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Abstract—The sparse code multiple access (SCMA) is a promis-
ing candidate for bandwidth-efficient next generation wireless
communications, since it can support more users than the
number of resource elements. On the same note, faster-than-
Nyquist (FTN) signaling can also be used to improve the spectral
efficiency. Hence in this paper, we consider a combined uplink
FTN-SCMA system in which the data symbols corresponding to
a user are further packed using FTN signaling. As a result, a
higher spectral efficiency is achieved at the cost of introducing
intentional inter-symbol interference (ISI). To perform joint
channel estimation and detection, we design a low complexity
iterative receiver based on the factor graph framework. In
addition, to reduce the signaling overhead and transmission
latency of our SCMA system, we intrinsically amalgamate it with
grant-free scheme. Consequently, the active and inactive users
should be distinguished. To address this problem, we extend the
aforementioned receiver and develop a new algorithm for jointly
estimating the channel state information, detecting the user ac-
tivity and for performs data detection. In order to further reduce
the complexity, an energy minimization based approximation is
employed for restricting the user state to Gaussian. Finally, a
hybrid message passing algorithm is conceived. Our Simulation
results show that the FTN-SCMA system relying on the proposed
receiver design has a higher throughput than conventional SCMA
scheme at a negligible performance loss.

Index Terms—Sparse code multiple access, faster-than-Nyquist
signaling, grant-free, channel estimation, hybrid message passing,
high spectral efficiency

I. INTRODUCTION

The rapid proliferation of wireless applications requires
higher spectral efficiency since the available bandwidth be-
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comes limited. Conventional orthogonal multiple access (O-
MA) schemes such as time division multiple access (TD-
MA), code division multiple access (CDMA) and orthogonal
frequency-division multiple access (OFDMA) assign orthog-
onal resource elements to different users [1]–[4]. Although
OMA avoids multiuser interference under non-dispersive chan-
nel conditions, the challenges of high throughput and massive
number of connections make it inferior for the next-generation
wireless communications. By contrast, non-orthogonal mul-
tiple access (NOMA) is capable of increasing the spectral
efficiency and addressing the aforementioned problems [5].
Amongst several NOMA technologies [6]–[9], the sparse code
multiple access (SCMA) has attracted significant attention, due
to its capability of achieving extra shaping gain [10].

To elaborate, the SCMA encoder directly maps the bits to
sparse codewords. After multi-dimensional modulation and
low density spreading, the bits streams corresponding to
different users are directly mapped to sparse codewords of
a predesigned codebook and then multiplexed over several
orthogonal resource elements. Numerous authors considered
the signal design of SCMA at the transmitter side. For example
in [11], the authors investigated the SCMA codebook design
based on systematic construction methods. To maximize the
minimum codeword distance, a multi-dimensional codebook
is designed based on a constellation rotation and interleaving
method in [12]. In [13], capacity based codebook design
is proposed to achieve the maximum sum rate. However,
supporting more users than the number of resource elements
result in a rank-deficient system, hence the complexity of the
optimal receiver increases exponentially with the number of
interferring users. To tackle this problem, several factor graph
(FG) and message passing algorithm (MPA) based multiuser
detectors were proposed by exploiting the low density code-
words of SCMA. In [14], a low-complexity detection algo-
rithm is proposed based on discretization and the fast Fourier
transform (FFT). A list-sphere-decoding-based algorithm is
devised in [15], but it only considered the signal falling
within a hypersphere. The authors of [16] developed a partial
marginalization based message passing detector for uplink
SCMA. In [17], a Monte Carlo Markov Chain (MCMC) based
SCMA decoder was proposed for a large SCMA codebook. In
[18], the authors proposed a guaranteed convergence message
passing algorithm for MIMO-SCMA systems. The authors of
[19] proposed a modified MPA receiver, namely the max-log
MPA that relies on message updating in the log domain to
avoid multiplication operations.

On the other hand, an increased spectral efficiency can also
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be achieved by faster-than-Nyquist (FTN) signaling. Mazo
proved that in conjunction with an appropriate packing ratio,
FTN transmission is capable of preserving the same bit error
rate (BER) performance as classic Nyquist signaling [20].
Hence, it becomes a promising candidate for future communi-
cations applications. However, due to the nonorthogonality of
the shaping pulse with respect to the symbol interval, having
both long intersymbol interference (ISI) as well as colored
noise at the receiver side becomes unavoidable [21]. As a re-
sult, a prohibitively high complexity may be imposed. Hence,
a reduced-complexity BCJR detector is developed in [22] for
FTN signaling in AWGN channels, which considered only M
states based on a minimum-phase model. Nevertheless, the
complexity still increases exponentially with the number of
ISI taps. The authors of [23], [24] added a cyclic prefix (CP)
to tackle the extra ISI imposed by FTN by taking advantage of
single carrier frequency-domain equalization (FDE). However,
the effects of colored noise were not considered in [23]
and the CP will also degrade the efficiency while almost
eliminate the gain of FTN signaling. A Forney-style factor
graph based detector was proposed in [25] to handle the
colored noise imposed by FTN signaling for transmission over
AWGN channels. An extension to doubly selective channels is
considered in [26] and [27], where Gaussian message passing
and variational inference techniques are employed to detect
the symbols, respectively. Nevertheless, the detection of data
symbols in FTN-SCMA systems is still challenging due to the
interference imposed by the non-orthogonal waveforms and
nonorthogonal multiple access.

Note that in the aforementioned receiver design contribu-
tions, the channel information is assumed to be perfectly
known, but in practice training sequences are used for accurate
channel estimation [28]. However, a joint channel estimation
and data detection is capable of avoiding the use of long
training sequences, whilst improving the BER performance
[29]. From this perspective, researchers developed several
low-complexity near-optimal joint estimation methods [30],
[31]. Hence, joint channel estimation and MPA-aided detec-
tion is very attractive. A virtual zero-padding aided belief
propagation (BP) algorithm was devised in [32] for joint
iterative channel estimation, detection and decoding. In [33], a
belief propagation aided variational expectation maximization
based method was derived for MIMO-OFDM systems. Both
algorithms were designed based on Nyquist signaling. In
[34] and [35], time domain based BP and frequency domain
based generalized approximate message passing (GAMP) joint
channel estimation and decoding algorithms were proposed for
FTN signaling. Nevertheless, the existing approaches do not
consider systems that use both nonorthogonal waveform and
nonorthogonal multiple access.

Hence, we solve this open problem by conceiving a low-
complexity joint channel estimation and detection algorithm
based on factor graphs (FG) and message passing algorithm
designed for the uplink of FTN-SCMA systems. To model the
colored noise imposed by FTN signaling, we employ the clas-
sic auto regressive (AR) process. Then the joint distribution of
data symbols, channel taps and noise samples can be factorized
into several local functions and represented by a factor graph.

