
A lexicographic pricer for the fractional bin packing problem
Stefano Coniglio, Fabio D’Andreagiovanni and Fabio Furini

Department of Mathematical Sciences, University of Southampton, University Road, SO17 1BJ, Southampton, UK
French National Center for Scientific Research (CNRS), France, Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Heudiasyc UMR
7253, CS 60319, 60203 Compiègne Cedex, France
LAMSADE, Université Paris-Dauphine, 75775, Paris, France

ART ICLE INFO

Keywords:
fractional bin packing problem
column generation
dynamic programming
lexicographic optimization

ABSTRACT

We propose an exact lexicographic dynamic programming pricing algorithm for solving the Frac-
tional Bin Packing Problem with column generation. The new algorithm is designed for generating
maximal columns of minimum reduced cost which maximize, lexicographically, one of the measures
of maximality we investigate. Extensive computational experiments reveal that a column generation
algorithm based on this pricing technique can achieve a substantial reduction in number of columns
and computing time, also when combined with a classical smoothing technique from the literature.

1. Introduction
Given a setN = {1,… , n} of items with positive integer

weights w1,… , wn and an unlimited number of bins with a
positive integer capacity C , the Bin Packing Problem (BPP)
asks to compute theminimumnumber of bins needed to pack
all the items. The BPP is a key problem in combinatorial
optimization. It is -hard and also very challenging to
solve from a computational viewpoint. For recent works on
the problem and for a survey, we refer the reader to [9, 11,
12, 15].

In this paper, we focus on solving the Fractional Bin
Packing Problem (FBPP)—a linear programming relaxation
of the BPPwhich is known to provide very strong dual bounds
and whose variables correspond to sets of items (or patterns)
fitting into a bin [7, 15]. State-of-the-art methods for solv-
ing the FBPP rely on a Column Generation (CG) approach
by which the patterns (columns) are generated one at a time.

As inclusion-wise maximal columns of the FBPP domi-
nate nonmaximal ones (see Section 3 for more details), en-
forcing the generation ofmaximal columns is advisablewhen
solving the FBPP with CG. Since the problem often admits
many columns ofminimum reduced cost which are alsomax-
imal (see Example 1 in Section 3), it is natural to ask oneself
whether, among many such maximal columns, one should
be preferred to the another ones in order to obtain a speed
up in the convergence of the CG algorithm.

We investigate this question by studying three different
measures of maximality and by proposing an exact lexico-
graphic dynamic programming pricing algorithm capable of
generatingmaximal columns ofminimum reduced cost which
also maximize, lexicographically, one of the three measures.

s.coniglio@soton.ac.uk (S. Coniglio);
d.andreagiovanni@hds.utc.fr (F. D’Andreagiovanni);
fabio.furini@dauphine.fr (F. Furini)

ORCID(s): 0000-0001-9568-4385 (S. Coniglio); 0000-0003-0872-3636
(F. D’Andreagiovanni); 0000-0002-1839-5827 (F. Furini)

2. Preliminaries
We call pattern any feasible set of items S ⊆ N with

∑

j∈S wj ≤ C . LetS be the collection of all patterns, namely,
S ∶= {S ⊆ N ∶

∑

j∈S wj ≤ C}. Let A ∈ {0, 1}n×|S | be
a binary matrix with ajS = 1 if and only if item j ∈ N be-
longs to pattern S ∈ S , and let e be the all-one vector of n
components.

Upon introducing a nonnegative variable �S for each pat-
tern S ∈ S , the FBPP amounts to solving the following lin-
ear programming problem:

(FBPP) min
�≥0

{

∑

S∈S
�S ∶ A� ≥ e

}

. (1)

The dual bound provided by the FBPP is very tight, as the
absolute difference (gap) between the optimal solution val-
ues of the FBPP and BPP is, typically, smaller or equal to
1. Since classes of BPP instances in which this difference is
exactly 1 are known in the literature [8], the FBPP does not
enjoy the integer round-up property (we consider an instance
with a gap of 1 in Section 5). To the best of our knowledge,
no instance with a gap strictly greater than 1 has been found.
It is indeed conjectured (modified integer round-up property)
that the gap can never be larger than 1 [8].

The FBPP is usually solved via a CG method. We call
Restricted Master Problem (RMP) a restriction of Formu-
lation (1) to a subset of columns S̃ which admits a feasi-
ble solution (S̃ comprises an initial pool of columns plus
all those which have been generated up to the current iter-
ation). Iteratively, the CG method solves the RMP and the
corresponding Pricing Problem (PP) so to determine a new
pattern (column) to be added to S̃ . The procedure is iter-
ated until no more columns with a negative reduced cost are
found and, thus, the RMP is solved to optimality.

At a given CG iteration, let �∗ ∈ ℝn
+ be a vector of opti-

mal dual variables corresponding to an optimal solution �∗
of the RMP. The PP can be formulated as the following 0-
1 knapsack problem, where xj = 1 if and only if the new

Coniglio et al.: Preprint submitted to Elsevier Page 1 of 8

A lexicographic pricer for the fractional bin packing problem

pattern contains the item of index j ∈ N :

(PP) max
x∈{0,1}n

{

∑

j∈N
�∗j xj ∶

∑

j∈N
wj xj ≤ C

}

. (2)

Let x∗ be an optimal solution to the PP. If
∑

j∈N �
∗
j x

∗
j > 1

(i.e., the reduced cost of the new pattern is negative), the
pattern S∗ ∶= {j ∈ N ∶ x∗j = 1} is added to S̃ and the
procedure is reiterated.

We remark that the dual of Formulation (1) contains a
constraint of type

∑

j∈S �j ≤ 1 for each S ∈ S , and that
generating a column ofminimum reduced cost (1−

∑

j∈S∗ �
∗
j)

corresponds to separating, in the dual of the RMP, an in-
equality of maximum violation.

