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We consider multivariate small area estimation under nonignorable, not missing 

at random (NMAR) nonresponse. We assume a response model that accounts 

for the different patterns of the observed outcomes, (which values are observed 

and which ones are missing), and estimate the response probabilities by 

application of the Missing Information Principle (MIP). By this principle, we first 

derive the likelihood score equations for the case where the missing outcomes 

are actually observed, and then integrate out the unobserved outcomes from the 

score equations with respect to the distribution holding for the missing data. The 

latter distribution is defined by the distribution fitted to the observed data for the 

respondents and the response model. The integrated score equations are then 

solved with respect to the unknown parameters indexing the response model. 

Once the response probabilities have been estimated, we impute the missing 

outcomes from their appropriate distribution, yielding a complete data set with no 

missing values, which is used for predicting the target area means.  A parametric 

bootstrap procedure is developed for assessing the mean squared errors (MSE) 

of the resulting predictors. We illustrate the approach by a small simulation study. 
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1. Introduction, models and assumptions 

Let { , ; 1,..., ,  1,..., }ij ij ii M j N y x  represent the data in a finite population of 

N units, belonging to M  areas, with iN  units in area i , 
1

M

ii
N N


 , where 

,1 ,( ,..., )ij ij ij Ky y y  is the vector of outcome values for unit j  in area i  and 

,1 ,( ,..., )ij ij ij Lx x x  is a vector of corresponding L  covariates. Note that the use of 

a single vector ijx  for the covariates accommodates situations where in fact 

different covariates, possibly of different dimension, apply to different 

observations. We assume that the covariates are known for every unit in the 

population, from a recent census or some administrative files. Suppose that the 

outcome values follow the generic two-level population model:  

              
| , ~ ( | , ),  1,..., ,  1,...,

~ ( );  ( ) (0,...,0) ,  ( ) ,

ind
U U

ij ij i ij ij i i

ind
U U U U U

i i i i

f i M j N

f E V

 

   

y x u y x u

u u u 0 u

,                                (1) 

where  ,1 ,( ,..., )U U U

i i i Ku u u  is a K-dimensional latent random effect.  

In the present article we assume that a noninformative sample has been drawn 

from the above population, but the observed data is incomplete because of not 

missing at random (NMAR) nonresponse. By noninformative sampling we mean 

that the sampling probabilities are not related to the outcome variable of interest 

after conditioning on the model covariates, such that the conditional distribution 

of the outcome variable in the sample, given the covariates, is the same as the 

corresponding distribution in the population from which the sample is taken.  

In practice, the observed data in a sample are almost never complete due to   

non-response. The extent of the non-response may differ from unit to unit within 

an area, with some units providing all the requested information, while others 

only providing part of it, with different units answering different questions. And to 

make matters worse, the non-response is NMAR, that is, the probability of some 

target component of a unit being missing may depend, at least in part, on the 

missing target value, as well as the other target values for that unit, whether 
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observed or missing. See e.g., Equation (10) for a simple example. As a 

consequence, approaches that ignore the non-response and just use the 

complete responses or those that model the non-response only as functions of 

the observed covariates may yield biased small area predictors. See the 

simulation study in Section 5. 

As a practical example, consider the Household Expenditure Survey (HES) 

carried out by Israel's Central Bureau of Statistics. The survey collects 

information on socio-demographic characteristics, as well as information on  

income and expenditure. The sample consists of households selected with equal 

probabilities by a two-stage sampling design. Three important questions asked in 

this survey (and in other similar surveys across the world) relate to the salary in 

each of the three months preceding the month of the interview. Table 1 presents 

the distribution of the observed response patterns of the three variable in the 

2017 survey, with “1” defining response and “0” nonresponse. The first position to 

the left defines the response regarding the salary in the month preceding the 

interview, the middle position defines the response regarding the salary 2 months 

before the interview, and the third position defines the response regarding the 

salary 3 months ago.   

Table 1. Response patterns on 3 salary variables in Israel's HES. 2017. 
 

 

 
Pfeffermann and Sikov (2011) found that the response to salary questions is 

informative but they did not consider SAE and restricted to a single target 

variable. For further discussion and illustrations of NMAR nonresponse and 

related concepts, see, Rubin (1976), Little (1982), Little and Rubin (2002) , 

Pfeffermann and Sikov (2011), and references therein.  

Returning to the present article, the target is to impute the missing data and use 

the observed and missing data for estimating the small area means, or other 

summary measures of interest. It may come as a surprise, but we are not familiar 

Res. Pattern 000 001 010 011 100 101 110 111 Total 

Count 885 23 14 308 20 9 40 9,664 10,963 

Percentage 8.1 0.2 0.1 2.8 0.2 0.1 0.4 88.2 100 
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with published articles considering small area estimation under NMAR 

nonresponse, except for Sverchkov and Pfeffermann (2018), which treats the 

case of univariate outcomes. The present paper extends the methodology 

developed in that article. See Pfeffermann and Sikov (2011) and Riddles et al. 

(2016) for reviews and many references addressing the problem of NMAR 

nonresponse when fitting models to survey data, but with no attention to SAE 

applications. 