Even when based on on FG, the conventional MPA relying
on the maximum a posteriori (MAP) criterion still has an
excessive complexity order. We circumvent the problem by
resorting to the expectation propagation (EP) method that
restricts the message gleaned from the channel decoder to the
Gaussian distribution. Compared to direct approximation via
moment matching [16], the EP method aims for minimizing a
specified relative entropy related to the true marginal and the
trail distribution [36]. In EP, the extrinsic information fed to
the channel decoder is also considered in the approximation,
which enhances the BER performance. However, since the
modulus of the channel coefficient does not equal to 1, the
Gaussian form of messages is unavailable. To tackle this
problem, we commence from the variational framework of
[37] and construct a modified factor node, which facilitates the
employment of variational message passing. Correspondingly,
only the means and variances have to be updated iteratively
and hence the complexity order of the proposed FTN-SCMA
receiver only grows linearly with the number of users.

Moreover, we intrinsically amalgamate our FTN-SCMA
system with a grant-free transmission scheme. It has been
shown that even in busy hours, only a small percentage of
users is active [38]. In the operational OMA uplink scenarios,
a request-grant procedure is used: the base station (BS) sched-
ules the uplink transmissions after receiving an explicit request
from the users [39]. This procedure leads to a substantial
communication overhead and excessive latency, especially
for massive connectivity associated with a huge number of
devices. Therefore the uplink grant-free transmission scheme
is expected to significantly reduce both the communication
overhead and transmission latency [10]. By contrast, in grant-
free transmission, the active users directly send their signals to
the BS without requiring access the grants. In order to decode
the information bits from the simultaneously connected users,
BS has to detect the user activity based on the received signal.
Motivated by the sparsity of active users, compressive sensing
(CS) based multiuser detection method was proposed in [40].
A two-stage algorithm which detects user activity using CS
first and then performs channel estimation and detection was
proposed in [41]. An AMP-expectation maximization (EM)
solution was proposed in [42], which solved the active user
detection and channel estimation problem jointly. In [43] and
[44], the authors characterized the user activity and then
constructed a factor graph for performing joint detection and
channel estimation. In contrast to [43] and [44], in this paper
we use a binary variable for representing active/inactive users.
By formulating the corresponding factor graph, we propose a
modified message passing algorithm for iteratively calculating
the distribution of user activity. Additionally, to further reduce
the receiver complexity, we use EP for approximating the
binary variable by a Gaussian distribution. Accordingly, the
proposed receiver exhibits a low complexity.

In summary, the main contributions of this paper are as
follows.
• We intrinsically amalgamate FTN signaling with a SCMA

system to transmit more data symbols using the same
radio resources. As a result, a higher spectral efficiency
is achieved.
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• To mitigate both the colored noise and ISI imposed by
FTN signaling and the inter user interference inflicted by
SCMA, we design a novel receiver based on an AR model
and a message passing algorithm that jointly perform
channel estimation and detection. Since all messages
are represented in Gaussian closed form, the proposed
receiver only has a linearly increasing complexity versus
the number of users.

• Finally, we amalgamate our FTN-SCMA scheme with a
grant-free system which requires detection of the active
users. Hence, we develop a joint user activity detection,
channel estimation and decoding algorithm. With the use
of the EP approximation of binary variables representing
the user states, we reconstruct a specific factor node,
which allows us to represent all messages in parametric
forms for maintaining a low complexity.

Our simulation results show that the FTN-SCMA system
relying on the proposed receiver is capable of increasing the
data rate without significantly affecting the BER performance.
The resultant grant-free SCMA system reliably distinguishes
the active/inactive users.

The remainder of this paper is organized as follows. In
Section II, we introduce the model of our FTN-SCMA system.
Section III presents our low complexity algorithm proposed
for joint channel estimation and decoding. In Section IV, our
grant-free transmission concept and the proposed joint user
activity detection, channel estimation and decoding algorithms
are described. Our simulation results are provided in Section
V. Finally, we draw conclusions in Section VI.

Notations: We use a boldface letter to denote a vector.
The superscript T and −1 denote the transpose and the
inverse operations, respectively; G(mx, vx) denotes a Gaussian
distribution of variable x with mean mx and variance vx;
BN denotes a N-dimensional binary number space and CN
denotes a N-dimensional complex number space; � denotes
the componentwise product; | · | denotes the modulus of a
complex number or the cardinality of a set; ‖ · ‖2 denotes the
`2 norm; ∝ represents equality up to a constant normalization
factor; x\x denotes all variables in x except x.

II. SYSTEM MODEL

We consider an SCMA uplink system with K users and J
resource elements. In a NOMA system, K > J is assumed
and we denote λ = K

J as the normalized user-load. In SCMA
encoding, the coded bit streams of different users are directly
mapped to J-dimensional SCMA codewords, i.e. ϕ : ck ∈
Blog2M → xkCJ , where M is the size of the predefined
SCMA codebook. For brevity we denote the codeword of user
k at time instant n as xnk = [xnk1, ..., x

n
kJ ]T . Due to the sparse

structure of SCMA codewords, only D < J elements of xnk are
non-zero. Usually we use a matrix F = [f1, ..., fK ] to capture
the sparse structure of SCMA codewords. For the kth user, fk
is a J dimensional vector having binary entries of fkj = 1 if
and only if the jth resource element is occupied by user k.
Given this definition, the nonzero entries in the jth column of
F represent the users who occupy the jth resource element,
while the nonzero entries in the kth row denote the resource
elements that are occupied by user k.
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Fig. 1. Transmitter of the FTN-SCMA system considered.
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Fig. 2. Receiver structure of the FTN-SCMA system considered.

After SCMA encoding, the SCMA codewords are passed
through a shaping filter q(t) having the symbol period T =
τT0, where T0 is the symbol interval of the Nyquist signaling
and τ is the FTN packing factor. The modulated signal
corresponding to user k over the jth resource element is
formulated as

skj(t) =
∑
n

xnkjq(t− nτT0). (1)

In Nyquist signaling, τ = 1 guarantees inter symbol interfer-
ence (ISI) free transmission. By contrast, in FTN signaling,
we use 0 < τ < 1 to transmit more data symbols in the same
time period at the cost of introducing intentional ISI. Then the
signal corresponding to user k is transmitted through channel
hk = [hk1, ..., hkJ ]T . The block diagram of the transmitter is
shown in Fig. 1.

