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Abstract—This paper addresses the (model-free) data-driven
control of power converters, acting as distributed generators, in
low voltage direct current (LVDC) networks (e.g. DC microgrids,
DC distributed power systems, DC buses wit multiple sources
and loads, etc.). Since traditional stand-alone control design,
cannot guarantee stability when converters are connected to
a network, it is proposed a deterministic solution that does
not require the network model– an approach purely based on
measurement data. This is a suitable way to overcome common
issues when using a model-based approach, e.g. the use of an
excessive number of variables and equations, the presence of
un-modeled dynamics, unknown parameters and/or the lack of
first principle model equations. To corroborate the advantages of
the proposed approach, the present work addresses an extreme
but also realistic scenario: weak networks with active loads,
such as constant power loads (CPLs). It is also shown that the
proposed scheme guarantees stability in a rigorous deterministic
way– using a Lyapunov approach based on coefficient matrices
directly constructed from data. Simulation results using a multi-
bus LVDC distribution network, based on PSCAD/EMTDC, are
provided as proof of concept.

Index Terms—Data-driven control, distributed generators,
LVDC networks, DC microgrids, DC buses, oscillations, stability,
constant power loads.

I. INTRODUCTION

Switching converters are usually designed as stand-alone
devices, i.e. they are closed-loop-tested using only nominal
(resistive) loads. However, in practice their interconnection
with other devices leads to unpredictable dynamical responses
[1]. In a worst-case scenario, even though individually tested
power converters exhibit a stable behavior, instability problems
arise when used in DC networks, e.g., due to the negative
impedance characteristics of regulated power devices, such
as constant power loads (CPLs) (see [2]–[10]). To overcome
this issue, we usually resort to a model-based paradigm: it is
assumed that a model that represents the full DC network is
always available to develop control strategies– in this way a
stable optimal performance can be guaranteed.

Recent contributions of model-based approaches include:
[11]–[13], where feedback control techniques are proposed to
stabilize power converters in the presence of CPLs. In [2],
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[14]–[17], the design of controllers for simplified (cascade-
converter) DC networks is introduced as a proof of concept.
In [18]–[21], the concept of virtual impedance/admittance
shaping is introduced as an intuitive way to mitigate the
effect of negative impedance loads. Other contributions with
similar aims, such as [22]–[24], induce a stabilizing damping
component using feedback controllers.

These contributions are oriented to the modeling of the net-
work, in particular in state-space form (i.e. using sets of first-
order differential equations). This is not a sheer coincidence,
since many compelling mathematical tools are available in
such setting, for analysis and control design. However, state
models of networks are not a given and their synthesis is
not always an easy task. For instance, while the traditional
state-space modeling is straightforward for individual power
converters, this is not the case when there is an excessive
number of variables and equations as in traditional networks,
e.g., any device, component or even parasitic element with
energy storage- or time-delay- characteristics, brings at least
one additional variable and one differential equation. This
modeling shortcoming is well-known in the context of smart
grids, for which a paradigm-shift in the way we analyze and
control the network is being required (see pp. 57-60 of [25]).

In order to solve the problem of unknown models, it
is a common practice in control theory to perform system
identification as a preamble of control design. See e.g. [26],
where the known approaches require state-space- or (transfer
function) port- variable data of the whole system. However,
these approaches require an a priori defined restrictive math-
ematical structure to be identified, based on either state- or
port- variable measurements, which unfortunately might be
largely unavailable in practice. Consequently, although these
settings have some compelling mathematical features, they are
not able to address the modeling of the network in a general
case– using a limited number of variables and sensors.

Motivated by these issues, this paper proposes a data-driven
approach that is purely based on measurements, bypassing the
need of mathematical models. Moreover, it is shown that this
model-free approach can be completely deterministic, which
is a mandatory characteristic to ensure stability and to display
a robust performance.

Currently, there are a few deterministic contributions with
similar goals, i.e., model-free with stability conditions. For
instance, in [27] the authors propose a data-driven control for
interlinked AC/DC microgrids based on input-output measure-
ment data, using an adaptive observer. In [28], the control of
a microgrid is proposed considering input-output data, that is
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used to construct a generic model for which a control design
can be performed. In [29], a data-driven learning algorithm is
used to identify a “local model network” that is controlled via
“local linear controllers”.

These approaches provide plausible solutions that require
in general, for practical purposes, a reasonable amount of
recorded data to “train” or “tune” the controller. Unfortunately,
they do not address the issue of stabilization, which is a
required characteristic in the presence of active loads such
as CPLs. As argued in this paper, this is in general a difficult
problem, since stability margins are significantly shrunk when
active loads such as CPLs are predominant. Consequently, it
is necessary to endow controllers with additional stabilization
capabilities. Since this task is difficult enough when using
models, as shown in an extensive list of recent contributions,
e.g. [2], [11]–[24], it is increasingly more challenging when
full models are simply not available and controllers are set-up
purely from data.

Prompted by these challenges, a new data-driven control
approach for LVDC network converters is proposed. To do
so, coefficient matrices constructed from data and an LMI-
Lyapunov approach are used as efficient computational tools
for control synthesis that guarantee stability, even when po-
tentially unstable systems are treated. The proposed approach
is illustrated by performing the control of a DC distributed
generator connected to a network with CPLs. Regulation and
stabilization features are also validated using simulations based
on PSCAD/EMTDC.

