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Abstract

This paper studies nonlinear cointegrating models with time-varying coefficients and multiple nonsta-
tionary regressors using classic kernel smoothing methods to estimate the coefficient functions. Extending
earlier work on nonstationary kernel regression to take account of practical features of the data, we al-
low the regressors to be cointegrated and to embody a mixture of stochastic and deterministic trends,
complications which result in asymptotic degeneracy of the kernel-weighted signal matrix. To address
these complications new local and global rotation techniques are introduced to transform the covariate
space to accommodate multiple scenarios of induced degeneracy. Under regularity conditions we derive
asymptotic results that differ substantially from existing kernel regression asymptotics, leading to new limit
theory under multiple convergence rates. For the practically important case of endogenous nonstationary
regressors we propose a fully-modified kernel estimator whose limit distribution theory corresponds to
the prototypical pure cointegration case (i.e., with exogenous covariates), thereby facilitating inference
using a generalized Wald-type test statistic. These results substantially generalize econometric estimation
and testing techniques in the cointegration literature to accommodate time variation and complications
of co-moving regressors. Finally, Monte-Carlo simulation studies as well as an empirical illustration to
aggregate US data on consumption, income, and interest rates are provided to illustrate the methodology
and evaluate the numerical performance of the proposed methods in finite samples.
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1 Introduction

Many time series that are encountered in economics and finance are well known to exhibit nonstationary
characteristics such as the random wandering behavior of financial asset prices and the secular growth
components in aggregate time series data that indicate the presence of some form of deterministic drift.
Following the work of Phillips and Durlauf (1986), Engle and Granger (1987), Park and Phillips (1988,
1989), Phillips (1988, 1991) and Johansen (1991), substantial investments have been made in econometric
methodology to take account of these characteristics in linear and log linear cointegrating regression
estimation and inference.

Notwithstanding this body of work many practical implementations reveal that parametric linear
cointegration models are often rejected by the data even when there is evident co-movement among the
trending series. Acknowledgement of this weakness has led to the recent development of econometric
methodology for treating various nonlinear and nonparametric cointegrating models (Park and Phillips,
2001; Karlsen, Myklebust and Tjøstheim, 2007; Cai, Li and Park, 2009; Wang and Phillips, 2009a,b; Xiao,
2009; Gao and Phillips, 2013; Li et al, 2017; Phillips, Li and Gao, 2017). For the important case of multivariate
integrated covariates, much of this nonparametric research on nonlinear cointegration excludes possible
co-movement among the regressors and the presence of deterministic drift. Such restrictions simplify
asymptotic theory but limit applicability of the methods to time series without the commonly occuring
characteristics that produce co-movement over time and asymptotic degeneracies in the signal matrix.

The primary goal of the present paper is to relax these restrictions by allowing more flexible structures
among the covariates, to develop kernel regression asymptotics for a general class of models that accommo-
date these key features in the data, and to provide inferential machinery that enables convenient estimation
and inference in practical work. In developing these methods, our main focus of attention is a multiple
regression model with time-varying coefficients of the following form

Yt = β
′
tXt + et0, t = 1, · · · , T , (1.1)

where βt := β (t/T) is a d-dimensional vector of coefficients which varies over time, β(·) is a d-dimensional
vector of functions, {Xt} is a d-dimensional nonstationary process, and {et0} is a stationary random error
process. The paper studies three generating structures on Xt of increasing complexity: (i) Xt is cointegrated
with d0 cointegrating vectors and no deterministic trend where 0 6 d0 6 d− 1; (ii) Xt involves a mixture of
deterministic and stochastic trends but without any cointegrating structure; and (iii) Xt is cointegrated and
has deterministic trend components. Scenario (iii) is the most general and combines the complications of
(i) and (ii). In view of the special technical difficulties involved, it is convenient to treat these generating
structures for the regressors Xt individually at first, leading ultimately to a complete set of asymptotics
for coefficient function estimation and inference in models of the form (1.1) with time-varying functional
coefficients and co-moving endogenous regressors.

Model (1.1) is motivated by the need for a flexible framework that captures structural change via tempo-
ral evolution in the functional coefficients in regressions with nonstationary data. The formulation usefully
circumvents the curse of dimensionality problems that commonly arise in nonparametric regression estima-
tion when the dimension of the covariates is large and that are known to be exacerbated in the nonstationary
nonparametric case due to slower convergence rates (Wang and Phillips, 2009a). The modelling framework
(1.1) includes and extends many linear and nonlinear cointegration models that have been extensively
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studied in the literature. For instance, in the constant coefficient case where βt = β, model (1.1) is a multiple
linear regression with integrated regressors in which scenarios (i)-(iii) above may be present in practical work
and for which asymptotic linear regression theory was developed in early work by Park and Phillips (1988,
1989), Phillips (1988, 1995), and Toda and Phillips (1993). When Xt is not cointegrated and no deterministic
drift is involved, model (1.1) reduces to the model studied in Park and Hahn (1999) and Phillips, Li and Gao
(2017) where sieve estimation and kernel-based estimation techniques were analyzed, respectively. When
the nonstationary regressors Xt are cointegrated, there exist certain linear combinations of Xt (if d0 > 1)
which can lower the order of integration, leading to the presence of a stationary process component in
the regressors. It follows that our modelling framework also relates to work on time-varying coefficient
models with stationary (or locally stationary) regressors (c.f., Robinson, 1989; Cai, 2007; Zhou and Wu, 2010;
Chen and Hong, 2012; Vogt, 2012; Zhang and Wu, 2012; Giraitis, Kapetanious and Yates, 2014), and may be
regarded as an extension of that work to accommodate nonstationary and trending regressor components.
The upshot is that the results obtained in the present paper have wide potential applicability to economic
time series with stationary, trend stationary, co-moving, and stochastically nonstationary components.