Assuming perfect synchronization between the users and the
base station, the signal received at the BS can be expressed
as,

y(t) =

K∑
k=1

hk � sk(t) + n(t), (2)

where sk(t) = [sk1(t), ..., skJ(t)]T denotes the modulated
signals of user k transmitted over all J resources and nt is
the additive white Gaussian noise with power spectral density
of N0. As shown in Fig. 2, the received signal is filtered by a
matched filter q∗(−t). Without loss of generality, we denote
g(t) = q(t) ∗ q∗(−t). Then the signal is given by

r(t) =

K∑
k=1

hk �
∑
n

xnkjg(t− nτT0) + ω(t). (3)
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After sampling at rate 1/τT0, the samples at the nth time slot
can be expressed as

rn =

K∑
k=1

hk � s̃nk + ωn, (4)

where the jth entry in s̃nk is given as1

s̃nkj =

L∑
i=−L

gix
n−i
kj , (5)

and gn−i =
∫
q(t− nτT0)q∗(t− iτT0)dt. In (4), ωn denotes

the noise samples for all resource elements at time instant n,
formulated as ωn =

∫
n(t)q∗(t−nτT0). Since the signal rate

is above the Nyquist rate, the autocorrelation function of the
noise sample ωnj ,∀ j becomes

E[ωnj ω
m
j ] = N0gn−m, (6)

which indicates that in FTN systems the noise at the receiver
side is colored. To avoid increasing the receiver complexity
by using the whitening process, in the following section, we
will propose an autoregressive model aided factor graph con-
struction to overcome the colored noise and perform channel
estimation and decoding.

III. JOINT CHANNEL ESTIMATION AND DECODING
ALGORITHM FOR FTN-SCMA SYSTEMS

A. Approximation of Colored Noise

According to [45], the colored noise can be approximated
by a P th-order autoregressive (AR) model as

ωnj =

P∑
p=1

apω
n−p
j + δnj , (7)

where ap denotes the AR process parameter and δnj is the noise
term with zero mean and variance σ2

δ . The values of {ap} are
determined by solving the Yule-Walker equations [46].

B. Probabilistic Model and Factor Graph Representation

Assuming that each user transmits a total of N SCMA
codewords and that N samples are received at the BS. Our goal
is to determine the a posteriori distribution (marginal) of the
transmitted symbol xnkj based on all observations at the base
station r. Then such the resultant marginal is transformed into
extrinsic log likelihood ratios (LLR) and fed to the channel
decoder. The marginal distribution of xnkj is given by

p(xnkj |r) ∝
∫
h,ω,X\xnkj

p(X,h,ω|r), (8)

where X, h and n denote the transmitted symbols, channel
response and colored noise samples, respectively. Instead of
direct marginalization, here we further factorize the joint
distribution p(X,h,ω|r) and resort to a low-complexity factor
graph construction to solve the problem.

1In theory, the number of ISI taps induced by FTN is infinite. However in
practice, we can choose sufficiently large number of taps, i.e. 2L+ 1 taps.

According to Bayes’s theorem, p(X,h,ω|r) is factorized as

p(X,h,ω|r) ∝ p(X) · p(h) · p(ω) · p(r|X,h,ω). (9)

Since the transmitted symbols and channel coefficients are
independent of each other, we have

p(X)p(h) =
∏
k,j

[
p(hkj)

∏
n

p(xnkj)

]
, (10)

where p(xnkj) is obtained from the output LLR of the channel
decoder. The a priori distribution p(ω) can be factorized based
on the AR model as

p(ω) ∝
∏
j

∏
n

exp

(
−
ωnj −

∑P
p=1 apω

n−p
j

2σ2
δ

)
︸ ︷︷ ︸

ψnj

. (11)

Conditioned on ωnj , the observations rnj at different instants
n are independent. As shown in [18], using an auxiliary
variable helps us to reduce the computation load. Therefore
we factorize p(r|X,h,ω) as

p(r|X,h,ω) ∝
∏
j,n

δ(rnj −
K∑
k=1

[
hkj s̃

n
kj

]
− ωnj )︸ ︷︷ ︸

fnj

· δ(s̃nkj −
L∑

i=−L
gix

n−i
kj )︸ ︷︷ ︸

φnkj

. (12)

Based on the factorization (10)-(12), the joint distribution
p(X,h,ω|r) can be represented by a factor graph, as shown
in Fig. 3, where the message passing algorithm is executed to
determine the unknown variables. Note that in the factorization
(12), the local function contains different number of variables.
Hence, the resultant factor graph is an irregular one.

C. Message Passing Receiver Design

The conventional message passing algorithm (MPA) con-
sists of two kinds of messages. Following the sum product
algorithm, the message passed from factor vertex f to variable
node x is given by

µf→x(x) ∝
∫
f(x)

∏
x′∈S(f)\{x}

µx′→f (x′)dx′, (13)

and the message forwarded from x to f is defined as

µx→f (x) ∝
∏

f ′∈S(x)\{f}

µf ′→x(x), (14)

where S(f) and S(x) denotes the set of variable vertices
connected to f and the set of factor vertices connected to
x, respectively. The belief (marginal) of variable x is then
given by b(x) =

∏
f∈S(x) µf→x(x). Next, we consider the

derivations of messages on the factor graph in Fig. 3.
In “turbo” equalization, the channel decoder and the e-

qualizer iteratively exchange extrinsic information. Since the
decoding issues are beyond the scope of this paper, we simply
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mention that optimal BP decoding [47] is used by the channel
decoder. After decoding, the output LLRs become

La(cn,m) =
p(cn,m = 0)

p(cn,m = 1)
, (15)

where the subscripts n and m denote the nth coded bit and
the mth constellation point, respectively. Then the LLRs are
transformed to the a priori distribution of xnkj , which is used
for the next global “turbo” iteration, i.e., we have:

p(xnkj) =

M∑
i=1

piδ(x
n
kj − χi), (16)

where χi represents a constellation point of the SCMA en-
coder, pi is the associated probability and M is the modulation
order. Although the discrete distribution p(xnkj) can indeed
be used as the incoming message, the complexity of the
conventional MPA receiver relying on the MAP criterion will
increase exponentially with the number of interfering symbols.
Here we resort to the Kullback-Leibler divergence based
method of [36], also known as expectation propagation (EP) to
approximate the incoming message by a Gaussian distribution.
Explicitly, we aim for finding the Gaussian distribution that
minimizes the Kullback-Leibler divergence [48],

bG(xnkj) = arg min
bG

∫
bG(xnkj) ln

bG(xnkj)

b(xnkj)
dxnkj , (17)

where bG belongs to the family of Gaussian distributions and
b(xnkj) is the marginal distribution of the variable xnkj . The
minimization formulated in (17) is equivalent to matching the
moments of b(xnkj). Assuming that the outgoing message has
a mean and variance of me

xnkj
and vexnkj , it is easy to obtain the

mean and variance of bG(xnkj) as mxnkj
and vxnkj , respectively.