Define the response indicator , 1(0)ij kR    if ,ij ky  is observed (unobserved), and 

let ,1 ,( ,..., )ij ij ij KR R R .  

Assumption 1.  

(1a) The response occurs independently between the units,  

(1b) * * * * *

* *Pr[ | ( , , ), 1,.... ,  1,..., ] Pr[ | , ]U

ij i ij ij iji j i j i
i M j N    R r y x u R r y x .  

As noted in Sverchkov and Pfeffermann (2018), Assumption 1b is very 

reasonable. In particular, it states that the probability to respond to the target 

variable ijy  does not depend on the corresponding random effect given ijy , 

Pr[ | , , ] Pr[ | , ]U

ij ij i ij ij ij iju  R r y x R r y x . Furthermore, it guarantees the 

identification of the response model. See Remark 3 in Section 2 for further 

discussion.  

Note that under (1) and Assumption 1, 

  
* * * * * * *

* * * *[ | , , ,{( , , , ), 1... ,  1... ;( , ) ( , )}]

( | , , ).

U U

ij ij i ij ii j i j i j i

U

ij ij i ij

f i M j N i j i j

f

  



y x u R y x R u

y x u R
    (2) 

We assume a parametric form for the completely observed outcomes,  

  
1 1

2 2 2

| , , (1,...,1) ~ ( | , ; ) ( | , , ; );

( | ) ~ ( ; ) ( | ; ),  ( ; ) 0.

ij ij i ij R ij ij i ij ij i ij

U U

i i i ij R i i ij R i

f f

E f f E

 

  

   

     

y x u R 1 y x u y x u R 1

u u u R 1 u u R 1 u
         (3) 

Note that in general, 
U

iu  and 
iu  are different if the nonresponse is NMAR. 
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Assumption 2. The subset {( , ) : }iji j R 1  is not empty for every sampled area, 

such that the parameters 1 2( , )    can be estimated by restricting to the fully 

observed data (units with no missing data), using classical small area estimation 

(SAE) procedures.  

Remark 1. Assumption 2 is for convenience and it is sufficient for our present 

approach to have fully observed data in only sufficient number of areas to allow 

efficient estimation of the parameters 1 2( , )   . Additionally, for a general 

response model under which the response to any given component of the 

multivariate target variable y  may depend on the component itself as well as the 

other components, with possibly different coefficients for each component, (see 

for example Equation 10 in Section 4), we also require sufficient number of 

observations for each response pattern ij
R , thus allowing efficient estimation of 

the response model for each component.   

Denote by 
1 2

ˆ ˆ ˆ( , )    the estimate of   obtained that way. For known  , the 

best predictor of the random effect iu  given the completely observed data, 

{( : ), , 1,..., ,  1,..., }C ij ij ij iO i M j N   y R 1 x , is ( | ; )i CE O u . We predict, 

ˆˆ ( | ; )i i CE O   u u .  

Our proposed procedure to deal with the multivariate informative (NMAR) 

nonresponse consists of the following steps: 

1- Fit a parametric model for the completely observed outcomes, (Equation 3). 

2-   Fit an appropriate parametric model for the response probabilities, which may 

depend on the outcome and the covariates (Assumption 1b), indexed by the 

unknown vector parameter  ; ( , ; )ij ijp 
r

y x Pr[ | , ; ]ij ij ij  R r y x , with 

( , ; )ij ijp 
r

y x  differentiable with respect to  . See Section 2 for details.  

2- Impute the missing outcomes from their appropriate distribution with the 

unknown parameters 1 2( , , )    replaced by their sample estimates, and then use 

the “complete” sample data (observed and imputed values), to predict the small 
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area means or other area measures of interest.  See Section 3 for the imputation 

equations under the model. Since we assume noninformative sampling such that  

if there was no nonresponse, the sample data would follow the same model as in 

the population, in what follows we do not distinguish between the population and 

sample data and consider the population data as our sample. The results of the 

present study can easily be generalized to the case where first a sample is 

selected from the finite population by some non-informative or informative 

sampling scheme, and then nonresponse occurs. In this case one can use the 

estimated distribution (3) and the estimated response model for imputation of the 

missing sample data as defined in the present article. Once the missing sample 

data are imputed, the small area means of interest can be estimated using the 

approach of Pfeffermann and Sverchkov (2007). 

In the next section we apply the MIP principle for estimating the response model 

parameters and discuss some related questions. In Section 3 we develop the 

imputation equations for the missing data, which, when combined with the 

observed data, permit simple estimation of the small area means or other area 

parameters of interest. In Section 4 we propose a parametric bootstrap 

procedure for estimating the prediction Root MSE of the resulting predictors. We 

illustrate our approach with a small simulation study in Section 5 and conclude 

with a summary of the main outcomes in Section 6. 

