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Abstract

This paper presents a theoretical and experimental study of a stroke limited in-

ertial actuator when used for active vibration control. The active control system

under investigation consists of the inertial actuator attached to a flexible struc-

ture, a collocated vibration sensor and a velocity feedback controller (VFC).

Controlling low frequency motions or large amplitude vibrations requires a very

long stroke for the proof mass. However, a physical limitation of inertial actua-

tors is that the stroke length is finite. Stroke saturation results in impulse-like

excitation, which is transmitted to the structure and may result in damage.

Additionally, these impacts between the proof mass and the end-stops can be

in phase with the velocity of the structure, reducing the overall damping of the

system, which leads to instability and limit cycle oscillations.

This paper examines the implementation of a nonlinear feedback controller

(NLFC) to avoid collisions of the proof mass with the actuator’s end-stops, thus

preventing this instability. The nonlinear control strategy actively increases the

internal damping of the actuator when the proof mass approaches the end-stops.

The experimental implementation of the NLFC is investigated for the control of

the first mode of a cantilever beam, and it is shown that the robustness of the

VFC system to external perturbations is much improved with the NLFC. It is

shown experimentally that larger velocity feedback gains can be used without
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the system becoming unstable when the NLFC is adopted and the theoretical

reasons for this increase in stability margin are explored.

Keywords: Inertial actuator, stroke saturation, velocity feedback control,

nonlinear feedback control

1. Introduction

Active vibration control plays a vital role in the attenuation of unwanted

vibrations in lightweight and flexible structures, as recognised in a number of

studies [1, 2, 3]. Velocity feedback controllers (VFCs) are a notable example

of an active solution that can increase the effective damping of a structure,5

reducing its level of resonant vibration [4].

A VFC typically consists of an electromagnetic inertial, or proof mass, ac-

tuator attached to a structure, a collocated vibration sensor and a controller,

which feeds back the velocity of the structure to the actuator. The aim of the

inertial actuator is to apply a control force to the structure proportional to its10

velocity for the purpose of vibration reduction. The operating principle of an in-

ertial actuator is that an input current to the actuator generates a control force

on the structure by means of an electromagnetic transducer, reacting against

a proof mass, which starts to accelerate [3]. An inertial actuator consists of a

magnetic proof mass, an electrical winding and a suspension, which connects15

the proof mass to a casing or base mass. An example of such a device is shown

in figure 1(a) and its schematic representation is displayed in figure 1(b).

Electromagnetic proof mass actuators have a wide range of applications. For

example they can be used in: active vibration attenuation of space structures

or satellites [6], active reduction of human induced vibration on floors of open-20

space buildings or on stadia [7], active or hybrid vibration control of skyscrapers

swing induced by wind excitation [8], internal noise reduction in aircraft and

active vibration isolation between the gearbox and the cabin of helicopters [9].

The internal dynamics of the inertial actuator is known to affect the stability

and performance of the VFC, which then becomes only conditionally stable [10],25
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(a) (b)

Figure 1: Electromagnetic inertial actuator. (a) Picture of a Micromega Dynamics

IA-01 [5]; (b) Schematic of an inertial actuator in cross-section.

so that there exists a maximum velocity feedback gain, above which the control

system becomes unstable [11]. Previous research has established that higher

feedback gains are possible if the inertial actuator has a low natural frequency

and a well damped resonance [11].

On the other hand, this solution increases the static displacement of the proof30

mass and its response to low frequency excitations. In practical applications,

the maximum displacement of the proof mass is limited by the stroke length

between the end-stops of the actuator [12]. For very low frequency motions

or high input currents, the proof mass can saturate in stroke as it hits the

end-stops, imparting large shocks to the structure, which may be damaged.35

Moreover, it has been observed both theoretically and experimentally that this

nonlinear dynamic behaviour is also undesirable in terms of the stability of the

closed-loop control system, because it can reduce the stability margin of the

velocity feedback loop, and in fact, enhance the level of vibration [13, 14]. The

instability is due to the forces imparted during the collisions between the proof40

mass and end-stops being in-phase with the velocity of the structure, hence

reducing the overall damping of the system. Over-designing the actuator may

not be possible in practice [12] and allowing for a very large stroke may negate

the weight benefits introduced by these active devices.
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This motivates an investigation into the causes and the effects of stroke sat-45

uration, and the development of a control strategy that can contrast the insta-

bility by increasing the range of stable control gains. The sources of mechanical

and electromechanical nonlinearities in inertial actuators have been investigated

in a previous study [15], where particular focus was given to stroke saturation.

Several attempts have been made to overcome the issue of stroke saturation50

in inertial actuators with the aid of active nonlinear control methods. The

first study on this extent can be found in [16], where a suboptimal feedback

position controller of a beam with a proof mass actuator was designed using

a linear programming algorithm. This approach, however, severely limits the

performance of the inertial actuator. Later studies developed the idea of adding55

a nonlinear feedback control loop to the VFC loop [17, 18, 19, 20, 21], but there

is no record of experimental work using these controllers. Another approach

that has been used is the on/off controller, which deactivates the VFC if stroke

saturation is detected [22, 23]. A similar, but less dramatic strategy, namely gain

scheduling, was first introduced by [24] and then adopted by [25, 26], where the60

VFC gain is reduced by a certain amount the more the proof mass gets close to

the end-stops and eventually going to zero so that the system becomes passive.

More recently, a double inner loop was proposed alongside the VFC, where one

loop is a PD controller of the proof mass and the other loop adapts the velocity

feedback gain depending on the value of the stroke [27]. A solution using linear65

methods, specifically a notch filter, was also discussed in [28].

This paper sets out a theoretical and experimental study of a nonlinear con-

trol strategy to prevent stroke saturation of inertial actuators, thus enhancing

their stability when used with VFCs. The novel nonlinear feedback control

(NLFC) strategy acts as a second feedback loop alongside the VFC and actively70

increases the internal damping of the actuator only when the proof mass gets

closer to the end-stops. This is shown to increase the stability of the control

system without affecting the performance.

This paper is organised in four main sections. Section 2 derives the math-

ematical model of the system constituted by a nonlinear inertial actuator at-75
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tached to a SDoF structure controlled using a VFC loop. A theoretical investi-

gation on the stability of the control loop is carried out comparing the nonlinear

actuator model with the underlying linear one to show the importance of includ-

ing the nonlinearity in the stability prediction. The NLFC law is then presented

and analysed under different excitation conditions and a comparison between a80

single VFC loop or a combination of VFC and NLFC loops is carried out in terms

of stability of the control system. Section 3 describes the experimental study

conducted on a cantilever beam, where its second flexural mode is controlled by

a stroke limited inertial actuator in direct velocity feedback. The experimental

set-up is first presented. The NLFC developed in section 2 is then introduced as85

a second loop in the control strategy and the stability of the system is assessed

comparing the cases when the nonlinear controller is implemented or not under

different excitation conditions. The conclusions are summarised in section 4.

2. Nonlinear feedback control of a SDoF system: theoretical analysis

The nonlinear behaviour of inertial actuators described in [15] can be detri-90

mental to the stability of VFCs, as observed in [13]. This section aims to develop

a nonlinear strategy that accounts for the nonlinear dynamics of the actuator,

enhancing the stability of the control system whilst maintaining the vibration

attenuation performance provided by the VFC. A theoretical analysis of a stroke

limited inertial actuator attached to a SDoF structure, driven by either a VFC95

or a combination of two feedback loops is presented. Firstly, the mathematical

model of the nonlinear actuator, the structure and the feedback control sys-

tem is derived in a state space form in section 2.1. Secondly, the stability of

the closed-loop VFC system is addressed in section 2.2, comparing the results

of the stability analysis of the underlying linear actuator model with the ones100

obtained from the nonlinear actuator model. The nonlinear feedback control

(NLFC), which is a nonlinear function of the proof mass relative velocity and

displacement, is presented in section 2.5. Finally, the results of numerical simu-

lations showing the effectiveness of the proposed control law are discussed and
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compared with those of the VFC in terms of stability of the closed-loop system105

for different sets of feedback gains and primary excitation.

