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Abstract
In order to overcome limitations of climate projections fromGlobal ClimateModels (GCMs), such as
coarse spatial resolution and biases, in this study, the Statistical Down-ScalingModel (SDSM) is used
to downscale daily precipitation andmaximumandminimum temperature (T-max andT-min)
required by impact assessmentmodels.We focus on East Africa, a region known to be highly
vulnerable to climate change and at the same time facing challenges concerning availability and
accessibility of climate data. SDSM isfirst calibrated and validated using observed daily precipitation,
(T-max, andT-min) from 214 stations and predictors derived from the reanalysis data of theNational
Centers for Environmental Prediction. For projection (2006–2100), the same predictors derived from
the second generationCanadian Earth SystemModel (CanESM2) are used. SDSMprojections show
an increase in precipitation during the short-rain season (October–December) in large parts of the
region in the 2020s (2011–2040), 2050s (2041–2070), and 2080s (2071–2100). During the long-rain
season (March–May (MAM)) precipitation is expected to increase (up to 680mm) in Ethiopia,mainly
in thewestern part, andKenya and decrease (up to−500mm) in Tanzania in the 2020s, 2050s, and
2080s.However, thewestern part of Ethiopia will bemuch drier than the baseline period (1961–1990)
during June–September (JJAS) in the 2020s, 2050s, and 2080s, which indicates a shift in precipitation
from JJAS toMAM.Annually, precipitation, T-max, andT-minwill be higher than during the baseline
period throughout the 21 century in large parts of the region. The projection based on SDSM is in line
with the direction of CMIP5GCMs but differs inmagnitude, particularly for T-max andT-min.
Overall, we conclude that the downscaled data allow formuchmore fine-scaled adaptation plans and
ultimately bettermanagement of the impacts of projected climate in basins of Ethiopia, Kenya, and
Tanzania.

1. Introduction

East Africa is one of the most vulnerable regions in
Africa to climate change and variability (McDowell
et al 2016) and environmental resources and sectors
such as the agriculture and water resources are
increasingly threatened by the changes. In this region,
the projected climate based on Global Climate Models
(GCMs) shows an increase in the frequency of extreme
climate events such as floods, droughts, tropical

storms, and heavy rainstorms (IPCC 2007, Bates et al
2008, Niang et al 2014) which requires immediate
adaptation measures. Mitigation of the possible
impacts of the projected changes in climate requires,
however, consistent and long-term series of daily
weather series with finer spatial resolution than
provided by GCMs to drive impact assessment models
at local and regional scale. Current climate projections
from GCMs provide reliable information to under-
stand the global climate (IPCC 2007, 2013) and
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support a better understanding of the variability and
changes in large-scale climate (Dixon et al 2016). The
information from GCMs is, however, spatially too
coarse (>100 km) to assess the regional or local scale
impact of climate change (Gutmann et al 2012,Meenu
et al 2013) and it must be downscaled to finer
resolutions (Tavakol-Davani et al 2012). In addition to
the coarser resolution, GCMs face large biases and
uncertainties in representing the current and future
climate and these issues increase at the local scale
(Knutti and Sedláček 2013, Joetzjer et al 2013, Lutz
et al 2013, 2016), which limits the applicability of
GCMs in impact assessment studies at the local scale.
Impact and adaptation assessment require, in fact,
climate information equivalent to data from field-
based meteorological stations parametrized in large-
scale climatemodels (Wilby andDawson 2004).

To bridge the resolution gap between GCMs and
impact assessment models, downscaling techniques
have been introduced to synthesize the regional or
local scale climate information fromGCMs (Coulibaly
et al 2005, Wilby and Dawson 2007). Downscaling
techniques, dynamical or statistical, are used to trans-
fer changes in large-scale climate variables (predictors)
to regional or local scalemeteorological variables (pre-
dictands). Dynamical downscaling (regional down-
scaling) is a process used to simulate climate
information at high spatial resolution by incorporat-
ing local physical factors such as topography. In Africa,
regional downscaling is performed by the CORDEX-
Africa (http://cordex.org/domains/region-5-africa/
), providing climate data with a spatial resolution of
50 km (e.g. Endris et al 2013, Dosio et al 2015). Even
though the spatial resolution of dynamical down-
scaling is higher than provided by GCMs, its applic-
ability in impact assessment studies at a local scale is
limited due to the complexity of the models, resources
requirements, biases and uncertainties, and sensitivity
of the models to the boundary condition of GCMs
(Wilby and Dawson 2007, Brown et al 2008, Hamlet
et al 2010). Downscaling based on statistical models,
on the other hand, requires less processing require-
ments and computational expenses, making it more
effective, simple, and faster than dynamicalmodels.