2. Estimation of response model parameters 

If the missing outcome values were actually observed, the vector parameter  , 

indexing the response probabilities model, could be estimated by solving the 

likelihood equations:  

                      
(1,...,1)

(0,...,0) ( , ):

log ( , ; )
0

ij

ij ij

i j

p 





 





 

r

r R r

y x
,                                            (4) 

where the external summation is over all the K-dimension vectors with 0,1 

elements.  
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In practice, the missing data are unobserved for ij R 1 and hence the likelihood 

equations (4) are not operational. However, one may apply in this case the 

missing information principle (MIP; Cepillini et al. 1955, Orchard and Woodbury, 

1972). See, in particular, Sverchkov (2008), Sverchkov and Pfeffermann (2018), 

and Riddles et al. (2016) for recent applications of the principle to handle 

univariate NMAR nonresponse. 

Missing Information Principle: Let . ,{( : 1), , 1,..., ,  1,..., }ij k ij k ij iO y R i M j N   x   

denote all the observed data. Since no observations are available for elements  

,( , ) : 0ij kij k R  , solve instead the best predictor of (4) given the observed data: 

  

            

(1,...,1)

(0,...,0) ( , ):

(1,...,1)

(0,...,0) ( , ):

log ( , ; )

log ( , ; )
, , 0.

ij

ij

ij ij

i j

ij ij

i ij

i j

p
E O

p
E E O O











 



 

 
  
 
 

  
   

   

 

 

r

r R r

r

r R r

y x

y x
u R r

                  (5) 

The expectation  
log ( , ; )

, ,
ij ij

i ij

p
E O





 
 

 

r
y x

u R r  can be approximated and 

solved as follows: Let   denote the set of indexes with observed values ,ij ky  and 

  denote the complement of  , i.e., , ,{ ; 1}ij ij k ky r  y , , ,{ ; 0}ij ij k ky r  y . 

Denote, , ,( : )ij ij kR k  R , , ,( : )ij ij kR k  R  and define by , 1 1  the 

corresponding unit vectors of respective dimensions. By Assumption (1b), 

log ( , ; )
, ,

ij ij

i ij

p
E O





 
  

 

r
y x

u R r  

, , ,

log ( , ; )
( | , , , )

ij ij

ij ij ij i ij ij

p
f d  






 


r y x

y y x u R r y  

log ( , ; )ij ijp 




 


r y x
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1

, , , , ,

1

, , , , ,

{[Pr( | , , , )] 1} ( | , , , )

[Pr( | , , , )] ( | , , , ) 1

ij ij i ij ij ij ij ij i ij ij

ij ij i ij ij ij ij ij i ij ij

f d

f d

      

      





   


   

R 1 x u R 1 y y y x u R 1 y

R 1 x u R 1 y y y x u R 1 y
;    (6) 

, ,

, , ,

( , ; )
Pr( | , , , )

( , ; ) ( | , , , )

ij ij

ij ij i ij ij

ij ij ij ij ij i ij ij

p

p f d
   

  




  



r

r

y x
R 1 x u R 1 y

y x y y x u R 1 y
. 

Finally, solve (5) with respect to   by substituting , , 1
ˆ( | , , , ; )ij ij ij i ijf   y y x u R 1  

1

1 ,

ˆ( | , ; )

ˆ( | , ; )

R ij ij i

R ij ij i ij

f

f d 








y x u

y x u y
 for , ,( | , , , )ij ij ij i ijf   y y x u R 1 , replacing iu  by ˆ iu  and 

dropping the external expectation. See Sverchkov and Pfeffermann (2018) for a 

similar approximation in the univariate case. 

The last equality (product) in (6) extends to the multivariate case the following 

fundamental relationship between the sample and sample-complement 

distributions, derived in Sverchkov and Pfeffermann (2004) for the univariate 

case:            

            

1

1

[ ( , ) 1] ( | , , 1)
( | , , 0)

{[ ( , ) 1] | , , 1}

r ij ij ij ij i ij

ij ij i ij

r ij ij ij i ij

p y x f y x u R
f y x u R

E p y x x u R





 
 

 
.                       (7) 

Equation (7) and its multivariate extension in Equation (6) form the basis for our 

proposed approach. It states that the distribution of an unobserved (missing) 

value ijy  is defined mathematically by the distribution of ijy  if it was observed, 

and the response model. Notice that under NMAR nonresponse, the distribution 

of ijy  given that the unit responded is different from the distribution of ijy  given 

that the unit did not respond, and also different from the population distribution 

of ijy , before nonresponse takes place. The proof of the multivariate extension 

applied in (6) follows the same simple steps of the proof of (7) in Sverchkov and 

Pfeffermann (2004), utilizing Bayes theorem. See also Sverchkov (2008) and 

Riddles et al. (2016).    
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In the Appendix, we illustrate the construction of Equation (6) under the mixed 

logistic model for the outcome variable. 

Remark 2. The dimension of the set of equations in (5) is equal to the dimension 

of   indexing the response model and hence it is impossible to estimate the 

parameters   and the parameters 1 2( , )    of the outcome model defined by 

(3), by solely solving this set.  