2.1. Mathematical model

Figure 2 shows a lumped parameter model of a SDoF system connected to

a stroke limited inertial actuator, where the SDoF may represent the first mode

of a real structure. Conventionally, all the displacements and forces pointing110

upwards are considered to be positive.
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Figure 2: Lumped parameter model of the structure, nonlinear inertial actuator,

velocity feedback controller (VFC) and nonlinear feedback controller (NLFC).

The proof mass and structural mass displacements are denoted as xp and

xs , respectively. Also, xr = xp − xs represents the deflection of the proof mass

from its resting position. The proof mass mp is connected to the structural

mass ms via a damping coefficient cp and a nonlinear stiffness that models the
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physics of stroke saturation [15], which is given by,

κ(xr) =

 kp, |xr| < x0

kp + kc

(
1− x0

xr

)
, |xr| ≥ x0

, (1)

where kp is the underlying linear suspension stiffness, kc is the end-stops stiffness

and x0 is the stroke length. The nonlinear restoring force given by fRF (xr) =

κ(xr)xr is also represented in figure 3 with the black solid line. The electrical

Figure 3: Restoring force for the underlying linear actuator (dashed line) and the

stroke limited inertial actuator (solid line) .

winding of the actuator can be modelled as a series inductor Le and resistor

Re and the voltage across the coil terminals is denoted as ea. The structural

mass is connected to the ground via the stiffness and damping parameters ks

and cs, respectively. The structure is subject to the external, or primary, force

fe(t) and the control, or secondary, force φia(t) that is generated by the actu-

ator transducer. The VFC loop is assumed to be implemented by scaling the

structure’s velocity ẋs(t) by an arbitrary gain hs and feeding this back to the

actuator as the input current signal ia(t). A NLFC loop is added alongside

the VFC loop in figure 2, and is defined as a nonlinear function of the relative
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proof mass velocity and displacement ψ(xr, ẋr). The equations of motion of the

system in figure 2 can be expressed in a state space form as follows, ẋ(t) = A(x)x(t) + Befe(t) + Bafa,s(t)

y(t) = Cx(t)
, (2)

where x is the state vector defined as,

x = { xs xp ẋs ẋp }T , (3)

and A(x) is the state dependent system matrix defined as,

A(x) =

 0 I

−m−1k(x) −m−1c

 , (4)

where 0 and I are the 2-by-2 null matrix and identity matrix, respectively. The

mass matrix m can be written as,

m =

 ms 0

0 mp

 , (5)

whereas the nonlinear stiffness matrix of the system k(x) appearing in eq.(4)

results in,

k(x) =

 ks + κ(x) −κ(x)

−κ(x) κ(x)

 , (6)

where κ(x) = κ(xp − xs) is given by eq.(1). Also, the system’s damping matrix

c is defined as,

c =

 cs + cp −cp
−cp cp

 . (7)

The input vector of the primary excitation can be written as,

Be = { 0 0 1
ms

0 }T , (8)

whereas the input vector of the secondary force is given by,

Ba = { 0 0 1
ms

− 1
mp
}T , (9)

and the control force acting on the structure is

fa,s = −φia. (10)
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The output vector is defined as,

y = { ẋs ẋp }T , (11)

hence, the output matrix can be written as,

C = { 0 I }, (12)

where 0 and I are the 2-by-2 zero matrix and identity matrix. The state space

eq.(2) can also be represented with the block diagram illustrated in figure 4,

which also represents the open-loop control system since the input current is

not directly related to the output variables. Hence, in general, the input current

+++

ef

xx& y

eB

( )xA

Cò tdaBf-ai

Figure 4: Block diagram of the open-loop system.

can be written as,

ia = gaHr, (13)

where ga is the amplifier gain, which is assumed to be unity throughout the

paper, r = [r1 r2]T is the vector of reference signals and H is the matrix of

control gains. The feedback control system, as shown in the schematic of figure

2 is made by closing the loop around the output vector, and hence imposing,

r = y. (14)
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Using eq.(14) and eq.(13), the input current of the feedback control system

becomes,

ia = gaHy, (15)

where H is the matrix of feedback control gains. For a single VFC loop on the

structure’s velocity, the matrix of feedback gains H can be rewritten as,

Hvfc = { hs 0 }, (16)

hence, substituting eq.(16) into eq.(15), the driving current of the inertial actu-

ator becomes,

ia,vfc = gaHvfcy = { hs 0 }

 ẋs

ẋp

 = hsẋs. (17)

For a single NLFC loop on the proof mass relative velocity, the matrix of feed-

back gains H can be rewritten as,

Hnlfc = { ηr(xr) −ηr(xr) }, (18)

where η(xr) is a nonlinear gain that depends on the proof mass relative posi-

tion. Thus, substituting eq.(18) into eq.(15), the driving current of the inertial

actuator becomes,

ia,nlfc =gaHnlfcy = { ηr(xr) −ηr(xr) }

 ẋs

ẋp

 =

=ηr(xr)ẋs − ηr(xr)ẋp = −ηr(xr)ẋr = −ψ(xr, ẋr).

(19)

For a double feedback loop, hence, combining the VFC loop on the structure’s

velocity with the NLFC loop on the proof mass relative velocity, the matrix of

feedback gains H becomes,

Hvfc+nlfc = { (hs + ηr(xr)) −ηr(xr) }. (20)

The closed-loop control system block diagram of the state space eq.(2) is il-

lustrated in figure 5, where the driving current is given by the combination of

both the VFC and the NLFC loops defined by eq.(17) and eq.(19), respectively.
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Figure 5: Block diagram of the closed-loop control system with both the VFC loop

and the NLFC loop.

Considering a general matrix of feedback gains H, the control force applied to

the structure by the closed-loop system can be written by substituting eq.(15)

into eq.(10). That is,

fa,s = −φgaHy = −gaφHCx, (21)

hence, the state eq.(2) can be rewritten as,

ẋ(t) = A0(x)x + Befe(t), (22)

where the closed-loop state dependent system matrix A0(x) is derived as follows,

A0(x) = [A(x)− gaφBaHC] . (23)
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The parameters used in the numerical analysis of the system shown in figure 2

are provided in table 1. The natural frequencies and the damping ratios of the

structure and actuator are also reported and have been calculated as ω =
√
k/m

and ζ = c/2
√
km, respectively. The system is also characterised by the ratio of115

the natural frequencies of the actuator and structure Ω = ωp/ωs, which is small

compared to unity for good linear performance, and the ratio of the nonlinear

to the linear stiffness of the actuator, K = kc/kp, which is much greater than

unity.

2.2. Absolute velocity feedback control120

VFCs, in which the velocity of the structure is fed back to a collocated iner-

tial actuator are only conditionally stable [11], hence, there exists a maximum

feedback gain, over which the system becomes unstable, due to inclusion of the

actuator dynamics. Moreover, if the external excitation or the feedback gain

is such that the inertial actuator saturates in stroke, then the control system125

may become unstable for even lower control gains than those predicted by a

liner stability analysis [14, 13]. In this section the stability of the VFC is first

assessed for the underlying linear system and secondly for the nonlinear system,

when stroke saturation is taken into account.

