter DNA methylation is specific for this fatty acid.

After evaluation of results at least two different times of treatments, a short one and
longer one, may be selected to carry out DNA methylation BeadArrays or reduced
representation bisulphite sequencing (RRBS). Analysis of the data may indicate how
frequent is the time-dependent DNA methylation changes at the genome-wide level.
This information may be useful to also identify candidate CpG sites with an early re-
sponse to fatty acid treatment. Currently, animal and human studies have been shown
altered DNA methylation after 6 weeks of fatty acids supplementation 234240242 -~ G
sites with an early response to fatty acid treatment can be used as biomarkers in an-
imal or human studies to assess quicker the DNA methylation changes by fatty acid
supplementation. The reduction in the duration of human clinical trials can make fi-

nancing of future projects more efficient.
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7.3.3 To identify the possible SP1/SP3-DNMT1-TP53 crosstalk in-
duced by fatty acid treatments

Firstly, the characterisation of SP8 mRNA downregulation by DHA can be performed.
Western blotting can be used to detect if altered SP8 mRNA levels correlate with
altered protein levels. Treatment of Jurkat cells using different times of incubation
and/or different concentrations of DHA can examine if SP3 is regulated in time and/or

a dose-dependent manner at the mRNA and protein levels.

There is evidence suggesting that the activity of the SP family can be altered by post-
translational modifications such as phosphorylation, acetylation, glycosylation and
sumoylation ¥ In this work, DHA treatment showed to alter PKA, MAPK (kinase)
pathways and SIRT1 (deacetylase) activity. Therefore, there is a possibility that phos-
phorylation and acetylation of SP1 or SP3 were altered by DHA treatment. To test
phosphorylation changes, enzyme-linked immunosorbent assays (ELISA) can be per-
formed in immunoprecipitated SP1 or SP3 complexes after DHA treatment. A detec-
tion antibody specific for phosphorylation may allow the identification of phosphory-
lation levels in immunoprecipitates using colourimetric or fluorometric methods. To
test acetylation changes, Jurkat cells can be co-treated with DHA and [*H]acetate

or just [*H]acetate. After treatments, immunoprecipitation of SP1 or SP3 and subse-
quent measurement of radioactivity levels may indicate acetylation differences between

DHA-treated cells compared with control cells treated with only [*H]acetate.

Knockout cells can be used to corroborate if crosstalk of SP1/SP3-DNMT1-TP53 is
involved in the effect of fatty acids on DNA methylation. Because of evidence show-
ing that SP1 and SP3 have redundancy in their target genes®* and both transcrip-
tion factors can interact with DNMT1 2% the use of SP1 and SP3 double-knockout
cells may be preferable than single knockouts. Thus, fatty acids treatments can be
carried out in SP1-SP3 double-knockout or TP53 knockout cells and the DNA methy-
lation measured by BeadArrays. The difference between altered DNA methylation
between wild-type and knockout cells may provide to support SP1/SP3 or TP53 par-
ticipation in the mechanisms by which fatty acids alter the DNA methylation. The
CpG sites identified can then serve as candidate regions to study if DNMT1 catalyses
DNA methylation changes in such regions. To do this, fatty acid treatments can be
performed again in wild type or knockout cells using this time the specific DNMT1 in-
hibitor (procainamide) or unspecific DNMT1 inhibitor (5-aza-2deoxycytidine). After
treatments, the DNA methylation can be measured in candidate regions by Mspl and
Hpall restriction enzymes or by pyrosequencing. Analysis of the results may provide
evidence to suggest if there is SP1/SP3-DNMT1-TP53 crosstalk and if this is required
for the altered DNA methylation by fatty acid treatments.

Another approach to identifying SP1/SP3-DNMT1-TP53 crosstalk would be using
ChIP-seq assays. DNMT1 can be co-immunoprecipitated with SP1, SP3 or TP53 to
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obtained all DNA regions that possibly changed the occupancy of these proteins in
treated cells compared with untreated cells. After ChIP-seq analysis, the methylation
status of some candidate regions that change DNMT1-SP1, DNMT1-SP3 or DNMT1-
TP53 occupancy can be identified by Mspl and Hpall restriction enzymes or by py-
rosequencing. Such results may indicate if the regions changing DNMT1 occupancy

also change DNA methylation.

7.3.4 To examine H3K4me3 relationship with DNA methylation changes
induced by fatty acids

The current work showed decreased H3K4me3 enrichment within candidate regions
that showed altered DNA methylation by 15 uM DHA treatment. Besides, results
suggested that DHA treatment increased the activity of KDM5B, a lysine demethy-
lase that has shown to demethylate the H3K4 residue specifically B If H3K4me3
demethylation or KDM5B activity participate in the altered DNA methylation by
DHA treatment is currently unknown. To address this, KDM5B ¢cDNA can be cloned,
transfected and ectopically expressed in Jurkat cells to induce an overexpression. Cells
transfected with an empty vector (control cells) or KDM5B ¢cDNA can be treated with
DHA to look for differences in the DNA methylation patterns induced by the treat-
ment. As a first approach, genomic DNA can be treated with Mspl and Hpall restric-

tion enzymes as both cut at 5-CCGG-3’ sequences 103!

Nevertheless, Hpall cleavage
is blocked by the presence of 5-methylcytosine in the sequence while the activity of
Mspl is not sensible to the methylation status of the sequence %3 Therefore, differ-
ences on DNA methylation should create a different pattern of fragments. Further-
more, DNA methylation BeadArrays can be carried out to examine the possible differ-

ences at the locus-specific level.

Overexpression of KDM5B would allow determining if decreased H3K4me3 has an
effect on DNA methylation induced by DHA. On the contrary, to explore if DNA
methylation induced by DHA treatment promotes a decrease in H3K4me3 enrichment,
Jurkat cells can be co-treated with DHA and the inhibitor of DNA methylation 5-
aza-2-deoxycytidine. If DNA methylation is not needed for the decreased H3K4me3
induced by DHA, co-treatment of DHA plus 5-aza-2-deoxycytidine should show the
same decreased in H3K4me3 as cells treated with DHA only.

To further characterise the H3K4me3 relationship with the altered DNA methylation
induced by DHA treatment, ChIP-seq assays can be carried out. Sequencing of the
immunoprecipitated DNA using an H3K4me3 antibody can provide evidence of the
genomic locations where H3K4me3 decreased. The mapping of such regions with CpG
sites that showed altered DNA methylation by the same DHA treatment (BeadArrays
or RRBS) can provide evidence of the degree of relationship between both epigenetic

marks.
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