The paper applies standard Nadaraya-Watson kernel methods to estimate the coefficient function β(·)
in the presence of a complicating structure of co-moving and co-trending regressors that raises significant
challenges in the development of a limit theory for kernel estimation and inference. The technical challenges
may be explained in a heuristic manner as follows. The central difficulty arises from the multiple asymptotic
singularities that feature in the kernel-weighted signal matrix – the random matrix that carries the kernel
weights and appears in the denominator of the usual kernel estimator. Rotation techniques are used to
conform the covariate space to accommodate signals of various orders in developing the asymptotic theory.
These techniques extend those that were developed and are now commonly used in the nonstationary linear
regression literature (Phillips, 1988; Park and Phillips, 1988, 1989) to the kernel regression environment
where both global and local rotators are required. If the regressors are cointegrated, a global rotation
technique is applied to separate out the stationary components and nonstationary components, which
carry the associated signals in kernel estimation with differing strengths. In the multivariate regressor case,
the kernel-weighted random matrix associated with the nonstationary covariate components may have
dimension greater than unity, inducing a further signal degeneracy that we refer to as local degeneracy
throughout the paper.

When the nonstationary components have only stochastic trends, time-varying coefficient kernel regres-
sion naturally concentrates attention on a particular time coordinate of the partial sum process and, in doing
so, the associated stochastic process limit process. This focus on a local time coordinate produces a limiting
kernel signal matrix of deficient rank unity. On the other hand, when the stochastic trends are themselves
asymptotically majorized by deterministic linear trends, the nonstationary components become dominated
asymptotically by these linear trends, which reduces asymptotic variability across component variables
and leads to further degeneracy in the asymptotics. The local rotation approach used in the present paper
addresses this further degeneracy in the nonstationary components and applies whether these components
are dominated by stochastic or deterministic trends.

This rotation geometry enables the development of a full asymptotic distribution theory for nonstationary
kernel estimation under general regularity conditions. The main results reveal multiple convergence rates in
the different directions associated with the rotations. These directions include the usual stationary regressor
nonparametric convergence rate (

√
Th), a type 1 super-consistency rate (T

√
h), a type 2 super-consistency
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rate (Th), and a type 3 rate (T
√
Th) in the direction of the deterministic linear trends. When nonstationary

regressors in time-varying coefficient models are endogenous, second-order bias terms are present in
the kernel regression limit theory, analogous to the endogeneity bias that occurs in linear cointegrating
regression. Although such bias does not affect convergence rates in the asymptotics, it does influence finite
sample performance and inference with kernel methods. To address this endogeneity bias, a fully-modified
(FM) kernel estimator is developed for which the asymptotic theory corresponds to the pure (exogenous
regressor) cointegration case.

A further contribution of the paper is to develop inferential methods for the time-varying coefficient
functions in model (1.1). Two different null hypotheses on the coefficient functions are considered, which
allow for universal restrictions (that is, restrictions that apply uniformly over time) and local restrictions
(that is, restrictions that apply pointwise at some specific time-point corresponding to some sample fraction
of the data). Generalized Wald-type test statistics are constructed to test these hypotheses. The limit theory
for these tests is developed under both full rank and deficient rank conditions on the covariance structure
of the restricted function coefficients, thereby accommodating potential implications for rank arising from
signal matrix degeneracies in kernel estimation. The resulting asymptotics involve two types of chi-square
limit distributions and possibly divergent degrees of freedom. This limit theory substantially extends
existing work on inference in linear cointegrating regressions (particularly, Park and Phillips, 1988, 1989;
Toda and Phillips, 1993; Phillips, 1995) to the nonlinear cointegrating model setting.

These contributions combine to bring the limit theory for functional nonparametric nonstationary
regression to a similar level of generality as the earlier limit theory for linear cointegating regression,
allowing for multiple forms of asymptotic degeneracies in the regressor space and delivering asymptotically
chi-square tests that enable inference in nonlinear co-moving systems with multiple covariates under
endogeneity. The methods of the paper therefore apply widely and provide a convenient framework
for investigators to test hypotheses concerning time evolution and stability in regression coefficients in
nonstationary time series environments.

The rest of the paper is organized as follows. Section 2 describes the kernel estimation approach, provides
assumptions, develops the double-rotation technique, and derives asymptotic theory when the regressors
are cointegrated. Section 3 generalizes the structure and theory to the case where the regressors have a mix
of stochastic and deterministic trends and the case when the regressors are cointegrated with deterministic
trends. Section 4 introduces the FM kernel estimator and establishes its limit distribution theory. Section 5
explores methods of inference on the coefficient functions. Section 6 reports extensive simulation studies
to evaluate the finite sample properties of the proposed methods in relation to the developed asymptotic
theory. Section 7 provides an empirical illustration to aggregate US data on consumption, income and
interest rates. Section 8 concludes the paper. Proofs of the main asymptotic results and proofs of some
supplementary results are given in Appendices A and B, respectively, which are available in the online
supplementary document (Li, Phillips and Gao, 2019). Throughout the paper, we use “⇒” and “→p”
to denote weak convergence (or convergence in distribution) in the relevant space and convergence in
probability, respectively. Let ‖ · ‖ be the Frobenius norm of a matrix or the Euclidean norm of a vector, and
letA+ denote the Moore-Penrose generalised inverse of a matrixAwhich becomes the conventional inverse
A−1 if A is invertible.
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2 Kernel estimation with cointegrated regressors

In this section, we use kernel smoothing to estimate the coefficient functions in model (1.1) when the
nonstationary integrated regressors are cointegrated. We study the effects of the resulting asymptotic signal
degeneracy, and introduce rotation techniques to derive the limit theory of the kernel estimates.