2.3. Stability analysis and control performance for a linear actuator130

The underlying linear model of the system in figure 2 is obtained by imposing

a zero impact stiffness (kc = 0), thus, the state dependent system matrix A(x)

of eq.(4) becomes a constant state matrix

Ā = A(x)

∣∣∣∣
kc=0

 0 I

−m−1k̄ −m−1c

 , (24)

where the state dependent stiffness matrix k(x) given by 6 results in,

k̄ = k(x)

∣∣∣∣
kc=0

 ks + kp −kp
−kp kp

 , (25)
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Table 1: Table of model parameters.

Parameters Value Units

ms 0.050 kg

ks 5000 N/m

cs 0.32 N/ms−1

mp 0.031 kg

kp 100 N/m

kc 2 · 104 N/m

cp 1.4 N/ms−1

x0 1.25 mm

φ 1.55 N/A

ga 1 A/ms−1

System Characteristics Value Units

ωp (actuator) 2π9.7 rad/s

ωs (structure) 2π50.3 rad/s

Dimensionless Parameters Value Units

ζp (actuator) 39 %

ζs (structure) 1 %

Ω =
ωp
ωs

0.2 -

K = kc
kp

200 -

hence, the closed-loop state dependent system matrix A0 becomes,

Ā0 =
[
Ā− gaφBaH̄C

]
. (26)

where H̄ = [h1 h2] is a matrix of constant gains, which means that only linear

feedback loops are considered. If the underlying linear system is driven by the

VFC loop only, the output eq.(2) becomes,

y = Cvfcx = ẋs, (27)
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where the output matrix Cvfc is defined as,

Cvfc =
[

0 0 1 0
]
. (28)

Setting fe = 0 and assuming zero initial conditions x(0) = 0, the Laplace

transform of the the state eq.(2) for the underlying linear system becomes,

X(s) =
[
sI− Ā

]−1
BaFa,s(s), (29)

substituting the Laplace transform of eq.(10) into eq.(29) results in,

X(s) = −φ
[
sI− Ā

]−1
BaIa(s), (30)

and substituting eq.(30) into the Laplace transform of the output eq.(27) gives,

Y (s) = −φCvfc

[
sI− Ā

]−1
BaIa(s). (31)

Dividing eq.(31) by −Ia(s) gives the plant transfer function Gsa(s) as,

Gsa(s) = − Y (s)

Ia(s)
= φCvfc

[
sI− Ā

]−1
Ba. (32)

In general, the input current can be written as,

Ia(s) = gahsr(s), (33)

where r(s) is a reference signal. Substituting eq.(33) into eq.(32) gives the

open-loop transfer function L(s) as,

L(s) = gaGsa(s)hs, (34)

which is also illustrated in the block diagram of figure 6.

( )sY
( )sGsa-sahg

( )sIa( )sr

Figure 6: Block diagram of the open-loop VFC system.
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Considering now the forced response, hence setting fe 6= 0 and zero initial

conditions x(0) = 0, the Laplace transform of the state eq.(2) for the underlying

linear system becomes,

X(s) =
[
sI− Ā

]−1
BaFa,s(s) +

[
sI− Ā

]−1
BeFe(s). (35)

Substituting eq.(35) into the Laplace transform of the output eq.(27) and con-

sidering eq.(10) gives,

Y (s) = −φCvfc

[
sI− Ā

]−1
BaIa(s) + Cvfc

[
sI− Ā

]−1
BeFe(s), (36)

which can be rewritten as,

Y (s) = −Gsa(s)Ia(s) +Gse(s)Fe(s), (37)

where Gsa(s) is given by eq.(32) and Gse(s) is defined as follows,

Gse(s) = Cvfc

[
sI− Ā

]−1
Be. (38)

+
-

( )sFe

( )sG se

( )sY
( )sGsa

( )sIa( )sr
sahg

Figure 7: Block diagram of the open-loop VFC system including the disturbance of

the external excitation.

The open-loop output eq.(37) that includes the disturbance given by the pri-

mary excitation is also displayed in figure 7. The closed-loop system is obtained

by using the output signal as the reference signal, as shown in the block diagram

of figure 8. The output equation of the closed-loop system can be written by

substituting eq.(34) and eq.(33) into eq.(37) and imposing r(s) = Y (s), which

results in,

Y (s) = −L(s)Y (s) +Gse(s)Fe(s), (39)
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so that,

Y (s)(1 + L(s)) = Gse(s)Fe(s), (40)

and dividing eq.(40) by Fe(s) gives the closed-loop transfer function T (s) be-

tween the output velocity of the structure and the input disturbance to the

system as,

T (s) =
Y (s)

Fe(s)
=

Gse(s)

(1 + L(s))
, (41)

which is defined for

1 + L(s) 6= 0. (42)

+
-

( )sF
e

( )sG
se

( )sY
( )sL

Figure 8: Block diagram of the closed-loop VFC system.

The stability of the closed-loop VFC for the underlying linear system can

be studied using the Nyquist criterion. The Nyquist plot of the open-loop FRF

L(jω) given by eq.(34) for a velocity feedback gain hs = 21 is shown in figure135

9. The closed-loop VFC system is only conditionally stable as the polar plot

crosses the real negative axis and a finite increase in gain would result in L(jω)

encircling the (-1,0) point.

The gain margin is given by,

gm =
1

L(ωc)
, (43)
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Figure 9: Nyquist plot of the open-loop FRF L(jω) for a velocity feedback hs = 21.

where L(ωc) is the crossing point with the negative real axis and ωc is the

crossing frequency. For this system, the maximum feedback gain that can be140

used without causing instability (gm < 1) is hs,max = 42. The frequency of

the crossing point in the Nyquist plot of figure 9, in which the system becomes

unstable is ωc = 2π10 rad/s, which is about the natural frequency of the inertial

actuator.

2.4. Stability analysis for a nonlinear actuator145

In this section the nonlinear dynamic behaviour of the inertial actuator due

to the limited stroke is taken into account when evaluating the stability of the

VFC. By introducing the actuator nonlinearity, the stability of the closed-loop

VFC becomes dependent on both the relative proof mass displacement and the

velocity feedback gains. This dependency can be analysed through the Lyapunov150

linearisation stability method [29, 30].

Lyapunov indirect and direct method are often used to asses the local and

global stability of a nonlinear system, respectively [29]. The indirect method

analyses the local stability of a nonlinear system around its equilibrium points

by evaluating the eigenvalues of the Jacobian matrix of the nonlinear state space155

equation. If the real part of the eigenvalues is negative for all eigenvalues, then
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the system is locally stable. Vice-versa, if the real part of the eigenvalues is pos-

itive for any eigenvalue, then the system is locally unstable. The main drawback

of this method is that it gives information only about the local stability. Lya-

punov direct method, instead, analyses the global stability of a nonlinear system160

by searching an energy-like function of the states that satisfies a set of condi-

tions [29]. However, it is usually difficult to find a suitable Lyapunov function

that satisfies all the conditions. Additionally, it is even more difficult to demon-

strate instability, because the non-existence of suitable Lyapunov functions has

to be proved. An interesting analysis is given by the Lyapunov exponents of165

the nonlinear system, which allows to investigate the behaviour of the system

around the initial condition x̃ [30]. This case is similar to the direct method

of Lyapunov, but the Jacobian matrix of the nonlinear state space equation is

calculated at the initial condition x̃ instead of the equilibrium point. If the

eigenvalues of the Jacobian matrix have negative real part, then the nonlinear170

system is locally stable, if, instead, the eigenvalues of the Jacobian matrix have

positive real part, then the nonlinear system is locally unstable [30].

The Jacobian matrix of the nonlinear state space equation is given by eq.(23).

