

Acta Neuropathologica Communications
**MICROGLIAL MOTILITY IN ALZHEIMER'S DISEASE AND AFTER A β 42
 IMMUNOTHERAPY: A HUMAN POST-MORTEM STUDY**
 --Manuscript Draft--

Manuscript Number:	ANEC-D-19-00388R1	
Full Title:	MICROGLIAL MOTILITY IN ALZHEIMER'S DISEASE AND AFTER A β 42 IMMUNOTHERAPY: A HUMAN POST-MORTEM STUDY	
Article Type:	Research	
Funding Information:	Conacyt scholarship (270152 / 438262)	Ms Diana K. Franco-Bocanegra
	Alzheimer's Research UK (GB) (ART/PG2006/4)	Prof James A. R. Nicoll
	Alzheimer's Research UK (GB) (ART-EXT2010-1)	Prof James A. R. Nicoll
	Alzheimer's Research UK (GB) (ARUK-EG2015A-4)	Prof Delphine Boche
Abstract:	<p>Microglial function is highly dependent on cell motility, with baseline motility required for homeostatic surveillance activity and directed motility to migrate towards a source of injury. Experimental evidence suggests impaired microglial motility in Alzheimer's disease (AD) and therefore we have investigated whether the expression of proteins associated with motility is altered in AD and affected by the Aβ immunotherapy using post-mortem brain tissue of 32 controls, 44 AD cases, and 16 AD cases from our unique group of patients immunised against Aβ 42 (iAD).</p> <p>Sections of brain were immunolabelled and quantified for (i) the motility-related microglial proteins Iba1, cofilin 1 (CFL1), coronin-1a (CORO1A) and P2RY12, and (ii) pan-Aβ, Aβ 42 and phosphorylated (p)tau. The neuroinflammatory environment was characterised using Meso Scale Discovery multiplex assays. The expression of all four motility-related proteins was unmodified in AD compared with controls, whereas Iba1 and P2RY12, the homeostatic markers, were increased in the iAD group compared with AD. Iba1 and P2RY12 showed significant positive correlations with Aβ in controls but not in AD or iAD groups. Pro- and anti-inflammatory proteins were increased in AD, whereas immunotherapy appears to result in a slightly less pro-inflammatory environment.</p> <p>Our findings suggest that as Aβ appears during the ageing process, the homeostatic Iba1 and P2RY12 -positive microglia respond to Aβ, but this response is absent in AD. Aβ-immunisation promoted increased Iba1 and P2RY12 expression, likely reflecting increased baseline microglial motility but without restoring the profile observed in controls.</p>	
Corresponding Author:	<p>Delphine Boche, PhD University of Southampton Faculty of Medicine Southampton, UNITED KINGDOM</p>	
Corresponding Author E-Mail:	d.boche@soton.ac.uk	
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	University of Southampton Faculty of Medicine	
Corresponding Author's Secondary Institution:		
First Author:	Diana K. Franco-Bocanegra	
First Author Secondary Information:		
Order of Authors:	Diana K. Franco-Bocanegra	
	Bethany George	
	Laurie C. Lau	

[Click here to view linked References](#)

1 **MICROGLIAL MOTILITY IN ALZHEIMER'S DISEASE AND AFTER A_B42**
2 **IMMUNOTHERAPY: A HUMAN POST-MORTEM STUDY**
3
4
5

6
7
8 **SHORT RUNNING TITLE:** Microglial motility in Alzheimer's disease
9
10

11
12
13 Diana K. Franco-Bocanegra¹, Bethany George¹, Laurie C. Lau², Clive Holmes^{1,3}, James A. R.
14 Nicoll^{1,4}, Delphine Boche¹
15
16
17
18
19

20 ¹ Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University
21 of Southampton, Southampton, United Kingdom
22
23 ² Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories,
24 University of Southampton, Southampton, United Kingdom
25
26 ³ Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health
27 Foundation Trust, Southampton, United Kingdom
28
29 ⁴ Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust,
30 Southampton, United Kingdom
31
32

33 **CORRESPONDING AUTHOR:** Prof. Delphine Boche, Clinical Neurosciences, Clinical and
34 Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton,
35 Southampton General Hospital, Mailpoint 806, Southampton SO16 6YD, United Kingdom.
36 Phone: +44 (0) 2381 206 107
37 Email: d.boche@soton.ac.uk

38
39 **WORD COUNT:** 3729 words
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7
8
9
10
11
12
13
14

ABSTRACT

15 Microglial function is highly dependent on cell motility, with baseline motility required for
16 homeostatic surveillance activity and directed motility to migrate towards a source of injury.
17 Experimental evidence suggests impaired microglial motility in Alzheimer's disease (AD) and
18 therefore we have investigated whether the expression of proteins associated with motility is
19 altered in AD and affected by the A β immunotherapy using *post-mortem* brain tissue of 32
20 controls, 44 AD cases, and 16 AD cases from our unique group of patients immunised against
21 A β 42 (iAD).

22 Sections of brain were immunolabelled and quantified for (i) the motility-related
23 microglial proteins Iba1, cofilin 1 (CFL1), coronin-1a (CORO1A) and P2RY12, and (ii) pan-A β ,
24 A β 42 and phosphorylated tau (ptau). The neuroinflammatory environment was characterised
25 using Meso Scale Discovery multiplex assays. The expression of all four motility-related
26 proteins was unmodified in AD compared with controls, whereas Iba1 and P2RY12, the
27 homeostatic markers, were increased in the iAD group compared with AD. Iba1 and P2RY12
28 showed significant positive correlations with A β in controls but not in the AD or iAD groups.
29 Pro- and anti-inflammatory proteins were increased in AD, whereas immunotherapy appears
30 to result in a slightly less pro-inflammatory environment.

31 Our findings suggest that as A β appears during the ageing process, the homeostatic
32 Iba1 and P2RY12 –positive microglia respond to A β , but this response is absent in AD. A β -
33 immunisation promoted increased Iba1 and P2RY12 expression, likely reflecting increased
34 baseline microglial motility but without restoring the profile observed in controls.

35
36
37
38
39 **KEYWORDS:** human microglia, cell motility, Alzheimer's disease, A β -immunotherapy,
40 neuroinflammation
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

INTRODUCTION

Evidence from genetics, experimental and human *post-mortem* studies [47] supports the involvement of microglia, the resident immune cells of the brain, in the pathological cascade that leads to the development of Alzheimer's disease (AD). However, their role in the disease is still not fully understood [31]. In the healthy brain, microglia survey the parenchyma, constituting its first line of defence against pathogens or injury [10, 34], and interact with neurons helping to shape synaptic communication [29, 52-54, 56].

One of the most prominent characteristics of microglia is their motility, which is essential for the cells to perform their functions. Two types of motility are present in microglial cells: *baseline motility*, which consists of the extension, retraction, and movement of the microglial processes [18, 37], allowing microglia to survey their environment, clear cellular debris, interact with neurons and synapses, and remodel the extracellular matrix [34]. If, while performing this baseline motility, a microglial cell encounters molecules that could be indicative of infection or tissue damage, the cell will then switch to *directed motility*. Directed motility consists of a targeted extension of processes towards the source of injury [18]. At the molecular level, microglial motility depends on two mechanisms: i) reorganisation of the actin cytoskeleton and ii) purinergic signalling [13].

The actin cytoskeleton consists of a dynamic filament network, regulated by a complex machinery that involves several proteins. Some of the most important actin-related proteins in the microglial cytoskeleton are the coronins, the cofilins and the ionised calcium-binding adapter molecule (Iba1) [1, 46]. The coronin gene family contains six members with roles as regulators of actin dependent processes, such as cell motility and vesicle trafficking [40, 41]. Coronins localise to sites of dynamic actin assembly, regulating filament organisation via interactions between actin and the Arp2/3 protein complex. This results in the building of branches in the actin filament network [19]. Coronin 1a (CORO1A) plays a large role in the normal immune system as the most prominent coronin in cells of haematopoietic origin [12], and has been previously identified in human microglia [1]. Cofilins, and particularly cofilin 1 (CFL1), are actin-binding proteins that depolymerise and separate actin filaments [44]. Lastly, Iba1 is a cross-linking protein, the role of which is to organise actin filaments into networks. In microglia, Iba1 is crucial for the formation of actin bundles, [35], an event necessary for the construction of lamellipodia, filopodia, and membrane ruffles. These structures are essential for microglial migration and phagocytosis. Due to its relatively homogeneous distribution along the cell body and processes, Iba1 has been widely used as a marker to identify microglia in humans and experimental models. Purinergic signalling plays an important role in microglial motility. The presence of extracellular nucleosides (ATP, ADP, UTP, UDP), released as a

1 result of neuronal death, triggers the activation of P2Y receptors. The ADP receptor P2RY12
2 is now regarded as a microglia-specific marker, mainly associated with directed motility,
3 driving chemotaxis through a mechanism that involves the activation of potassium (K⁺)
4 channels [26]. Therefore, both actin reorganisation and purinergic signalling are essential to
5 the two forms of microglial motility.
6

7 Alterations of microglial motility have been documented in AD, with (i) microglial clusters
8 identified around A β plaques indicating movement of microglia as part of their response to A β
9 aggregation [16, 57], (ii) in AD mouse models, impairment of directed motility and phagocytic
10 activity [23], and (iii) morphological changes in plaque-associated cells [38]. A β -
11 immunotherapy is one of the major current therapeutic approaches being investigated in AD
12 [51]. The first clinical trial of A β immunotherapy in humans involved active immunisation with
13 a full-length synthetic A β 42 compound named AN1792 [3]. Our neuropathological study of
14 these patients has shown a markedly reduced plaque load associated with microglial changes
15 [57, 58]. However, these changes were not associated with reduced cognitive decline [17, 33].
16

17 In this study, we have explored whether the expression of proteins associated with
18 motility is altered in AD and affected by the A β immunotherapy using *post-mortem* brain tissue
19 of controls, AD cases, and our unique group of AD cases immunised against A β 42.
20

21 MATERIAL AND METHODS

22 Cases

23 Brain tissue from 76 donors was sourced from the South West Dementia Brain Bank
24 comprising 44 AD cases and 32 controls. Alzheimer's cases had a clinical diagnosis of
25 sporadic AD made during life and satisfied *post-mortem* neuropathological consensus criteria
26 for AD [20]. Cases with any other significant brain pathologies such as stroke, tumour, or
27 traumatic brain injury were excluded from the study. Controls were aged-matched cases, with
28 no history of neurological or psychiatric disease or symptoms of cognitive impairment.
29 Additionally, 16 immunised AD subjects (iAD) who participated in the AN1792 clinical trial were
30 also included in the study. The characteristics of the groups are presented in Table 1 and
31 individual details in the supplementary Tables 1, 2 and 3.