II. OVERVIEW OF THE PROBLEM AND SUMMARY OF
CONTRIBUTIONS

In this section, it is described in detail the problem of
instability in LVDC networks due to CPLs, as well as the
main features of the proposed contribution.

A. Problem formulation

The present work focuses on the fact that the nominal
closed-loop performance of power converters is potentially
degraded when tested over a network. This is due to the
influence of other interconnected active loads, distributed
generator dynamics and line impedances [1].

For instance, consider the dynamical equation of the output
(capacitor) voltage in the traditional boost converter:

C
d

dt
vo = (1− d)iin − io; (1)

where vo, d, iin and io are the output voltage, the duty cycle,
the input- and the output- current, respectively. Consider the
equilibrium of such equation, taking vo, d, iin and io as the
corresponding steady-state quantities, i.e.

(1− d)iin = io . (2)

It is well-known that this equilibrium is satisfied in stand-
alone operation– with a passive (resistive) load R demanding
an output current io = vo

R .
However, when the converter operates over a network, d

is restricted to satisfy the desired DC bus voltage. Thus

if iin and io are independently manipulated, (2) cannot be
automatically satisfied and the capacitor voltage cannot be
constant– causing a detrimental uncoordinated performance
by the interconnected converters. In a worst-case scenario, the
resulting performance is even unstable, i.e. an equilibrium is
never achieved (see e.g. the CPL problem in [2]–[6]).

To address this issue, this paper adopts the view of the
network as a system whose behavior is determined by in-
terconnected subsystems. Then, to perform a control design,
we zoom into the network to focus on the converter to be
controlled, which is interacting with the rest of the devices
via electrical and control variables (e.g. voltages/currents and
duty cycles). This is illustrated in Fig. 1.

Fig. 1: Data-driven control of converters over networks by zooming.

The solution proposed in this paper is rested upon a suit-
able condition called persistency of excitation. This condition
implies that measurement data can reveal the dynamics of all
the devices that are influencing the behavior of the converter
under study. This principle is used to (re-)design a controller
from scratch– purely from experimental data– while ensuring
a stable performance in a rigorous deterministic way.

B. Summary of advantages and contributions

In the following the main advantages and contributions of
the proposed data-driven approach are outlined. These features
are also described and justified in the detail along the paper.

1) Measurement data in limited quantities is sufficient for
control purposes: Even though the largest possible amount of
data would help to achieve maximum convergence, between
the real network and the information gathered in data matrices;
persistency of excitation does not specifically requires large
amounts of data, but “sufficient” typical transients to recover
the laws of the system. This is illustrated via small variations
around the equilibrium that do not considerably deviate from
the nominal operation of converters.

2) The least possible amount of sensors is required:
Measurement of only the variables used for control, that satisfy
in general standard observability/controllability properties, is
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required. Due to persistency of excitation, it is possible to
recover the laws of the whole network without requiring full
state- or port- variables in traditional state-space and transfer
function approaches.

3) Stability is guaranteed in a rigorous deterministic way:
Since this approach permits to recover the laws of the whole
network from the measurement data, and DC-DC converters
have only one equilibrium point (corresponding to the con-
verter input/voltage gain equations), stability of such equilib-
rium is guaranteed using a Lyapunov LMI approach.

4) Stabilizability can be achieved: A significant distinctive
component in our contribution is stabilizability, i.e. the control
of an originally unstable system. This is a novel advantage that
had not been yet explored in the existing literature of data
driven-control for DC networks.

5) Gain tuning of commercial controllers or any desired
linear control scheme can be used: To possibilities are open:
1) realization of a controller that can be even expressed in
general higher-order shift operators (analogously higher order
derivatives), for which state-space and transfer function are
only special cases; and 2) realization of typical controller
architectures that require only gain tuning to achieve stability–
this option is of particular interest if a commercial device is
restricting the controller configuration and only gain tuning
can be performed.

6) Optimal control strategies and/or further performance
specifications can be accommodated: Since the controller
computation is set in terms of LMIs, it is possible to add
further restrictions in the sense of optimal control, i.e. perfor-
mance specifications in the form of linear matrix inequalities
can be added. For instance, the LMI representation of function-
als that enforce energy, time response, voltage/current variable
relationships, etc..

The following section provides the theoretical elements that
are instrumental for the development of the proposed data-
driven control scheme, as well as the notation and concepts
that are continuously used along this paper.

III. PRELIMINARY BACKGROUND MATERIAL

To make this paper self-contained, some preliminary mate-
rial and notation is introduced. Further theoretical details in the
context of control theory about behavioral systems, quadratic
difference forms and data-driven control— that are used to
develop the main results— can be found in [30], [31] and
[32], respectively.

A. Notation

Consider R, Z and Z+ the set of real, integer and positive
integer numbers, respectively. The space of real vectors of
dimension q is denoted by Rq . The space of real matrices of
dimension p× q is denoted by Rp×q . R•×• is used to denote
real matrices with an unspecified number of rows and columns.
Iq is the q × q identity matrix. Given two column vectors
v1 and v2, col(v1, v2) is the vector obtained by stacking v1

over v2 in a single column vector. Given a matrix A ∈ R•×•,
rank(A) denotes its rank, while vec(A) denotes its column
span, i.e., the set of all possible linear combinations of its

column vectors. The shift operator σ applied to a function
f : Z+ → Rq is defined as (σf)(t) := f(t+ 1), which can be
of order N , i.e., (σNf)(t) := f(t+N) in general.