Remark 3. A fundamental question regarding the use of the MIP equations (5) is 

the existence of a unique solution, or more generally, the identifiability of the 

response model. For the univariate case, Riddles et al. (2016) deal with NMAR 

nonresponse in the general context of sample surveys by following an approach 

proposed by Sverchkov (2008), which is similar to our present approach. Riddles 

et al. (2016) established the following fundamental condition for the response 

model identifiability: the covariates x  can be decomposed as 
1 2x = (x ,x ) , with 

2( ) 1dim x , such that Pr( 1| , )ij ij ijR y x  1Pr( 1| , )ij ij ijR y  x . In other words, the 

covariates in 2x  that appear in the outcome model do not affect the response 

probabilities, given the outcome and the other covariates. Covariates of this 

property may or may not exist in a general set up, but interesting enough, SAE 

models actually contain such a variable, namely, the random effects. The random 

effects play a fundamental role in SAE models so the outcome clearly depends 

on them, but it is reasonable to assume that the response probabilities do not 

depend on the random effects, given the outcome value, (which depends on the 

random effects). In practice, the random effects are unobservable but we 

estimate them and then solve the equations (5) by conditioning on the estimated 

effects. So, it is actually the estimated random effects that play the role of the 

covariates 2x . In practice, other covariates that are predictive of the outcome but 

not of the response might exist as well.  
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3. Imputation of the missing data. 

Once the parameters   and   are estimated, the estimates can be substituted 

(together with ˆ
iu ) into the model holding for the missing data, using the 

relationship used in (6), yielding the following estimated distribution. Let  

, ,{ ; 0}ij ij k ky r  y  define, as before, the unobserved data.  

, ,
ˆˆˆ( | , , , ; , )ij ij ij i ijf     y y x u R r  

1

1

, , , 1 ,

, , ,

ˆˆ ˆ( , ; ) ( | , ; )
1

ˆˆ ˆ ˆ( , ; ) ( | , , , ) ( | , ; )

ˆ( , ; )

ˆ ˆ( , ; ) ( | , , , )

ij ij R ij ij i

ij ij ij ij ij i ij ij R ij ij i ij

ij ij

ij ij ij ij ij i ij ij

p f

p f d f d

p

p f d

   

  

 

 





  
   
  
   

 
 
 
 

 



r

r

r

r

y x y x u

y x y y x u R 1 y y x u y

y x

y x y y x u R 1 y

1

1

,

1 ,

.
ˆˆ( | , ; )

1
ˆˆ( | , ; )

R ij ij i

ij

R ij ij i ij

f
d

f d














y x u
y

y x u y

 (8) 

Note again that the distribution 1
ˆˆ( | , ; )R ij ij if y x u  is of the observed data and can 

thus be estimated from the data using standard SAE model fitting procedures.  

Imputation of the missing data can be carried out by drawing at random from the 

distribution (8). One may draw a single observation or multiple observations.  

Once the missing observations are imputed, prediction of the true population 

mean of the outcome variable or other measures of interest is carried out by 

application of standard procedures. See the empirical study in Section 5.    

Remark 4. By Assumption 1, the response occurs independently between units. 

   4. Estimation of Prediction MSE  

As in any other statistical inference problem, one has to assess the error of the 

resulting predictors. In SAE applications under the frequentist paradigm, it is 

common to estimate the Root Prediction Mean Squared Error (RPMSE). It is 

quite obvious that no analytic expression of the RPMSE can be derived, given 

the complexity of the prediction procedure, and we therefore propose a bootstrap 

procedure. As before, we assume for convenience no sampling, such that the 
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sample consists of all the population units. See Remark 5 below. The proposed 

bootstrap procedure consists of the following steps: 

B0- Impute the missing values as developed in Section 3. Consider the pseudo-

population of complete responses as the "true" population and calculate the 

corresponding true-pseudo area means.  

B1- For each unit ( , )i j  with complete observation 
c

ij
y  generated in Step B0, 

draw observed outcomes with probabilities ˆ( , ; )ijp r y x
c

ij
. 

B2- Apply all estimation and imputation procedures described in Sections 2 and 

3 to the observed sample obtained in Step B1. Estimate all the area means. 

B3- Repeat Steps B1 and B2 independently B times (B large) and compute for 

each area i  the bootstrap RPMSE,   

                
B0 2

m, m, , m,1

1 ˆ( ) ; 1,...,M, 1,...B
B

k k b kb
RPMSE Y Y m b

B 
    ,                 (9) 

where m, ,

ˆ
k bY  is the predictor obtained from bootstrap sample b  for the mean of 

the k-th component of the outcome variable in area m and 
B0

m,kY  is the 

corresponding pseudo mean in area m  as obtained in Step B0.   

Remark 5. The bootstrap procedure outlined above is partly design-based in the 

sense that we consider a single pseudo population and the models are used only 

for estimating the response probabilities and the model holding for the completely 

observed data. The procedure can easily be extended in two ways. First, we may 

generate a new pseudo population for each bootstrap sample, thus accounting 

also for the variability induced by the random generation of the population values. 

Second, we may extended the procedure to the case where a sample is selected 

from the population and nonresponse occurs in the sample, by first obtaining 

complete sample observations as in Step B0 and then generating a pseudo 

population using the procedure of Sverchkov and Pfeffermann (2004). 