2.1 Model estimation and assumptions

Smoothness conditions on the coefficient function β(·) permit local approximation β(z) ≈ β(z0) for z in any
small neighborhood of z0 ∈ (0, 1) , which motivates Nadaraya-Watson-type local level regression estimation
of β(z0) in (1.1) according to the formula

β̂(z0) =

[
T∑
t=1

XtX
′
tK
(t− Tz0

Th

)]+ [ T∑
t=1

XtYtK
(t− Tz0

Th

)]
=: Λ+

T (z0)∆T (z0), (2.1)

where K(·) is some kernel function, and h is a bandwidth which tends to zero as the sample size T tends to
infinity. While the present paper concentrates on this particular kernel estimation method, other kernel-
based methods such as local linear smoothing or local polynomial smoothing approaches (Fan and Gijbels,
1996) may be used in the same way and the methods given here may be suitably modified to accommodate
these approaches with similar asymptotic results (c.f., Remark 4 in Section 3.1).

The notation [·]+ in (2.1) signifies the use of a Moore-Penrose inverse in the case of a singular matrix.
Provided the sample size T is large enough and depending on the shape of the particular kernel K(·), the
matrix

[∑T
t=1 XtX

′
tK
(
t−Tz0
Th

)]
will be positive definite almost surely in finite samples just as the sample

moment matrix
∑T
t=1 XtX

′
t itself, in which case use of the Moore Penrose inverse is unnecessary. On the other

hand, as analyzed below, in the limit as T →∞ the standardized form of the matrix
[∑T

t=1 XtX
′
tK
(
t−Tz0
Th

)]
is typically singular asymptotically. However, when transformed in certain directions and suitably re-
standardized, this matrix will be positive definite and these rotations of the regressor space facilitate the
asymptotic analysis, as we now demonstrate. The approach is analogous to the one developed in Park and
Phillips (1988, 1989), but in the present case, random rotation matrices are typically needed.

We commence our analysis with the case where the multivariate integrated regressors Xt are cointegrated
with d0 cointegrating vectors, 0 6 d0 6 d− 1. Letting d1 = d− d0, there exists a d× d orthogonal matrix
H = (H1,H2) such that

H′1Xt = et1, ∆(H′2Xt) = H
′
2(∆Xt) = et2, (2.2)

where the sizes forH1 andH2 are d×d0 and d×d1, respectively, ∆ denotes the first-order difference operator,
and (e′t1, e′t2)

′ is stationary with et1 being d0-dimensional and et2 being d1-dimensional. In view of (2.2), a
rotation of the regressor space conveniently separates out the stationary and nonstationary components of
the covariates in model (1.1). The transformation matrixH is not unique and the rank of the cointegrating
space d0 together with the associated directions of cointegration that are embodied in the submatrixH1 are
generally unknown a priori. We emphasize that knowledge of d0 and H1 are not needed for application
of (2.1) and the methods of the present paper, including the asymptotic results, can be used in practical
work without such knowledge, although there are of course well-known parametric and nonparametric
methods of testing to determine d0 and procedures to estimateH1 in the existing literature (e.g., Johansen,
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1991; Phillips, 1996; Cheng and Phillips, 2009). The following example illustrates the formulation (2.2) for
a simple cointegrated vector autoregression (VAR) model with general stationary errors (c.f., Cheng and
Phillips, 2009).

EXAMPLE 1. Define the model
∆Xt = αγ

′Xt−1 + vt, (2.3)

where {vt} is a covariance stationary time series with mean zero, α and γ are d× d0 constant matrices with
rank d0, and Id0 + γ

′α has latent roots inside the unit circle. Let γ⊥ be a d × (d − d0) full rank matrix
complement to γ so that γ′γ⊥ = Od0×d1 where d1 = d− d0 andOr×s is an r× s null matrix, and define

H′1 =
(
γ′γ
)−1/2

γ′, H′2 =
(
γ′⊥γ⊥

)−1/2
γ′⊥,

so thatH = (H1,H2) is orthogonal. Following standard arguments (Johansen, 1991; Phillips, 1995), the VAR
model (2.3) falls into the framework of (2.2) with transforms

H′1Xt =
(
γ′γ
)−1/2 (

Id0 + γ
′α
)
γ′Xt−1 +

(
γ′γ
)−1/2

γ′vt =: et1

and
∆(H′2Xt) =

(
γ′⊥γ⊥

)−1/2
γ′⊥αγ

′Xt−1 +
(
γ′⊥γ⊥

)−1/2
γ′⊥vt =: et2.

In order to establish limit theory for the kernel estimator in (2.1), we use the following regularity
conditions.