In the context of CG approaches for solving the BPP/FBPP
problems, state-of-the-art algorithms for the solution of Prob-
lem (2) rely onDynamic Programming (DP) [25, 30]. These
algorithms are based on the following recursive equation,
which is satisfied for all j ∈ N and s ∈ {0,… , C}:

�j(s) ∶= max{�j−1(s), �j−1(s −wj) + �∗j }, (3)

where �j(s) is defined as the optimal solution value of a re-
striction of the problem to items in {1,… , j} and a capacity
of s ≤ C . We assume �0(s) ∶= 0 for all s ∈ {0,… , C} and
�0(s) ∶= − ∞ for every s < 0. The optimal solution value
of the PP corresponds to �n(C).

For every S ⊆ N , we define w(S) ∶=
∑

j∈S wj and
�∗(S) ∶=

∑

j∈S �
∗
j . The DP algorithm relies on a list F

of maximum size C which, at each iteration j, contains the
value of �j(s) in each position indexed by s ≤ C . Each of
the values of F is computed in O(1) thanks to Equation (3).
The algorithm runs in O(nC). An optimal solution can be
obtained in O(n) by storing a binary matrix U satisfying
U (j, s) = 1 if and only if item j is added to the optimal so-
lution found by the DP algorithm of the problem restricted
to items in {1,… , j} and to capacity s ≤ C . Equation (3)
corresponds to a dominance rule according to which, when-
ever two solutions S′, S′′ of the same total weight w(S′) =
w(S′′) are found, only the onewith larger profit (either�∗(S′)
or �∗(S′′)) is stored.

In the next section, we show how to extend this DP al-
gorithm so to guarantee the generation of a column of mini-
mum reduced cost which also maximizes, lexicographically,
a measure of maximality. The overall aim is obtaining a
method which exhibits, in practice, a faster convergence.

We remark that CG methods are well known to suffer
from a number of computational issues, including dual os-
cillations, tailing-off effects, and primal degeneracy of the
master problem [16]. After the seminal work of [26], sev-
eral stabilization techniques have been proposed in the liter-
ature [31, 10, 21, 5]. While the method that we propose here
is aimed at accelerating the practical convergence rate of the
CG algorithm, it is not a stabilization technique of the dual
variables. It is, rather, a parameter-free way of obtaining a
similar effect without having to resort to often complicated
stabilization techniques that typically require a good degree
of parameter tuning [27].

3. The search for maximal columns
A pattern S ∈ S and the corresponding column are

called maximal if, for all the items j ∈ N ⧵S, S ∪{j} ∉ S .
By inspecting the dual of Formulation (1), one can see that
any nonmaximal patternS originates a dual inequalitywhich
is dominated by at least another inequality corresponding
to a maximal pattern S′ ⊃ S. It follows that nonmaximal
columns/patterns can be discarded.

Maximal columns can be achieved by applying an a pos-
teriori greedy procedure which, after the PP is solved, adds
to the generated pattern items j ∈ N with �∗j = 0 (in any or-
der) until either the capacity C is saturated or no other item
fits. This is equivalent to applying a sequential lifting pro-
cedure on the corresponding dual constraint, see [29], which
suffices to show that maximal columns are facet-defining for
the dual of the FBPP.

As we mentioned (see also Example 1), the FBPP may
admit many different maximal columns even when restrict-
ing ourselves to columns of minimum reduced cost. This is
clear if �∗ is sparse, which is often the case as, due to com-
plementary slackness, �∗j = 0 whenever

∑

S∈S∶j∈S �S > 1.
The natural question is then: should some of these maximal
columns be preferred to the other ones? We address this
question in the remainder of the paper.

3.1. Measures of maximality
We consider the following three measures of maximal-

ity: (i) Weight, (ii) Diversity, and (iii) Density.

Weight. This measure is equal to the total weight of the
items in the pattern. Formally:

gw(x) ∶=
∑

j∈N
wjxj . (4)

A pattern S ⊆ N has maximumweight
∑

j∈S wj if and only
if it hasminimumwasteC−

∑

j∈S wj . It is known that, in the
integer case, any solution with more than one bin of waste
larger than C

2 cannot be optimal (see Chapter 8.3.2 of [25]).
This can be extended to the case of the FBPP as follows:

Proposition 1. Given any two distinct patterns S1, S2 each
of waste greater or equal than C

2 , a solution to the FBPP
with �S1 > 0 and �S2 > 0 cannot be optimal.

Proof: Since S1 and S2 have waste greater or equal than
C
2 , they can be merged into a new pattern S′ ∶= S1 ∪ S2.
Letting �S′ ∶= max{�S1 , �S2}, �S1 ∶= 0, and �S2 ∶= 0, we
obtain another feasible solution with an objective function
value smaller than that of the original one, precisely we have
�S1 + �S2 − max{�S1 , �S2} > 0. □

The following proposition establishes a bijection between
optimal solutions of the FBPP and those of an alternative
master problem in which the total waste is minimized:

Proposition 2. The optimal solutions of the FBPP as de-
fined in (1) and those of the following alternative problem

Coniglio et al.: Preprint submitted to Elsevier Page 2 of 8

A lexicographic pricer for the fractional bin packing problem

coincide:

argmin
�≥0

{

∑

S∈S
(C −

∑

j∈S
wj)�S ∶

∑

S∈S∶j∈S
�S = 1,∀j ∈ N

}

.

Proof: Due to the packing constraint, the objective func-
tion of the alternative problem is obtained by a nonnegative
affine transformation of the objective function of the FBPP.
Indeed, the former can be rewritten as follows:
∑

S∈S (C−
∑

j∈S wj)�S = C
∑

S∈S �S−
∑

S∈S
∑

j∈S wj�S
= C

∑

S∈S �S −
∑

j∈S wj
∑

S∈S∶j∈S �S .
As

∑

S∈S∶j∈S �S = 1 for each j ∈ N , the last expres-
sion is equal to C

∑

S∈S �S −
∑

j∈N wj : an affine function
of the FBBP’s objective function. The claim follows since,
w.l.o.g., in an optimal FBBP solution the covering constraint
is satisfied as an equation. □

Since any solution which only contains patterns of zero
waste is optimal for the alternative problem (as it achieves
an objective function value of 0), Proposition 2 implies that
such solution is also optimal for the FBPP. As we discuss in
Subsection 5.3, this is often the case in many of the instances
of the literature. In the same subsection, we also show that
even instances that do not admit optimal solutions with pat-
terns of zero waste contain, on average, patterns whosewaste
is very small. This suggests that by favoring the generation
of columns of large weight we can introduce columns which
are more likely to be contained in an optimal FBPP solution
earlier during the execution of the CG algorithm.