B. Linear difference systems

When dealing with sampled data, it is better to study
dynamics in terms of discrete-time systems, using difference
equations. Formally, a linear difference system can be ex-
pressed as

R0w +R1(σw) + · · ·+RN (σNw) = 0, (3)

where w : Z+ → Rq is the function mapping discrete time
points to the measured quantities, i.e., a finite time-series
w(1), w(2), ..., w(T ); N is the maximum degree of the shift
operator σ; and Ri ∈ Rp×q , with i = 0, 1, ..., N . Equation (3)
can be represented compactly as

R(σ)w = 0; (4)

which is called kernel representation; where R(σ) is a poly-
nomial matrix in σ, and represents a relationship among the
set of measurements w in discrete time.

C. Quadratic difference forms

The stability properties of linear difference systems is
studied by means of functionals. A quadratic difference form
(QdF) is a functional of the discrete-time function w and its
time-shifts, i.e.,

QK(w) =
[
w> σw> · · · σNw>

]
K


w
σw

...
σNw

 , (5)

where K is called coefficient matrix. The rate of change ∇QK
of a functional QK (which is analogous to a derivative in
continuous-time) is defined as

∇QK(w)(t) := σQK(w)(t)−QK(w)(t) . (6)

D. Lyapunov stability

For analysis, a common definition for stability is used,
i.e., a system represented by (3) is asymptotically stable if
limt→∞ w(t) = 0 for all w that satisfies (3).

The well-known Lyapunov conditions (see, e.g., p. 2913
of [33]) are used to develop further algebraic specifications
for stability, that will be instrumental for the synthesis of
controllers. For ease of reference, these conditions are recalled
as follows:

A system represented by (3) is asymptotically stable if there
exist a QdF QK such that, for all w that satisfies (3), it holds
that: 1) QK ≥ 0; and 2) ∇QK < 0. Moreover, the QdF QK
satisfying the above inequalities is called Lyapunov function
for (3).

Remark 1. Please notice that when dealing with higher order
linear systems, it is only required a condition on the Lyapunov
function QK to be non negative, rather than positive definite,
please see [33].
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IV. SUITABILITY OF DATA

Before introducing the main results, some important con-
ditions are introduced to determine if the measured data are
suitable for the analysis.

A. Data matrices

Since the scenario where the model of the DC network is
unknown is considered, then sufficient conditions must be set
to determine if the data contain enough information about its
dynamics. To define such conditions, the concept of a matrix
constructed from data is introduced.

Consider a time-series of length T expressed as
w(1), w(2), w(3), ..., w(T ) that corresponds to a set of mea-
surement data. A Hankel matrix of depth L, with T > L ∈ Z+

associated to this time-series is defined as

HL(w) :=


w(1) w(2) · · · w (T− L + 1)
w (2) w (3) · · · w (T− L + 2)

...
... · · ·

...
w (L) w (L + 1) · · · w (T)

 . (7)

Remark 2. It is expected that the length of the time-series
denoted by T plays a role in the accurate management and
quality of the data. For practical purposes, it will be taken “as
long as possible” to ensure a better approximation to the “true
system” (see [32]). The value of L will be relevant afterwards
for properties that require rank verification and is associated
to the maximum order of the shift operator of the system.

B. Classification of variables

Given a set of network variables w, the type of available
variables can be classified as either input or output variables.
Input variables are independent (e.g. the duty cycle), while the
output variables are consequences of the inputs (e.g. output-
voltage). This concept is formalized next.

Given w that satisfies (3), the partition w := col(u, y) is an
input/output partition if

1) u is free, i.e., for all u there exists y such that col(u, y)
is an admissible trajectory of the system.

2) u is maximally free, i.e., given u, none of the components
of y are free.

3) If 1) and 2) hold, then u is called an input variable and
y an output variable.

In this paper control variables are used as inputs, i.e. duty
cycles; while outputs are defined as the variables that serve
to capture the influence of converter on the network, e.g.
converter input/output voltages/currents.

C. Persistency of excitation

To specify mathematical conditions for the suitability of a
set of data, the input variables are required to first satisfy
the following condition: A vector u = u(1), u(2), ..., u(T ) is
persistently exciting of order L if HL(u) is of full row rank.

Persistency of excitation has the following important impli-
cation according to [32]. Given a time-series

w = w(1), w(2), w(3), ..., w(T ) =: col(u, y) , (8)

that satisfies (3). If u is persistently excited of at least order L,
where L is equal to the number of inputs and the dimension
of the state-space (see Lemma 1 of [32]), then vec(HL (w))
corresponds to the set of all possible solutions of (3).

In words, if the condition of persistency of excitation is
satisfied, then the behavior of the network can be completely
specified by the set of available measurements w(1), ..., w(T ).
This means that any admissible trajectory of w can be recov-
ered from such data.