ASSUMPTION 1. Let et =
(
et0, e′t1, e′t2

)′ satisfy

et =

∞∑
j=0

Φjεt−j =

∞∑
j=0

ΦjL
jεt =:Φ(L)εt,

where L is the lag operator, {Φj} is a sequence of (d + 1) × (d + 1) matrices and {εt} is a sequence
of i.i.d. (d + 1)-dimensional random vectors with mean zero,Ωε := E [εtε

′
t] being positive definite

and E
[
‖εt‖4+δ0

]
< ∞ for δ0 > 0. In addition, the multivariate linear process coefficient matrices

satisfy
∑∞
j=0 j‖Φj‖ < ∞ and the matrix Ω := ΦΩεΦ

′ is positive definite with Φ :=
∑∞
j=0Φj 6=

O(d+1)×(d+1).

ASSUMPTION 2. The d-dimensional coefficient function β(·) is continuous with
∥∥β(z+s)−β(z)∥∥ = O(|s|δ1)

as s→ 0 for any 0 < z < 1, where δ1 is a positive constant satisfying 1
2 < δ1 6 1.

ASSUMPTION 3. (i) The kernel function K(·) is continuous, positive, symmetric and has compact support
[−1, 1] with µ0 =

∫
K(u)du = 1.

(ii) The bandwidth h satisfies h→ 0 and Th→∞ as T →∞.

Assumption 1 uses a stationary vector linear process specification for {et} that is common in the literature
(c.f., Phillips, 1995; Phillips, Li and Gao, 2017) and includes many popular vector time series processes such
as stationary VAR and VARMA models (Lütkepohl, 2006). The linear process dependence structure can be
replaced by alternative mixing dependence conditions with some modifications of the proofs. Assumption 1
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combined with (2.2) implies that the nonstationary componentsH′2Xt are full rank nonstationary and not
cointegrated. In the asymptotic theory developed later, H′2Xt may be correlated with et0, which implies
endogeneity in the system. Assumptions 2 and 3 are commonly used conditions in the varying-coefficient
and kernel smoothing literature – e.g., Wang and Phillips (2009b) and Phillips, Li and Gao (2017). In
particular, if the coefficient function β(·) is Lipschitz continuous on [0, 1], Assumption 2 is satisfied with
δ1 = 1. When greater smoothness conditions are imposed on β(·) stronger results are possible with local
linear and polynomial smoothing methods, and these will be mentioned in what follows.

2.2 Kernel degeneracy and double-rotation of the covariate space

By virtue of Assumption 1, Beveridge-Nelson decomposition and functional limit theory for linear processes
(e.g., Theorem 3.4(b) in Phillips and Solo, 1992),

T−1/2
bTzc∑
t=1

et = T
−1/2

bTzc∑
t=1

Φεt + oP(1)⇒ B(z), 0 < z 6 1 (2.4)

where et =
(
et0, e′t1, e′t2

)′, B(z) is a (d+1)-dimensional Brownian motion with variance matrixΩ =ΦΩεΦ
′

defined in Assumption 1, and b·c denotes the floor function. Partition the (d+ 1)× (d+ 1) matrixΩ into
cell submatricesΩij (i, j = 0, 1, 2) conformably with et and setω =Ω00. Let B(z) =

[
B0(z),B′1(z),B

′
2(z)

]′ be
the Brownian motion limit process of the following component partial sum processes

T−1/2
bTzc∑
t=1

etj ⇒ Bj(z), j = 0, 1, 2, (2.5)

where B0(·), B1(·) and B2(·) are univariate, d0-dimensional and d1-dimensional Brownian motions with
variance matrices ω,Ω11 andΩ22, respectively. The limit theory later in the paper also involves partitioned
components of the one-sided long run covariance matrix defined by Γ := lrcov+ (et, et) =

∑∞
h=0 E

[
e0e
′
h

]
with cell submatrices Γij (i, j = 0, 1, 2) that are conformable with the partition of et.

When the p-dimensional process {Zt} is stationary and satisfies some standard regularity conditions, it is
not difficult to show that

1
Th

T∑
t=1

ZtZ
′
tK
(t− Tz0

Th

)
= µ0E

[
ZtZ

′
t

]
+ oP(1) = E

[
ZtZ

′
t

]
+ oP(1), (2.6)

where µ0 =
∫
K(u)du = 1. Furthermore, if E [ZtZ

′
t] is positive definite, the limit of the inverse of the

kernel weighted sample moment matrix 1
Th

∑T
t=1 ZtZ

′
tK
(
t−Tz0
Th

)
also exists and conventional asymptotics

hold for kernel estimation with Zt as regressors. However, when {Zt} is generated by a nonstationary full
rank unit root process with innovations that satisfy a functional law similar to (2.4), the weighted sample
moment matrix behaves very differently. First, we have T−1/2ZbTzc ⇒ B�(z) for 0 < z 6 1,where B�(·) is a
p-dimensional Brownian motion with positive definite variance matrix, from which it might be expected that
the normalization rate (Th) in (2.6) would simply be replaced by the rate (T 2h). However, Phillips, Li and
Gao (2017) showed that the matrix 1

T 2h

∑T
t=1 ZtZ

′
tK
(
t−Tz0
Th

)
is asymptotically singular when the dimension

p exceeds unity. The reason for this degeneracy is that time-varying coefficient kernel regression concentrates
attention in the nonstationary process on a particular time coordinate (say Tz0) and the corresponding
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realized value of the associated limit of the nonstationary process, in contrast to the time average E [ZtZ
′
t] in

stationary case. When there are multiple nonstationary regressors, this focus on a single time coordinate
produces a limiting signal matrix of deficient rank unity whose zero eigenspace depends on the value of
the limit process at that time coordinate. In other words, the kernel induced degeneracy which occurs in
the matrix 1

T 2h

∑T
t=1 ZtZ

′
tK
(
t−Tz0
Th

)
for multivariate integrated Zt is random, trajectory dependent, and

localized to the time value z0. It may therefore be regarded as a form of local degeneracy.