A basic assumption in statistical downscaling
models is that the predictor-predictand relationship
remains valid throughout the projection period
(Wilby and Dawson 2007). Statistical downscaling
synthesizes a daily weather series equivalent to station
data which makes it more suitable for impact assess-
ment studies in sectors such as water resource and
hydrology (Wilby andDawson 2007, Brown et al 2008,
Khan and Coulibaly 2009). Due to their suitability in
impact and adaptation studies, statistical models, par-
ticularly regression-based models, have received more
attention during the last decades (Tavakol-Davani et al
2012). Finding the statistical relationship between the
predictors and predictands is the core aim in statistical
models. Based on the statistical approaches used,

statistical models are classified under three categories:
weather typing (Anandhi et al 2011), stochastic
weather generator (Semenov and Barrow 1997), and
transfer function (Wilby et al 2002). In weather typing,
localmeteorological data are grouped in relation to the
dominant patterns of atmospheric circulation and sce-
narios are developed by re-sampling from observed
data (Wilby and Dawson 2007, Samadi et al 2011).
Downscaling using stochastic and transfer function
methods is performed by modifying parameters using
weather generators (e.g. LARS-WG) and developing a
statistical relationship between predictands and pre-
dictors, respectively (Wilby andDawson 2007).

In this study, Statistical Down-Scaling Model
(SDSM), a hybrid of the transfer function and stochas-
tic weather generator, is applied to develop fine-scaled
climate projections for East Africa, particularly Ethio-
pia, Kenya, and Tanzania (supplementary figure: SF. 1
is available online at stacks.iop.org/ERL/14/044031/
mmedia). By creating the statistical relationship
between the predictors and predictands, SDSM pro-
duces ensembles (up to 100) of daily weather variables,
required in impact assessment models, under current
and future climate scenarios (Wilby and Daw-
son 2007). We used 26 predictors (1961–2100) and
three predictands (precipitation and maximum and
minimum temperature (T-max and T-min)) from
more than 200 stations to create a station-based and
regional (by spatial interpolation) climate projection
under the RCP2.6, RCP4.5, and RCP8.5 scenarios.
The downscaled data is used to assess changes in seaso-
nal and annual precipitation, T-max, and T-min
throughout the 21 century by classifying three climate
periods; 202020s (2011–2040), 2050s (2041–2070),
and 2080s (2071–2100). Ultimately, the output (regio-
nal maps) will help to identify hotspot areas in a
detailed manner that could support developing sus-
tainable adaptation strategies in this region. In addi-
tion, the output from SDSM allows driving impact
assessment models to assess the impacts of the pro-
jected climate in different sectors such as in agriculture
and hydrology.

2.Datasets

Observed daily precipitation, T-max, and T-min from
332 stations were collected from the National Meteor-
ological Agency (NMA) of Ethiopia and the National
Climate Data Centre (NCDC: https://7.ncdc.noaa.
gov/) starting from 1954 to 2016. Due to the limited
number of ground stations available in this topogra-
phically complex region, additional data from remote
sensing and reanalysis based daily precipitation and
temperature data is used in areas with less or no
ground stations. According to Wilby and Dawson
(2013), climate products (e.g. remote sensing based
precipitation products)with high spatial and temporal
resolution can be used for statistical downscaling in
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remote and data sparse regions. Therefore, for Ethio-
pia, Kenya, and Tanzania we have in an earlier study
(Gebrechorkos et al 2018b) identified such data
products to be used for climate and hydrological
modelling in areas with less or no ground stations. The
products are the Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS, (Funk et al
2015)) for precipitation and Observational-Reanalysis
hybrid (Sheffield et al 2006, Chaney et al 2014) for
T-max and T-min. CHIRPS (0.05°) and observational
reanalysis hybrid (up to 0.1°) are available from the
Climate Hazards Group (CHG), UC Santa Barbara
(http://chg.geog.ucsb.edu/data/chirps/) and Terres-
trial Hydrology Research Group Department of Civil
and Environmental Engineering, PrincetonUniversity
(http://hydrology.princeton.edu), respectively.