Then the Gaussian approximation of p(xnkj) has the mean and
variance

m0
xnkj

= v0
xnkj

(
mxnkj

vxnkj
−
me
xnkj

vexnkj

)
, (18)

v0
xnkj

=

(
1

vxnkj
− 1

vexnkj

)−1

. (19)

Having determined m0
xnkj

and v0
xnkj

, we can now calculate
the message in the equalization part. Again, we assume that
the message µs̃nkj→φnk,j = µfnj →s̃nkj has been obtained as

µs̃nkj→φnk,j = G(ms̃nkj→φ
n
k,j
, vs̃nkj→φnk,j ). (20)

Then the message µφnk,j→xn+l
kj

can be written as:

mφnk,j→x
n+l
kj

= ms̃nkj→φ
n
k,j
−

L∑
i=−L,i 6=l

gimxn+i
kj →φ

n
k,j
, (21)

vφnk,j→x
n+l
kj

= vs̃nkj→φnk,j +

L∑
i=−L,i6=l

g2
i vxn+i

kj →φ
n
k,j
. (22)

Usually, calculating µxnkj→φnk,j for different factor nodes
φn+l
k,j |Ll=−L following (14) requires that the product of mes-

sages is calculated (2L + 1) times. Motivated by the fact
that we have µxnkj→φnk,j · µφnk,j→xnkj = bG(xnkj), the objec-
tive message can be calculated at a linear complexity as
µxnkj→φnk,j = bG(xnkj)/µφnk,j→xnkj with the aid of:

vxnkj→φnk,j =

(
1

vxnkj
− 1

vφnk,j→xnkj

)−1

, (23)

mxnkj→φ
n
k,j

= vxnkj→φnk,j

(
mxnkj

vxnkj
−
mφnk,j→x

n
kj

vφnk,j→xnkj

)
. (24)

After obtaining all messages µφn+l
k,j →x

n
kj
|Ll=−L, the mean and

variance of the extrinsic message provided for the channel
decoder are given by

vexnkj =

(
L∑

l=−L

1/vφn+l
k,j →x

n
kj

)−1

, (25)

me
xnkj

= vexnkj

(
L∑

l=−L

mφn+l
k,j →x

n
kj

vφn+l
k,j →x

n
kj

)
. (26)

Based on me
xnkj

and vexnkj , the extrinsic LLRs are calculated as

Le(cn,m) = ln

∑
χi∈A0

m
exp

(
−
−|χi−mexn

kj
|2

ve
xn
kj

)
pm′ 6=m∑

χi∈A1
m

exp

(
−
−|χi−mexn

kj
|2

ve
xn
kj

)
pm′ 6=m

,

(27)

where pm′ 6=m =
∏
m′ 6=m p(cn,m′ = si,m′) and si,m = {0, 1}

denotes the mth label of the constellation point χi, while A0
m

and A0
m are the subsets of all constellation points χi satisfying

si,m = 0 or 1. Then the extrinsic LLRs are fed to the channel
decoder for determining the data bits b̂k of the users.
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Next, let us consider the message updating in the colored
noise part. Since the non-orthogonality of FTN signaling does
not affect the first order moment of noise samples, the mean of
noise samples E[ωnj ] = 0 and we only focus our attention on
the evolution of its variance. According to (11), the variance
vψnj→ωnj is expressed as

vψnj→ωnj = σ2
δ +

P∑
p=1

(ap)2vωn−pj →ψnj
. (28)

It should be noted that the colored noise represents a causal
system where the sample at instant n only depends on the
previous noise samples. Therefore the message forwarded
from ωnj to fnj is identical to µψnj→ωnj , i.e. we have vωnj→fnj =
vψnj→ωnj .

For the channel estimation part, the message µhkj→fnj is
readily determined according to the SPA rules as

µhkj→fnj = p(hkj)
∏
n′ 6=n

µfn′j →hkj
, (29)

where p(hkj) is usually coarsely evaluated by using a sequence
of pilot symbols, which can be modeled as a Gaussian dis-
tributed variable with a mean of m0

hkj
and variance of v0

hkj
. We

assume that µfn′j →hkj has also been obtained in the Gaussian
form as µfn′j →hkj = (mfn

′
j →hkj

, vfn′j →hkj
). Hence µhkj→fnj

has a mean and variance of

mhkj→fnj = vhkj→fnj

m0
hkj

v0
hkj

+
∑
n′ 6=n

mfn
′

j →hkj

vfn′j →hkj

 (30)

vhkj→fnj =

 1

v0
hkj

+
∑
n′ 6=n

1

vfn′j →hkj

−1

. (31)

The belief b(hkj) is obtained by adding the terms
mfn

′
j →hkj

/vfn′j →hkj
and 1/vfn′j

with index n′ = n into (30)
and (31). Then the maximum a posteriori (MAP) estimator can
be used for determining the estimate of the channel coefficient
by ĥkj = arg maxhkj b(hkj). Since b(hkj) obeys a Gaussian
distribution, the MAP estimate ĥkj is the mean of b(hkj)

Above we have derived closed form Gaussian messages in
four parts of the factor graph. However, they are based on
the fact that the messages gleaned from fnj to its connected
variable vertices obey Gaussian distributions. In what follows,
we will calculate the messages related to vertex fnj . Following
(13), the message µfnj →s̃nkj is expressed as

µfnj →s̃nkj ∝
∫
δ(rnj −

K∑
k=1

[hkj s̃
n
kj ]− ωnj )µωnj→fnj

∏
k

µhkj→fnj∏
k′ 6=k

µs̃n
k′j→f

n
j

dhkjdωnj ds̃nk′j

∝
∫

exp

(
−
|rnj −

∑K
k=1[mhkj→fnj s̃

n
kj ]|2

vωnj→fnj +
∑k
k=1 |s̃nkj |2vhkj→fnj

)∏
k′ 6=k

µs̃n
k′j→f

n
j

ds̃nk′j .