32 Cerebral cortex from the inferior parietal lobule was investigated in all cases. This is one
33 of the areas recommended for neuropathological assessment by the CERAD (Consortium to
34 Establish a registry for Alzheimer's Disease) [11] as it is significantly affected by AD pathology.
35 Formalin-fixed paraffin embedded tissue was used for the immunodetection of
36 neuropathological and neuroinflammatory markers. Frozen tissue, available for 31 controls,
37 35 AD cases and 11 iAD cases was used for detection of inflammation-related proteins by
38 Meso Scale Discovery multiplex assays.
39

1
2 **Immunohistochemistry**

3 Immunohistochemistry was performed on 4µm paraffin-embedded sections, targeting
4 the markers of AD pathology pan-A β (clone 4G8, BioLegend), A β 42 (clone 21F12, Elan
5 Pharmaceuticals Ltd) and the phosphorylated (p)tau (clone AT8, ThermoScientific) protein, as
6 well as the microglial motility-related proteins Iba1 (rabbit polyclonal, Wako Chemicals), CFL1
7 (polyclonal rabbit, ThermoScientific), CORO1A (rabbit polyclonal, LifeSpan Biosciences) and
8 P2RY12 (rabbit polyclonal, Sigma Aldrich). Bound antibodies were visualized using the
9 avidin–biotin–peroxidase complex method (Vectastain Elite, Vector Laboratories) with 3,3'-
10 diaminobenzidine as chromogen and 0.05% hydrogen peroxide as substrate (Vector
11 Laboratories). All sections were counterstained with haematoxylin, then dehydrated and
12 mounted in Pertex (Histolab Products AB). The staining was performed in two batches with
13 each batch containing cases from all groups (Control, AD, iAD). All experiments included a
14 negative control slide incubated in buffer with no primary antibody and a positive control slide
15 containing a specific tissue type known to express the protein of interest (e.g. tonsil).

16
17
18 **Quantification of staining**

19 Quantification was blinded to the case designation and performed on the grey matter in
20 the same sulcus of the inferior parietal lobule for all cases. For each antibody, the slides were
21 scanned together at a magnification of x20 in an automated slide scanner microscope
22 Olympus VS110 (Olympus America Inc.) and visualised with Olympus VS-Desktop software
23 using a specialised add-in that allows the extraction of the region of interest (ROI) of 0.25mm².
24 For each slide, 30 ROIs were selected in a zig-zag pattern within the grey matter, ensuring
25 coverage of all cortical layers. Extracted ROIs were analysed with the ImageJ software
26 (version 1.49u, Wayne Rasband, NIH, USA) using an automated macro specific to each
27 antibody. The area fraction labelled by the antibody in each ROI was obtained by quantifying
28 the presence or absence of the staining in each pixel, expressed as protein load (%).

29
30
31 **Cytokine assay**

32 Inflammatory proteins were measured on the V-Plex Meso Scale Discovery (MSD)
33 electrochemiluminescence multi-spot assay platform (MesoScale Diagnostics, Rockville
34 USA). 100 mg of frozen grey matter were homogenised at a tissue concentration of 20% w/v
35 in RIPA lysis buffer (Thermo Fisher Scientific), supplemented with protease inhibitors (Sigma
36 Aldrich) and phosphatase inhibitors (Thermo Fisher Scientific). Total protein concentration in
37 the supernatant was measured by BCA Protein Assay Kit (Thermo Fisher Scientific). 25 µl of
38 brain homogenate (1:2 dilution) were used for the V-PLEX human proinflammatory panel 1
39 and cytokine panel 1, and each plate was read on a Meso Quickplex SQ120 (Meso Scale
40 Diagnostics). The data are presented as mean \pm SEM.

1 Discovery) according to manufacturer's instructions. Absolute target protein levels (pg/ml)
2 were obtained and normalised with respect to the total protein concentration, as obtained by
3 the BCA assay. Three frozen homogenates from a multiple sclerosis brain containing either
4 chronic inactive, acute or chronic active lesions were included as positive controls.
5
6
7
8

9 Statistical analysis

10 Statistical analysis was performed using the IBM SPSS v24 statistical software package
11 (SPSS Inc. Chicago IL). The normality of distribution of each marker across the groups was
12 assessed by the Shapiro-Wilk test. Data were not normally distributed, and thus non-
13 parametric tests were used. Comparisons among study groups were performed using the
14 Kruskal-Wallis test. The Spearman's test was performed to assess correlations between
15 variables – to explore the relationship (i) between microglial motility proteins and key features
16 of AD pathology (A β and tau loads), and (ii) between the microglial-motility proteins. To
17 account for multiple testing, the Benjamini-Hochberg procedure to control for the false
18 discovery rate (FDR) was used as *post-hoc* correction. For all tests, an adjusted *P* value <0.05
19 was considered significant.
20
21
22
23
24
25
26

27 RESULTS

28
29

30 A β and tau pathology

31 A β and ptau immunoreactivity was quantified in order to characterise the cases with
32 respect to AD pathology and to permit correlations with the microglial motility-related proteins.
33 A significantly increased pan-A β load was observed in AD compared to control cases
34 (*P*<0.001), whereas it was significantly decreased in the iAD group compared to AD cases
35 (*P*<0.001), as expected. No significant difference was observed between control and iAD
36 cases (Figure 1A). A β 42 load was significantly increased in AD vs control cases (*P*=0.006)
37 and decreased in iAD vs AD cases (*P*<0.001), as expected. Interestingly, A β 42 load, was also
38 significantly decreased in iAD compared to control cases (*P*=0.021) (Figure 1B). Ptau was
39 significantly increased in AD vs control cases (*P*<0.001) and decreased in iAD vs AD cases
40 (*P*=0.026), with no difference between the iAD and control groups (Figure 1C).
41
42
43
44
45
46
47
48
49
50

51 Microglial motility-related proteins

52 Immunohistochemistry for the four proteins related to microglial motility was investigated
53 in the cortical grey matter. Iba1, CFL1 and CORO1A immunolabelled microglia and
54 perivascular macrophages and in AD microglial clusters around amyloid plaques. While
55 P2RY12 was specific to microglia with no labelling of perivascular macrophages (Figure 2).
56
57
58
59
60
61
62
63
64
65

Quantification of these four proteins showed no significant differences between AD and the control group: Iba1: control=0.34% (IQR: 0.08%-0.63%) vs AD=0.29% (IQR: 0.13%-0.68%), $P=0.788$; CFL1: control=0.15% (IQR: 0.03%-0.038%) vs AD=0.08% (IQR: 0.04%-0.022%), $P=0.314$; P2RY12: control=0.00% (IQR: 0.00%-0.55%) vs AD=0.09% (IQR: 0.00%-1.09%), $P=0.290$; CORO1A: control=0.21% (IQR: 0.10%-0.52%) vs AD=0.17% (IQR: 0.03%-0.33%), $P=0.406$. However, there was a significant increase for Iba1 and P2RY12 in iAD compared to AD cases: Iba1: AD=0.29% (IQR: 0.13%-0.68%) vs iAD=0.87% (IQR: 0.40%-1.11%), $P=0.036$; P2RY12: AD=0.09% (IQR: 0.00%-1.09%) vs iAD=0.60% (IQR: 0.50%-1.08%), $P=0.041$ (Figure 3). No significant difference was found in CFL1 and CORO1A loads between the AD and iAD groups: CFL1: AD=0.08% (IQR: 0.04%-0.022%) vs iAD 0.13% (IQR: 0.06%-0.41%), $P=0.314$; CORO1A: AD=0.17% (IQR: 0.03%-0.33%) vs iAD= 0.20% (IQR: 0.03%-0.61%), $P=0.406$.

We then explored whether the expression of the microglial motility-related proteins was correlated with the proteins that aggregate in AD. In the control group, correlations were detected for Iba1 and P2RY12 with (i) pan-A β ($r_s=0.440$, $P=0.046$ and $r_s=0.443$, $P=0.042$; respectively) and (ii) A β 42 ($r_s=0.691$, $P<0.001$ and $r_s=0.629$, $P<0.001$; respectively) (Table 2).

No correlations were observed with pan-A β and A β 42 in the AD or iAD groups, and with ptau for the three groups.

We also assessed whether the different mechanisms involved in motility (actin-related or purinergic signalling) were related. In the control group, Iba1 was correlated with CFL1 ($r_s=0.502$, $P=0.025$) and P2RY12 ($r_s=0.572$, $P=0.005$). In the AD cases, Iba1 was related to CFL1 ($r_s=0.559$, $P<0.001$), CORO1A ($r_s=0.436$, $P=0.014$) and P2RY12 ($r_s=0.558$, $P<0.001$). CFL1 was also correlated with CORO1A ($r_s=0.530$, $P=0.002$) and P2RY12 ($r_s=0.542$, $P=0.001$), and CORO1A with P2RY12 ($r_s=0.357$; $P=0.049$). No correlation was detected in the iAD group.