Diversity. In the cutting plane literature, a number of pa-
pers have observed the benefits of generating diversified cuts,
see [20, 6, 32, 3]. Since a (primal) column generationmethod
can be seen as a cutting planemethod for the dual, investigat-
ing the benefits of generating diversified columns is reason-
able. This has already been observed (with different tech-
niques than those proposed in this paper) in [28, 24, 23].

We consider, here, a measure originally proposed in [2,
3] in the context of a cutting planemethod to generate, among
all cuts of maximum violation, one which is maximally di-
verse with respect to the previously generated ones. In
the column generation setting, the measure is equal to the
1-norm distance ‖x − s̃‖1 between the column x to be gener-
ated and the average s̃ of the previously generated columns,
additively combined with trade-off factor � > 0 with the
density ‖x‖1 of x. Formally:

gc(x) ∶= ‖x − s̃‖1 + � ‖x‖1 . (5)

With � > 1, one can show that onlymaximal columnswill be
produced [2, 3]. Since x is binary, ‖x − s̃‖1+ � ‖x‖1 can be
rewritten as

∑

j∈N xj−2
∑

j∈N s̃jxj+
∑

j∈N s̃j+�
∑

j∈N xj .
When letting � = 2 (as suggested in [3]), we have:

gc(x) =
∑

j∈N

(

3 − 2s̃j
)

xj +
∑

j∈N
s̃j .

The second term, being a constant, can be dropped.
Differently from [3], which reformulates the lexicographic

problem where gc is maximized as a single-objective prob-
lem employing an exact trade-off factor � (with the draw-
back that numerical issues may arise if � is too small), the

approach we propose in this paper relies on a suitably de-
signed lexicographic dynamic programming method which
is entirely parameter-free and does not suffer from numerical
issues (see Section 4).

Density. The last measure we consider is equal to the num-
ber of items in the pattern S = {j ∈ N ∶ xj = 1}. For-
mally:

gd(x) ∶= ‖x‖1 =
∑

j∈N
xj = |S|. (6)

While being a quite intuitive way of obtaining a maximal
column, maximizing gd may have a negative impact as dense
columns lead to a dense RMP and dense linear programs typ-
ically take longer to be reoptimized [1].

We now illustrate with an example that, while any col-
umn maximizing any of these three functions is maximal,
maximizing the three quantities leads to different columns:

Example 1. Consider an instance with n = 6 items, w =
(50, 8, 9, 49, 26, 25), and C = 100. Assume that the RMP
contains seven patterns: all the singleton patterns Sj = {j}
for all j ∈ N and the maximal pattern S7 = {1, 2, 3, 6}. Let
�∗ = (1, 0, 0, 1, 1, 0) be an optimal dual solution. We have
s̃ =

(

2
7 ,
2
7 ,
2
7 ,
1
7 ,
1
7 ,
2
7

)

and 3e−2s̃ =
(

17
7 ,

17
7 ,

17
7 ,

19
7 ,

19
7 ,

17
7

)

.
Consider the following three maximal patterns of minimum
reduced cost (equal to −1): S8 = {1, 2, 3, 5} (with gd = 4,
gw = 93, gc = 10), S9 = {2, 3, 4, 5} (with gd = 4, gw = 92,
gc =

72
7), and S10 = {4, 5, 6} (having gd = 3, gw = 100,

gc =
55
7). S10 is of maximum weight, but not of maximum

density nor diversity. S8 is of maximum density, but not of
maximum weight nor diversity. S9 is also of maximum di-
versity (and also of maximum density), but not of maximum
weight.

3.2. Maximality by design of the DP algorithm
We note that, for the FBPP, the lifting procedure used to

produce a maximal pattern a posteriori is not needed. One
can, indeed, always achieve a maximal pattern by a suitable
implementation of the DP algorithm:

Proposition 3. Consider a DP algorithm with look-up ta-
ble U . If the algorithm is implemented so that U (j, s) ∶= 1
if and only if �j−1(s) ≤ �j−1(s −wj) + �∗j (i.e., so that j is
added to the solution even if �j−1(s) = �j−1(s −wj) + �∗j)
for every pair (j, s), then the algorithm always produces a
maximal pattern.

Proof: Let x ∈ {0, 1}n be the solution produced by the al-
gorithm and assume, by contradiction, x nonmaximal. Pick
any j ∈ N with xj = 0 such that x′ ∶= x+ej is optimal (note
that the optimality of x∗ implies �∗j = 0). W.l.o.g., assume
j = n (if not, ignore all the items from j+1 to n and redefine
n ∶= j and C ∶= C −

∑n
i=j+1wixi). Let the optimal profit

be Π ∶=
∑j
i=1 �

∗
i xi =

∑j
i=1 �

∗
i x

′
i. Since x is optimal and

xj = 0, by construction we have �j−1(C) = Π. Since x′j =

Coniglio et al.: Preprint submitted to Elsevier Page 3 of 8

A lexicographic pricer for the fractional bin packing problem

1, item n fits in x. Since x′ is optimal, x′j = 1, and �
∗
j = 0, by

definition of�we have�j−1(C−wj)+�∗j = �j−1(C−wj) =
Π. Since xj = 0, we haveU (j, C) = 0. Since, by implemen-
tation hypothesis, this implies �j−1(C) > �j−1(C −wj), we
have a contradiction. □

Generating a maximal pattern of minimum reduced cost
this way presents the drawback of offering no control over
which maximal pattern is produced.

4. A novel lexicographic pricing problem
We introduce the following Lexicographic Pricing Prob-

lem (LPP) (a special case of a multi-objective problem with
two objectives) which, among all columns of minimum re-
duced cost, finds one whichmaximizes one of the three max-
imality measures gd , gw, and gc :

(LPP) max lex
x∈{0,1}n

{

(

f (x), g(x)
)

∶
∑

j∈N
wjxj ≤ C

}

.