(32)

From (32), we can see that when calculating message
µfnj →s̃nkj , the variable s̃nkj appears in both the numerator

and denominator of the exponential term, which makes the
conventional MPA unsuitable. Here we resort to the variational
message passing (VMP) method of [49] where the message
forwarded from factor vertex f to variable vertex x is formu-
lated as

µf→x(x) ∝ exp

∫ ln f(x)
∏

x′∈S(f)\{x}

µx′→f (x′)dx′

 . (33)

By employing the VMP rules for the message µfnj →s̃nkj , we
have

µfnj →s̃nkj ∝ exp

(∫
−
|rnj −

∑K
k=1[hkj s̃

n
kj ]|2

vωnj→fnj

∏
k

µhkj→fnj

·
∏
k′ 6=k

µs̃n
k′j→f

n
j

dhkjds̃nk′j

)
. (34)

After straightforward manipulations, the message (34) can be
obtained in Gaussian form with a mean of

mfnj →s̃nkj =
(rnj −

∑K
k′=1,k 6=kmhk′j→fnj ms̃n

k′j→f
n
j

)mhkj→fnj

|mhkj→fnj |2 + vhkj→fnj
,

(35)

and variance of

vfnj →s̃nkj =
vωnj→fnj

|mhkj→fnj |2 + vhkj→fnj
. (36)

The message µfnj →hkj can be calculated similarly by the
VMP, whose mean and variance are

mfnj →hkj =
(rnj −

∑K
k′=1,k 6=kmhk′j→fnj ms̃n

k′j→f
n
j

)ms̃nkj→f
n
j

|ms̃nkj→f
n
j
|2 + vs̃nkj→fnj

,

(37)

vfnj →hkj =
vωnj→fnj

|ms̃nkj→f
n
j
|2 + vs̃nkj→fnj

. (38)

D. Algorithmic Summary

Using appropriate approximations, all messages on the
factor graph are represented in parametric forms, which sig-
nificantly reduces the computational complexity of the con-
ventional MPA receiver. Compared to the existing advanced
MPA receiver, the computational complexity associated with
the introduction of an auxiliary variable and modified message
updating rules only increases linearly with the number of
users and resource elements. The details of the proposed joint
channel estimation and FTN-SCMA detector are presented in
Algorithm. I.

IV. USER ACTIVITY DETECTION IN GRANT-FREE
FTN-SCMA SYSTEMS

In the state-of-the-art grant-based uplink transmission, be-
fore transmitting information, a user first sends a scheduling
request to the base station and then waits for the scheduling
grant from the base station. This kind of ‘handshaking’ process
introduces excessive signaling overhead and latency, especially
for massive access networks. In a grant-free system, a user
do not have to wait for the base station to assign a resource
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Algorithm 1 Joint Channel Estimation and Decoding Algo-
rithm for FTN-SCMA System

1: Initialization:
2: At the first turbo iteration, initialize all undetermined

messages as Gaussian distribution with zero mean and unit
variance;

3: Using pilot sequence to coarsely estimate the mean m0
hkj

and variance v0
hkj

of channel coefficient.
4: for iter=1:Niter do
5: Compute the means and variances of messages in

equalization part according to (21)-(24);
6: Compute the message from factor vertex fnj to variable

vertices xnkj and hkj according to (35)-(38);
7: Compute the variance vψnj→ωnj according to (28);
8: Compute the message from hkj to factor vertex fnj via

(30) and (31);
9: Compute the mean and variance of message to channel

decoder according to (25) and (26);
10: Convert the outgoing messages to LLR and feed them

to the channel decoder;
11: Perform BP decoding;
12: Convert the extrinsic LLRs to Gaussian messages using

(18) and (19);
13: end for
14: Determine the estimate of channel coefficient by MAP

estimator.

element before sending their signals to the BS. Therefore the
signal latency is significantly reduced. In the existing works,
a precision parameter is used for estimating the channel’s
sparsity. However, this results in more short loops in the
factor graph and increases the receiver complexity. In this
section, we propose an algorithm for FTN-SCMA systems that
directly determines the user activity while performing channel
estimation and decoding.

Let us use a binary variable ξk = {0, 1} to represent the
user activity, i.e. ξk = 1 indicates that user k is active and
vice versa. Then the nth sample at the jth resource element
is expressed by

rnj =

K∑
k=1

hkjξks̃
n
kj + ωnj . (39)

The a priori distribution of ξk is a Bernoulli distribution given
by

p0(ξk) = pξk1 (1− p1)1−ξk , (40)

where p1 is the a priori knowledge of user activity based on
existing data.

A. Probability Based Active User Detection Algorithm

To determine the activity of user k, we have to calculate its
probability γk of being active based on the received samples.
To this end, we modify the factor graph structure by including
the probability γk of ξk = 1. The corresponding part of
the factor graph is illustrated in Fig. 4. Here we introduce a
weighting factor γkj that represents the probability of ξkj = 1

n

j
f n

j
f kj

h

kj
p

n

j
 n

j
 n

j


n

kj
s

kj
γ

Fig. 4. Modified factor graph structure including user activity.

on the specific edge connected to the vertices hkj to represent
the weight on this edge.

Based on Fig. 4, the message passed from fnj to hkj has a
mean of mfnj →hkj and variance of vfnj →hkj according to (37)
and (38). Hence we arrive at the intrinsic message for ξkjhkj
with a mean and variance of

−→mξkjhkj = −→v ξkjhkj
∑
n

mfnj →hkj

vfnj →hkj
(41)

−→v ξkjhkj =

(∑
n

1

vfnj →hkj

)−1

. (42)

The distribution of ξkj is obtained by integrating hkj over the
joint distribution, formulated as

p(ξkj) ∝
∫

exp

(
−

(ξkjhkj −−→mξkjhkj )
2

−→v ξkjhkj

)
· exp

(
−

(hkj −m0
hkj

)2

v0
hkj

)
dhkj

∝ exp

(
−

(ξkjm
0
hkj
−−→mξkjhkj )

2

ξ2
kjv

0
hkj

+−→v ξkjhkj

)
. (43)

Then the probability γkj is updated as

γkj =
p(ξkj = 1)

p(ξkj = 0) + p(ξkj = 1)

=
1

1 +
p(ξkj=0)
p(ξkj=1)

. (44)

Once the probability ξkj = 1 has been obtained, the proba-
bility γ̃k conditioned on all received signal samples is readily
determined as

γ̃k =

∏
j γkj∏

j γkj +
∏
j(1− γkj)

. (45)

Considering the a priori probability p1, we get γk as follows,

γk =
p1γ̃k

p1γ̃k + (1− p1)(1− γ̃k)
. (46)

To determine the value of ξk, we set a threshold β according
to empirical evidence. Then we say that user k is deemed to
be active if γk ≥ β and vice versa.
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Algorithm 2 User Activity Detection Algorithm I
1: Run Algorithm 1;
2: Calculate the intrinsic message to hkj according to (41)

and (42);
3: Determine the probability γkj by (44);
4: Calculate γk according to (46) and decide ξk;
5: Approximate the message µhkj→fnj to Gaussian and con-

tinue running algorithm 1.

The extrinsic message passed on from hkj to fnj is still
obtained by µhkj→fnj = µpkj→hkj

∏
n′ 6=n µfn′j →hkj

. Specifi-
cally, when calculating µpkj→hkj , we combine ξkj and hkj to
create a new variable,

µpkj→hkj ∝

γkje−
(hkj−m

0
hkj

)2

v0
hkj + (1− γkj)e

−
[m0
hkj

]2

v0
hkj

 .