Thereafter, a sample is drawn from the pseudo population with the same 

sampling design that was used for drawing the original sample. The other steps 
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follow Steps B1-B3 above (with or without accounting for the generation of the 

pseudo population, i.e., by generating only one pseudo population or generating 

a new population each time). 

5. Simulation Study  

In this section we describe the results of a simulation experiment when applying 

the procedures proposed in Sections 2, 3 and 4 (assuming no sampling and a 

single pseudo population).  

The experiment consists of the following steps: 

S1- Generation of population values: generate for each area , 1,...,300i i   and 

for each unit , 1,...,50j j   binary covariate values ijx  with   

Pr( 1) Pr( 0) 0.5ij ijx x    , random effects ,1 ,2( , ) ' ~ ( , )i i iu u Nu 0 I , 

1,...,300i  , and corresponding independent outcome values from the mixed 

logistic model,  

1
( , )y ij ip x u = ,1Pr( 1| , )ij ij iy x u  

                      ,1 ,1exp( .1 ) / [1 exp( .1 )],ij i ij ix u x u          

    
2
( , )y ij ip x u = ,2Pr( 1| , )ij ij iy x u ,2 ,2exp(.9 ) / [1 exp(.9 )]i iu u    .                    (9) 

 

Remark 6. The random effects are generated independently but they are not 

assumed to be independent in the estimation process.  

S2- Response mechanism: compute response probabilities for unit j  in area i  

as: 

0 1 2 ,1 3 ,2

4 5 6 ,1 7 ,2

8 9 10 ,1 11 ,2

( , )exp( ),        if    (1,1) '

( , )exp( ),        if    (1,0) '
( , , )

( , )exp( ),      if    (0,1) '

(

ij ij ij ij ij

ij ij ij ij ij

ij ij

ij ij ij ij ij

C x γ γ x γ y γ y

C x γ γ x γ y γ y
p x

C x γ γ x γ y γ y

C x



   

   


   
r

y r

y r
y

y r

, ),                                                      if    (0,0) 'ij ij






  y r

;   (10) 

0 1 2 ,1 3 ,2 4 5 6 ,1 7 ,2

1

8 9 10 ,1 11 ,2

( , ) [1 exp( ) exp( )

exp( )] ;

ij ij ij ij ij ij ij ij

ij ij ij

C x γ γ x γ y γ y γ γ x γ y γ y

γ γ x γ y γ y 

        

   

y
                 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 

 

 
0 1 2 3 4 5 6 7= 0,  = -.5,  = 3,  = -3,  = 0,   = -.5,  = 2,  = -2,γ γ γ γ γ γ γ γ 8 9= 0,  = -.5,γ γ  

10 11=1,  = -1.γ γ  Clearly, the nonresponse is NMAR since the response 

probabilities depend on the outcomes. Notice that the response for ,1 ,2,ij ijy y  is 

generated independently between units. 

Remark 7. We generated a single (finite) population and hence, a single set of 

response probabilities.   

S3- Generating responses: generate responses from the (single) population 

generated in S1, with response probabilities defined in S2 (Equation 10). 

S4- Fitting respondents’ model: estimate 
1 ,1

ˆˆ ˆ( , ) Pr( 1| , , )y ij i ij ij i ijp x y x  u u R 1 ,  

2 ,2
ˆˆ ˆ( , ) Pr( 1| , , )y ij i ij ij i ijp x y x  u u R 1  by fitting the mixed logistic model (9), 

using PROC NLMIX in SAS with default options. Notice that the model (9) is not 

the true respondents’ model under the response model (10), because of the 

NMAR nonresponse.  

S5. Estimation of response probabilities: assume the parametric response model 

(10), compute the expectations in (6) under the estimated models 
1

ˆ ˆ( , )y ij ip x u , 

2
ˆ ˆ( , )y ij ip x u  in Step S4 and estimate  , using the procedure described in Section 

2. See Sverchkov and Pfeffermann (2018) for numerical details. 

S6. Imputation of missing data: impute the unobserved  data from the distribution 

of the missing data defined in Section 3, which in the present case reduces to:  

, ,( | , , , )ij ij ij i ijf   y y x u R r

1

, , , , ,

1

, , , , ,

{[Pr( | , , , )] 1} ( | , , , )

[Pr( | , , , )] ( | , , , ) 1

ij ij i ij ij ij ij ij i ij ij

ij ij i ij ij ij ij ij i ij ij

f d

f d

      

      





   


   

R 1 x u R 1 y y y x u R 1 y

R 1 x u R 1 y y y x u R 1 y
.  

Remark 8. We imputed a single value for each missing value but one may 

impute several values, using a multiple imputation approach.  

Repeat Steps S3-S6 independently 500 times.  
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Predictors considered: compute the following predictors for each area on each 

simulation.  

1. 
1

,1 ,1

1

,1 ,1

, 1 1, 0

ˆ ˆ ˆ{ ( , )}
i

ij ik

N
ign

i i ij y ik i

j R k R

Y N y p x

  

   u , 

    
2

,2 ,2

1

,2 ,2

, 1 1, 0

ˆ ˆ ˆ{ ( , )}
i

ij ik

N
ign

i i ij y ik i

j R k R

Y N y p x

  

   u . 