The VFC closed-loop state dependent system matrix can be derived from eq.(23)

as,

A0,vfc(x) = [A(x)− gaφBaHvfcC] . (44)

and the stability of the closed-loop VFC system can be studied using the

Lyapunov linearisation method, or Lyapunov exponent method, by calculat-

ing eigenvalues of eq.(44) for several proof mass relative displacements. If the175

real part of the largest eigenvalue is lower than zero, the system is stable, vice-

versa if is greater than zero, then the system is unstable. The real part of the

maximum eigenvalue of A0,vfc for several proof mass displacements and veloc-

ity feedback gains is displayed in figure 10(a) and a detailed image around the

stroke limit region is shown in figure 10(b), where the stroke limits are repre-180

sented with dashed red lines. Figure 10 shows that the nonlinear system is stable

for displacements within the stroke limits and feedback gains below hs,max, as

18



(a)

(b)

Figure 10: Real part of the maximum eigenvalue of the closed-loop matrix A0,vfc(x)

for several values of the relative proof mass displacement xr and velocity feedback gain

hs. (a) full range; (b) zoom into the stroke limit.

expected. Also, the system becomes unstable for hs > hs,max regardless of the

relative displacement. The delimiter of instability <{λmax [A0,vfc(xr, hs)]} = 0

shows that for a particular feedback gain hs < hs,max there exists a relative dis-185

placement |xr| > x0 above which the system becomes unstable, and the higher

is the feedback gain, the lower is the relative displacement required to make the

system unstable.

The stability of the nonlinear system of figure 2 subject to a single VFC

loop can also be evaluated using the describing function method [29, 31]. The

nonlinear system can be represented using a feedback connection with the non-
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linear element, as shown in figure 11, where Keq(Xr) is the describing function

of the nonlinearity and G(jω) groups the underlying liner dynamic behaviour

of the system including also the VFC loop. The characteristic equation of the

( ) 0=wjR
)( wjG

-
+

Linear
element

)( req XK

Describing
function

( )wjXr

Figure 11: Block diagram of the describing function analysis for the existence of limit

cycles.

system in figure 11 is,

G(jω)Keq(Xr) + 1 = 0, (45)

which can be rewritten as,

G(jω) = − 1

Keq(Xr)
, (46)

where the describing function Keq(Xr) is given by [15],

Keq(Xr) = kp +
kc
π

[
π − 2 arcsin

(
x0
Xr

)
− 2

x0
X2

r

√
X2

r − x20
]
, (47)

and the linear FRF G(jω) is given by,

G(jω) = CDF

[
sI− Ā0,vfc

]−1
Ba, (48)

where the output matrix is defined as,

CDF =
[
−1 1 0 0

]
, (49)

and the state matrix as,

Ā0,vfc = Ā− gaφBahsCvfc. (50)

Figure 12 shows the polar plot of G(jω) with the solid black line for a feedback

gain hs = 75%hs,max and the loci of the describing function term with the dash-190

dotted red line. Since the nonlinearity considered here is an odd function, its
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describing function takes only real values, hence the term −1/Keq(Xr) lies on

the negative real axis. It should be noted that this term starts from −1/kp for

|Xr| < x0, then it goes towards the origin as |Xr| increases. The intersection

Figure 12: Polar plot of the underlying linear system FRF G(jω) including VFC

loop, and the negative inverse describing function −1/Keq(Xr) for the detection of

limit cycles.

between the polar plot with the negative inverse of the describing function, hence195

the solution of eq.(46), gives the condition for the existence of limit cycles in the

nonlinear system [29, 31]. The amplitude of the limit cycle is given by the value

of Xr corresponding to the negative inverse of the describing function at the

point of intersection. Similarly, the frequency of the limit cycle ωlc corresponds

to the value of the frequency of the polar plot at the point of intersection.200

This procedure only gives a prediction of the existence of limit cycles, and due

to its approximation nature, the results should be confirmed by time domain

simulations. Higher feedback control gains hs cause the polar plot to intersect

with the negative inverse of the describing function at lower values. Hence a

parametric study has been carried out to understand how the feedback gain hs205

affects the point of intersection.

The amplitude of the limit cycle is shown in figure 13(a), which represents

the maximum relative displacement reached by the proof mass. For low values

of hs, a higher relative displacement is needed to ’activate’ the limit cycle when
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(a) (b)

Figure 13: Amplitude and frequency of the limit cycle oscillation for several values

of the VFC gain hs. (a) Amplitude; (b) Frequency.

compared to higher values of hs. For high values of the feedback gain, the curve210

is almost flat and settled around 1.31 mm. Figure 13(b) shows the frequency

of the limit cycle oscillations versus the feedback gain. The frequency of the

limit cycle increases as the feedback gain increases, but also in this case for high

values of hs the curve is almost flat at around 39.3 Hz. These results can be

verified by analysing time domain impulse response of the system for increasing215

feedback gains.

Figure 14 shows the time series of the proof mass, structure and relative

displacements, respectively, due to an external impulse excitation of the type,

fe = Pe−( tτ )
2

, (51)

where P = 10 N is the initial amplitude of the impulse and τ = 1 ms is the

decaying rate of the impulse excitation. The dash-dotted red line of figure

14 shows the response of the uncontrolled system. As the feedback gain is

increased to 25%hs,max (dotted blue line), the response of the structure to the220

same impulse is significantly reduced at the expense of the response of the proof

mass. A further increase of the feedback gain to 40%hs,max (dashed green

line) causes the relative displacement to overshoot the allowed stroke length,

hence an impulse-like excitation is imparted to the structure, however, after
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Figure 14: Response time histories of the closed-loop VFC system for increasing

control gains using an impulse primary excitation on the structure and assuming a

nonlinear model of the actuator. The uncontrolled system hs = 0 is shown with the

dash-dotted red line, hs = 25%hs,max with the dotted blue line, hs = 40%hs,max

with the dashed green line, hs = 50%hs,max with the solid black line. The horizontal

dashed red lines indicate the position of the stroke limits, which are considered in the

nonlinear model of the actuator.

one impact the response decays away. Applying a slightly higher feedback gain225

hs = 50%hs,max (solid black line) results in an unstable system. It should be

noted that the feedback gain causing the nonlinear system to become unstable

is much lower than the one predicted by the linear Nyquist analysis for the

underlying linear model of the system. The cause of this instability can be

sought in the trajectories of the relative proof mass displacement in the phase-230

space for several feedback gains, which are shown in figure 15. It can be observed

that an increase in the feedback gain rises the possibility of collisions with

the end-stops, and for hs = 50%hs,max the proof mass experiences limit cycle

oscillations. From the time simulation shown in figure14 and 15 the amplitude

and frequency of the limit cycle oscillation can be derived. In fact, the maximum235

amplitude of the relative displacement results to be 1.29 mm, which is slightly

lower than the one predicted by the describing function analysis. The frequency

of the limit cycle can be calculated from the time series of figure 14 considering
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Figure 15: Response trajectories in the phase-space of the closed-loop VFC system

for increasing control gains using an impulse primary excitation on the structure and

assuming a nonlinear model of the actuator. The uncontrolled system hs = 0 is

shown with the dash-dotted red line, hs = 25%hs,max with the dotted blue line,

hs = 40%hs,max with the dashed green line, hs = 50%hs,max with the solid black

line. The vertical dashed red lines indicate the position of the stroke limits, which are

considered in the nonlinear model of the actuator.

the zero crossing of the signal. It follows that the frequency of the limit cycle is

27.6 Hz, which is also lower than the one predicted by the describing function240

analysis. These discrepancies in the outcomes have to be attributed to the

contribution of the higher harmonics in the response that the describing function

tool does not take into account. However, the frequency of the limit cycle,

hence, the frequency of the instability of the nonlinear system is higher than

the frequency of the instability of the underlying linear system, which is about245

the resonance frequency of the actuator.