To deal with degeneracy in a prototypical case, Phillips, Li and Gao (2017) introduced a novel rotational
decomposition for the kernel-weighted signal matrix

∑T
t=1 ZtZ

′
tK
(
t−Tz0
Th

)
to develop the limit theory. The

rotation involved the use of a random direction based on the nonstationary regressors. In the present case,
this direction takes the form of the (sample size dependent) vector

qT (z0) =
bT (z0)[

bT (z0)′bT (z0)
]1/2 =

bT (z0)

‖bT (z0)‖
, bT (z0) = T

−1/2Zδ(z0), δ(z0) = bT(z0 − h)c,

leading to an associated orthogonal matrix

QT (z0) =
[
qT (z0),q⊥T (z0)

]
, QT (z0)

′QT (z0) = Ip,

where q⊥T (z0) is an orthogonal complement to qT (z0) whose existence is not unique (say, −q⊥T (z0) is also an
orthogonal complement to qT (z0)). Using the standardization matrix

DT = diag
{
T
√
h, (Th)Ip−1

}
,

and Proposition A.1 from Phillips, Li and Gao (2017), we may show that the matrix

D−1
T QT (z0)

′

[
T∑
t=1

ZtZ
′
tK
(t− Tz0

Th

)]
QT (z0)D

−1
T

is of full rank with probability approaching one.

This random rotation technique needs substantial generalization for the setting in the present paper. Here
the regressors satisfy the framework (2.2), indicating that three different normalization rates might be needed
when d0 > 1 and d1 > 2, where d0 and d1 are the dimensions of the stationary components and nonstationary
components. To see this, we first use the orthogonal transformation (2.2) to rotate the regressor space and
separate out the stationary and nonstationary components. Define Xt1 = H′1Xt, Xt2 = H′2Xt, where Xt1 is
the d0-dimensional stationary component and Xt2 is the d1-dimensional nonstationary component with unit
roots. Then, model (1.1) can be re-written as

Yt = β
′
t1Xt1 + β

′
t2Xt2 + et0, (2.7)

with β′t1 = β′tH1 and β′t2 = β′tH2. Letting Xt = (X′t1,X′t2)
′ = H′Xt, we transform the Nadaraya-Watson

kernel estimate β̂(z0) to

β(z0) := H
′β̂(z0) =

[
T∑
t=1

XtX
′
tK
(t− Tz0

Th

)]+ [ T∑
t=1

XtYtK
(t− Tz0

Th

)]
, (2.8)
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which is the estimate ofH′β(z0). The component matrixH1 generates the stationary components and the
convergence rate in this direction will be seen to be the same as the usual convergence rate in stationary
kernel regression. In contrast, the component matrix H2, which is orthogonal to H1, generates full rank
nonstationary variates, leading to faster convergence rates in this direction. However, the above arguments
show that the matrix 1

T 2h

∑T
t=1 Xt2X

′
t2K
(
t−Tz0
Th

)
is asymptotically singular if its dimension d1 exceeds

unity. Therefore, further transformation of the nonstationary component Xt2 is required in order to resolve
asymptotic behavior.

To proceed, let qT2(z0) andQT2(z0) be defined just as qT (z0) andQT (z0) above but with Zt replaced by
Xt2. Then define

QT (z0) = diag {Id0 ,QT2(z0)} , DT = diag
{√
ThId0 , T

√
h, (Th)Id1−1

}
. (2.9)

Unlike the transformation matrixH in the global rotation which does not rely on z0, the matrixQT (z0) used
in the further rotation of the nonstationary component space is random and time dependent on z0, and is
thus called a local rotation. Proposition 1 below shows that the matrixD

−1
T QT (z0)

′H′ΛT (z0)HQT (z0)D
−1
T

is of full rank with probability approaching one as T →∞, whereΛT (z0) is defined in (2.1).

To complete the statement of the proposition we introduce the following notation. Define the vector

q2(z0) =
b(z0)[

b(z0)′b(z0)
]1/2 =

b(z0)

‖b(z0)‖
with b(z0) = B2(z0),

and let q⊥2 (z0) be a d1 × (d1 − 1) orthogonal complement matrix of q2(z0) and the limit of q⊥T2(z0). Define
the d× dmatrix

Λ(z0) = diag {Λ11,Λ2(z0)} with Λ2(z0) =

[
Λ22(z0) Λ23(z0)

Λ32(z0) Λ33(z0)

]
, (2.10)

whereΛ11 = E
[
e11e

′
11

]
> 0 is independent of z0,Λ22(z0) = λ(z0) = B2(z0)

′B2(z0) is univariate,

Λ23(z0) = Λ32(z0)
′ =
√

2
[
B2(z0)

′B2(z0)
]1/2

[∫ 1

−1
B∗2(

z+ 1
2

)′K(z)dz

]
q⊥2 (z0),

Λ33(z0) = 2q⊥2 (z0)
′

[∫ 1

−1
B∗2
(z+ 1

2
)
B∗2
(z+ 1

2
)′
K(z)dz

]
q⊥2 (z0),

and B∗2(·) is an independent copy of the Brownian motion B2(·). In the sequel, “> 0” denotes positive
definiteness of the relevant matrix.