(47)

It is plausibly that µpkj→hkj is a Gaussian mixture distribution
(GMD) and µhkj→fnj is also a GMD. In conjunction with
the message passing receiver of Section III, we approximate
µhkj→fnj by a Gaussian distribution having a mean and
variance as

mhkj→fnj = Eµhkj→fnj [hkj ] (48)

vhkj→fnj = Eµhkj→fnj [h2
kj ]−m2

hkj→fnj . (49)

In Algorithm 2, the user activity detection based on the
message passing algorithm is described. To sum up, we can
see that the algorithm can be readily extended from the
algorithm proposed in Section III and we only have to do
small modification in the factor graph. However, since ξkj has
to be calculated separately, the receiver complexity increases.
Furthermore, the derivation of messages is not straightforward
from the perspective of probabilistic factorization. In the
following subsection, we will propose another active user
detection method having a reduced complexity .

B. Message Passing Based Active User Detection Algorithm

To create a concise form of the message passing receiver in
the factor graph framework of Fig. 3, we add ξk as a new
variable vertex to the factor graph. According to (39), we
use a dirac Delta function δ(s̄nkj − ξks̃

n
kj) to represent the

multiplication relationship of s̄nkj = ξks̃
n
kj . Accordingly, the

joint likelihood function (12) is revised as

p(r|X,h,ω, ξ) ∝
∏
j,n

δ(rnj −
K∑
k=1

[
hkj s̄

n
kj

]
− ωnj )︸ ︷︷ ︸

fnj

· δ(s̄nkj − ξks̃nkj) · δ(s̃nkj −
L∑

i=−L
gix

n−i
kj )︸ ︷︷ ︸

φnkj

, (50)

and the factor graph is modified as shown in Fig. 5. Since ξk
is a binary variable, it has a discrete distribution. Then upon

n

j
f n

j
f kj

h
kj

pn

j
 n

j
 n

j


n

kj
s

k


k
p


n

kj
s



To other 
product 
vertices

To other 
product 
vertices

Fig. 5. Modified factor graph structure. The product node ×n
kj represents

the constraint δ(s̄nkj − ξk s̃
n
kj).

considering the message updating, if the messages arriving
from different product vertices to ξk are Gaussian, the resultant
message µξk→×nkj follows a Gaussian mixture distribution,
which is unsuitable for deriving Gaussian messages. To tackle
this problem, we approximate the message forwarded from
ξk to the product vertex ×nkj by a Gaussian distribution via
expectation propagation.

Following the classic SPA rules, the belief of ξk is b(ξk) =
µξk→pξk p(ξk). Assuming that µξk→pξk is Gaussian with a
mean of mξk→pξk and variance of vξk→pξk , the mean and
variance of b(ξk) becomes

mξk =
p1 exp(−

1−2mξk→pξk
vξk→pξk

)

p1

[
exp(−

1−2mξk→pξk
vξk→pξk

)− 1

]
+ 1

, (51)

vξk = mξk −m2
ξk
. (52)

A plausible observation is that in (51) the absolute value of
the exponential term dominates the value of mξk , and vξk
becomes smaller when ξk approaches 0 or 1. Hence, after
running several iterations, the belief of ξk becomes more
‘concentrated’. Having determined mξk and vξk , we can now
readily determine the Gaussian approximation of the message
µξk→×nkj , which is

µξk→×nkj ∼ G

(
mξkvξk −m×nkj→ξkv×nkj→ξk

vξk − v×nkj→ξk
,
vξkv×nkj→ξk

vξk − v×nkj→ξk

)
.

(53)

Since we have µξk→×nkj and µs̃nkj→×nkj = µφnkj→s̃nkj , the
mean and variance of message µs̄nkj→fnj for the product vertex
are given by

ms̄nkj→f
n
j

=mξk→×nkjmφnkj→s̃
n
kj

(54)

ms̄nkj→f
n
j

=vξk→×nkjm
2
φnkj→s̃

n
kj

+ (m2
ξk→×nkj

+ vξk→×nkj )vφnkj→s̃nkj . (55)

The detailed derivations of (54) and (55) are given in Appendix
A. By contrast, the message µs̄nkj→×nkj is the same as the
message calculated in (35) and (36). Next, we calculate the
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messages forwarded from ×nkj to s̃nkj and ξk. Again, a similar
problem as that in Section III occurs: even if µs̃nkj→×nkj is
Gaussian, it is not possible to formulate Gaussian distribut-
ed messages for ξk. To overcome this challenge, we adopt
the Kullback-Leibler divergence. By grouping the message
µs̄nkj→×nkj and the constraint into a new factor node, the joint
distribution p(s̃nkj , ξk) is formulated as

p(s̃nkj , ξk) ∝ exp

(
−

(ms̄nkj→×
n
kj
− ξks̃nkj)2

vs̄nkj→×nkj

)
µξk→×nkj

· µs̃nkj→×nkj . (56)

According to the variational inference framework, we consider
using b(ξk)b(s̃nkj) to approximate (56). The Kullback Leibler
divergence is given by [48]

KLD(ξk, s̃
n
kj) =

∫
b(ξk)b(s̃nkj) ln

b(ξk)b(s̃nkj)

p(s̃nkj , ξk)
dξkds̃nkj

=−
∫
b(ξk)

[∫
ln p(s̃nkj , ξk)b(s̃nkj)ds̃nkj

]
dξk

+

∫
b(ξk) ln b(ξk)dξk + C, (57)

where C denotes a constant. To minimize the KLD, it may be
shown that

b(ξk) = exp

(∫
ln p(s̃nkj , ξk)b(s̃nkj)

)
. (58)

Substituting (56) into (58) yields

b(ξk)

µξk→×nkj
∝ exp

(
−ξ2

k

m2
s̃nkj

+ vs̃nkj

vs̄nkj→×nkj
+ 2ξk

ms̄nkj→×
n
kj
ms̃nkj

vs̄nkj→×nkj

)
,

(59)

where vs̃nkj = (v−1
s̃nkj→×

n
kj

+ v−1
×nkj→s̃

n
kj

)−1 and ms̃nkj
=

vs̃nkj (ms̃nkj→×
n
kj
v−1
s̃nkj→×

n
kj

+ m×nkj→s̃nkjv
−1
×nkj→s̃

n
kj

). Therefore
the message µ×nkj→ξk is determined to be Gaussian with a
mean and variance of

m×nkj→ξk =
ms̄nkj→×

n
kj
ms̃nkj

m2
s̃nkj

+ vs̃nkj
(60)

v×nkj→ξk =
vs̄nkj→×nkj
m2
s̃nkj

+ vs̃nkj
. (61)

Similarly, we have the Gaussian message µ×nkj→s̃nkj represent-
ed as

µ×nkj→s̃nkj ∝ G

(
mξk→×nkjmξk

m2
ξk

+ vξk
,
vξk→×nkj
m2
ξk

+ vξk

)
, (62)

where mξk and vξk are the mean and variance of b(ξk). For
the other product vertices, the messages to ξk can also be
obtained in Gaussian form following the update rules derived
in (59) - (61) based on the message µξk→×nkj determined in
the previous iteration. Having µ×nkj→ξk in the Gaussian form,
the mean and variance of the Gaussian message µξk→pξk can
now be calculated by straightforward manipulations. The value
of ξk is given by the MAP estimate of b(ξk), which is shown
in (51). We also set a threshold β and compare it with mξk to
decide whether user k is active or inactive. The details of the
proposed user activity detection algorithm are summarized in
Algorithm. 3.