Remark 3. In the stabilization case studied in this paper, the
degraded unexpected dynamics of the converter when tested
over a network are used. It is possible to take advantage
from the fact that a controller that features robustness and
stability only in stand-alone operation attempts to steer the
voltage and current values to a desired equilibrium, but is in
conflict with the dynamics of the constant power load– which
produces an unstable (oscillating) performance. This actually
facilitates the accomplishment of persistency of excitation
condition– since the variations of the input are also persistent.
On the other hand please notice that persistency of excitation
is tested only using the input, that corresponds to the duty
cycle of the converter and which can be freely manipulated
as to satisfy such condition. However, measurements from an
unstable performance are not a requirement, since many other
trajectories can be also sufficiently informative– as long as the
rank condition on HL(u) is satisfied.

V. DATA-DRIVEN CONTROL OF LVDC NETWORK
CONVERTERS

In this section the main results about data-driven control of
DC-DC converters over networks are introduced.

A. LMI condition for stability

A method to design stabilizing controllers from data is
now introduces, based on the computation of standard linear
matrix inequalities (LMIs). To do so, notice that the Lyapunov
conditions 1)-2) recalled in Sec. III-D, are satisfied if there
exists a QdF QK ≥ 0 and polynomial matrices Y (σ) and
F (σ) of suitable sizes such that

σQK(w)−QK(w) + w>R(σ)>Y (σ)w + w>Y (σ)>R(σ)w

= −w>F (σ)>F (σ)w .
(9)

Note that for every w that satisfies R(σ)w = 0, it follows that

σQK(w)−QK(w)︸ ︷︷ ︸
=:∇QK

= −‖F (σ)w‖22 ;
(10)

which corresponds to a strictly negative rate of change. To
develop a stability condition equivalent to (9) that can be easily
tested and used for control design, note first that (3) can be
written as

R(σ)w =
[
R0 R1 · · · RN

]


w
σw

...
σNw

 . (11)
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The coefficient matrix is now defined as

R̃ :=
[
R0 R1 · · · RN

]
. (12)

Similarly, a coefficient matrix can be defined as

Ỹ :=
[
Y0 Y1 · · · YN

]
; (13)

for Y (σ) in (9). Moreover, define

z> :=
[
w> σw> · · · σNw>

]
. (14)

Then, using these coefficient matrices as well as the definition
of a QdF in (5), equation (9) can be expressed as

σQK(w)︷ ︸︸ ︷
z>
[

0q×q 0q×Nq
0Nq×q K

]
z−

QK(w)︷ ︸︸ ︷
z>
[

K 0Nq×q
0q×Nq 0q×q

]
z

+ z>R̃>Ỹ z + z>Ỹ >R̃z︸ ︷︷ ︸
w>R(σ)>Y (σ)w+w>Y (σ)>R(σ)w

< 0 .

(15)

where K > 0 has dimension Nq×Nq and the inequality “<”
accounts for the negative element at the right hand side of
(9). Then by standard linear algebra principles, such stability
condition can be reduced to finding a matrix K = K> > 0,
satisfying the following LMI:[

0q×q 0q×Nq
0Nq×q K

]
−
[

K 0Nq×q
0q×Nq 0q×q

]
+ R̃>Ỹ + Ỹ >R̃ < 0 .

(16)

Notice that matrices K and Ỹ can be numerically computed
using standard LMI solvers such as Yalmip.

B. Computation of coefficient matrices from data

The sufficiency of information concept introduced in Section
IV has two main consequences: 1) it defines a condition to test
if the available data are suitable for control purposes; and 2)
it provides a way to compute the left kernel of w, i.e., a set
containing a polynomial matrix R(σ) such that R(σ)w = 0.
The second point can be formalized as follows.

Consider that w = w(1), w(2), w(3), ..., w(T ) =: col(u, y)
is a sufficiently informative time-series that satisfies (3). There
exists R̃ ∈ Rp×(N+1)q such that

R̃


w
σw

...
σNw

 = 0 ; (17)

for all w that satisfies (3).
In order to corroborate the validity of this statement and

most importantly the computation of such matrix R̃, it is shows
that it is enough to apply singular value decomposition to the
Hankel matrix, which is an easy matter for MATLAB.

Consider HN+1 (w), where N corresponds to the maximum
degree of the shift operator. Now consider the singular-value
decomposition (SVD) of the Hankel matrix

HN+1 (w) := UΣV > ; (18)

where U ∈ Rq×q and V ∈ RT×T are (square) orthogonal
matrices; Σ ∈ Rq×T is diagonal matrix with non-negative
real numbers on the diagonal, and whose entries are called
singular values. Moreover, there is an r number of non-zero
singular values denoted by σi, i = 1, ..., r, for which r :=
rank (HN+1 (w)). Given a permanent regime measurement
w := col(u, y) with an m number of inputs and an n number
of outputs, r = m corresponding to the linearly independent
rows (the inputs). Note that

U>HL (w) = ΣV > ,

=

[
Σ′ 0r×(T−r)

0(q−r)×r 0(q−r)×(T−r)

]
V > ,

=

[
W

0(q−r)×(T−r)

]
.

(19)

where Σ′ ∈ Rr×r is a sub-diagonal matrix containing the
non-zero singular values and W is a matrix of suitable size
that represent the non-zero part of the product of ΣV >. It is
concluded, from persistency of excitation and the last rows
of zeros of such product, that U> contains an annihilator of
w, i.e. its left kernel, corresponding to its last q − r rows.
Consequently, consider the partition U :=

[
U1 U2

]
, where

U1 has r columns. Then, R̃ := U>2 belongs to the left kernel
of HN+1 (w).