In this study, the predictors derived from the rea-
nalysis data (Kalnay et al 1996) of the National Centers
for Environmental Prediction (NCEP) and the second
generation Canadian Earth SystemModel (CanESM2)
are used for model calibration (1961–1990) and vali-
dation (1991–2005) and downscaling of the future
projection (2006–2100), respectively (table 1). The
spatial resolution of the predictors is available at nearly
uniform longitude and latitude of about 2.8125°. For
the future climate, projections are provided under the
three Representative Concentration Pathways (RCPs):
RCP2.6, RCP4.5, and RCP8.5 and are available from
the Canadian climate data and scenarios (http://
climate-scenarios.canada.ca/). In addition, historical
and projected precipitation, T-max, and T-min under
the RCPs from 29GCMs (ST. 1) of the CoupledModel
Inter-comparison Project Phase five (CMIP5) are
retrieved from the Canadian climate data and scenar-
ios data portal with a spatial resolution of 1° (http://
climate-scenarios.canada.ca/).

3.Methodology

SDSM uses a multi-linear regression method to
develop a statistical relationship between predictors
and predictands. The model enables performing

multiple processes such as data quality control, screen-
ing of predictors, model calibration, and scenario
generator (SF. 2). Screening of the predictors is one of
the most challenging tasks in SDSM, particularly for
precipitation, and the accuracy of the model highly
depends on the selected predictors. The selection of a
predictor is based on the scatterplots, correlation and
partial correlation analysis, and the statistical signifi-
cance (P<0.05) of the predictand-predictor relation-
ships. Taking a single predictand (e.g. daily T-max)
and screened NCEP predictors (e.g. mslp, p1th, and
shum), the model produces up to 100 daily weather
ensembles, which are considered to be equally plau-
sible. The weather ensembles are generated by linear
regression models and stochastic methods of bias
correction (Tavakol-Davani et al 2013). According to
Wilby and Dawson (2007), SDSM reduces systematic
biases of GCM predictors by normalizing them? with
the baseline period. Depending on the length of the
available daily data, the model can be calibrated on
monthly, seasonal, and annual time scales under
conditional (e.g. precipitation) and unconditional
process (e.g. T-max andT-min).

The study area is divided into about 37 GCM
(CanESM2) grid boxes with a spatial resolution of
about 2.8125° (SF. 1). From the 332 stations provided
by the NMA of Ethiopia and NCDC, only 152 stations
were found suitable for downscaling. Stations with
poor quality (e.g. data gaps) and shorter time series
during 1961–2005 are not considered to ensure selec-
tion of the best fit predictors for a given location. In
addition to those 152 stations, we used 62 data points,
equivalent to station data, for precipitation and T-max
and T-min retrieved from CHIRPS and Observa-
tional-Reanalysis hybrid, respectively.

For the 214 stations and three predictands, the
model is calibrated (1960–1990) and validated
(1991–2005)more than 642 (3*214) times. The 26 pre-
dictors are analysedmore than 5564 times (214*26) for
a single predictand and 16 692 times (214*26*3) for
the three predictands used in this study. In addition to
the statistical methods for model evaluation available

Table 1. List of theNCEPpredictors used formodel calibration and validation and their description according toWilby andDawson (2007).