PROPOSITION 1. Suppose that Assumptions 1 and 3 are satisfied, d > 3 with 1 6 d0 6 d − 2 and
2 6 d1 6 d− d0. Then we have

D
−1
T QT (z0)

′H′ΛT (z0)HQT (z0)D
−1
T = D

−1
T QT (z0)

′

[
T∑
t=1

XtX
′
tK
(t− Tz0

Th

)]
QT (z0)D

−1
T

⇒ Λ(z0) > 0 a.s. (2.11)

for fixed 0 < z0 < 1.
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REMARK 1. This proposition resolves the asymptotic degeneracy of the kernel-weighted signal matrix
through a double-rotation of the nonstationary regressor space involving the global rotationH and local
rotation QT (z0). This transformation leads to three different normalization rates embodied in the stan-
dardization matrix DT . For a special case d1 = 1, kernel degeneracy is circumvented and the rate (Th)

disappears inDT , leaving only the global rotationH. If there is no cointegration among the regressors, the
global rotation is not needed in transforming the regressors and the rate (

√
Th) would disappear in DT ,

specializing the result to Proposition A.1 in Phillips, Li and Gao (2017).

2.3 Asymptotic theory for cointegrated regressors

This section derives asymptotic theory for the kernel estimator β̂(z0) when the nonstationary regressors
are cointegrated. We start by introducing notation. LetDT2 = diag

{
T
√
h, (Th)Id1−1

}
and define ∆2(z0) :=[

δ̄(z0),∆⊥(z0)
′]′ with

δ̄(z0) :=
[
2B2(z0)

′B2(z0)
]1/2
∫ 1

−1
K(z)dB0

(z+ 1
2
)
,

∆⊥(z0) := 2q⊥2 (z0)
′

[∫ 1

−1
K(z)B∗2

(z+ 1
2
)
dB0

(z+ 1
2
)
+

1
2
Γ20

]
,

where the one sided long run covariance Γ20 = lrcov+ (et2, et0) is as defined earlier. The following theorem
gives the asymptotic distribution of β̂(z0).

THEOREM 1. Suppose Assumptions 1–3 are satisfied, d > 3 with 1 6 d0 6 d− 2 and 2 6 d1 6 d− d0,Λ(z0)

is non-singular with probability one, and for s > t, E[es0et1] = 0d0 , where 0r is an r-dimensional vector of
zeros.

(i) If, in addition, Th1+2δ1 = o(1), then as T →∞
√
ThH′1

[
β̂(z0) − β(z0)

]
⇒ ξ (2.12)

for fixed z0 ∈ (0, 1), where ξ is a d0-dimensional normal vector with mean zero and covariance matrix

Vξ := ν0Λ
+
11

{ ∞∑
s=−∞E

[
(e10es0)(e11e

′
s1)
]}
Λ+

11, with ν0 =

∫
K2(u)du.

(ii) If, in addition, T 2h1+2δ1 = o(1), then as T →∞
DT2QT2(z0)

′H′2

[
β̂(z0) − β(z0)

]
⇒ Λ−1

2 (z0)∆2(z0) (2.13)

for fixed z0 ∈ (0, 1).

REMARK 2. (a) The limit theory in Theorem 1 shows that double-rotation of the regressor space is needed to
characterize the asymptotics: the global rotatorH addresses potential cointegration among the nonstationary
regressors; and the local rotatorQT (z0) addresses the kernel degeneracy that arises from the fixed design
functional framework. The limit theory in (2.12) and (2.13) encompasses several interesting results from the
existing literature. For the case d1 = 0 corresponding to a stationary regressor model, takingH1 = Id we
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have from (2.12) that √
Th
[
β̂(z0) − β(z0)

]
⇒ ξ, (2.14)

which delivers results similar to those in the literature on kernel estimation with locally stationary regressors
(c.f., Robinson, 1989; Cai, 2007; Vogt, 2012). For the case d0 = 0 corresponding to a full rank integrated
regressor model, takingH2 = Id we obtain Theorem 3.1 in Phillips, Li and Gao (2017) as a corollary of (2.13).

(b) The assumption E[es0et1] = 0 for s > t implies no contemporaneous or feedforward correlation
between the stationary regressor components et1 and the equation errors et0, which ensures kernel estima-
tion is consistent in the direction associated with the stationary componentsH′1Xt (c.f., Park and Phillips,
1989). Theorem 1 does not specify the relationship between the limit distributions of the stationary and
nonstationary component estimators in parts (i) and (ii) and to do so we impose the following explicit
exogeneity condition.

ASSUMPTION 1∗. Let Ft−1 = σ(et1, et2, et−1, et−2, · · · ) be the σ-algebra generated by {es1, es2}s6t and
{es0}s6t−1. Then {(et0,Ft)} is a stationary sequence of martingale differences with σ2

e = E
[
e2
t0|Ft−1

]
> 0 a.s.