2.5. Nonlinear feedback control

The study of the previous section motivates for the development of a non-

linear controller, whose aim is to prevent the destabilisation of the VFC loop

due to stroke saturation and to maintain the vibration attenuation performance

provided by the VFC. In order to increase the stability of VFCs, in [10] the
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author proposed to use a combination of relative velocity feedback and abso-

lute velocity feedback, where the tuning of the two feedback gains is a trade off

between the stability and performance of the control system. Later on, other

researchers dealt with the stroke saturation phenomenon using a NLFC, which

is a function of the relative proof mass displacement [17]. This NLFC acts as a

second loop alongside the VFC as shown in figure 2. In this section, the these

two strategies are merged together to form a NLFC loop, whose control law is,

ψ(xr, ẋr) =
nrẋr

(x0 − |xr|)2p + b
, (52)

hence a relative velocity feedback controller with a state dependent relative

feedback gain that is given by,

η(xr) =
nr

(x0 − |xr|)2p + b
, (53)

where nr is the feedback gain of the nonlinear controller, b is a limitation param-

eter and p is an exponent parameter. The control law of eq.(52) increases the

active internal damping of the inertial actuator as the proof mass approaches

the end-stops without adding any damping when the proof mass is close to the

resting position. In fact, as the relative displacement of the proof mass gets

close to the stroke limit, the denominator term of eq. (52) reduces, hence the

current proportional to the relative velocity increases. The force applied to the

structure by the NLFC can be written as,

fa,s,nlfc = φψ(xr, ẋr), (54)

thus, the active internal damping added to the actuator can be derived from

eq.(54) and (52) as,

ca,nlfc(xr) =
φψ(xr, ẋr)

ẋr
=

φnr
(x0 − |xr|)2p + b

. (55)

The control action can be bounded between a minimum active damping ca,nlfc(0) =

ca,min, that is reached when the proof mass is centred within the casing, and a

maximum active damping ca,nlfc(x0) = ca,max that is reached when the proof

mass saturates in stroke. From this consideration, the parameters b and nr can
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be calculated. Assuming xr = 0 and b� x0, the corresponding value of nr can

be calculated from eq.(55) as,

ca,min =
φnr

x2p0
⇒ nr =

ca,minx
2p
0

φ
. (56)

Similarly, assuming xr = x0, the parameter b results,

ca,max =
φnr
b
⇒ b =

φnr
ca,max

. (57)

A graphical representation of the NLFC is shown in figure 16, where the dotted,

dash-dotted and solid black lines represent the control action for the exponent

parameters p = 1, 2, 3, respectively. The vertical dashed red lines, instead,250

represent the position of the stroke limits. It can be observed that increasing

the exponent parameter p increases the active internal damping of the actuator

on a bigger range of displacements. On one hand this can be beneficial for the

stability of the system, but on the other hand it can be detrimental for the

vibration attenuation performance when used in combination with the VFC.

Figure 16: Nonlinear feedback control (NLFC) law for several exponent values. Dot-

ted black line p = 1, dash-dotted black line p = 2, solid black line p = 3. The dashed

red lines indicate the stroke limits of the inertial actuator.

255

In practice, the minimum and maximum active damping parameters given

by eqs. (56,57) are selected using the internal damping ratio, which is defined
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as,

ζa(xr) =
cp + ca,nlfc(xr)

2
√
kpmp

= ζp +
ca,nlfc(xr)

cc
, (58)

where cc = 2
√
kpmp is the critical damping and ζp = cp/cc is the actuator’s

passive damping ratio. The internal damping ratio ζa should be chosen close

to ζp for xr = 0, this allows to maximise performance when stability is not

an issue. In this study the internal damping ratio for small displacements is

ζa(xr = 0) = ζp+0.03. On the other hand, the maximum internal damping ratio260

should be chosen to be larger than that of the critically damped system for xr =

x0. In this study the maximum damping ratio has been chosen to be ζa(xr =

x0) = 3; this allows the actuator to become overdamped for displacements

larger than 80% x0 (considering p = 1) with a huge benefit for the stability.

Of course, these parameters can be tuned to achieve other trade offs between265

stability and performance. The total internal damping ratio, given by the sum of

passive and active damping, is shown in figure 17 as a function of the proof mass

position within the actuator, where the dotted, dash-dotted and solid black lines

represent the damping ratio for the exponent parameters p = 1, 2, 3, respectively.

The vertical dashed red lines represent the position of the stroke limits, whereas270

the horizontal dash-dotted blue line shows the value of the passive damping

ratio ζp.

The stability of the closed-loop system using the combination of VFC and

NLFC can be analysed through the Lyapunov linearisation stability method [29]

as shown for the single VFC loop. In fact, the VFC+NLFC closed-loop state

dependent system matrix can be derived from eq.(23) as,

A0,vfc+nlfc(x) = [A(x)− gaφBaHvfc+nlfcC] . (59)

and the stability of the closed-loop VFC+NLFC system for several proof mass

relative displacements and velocity feedback gains can be studied by analysing

the real part of the largest eigenvalue of eq.(59). The real part of the maximum

eigenvalue of A0,vfc+nlfc for several proof mass displacements and velocity feed-

back gains is displayed in figure 18(a) and a detailed image around the stroke
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Figure 17: Internal damping ratio for several exponent values. Dotted black line

p = 1, dash-dotted black line p = 2, solid black line p = 3. The dashed red lines

indicate the stroke limits of the inertial actuator; the horizontal dash-dotted blue line

shows the value of the passive damping ratio ζp.

limit region is shown in figure 18(b), where the stroke limits are represented

with dashed red lines and the minimum and maximum active internal damping

chosen for the calculation of the NLFC parameters are ca,max = 10 N/ms−1

and ca,min = 0.1 N/ms−1 and p = 1. A comparison between figure 18 and

figure 10 shows that the NLFC enlarges the stability region of the system in

terms of relative proof mass displacements. In fact, the delimiter of instability

<{λmax [A0,vfc(xr, hs)]} = 0 for the VFC+NLFC loop is shifted to larger rel-

ative displacements with respect to the one of single VFC loop. However, the

dual loop controller becomes unstable if hs > hs,max is chosen, because of the

choice to use a small active internal damping for the proof mass around resting

position. The NLFC can be sensitive to uncertainty in the estimation of the

stroke length parameter. If the stroke length is underestimated, the NLFC law

will add more damping than required, making the system stable, but at the ex-

penses of some reduction of the vibration performance provided by the velocity

feedback control (VFC) loop. If the stroke length is overestimated, the NLFC

law will add less damping than required, making the system less stable, which

means that for large amplitude excitations the stability of the system is not
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(a)

(b)

Figure 18: Real part of the maximum eigenvalue of the closed-loop matrix

A0,vfc+nlfc(x) for several values of the relative proof mass displacement xr and ve-

locity feedback gain hs. (a) full range; (b) zoom into the stroke limit.

guaranteed. Hence, it is important to carefully estimate the stroke length and

to use a marginally smaller value in the NLFC law to account for uncertainty.

Time simulation studies are carried out to assess the performance of the NLFC.

In particular, a comparison is made between the control system with single

VFC loop and VFC+NLFC loop. Figure 19 shows the time history and the

phase-space trajectory of the system for a feedback gain hs = 50%hs,max when

controlled by a single VFC loop (dashed green line) and when it is controlled

by a VFC+NLFC loop (solid black line) using an impulse excitation of the type

given by eq.(51) . In this scenario the system goes unstable if the single VFC
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loop is used, whereas implementing the NLFC described by eq.(52) allows the

proof mass to stand clear of the end-stops avoiding the limit cycle oscillation

and hence the system remains stable. The stability of the nonlinear system does

(a)

(b)

Figure 19: Response time histories and phase-space trajectories of the closed-loop

VFC system (dashed green line) and the closed-loop VFC+NLFC system (solid black

line) for a feedback gain hs = 50%hs,max, using an impulse primary excitation on

the structure and assuming a nonlinear model of the actuator. The dashed red lines

indicate the position of the stroke limits. (a) Time history; (b) Phase-space trajectory.
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not depend only on the value of the VFC gain hs, but also on the magnitude of

the impulse excitation P . Therefore, a parametric study has been carried out in

order to investigate the potential benefits of the NLFC over different scenarios.