Matrix R̃ contains sufficient information about the system
from the gathered data. Following these results, the Algorithm
in Fig. 2 is developed, which contains the computation of the
coefficient matrix R̃ from a set of measurement data.

Fig. 2: Algorithm for the computation of the coefficient matrix R̃ from measurement
data.

The following section show how matrix R̃ can be used for
stabilizing control design.

C. Control design purely from data

This paper adopts a general point of view for control design
in which a pre-defined controller structure (P, PI, PID, etc.) is
not imposed. Instead, the proposed approach lets the available
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data itself to invoke the necessary mathematical restrictions
for the plant to induce asymptotic stability for an originally
unstable system. For ease of exposition and implementation,
a state-space representation is used for the controller, though
an even more general structure in higher-order terms is also
permitted.

Let w := col(u, y) be the set of converter variables available
for measurement. For practical purposes in a boost converter,
the input u := d is the duty-cycle, and the output y := col(i, v)
comprises the input-current and output-voltage.

To facilitate the analysis, e.g., to study general stabilization
properties at the origin, the “error” variables are used, which
can be easily constructed from the data of measured variables
and a desired steady state value (set-point), i.e.,

ŵ := w − w ; (20)

where w is the value of the measurement variables at a fixed,
but otherwise arbitrary, admissible equilibrium. The following
analogous notation for the input-output partition is used.

ŵ = col(û, ŷ) . (21)

The unknown model of the converter interconnected to a DC-
network is thus considered as being represented by

R(σ)ŵ = 0 ; (22)

which can be congruently input-output partitioned as[
R′(σ) R′′(σ)

] [û
ŷ

]
= 0 ; (23)

while the controller can adopt a general form

σx′ = Ax′ +Bu′ ; y′ = Cx′ +Du′ ; (24)

where x′ : R → Rn, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rk×n
and D ∈ Rk×m. A feedback controller can be established by
considering as the measurement variables ŵ = col(û, ŷ) with
definitions y′ := û and u′ := ŷ. This general form feedback
controller with the realization (A,B,C,D) is depicted in Fig.
3.

Fig. 3: General realization of a data-driven feedback controller in state-space form.

Note that this general family of controllers admits any P ,
PI , PID, state- and output- feedback configurations, among
many other suitable possibilities. Consequently, in addition to
the main motivation of bypassing the need of models for con-
trol design, it is also avoided the need to impose a particular

controller architecture, since the data itself can determine the
requirements for stabilization and set-point achievement.

This general converter-controller combination can thus be
represented as

R′(σ) R′′(σ) 0p×q 0p×k 0p×n
0n×k 0n×m −B 0n×k σIn −A
0m×k 0m×m −D Ik −C
−Ik 0k×m 0k×q Ik 0k×n

0m×k −Im Im 0m×k 0m×n


︸ ︷︷ ︸

=:P (σ)


û
ŷ
u′

y′

z

 = 0 .

(25)
It is now possible to obtain the coefficient matrix P̃ of P (σ)

as described in (11)-(12). Moreover, notice that coefficients R̃
associated to

[
R′(σ) R′′(σ)

]
are directly obtained from the

data and using Algorithm 1. Then A, B, C and D, which are
now embedded in P̃ , can be computed using the augmented
version of the stability condition in (16), i.e., an Nr × Nr
matrix can be numerically found, with r := q + k + m + n,
such that K = K> > 0 satisfies[

0r×r 0r×Nr
0Nr×r K

]
−
[

K 0Nr×r
0r×Nr 0r×r

]
+ P̃>Ỹ + Ỹ >P̃ < 0 .

(26)

Remark 4. Since the parameters of both P̃ and Ỹ are
unknown, condition (26) is, in general, a bilinear matrix
inequality (BMI), for which can be found by standard iterative
algorithms (see e.g [34]).

Remark 5. the fact that the controller computation is set in
terms of LMIs, it is possible to add further restrictions in the
sense of optimal control, i.e. performance specifications can be
added in the form of linear matrix inequalities. For instance,
the LMI representation of functionals that enforce energy, time
response, voltage/current variable relationships, and so forth.
The solution space of the controller gains is simply further
restricted in order to satisfy performance specifications in a
very straightforward way. For instance, given a functional
zTQz a condition to its coefficient matrix Q can be added
to minimize its value, or to set limits with a simple additional
inequality with ε > 0, i.e.

Q− R̃>Ỹ − Ỹ >R̃ ≤ εI2(N+1)r

in an analogous way as done for the stability condition.