No Code Long name No Code Long name

1 mslp Mean sea level pressure 14 p5zh 500 hPa divergence

2 p1_f Surface airflow strength 15 p8_f 850 hPa airflow strength

3 p1_u Surface zonal velocity 16 p8_u 850 hPa zonal velocity

4 p1_v Surfacemeridional velocity 17 p8_v 850 hPameridional velocity

5 p1_z Surface vorticity 18 p8_z 850 hPa vorticity

6 p1th Surface wind direction 19 p850 850 hPa geopotential height

7 p1zh Surface divergence 20 p8th 850 hPawind direction

8 p5_f 500 hPa airflow strength 21 p8zh 850 hPa divergence

9 p5_u 500 hPa zonal velocity 22 prcp Precipitation

10 p5_v 500 hPameridional velocity 23 s500 Specific humidity at 500 hPa

11 p5_z 500 hPa vorticity 24 s850 Specific humidity at 850 hPa

12 p500 500 hPa geopotential height 25 shum Surface specific humidity

13 p5th 500 hPawind direction 26 temp Mean temperature at 2 m
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in SDSM, we computed R2 (coefficient of determina-
tion) and root mean square error and mean bias to
evaluate the accuracy of the model as explained in the
supplementary material (SM 1.1). In order to provide
regional maps of the future climate, the point infor-
mation generated by SDSM are spatially interpolated.
According to Chai et al (2011), Borges et al (2016) we
used the inverse distance weighting to spatially inter-
polate the downscaled daily precipitation, T-max, and
T-min. For ease of statistical analysis, the long-term
climate projection is divided into three climate peri-
ods; 2020s, 2050s, and 2080s. Further, the results
obtained from SDSM for the three climate periods are
compared with the output from the CanESM2 and the
mean of the CMIP5 GCMs (GCMs) on a regional
scale.

4. Results

4.1. Long-termprojections
With respect to local impacts of climate variables,
seasonal values are much more relevant than yearly
values. In large parts of East Africa, the long and short
rain seasons are from March–May (MAM) and
October–December (OND), respectively. Moreover,
June–September (JJAS) is the most important rain
season for rain-fed agriculture in the highland parts of
the region. January–February (JF) is the driest season
in Ethiopia and Kenya, but Tanzania receives a
moderate amount of rainfall (Camberlin and Philip-
pon 2002, Daron 2014). The representation of the
current climate by SDSM isfirst assessed by comparing
model outputs with data from ground stations (details
are provided in the supplementary material). In
general, for the stations used in this study the model
showed an R2 of greater than 0.95 and 0.8 during
calibration and validation (see supplementary mat-
erial 1.2).

The projections under the three RCPs (RCP26,
RCP4.5, and RCP8.5) show a considerable change in
climate variables, in particular in seasonal precipita-
tion. In general, differences are more pronounced
between seasons and regions, but rather consistent
betweenRCPs and during the projection period. In the
2020s, compared to the baseline period (1961–1990),
precipitation during JF will increase (up to 380 mm) in
large parts of Tanzania and decrease in Ethiopia and
Kenya (figure 1). On the other hand, the MAM pre-
cipitationwill increase (up to 600 mm) in Ethiopia and
the western parts of Kenya while a decrease is pro-
jected in large parts of Tanzania (up to−420 mm). In
the western parts of Ethiopia, unlike to the change
duringMAM, precipitation during JJAS is projected to
decrease (up to−250 mm). However, in other parts of
Ethiopia as well as in Tanzania and Kenya, precipita-
tion during JJAS is projected to increase (up to
400 mm) under the RCPs. During OND, precipitation
will increase (up to 200 mm) in large parts of Kenya

and Tanzania and the south-eastern parts of Ethiopia.
Similar to the projected change in JJAS, precipitation
during OND will decrease (up to −280 mm) in the
western part of Ethiopia, particularly under RCP2.6.

Similar to the 2020s, precipitation in the 2050s
(figure 2) and 2080s (figure 3)will continue to increase
during MAM (up to 680 mm) in Ethiopia and large
parts of Kenya and decrease (up to−500 mm) in Tan-
zania. Moreover, precipitation during OND will
increase in large parts of the region in the 2050s and
2080s. Compared to the 2020s, precipitation in large
parts of the region will increase during JF,MAM, JJAS,
and OND in the 2050s and 2080s, particularly under
RCP8.5. Overall, during the projection period, the
western part of Ethiopia will be much wetter than the
baseline period during MAM, but it will be drier dur-
ing JF and JJAS. In addition, Kenya will be wetter than
the baseline period during JJAS and OND, but drier
during JF and MAM (particularly the eastern and
southern parts). Moreover, Tanzania will be drier than
the baseline period duringMAM, but wetter during JF,
JJAS, andOND.

On an annual basis, large parts of the region will be
wetter than the baseline period in the 2020s, 2050s,
and 2080s (figure 4). Compared to the other parts of
the region, the south-eastern part of Tanzania will be
drier in the 2020s, 50, and 2080s, particularly under
RCP2.6.