In particular, the stability of the system has been evaluated for each possible

value of P and hs, and for the two testing conditions of single VFC loop or the

combination of VFC and NLFC loops. For each scenario, the operating region

OR(P, hs) of the inertial actuator is defined as,

OR(P, hs) = {(P, hs)|max
t→∞

|xr(t)| < x0}, (60)

where the sets of (P, hs) inside the operating region are those in which the system

is stable and the inertial actuator is adding active damping to the structure.

The results of the parametric study are shown in figure 20. The dark grey area275

delimited by the dotted black line shows the safe operating region when the

single VFC loop is implemented. It can be seen that the nonlinearity in the

inertial actuator severely reduces the stability of the system for large values of

the excitation or the feedback gain. It should be noted that for very low values

of excitation, the operating region reaches 100 % of hs,max because the proof280

mass does not reach the end-stops and the system behaves linearly. However,

as soon as the excitation value is increased, the maximum gain that can be fed

to the actuator without reaching the instability quickly drops down. Repeating

the same parametric study, but using the combination of VFC+NLFC loops,

produces a completely different result, which is shown in figure 20 with the light285

grey area delimited by the solid black line. In this case, the area covered by

the operating region of the actuator using both VFC and NLFC loops is bigger

than the area of the single VFC loop, hence, it increases the safe operating

region of the inertial actuator. Moreover, the maximum gain that can be fed to

the actuator slightly overshoots hs,max, because, even for low excitations, the290

NLFC increases the effective internal damping of the actuator.
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Figure 20: Operating regions of the inertial actuator for the closed-loop VFC system

(dark grey area) and the closed-loop VFC+NLFC system (light grey area) for increas-

ing values of the feedback gain, using an impulse primary excitation on the structure

of amplitude P and assuming a nonlinear model of the actuator.

3. Nonlinear feedback control of a SDoF system: experimental anal-

ysis

The nonlinear feedback controller (NLFC) presented and studied using nu-

merical simulations in 2 has been shown to increase the stability region of295

nonlinear inertial actuators. This section aims to investigate the experimen-

tal implementation of the NLFC and how it compares with the VFC in terms

of stability of the closed-loop system under different scenarios. The author is

not aware of experimental work on similar control strategies. In fact, the most

similar nonlinear controller to the NLFC presented in this thesis can be found300

in [17, 18, 19, 20, 21], which has been analysed only by theoretical studies. Ex-

perimental implementation of controllers that account for stroke saturation can

be found in [25, 32, 33, 34, 7, 23, 26], however, these controllers focus mainly on

strategies that limit or reduce the VFC gain. The main objective of this study

is to implement the NLFC law developed in the previous section on a stroke305

limited inertial actuator that is used to control the first mode of a cantilever

beam. Firstly, the experimental set-up is presented in section 3.1, where the
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actuator is attached to the beam in a position where the structure’s response is

dominated by its first mode. The open-loop FRF of the VFC system is measured

for a unit feedback gain and the underlying linear gain margin is calculated in310

section 3.2. The closed-loop response of the VFC to an impulsive primary ex-

citation for several values of the feedback gain and levels of excitation has also

been measured. Finally, the NLFC implementation is discussed in section 3.3

and the closed-loop response of the combined VFC+NLFC loop is compared

with that of the single VFC loop in terms of the stability of the control system.315

3.1. Experimental set-up and modal analysis

The experimental set-up is shown in figure 21. It consists of an aluminium

cantilever beam and a control unit attached at the nodal point of the second

mode of the beam, which is 38 mm away from the free end of the beam. The con-

trol unit consists of a stroke limited inertial actuator, a collocated accelerometer320

attached to the actuator casing and a force cell positioned between the beam

and the proof mass actuator.

Figure 21: Experimental set-up for the active vibration control of the first mode of

a cantilever beam using a stroke limited inertial actuator. The set-up consists of an

aluminium cantilever beam, a force gauge, a stroke limited actuator and a collocated

accelerometer. The excitation is given by an instrumented hammer. The control unit

is attached to the nodal point of the second mode of the beam.
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A modal analysis was performed prior to the active control experiment using

LMS Test.Lab R© and a SCADAS data acquisition system. The cantilever beam

is excited by a Dytran (Dynapulse 5800B3 S/N 6160) roving hammer, which325

can be equipped with three different tips. A stiff aluminium tip (127-6250), a

medium stiff Delrin tip (127-6250P) and a soft polyurethane tip (127-6250PS).

Due to the light damping of the structure under testing, the Delrin plastic tip

is used throughout the experiment. The response of the beam is measured by a

B&K accelerometer (type 4375V) fixed on the free end. The acceleration signal330

passes through a B&K charge amplifier (type 2635) before being acquired by

the SCADAS.

LMS Test.Lab

SCADAS

Dytran 5800B3

B&K charge
amplifier 2635

Cantilever
beam

B&K accelerometer
4375V

Figure 22: Block diagram of the modal analysis experimental set-up.

The test rig is shown in figure 23(a), which comprises of an aluminium bar

with rectangular cross section, 25 mm width, 3 mm thick and 175 mm long and

a a rigid connection to the ground at one end of the beam. The accelerometer335

is placed 7.5 mm away from the free end, which is shown in figure 23(b) as

the point h11. The hammering points are indicated with a progressive number

starting from h1 to h11 and they are spaced 15 mm apart, except for h10 and

h11 that are 17.5 mm apart.

The experimental analysis is conducted by hammering 5 times at each point340

on the grid and taking the averaged FRF. An example driving point FRF (H11)

between acceleration and input force, both at position h11 is shown in figure 24

with the solid blue line and is compared with a theoretical model of the can-
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Figure 23: Experimental test rig for the identification of the beam natural frequencies

and mode shapes. (a) Picture of the test rig; (b) Sketch of the hammering point grid.

tilever beam shown with the solid red line [35]. The experimental results are in

good agreement with the derived theoretical model. The first and second exper-345

imentally identified resonances are 68.5 Hz and 443.2 Hz, while the theoretical

ones are 68.9 Hz and 458.8 Hz, respectively.

101 102 103
0

50

100

101 102 103
-270
-180
 -90
   0

 +90

Figure 24: Comparison between the experimental and simulated FRFs of the beam

at driving point h11. The blue solid line shows the experimental FRF, whereas the

red solid line displays the simulated FRF.

For frequencies below 1 kHz, the response of the beam is dominated by the

first two modes. Using the toolbox provided by LMS Test.Lab R© the mode

shapes associated with the measured natural frequencies can be estimated. The350
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Figure 25: First and second mode shapes of the beam derived with LMS Test.Lab R©

modal analysis software and normalise with respect to their maximum value. Mode

one occurs at 68.5 Hz and is displayed by the blue squares. Mode two occurs at

443.2 Hz and is indicated by the red circles.

first two mode shapes of the beam are shown in figure 25, where the grid is

composed of the eleven hammering points shown in figure 23(b). It can be seen

in figure 25 that the first mode is characterised by an in phase motion of all

the points along the beam, as expected. The second mode, however, has both

in phase and out of phase motion, with a nodal point when the amplitude of355

this mode is zero. Any force applied to this point would affect only the first

mode of the beam, hence, the control unit has been placed here in order that

the response of the cantilever beam best approximates the response of a lumped

parameter mass-spring model, as used in section 2.