Under Assumption 1∗, the asymptotic distribution in the directionH1 is independent of that in the direction
H2, so that the limit variate ξ is independent of the limit variateΛ+

2 (z0)∆2(z0), which facilitates inference
concerning the time varying coefficient function. Further, the one-sided long run covariance matrix Γ02

is eliminated in the random variate ∆2(z0) for this pure cointegration case. Assumption 1∗ is common in
the literature when stationarity is present and appears, for instance, in both Cai, Li and Park (2009) and Li,
Phillips and Gao (2016).

(c) From (2.12) and (2.13) in Theorem 1, we find three different convergence rates that apply in different
directions. In the directionH1, by (2.12) we have the well-known stationary rate given by

H′1

[
β̂(z0) − β(z0)

]
= OP

(
1√
Th

)
, (2.15)

which holds for stationary kernel regression. In the directionH2qT2(z0), we have the faster rate

qT2(z0)
′H′2

[
β̂(z0) − β(z0)

]
= OP

(
1

T
√
h

)
, (2.16)

which is called type 1 super-consistency in Li, Phillips and Gao (2016) and Phillips, Li and Gao (2017).
Finally, in directionH2q

⊥
T2(z0), we have type 2 super-consistency with rate given by

q⊥T2(z0)
′H′2

[
β̂(z0) − β(z0)

]
= OP

(
1
Th

)
. (2.17)

The type 2 super-consistency rate is slower than the rate in (2.16), but is still faster than the stationary rate
in (2.15). Interestingly, therefore, nonstationary regressors raise the rate of convergence over the standard
stationary rate in the two relevant directions of nonstationarity in the data.

(d) The bandwidth conditions Th1+2γ = o(1) and T 2h1+2γ = o(1) in Theorem 1 may appear restrictive.
However, if the coefficient function has continuous derivatives up to the second order and if we apply
local linear kernel smoothing rather than local constant estimation, then following the proof of Theorem
3.2 in Phillips, Li and Gao (2017), we may relax the above two bandwidth restrictions to Th5 = o(1) and
T 2h5 = o(1), respectively (c.f., Remark 4 in Section 3.1).
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(e) Theorem 1 implies that β̂(z0) has a degenerate asymptotic normal distribution dominated by the
slowest convergent component in (2.12), viz.,

√
Th
[
β̂(z0) − β(z0)

]
=
√
ThHH′

[
β̂(z0) − β(z0)

]
=
√
ThH1H

′
1

[
β̂(z0) − β(z0)

]
+
√
ThH2H

′
2

[
β̂(z0) − β(z0)

]
⇒ H1ξ+OP

(
1/
√
Th
)

= H1ξ+ oP(1). (2.18)

This also shows that the kernel estimate β̂(z0) is consistent with the stationary pointwise convergence rate
(
√
Th) as long as d0 > 1. In spite of this apparent simplification arising from the dominating directionH1,

inference about the full vector of parameters β is typically not degenerate and involves the asymptotic
behavior of the components of β in other directions. On the other hand, if d > 1 but d0 = 0, corresponding
to the full rank integrated regressor setting as in Phillips, Li and Gao (2017), we may show that

β̂(z0) − β(z0) = QT2(z0)QT2(z0)
′
[
β̂(z0) − β(z0)

]
= qT2(z0)qT2(z0)

′
[
β̂(z0) − β(z0)

]
+ q⊥T2(z0)q

⊥
T2(z0)

′
[
β̂(z0) − β(z0)

]
,

where qT2(z0), q⊥T2(z0) andQT2(z0) are defined as those in Theorem 1(ii) but with d1 and Xt2 replaced by d
and Xt, respectively. TakingH2 = Id in (2.16) and (2.17) and noting that qT2(z0) and q⊥T2(z0) are both OP(1),
we can prove that β̂(z0) is consistent with the type 2 super-consistency rate (Th).

(f) The above kernel regression asymptotics are applicable to the multiple time-varying coefficient
regression model with intercept, i.e.,

Yt = βt0 + β
′
tXt + et0, t = 1, · · · , T , (2.19)

where β0t := β0(t/T) is a continuous time-varying intercept function and the remaining elements satisfy the
corresponding conditions imposed for model (1.1). Under (2.19), we only need to slightly modify the global
rotation, replacing the matrixH by

H = diag {1,H} =
(
H1,H2

)
with

H1 =

(
1 0′d0

0d H1

)
, H2 =

(
0′d1

H2

)
.

ApplyingH1 andH2 on the (d+1)-dimensional regressor vector (1,X′t)
′, we may separate out the stationary

and nonstationary components. The implementation of local rotation remains the same by noting that
H
′
2(1,X′t)

′ = H′2Xt.

3 Extensions of the kernel estimation theory

This section develops kernel estimation theory for the following two cases: (i) the regressors Xt have a
mixture of deterministic and stochastic trends but no internal cointegrating structure; and (ii) the regressors
Xt have deterministic trends and are cointegrated among themselves.
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3.1 Kernel estimation with stochastic and deterministic trends

We assume the regressors are generated as stochastic trends with drift according to the scheme

Xt = Xt−1 + µ+ ut, (3.1)

where µ is a d-dimensional parameter vector representing the accompanying drift of the unit root process,
and where ut = (e′t1, e′t2)

′ with et1 and et2 satisfying Assumption 1 in Section 2.1. From (3.1), we have

Xt =

t∑
j=1

uj + µt+ X0

=: St +Dt + X0, (3.2)

where X0 = OP(1), St :=
∑t
j=1 uj is the stochastic trend and Dt := µt is the deterministic drift. Although

we consider only a linear trend for Dt in what follows, the method and theory developed in this section
are readily extendable to polynomial trends. But general power trends such as tα with unknown power
parameter α involve further complications of asymptotic singularity - see Phillips (2007) and Baek, Cho and
Phillips (2015), which are not pursued here.