The predictors ,1 ,2

ˆ ˆ,ign ign

i iY Y  ignore the response process and “assume” that the 

population distribution holds also for the observed outcomes. 

2. 
1

,1 ,1

1

ˆ
iN

new imp

i i ij

j

Y N y



  , 
1

,2 ,2

1

ˆ
iN

new imp

i i ij

j

Y N y



  , where , ,

imp

ij k ij ky y  if ,ij ky  is observed, 

and  ,

imp

ij ky  is the imputed value from Step S6 if ,ij ky  is missing ( 1,2k  ).  

The estimators ,1 ,2

ˆ ˆ,new new

i iY Y  are our proposed estimators, accounting for the 

multivariate NMAR nonresponse. 

Statistics considered for assessment of the of predictors' performance  

Denote by , ,i k rY  the true mean of area i  on the r-th simulation (for first or second 

coordinate, k= 1 or 2), and let , ,

ˆ
i k rY  represent the first or second predictors 

defined above, 1,...,500r  . 

500

, , , ,1
,

ˆ( )

500

i k r i k rr
i k

Y Y
Bias 





  ; 

500 2

, , , ,1
,

ˆ( )

500

i k r i k rr
i k

Y Y
RPMSE 





;   

,

,

,

Rel
i k

i k

i k

Bias
Bias

V
 ; 

500 500 2

, , , ,1 1

,

1ˆ ˆ( )
500

500

i k r i k rr r

i k

Y Y

V
 




 

; 

,

,
500

, ,1

RelRPMSE
1

500

i k

i k

i k rr

RPMSE

Y



 
 
 


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We calculated for each area the average (over the 500 simulations) of the 

number of complete responses and ordered the areas by these averages (the 

smallest mean number of complete responses is 2.3, the largest is 28.1). 

S7. Estimation of the Root Prediction MSE (RPMSE): compute bootstrap 

estimates of RPMSE following the steps B0-B3 in Section 4. 

In the following four figures we show the results for ,Rel i kBias  and ,RelRMSEi k , 

1,2k   for each area, with the areas ordered as above, starting with the area 

with the smallest number of complete responses.  

Figure 1. ,1Rel iBias  of ,1

ˆ ign

iY  (“o”) and ,1

ˆ new

iY  (“+”) 

 
 

Figure 2. ,2Rel iBias  of ,2

ˆ ign

iY  (“o”) and ,2

ˆ new

iY  (“+”) 

 

Figures 1 and 2 show how the proposed method reduces very significantly the 

bias due to NMAR nonresponse. As expected, the bias of both set of predictors 

decreases as the number of complete responses increases but our proposed 

predictors are seen to be much less biased. 
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Figure 3. ,1RelRPMSEi  of ,1

ˆ ign

iY  (“o”) and ,1

ˆ new

iY  (“+”) 

 

Figure 4. ,2RelRPMSEi  of ,2

ˆ ign

iY  (“o”) and ,2

ˆ new

iY  (“+”) 

 

The reduction in RelRMSE by accounting for the NMAR nonresponse in Figure 3 

is not big, which is explained by the fact that the bias of the predictors that ignore 

the nonresponse is not very high in this case. Notice in this respect that the 

average number of missing values ,1ijy  over the 500 simulations is 5531.5, 

compared to an average number of 6014.6 missing values of ,2ijy .  Nonetheless, 

when averaging the ,1RelRMSEi  over all the areas we find that, 

,1 ,1

ˆAverage[RelRPMSE ( )]ign

i iY 
300

,1 ,1

1

1 ˆRelRPMSE ( )
300

ign

i i

i

Y


 =0.51,

,1 ,1

ˆAverage[RelRPMSE ( )]new

i iY   0.44.  

When estimating ,2iY  in Figure 4, the reduction in the RelRPMSE  by use of the 

proposed procedure is much more drastic, particularly in the areas with small 
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numbers of complete responses, due to the large bias when ignoring the NMAR 

nonresponse.  

,2 ,2

ˆAverage[RelRPMSE ( )]ign

i iY 0.93,     ,2 ,2

ˆAverage[RelRPMSE ( )]new

i iY   0.28.  

Next, we study the sensitivity of the proposed approach to correct specification of 

the response model. For this, we repeated the same simulation study, but by 

computing the response probabilities as: 

  

0 1 2 ,1 3 ,2

4 5 6 ,1 7 ,2

8 9 10 ,1 11 ,2

( , )exp[ )],        if    (1,1) '

( , )exp[ )],        if    (1,0) '
( , , )

( , )exp[( )],      if    (0,1)

ij ij ij ij ij

ij ij ij ij ij

ij ij

ij ij ij ij ij

C x γ γ x (γ y γ y

C x γ γ x (γ y γ y
p x

C x γ γ x (γ y γ y


  

  


  
r

y r

y r
y

y r '

( , ),                                                       if    (0,0) 'ij ijC x






  y r

;     (11)                                         

0 1 2 ,1 3 ,2 4 5 6 ,1 7 ,2( , ) {1 exp[ ( )] exp[ ( )]ij ij ij ij ij ij ij ijC x γ γ x γ y γ y γ γ x γ y γ y      y

1

8 9 10 ,1 11 ,2exp[ ( )]}ij ij ijγ γ x γ y γ y    , with the same coefficients as in (10).  