Higher modes of the cantilever beam could be controlled by placing the con-360

trol unit in a different location and/or adding more than one control unit. The

control law would not need to be modified if controlling one or more modes,

since it depends only on the actuator parameters and variables and it is inde-

pendent of the hosting structure. The experiments have been conducted using

the cantilever beam with zero initial conditions, with the excitation provided365

by an instrumented hammer, which ideally produces an impulse of force. The-

oretically, impulse excitations can be seen as a sudden change in velocity [36],
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hence the study performed for different levels of input excitation can be seen

also as for different values of initial velocity of the beam.

The parameters of the test rig are given in table 2 for the beam and in table370

1 for the inertial actuator.

Table 2: Parameters of the cantilever beam and the control unit.

Property Value Units

lbeam 175 mm

bbeam 25 mm

hbeam 3 mm

macc 0.005 kg

mbase 0.053 kg

mgauge 0.023 kg

3.2. Velocity feedback control of a cantilever beam

The inertial actuator is attached to the cantilever beam on the node of the

second mode of the beam, as suggested by the analysis of the previous section.

The test rig for the active vibration control of a beam using a stroke limited375

inertial actuator is shown in 21. The cantilever beam is excited on its free end

by a Dytran (Dynapulse 5800B3 S/N 6160) hammer with a medium stiff Delrin

tip (127-6250P). The signal of the primary force is acquired by a dSPACE 1103

PPC Controller Board, where the analogue-to digital conversion (ADC) is also

performed with a sampling frequency fs =10 kHz. The response of the beam380

at the control position is measured by a B&K accelerometer (type 4375V) fixed

on the actuator casing connected to a B&K charge amplifier (type 2635), where

the signal is integrated and high-pass filtered with a cut off frequency of 1 Hz.

The force signal is measured by a PCB Piezotronics 208C01 ICP force sensor

passing through a signal conditioner. All the measurements are then recorded385

by ControlDesk Next Generation software on a PC workstation. The control
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signal from the dSPACE passes through a low pass analogue filter with a cut-

off frequency at 4 kHz before entering the Micromega Dynamics voltage driven

current amplifier PR-052-01-04-03 and then the inertial actuator.

The same approach used in the theoretical study of section 2 has been applied390

for the experimental study. Firstly, the open-loop FRF has been measured for

small excitation signals in order to obtain the underlying linear gain margin

of the VFC. Consequently, the VFC closed-loop response has been measured

for several excitation levels and velocity feedback gains. The open-loop control

diagram is the one represented in figure 6, where Y (s) = Ẋc(s) is the response395

of the beam at the control position, r(s) is the input reference signal from the

dSPACE and the mobility transfer function Gsa(s) = Gcc(s). The stability

of the system is analysed using the Nyquist criterion for the open loop FRF

L(jω) = gahsGcc(jω). The control gain hs is set to unity and the actuator

is driven by a broadband white noise current. This results in the polar plot400

shown in figure 26. It can be seen that the locus of the Nyquist intersects the

negative real axis at a distance δ =0.068, which corresponds to a gain margin

gm = 1/δ = 14.7. As a result, the maximum VFC gain calculated with a linear

stability analysis that can be applied to the system without driving it unstable

is hs,max = 14.7. The other visible circles on the right half plane of figure 26405

correspond to the upper natural frequencies of the system.

Figure 26: Nyquist plot of the measured open-loop FRF using a VFC gain hs = 1.
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The measured open-loop FRF with hs = 1 is also shown in amplitude and

phase in figure 27 with the black solid line. Figure 27 also shows that the

measured open-loop FRF is well approximated by the simulated open-loop FRF

of a SDoF lumped parameter model with the inertial actuator (blue dash-dot

line).410
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Figure 27: Bode plot of the measured open-loop FRF using a VFC gain hs = 1

(black solid line) and simulated open-loop FRF of a SDoF lumped parameter model

with the inertial actuator (blue dash-dot line).

After the stability has been assessed using the Nyquist criterion, the perfor-

mance of the active control system is investigated evaluating the closed-loop

FRFs. The closed-loop control diagram is the one represented in figure 8,

whereFe(s) = Fp(s) is the primary excitation at the tip of the beam, and

Gse(s) = Gcp(s) is the mobility at the control position due to a primary ex-415

citation at a different location. In this case the system is excited by an impulse

at the free end of the beam using the instrumented hammer. A fixed control

gain hs is implemented for each test case, starting from the uncontrolled case

and increasing its value until instability is reached. The data acquisition is

performed using the ControlDesk software, where the trigger and pre-trigger420

settings are adjusted in order to record all the information of the signals and

limiting the acquisition of the noise. Each acquisition is 5 seconds long and 5
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acquisitions are preformed for each test case (same hs), then the mean FRF is

plotted. Both the excitation and response signals are windowed using classical

windows for hammer testing. An exponential window has been applied to both425

the signals to improve the signal to noise ratio since the noise can take over the

signal towards the end of the acquisition time, where the response has decayed

away. This window has been applied to both the signals to account for the

damping correction. An additional force window is applied to the force signal

to eliminate noise on the force channel after the impact. In fact, this noise is not430

an input energy that excites the system being tested. The windowing functions

adopted in this study can be found also in [37, 38]. The FRFs of the closed-loop

response are then estimated using the H1 estimator defined as the ratio between

the cross-spectrum of the input and output signals and the auto-spectrum of

the input signal [36], and averaged between all the measurements.435

The results are shown in figure 28 for feedback gains hs from 0 (passive

system) marked with the solid black line, 6%hs,max marked with the dotted blue

line, 12%hs,max marked with the dash-dotted green line, to 18%hs,max marked

with the dashed red line. By increasing the control gain, the resonance peak of

the first mode of the structure is effectively reduced, whereas the behaviour of440

the system at higher frequencies is not affected by the increase in the control

gain. However, the vibration of the beam is significantly reduced as it is mainly

determined by the first mode. A more detailed observation of figure 28 shows

the presence of an increase of the response amplitude at a frequency around 12

Hz, which can be associated with the damping of the inertial actuator being445

reduced and consequently the resonance peak being increased.

As the feedback gain is further increased, collisions between the proof mass

and the actuator casing are observed and the system is susceptible to become

unstable. The instability not only depends on the value of the feedback gain,

but also on the amount of energy that the initial impulse releases into the450

system. The FRFs of the closed-loop response for feedback gains also from

24%hs,max to 42%hs,max are presented in figure 29. For hs = 24%hs,max,

shown with the thin solid cyan line, a significant increase of the response for
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Figure 28: Bode plot of the measured closed-loop FRF with of the mobility at

the control position for several VFC gains as follows. The solid black line shows

the response of the uncontrolled beam, the dotted blue line shows the response for

hs = 6%hs,max, the dash-dotted green line shows the response for hs = 12%hs,max

and the dashed red line shows the response for hs = 18%hs,max. No stroke saturation

has been observed for these cases.

frequencies below the structural resonance are observed. In fact, the proof mass

is subject to some impact after the initial excitation, but after a finite time the455

response decays away. Increasing the feedback gain to hs = 30%hs,max, several

collisions reported after the initial impulse and also in this case the response

decays away after a certain time. The FRF of the response for hs = 30%hs,max

is displayed with the thin dotted blue line and shows a more noticeable spillover

effect and also the presence of another peak at around 21 Hz. A larger increase460

in the feedback gain for example hs = 36%hs,max (thin dash-dotted green line)

and hs = 42%hs,max (thin dashed red line), eventually leads the system to

instability even for small amplitudes of initial excitation. The vibration is thus

self-sustained due to the fact that the response does not decay away and the
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Figure 29: Bode plot of the measured closed-loop FRF with of the mobility at the

control position for several VFC gains as indicated in the previous figure and as follows.