The projected change in temperature shows an
increase in T-max in large parts of the region in the
2020s, 50, and 2080s under the RCPs (figure 5). In
large parts of Ethiopia and Kenya and the northern
and south-eastern parts of Tanzania, T-max will
increase in the 2020s (up to 1.5 °C), 2050s (up to
3.1 °C) and 2080s (up to 4.3 °C). However, T-max in
the western and central-western parts of Tanzania will
decrease (up to 1.8 °C) in the 2050s and 2080s. In the
2050s and 2080s, T-max will be warmer under RCP8.5
compared to RCP2.6 and RCP4.5. In addition, the
projected decrease in T-max in the western parts of
Tanzania is higher under RCP8.5 (up to −1.65 °C)
compared to RCP2.6 (up to−0.6 °C) and RCP4.5 (up
to−1.2 °C).

Moreover, T-min will be warmer (up to 6.1 °C)
than the baseline period, even in the south-eastern
parts of Tanzania, in the 2020s, 2050s, and 2080s
under the RCPs (figure 6). Compared to the 2020s
(increase up to 1 °C), the change is higher in the 2050s
(up to 3 °C) and 2080s (up to 6.1 °C), particularly
under RCP8.5. Overall, T-max and T-min will be war-
mer than the baseline period in this region, particu-
larly in the 2050s and 2080s under RCP8.5.

4.2. Regional average of changes in precipitation and
temperature
To compare the output of SDSM with the CanESM2
(used to develop predictors for SDSM) and GCMs the
projected change is regionally averaged over Ethiopia,
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Kenya, and Tanzania. Based on the CanESM2 and
GCMs, both T-max and T-min will be warmer than
the baseline period in the 2020s, 2050s, and 2080s
(figure 7 and ST. 2 and ST. 3), thus showing a similar
trend compared to SDSM. However, the extent of
projected changes differs substantially. The projected
change in T-max and T-min by SDSM, CanESM2, and
GCMs will be warmer than the baseline period,
particularly under RCP8.5 compared to RCP2.6 and
RCP4.6 in Ethiopia, Kenya, andTanzania.

When comparing projections for T-max under
RCP2.6, based on SDSM it will increase in the 2020s by
0.24 °C, 0.41 °C, and 0.15 °C in Ethiopia, Kenya, and
Tanzania, respectively. The projection based on
CanESM2, on the other hand, showed an increase in
T-max by 1.18 °C, 0.94 °C, and 1.50 °C in Ethiopia,
Kenya, and Tanzania, respectively, which is 2–10 times
higher than projections by SDSM. In addition, GCMs
show an increase in T-max by 1.1 °C, 1.0 °C, and
1.15 °C in Ethiopia, Kenya, and Tanzania, respec-
tively. Similarly, SDSM shows an increase in T-min in
the 2020s (>0.23 °C), 2050s (>0.32 °C), and 2080s
(>0.29 °C) in Ethiopia, while projections based on
CanESM2 are 7–13 times higher and show that T-min
in Ethiopia will increase by >1.85 °C, >2.39 °C, and

>3.88 °C in the 2020s, 2050s and 2080s. GCMs show
an increase in T-min, which is 3–5 times higher than
shown by SDSM, in the 2020s (>1.1 °C), 2050s
(>1.16 °C), and 2080s (>1.24 °C) in Ethiopia. In the
2020s, SDSM, CanESM2, and GCMs estimate an
increase in T-min in Kenya by more than 0.44 °C,
1.57 °C, and 1.28 °C, respectively. Moreover, SDSM,
CanESM2, and GCMs show an increase in T-min in
Tanzania by more than 0.30 °C, 1.56 °C, and 1.23 °C,
respectively. Overall, the projected change in T-max
and T-min is much higher based on CanESM2 and
GCMs compared to SDSM in the 2020s, 2050s, and
2080s.

Compared to temperature projections, for pre-
cipitation there was no general difference between
SDSM and the other climate models. Instead, SDSM
values tended to be in between those obtained by
CanESM2 (highest estimates) and GCMs (lowest esti-
mates). Based on SDSM (GCMs), precipitation in
Ethiopia will increase by more than 40 mm
(>18 mm), 84 mm (>26 mm), and 70 mm (>29 mm)
in the 2020s, 2050s, and 2080s, respectively (figure 7
and ST. 4). Similarly, in Kenya, SDSM (GCMs) pre-
dicts an increase in precipitation by more than 66 mm
(40 mm), 144 mm (55 mm), and 129 mm (56 mm) in