Neuroinflammatory environment

To explore the relationship between microglial motility and the neuroinflammatory environment, the MSD platform was used to measure the levels of IFN γ , IL1 β , IL2, IL4, IL6, IL8, IL10, IL12p70, IL13, TNF α , IL1 α , IL5, IL7, IL12/IL23p40, IL15, IL16, IL17A, GM-CSF, TNF β and VEGF in the three groups. Significant increases in the AD group compared to the control group were observed for: IFN γ ($P<0.001$), IL10 ($P=0.003$), IL12p70 ($P<0.001$), IL13 ($P<0.001$), IL2 ($P=0.002$), IL4 ($P=0.007$), TNF α ($P<0.001$), IL15 ($P=0.024$), IL16 ($P=0.020$) and TNF β ($P=0.009$). In the iAD group compared to AD, IL13 ($P=0.017$), IL8 ($P=0.023$) and VEGF ($P<0.001$) were significantly increased; whereas IL7 was significantly decreased ($P=0.012$). Of note, of the proteins that were significantly different between AD and iAD, IL13

1 and VEGF were also significantly increased with respect to the control levels (IL13: $P<0.001$;
2 VEGF: $P=0.012$), while IL7 was significantly decreased ($P=0.003$) (Table 4).

DISCUSSION

8 Evidence from animal studies shows that microglia are highly motile cells [14, 16, 34,
9 49], with motility impaired in AD models [6, 23]. This highlights motility as a functional aspect
10 of microglia relevant to disease pathogenesis. Our aim was to characterise the expression of
11 motility-related microglial proteins in the human brain and to evaluate its changes in AD and
12 after A β immunotherapy. In the present study, we observed increased expression of the
13 microglial homeostatic markers Iba1 and P2RY12 in the immunised group, which was
14 associated with a less pro-inflammatory environment than observed in AD. We acknowledge
15 that this approach has limitations, partly inherent to any *post-mortem* study, which reside in
16 the absence of exploration of the temporal relationship between the different markers
17 investigated, and with the analysis limited to the late-stage consequences of AD. Additionally,
18 other proteins such as actin, the Arp2/3 complex, or the integrins also relevant for motility have
19 not been evaluated here, as our investigation focuses on microglial-specific motility-related
20 proteins. The strength of the study is in the examination of AD itself, rather than an
21 experimental model of the disease which does not represent the whole extent of the
22 complexity of the human disease. Specifically, most rodent models lack tau pathology, the
23 generation and propagation of which microglia are proposed to have an important role. The
24 novelty of our study resides in the combined quantitative assessment of several markers
25 associated with microglial motility in relation to the neuroinflammatory environment, and the
26 accumulation of A β and ptau. This study also takes advantage of the exceptional chance to
27 explore the effect of A β 42-immunotherapy which constitutes an important topic of study since
28 there is currently substantial resource being invested in this therapeutic approach.

A β and tau pathology

47 As expected, the expression of the key features of AD neuropathology, A β and ptau,
48 was increased in AD. The effect of the immunotherapy on AD has been previously reported
49 by us [4, 32, 33, 42]. However in this study, we were able to compare the effects of the
50 treatment with both controls and unimmunised AD. Interestingly, we observed that A β 42
51 immunotherapy reduced the overall A β levels to those of controls, indicating an effect not
52 restricted to the A β 42 form. This is consistent with our studies on the same immunised cohort
53 using antibodies specific for the A β 40, A β 42 and A β 43 species and reporting significant
54 decrease of the three species [21, 32].

1 Of note, its effect on the A β 42 form seems to be more pronounced, with a reduction to
2 significantly lower levels than those of controls. This highlights a possible higher affinity of the
3 immunisation towards the A β 42 specie, perhaps due to the fact that full-length A β 42 was the
4 immunogen originally used in the AN1792 trial, even though earlier studies showed that the
5 antibodies produced by the patients were primarily N-terminal specific [24]. This implies that
6 the antibodies are able to target all different species of A β . The ptau load was reduced to the
7 level of the controls, confirming the effect of A β -immunotherapy on the tau pathology [4, 33].
8 Indeed, our previous studies on the immunised cohort showed that ptau load was reduced
9 after A β immunisation, in association with a lower expression of the tau phosphorylating
10 enzyme GSK-3b [2]. Ptau load is mainly constituted of tau-containing dystrophic neurite
11 clusters and ptau in neuronal processes [4], rather than tangles. Nevertheless, despite the
12 decrease in ptau load as assessed by quantification in specific localised neuroanatomical
13 regions of cortex, most of the iAD subjects still had progressed to Braak stages V or VI, as
14 evaluated by the anatomical distribution of neurofibrillary tangles throughout the brain areas.
15 We interpret these findings as indicating that localised removal of A β following
16 A β immunotherapy results in a corresponding removal of ptau in that location, consistent with
17 the amyloid cascade hypothesis. However, it does not stop the spread of ptau through the
18 brain, consistent with the evidence for prion-like spread of ptau [4, 33].
19

32 Microglial motility-related proteins

33 In AD, expression of all four motility-related proteins examined was not modified
34 compared with controls, consistent with another *post-mortem* AD study [45]. In this paper, they
35 evaluated expression of Iba1 and P2RY12 and also found no difference in the expression of
36 both proteins between the control and AD groups. Interestingly, in that study, when the AD
37 cases were split according to the Braak stage, a decrease for both Iba1 and P2RY12 proteins
38 was observed in the late-stage of the disease (Braak stage V/VI) but only in the hippocampal
39 area, a region heavily affected by neuronal loss and tau accumulation [50]. In our study, even
40 though most of the AD cases correspond to Braak stages V and VI, we did not observe
41 decrease in these proteins, which could be indicative of regional differences between the
42 hippocampus and the cerebral cortex due to the exacerbated degree of neuronal death and
43 tau aggregation in the hippocampal region in late stages of the disease. With respect to CFL1,
44 our observation confirms previous reports of no difference in CFL1 expression in AD [39]. The
45 presence of CORO1A has been observed in human microglia [1], but to our knowledge has
46 never been assessed in AD.
47

48 After A β immunotherapy in AD, a 3-fold increase in Iba1 expression and a 6.6-fold
49 increase in P2RY12 expression was observed. Data on anti-A β antibody titres measured in
50

1 the blood during life some years earlier were available [57] and did not correlate with the
2 microglial analyses. Iba1 is expressed by microglia in both physiological and disease
3 conditions, suggesting that Iba1 participates in both baseline and directed motility. *In vitro*
4 studies have characterised the role of Iba1 in relation to membrane ruffling, and the formation
5 of phagocytic cups is Iba1-dependent [35]. Therefore, the higher Iba1 expression observed is
6 in accordance with the reported increased phagocytic activity associated with A β clearance
7 [58] as the consequence of immunotherapy stimulating microglial phagocytosis towards A β .
8 Thus, after immunotherapy, Iba1 expression is likely to reflect the motility changes associated
9 with phagocytosis. Similarly to Iba1, P2RY12 is detected on all microglial cells and a role of
10 P2RY12 in directed motility is also well-documented. The release of ATP to the extracellular
11 space, caused by cell death, and its subsequent hydrolysis to ADP activates P2RY12 [48].
12 Studies have shown that microglia from mice lacking P2RY12 expression show normal
13 baseline motility but impaired directed motility [15, 26]. Moreover, it was observed that
14 P2RY12 expression in ramified microglia was markedly decreased as cells turn to the
15 reactive/amoeboid form [15, 38]. This suggests a role of P2RY12 in directed motility taking
16 place at an early stage of the cell activation. Thus, P2RY12 expression after immunotherapy
17 might suggest an increase both in baseline and directed motility. This is also consistent with
18 the neuroinflammatory environment observed in the immunised group, which is slightly leaning
19 towards a more anti-inflammatory profile, considering evidence that P2RY12 is downregulated
20 under pro-inflammatory conditions and upregulated in an anti-inflammatory context [22, 30].
21 Of note, a previous study by our group in the immunised group showed that neuronal loss is
22 correlated with Iba1-positive microglia and phagocytic CD68-positive microglia associated
23 with pro-apoptotic neurons, but without accelerated cognitive decline compared to non-
24 immunised AD patients [36]. This suggests that immunotherapy may enhance microglial
25 elimination of damaged and dysfunctional neurons. Considering the role of P2RY12 as a
26 purinergic receptor upregulated with the release of ATP that occurs during cell damage, it
27 could be hypothesized that the increased P2RY12 expression in the immunised cohort reflects
28 microglial increased response, as a result of the treatment, towards damaged neurons.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Motility-related proteins and the pathology

50 Relationships between the microglial motility-related proteins and A β and ptau, key
51 pathological features of AD, were explored. In controls, Iba1 and P2RY12 were associated
52 with A β , with these associations lost in AD and not restored by the immunotherapy. It is
53 recognised that with ageing, A β accumulates independently of the dementia status [8].
54 Therefore, the relationship of Iba1 and P2RY12 with A β in the absence of dementia may reflect
55 a healthy chemotactic microglial response towards A β , via the directed motility mechanism,
56 as previously reported in the Cognitive Function and Ageing Studies group [28]. In AD, these
57
58
59
60
61
62
63
64

1 correlations were lost, possibly due to either (i) A β over-accumulation to a level at which
2 microglia are overwhelmed and no longer capable of responding accordingly, (ii) microglia
3 attracted to plaques and been immobilised there [57], or (iii) microglia being “distracted” by
4 the tau pathology [28]. However, the absence of correlation of the motility-related proteins with
5 A β or ptau in the AD group is in favour of a microglial response towards other pathological
6 changes, such as the synaptic/neuronal loss. Of note, the correlations were not restored after
7 immunotherapy despite A β levels as lower as in the controls and this despite the increased
8 Iba1 and P2RY12 expression. No relationship was observed with CFL1 or CORO1A.
9

10 Since no correlations were found between the microglial motility-related markers and
11 ptau, this implies that the motility response driven by the proteins studied is independent of
12 tau, or at least they do not directly interact with tau.
13

19 **Interactions between motility-related proteins**

20 Correlations between the microglial motility-related proteins were also investigated. In
21 controls, Iba1 correlated with CFL1 and P2RY12, reflecting an interaction between the actin-
22 related motility mechanisms and the purinergic signalling pathway in physiological conditions.
23 Interestingly, in AD all markers were related to each other, implying that the pathogenesis
24 elicited a coordinated response of the microglial motility proteins as part of the pathogenesis
25 spreading. In the immunised group, no relation was observed despite the increased
26 expression of the homeostatic markers Iba1 and P2RY12. This implies that immunotherapy
27 did not restore the physiological profile of microglial protein interactions.
28