In the LPP, f (x) ∶=
∑

j∈N �
∗
j xj and g(x) (equal to either gd ,

gw, or gc) is optimized as a second-priority objective func-
tion over all the solutions which maximize f (x). We now
show how to solve the LPP with a Lexicographic Dynamic
Programming (Lex-DP) in O(nC) time.

For each item j ∈ N and integer value s ∈ {0,… , C},
let (�j(s), j(s)) be the values f and g of an optimal solution
to the problem restricted to items in {1,… , j} and capacity
s ≤ C . Let us consider the partial order ⪰ defined such
that, given (a, b), (a′, b′) ∈ ℝ2, (a, b) ⪰ (a′, b′) if and only if
either a > a′ or, if a = a′, b ≥ b.

W.l.o.g., we rewrite g(x) as the linear function
∑

j∈N cjxj ,
for some c ∈ ℝn. For the three cases of density, weight, and
diversity, i.e., gd , gw, and gc , we have, respectively, cj = 1,
cj = wj , and cj = 3 − 2s̃j for each j ∈ N .

The pair
(

�j(s), j(s)
)

enjoys the following recursive struc-
ture, for all j ∈ N and s ∈ {0,… , C}:

(

�j(s)
j(s)

)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

�j−1(s)
j−1(s)

)

if
(

�j−1(s)
j−1(s)

)

⪰
(�j−1(s −wj) + �∗j
j−1(s −wj) + cj

)

(�j−1(s −wj) + �∗j
j−1(s −wj) + cj

)

if
(

�j−1(s)
j−1(s)

)

≺
(�j−1(s −wj) + �∗j
j−1(s −wj) + cj

)

.

For each j ∈ N , we assume �j(s) = j(s) = −∞ for every
s < 0, and �0(s) = 0(s) = 0 for every s ∈ {0,… , C}.
Starting from s = 1 and j = 1, one can use the previous
equation to compute, recursively, the values of �j(s) and
j(s) for all combinations of j ∈ N and s ∈ {0,… , C}.
An optimal lexicographic solution has value (�n(C), n(C)).

For every S ⊆ N , let c(S) ∶=
∑

j∈S cj . In the lexi-
cographic case, one can extend the dominance rule between
two partial solutions S′ and S′′ by defining that S′ domi-
nates S′′ if:

w(S′) = w(S′′) and (�∗(S′), c(S′)) ⪰ (�∗(S′′), c(S′′)).

The complexity of the Lex-DP algorithm isO(nC)—the
same as for the non-lexicographic case. The only extra com-
putational burden is due to the need for storing the values of

 alongside those of �. As it is shown in the computational
results section, for the instances we considered this overhead
is completely negligible.

5. Computational experience
We assess the impact of the newly proposed method by

measuring the reduction in the number of columns that are
generated when solving the FBPP to optimality as well as
the reduction in the total computing time spent reoptimizing
the RMP and generating columns.

The experiments are run on a single core of an Intel i7-
3770 at 3.40 GHz, equipped with 16 GB of RAM and run-
ning Ubuntu 14.04. All the algorithms we consider are im-
plemented in C and compiled with the gcc compiler, version
4.8.4. We use the primal simplex algorithm implemented in
CPLEX 12.7.0 (in single-threaded mode) to solve the RMP
at each iteration of the CG procedure. All its parameters are
set to their default value.

We initialize the RMP with n singleton columns, one
per item, and we always generate a single column per CG
iteration (as a consequence, in our experiments the num-
ber of columns is equal to the number of CG iterations).
While different choices (e.g., adopting a heuristic initial set
of columns and generating more columns at a time) may
speed up the computations, we opt for a clean setting to bet-
ter assess the impact of our proposed method. This is in line
with other investigations in the literature, see [32, 3].

We use a testbed comprising 9 different classes of BPP
instances proposed in the literature: Falkenauer T and U,
Hard 28, Random, School 1, 2, and 3, Schwerin 1 and 2, and
Wäscher. They contain, respectively, 80, 80, 28, 720, 480,
10, 100, 100, and 17 instances, with n ranging from 57 to
1,000 and C from 100 to 100,000. We discard 130 easy and
small instances of class School 1 since they are all solved by
generating less that 100 columns, thus obtaining a testbed of
1,475 instances in total.

We compare four CG algorithms (all generatingmaximal
columns of minimum reduced cost):

1. DP-STD: it employs the nonlexicographic DP algorithm
bywhich the PP is solved so to guarantee themaximal-
ity of the resulting column according to Proposition 3.

2. LEX-DENS: it employs the novel LEX-DP algorithm for
solving the LPP with g(x) = gd(x) (i.e., usingDensity
as second-level objective function).

3. LEX-W: it employs the novel LEX-DP algorithm for solv-
ing the LPP with g(x) = gw(x) (i.e., using Weight as
second-level objective function).

4. LEX-DIV: it employs the novel LEX-DP algorithm for
solving the LPP with g(x) = gc(x) (i.e., using Diver-
sity as second-level objective function).

All the item indices are permuted once at random before the
experiments are run.

Coniglio et al.: Preprint submitted to Elsevier Page 4 of 8

A lexicographic pricer for the fractional bin packing problem

Table 1
Estimate of the number of times the PP admits two different
optimal solutions and of the last iteration in which two different
optimal solutions are found.

different solutions [%] last iter. diff. sol. [%]

class Min Avg Max Min Avg Max

Falkenauer T 39.17 57.63 71.34 40.83 69.94 99.16
Falkenauer U 9.08 21.46 52.03 58.22 83.85 99.52
Hard 28 16.48 25.42 41.85 45.16 86.14 99.85
School 1 0.00 46.71 100.00 0.00 80.25 99.96
School 2 1.19 22.43 93.42 14.00 42.80 99.87
School 3 28.00 30.54 32.98 38.25 87.02 98.82
Schwerin 1 14.00 18.30 22.22 22.11 32.92 99.48
Schwerin 2 11.57 18.29 25.69 21.63 36.24 98.62
Wäscher 3.01 10.81 25.48 12.74 37.62 99.45

5.1. On the presence of multiple optimal solutions
in the PP

We first estimate, computationally, how often the PP ad-
mits multiple optimal solutions as a function of the itera-
tions. The experiments are conducted by employing DP-STD

at each iteration and, before adding the column it generates
to the RMP, generating another column (which is afterwards
discarded) with LEX-W. The two columns are then inspected
to verify whether they are different. This gives a conserva-
tive estimate on the number of times the PP admits multiple
optimal solutions (note that there may be multiple optima
even if the two columns we produced were equal).