Figure 1.Projected long-term changes in seasonal precipitation (mm) in East Africa in the 2020s (2011–2040)under RCP2.6, RCP4.5,
andRCP8.5.
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the 2020s, 2050s, and 2080s, respectively. Compared
to Ethiopia and Kenya, the projected increase in pre-
cipitation by SDSM and GCMs is lower in Tanzania,
particularly in the 2020s. In Tanzania, the projections
based on SDSM (GCMs) show an increase in pre-
cipitation by more than 13.7 mm (33 mm), 49.6 mm
(29.7), and 37.4 mm (29.4 mm) in the 2020s, 2050s,
and 2080s, respectively. However, the projected
change in precipitation by CanESM2 is much higher
than SDSM and GCMs in the 2020s, 2050s, and 2080s.
Similar to change in T-max and T-min, the projected
change in precipitation is higher in the 2080s com-
pared to the 2020s and 2050s under RCP8.5 than
RCP2.6 andRCP4.5.

To identify whichmodels are showing the possible
change in the future in this region, the accuracy of the
individual models is evaluated based on the current
climate by computing the percentage of biases. There-
fore, the long-term average (1961–2005) of CanESM2
and GCMs are compared with the long-term average
observed T-max and T-min for each station. The
result shows that both CanESM2 and GCMs over- and
underestimate, with a higher deviation (0.39%–

63.04%), T-max and T-min compared to SDSM,
which showed a deviation of less than 1% (table 2). As

shown in table 2, for example, T-max in three stations
of Ethiopia (Bahirdar), Kenya (Nakuru), and Tanzania
(Arusha) is over- and underestimated by both
CanESM2 and GCMs. In Ethiopia (Bahirdar), T-max
is overestimated only slightly by SDSM (0.42%), but
muchmore by CanESM2 (21.1%) andGCMs (14.2%).
In Kenya (Nakuru)T-max is underestimated by SDSM
(0.33%) and GCMs (2.08%) and overestimated by the
CanESM2 (8.41%). Moreover, T-max in Tanzania
(Arusha) is underestimated by SDSM (0.08%) and
overestimated by CanESM2 (4.42%) and GCMs
(0.39%). Similarly, T-min is highly overestimated by
CanESM2 and GCMs by more than 59.5%, 31%, and
5.2% in the stations of Ethiopia, Kenya, and Tanzania,
respectively (table 2). In general, CanESM2 andGCMs
show higher deviations in representing the current cli-
mate at a local scale, particularly for T-max and
T-min, compared to SDSM.

5.Discussion

Regional information, particularly for regions in
Africa, is urgently needed considering the projected
global warming (Lennard et al 2018) and the required
adaptation. Currently, climate change projections are

Figure 2.Projected long-term changes in seasonal precipitation (mm) in for East Africa in the 2050s (2041–2070) under RCP2.6,
RCP4.5, andRCP8.5.
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available from GCMs and dynamically downscaled
GCMs with a relatively coarse spatial resolution and
large biases which makes them unsuitable for being
used in impact assessment and adaptation studies at a
local scale. Even though many GCMs are available
(with a range of biases and uncertainties) in practice a
single GCM is typically used for detailed impact
assessment studies since considering all GCMs
requires enormous computational resources (Lutz
et al 2016). From this study, we agree that using a single
GCM and finding the best fit predictors during the
calibration process, which is the most time-consum-
ing part, particularly for precipitation should be the
most feasible approach and represents the key part of
the modelling process. Selection of the best fit
predictors for a given predictand at a given location, as
shown in table 2, enables to accurately synthesize the
observed station data. The application of a single GCM
for impact assessment studies is common practice
(Souvignet et al 2010, Hashmi et al 2011, Mahmood
and Babel 2013, Hassan et al 2014, Abbasnia and
Toros 2016, Saymohammadi et al 2017, Wang et al
2018). However, as our comparative study (figure 7,
table 2) demonstrates, uncertainties of climate projec-
tions based onGCMs can be very high (see below).