Remark 6. A general data-driven control perspective is
provided, without resorting to “special structures”. However,
if in practice an implementation requires a very particular
control structure, e.g., commercial devices where only gain
modification is permitted. This problem can be addressed as
a special case. Consider for instance a boost converter. The
method uses error variables ŵ := col(d̂, î, v̂) that correspond
to the duty cycle, the input-current and the output-voltage,
respectively; and whose data can be experimentally obtained.
Assume that its manufacture’s predefined controller consists
of the following equations:

Current loop:

{
d̂ :=− k1x− k2î ,

σx =x+ î− iref ;
(27)
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Voltage loop:

{
iref :=− g1z − g2v̂ ,

σz =z + v̂ ;
(28)

where x, z : Z+ → R and ki, gi, i = 1, 2, are scalar quantities.
Given this set of equations and considering the congruently
partitioned unknown model of the DC network

[
R′(σ) R′′(σ) R′′′(σ)

] d̂î
v̂

 = 0 , (29)

then the following augmented model can be constructed,
R′(σ) R′′(σ) R′′′(σ) 0 0

1 k2 0 k1 0
0 −1 −g2 σ − 1 −g1

0 0 −1 0 σ − 1


︸ ︷︷ ︸

=:P (σ)


d̂

î
v̂
x
z

 = 0 . (30)

Then the computation of gains k1, k2, g1 and g2 can be
numerically performed for this special case using (26).

VI. COMPARISON WITH STATE-OF-THE-ART

In order to address a fair comparison between the contribu-
tions in this paper and the state-of-the-art, the main features
of the proposed approach are illustrated with respect to [27],
whose aims are the closest to ours. To show the differences
between both methods MATLAB simulations of the closed-
loop simulation of a single converter are provided, while in
the following section the proposed approach will be extended
for a full LVDC network using PSCAD/EMTDC. In this way it
is possible to concentrate in illustrating the whole procedure,
as well as the requirements, assumptions and limitations of
both approaches.

A. Example for simulation

Consider a boost converter feeding a 5kW resistive load,
which is later on changed into an active 5kW constant power
load. The measurement of input-output data is considered,
containing the input-current, output-voltage and the duty cycle,
i.e. y = col(i, v) and u = d. With desired equilibrium of
output voltage v = 380V , input current i = 26.31 and duty
cycle d = 0.5.

B. Theoretical principles behind each contribution

1) Contribution in [27]: is based on the implementation of
the following observer-based discrete-time controller. Please
note that the notation has been aligned with the one of the
present paper to facilitate the exposition, i.e.

ỹ(k + 1) =ỹ(k) + Φ(k)û(k) +K(ỹ(k)− y(k))

Φ(k + 1) =Φ(k) + (2‖û(k)‖)×(
ỹ(k + 1)− ỹ(k + 1)− F

(
ỹ(k)− y(k)

))
û(k)

u(k) =u(k − 1) + Φ(k)>
(
Λ + Φ(k)Φ(k)>

)−1×(
y − ỹ(k)−K

(
ỹ(k)− y(k)

))
;

where y is the measured output; ỹ is the estimated output;
û = u−u is the incremental version of the input u with respect
to its equilibrium value u. Moreover, Φ is the estimated model
of the system in a “pseudo-Jacobian” input-output form.

2) The present contribution: is based on the solution of a
Lyapunov condition using matrices constructed from data, sup-
ported by the principle of persistency of excitation. In partic-
ular it is considered a time-series w(1), w(2), w(3), ..., w(T ).
that corresponds to a set of measurement data. Then a Hankel
matrix as in (7) is constructed. Then we perform the algorithm
in Fig. 2 to obtain a matrix R̃. As fully described in Sec. V-C,
this matrix is used to construct P̃ , which contains the state-
space matrices (A,B,C,D) of the controller. These matrices,
now embedded in P̃ , are easily computed (e.g. using Yalmip)
by solving the Lyapunov condition (26).

This method can be numerically performed in a recursive
way if the plant is changed, to produce a new controller with
guaranteed stability.

C. Requirements of data

1) Contribution in [27]: requires to satisfy general stability
boundaries that can be previously set-up. Hence, theoretically
speaking an equilibrium can be achieved from the beginning
without data. Nevertheless a poor performance can be ob-
tained, i.e. a desirable dynamic response cannot be specified
without prior data. In order to fix this, it is highly recom-
mended to use recorded data to “train” the controller. This is
illustrated as follows.

For instance, as suggested by the Authors, we have set the
following gains that satisfy stability conditions as in [27], i.e.

K := −0.8× I2 ; F := 10I2 ; Λ := I2 .

Then we obtain the traces shown in Fig. 4, which involves a
poor dynamic response due to oscillations.

On the other hand, given recorded data, one can tune
the gains of the estimator and controller to mitigate, e.g.
oscillations and high overshoots. This action allows to obtain

K := −0.12× I2 ; F := 25I2 ; Λ := I2 .

The corresponding traces are shown in Fig. 5. Please notice
that after tuning the parameters off-line, the estimation is
improved as well as the whole closed-loop performance.

2) The present contribution: requires recorded data that sat-
isfy persistency of excitation. This set of measurement data can
be obtained either in open or closed loop operation (using any
controller). In the given example we use very small variations
on the duty cycle, between 0.47 and 0.53, during 0.02 seconds;
Fig. 6. For simplicity, the example controller in Remark 6
is used. Then by performing the algorithm in Fig. 2 and
solving the inequality (26), the following gains are obtained:
k1 = 0.0002 ; k2 = 0.0051 ; g1 = 0.0025 ; g2 = 0.0346.
The closed-loop traces are shown in Fig. 7.

D. Behavior when swapping resistances by active CPLs

As reported in the literature [2], [11]–[24], the inclusion of
active loads such as CPLs is a very challenging scenario in
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Fig. 4: Closed-loop response of the observer-based discrete-time controller.