36 **Neuroinflammatory environment**

37 Inflammation-related proteins were evaluated to characterise the microenvironment. In
38 AD, 10 were increased, including the pro-inflammatory proteins IFN γ , TNF α , TNF β , IL12p70,
39 IL2, IL15 and IL16, and the anti-inflammatory proteins IL4, IL10 and IL13. This reflects that
40 both pathways of activation coexist in human AD as previously reported [9, 55].
41

42 After A β immunotherapy, only four markers were modified when compared with
43 unimmunised AD, with increased expression of the pro-inflammatory chemokine IL8, the anti-
44 inflammatory cytokine IL13, the vascular endothelial growth factor (VEGF), and a decrease in
45 the pro-inflammatory cytokine IL7. IL13 and IL7 expression tends to reflect a slightly less pro-
46 inflammatory environment after the treatment. VEGF expression was the most affected by
47 immunotherapy with a 5-fold increase. This might be the result of (i) increased soluble A β
48 species following plaque solubilisation [25] leading to neurotoxicity and angiogenesis via a
49 VEGF-mediated mechanism [7], or (ii) reflected the vascular side effects reported after
50 immunotherapy, known as amyloid-related imaging abnormalities (ARIA) including
51 microhaemorrhages and oedema [5, 43]. Interestingly, both VEGF and IL8 are involved in
52

1 angiogenesis [27]. It is worth noting that, from the four markers that differed between AD and
2 controls, IL13 and VEGF were also significantly increased with respect to controls, while IL7
3 was decreased with respect to control, emphasizing that A β -immunotherapy, even though
4 inducing a slightly more anti-inflammatory environment, did not restore the normal state.
5
6
7

8 CONCLUSION

9

10 In conclusion, our study supports the experimental observation that microglial motility is
11 impaired in AD, as evidenced by the changes observed in the interactions of the motility-
12 related proteins with each other and with A β . As part of the AD pathogenic process, microglia
13 move from baseline to directed-motility, involving all investigated proteins (Iba1, CFL1,
14 CORO1A and P2RY12). A β immunotherapy seemed to result in increased microglial baseline
15 motility (suggested by increased Iba1 and P2RY12 expression, which are considered
16 “homeostatic” microglial markers), potentially due to decreased A β and/or tau, but without
17 restoration of the physiological status of microglia.
18
19

20 21 22 23 24 LIST OF ABBREVIATIONS

25 A β	26 Amyloid- β
27 AD	28 Alzheimer's disease
29 iAD	30 immunised AD
31 ADP	32 Adenosine diphosphate
33 ATP	34 Adenosine triphosphate
35 ARIA	36 Amyloid-related imaging abnormalities
37 BCA	38 Bicinchoninic acid assay
39 CFL1	40 Cofilin
41 CORO1A	42 Coronin 1A
43 GSK	44 Glycogen Synthase Kinase
45 Iba1	46 Ionized calcium-binding adaptor molecule 1
47 IFN	48 Interferon
49 IL	50 Interleukin
51 ICAM	52 Intercellular adhesion molecule
53 IQR	54 Interquartile range
55 MSD	56 MesoScale Discovery
57 P2RY12	58 Purinergic receptor P2Y12

1	ptau	Hyperphosphorylated tau
2	ROI	Region of interest
3	TGF	Transforming growth factor
4	TNF	Tumour necrosis factor
5	UDP	Uridine diphosphate
6	UTP	Uridine triphosphate
7	VEGF	Vascular endothelial growth factor
8		
9		
10		
11		
12		
13		
14		
15		DECLARATIONS
16		
17		
18		
19	Ethics approval:	The study was covered by the following ethical approvals: (i) the South West
20		Dementia Brain bank (NRES Committee South West Central Bristol, REC reference:
21		08/H0106/28+5 for the controls and AD cases; (ii) the Southampton and South West
22		Hampshire Local Research Ethics Committees (reference: LRC 075/03/w) for the iAD cases;
23		(iii) The Multiple Sclerosis Society of Great Britain and Northern Ireland and Parkinson's UK
24		(reference 08/MRE09/31+5) for frozen tissue used as positive controls for the cytokine assay.
25		
26		
27		
28		
29		
30	Consent for publication:	Not applicable
31		
32		
33		
34	Availability of data and material:	The data used and/or analysed during the current study
35		are available from the corresponding author on reasonable request.
36		
37		
38		
39	Competing interests:	The authors declare no conflict of interest.
40		
41		
42	Funding:	DKFB is funded by a CONACyT scholarship (270152 / 438262) and a University of
43		Southampton scholarship (VCFoM/BocheD/TBC/170). Alzheimer's Research UK
44		(ART/PG2006/4, ART-EXT2010-1, ARUK-EG2015A-4) supported the collection of the
45		immunised AD cases.
46		
47		
48		
49		
50	Authors' contribution:	DKFB immunolabelled the cases for the different motility related and
51		neuropathological proteins and prepared the samples for the cytokine assays. DKFB and BG
52		performed protein quantification. LCL performed the multiplex assays. DKFB collected all data
53		and with DB analysed and interpreted them. CH and JARN advised on the clinical and
54		neuropathological relevance of the findings, respectively. JARN and DB conceived and
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
designed the study and DKFB and DB wrote the manuscript. All authors read and approved
the final manuscript.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Acknowledgements: We would like to thank Dr. Laura Palmer at the South West Dementia
Brain Bank (SWDBB), which is supported by BRACE (Bristol Research into Alzheimer's and
Care of the Elderly) and provided the control and AD cases. Multiples sclerosis samples were
supplied by Dr. Djordje Gveric from the Parkinson's UK Brain Bank funded by Parkinson's UK,
a charity registered in England and Wales (258197) and in Scotland (SC037554). We thank
Elan Pharmaceuticals for the access to phase I AN1792 treatment study data and are grateful
to all patients and carers who took part in the study. Our thanks also include the staff from
Cardiff, Swindon, Oxford, Bath and Bristol Centres involved in the AN1792 study. We
acknowledge the Histochemistry Research Unit and Biomedical Imaging Unit of the Faculty of
Medicine, University of Southampton, that facilitated tissue processing, staining and analysis.

23 REFERENCES

24
1 Ahmed Z, Shaw G, Sharma VP, Yang C, McGowan E, Dickson DW (2007) Actin-binding
2 proteins coronin-1a and IBA-1 are effective microglial markers for immunohistochemistry.
3 J Histochem Cytochem 55: 687-700 Doi 10.1369/jhc.6A7156.2007
4 Amin J, Paquet C, Baker A, Asuni AA, Love S, Holmes C, Hugon J, Nicoll JA, Boche D
5 (2015) Effect of amyloid-beta (Abeta) immunization on hyperphosphorylated tau: a
6 potential role for glycogen synthase kinase (GSK)-3beta. Neuropathol Appl Neurobiol 41:
7 445-457 Doi 10.1111/nan.12205
8 Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB,
9 Donoghue S (2005) Evaluation of the safety and immunogenicity of synthetic Abeta42
10 (AN1792) in patients with AD. Neurology 64: 94-101.
11 Boche D, Donald J, Love S, Harris S, Neal JW, Holmes C, Nicoll JA (2010) Reduction of
12 aggregated Tau in neuronal processes but not in the cell bodies after Abeta42
13 immunisation in Alzheimer's disease. Acta Neuropathol 120: 13-20 Doi 10.1007/s00401-
14 010-0705-y
15 Boche D, Zotova E, Weller RO, Love S, Neal JW, Pickering RM, Wilkinson D, Holmes C,
16 Nicoll JA (2008) Consequence of Abeta immunization on the vasculature of human
17 Alzheimer's disease brain. Brain 131: 3299-3310
18 Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M,
19 Calhoun ME (2008) Dynamics of the microglial/amyloid interaction indicate a role in
20 plaque maintenance. J Neurosci 28: 4283-4292 Doi 28/16/4283
21 Cameron DJ, Galvin C, Alkam T, Sidhu H, Ellison J, Luna S, Ethell DW (2012)
22 Alzheimer's-related peptide amyloid-beta plays a conserved role in angiogenesis. PLoS
23 One 7: e39598 Doi 10.1371/journal.pone.0039598
24 CFAS (2001) Pathological correlates of late-onset dementia in a multicentre, community-
25 based population in England and Wales. Neuropathology Group of the Medical Research
26 Council Cognitive Function and Ageing Study Lancet 357: 169-175
27 Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP (2006) Expression
28 profiles for macrophage alternative activation genes in AD and in mouse models of AD. J
29 Neuroinflammation 3: 27-39 Doi 1742-2094-3-27
30 Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan
31 WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat
32 Neurosci 8: 752-758 Doi 10.1038/nn1472

1 11 Fillenbaum GG, van Belle G, Morris JC, Mohs RC, Mirra SS, Davis PC, Tariot PN,
2 Silverman JM, Clark CM, Welsh-Bohmer KA et al (2008) Consortium to Establish a
3 Registry for Alzheimer's Disease (CERAD): The first twenty years. *Alzheimer's &*
4 *Dementia* 4: 96-109

5 12 Foger N, Rangell L, Danilenko DM, Chan AC (2006) Requirement for coronin 1 in T
6 lymphocyte trafficking and cellular homeostasis. *Science* 313: 839-842 Doi
7 10.1126/science.1130563

8 13 Franco-Bocanegra DK, McAuley C, Nicoll JAR, Boche D (2019) Molecular Mechanisms
9 of Microglial Motility: Changes in Ageing and Alzheimer's Disease. *Cells* 8: Doi
10 10.3390/cells8060639

11 14 Gyoneva S, Davalos D, Biswas D, Swanger SA, Garnier-Amblard E, Loth F, Akassoglou
12 K, Traynelis SF (2014) Systemic inflammation regulates microglial responses to tissue
13 damage in vivo. *Glia* 62: 1345-1360 Doi 10.1002/glia.22686