The results based on SDSM show an increase in
T-max (>0.15 °C) and T-min (>0.23 °C) in the 2020s,
2050s, and 2080s and this is in line with current studies
based on RCMs (Engelbrecht et al 2015, ICPAC 2016,
Osima et al 2018), which showed an increase in T-max
and T-min bymore than 0.5 °C. The projected change
in T-min is higher than for T-max and the overall
change will be higher than the change in global mean
temperature (IPCC 2014). However, compared to
SDSM, the projected change in T-max and T-min by
CanESM2 and GCMs is very high. In addition to the
high projection in T-max and T-min, both CanESM2
and GCMs showed higher deviation in representing
the current climate compared to SDSM (table 2). In
addition to the coarse resolution, the weak perfor-
mance of the CanESM2 andGCMs in representing the
current climate, compared to SDSM, could be due to
the complex topography of the region and because
GCMs provide an area average rather than point infor-
mation. These models are already showing higher
deviation, particularly high overestimation for T-max
and T-min, and cannot be expected to be accurate in
the future at a local scale as they are designed for large-
scale climate and impact assessment studies (Meijl et al
2018). The projected change in T-max and T-min is

Figure 3.Projected long-term changes in seasonal precipitation (mm) in for East Africa in the 2080s (2071–2100) under RCP2.6,
RCP4.5, andRCP8.5.
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higher in the 2050s and 2080s, particularly under
RCP8.5 and this is due to the expected change in emis-
sions of greenhouse gases (IPCC2013).

For this particular region, the deviations in temp-
erature projections between SDSM and GCMs are
indeed substantial, while they did not systematically
differ with regard to precipitation. Based on compar-
isons between the long-term mean and model results
presented in table 2, for example, GCMs over-
estimated T-max (T-min) at station Bahirdar (Ethio-
pia) compared to the observed value by 3.37 °C
(5.36 °C) but the deviation of SDSM-results were only
0.1 °C. Based on these observations, we consider pro-
jections by SDMS to be more reliable than by GCMs.
While, based on SDSM, warming should be less severe
than expected earlier, evaluating the potential impact
requires considering the baseline to which warming
adds. For example, in Ethiopia and large parts of

Tanzania, projected warming adds to the observed
warming trend amounting to up to+1.9 °C in T-max
during 1979–2010 (Gebrechorkos et al 2018a). One
also has to consider warming patterns and in this
regard, besides seasonal differentiation, e.g. the fre-
quency of warm or dry spells duration and warm and
cold days and nights is decisive for impacts on agri-
culture, health and infrastructure (Gebrechorkos et al
2018a). In line with the observed changes, projections
show an increase in climate extremes (e.g. in temper-
ature extremes) (Niang et al 2014, Nkemelang et al
2018, Klutse et al 2018,Osima et al 2018).

Based on SDSM, precipitation in the western
part of Ethiopia will be much higher than during the
baseline period but this part will be much drier dur-
ing JJAS, one of the most important rain seasons for
rain-fed agriculture in the highlands, in the 2020s,
2050s, and 2080s. In line with the projection, using

Figure 4.Projected long-term changes in yearly precipitation (mm) in East Africa in 2020s, 2050s, and 2080s under RCP2.6, RCP4.5,
andRCP8.5.
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the observed data (1981–2016), precipitation shows
an increasing trend during MAM and decreasing
trend during JJAS in the western part of Ethiopia.
According to Osima et al (2018), the western part of
Ethiopia will be drier during JJAS under the 1.5 °C
and 2.0 °C global warming levels. Therefore, there
seems to be a shift in seasonal rainfall from JJAS
towardsMAM, particularly during the 2020s. Hence,
the observed trends will continue in the 2020s,
2050s, and 2080s: increase in the western parts of
Ethiopia and Kenya and decrease in Tanzania and
the eastern parts of Kenya during MAM (Lyon and
DeWitt 2012, Tierney et al 2015, 2015, Nichol-
son 2017). Moreover, observed increasing trends in
precipitation in large parts of the region during OND
(Liebmann et al 2014) will continue to increase in

large parts of the region in the 2020s, 2050s, and
2080s.

Overall, the projected decrease during MAM and
increase during OND in Kenya and Tanzania are in
line with current studies based on RCMs and GCMs
(James and Washington 2012, Cook and Vizy 2013,
Tierney et al 2015, ICPAC 2016). The projected
decline in precipitation during MAM in Kenya and
Tanzania is linked with the projected warming of the
Indian Ocean (Cooper et al 2013) and the projected
changes in climatic conditions of the Congo basin
(Cook and Vizy 2013). According to Shongwe et al
(2011), the increase in precipitation during OND in
large parts of the region is significantly linked with the
projected changes in sea surface temperature of the
Indian Ocean and Walker circulation in the Eastern