Algorithm 3 User Activity Detection Algorithm II
1: Run Algorithm 1;
2: Approximate the message from ξk to the product vertex

to Gaussian by EP according to (51) and (53);
3: Calculate the mean ms̄nkj→f

n
j

and variance vs̄nkj→fnj using
(54) and (55);

4: Determine the messages from the product vertex to ξk and
s̃nkj using (60)-(62);

5: Calculate the message µξk→pξk and estimate ξk using
(51);

6: Continue running Algorithm 1.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithm via simulations. We consider an SCMA system
with J = 4 resource elements that supports K = 6 users,
yielding a normalized user-load of 1.5. The codebook is
defined according to [13] with size M = 4 and an indicator
matrix F of

F =


1 1 0 0 1 0
1 1 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 1

 . (63)

Each user transmits a sequence of data bits, which is coded
using a rate-1/2 irregular low density parity check (LDPC)
code having a length of 8640 bits and then mapped to a
sequence of SCMA codewords. The LDPC code is designed
for FTN signaling based on [50], which has a cycle distribution
of 2

f(X) =236520X8 + 5756880X10 + 170094120X12

+ 5121774960X14. (64)

Standard BP decoding is used for channel decoder and the
maximum number of iterations used for decoding is 50. We
set the number of transmitted symbols corresponding to each
user as N = 4320. The transmitted symbols pass through root
raised cosine shaping filters with a roll-off factor of α = 0.5
and FTN packing factor of τ = 0.8.3 The number of ISI taps
imposed by FTN signaling is assumed to be L = 10. The
channel obeys uncorrelated Rayleigh fading whose impulse
response is generated according to Jake’s model. The coarse
estimate of channel coefficients is obtained by using 8 pilots
symbols. Hence the pilot overhead is as low as 8/4320 ≈ 2 ·
10−3, corresponding to semi-blind estimation. The maximum
number of ‘turbo’ iterations is Niter = 10. All results are
averaged over 1000 independent Monte Carlo trials.

In Fig. 6, we compare the proposed Algorithm 1 both to
the MPA-Gauss and to the MMSE-MPA methods in terms of

2The design of the LDPC code for FTN signaling depends on searching
for codes with large girth of their Tanner graph. We have compared the
BER performance of the specifically designed LDPC code and of the rate-2/5
CCSDS standard LDPC code having a length of 10240 for our FTN system
associated with τ = 0.8. As a result, 0.1dB performance gain can be observed
for the specifically designed LDPC code, even though its code rate is higher
than that of the CCSDS code.

3We assume the same shaping filter is employed for different resource
elements at the transmitter side.
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Fig. 6. BER performance of different algorithms for FTN-SCMA system.

their bit error rate (BER). As a reference, the performance of
the conventional MPA (C-MPA) receiver relying on the MAP
criterion is also illustrated. The ‘MPA-Gauss’ method refers to
directly approximating the a priori distribution of p(xnkj) by
the Gaussian distribution. The ‘MMSE-MPA’ method relies
on a combination of the MMSE equalizer and the SCMA
decoder. It is observed that the proposed algorithm outper-
forms all the other three algorithms and has almost the same
performance as the conventional MPA receiver. MMSE-MPA
method suffers from significant performance loss due to error
propagation. Moreover, using an MMSE equalizer imposes
a cubic complexity order, which is prohibitively high in
practical applications. Compared to MPA-Gauss, the proposed
algorithm achieves a performance gain, since EP exploits the
extrinsic information fed to the channel decoder. Furthermore,
the performance of the joint channel estimation and detection
method based on an OMA system with using Nyquist signaling
is also plotted. We see that the performance loss of the
proposed algorithm is as small low 0.2 dB. Meanwhile, 50%
more users are supported and 25% higher data rate is achieved.
More explicitly, using the same resources, a total of 87.5%
more information can be transmitted via our FTN-SCMA
system advocated at a negligible performance loss.

Fig. 7 depicts the BER versus Eb/N0 of the proposed
algorithm parameterized by different packing factors τ , where
τ = 1 corresponds to the Nyquist signaling case. It is seen
that the iterative receiver proposed for FTN-SCMA system
is capable of achieving a similar performance to classic
Nyquist signaling for τ ≥ 0.8. Moreover, as the packing
ratio becomes smaller, more severe interference is imposed and
the performance gap between the FTN signaling and Nyquist
signaling becomes higher. Since the actual number of ISI taps
induced by FTN is infinite, the number of interfered symbols
L used in model (5) may not be sufficient for describing
the ISI induced by FTN, hence causing a performance loss.
In Fig. 8, we illustrate the BER curves for various values
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Fig. 7. BER performance of the proposed algorithm for different τ values.
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Fig. 8. BER performance of the proposed algorithm for different L values.

of L, when the packing ratio τ is fixed as 0.7. Observed
that when L increases to 20, the performance gap between
FTN and Nyquist signaling becomes negligible, which means
that using a smaller packing ratio is still possible at the
cost of more complex equalization. This implies that we can
strike a compromise between the transmission rate and the
receiver complexity. Nevertheless, there is a lower bound for
the packing factor due to the Mazo limit [20].

To further show the advantage of FTN signaling, we evalu-
ate the BER performance of the proposed message passing
receiver for different packing factor τ and roll-off factor
α pairs in Fig. 9, while the bandwidth efficiency is fixed.
Compared to classic Nyquist signaling using α = 0.2, it can be
seen that FTN signaling associated with τ = 0.8 and α = 0.5
achieves better BER performance. When we further reduce the
packing factor and increase the roll-off factor, the performance
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Fig. 9. BER performance of the proposed algorithm for different values of
τ and α give fixed bandwidth efficiency.

degrades slightly. This is because the ISI imposed by FTN
signaling cannot be fully eliminated. However, it can be seen
that all three FTN signaling scenarios outperform their classic
Nyquist counterparts at a given bandwidth efficiency. This is
due to the fact that FTN signaling has the ability to exploit
the excess bandwidth [21], which confirms the benefits of FTN
signaling.