The thin solid cyan line shows the response for hs = 24%hs,max, the thin dotted blue

line shows the response for hs = 30%hs,max, the thin dash-dotted green line shows

the response for hs = 36%hs,max and the thin dashed red line shows the response for

hs = 42%hs,max. Stroke saturation has been observed for hs > 24%hs,max.

control system continues to insert power into the system. It can be seen that465

for these last two cases the peak at 21 Hz shoots up and also the response

at frequencies higher than the first structural resonance shows a significant

increase.

A comparison between the uncontrolled beam and the VFC of the beam has

also been made in time domain and the results are shown in figure 30. This470

figure compares the response of the system for hs = 0 (dashed red line) and

hs = 42%hs,max (dash-dotted black line) under equal excitation levels. Figure

30(a) shows the spectrum of the excitation force and the time history of the

velocity of the beam at the control point. Figure 30(b) shows, instead, the
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(a)

(b)

Figure 30: (a) Spectrum of the excitation force and time history of the velocity signal

at the control point; (b) Phase-space trajectory of the relative proof mass displacement

and velocity. Dashed red line for the uncontrolled scenario and dash-dotted black line

for the single VFC scenario using hs = 42%hs,max.

phase-space trajectory of the proof mass relative displacement and velocity.475

In the uncontrolled scenario, the vibration of the structure dies out after a

certain period of time. Also, the trajectory of the proof mass starts to orbit

around the equilibrium point until it eventually decays to zero. If the VFC with
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a feedback gain hs = 42%hs,max is implemented, the response of the system

changes dramatically. In fact, the trajectory of the proof mass experiences limit480

cycle oscillations that are self-sustained and lead the VFC system to instability

for the same level of excitation of the uncontrolled scenario. In the next section

the NLFC loop is implemented in order to tackle this instability issue.

3.3. Nonlinear feedback control of a cantilever beam

The combined VFC+NLFC controller is then implemented as illustrated in485

the schematic of figure 31. The signal of the accelerometer at the control position

is acquired by the dSPACE, it is then digitally high-pass filtered with a cut-on

frequency of 2 Hz and integrated using the trapezoidal rule in order to obtain

the velocity signal at the control position. The velocity of the structure is then

multiplied by a VFC gain hs and the amplified signal is then fed into the actuator490

through the amplifier. This forms the VFC loop. The NLFC loop, instead,

has been designed according to eq.(52) to add a minimum internal damping of

cmin = 0.5 N/ms−1, a maximum internal damping of cmax = 100 N/ms−1 and

an exponential coefficient p = 1. Using these values, all the parameters of the

NLFC can be determined. For this control loop, both the force cell signal fc and495

the acceleration signal ẍc have been filtered with a second order Butterworth

high-pass filter with a cut-on frequency of 2 Hz.

Figure 31: Schematic of the experimental implementation of the VFC and NLFC.
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The proof mass relative acceleration has been calculated as,

ẍr =
fc −mcẍc

mp
, (61)

where,

mc = macc +mb +mgauge, (62)

is the total mass attached to the beam at the control position, macc = 0.005 kg

is the mass of the accelerometer and mgauge = 0.023 kg is the mass of the force

cell. The relative proof mass velocity and displacement are then estimated by500

high-pass filtering and integrating the acceleration signal, in the same way as

it has been discussed for the structure’s velocity signal. The NLFC control

signal is then calculated in real time using eq.(52) before being fed back to the

actuator.

Figure 32 shows a comparison of the response of the beam and proof mass505

among the uncontrolled scenario (dashed red line), the single VFC loop with

hs = 42%hs,max (dash-dotted black line) and the combined VFC+NLFC loop

with hs = 42%hs,max (blue solid line) under equal excitation levels. Figure

32(a) shows the spectrum of the excitation force and the time history of the

velocity of the beam at the control point. Figure 32(b) shows, instead, the510

phase-space trajectory of the proof mass relative displacement and velocity. It

can be observed that under the same excitation condition, the systems that

implements the combined VFC+NLFC is able to avoid stroke saturation and

hence the limit cycle oscillations of the proof mass so that the control system

remains stable. In fact, the response of the beam quickly dies out and the515

trajectory of the proof mass goes to zero. The theoretical parametric study

performed in section 2 has been repeated experimentally in order to test the

robustness of the controller to increasing control gains and to increasing levels

of excitation.

The beam has been excited with three different levels of excitation, namely:520

low (below 20 N peak amplitude, medium (between 20 N and 30 N) and high

(above 30 N). For each level of excitation, the test has been repeated increasing

the VFC gain from the uncontrolled scenario to hs,max with steps of 7%hs,max.
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(a)

(b)

Figure 32: (a) Spectrum of the excitation force and time history of the velocity signal

at the control point; (b) Phase-space trajectory of the relative proof mass displacement

and velocity. Dashed red line for the uncontrolled scenario, dash-dotted black line for

the single VFC scenario using hs = 42%hs,max and solid blue line for the VFC+NLFC

scenario using hs = 42%hs,max.

The parametric study has been conducted in the first place for the single VFC

loop and then for the combined VFC+NLFC loop in order to compare the525

operating regions of the stroke limited actuator for the two different control
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strategies. The results are shown in 33, where the red circles are the experimen-

tal data points in which the single VFC loop is stable and the black asterisks

are the experimental data points in which the combined VFC+NLFC is stable.

Each point in figure 33 corresponds to an experiment of the same type of the530

one presented in figure 32. The data points of the two control strategies define

Figure 33: Comparison between the single VFC and VFC+NLFC in terms of stability

range for the experimental investigation. The red circles in the dark grey area show

the experimental data points in which the VFC is stable; the black asterisks in the

light grey area show the experimental data point in which the combined VFC+NLFC

controller is stable.

the operating regions of the inertial actuator that are highlighted by the light

grey area for the single VFC loop and by the dark grey area for the combined

VFC+NLFC loop. It is clear that the added NLFC loop is able to extend the

stability region of the inertial actuator to larger control gains and higher level535

of excitation compared to a single VFC loop.

4. Conclusions

In this paper, a nonlinear feedback control strategy has been presented to

avoid stroke saturation in inertial actuators. The paper is divided into a theoret-

ical and an experimental part. Firstly, the mathematical model of a nonlinear540
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inertial actuator connected to a single degree of freedom structure has been

described, where the nonlinearity has been modelled by a bilinear stiffness. Sec-

ondly, simulation and analysis have shown that velocity feedback controllers are

more liable to instability if the inertial actuator has stroke saturation nonlin-

earity. The impacts between the proof mass and the end stops then reduce545

the overall damping of the system, which results in instability for lower gains

than those predicted by the linear analysis. This motivated the development

of a nonlinear controller that operates as a second loop alongside the classical

velocity feedback. This nonlinear controller increases the internal damping of

the actuator as the proof mass approaches the end stops, being negligible when550

the proof mass is clear from the displacement constraints. A test rig consisting

of a cantilever beam with a control unit attached to the free end has been used

for the experimental investigation of the nonlinear controller. The real-time

implementation of the nonlinear control law has been discussed and the results

using VFC and VFC with NLFC have been compared, for several excitation555

levels and velocity feedback gains. In each test the stability of the system has

been assessed. It has been shown both theoretically and experimentally that

the nonlinear feedback controller is able to increase the safe operating region of

the actuator. Hence, larger feedback gains can be used, or larger impulse excita-

tions can be withstood, without the system becoming unstable if this nonlinear560

controller is used. Future work will be related on the estimation of the relative

proof mass displacement in order to reduce the number of sensors and the added

mass to the structure.
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