Figure 5.Projected long-term average changes in T-max (°C) in East Africa for 2020s, 2050s, and 2080s under RCP2.6, RCP4.5, and
RCP8.5.
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Hemisphere. Compared to the baseline period, the
western parts of Ethiopia will be drier during JJAS and
OND and according to recent studies (Neupane and
Cook 2013, Lyon 2014, Souverijns et al 2016), the dry-
ing is due to the projected warming of the Gulf of Gui-
nea and changes in the low level of geopotential height.
In Tanzania, precipitation during JF will increase in
the 2020s, 2050s, and 2080s and this is in line with the
observed increasing trend, which was also concluded
as a signal of climate change (Dosio and Panitz 2016).
In general, precipitation in large parts of the region is
projected to be higher than the baseline period
throughout the 21 century and this is in line with pre-
vious studies based on RCMs and GCMs (Christensen
et al 2007, James and Washington 2012, Cooper et al
2013, Engelbrecht et al 2015), which showed an

increase, with greater model uncertainties, in pre-
cipitation in large parts of the region.

In Africa, compared to the observed data, high bia-
ses (associated with local and regional climate pro-
cesses) in RCMs and GCMs have been demonstrated
by (Buontempo et al 2015) and RCMswere considered
weak in simulating the current climate (Endris et al
2013, Gebrechorkos et al 2018b). GCMs, the most
widely used data source in Africa, poorly resolve local
climate forcing such as topography (Lennard et al
2018). Overall, several studies (e.g. Su et al 2012,
Engelbrecht et al 2015, Lutz et al 2016) concluded that
current projections based on GCMs show very large
uncertainties in different parts of the world. There-
fore, the downscaled high-resolution climate data can
help detect the changes in climate even at a smaller

Figure 6.Projected long-term average changes in T-min (°C) in East Africa in the 2020s, 2050s, and 2080s under RCP2.6, RCP4.5, and
RCP8.5.
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scale (e.g. watersheds) and allow for detailed climate
change impact assessment and adaptation studies in
sectors such as agriculture andwater resources.

6. Summary and conclusion

High-resolution climate data are usually required to
facilitate adaptation to the projected change in climate
in East Africa, which is one of the most climate
vulnerable parts of Africa. The projected climate based
on SDSM and GCMs shows an increase in T-max and
T-min throughout the 21 century. However, the
projection based on CanESM2 and GCMs is much
higher than SDSM and both CanESM2 and GCMs
showed high deviation (over- and under-estimation)
compared to the observed long-term average
(1961–2005) T-max and T-min. SDSM, on the con-
trary, showed higher agreement with T-max and
T-min in all the stations used. Based on SDSM,

precipitation shows a considerable change, particu-
larly during the seasons, in the 2020s, 2050s, and 2080s
in Ethiopia, Kenya, andTanzania. Precipitation during
the long-rain season (MAM) will be higher in the
western part of Ethiopia and lower in large parts of
Kenya and Tanzania in the 2020s, 2050s, and 2080s
under the RCPs. On the other hand, compared to the
baseline period, precipitation during JJAS will
decrease in thewestern part of Ethiopia and increase in
Kenya and Tanzania. The increase during MAM and
decrease during JJAS (throughout the 21 century) and
OND (in the 2020s) might indicate a shift in seasonal
rainfall in the western part of Ethiopia. In line with the
projected change, the observed long-term precipita-
tion (1981–2016) shows an increasing trend during
MAMand decreasing trend during JJAS in the western
part of Ethiopia. During OND, on the other hand,
large parts of the regionwill be wetter than the baseline
period in the 2020s, 2050s, and 2080s under the RCPs.

Figure 7.Projected, spatially averaged, changes in T-max (°C, top panels), T-min (°C,middle panels) and precipitation (mm, bottom
panels) in East Africa in the 2020s, 2050s, and 2080s under RCP2.6, RCP4.5, andRCP8.5 based on different climatemodels (SDSM,
CanESM2 and ensemble-means ofGCMs).
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Overall, based on SDSM, average annual precipitation
in large parts of the region will be higher than the
baseline period in the 2020s and further increases in
the 2050s and 2080s. Therefore, the output from
SDSMwith high spatial resolution can be best used for
impact assessment and adaptation studies in sectors
such as agriculture and water resource at a local and
regional scale in East Africa.
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