In Fig. 10, the normalized mean squared error (NMSE) of
the estimated channel coefficients versus Eb/N0 is illustrated.
The NMSE is defined as

NMSEh =

∑K
k=1 ‖hk − ĥk‖2∑K

k=1 ‖hk‖2
, (65)

where ĥk is the channel estimate obtained in Section III. The
NMSE of the least square (LS) channel estimation method
using 8 and full pilot symbols is also depicted for comparison.
Observed from Fig. 10 that the proposed channel estimation
algorithm is efficient, which can approach the performance of
the LS algorithm based on all pilot symbols. Compared to
the coarse estimate using a fewer 8 pilot symbols, the pro-
posed algorithm significantly improves the channel estimation
performance. Furthermore, the performance of an advanced
joint channel estimation and decoding algorithm based on
expectation maximization (EM) is also presented here. Since
EM neglects all uncertainties of latent variables in the iterative
process, it suffers from a performance loss.

Next, we evaluate the performance of the proposed active
user detection algorithms in a grant-free system. In Fig. 11,
the BER performance of the proposed algorithm versus Eb/N0

is illustrated, where the probability that a user is active is
p1 = 0.3. For comparison, we also present the performance
for the algorithm proposed in Section III with known active
users (denoted by ‘MPA-Known’), the algorithm that regards
all users as active users (denoted by ‘Approx-known’) and the
two-stage CS-MPA algorithm [51] that first uses compressive
sensing for active user detection and then performs MPA mul-

3.2 3.4 3.6 3.8 4 4.2

E
b
/N

0
 (dB)

10-3

10-2

10-1

100

N
M

S
E

Algorithm 1

EM

LS (8 pilots)

LS (full pilots)

Fig. 10. NMSEs of different algorithms versus Eb/N0.

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

E
b
/N

0
 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

B
E

R

MPA-Known

Activity Detection Algorithm I

Activity Detection Algorithm II

CS-MPA

Appprox-Known

Fig. 11. BER performance of the proposed active user detection algorithms
and existing methods.

tiuser detection. We can observe that Approx-known suffers
from a significant performance degradation. Since the two-
stage method only provides a hard decision concerning the
users’ activities to the equalizer of Fig. 2, it also experiences
considerable performance loss. Compared to the optimal case
that all users’ activities are known, the proposed algorithms
designed under our factor graph framework is capable of
achieving a nearly optimal performance. Since the user activity
detection Algorithm II has a lower complexity than Algorithm
I, it is more attractive for practical grant-free systems.

Fig. 12 depicts the NMSE of channel estimates based
on the joint channel estimation, decoding and active user
detection algorithm of Fig. 2 parameterized by the occurrence
probability p1 of active users. We see that the performance
degrades as p1 becomes higher. This can be explained by the
fact that a higher p1 leads to having more active users in FTN-
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SCMA systems and both the inter-user and the inter-symbol
interferences become more severe. Finally, we also illustrate
the performance of the MPA-Known algorithm for different
p1 as a performance bound. It can be observed that when
p1 is high, the proposed joint estimation algorithm is capable
of approaching the bound. When p1 decreases, although a
small performance gap emerges, the proposed algorithm still
performs well. This observation indicates that the proposed
activity detection algorithm is more efficient when the number
of active users increases.

VI. CONCLUSIONS

In this paper, we considered an uplink SCMA system that
utilized FTN signaling for increasing the spectral efficiency.
Using an AR model, the correlated noise samples are approx-
imated by an AR process. Then, based on the factorization
of the joint a posteriori distribution, a factor graph based
hybrid message passing receiver was proposed for estimating
both the channel coefficients and the FTN data symbols. We
extended the factor graph model and proposed a pair of novel
user activity detection methods for a grant-free transmission
scheme. Consequently, the proposed receiver carries out joint
iterative channel estimation, decoding and active user detection
in FTN-SCMA systems. Our simulation results showed that
the FTN-SCMA system relying on the proposed receiver is
capable of increasing the data rate by 80% of conventional
orthogonal communications systems.

APPENDIX A
DERIVATIONS OF (54) AND (55)

For the product vertex ×nkj , the message µs̄nkj→fnj can be
characterized by the distribution of s̄nkj = ξks̃

n
kj associated

with the random variables ξk and s̃nkj obeying the distributions
µξk→×nkj and µs̃nkj→×nkj . Since µξk→×nkj and µs̃nkj→×nkj are
both Gaussian distributied, we can calculate the density of

s̄nkj as

f(s̄nkj) =

∫
f(s̃nkj)f(ξk)δ(s̄nkj − s̃nkjξk)ds̃nkjdξk

=

∫
1

|ξk|
f

(
s̄nkj
ξk

)
f(ξk)dξk

∝
∫

1

|ξk|
exp

− (
s̄nkj
ξk
−ms̃nkj→×

n
kj

)2

vs̃nkj→×nkj
−

(ξk −mξk→×nkj )
2

vξk→×nkj

 dξk.

(66)

However, the above integral does not have a closed-form
analytical expression. Since our goal is to derive a Gaussian
message, we in turn aim for determining the mean and variance
of µs̄nkj→fnj based on the incoming messages.

It is widely recognized that, for two independent random
variables x and y, based on the Mellin Transform [52], the
nth-order moment of xy satisfies

E[(xy)n] = E(xn)E(yn). (67)

Thus the first two order moments of µs̄nkj→fnj are given by

E[s̄nkj ] = E[s̃nkj ]E[ξk] = mξk→×nkjmφnkj→s̃
n
kj
, (68)

E[(s̄nkj)
2] = E[(s̃nkj)

2]E[ξ2
k] (69)

= (m2
ξk→×nkj

+ vξk→×nkj )(m
2
φnkj→s̃

n
kj

+ vφnkj→s̃nkj ),

and the variance vs̄nkj→fnj = E[(s̄nkj)
2] − E2[s̄nkj ], which are

given by (54) and (55).
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[21] J. B. Anderson, F. Rusek, and V. Öwall, “Faster-than-Nyquist signaling,”
Proc. IEEE, vol. 101, no. 8, pp. 1817–1830, 2013.

[22] A. Prlja and J. B. Anderson, “Reduced-complexity receivers for strongly
narrowband intersymbol interference introduced by faster-than-Nyquist
signaling,” IEEE Trans. Commun., vol. 60, no. 9, pp. 2591–2601, 2012.

[23] S. Sugiura, “Frequency-domain equalization of faster-than-Nyquist sig-
naling,” IEEE Wireless Commun. Lett., vol. 2, no. 5, pp. 555–558, 2013.

[24] S. Sugiura and L. Hanzo, “Frequency-domain-equalization-aided it-
erative detection of faster-than-nyquist signaling,” IEEE Trans. Veh.
Technol., vol. 64, no. 5, pp. 2122–2128, May 2015.
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