With these response probabilities, the number of complete responses in an area 

(averaged over the 500 simulations), is in the range [9.3, 18.3].  

When estimating the response model parameters in Step S5 of the simulation, 

we still use the model (10) as the working model, so that the model for the 

response is misspecified, and so is the model estimated for the missing data. (As 

mentioned before, the model estimated for the completely observed outcomes is 

also not correct).   

Table 2 compares the true response probabilities (Equation 11) with the average 

of the estimated response probabilities over the 500 simulations under the 

misspecified response model (Equation 10). Notice that except in a few cases, 

that averages of the estimated response probabilities under the misspecified 

model are close to the true response probabilities, already illustrating lack of 

sensitivity of our proposed approach to correct specification of the response 

model, although the differences between the true response probabilities and their 

estimates are occasionally larger for any given sample. 
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Table 2. True response probabilities, ,( , )r i jp , and average of estimated response 

probabilities, ,( , )
ˆ

r i jAp under misspecified response model, for different response 

patterns ;( 0,1, 0,1)ijr i j  .   
 

 

Figure 5. ,1Rel iBias  of ,1

ˆ ign

iY  (“o”) and ,1

ˆ new

iY  (“+”), response model misspecified 

Figure 6. ,2Rel iBias  of ,2

ˆ ign

iY  (“o”) and ,2

ˆ new

iY  (“+”), response model misspecified 

 

x  
1y  2y  ,(1,1)rp  ,(1,0)rp  ,(0,1)rp  ,(1,1)

ˆ
rAp  ,(1,0)

ˆ
rAp  ,(0,1)

ˆ
rAp  

0 0 0 .25 .25 .25 .25 .25 .25 

0 0 1 .25 .25 .25 .31 .26 .21 

0 1 0 .25 .25 .25 .19 .22 .30 

0 1 1 .25 .25 .25 .24 .26 .24 

1 0 0 .25 .25 .25 .30 .24 .24 

1 0 1 .46 .27 .17 .36 .26 .19 

1 1 0 .10 .17 .27 .23 .22 .29 

1 1 1 .25 .25 .25 .28 .26 .23 
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With the misspecified response model (and the model for the completely 

observed data), there are no big biases even when ignoring the NMAR 

nonresponse. Nonetheless, even in this case, when averaging over all the areas, 

,1

ˆ[| Relbias ( )|]=ign

iAverage Y 1.09, ,1

ˆ[| Relbias ( )|]=new

iAverage Y  0.50,  

,2

ˆ[| Relbias ( )|]=ign

iAverage Y  1.17, ,2

ˆ[| Relbias ( )|]=new

iAverage Y  0.47.  

Next we compare the RelRPMSEs of the two estimators. 

Figure 7. ,1RelRPMSEi  of ,1

ˆ ign

iY  (“o”) and ,1

ˆ new

iY  (“+”), response model misspecified 

 

Figure 8. ,2RelRPMSEi  of ,2

ˆ ign

iY  (“o”) and ,2

ˆ new

iY (“+”), response model misspecified 

 

Figures 7 and 8 show reduction in the RelRPMSEs when accounting for the 

NMAR nonresponse in the areas with small number of complete responses. 

When averaging over all the areas,  

,1 ,1

ˆAverage[RelRPMSE ( )]ign

i iY  0.41, ,1 ,1

ˆAverage[ RPMSE ( )]new

i iRel Y  0.34;

,2 ,2

ˆAverage[RelRPMSE ( )]ign

i iY 0.17, ,2 ,2

ˆAverage[RelRPMSE ( )]new

i iY   0.14.  
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We conclude that even under the misspecified models, our approach generally 

yields predictors with smaller RelRMSEs than when ignoring the NMAR 

nonresponse. Clearly, the predictors obtained under this approach have larger 

variances than when ignoring the NMAR nonresponse, due to all the complex 

computations involved, so that the large differences in the bias do not always 

translate into corresponding large differences in the RelRMSEs. 

Finally, we report the results of RelRPMSE estimation. Due to time limitation, the 

results so far are based on only 100 parent samples and 50 bootstrap samples 

for each parent sample. Figures 9 and 10 compare the “true” (empirical) 

RelRPMSEs over the 100 parent samples, with the mean of the corresponding 

bootstraps estimates.  

Figure 9. ,1RelRPMSEi  of  ,1

ˆ new

iY  (“+”), and bootstrap estimates (“o”)  

 

Figure 10. ,2RelRPMSEi  of  ,2

ˆ new

iY  (“+”), and bootstrap estimates (“o”) 

 

The results in Figures 9 and 10 show for most areas good performance of the 

bootstrap estimators and we believe that with more parent samples and 
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bootstrap samples, the results will look even better. Even with the current runs, 

when averaging over all the areas, 

,1Average[RelRPMSE ] 0.38i  , ,1Average Bootstrap[RelRPMSE ] 0.35i  , 

,2Average[RelRPMSE ] 0.41i  , ,2Average Bootstrap[RelRPMSE ] 0.41i  , 

illustrating the unbiasedness of the bootstrap estimators when averaging over all 

the areas. 