We summarize these results in Table 1 (each entry is av-
eraged over the instances in the corresponding class). The
"different solutions [%]" columns report the minimum, aver-
age, andmaximumnumber of different solutions foundwhen
solving the PP as a percentage of the total number of gener-
ated columns. The "last iter. diff. sol. [%]" columns report
the earliest, average, and last iteration in which two differ-
ent solutions to the PP are found as a percentage of the total
number of iterations.

The table shows the average percentage of iterations in
which different (optimal) solutions are found ranges from
10.81% (achieved on theWäscher instances) to 57.63% (which
is achieved on the Falkenauer T instances), The table also
shows that the last iteration (in percentage) in which two dif-
ferent solutions are found ranges, on average, from 32.92%
(achieved on the Schwerin 1 instances) to 87.02% (achieved
on the School 3 instances). While the table indicates that the
PP is, on average, more likely to admit multiple optimal solu-
tions during the early iterations of the CG algorithm, its last
column, whose values are all very close to 99%, shows that
different solutions can still be found until we are extremely
close to convergence.

5.2. Comparing the four CG methods
Table 2 illustrates the difference in terms of the total

number of columns that are generated to solve the FBPP
to optimality when employing the four pricing algorithms.
The results are presented in aggregation over each class of

Table 2
Average number of columns for DP-STD and percentage variation
for LEX-DIV, LEX-W, and LEX-DENS per class of instances.

Cols Percentage Column Variation

class DP-STD LEX-DIV LEX-W LEX-DENS

Falkenauer T 596.5 -4.0 -44.4 0.1
Falkenauer U 1117.0 0.6 -6.5 0.8
Hard 28 760.0 1.8 -5.7 3.8
School 1 611.1 -12.0 -4.2 4.3
School 2 485.1 -1.9 -12.7 -0.2
School 3 618.6 -4.9 -22.7 0.0
Schwerin 1 213.7 1.1 -9.2 -0.1
Schwerin 2 248.0 -5.0 -7.9 -0.1
Wäscher 540.2 0.0 -5.1 2.4

instances using the arithmetic mean. Due to being identical
for all the methods, the initial set of columns (one per item)
is not taken into account. We report the average number of
generated columns for DP-STD and the percentage variation
w.r.t. this number for the other three algorithms LEX-DIV,
LEX-W, and LEX-DENS. A negative number corresponds to a re-
duction, whereas a positive number indicates an increase.

Table 2 shows that LEX-DIV allows for a reduction in the
number of columns in most of the instances (the only excep-
tions are the Falkenauer U, Hard 28, and Schwerin 1 classes).
While the reduction can be quite large (see the School 1 in-
stances, with a reduction of 12%), the increase in the number
of columns does not exceed 1.8% (see theHard 28 instances).

LEX-DENS leads to an overall increase in the number of
columns in almost all the instances (up to 4.3% on the School 1
class), with only three exceptions (the School 2, Schwerin 1,
and Schwerin 2 instances). Such improvement is, neverthe-
less, very modest (the largest, equal to 0.2%, is observed on
the School 2 instances).

Differently, LEX-W yields an improvement which can be
quite substantial. The average reduction ranges from 4.2%
(observed on the School 1 class) to 44.4% (observed on the
Falkenauer T class).

On the whole testbed, the total number of columns that
are generated is 808,451 for DP-STD, 752,136 for LEX-DIV, 733,644
for LEX-W, and 823,839 for LEX-DENS. W.r.t. DP-STD, LEX-W al-
lows for a reduction in the number of columns by 9.25% on
average.

Table 3 illustrates the difference in terms of the total
computing time needed to solve the FBPP to optimality with
the four CG algorithms. The results are presented as the total
time taken to solve all of the instances in each class.

As the table shows, LEX-DIV yields a reduction in com-
puting time on some instances, but also an increase on some
others. The largest reduction is found on the School 3 class,
where it is equal to 16.5%. The largest increase, by 7.7%, is
on the Schwerin 1 class.

LEX-DENS leads to an overall increase in computing time
on almost all the instances. The sole exception is the Falke-
nauer U class, where we observe an improvement, albeit

Coniglio et al.: Preprint submitted to Elsevier Page 5 of 8

A lexicographic pricer for the fractional bin packing problem

Table 3
Total computing time (in seconds) for DP-STD and percentage
variation for LEX-DIV, LEX-W, and LEX-DENS per class of instances.

Time (s) Percentage Time Variation

class DP-STD LEX-DIV LEX-W LEX-DEN

Falkenauer T 90.2 1.0 -58.2 2.5
Falkenauer U 766.7 -5.3 -4.2 -0.4
Hard 28 18.1 5.4 -4.6 7.0
School 1 508.0 0.6 -0.9 6.5
School 2 1672.2 -3.1 -14.8 0.9
School 3 405.9 -16.5 -35.3 0.4
Schwerin 1 12.7 7.7 -12.5 0.7
Schwerin 2 18.2 -6.1 -11.0 2.7
Wäscher 83.5 -1.6 -5.2 1.7

Table 4
Average computing time (ms) per CG iteration spent solving
the RMP and the PP/LPP.