14 15 Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The
16 P2Y12 receptor regulates microglial activation by extracellular nucleotides. *Nat Neurosci*
17 9: 1512-1519 Doi 10.1038/nn1805

18 16 Hefendehl JK, Neher JJ, Suhs RB, Kohsaka S, Skodras A, Jucker M (2014) Homeostatic
19 and injury-induced microglia behavior in the aging brain. *Aging Cell* 13: 60-69 Doi
20 10.1111/ace.12149

21 17 Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock
22 R, Love S, Neal JW et al (2008) Long-term effects of Abeta42 immunisation in Alzheimer's
23 disease: follow-up of a randomised, placebo-controlled phase I trial. *Lancet* 372: 216-223
24 Doi 10.1016/S0140-6736(08)61075-2

25 18 Hristovska I, Pascual O (2015) Deciphering Resting Microglial Morphology and Process
26 Motility from a Synaptic Prospect. *Front Integr Neurosci* 9: 73 Doi
27 10.3389/fnint.2015.00073

28 19 Humphries CL, Balcer HI, D'Agostino JL, Winsor B, Drubin DG, Barnes G, Andrews BJ,
29 Goode BL (2002) Direct regulation of Arp2/3 complex activity and function by the actin
30 binding protein coronin. *J Cell Biol* 159: 993-1004 Doi 10.1083/jcb.200206113

31 20 Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW,
32 Duyckaerts C, Frosch MP, Masliah E et al (2012) National Institute on Aging-Alzheimer's
33 Association guidelines for the neuropathologic assessment of Alzheimer's disease.
34 *Alzheimers Dement* 8: 1-13 Doi 10.1016/j.jalz.2011.10.007

35 21 Jakel L, Boche D, Nicoll JAR, Verbeek MM (2019) Abeta43 in human Alzheimer's disease:
36 effects of active Abeta42 immunization. *Acta Neuropathol Commun* 7: 141 Doi
37 10.1186/s40478-019-0791-6

38 22 Klein B, Mrowetz H, Barker CM, Lange S, Rivera FJ, Aigner L (2018) Age Influences
39 Microglial Activation After Cuprizone-Induced Demyelination. *Front Aging Neurosci* 10:
40 278 Doi 10.3389/fnagi.2018.00278

41 23 Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, Miller KR, Prokop
42 S, Kettenmann H, Heppner FL (2013) Functional impairment of microglia coincides with
43 Beta-amyloid deposition in mice with Alzheimer-like pathology. *PLoS One* 8: e60921 Doi
44 10.1371/journal.pone.0060921

45 24 Lee M, Bard F, Johnson-Wood K, Lee C, Hu K, Griffith SG, Black RS, Schenk D, Seubert
46 P (2005) Abeta42 immunization in Alzheimer's disease generates Abeta N-terminal
47 antibodies. *Ann Neurol* 58: 430-435

48 25 Maarouf CL, Daugs ID, Kokjohn TA, Kalback WM, Patton RL, Luehrs DC, Masliah E,
49 Nicoll JA, Sabbagh MN, Beach TG et al (2010) The biochemical aftermath of anti-amyloid
50 immunotherapy. *Mol Neurodegener* 5: 39 Doi 1750-1326-5-39

51 26 Madry C, Arancibia-Carcamo IL, Kyriargyri V, Chan VTT, Hamilton NB, Attwell D (2018)
52 Effects of the ecto-ATPase apyrase on microglial ramification and surveillance reflect cell
53 depolarization, not ATP depletion. *Proc Natl Acad Sci U S A* 115: E1608-E1617 Doi
54 10.1073/pnas.1715354115

55 27 Martin D, Galisteo R, Gutkind JS (2009) CXCL8/IL8 stimulates vascular endothelial
56 growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial
57 61

1 cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. *J Biol*
2 Chem

28 Minett T, Classey J, Matthews FE, Fahrenhold M, Taga M, Brayne C, Ince PG, Nicoll JA,
3 Boche D (2016) Microglial immunophenotype in dementia with Alzheimer's pathology. *J*
4 *Neuroinflamm* 13: 135-145 Doi 10.1186/s12974-016-0601-z

5 29 Miyamoto A, Wake H, Moorhouse AJ, Nabekura J (2013) Microglia and synapse
6 interactions: fine tuning neural circuits and candidate molecules. *Front Cell Neurosci* 7:
7 70 Doi 10.3389/fncel.2013.00070

8 30 Moore CS, Ase AR, Kinsara A, Rao VT, Michell-Robinson M, Leong SY, Butovsky O,
9 Ludwin SK, Seguela P, Bar-Or Aet al (2015) P2Y12 expression and function in
10 alternatively activated human microglia. *Neurol Neuroimmunol Neuroinflamm* 2: e80 Doi
11 10.1212/nxi.0000000000000080

12 31 Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer's
13 disease. *Biochem Pharmacol* 88: 594-604 Doi 10.1016/j.bcp.2014.01.008

14 32 Nicoll JA, Barton E, Boche D, Neal JW, Ferrer I, Thompson P, Vlachouli C, Wilkinson D,
15 Bayer A, Games Det al (2006) Abeta Species Removal After Abeta42 Immunization. *J*
16 *Neuropathol Exp Neurol* 65: 1040-1048

17 33 Nicoll JAR, Buckland GR, Harrison CH, Page A, Harris S, Love S, Neal JW, Holmes C,
18 Boche D (2019) Persistent neuropathological effects 14 years following amyloid-beta
19 immunization in Alzheimer's disease. *Brain* 142: 2113-2126 Doi 10.1093/brain/awz142

20 34 Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic
21 surveillants of brain parenchyma in vivo. *Science* 308: 1314-1318 Doi 1110647 [pii]
22 10.1126/science.1110647

23 35 Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S (2000) Involvement of Iba1 in
24 membrane ruffling and phagocytosis of macrophages/microglia. *J Cell Sci* 113 (Pt 17):
25 3073-3084

26 36 Paquet C, Amin J, Mouton-Liger F, Nasser M, Love S, Gray F, Pickering RM, Nicoll JA,
27 Holmes C, Hugon Jet al (2015) Effect of active Abeta immunotherapy on neurons in
28 human Alzheimer's disease. *J Pathol* 235: 721-730 Doi 10.1002/path.4491

29 37 Parkhurst CN, Gan W-B (2010) Microglia dynamics and function in the CNS. *Current*
30 *opinion in neurobiology* 20: 595-600 Doi 10.1016/j.conb.2010.07.002

31 38 Plescher M, Seifert G, Hansen JN, Bedner P, Steinhauser C, Halle A (2018) Plaque-
32 dependent morphological and electrophysiological heterogeneity of microglia in an
33 Alzheimer's disease mouse model. *Glia* 66: 1464-1480 Doi 10.1002/glia.23318

34 39 Rahman T, Davies DS, Tannenberg RK, Fok S, Shepherd C, Dodd PR, Cullen KM,
35 Goldsbury C (2014) Cofilin rods and aggregates concur with tau pathology and the
36 development of Alzheimer's disease. *J Alzheimers Dis* 42: 1443-1460 Doi 10.3233/jad-
37 140393

38 40 Roadcap DW, Clemen CS, Bear JE (2008) The role of mammalian coronins in
39 development and disease. *Subcell Biochem* 48: 124-135 Doi 10.1007/978-0-387-09595-
40 0_12

41 41 Rybakin V, Clemen CS (2005) Coronin proteins as multifunctional regulators of the
42 cytoskeleton and membrane trafficking. *Bioessays* 27: 625-632 Doi 10.1002/bies.20235

43 42 Sakai K, Boche D, Carare R, Johnston D, Holmes C, Love S, Nicoll JA (2014) Abeta
44 immunotherapy for Alzheimer's disease: effects on apoE and cerebral vasculopathy. *Acta*
45 *Neuropathol*: Doi 10.1007/s00401-014-1340-9

46 43 Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS,
47 Porsteinsson AP, Ferris Set al (2014) Two phase 3 trials of bapineuzumab in mild-to-
48 moderate Alzheimer's disease. *N Engl J Med* 370: 322-333 Doi 10.1056/NEJMoa1304839

49 44 Samstag Y, John I, Wabnitz GH (2013) Cofilin: a redox sensitive mediator of actin
50 dynamics during T-cell activation and migration. *Immunol Rev* 256: 30-47 Doi
51 10.1111/imr.12115

52 45 Sanchez-Mejias E, Navarro V, Jimenez S, Sanchez-Mico M, Sanchez-Varo R, Nunez-
53 Diaz C, Trujillo-Estrada L, Davila JC, Vizuete M, Gutierrez Aet al (2016) Soluble phospho-

tau from Alzheimer's disease hippocampus drives microglial degeneration. *Acta Neuropathol* 132: 897-916 Doi 10.1007/s00401-016-1630-5

1 46 Sasaki Y, Ohsawa K, Kanazawa H, Kohsaka S, Imai Y (2001) Iba1 is an actin-cross-linking protein in macrophages/microglia. *Biochem Biophys Res Commun* 286: 292-297 Doi 10.1006/bbrc.2001.5388

2 47 Song WM, Colonna M (2018) The identity and function of microglia in neurodegeneration. *Nat Immunol* 19: 1048-1058 Doi 10.1038/s41590-018-0212-1

3 48 Soulet C, Sauzeau V, Plantavid M, Herbert JM, Pacaud P, Payrastre B, Savi P (2004) Gi-dependent and -independent mechanisms downstream of the P2Y12 ADP-receptor. *J Thromb Haemost* 2: 135-146

4 49 Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. *Glia* 33: 256-266 Doi 10.1002/1098-1136(200103)33:3<256::AID-GLIA1024>3.0.CO;2-J [pii]

5 50 Stutzbach LD, Xie SX, Naj AC, Albin R, Gilman S, Lee VM, Trojanowski JQ, Devlin B, Schellenberg GD (2013) The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer's disease. *Acta Neuropathol Commun* 1: 31 Doi 10.1186/2051-5960-1-31

6 51 Sumner IL, Edwards RA, Asuni AA, Teeling JL (2018) Antibody Engineering for Optimized Immunotherapy in Alzheimer's Disease. *Front Neurosci* 12: 254 Doi 10.3389/fnins.2018.00254