We compared the empirical RelRPMSE’s with the bootstrap estimates also for 

the case of the misspecified response model and obtained similar results. To 

save in space, we don’t show the corresponding figures. 

6. Summary 

In this paper we propose a general approach for multivariate SAE under NMAR 

nonresponse within the selected areas. The approach consists of fitting a model 

for the observed data and using this model for estimating a postulated 

multivariate response model by application of the missing information principle. 

Once the response model is estimated, we derive the model holding for the 

missing data, which is used for imputing the missing data, thus obtaining a 

complete file of sample data that is used for estimating the unknown small area 

parameters. A bootstrap procedure is proposed for estimating the root prediction 

mean squared errors of the small area predictors, which consists of generating a 

pseudo population with similar behaviour to the behaviour of the true underlying 

population, and selecting many samples from the pseudo population and many 

sets of responses for each sample.   

A simulation study shows good performance of our approach in terms of point 

and RPMSE estimation. The simulation study also illustrates certain robustness 

to misspecification of the response model. The empirical study in this paper 

considers the case where the models that are fitted for the responding units and 

the response probabilities are logistic, but the theoretical derivations assume 

general models for the observed data and the response mechanism. Thus, we 

encourage researchers of SAE to apply the procedure to simulated and real data 
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sets, with possibly different models assumed for the observed data and the 

response probabilities. 
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Appendix. Illustration of the use of Equation (6) for  

Estimation of the response probabilities: 

Mixed logistic model for the outcome variables with a single covariate. 

Consider bivariate variables 1 2( , )ij ijy y
ij

y , and suppose that the model fitted to 

the observed data of the respondents is the mixed generalized logistic model, 

 

                 
1 ,1( , ) Pr( 1| , , )y ij i ij ij ip x y x  iju u R = 1  

      
1

1 1 ,1 1 1 ,1exp( )[1 exp( )]ij i ij ix u x u           

                 
2 ,2( , ) Pr( 1| , , )y ij i ij ij ip x y x  iju u R = 1                                                         (8) 

           
1

2 2 ,2 2 2 ,2exp( )[1 exp( )]ij i ij ix u x u          , 

                         ,1 ,2( , ) ' ~ ( , )i i iu u N u 0 .         

Suppose a generic response model, ( , ; )ij ijp x 
r

y = Pr[ | , ; ]ij ij ijx R r y .   

We assume that ,1ijy  and ,2ijy  are independent given , ,ij ix
ij

u R = 1 , and that 

Pr[ | , , ; ] Pr[ | , ; ]ij ij ij i ij ij ijx x   R r y u R r y . 

Then, for example, for (0,1)'r , the components of (6) can be written as, 

log ( , ; )ij ijp 






r y x

1

, , , , ,{[Pr( | , , , )] 1} ( | , , , )ij ij i ij ij ij ij ij i ij ijf d      

    R 1 x u R 1 y y y x u R 1 y  

,2log [(1, ) ', ; ]ij ijp y 








r x

1 1

,2 1

,2 ,2

[(1, ) ', ; ]
{[ ] 1}

[(1, ) ', ; ] ( , ) [(0, ) ', ; ][1 ( , )]

ij ij

ij ij y ij i ij ij y ij i

p y

p y p x p y p x



 

 
 

r

r r

x

x u x u
 

1
( , )y ij ip x u

,2log [(0, ) ', ; ]ij ijp y 








r x
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1 1

,2 1

,2 ,2

[(0, ) ', ; ]
{[ ] 1}

[(1, ) ', ; ] ( , ) [(0, ) ', ; ][1 ( , )]

ij ij

ij ij y ij i ij ij y ij i

p y

p y p x p y p x



 

 
 

r

r r

x

x u x u

1
[1 ( , )],y ij ip x  u  

1

, , , , ,{[Pr( | , , , )] 1} ( | , , , )ij ij i ij ij ij ij ij i ij ijf d      

    R 1 x u R 1 y y y x u R 1 y  

1 1

,2 1

,2 ,2

[(1, ) ', ; ]
{[ ] 1}

[(1, ) ', ; ] ( , ) [(0, ) ', ; ][1 ( , )]

ij ij

ij ij y ij i ij ij y ij i

p y

p y p x p y p x



 

 
 

r

r r

x

x u x u

1
( , )y ij ip x u  

1 1

,2 1

,2 ,2

[(0, ) ', ; ]
{[ ] 1}

[(1, ) ', ; ] ( , ) [(0, ) ', ; ][1 ( , )]

ij ij

ij ij y ij i ij ij y ij i

p y

p y p x p y p x



 

 
 

r

r r

x

x u x u
 

1
[1 ( , )]y ij ip x  u . 

Similar expressions are obtained for (1,0)'r  and (0,0)'r . 
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