DP-STD LEX-DIV LEX-W LEX-DENS

class RMP PP RMP LPP RMP LPP RMP LPP

Falkenauer T 0.8 0.4 0.8 0.5 0.5 0.5 0.8 0.5
Falkenauer U 4.6 0.1 4.3 0.1 4.6 0.1 4.6 0.1
Hard 28 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3
School 1 0.7 0.1 0.7 0.1 0.7 0.1 0.7 0.1
School 2 3.2 0.5 3.1 0.5 2.9 0.5 3.2 0.5
School 3 0.6 65.0 0.6 57.0 0.6 54.4 0.6 65.3
Schwerin 1 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3
Schwerin 2 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3
Wäscher 2.2 4.7 2.1 4.7 2.1 4.6 2.2 4.7

very small (by 0.4%).
In line with the reduction in the number of columns,

LEX-W yields a reduction in computing time on all the instance
classes. The smallest reduction is by 0.9%, observed on the
School 1 instances, whereas the largest one is on the Falke-
nauer T class, where it is equal to 67.1%.

Overall, the results in terms of computing times are in
line with those on the number of columns. In particular, the
total computing time is 3,575.47 seconds for DP-STD, 3,420.25
seconds for LEX-DIV, 3,085.87 seconds for LEX-W, and 3,628.03
seconds for LEX-DENS. W.r.t. DP-STD, the reduction in comput-
ing time obtained with LEX-W is by 13.69% on average.

Table 4 reports the average computing time in millisec-
onds spent per CG iteration when solving the RMP and the
PP/LPP in the four CG algorithms we consider.

The table shows that the time spent solving the PP/LPP
is almost comparable over the four algorithms. In particu-
lar, it shows that the lexicographic pricing problems do not
introduce any measurable overhead in terms of computing
time. The same applies to the time spent reoptimizing the
RMP, which is comparable over the four methods.

Overall, the three tables confirm that LEX-W allows for a
reduction in the total number of columns which is often quite
substantial. Due to the fact that the computing times per iter-
ation are almost the same as those for DP-STD, this translates

into a comparable reduction in computing time and, overall,
into a faster CG algorithm. Finally, it is worth mentioning
that a smaller number of columns also results in a smaller
RMP, a feature which may become relevant in a branch-and-
price algorithm where a large number of instances of the
RMP need to be solved.

When compared to either DP-STD or LEX-DENS, LEX-W gen-
erates the smallest number of columns and it takes the small-
est computing time in more than 80% of the instances.
When compared to LEX-DIV, LEX-W generates the smallest num-
ber of columns and takes the smallest computing time in, re-
spectively, slightly less than 80% and slightly more than 70%
of the instances.

Overall, our tests show that DP-STD and LEX-DIV are com-
pletely dominated by LEX-W and that, when considering LEX-W

and LEX-DIV, LEX-W should be preferred in the majority of the
cases, confirming that LEX-W is the best method among the
four.

5.3. Computational illustration of the
performance of LEX-W

In Section 3, we have pointed out that feasible solutions
to the RMP featuring only columns (patterns) of zero waste
are necessarily optimal. We illustrate this property on the
followingBPP instancewith n = 15,w = (1, 3, 6, 8, 12, 16, 33, 66, 80,
132, 144, 160, 264, 288, 320), and C = 511. This is one of
the smallest BPP instances described in [8] which does not
enjoy the integer round-up property (the optimal FBPP so-
lution value is 3, whereas the optimal solution value of the
BPP is 4).

All four of the methods we consider produce the same
optimal solution. It consists of the following six patterns:
S1 = {1, 3, 9, 12, 13},S2 = {1, 5, 8, 11, 14},S3 = {2, 4, 9, 10, 14},
S4 = {6, 7, 8, 10, 13},S5 = {2, 5, 6, 12, 15},S6 = {3, 4, 7, 11, 15},
all having total weight gw equal to the bin capacity 511. The
patterns are selected with �Si = 0.5 for i = 1,… , 6. In this
solution, each item is covered by exactly two patterns.

While the four methods produce the same optimal solu-
tion, the sets of columns that they generate over the iterations
are different and have different cardinalities. DP-STD gener-
ates 47 columns, LEX-DIV 45, LEX-DENS 50, and LEX-W 23. In
particular, LEX-W is the only method which manages to obtain
a substantial reduction (by about 50%) w.r.t. DP-STD.

Let us now inspect the range of iterations within which
each method generates a column which is contained in the fi-
nal optimal solution. The range is [25, 42] for DP-STD, [23, 42]
for LEX-DIV, [23, 46] for LEX-DENS, and [12, 23] for LEX-W. This
shows that, for this instance, LEX-W generates columns be-
longing to an optimal solution much earlier than the other
methods.

Let us now consider the whole testbed. For each instance
and each CG iteration, we call basic-column item-weight the
average over all the columns which are basic in that itera-
tion of their total item weight divided by the bin capacity.
For each instance, we then divide the CG iterations in 10
percentage intervals. As an example, if the total number
of iteration is 100, the first interval is [0, 10), the second is

Coniglio et al.: Preprint submitted to Elsevier Page 6 of 8

A lexicographic pricer for the fractional bin packing problem

[10, 20), and so on until the interval [90, 100]. For a given
interval, we call basic-column item-weight index the aver-
age of the basic-column item-weight over all instances and
all iterations in that interval.

As our results show, the index achieves quite large val-
ues, exceeding 95% already in the [50,60) interval and reach-
ing 98.5% in the interval [90,100]. This indicates that, even
if the FBPP asks for minimizing the number of bins directly
rather than for maximizing the overall item weight, the item
weight of the columns contained in an optimal solutionmono-
tonically increases over the iterations and that, the closer
we are to convergence, the higher the weight of the basic
columns is. This suggests that, by generating columns of
minimum reduced cost which are also of maximum weight,
we favor the generation of columns which are more likely
to be featured in an optimal solution. The experiments also
show that, in line with the illustration given above for the nu-
merical BPP instance, in 649 instances out of a total of 1,475
the optimal basic solution we find only contains columns of
item weight exactly equal to the bin capacity (i.e., of zero
waste and basic-column item-weight index equal to 100%).