7 52 Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. *PLoS Biol* 8: e1000527 Doi 10.1371/journal.pbio.1000527

8 53 Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. *J Neurosci* 29: 3974-3980 Doi 10.1523/JNEUROSCI.4363-08.2009

9 54 Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniske U, Exiga M, Vadisiute A, Raggioli A, Schertel Aet al (2018) Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. *Nat Commun* 9: 1228 Doi 10.1038/s41467-018-03566-5

10 55 Wilcock DM, Zhao Q, Morgan D, Gordon MN, Everhart A, Wilson JG, Lee JE, Colton CA (2011) Diverse inflammatory responses in transgenic mouse models of Alzheimer's disease and the effect of immunotherapy on these responses. *ASN Neuro* 3: 249-258 Doi 10.1042/AN20110018

11 56 Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B (2015) Microglia: Dynamic Mediators of Synapse Development and Plasticity. *Trends Immunol* 36: 605-613 Doi 10.1016/j.it.2015.08.008

12 57 Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, Harris S, Neal JW, Love S, Nicoll JA, Boche D (2013) Inflammatory components in human Alzheimer's disease and after active amyloid-beta42 immunization. *Brain* 136: 2677-2696 Doi 10.1093/brain/awt210

13 58 Zotova E, Holmes C, Johnston D, Neal JW, Nicoll JA, Boche D (2011) Microglial alterations in human Alzheimer's disease following Abeta42 immunization. *Neuropathol Appl Neurobiol* 37: 513-524 Doi 10.1111/j.1365-2990.2010.01156.x

14 59

15 60

16 61

17 62

18 63

19 64

20 65

1
2
3
LEGENDS
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19 **Figure 1:** Illustration and quantification of pan-A β , A β 42 and ptau loads for the 3 groups. (A)
20 We observe a significantly increased pan-A β load in AD vs. controls ($P<0.001$), whereas it is
21 significantly decreased in iAD vs. AD ($P<0.001$). (B) A β 42 quantification shows similar
22 expression than pan-A β , with also a significantly decreased load in iAD vs. control groups
23 ($P=0.021$). (C) Phosphorylated (p)tau shows a significantly increased load in AD vs. control
24 ($P<0.001$) while it is decreased in iAD vs. AD groups ($P=0.026$). Counterstaining:
25 Haematoxylin. Scale bar = 50 μ m.
26
27
28
29
30
31

32 **Figure 2:** Illustration of the immunostaining obtained with the different microglial motility-
33 related proteins. Counterstaining: Haematoxylin. Scale bar = 50 μ m.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63 **Figure 3:** Quantification of the microglial motility-related proteins in the three groups. No
64 difference was observed between the AD and control groups for the four proteins. Significantly
65 increased Iba1 and P2RY12 loads were detected in the iAD vs. AD groups only ($P=0.036$ and
66 $P=0.041$, respectively).
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Table 1 - Demographic, clinical and *post-mortem* characteristics of the three groups

Groups	Control n=32	AD n=44	iAD n=16
Gender	17F:15M	28F:16M	7F:9M
Age of Death (years, mean\pmSD)	84 \pm 7	80 \pm 6	79 \pm 8
Age of AD onset (years, mean\pmSD)	n/a	70 \pm 7	67 \pm 8
Duration of AD (years, mean\pmSD)	n/a	10 \pm 3	12 \pm 4
Braak Stage	0-II: 29 III-IV: 3 V-VI: 0	0-II: 0 III-IV: 4 V-VI: 40	0-II: 0 III-IV: 1 V-VI: 15
APOE genotype	ϵ 4/- ϵ 4/ ϵ 4	3/28 (10.7%) 1/28 (3.6%)	13/38 (34.2%) 9/38 (23.7%)
Post-mortem delay (hours, mean\pmSD)	42 \pm 23	42 \pm 26	22 \pm 25

Control/ neurologically/cognitively normal controls, AD Alzheimer's disease cases, iAD immunised Alzheimer's disease cases

F female, M male,

APOE genotyping was not available for all cases

n/a not-applicable, SD standard deviation

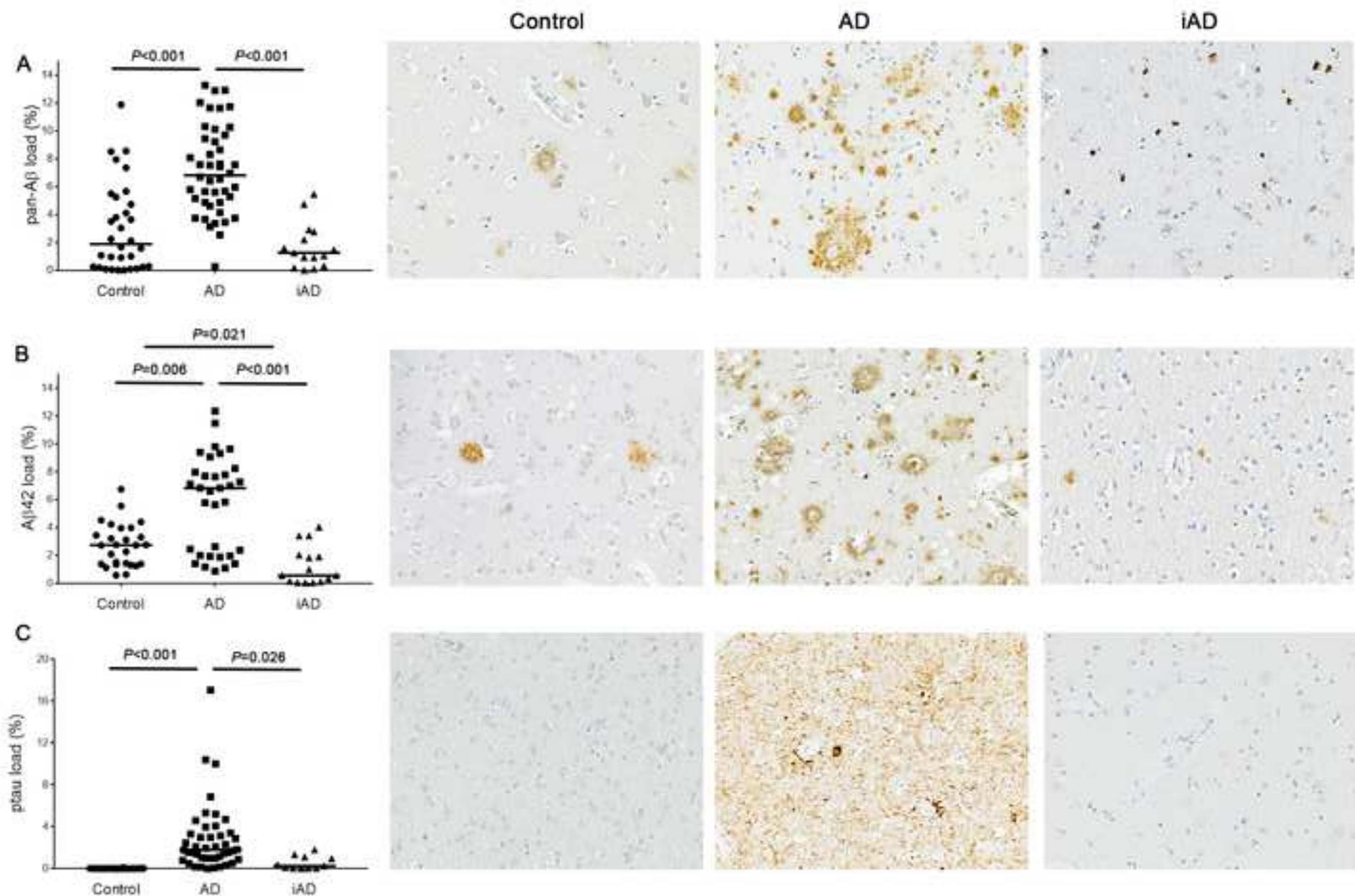
Table 2. Correlation of motility-related markers with pan-A β , A β 42 and ptau