Fig. 5: Improved closed-loop response of the observer-based discrete-time controller
after tuning when using prior data.

Fig. 6: Open-loop data for the data-driven controller.

which originally stable controllers (set-up under pure resistive
conditions) do not work in general. In this case, the controllers
obtained in both approaches fall also into instability.

1) Contribution in [27]: falls into high amplitude oscilla-
tions as in Fig. 8.

2) The present contribution: also exhibits high amplitude
oscillations when using the stand-alone computed gains. This
is shown in Fig. 9. This situation can be easily overcome as
detailed in the following section.

Fig. 7: Closed-loop response of the proposed data-driven controller.

Fig. 8: Unstable performance of observer-based discrete-time controller when switch-
ing to an active load.

Fig. 9: Unstable performance when switching to an active load.

E. Main advantages of the present work

While up until now, both approaches ( [27] and the present
one) exhibit similar qualitative requirements, advantages and
apparent limitations; the main advantage of the present ap-
proach is that it can overcome the instability issue if applied
recursively. Hence, it is able to stabilize, i.e. it guarantees a
stable equilibrium in systems that are originally unstable, due
to the presence of active loads.

Although [27] contains a truly remarkable contribution,
capable to control non-trivial interconnections, it is actually
acknowledged by the Authors that boundedness in the original
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traces is required, which is parametrized by a Lipschitz
condition (see the paragraph right before equation (4), on
page 560 of [27]). Unfortunately, this is not possible when
the converter exhibits high amplitude oscillations as reported
by [2], [11]–[24] for LVDC networks; since such transients
violate the Lipschitz condition. Take for example the current
i induced by a load that demands constant power P , i.e.

i =
P

v
;

this trajectory is neither globally, nor locally Lipschitz, since
such condition must be satisfied for any arbitrary value of
the voltage v, including the origin, for which the function is
actually discontinuous.

On the other hand, since the present method can be applied
recursively, it is enough to take e.g. the 0.02 seconds of an
unstable transient as in Fig. 9, to use the same data to set-up
new gains. By applying the algorithm in Fig. 2 and numerically
solving (26), the following gains are obtained:

k1 = 0.0033 ; k2 = 0.0095 ; g1 = 0.0046 ; g2 = 0.0628 .

Then the behavior in Fig. 10 is obtained. This result can be
compared to all the previous traces that are evaluated up to
t = 0.02s. In addition, in order to show that the new controller
is highly robust, after 0.02 seconds, we abruptly increase and
decrease the value of the active load from 5kW to 8kW ,
then 3kW continuously, then it is observed that the controller
compensates such variations by preserving stability.

Fig. 10: Stabilization even under abrupt variations on the value of the active load:
5kW to 8kW , then 3kW continuously.

The conclusion is that the present algorithm is able to
guarantee stability when used recursively, even when switch-
ing to highly demanding and potentially unstable scenarios,
i.e. to the case when active loads are predominant. The
solution displays robustness against strong parametric changes.
Moreover, only small quantities of data, either in open- or
closed- loop are necessary to induce a rigorously guaranteed
stable performance.

VII. SIMULATION RESULTS OF A MULTI-BUS LVDC
NETWORK USING PSCAD/EMTDC

In order to corroborate the advantages as well as the appli-
cability of the proposed strategy, a series of simulations are

performed based upon the network depicted in Fig. 11 which
contains traditional passive and also active loads (CPLs),
inducing a potentially unstable scenario. To facilitate the order
of the simulations, each scenario is addressed in the following
separated subsections. The parameters of the network are
summarized in Table I and Table II.

The simulation was performed using the example controller
in Remark 6, whose gains are computed using the data-driven
scheme. A traditional droop control is used to define the
reference for the DGs voltage as vref = v−K(io− io) where
are v and io are the nominal voltage and output current of the
DG and io is the measurable output current of the DG. The
gain was set up in a traditional way by defining the desired
droop slope using

K =
1

5

v

io
.

The solution rate for the discrete controllers is 100kHz,
which is easily achieve in practice by standard (DSP/FPGA)
micro-controllers.

A. Stand-alone (commercial) converter performance (nominal
resistive load)

As a preamble of the main contribution, a controller that
displays a good performance in terms of regulation and distur-
bance rejection for a DC-DC boost converter was implemented
considering a nominal resistive load rated at 18kW at 380V .
A traditional linear controller as the one discussed in Remark
7 was used with the following gains:

k1 := 0.0045 ; k2 := 0.0112 ; g1 := 0.0056 ; g2 := 0.0301 .

The closed-loop performance of the converter with a resistive,
and under abrupt changes at the input-voltage is shown in Fig.
12. Notice that the performance is as expected by design, i.e.,
the response is asymptotically stable and the output-voltage is
robustly regulated despite of the abrupt changes at the input-
voltage. The purpose of this simulation is to show that even a
robust controller can eventually become unstable in a network-
connected scenario with CPLs.

B. LVDC network performance with interconnected converters
and nominal resistive load

In this scenario, the converter with stand-alone dynamics
reported in Fig. 12 is now connected to a LVDC network
with only nominal resistive loads. The underlying converter is
labelled as DG1 and its dynamics as well as the rest of the
other DG’s (other converters’) is reported in Fig. 13. It can
be observed that the network displays a good performance as
well as power sharing using the stand-alone controller design.