5.4. Combination with a stabilization technique
We conclude by experimenting with the combination of

one of the classical stabilization techniques in the literature
with LEX-W, focusing on the smoothing technique proposed
in [31] (also see the recent survey [27]). Themethod is based
on solving the PP by using a smoothed dual variable vector
�̃ rather than �∗, defined as �̃j ∶= �̂j + (1 − �) (�∗j − �̂j),
j ∈ N . The vector �̂ is the stability center: an estimate of
an optimal feasible solution to the dual of the FBBP.

We construct �̂ along the lines of the Farley bound [19,
4], relying on a feasible solution �̌. Letting S∗ be the (opti-
mal) solution found by solving the pricing problem using �̃
as vector of objective function coefficients, we construct the
dual solution �̌j ∶=

�̃j
∑

j∈S∗ �̃j
, j ∈ N . Since, by construc-

tion,
∑

j∈S∗ �̃j is equal to the largest value taken by the left-
hand side of the constraints of the dual of the FBPP (which
read

∑

j∈S �j ≤ 1, for S ∈ S) for the given �̃, �̌ is guaran-
teed to satisfy all the dual constraints. Starting with �̂ = 0,
we set �̂ ∶= �̌ whenever �̌ becomes the new best solution.

Adopting �̃ rather than �∗ can result in a so-called mis-
pricing step in which the pricing problem does not produce
a negative reduced-cost column even when one exists, i.e.,
∑

j∈S∗ �̃j < 1. If this happens, we switch the smoothing
technique off and solve the standard pricing problem with a
nonsmoothed �∗ until convergence.

We combine the smoothing technique of [31] with LEX-W

in LEX-W+S, which corresponds to using LEX-W adopting �̃ in
lieu of �∗ and switching to �∗ after the first mispricing step
takes place. For comparison purposes, we also experiment
with the smoothing technique applied in combination with
the standard pricing problem DP-STD. We refer to the result-
ing method as DP-STD+S. We set � = 0.3. We performed an
extensive set of experiments to determine the best value of �,
measuring the performance of DP-STD+S on the entire data

Table 5
Average number of columns and time percentage variation
w.r.t. DP-STD obtained with DP-STD+S and LEX-W+S per class of
instances.

Perc. Column Variation Perc. Time Variation

class DP-STD+S LEX-W+S DP-STD+S LEX-W+S

Falkenauer T -2.3 -44.7 -3.0 -51.8
Falkenauer U -8.1 -14.6 -19.0 -25.7
Hard 28 -11.7 -16.4 -14.1 -19.0
School 1 -11.8 -15.5 -16.5 -20.2
School 2 -5.1 -16.4 -8.3 -21.1
School 3 -5.3 -26.9 -15.1 -38.3
Schwerin 1 -4.7 -11.9 -6.9 -15.3
Schwerin 2 -4.6 -10.7 -6.6 -14.7
Wäscher -7.8 -11.2 -13.9 -16.1

set for � ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Setting
� = 0.3 proved to be the best option, leading to the smallest
number of columns and to the smallest computing time on
30% to 40% of the instances.

Table 5 reports the comparison of DP-STD+S and LEX-W+S

to DP-STDw.r.t. number of columns and total computing time.
As the table shows, DP-STD+S yields an average reduction

in the number of columns ranging from 2.3% (Falkenauer T
instances) to 11.8% (School 1 instances). As to the comput-
ing time, the average reduction ranges from 3% (Falkenauer
T instances) to 19% (Falkenauer U instances).

LEX-W+S yields substantially larger reductions. In terms
of the number of columns, the average reduction ranges from
10.7% (Schwerin 2 instances) to 44.7% (Falkenauer T in-
stances). In terms of computing time, it ranges from 14.7%
(Schwerin 2 instances) to 51.8% (Falkenauer T instances).
When considering all the instances, with LEX-W+S we obtain
an average reduction by 18.7% in terms of the number of
columns and by 24.7% in terms of computing time.

On thewhole testbed, the total number of generated columns
is 808,451 for DP-STD, 733,644 for LEX-W, 732,091 for DP-STD+S,
and 663,577 LEX-W+S. W.r.t. DP-STD, LEX-W+S allows for a re-
duction in the number of columns by 17.91% on average.
The total computing time is 3,575.47 seconds for DP-STD,
3,085.87 seconds for LEX-W, 3008.52 seconds for DP-STD+S,
and 2572.59 seconds for LEX-W+S. W.r.t. DP-STD, the average
reduction in computing time obtained for LEX-W+S is 28.04%.

Overall, the experiments suggest that LEX-W can be effec-
tively combined with a preexisting stabilization technique
such as the smoothing one proposed in [31], obtaining a
combined method which is more effective that either of the
two methods used separately.

6. Conclusions
We have proposed a lexicographic pricing problem for

the FBPP which, among all the maximal columns of mini-
mum reduced cost, generates one which maximizes one of
three measures of maximality (density, weight, and diver-
sity), and we have proposed a lexicographic dynamic pro-

Coniglio et al.: Preprint submitted to Elsevier Page 7 of 8

A lexicographic pricer for the fractional bin packing problem

gramming algorithm for its solution.
Computational results on a large testbed of instances from

the literature suggest that solving a lexicographic pricer is
indeed advantageous, and that the adoption of the weight
measure allows for a substantial reduction in the number of
columns and computing time needed to solve the FBPP to
optimality, also when combined with a classical smoothing
technique from the literature.

Future work includes the extension of our methods to
other problems typically solvedwith column generation tech-
niques, such as graph coloring and vehicle routing and, in
particular, to problems whose pricing subproblem is solved
via dynamic programming. It would also be of interest to
investigate the adoption of our techniques, with focus on
the LEX-W algorithm, to problems with a structure similar to
that of the BPP, such as the BPP with conflicts or the BPP
with precedence constraints, whose pricing problem enjoys
a knapsack-like structure similar to that of the BPP/FBBP.

Another research direction is solving the pricing prob-
lem not as a lexicographic optimization problem, but rather
as a proper bi-objective problem, exploring the behavior of
the overall column generation method as a function of how
the trade-off between the two objectives is established. More
than two objectives could also be simultaneously considered,
either in amulti-objective setting, or in the lexicographic one
with three or more levels. Along the lines of [13, 14], tech-
niques based on the notion of bound improvement could also
be explored. In line with recent works on sparsity [18, 17]
and on our results with dense columns, it could also be of
interest to extend our methods to the generation of maximal
columns of minimum density, whose pricing problem boils
down to a lexicographic extension of theminimum-cost max-
imal knapsack packing problem studied in [22].