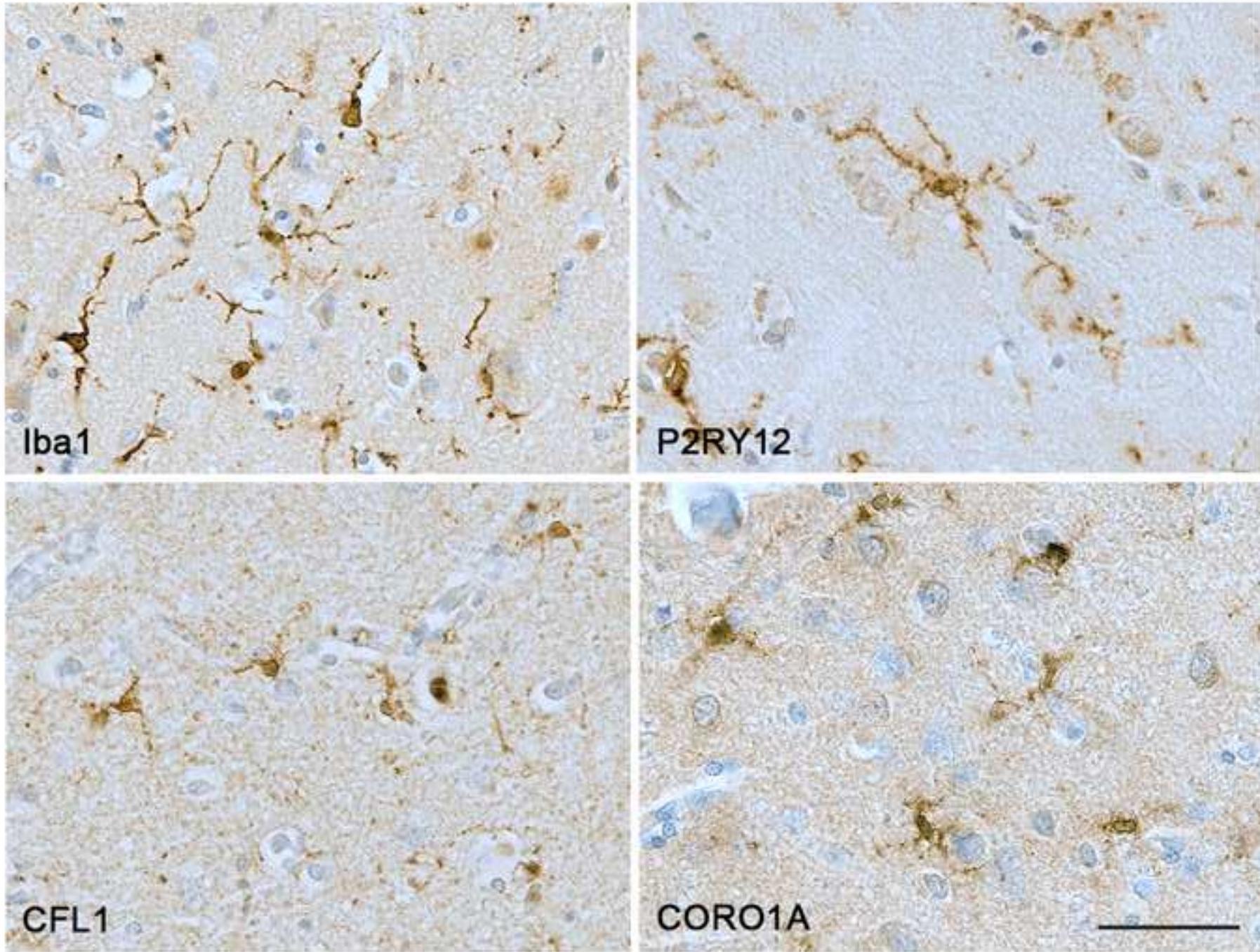
		Iba1	CFL1	P2RY12	CORO1A
pan-A β	Control	<i>r_s=0.440*</i>	<i>r_s=0.301</i>	<i>r_s=0.443*</i>	<i>r_s=0.055</i>
	AD	<i>r_s=-0.055</i>	<i>r_s=0.077</i>	<i>r_s=0.219</i>	<i>r_s=0.009</i>
	iAD	<i>r_s=-0.143</i>	<i>r_s=0.011</i>	<i>r_s=0.054</i>	<i>r_s=-0.029</i>
A β 42	Control	<i>r_s=0.691***</i>	<i>r_s=0.459</i>	<i>r_s=0.629***</i>	<i>r_s=0.051</i>
	AD	<i>r_s=-0.021</i>	<i>r_s=-0.172</i>	<i>r_s=0.078</i>	<i>r_s=-0.158</i>
	iAD	<i>r_s=-0.464</i>	<i>r_s=-0.575</i>	<i>r_s=0.171</i>	<i>r_s=0.464</i>
ptau	Control	<i>rs=-0.113</i>	<i>rs=-0.165</i>	<i>rs=0.017</i>	<i>rs=0.173</i>
	AD	<i>rs=-0.239</i>	<i>rs=-0.043</i>	<i>rs=-0.249</i>	<i>rs=-0.019</i>
	iAD	<i>rs=-0.709</i>	<i>rs=-0.118</i>	<i>rs=0.191</i>	<i>rs=0.036</i>

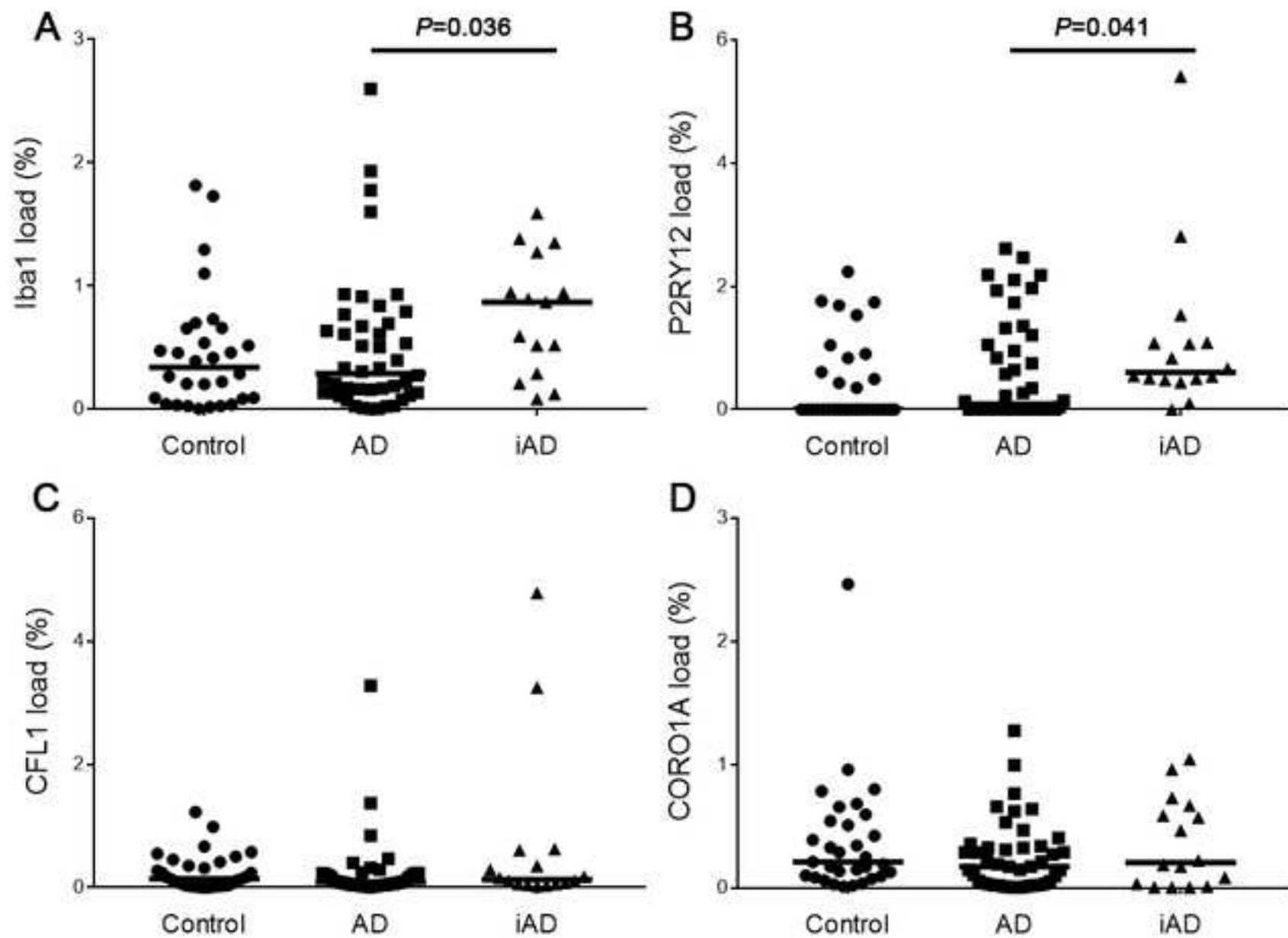
r_s Spearman's rank correlation, **P*<0.05; *** *P*<0.001, significant *P* values are in italic.

CFL1 cofilin 1, *CORO1A* coronin-1A

Control neurologically/cognitively normal controls, *AD* Alzheimer's disease cases, *iAD* immunised Alzheimer's disease cases, *ptau*: phosphorylated tau


Table 3. Correlations between the motility-related markers


	Control	AD	iAD
Iba1 vs. CFL1	<i>r_s</i> =0.502**	<i>r_s</i> =0.559***	<i>r_s</i> =0.443
Iba1 vs. CORO1A	<i>r_s</i> =0.357	<i>r_s</i> =0.436**	<i>r_s</i> =0.361
Iba1 vs. P2RY12	<i>r_s</i> =0.572**	<i>r_s</i> =0.558***	<i>r_s</i> =0.114
CFL1 vs. CORO1A	<i>r_s</i> =0.376	<i>r_s</i> =0.530**	<i>r_s</i> =0.412
CFL1 vs. P2RY12	<i>r_s</i> =0.223	<i>r_s</i> =0.542***	<i>r_s</i> =0.068
CORO1A vs. P2RY12	<i>r_s</i> =0.128	<i>r_s</i> =0.357*	<i>r_s</i> =0.232


r_s Spearman's rank correlation; *P<0.05; **P<0.01; ***P<0.001; significant *P* values are in italic.

CFL1 cofilin 1, *CORO1A* coronin-1A

Control neurologically/cognitively normal controls, *AD* Alzheimer's disease cases, *iAD* immunised Alzheimer's disease cases

Click here to access/download
Supplementary Material
Suppl Material.docx

7 October 2019

Dear Dr Jeroen Hoozemans,

Revision of the manuscript entitled: Microglial motility in Alzheimer's disease and after A β 42 immunotherapy: A *post-mortem* study (ANEC-D-19-00388)

We welcome the reviewers' constructive comments and respond to them as below. Our changes are highlighted in the manuscript.

Reviewer #1

I think the question on itself if the motility of microglia was affected by immunization against abeta42 is an interesting one. However, I believe both the methodology as well as text of the study needs major adjustments, which are too extensive for a revision.

We thank the reviewer for their recognition of the importance of the question investigated.

Methodologically

1. Please show a Table 1 with baseline details per case and mention ABC scores, not only Braak stages, if pathology is scored according to Hyman et al.

We are now providing individual baseline details for each case as supplementary Tables 1, 2 and 3. We feel supplementary tables are appropriate due to the number of cases investigated. ABC scores have been provided for all cases when available. However for some control and AD cases, this assessment was not available from the Brain bank. This information has been added in the Material and Methods (page 4).

2. What is the surface size of 1 ROI?

Each ROI had a surface area of 500 x 500 μ m (0.25 mm 2). This information has been added in the Material and Methods, section "Quantification of staining" (page 5).

3. Post-mortem delay of a mean of 42 hours is very long! the iAD groups differs substantially in their (also long) post mortem delay of 26 hours, could this have an effect on the Meso Scale Discovery Multiplex Assays?