To show the robustness of the network under resistive load
circumstances, a distributed generator (DG5) is disconnected,
then the power is redistributed among the other DGs and
stability is preserved as illustrated in Fig. 14.
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Fig. 11: LVDC network under study with potentially unstable dynamics due to CPLs.

TABLE I: Parameters of the simulation (DGs)

DG Gains (k1, k2, g1, g2) Load Vin VBus Type Converter Parameters

1 (as specified in text) 18kW then 36kW (resistive +CPL) 200V 380V boost L = 250µH,C = 10µF

2 0.0028,0.0103,0.0025,0.231 16kW (resistive) 180V 380V boost L = 220µH,C = 15µF

3 0.0037,0.0099,0.0075,0.211 14kW (resistive) 160V 380V boost L = 210µH,C = 20µF

4 0.0043,0.0092,0.0033,0.108 12kW (resistive) 140V 380V boost L = 200µH,C = 10µF

5 0.0111,0.0136,0.0015,0.098 10kW (resistive) 120V 380V boost L = 220µH,C = 15µF

TABLE II: Parameters of the simulation (DC lines)

DC Line 1 0.05Ω + 50µH

DC Line 2 0.02Ω + 25µH

DC Line 3 0.02Ω + 25µH

DC Line 4 0.02Ω + 25µH

DC Line 5 0.05Ω + 50µH

Fig. 12: Stand-alone (off-grid) performance of the converter under abrupt parametric
changes.

C. LVDC network performance with interconnected converters
and a constant power load.

In order to show the potential destabilizing effect of a active
loads upon an originally stable network, it is now added in

Fig. 13: Distributed generator voltages at each bus, their input current and the line
currents between buses. Operation of stand-alone designed controller of DG1 under
pure resistive conditions.

parallel to the resistive load in bus 1, a constant power load of
18kW . The dynamic response of this action at the time 0.04s
is shown in Fig. 15.

The whole network displays an unstable, unacceptable be-
havior might prompt us to disconnect the DGs due to a highly
degraded performance. However, in a matter of 0.1s, one
can even use the unstable dynamics to set-up the converter.
Though it is important to emphasize that gathering data from
unstable dynamics is an advantageous alternative rather than
a requirement, since also stable or open-loop dynamics serve
well to set-up the controller and guarantee stability in our
approach. In order to set-up the controller, data of the duty
cycle, DG voltage and input current of the DG1 that is
depicted in Fig. 16 is used. This simulation corroborates
that limited data of 0.1s sampled at 100kHz is enough to
synthesize the stabilizing controller.
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Fig. 14: Distributed generator voltages at each bus, their input current and the line
currents between buses. Operation of stand-alone designed controller of DG1 under
pure resistive conditions when DG5 is disconnected at t = 0.08s.

Fig. 15: Distributed generator voltages at each bus, their input current, the duty
cycle (controller) and the line currents between buses. Operation of stand-alone designed
controller when a new active constant power load of 18kW is added at bus 1 (demanding
now 36kW at bus 1).

D. Stabilization of the LVDC network using the data driven
controller.

Using the algorithm of Fig. 3 and by solving the LMI in
(26), it is possible to reformulate the gains for DG1, i.e.

k1 := 0.0082 ; k2 := 0.0429 ; g1 := 0.0059 ; g2 := 0.0853 .

To show the effectiveness and stabilizing properties of the new
controller, the same action of CPL interconnection performed
in Fig. 15 is repeated. The simulation results are illustrated in
Fig. 17.

It can be observed that the CPL destabilizing effect is
now mitigated and the whole network exhibits an stable
performance. Finally, to show the robustness of the proposed
strategy, the same simulation performed as in the resistive case
of Fig. 14 is repeated, this result is depicted in Fig. 18, where
a robust stable performance is shown.

Fig. 16: Measurements under the CPL interconnection (only data for DG1 is
required, the rest of traces are included for illustrative purposes).

Fig. 17: Distributed generator voltages at each bus, their input current, the duty cycle
(controller) and the line currents between buses. Operation of data-driven stabilizing
controller when a new active constant power load of 18kW is added at bus 1 (demanding
now 36kW at bus 1).

VIII. CONCLUSION

This work proposes a new data-driven approach to LVDC
converter-network interconnections. The strength of this ap-
proach is its capability of stabilization of LVDC network
converters in the presence of active loads. Moreover, the
proposed scheme exhibits full flexibility: it does not require
any information about the network model, and it does not
assume any particular disturbance or instability mechanism.
It is proposed to design controllers from scratch, by letting
the data itself to invoke the necessary mathematical restric-
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Fig. 18: Distributed generator voltages at each bus, their input current, the duty cycle
(controller) and the line currents between buses. Operation of data-driven stabilizing
controller when a new active constant power load of 18kW is added at bus 1 (demanding
now 36kW at bus 1). Moreover, DG5 is disconnected at t = 0.08s

tions required for stabilization– without imposing a particular
structure. Moreover, special cases can be used if required,
for example it is possible to rectify the misbehavior of a
commercial controller by gain reformulation. Validation using
PSCAD/EMTDC simulations in a realistic LVDC network
conditions using CPLs was provided to corroborate the ad-
vantages of the proposed approach.
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