References
[1] Achterberg, T., 2009. SCIP: solving constraint integer programs.

Math. Program. Comput. 1, 1–41.
[2] Amaldi, E., Coniglio, S., Gualandi, S., 2010. Improving cutting plane

generation with 0-1 inequalities by bi-criteria separation, in: Interna-
tional Symposium on Experimental Algorithms, Springer. pp. 266–
275.

[3] Amaldi, E., Coniglio, S., Gualandi, S., 2014. Coordinated cutting
plane generation via multi-objective separation. Mathematical Pro-
gramming 143, 87–110.

[4] Amor, H.B., de Carvalho, J.V., 2005. Cutting stock problems, in:
Column generation. Springer, pp. 131–161.

[5] Amor, H.M.B., Desrosiers, J., Frangioni, A., 2009. On the choice
of explicit stabilizing terms in column generation. Discrete Applied
Mathematics 157, 1167 – 1184.

[6] Balas, E., Saxena, A., 2008. Optimizing over the split closure. Math-
ematical Programming 113, 219–240.

[7] Belov, G., Scheithauer, G., 2006. A branch-and-cut-and-price algo-
rithm for one-dimensional stock cutting and two-dimensional two-
stage cutting. European Journal of Operational Research 171, 85 –
106.

[8] Caprara, A., Dell’Amico, M., Díaz-Díaz, J.C., Iori, M., Rizzi, R.,
2015. Friendly bin packing instances without integer round-up prop-
erty. Mathematical Programming 150, 5–17.

[9] Valério de Carvalho, J., 2002. LP models for bin packing and cutting
stock problems. European Journal of Operational Research 141, 253–
273.

[10] Valério de Carvalho, J., 2005. Using extra dual cuts to accelerate
column generation. INFORMS Journal on Computing 17, 175–182.

[11] Clautiaux, F., Alves, C., Valério de Carvalho, J., 2010. A survey
of dual-feasible and superadditive functions. Annals of Operations
Research 179, 317–342.

[12] Coffman Jr, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.,
2013. Bin packing approximation algorithms: survey and classifica-
tion, in: Handbook of combinatorial optimization. Springer, pp. 455–
531.

[13] Coniglio, S., 2013. Bound-optimal cutting planes, in: Proc. of 12th
Cologne-Twente Workshop on Graphs and Combinatorial Optimiza-
tion (CTW), pp. 59–62.

[14] Coniglio, S., Tieves, M., 2015. On the generation of cutting planes
which maximize the bound improvement, in: International Sympo-
sium on Experimental Algorithms, Springer. pp. 97–109.

[15] Delorme, M., Iori, M., Martello, S., 2016. Bin packing and cutting
stock problems: Mathematical models and exact algorithms. Euro-
pean Journal of Operational Research 255, 1 – 20.

[16] Desrosiers, J., Lübbecke, M.E., 2005. A primer in column generation,
in: Desaulniers, G., Desrosiers, J., Solomon, M.M. (Eds.), Column
Generation. Springer US, Boston, MA, pp. 1–32.

[17] Dey, S.S., Molinaro, M., 2018. Theoretical challenges towards
cutting-plane selection. Mathematical Programming 170, 237–266.

[18] Dey, S.S., Molinaro, M., Wang, Q., 2015. Approximating polyhedra
with sparse inequalities. Mathematical Programming 154, 329–352.

[19] Farley, A.A., 1990. A note on bounding a class of linear programming
problems, including cutting stock problems. Operations Research 38,
922–923.

[20] Fischetti, M., Lodi, A., 2007. Optimizing over the first chvátal clo-
sure. Mathematical Programming 110, 3–20.

[21] Frangioni, A., Gendron, B., 2013. A stabilized structured dantzig–
wolfe decomposition method. Mathematical Programming 140, 45–
76.

[22] Furini, F., Ljubić, I., Sinnl, M., 2017. An effective dynamic pro-
gramming algorithm for the minimum-cost maximal knapsack pack-
ing problem. European Journal of Operational Research 262, 438–
448.

[23] Gualandi, S., Malucelli, F., 2012. Exact solution of graph coloring
problems via constraint programming and column generation. IN-
FORMS Journal on Computing 24, 81–100.

[24] Lübbecke, M.E., Desrosiers, J., 2005. Selected topics in column gen-
eration. Operations research 53, 1007–1023.

[25] Martello, S., Toth, P., 1990. Knapsack Problems: Algorithms and
Computer Implementations. John Wiley & Sons, Chichester, New
York.

[26] du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P., 1999. Stabi-
lized column generation. Discrete Mathematics 194, 229 – 237.

[27] Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F., 2018. Automa-
tion and combination of linear-programming based stabilization tech-
niques in column generation. INFORMS Journal on Computing 30,
339–360.

[28] Rousseau, L.M., 2004. Stabilization issues for constraint program-
ming based column generation, in: International Conference on Inte-
gration of Artificial Intelligence (AI) and Operations Research (OR)
Techniques in Constraint Programming, Springer. pp. 402–408.

[29] Vanderbeck, F., 2005. Implementing mixed integer column genera-
tion, in: Column generation. Springer, pp. 331–358.

[30] Wei, L., Luo, Z., Baldacci, R., Lim, A., 2018. A new branch-and-
price-and-cut algorithm for one-dimensional bin packing problems.
Accepted for publication on INFORMS Journal on Computing , 1–
32.

[31] Wentges, P., 1997. Weighted dantzig-wolfe decomposition for lin-
ear mixed-integer programming. International Transactions in Oper-
ational Research 4, 151–162.

[32] Zanette, A., Fischetti, M., Balas, E., 2011. Lexicography and de-
generacy: can a pure cutting plane algorithm work? Mathematical
programming 130, 153–176.

Coniglio et al.: Preprint submitted to Elsevier Page 8 of 8