We previously used this methodology on human *post-mortem* tissue. Cases for this study were selected with the same criteria (*post-mortem* delay less than 72 hours) and provided by

the same brain bank (Rakic et al, *Acta Neuropathol Commun* 2019). Interestingly, brain protein integrity has been shown to be dependent on the storage temperature, rather than the *post-mortem* delay by the BrainNet Europe Consortium (Ferrer et al, *JNEN* 2007). However, to ensure quality of the signal, frozen blocks from 1 multiple sclerosis brain containing chronic inactive, acute or chronic active lesions were used positive controls. This point has been added in the Material and Methods, section “Cytokine assay” (page 6).

4. The authors state the marker P2YR12 does not show clusters, indicated by figure 3. I don't understand the choice for the ptau staining. Why not show a sequential section of an abeta staining? which is more a plaque marker than ptau. Ptau shows neuritic plaques, abeta shows all plaques. In addition, I am not sure if these sections are sequential in the same patient. If they are not, then the images do not underline their statement. Looking closely at the p2yr12 image of figure 3, one might be able to imagine plaque-like clusters in layer 1-2.

Based on the comment from both reviewers, we reviewed all Iba1 and P2RY12 immunolabelled slides and found some P2RY12-positive microglia clusters. This feature was not quantified and thus we decided to remove this sentence as this does not modify the main outcome of the paper.

5. As the authors propose that microglia markers in AD may be correlated with p-tau, I don't understand why they don't show this correlation in their Table 2. If the stainings are performed for ptau, why not scan and correlate them?

We apologise for the confusion and we have now added the correlations performed with ptau in table 2.

6. How can the (i)AD group be Braak stages 5-6, but have ptau levels that are normalized to levels found in healthy controls?

Braak staging is a subjective semi-quantitative assessment of the neuroanatomical distribution and severity of neurofibrillary tangles or cell body ptau pathology, and thus based on the neuroanatomical distribution of ptau-positive neurons rather than the overall amount of ptau present in the cortex (Boche et al, *Acta Neuropathol* 2010). In contrast, our quantitative data presented here relates to a specific neuroanatomical region of cerebral cortex (inferior parietal lobule) in which, in the iAD cases, there is a reduction of A β and a concomitant reduction in ptau.

To clarify this point, we have now added photos to illustrate pan-A β , A β 42 and ptau in the three groups in Figure 1. We also discussed this point under the section “A β and tau pathology” (page 9) as follows:

“Indeed, our previous studies on the immunised cohort showed that ptau load was reduced after A β immunisation, in association with a lower expression of the tau phosphorylating enzyme GSK-3b [2]. Ptau load is mainly constituted of tau-containing dystrophic neurite clusters and ptau in neuronal processes [4], rather than tangles. Nevertheless, despite the decrease in ptau load as assessed by quantification in specific localised neuroanatomical regions of cortex, most of the iAD subjects still had progressed to Braak stages V or VI, as evaluated by the anatomical distribution of neurofibrillary tangles throughout the brain areas. We interpret these findings as indicating that localised removal of A β following A β immunotherapy results in a corresponding removal of ptau in that location,

consistent with the amyloid cascade hypothesis. However, it does not stop the spread of ptau through the brain, consistent with the evidence for prion-like spread of ptau [4, 33].”

7. Are the findings for the microglia markers IBA1 and P2YR12 in the iAD group correlated with the cases antibody titer in the plasma (Holmes et al., Lancet, 2008)

We performed this statistical analysis and we did not find any significant correlation of Iba1 and P2RY12 load with the antibody titre, as already reported for Iba1 in a previous study (Zotova et al, 2013 Brain). We have reported this analysis in the Discussion (page 9) as follows:

“After A β immunotherapy in AD, a 3-fold increase in Iba1 expression and a 6.6-fold increase in P2RY12 expression was observed. Data on anti-A β antibody titres measured in the blood during life some years earlier were available [57] and did not correlate with the microglial analyses.”

8. The authors state that the immunization against ab42 also worked for other abeta species because of the decrease in the pan-abeta marker. However as the pan-abeta marker entails ab42 as well, this effect can be ab42 driven. The authors need to show an abeta40 or other abeta marker to see if this holds.

We have recently published in the immunised group, reduction of A β 40 and A β 43, in addition to A β 42, having also previously addressed the issue of n-terminus truncation (Nicoll et al. JNEN 2006). This point has now been clarified in the Discussion (page 8):

“This is consistent with our studies on the same immunised cohort using antibodies specific for the A β 40, A β 42 and A β 43 species and reporting significant decrease of the three species (Nicoll et al. JNEN 2006; Jakel et al, Acta Neuropathol Commun 2019).”

Textually

1. The authors critically need to revise the manuscript as some parts are written down in an unconventional manner and some word use or interpunction is not correct.

The grammar and the spelling have been carefully reviewed.

2. In the first paragraph of the discussion, the authors explain about the studies' strengths and weaknesses. This is not the right paragraph for such information. The first paragraph of the discussion should summarize what one did and what the results were.

A short summary of the findings has been added at the start of the Discussion (page 8).

“Our aim was to characterise the expression of motility-related microglial proteins in the human brain and to evaluate its changes in AD and after A β immunotherapy. In the present study, we observed increased expression of the microglial homeostatic markers Iba1 and P2RY12 in the immunised group which was associated with a less pro-inflammatory environment than observed in AD.”

3. There is inconsistent use of abbreviations. This was the case for ptau, or also abbreviated as (p)tau and sometimes written fully as phosphorylated tau.

This has been corrected throughout the manuscript.

4. Page 7 line 40- 41: AD vs AD cases.

This has been corrected appropriately as iAD vs AD.

5. The authors report their p-value inconsistently, sometimes as < ... and sometimes with the exact p-value = 0.045.

Throughout our studies on the immunised cohort, we have consistently reported our p values as recommended by the statisticians working with us: Any p value less than 0.001 has to be reported as “p<0.001”; with the other p values to be reported as the exact value.

Reviewer #2

The strength of this paper is in the description of the autopsy brain sections from patients who had been treated with Abeta immunotherapy (iAD). These specimens are very rare but have potential to greatly enhance understanding of Alzheimer's neuropathology. The results are interesting; however, I feel that analysis could have been more thorough to enable clearer conclusions to be made regarding microglial cell behaviour in these cases.

The following issues should be addressed:

1. *The analysis largely depends on quantification of immunolabelling using positive pixel analysis. This seems a very subjective way to determine levels of Iba1, tau etc particularly as the labelling is dependent on readout of an enzymatic reaction (peroxidase) which is a non-linear reaction, followed by imaging and analysis.*

None of these procedures appear to have been normalized (there is no explanation of this in the methods). The % area obtained would depend on the level of enzymatic reaction in the batch of slides being processed (it is unclear if all of the slides were processed in parallel?) as well as the exposure of the image in the microscope as well as the post-acquisition image thresholding parameters. A considerable level of variation is expected based on these different parameters. So the significance of the results remains unclear.

We are aware of the non-linearity of the reaction and thus we are using an image analysis method that quantifies the presence or absence of staining (per pixel) rather than the intensity of the staining, presented as the percentage of the area stained in each image. This method has been widely used by us and others (e.g. Zotova et al, Brain 2013; Paquet et al, J Pathol 2015; Minett et al, J Neuroinflamm 2016).

All our experiments were carefully controlled at each step and included: the use of positive and negative controls, staining of batches containing equal numbers of cases from each group to ensure consistency of the staining between cases. Quantification of the staining was automated using the Olympus slide scanner and macros designed in ImageJ.

These methodological details have been added in the Material and Methods (page 5).

2. *Iba-1 positive cell counts could have been done - this would be a more objective read out of microglial cell numbers. How many microglial cells per area? Evidence for proliferation? Likewise, some further analysis of morphology of the cells - degree of ramification etc. Where are the extra Iba1 labelled cells located in the iAD cases? Are they clustered? Are they around Abeta deposits? Or distal? Vascular association?*

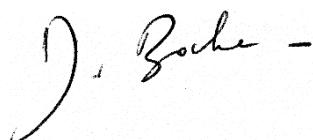
We agree that these are important questions and we are currently assessing the microglial cell numbers associated with detailed morphological analysis using 3D reconstruction in these cohorts. These findings will result in another publication.

3. Figure 3 images are very pixelated and it is hard to visualise the ptau pathology. It is unclear also which cases these images are derived from? How do the different cases compare? It would be interesting to see the ptau labelling from the control, AD and iAD cases for comparison. Where is the ptau disappearing from in the iAD cases? Are you seeing fewer NFTs? Or is it just that the aggregated tau is being dephosphorylated?

Based on the comment from both reviewers, we reviewed all Iba1 and P2RY12 immunolabelled slides and found some P2RY12-positive microglia clusters. This feature was not quantified and thus we decided to remove this sentence as this does not modify the main outcome of the paper.

In addition, we have added images on figure 1 reflecting the overall amount of pathological markers presents in the three groups.

Additional discussion on ptau reduction has been added in the Discussion (page 9) referring to our previous work on the immunised AD cohort (see response 6 to reviewer 1)


4. It would have been interesting to see the tangle (NFT) counts per area, neuritic plaques per area, the number of neurons per area etc...It would be of interest to show the level of actual neurodegeneration in each group - control, AD and iAD. Does removing the Abeta in the iAD cases also lead to removal of the neuritic component of the plaque?

These findings have been already published by us in several papers with some now cited in the manuscript (e.g. Boche et al. Acta Neuropathologica 2010; Nicoll et al. Brain 2019), consistent with the aim of this study on microglial motility.

5. There is a typo on Results pg 6, line 40-41. "Phosphorylated taudecreased in AD vs AD cases (P=0.026)," ..Should read "decreased in iAD vs AD"??

This has been corrected. Thank you

Yours Sincerely

Delphine Boche, PhD
Professor of Neuroimmunopathology

Clinical and Experimental Sciences
University of Southampton
Direct tel: +44 (0)23 81 206107 | email: d.boche@soton.ac.uk