Since St = OP
(
t1/2

)
, the stochastic trend St is asymptotically dominated by the deterministic trend Dt.

Therefore, we have
T∑
t=1

XtX
′
tK
(t− Tz0

Th

)
= µµ′(bTz0c)2Th(1 + oP(1)). (3.3)

When the dimension d exceeds unity, the matrix µµ′ is singular, complicating normalization of the kernel-
weighted signal matrix on the right hand side of (3.3), which is degenerate at the dominating rate (T 3h)

associated with the deterministic component Dt. Degeneracy of this form has long been studied in the
linear nonstationary regression literature, where Park and Phillips (1988) gave a global rotation technique
(with non-random transformation matrix) to separate out the stochastic and deterministic trend components
with associated standardization rates for the corresponding directions. This global rotation technique
cannot be applied in the present setting, however, as will be demonstrated later in this section. Since the
kernel-weighted signal matrix embodies both stochastic and deterministic trends, a local rotation technique
similar to that in Section 2.2 is instead required.

To proceed, define

q̃T (z0) =
b̃T (z0)[

b̃T (z0)′b̃T (z0)
]1/2 =

b̃T (z0)

‖b̃T (z0)‖
, b̃T (z0) = Xδ(z0) = Sδ(z0) +Dδ(z0) + X0,

where δ(z0) = bT(z0 − h)c, and introduce the orthogonal matrix

Q̃T (z0) =
[
q̃T (z0), q̃⊥T (z0)

]
, Q̃T (z0)

′Q̃T (z0) = Id, (3.4)

where q̃⊥T (z0) is a d × (d − 1) orthogonal complement matrix of q̃T (z0), and define the standardization
matrix

D̃T = diag
{
T
√
Th, (Th)Id−1

}
. (3.5)
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Proposition 2 below shows that the asymptotic kernel degeneracy is addressed via application of the
local rotator and path-dependent transformation matrix Q̃T (z0) defined in (3.4). Some further notation is
needed to state the proposition. Let µ̃⊥ be a d× (d−1) orthogonal complement of µ̃ := (µ′µ)−1/2µ = µ/‖µ‖,
and J = (µ̃, µ̃⊥) be the corresponding orthogonal transformation matrix, as used in Park and Phillips (1988).
Define the d× dmatrix

Λ̃(z0) =

[
Λ̃11(z0) Λ̃12(z0)

Λ̃21(z0) Λ̃22

]
,

where Λ̃11(z0) = λ̃(z0) = ‖µz0‖2 is non-random and univariate,

Λ̃12(z0) = Λ̃21(z0)
′ =
√

2‖µz0‖

[∫ 1

−1
B̃(
z+ 1

2
)′K(z)dz

]
µ̃⊥,

Λ̃22 = 2µ̃′⊥

[∫ 1

−1
B̃
(z+ 1

2
)
B̃
(z+ 1

2
)′
K(z)dz

]
µ̃⊥,

B̃(·) = [B1(·)′,B2(·)′]′, B1(·) and B2(·) are defined earlier in (2.5).

PROPOSITION 2. Suppose Assumptions 1 and 3 are satisfied, µ 6= 0d and d > 2. Then

D̃
−1
T Q̃T (z0)

′ΛT (z0)Q̃T (z0)D̃
−1
T ⇒ Λ̃(z0) > 0 a.s. (3.6)

for fixed 0 < z0 < 1.

REMARK 3. In the proof of (3.6) in Appendix A, the two random and trajectory-dependent directions q̃T (z0)

and q̃⊥T (z0) are shown to converge to µ̃ and µ̃⊥, respectively. Both µ̃ and µ̃⊥ are non-random, and neither of
them rely on z0. This is unsurprising as the nonstationary process Xt is asymptotically dominated by its
linear trend Dt. A natural question in view of this asymptotic behavior is whether the local transformation
matrix Q̃T (z0) can be replaced by the global matrix J = (µ̃, µ̃⊥) in (3.6)? The question is simply answered
by examining the special case d = 2. Define

X̃t := J
′Xt =

(
µ̃
′
Xt, µ̃

′
⊥Xt

)′
=:
(
X̃t1, X̃t2

)′
. (3.7)

It is easy to see that the univariate component X̃t1 represents the deterministic trend term, whereas
X̃t2 represents a unit root process without the involvement of the deterministic trend. Defining D̃T∗ =

diag
{
T
√
Th, T

√
h
}

, we can show that

D̃
−1
T∗

[
T∑
t=1

X̃tX̃
′
tK
(t− Tz0

Th

)]
D̃

−1
T∗ ⇒

[
‖µz0‖2 ‖µz0‖‖µ̃′⊥B̃(z0)‖

‖µz0‖‖µ̃′⊥B̃(z0)‖ ‖µ̃′⊥B̃(z0)‖2

]
. (3.8)

The above result is easily established by noting that the asymptotic leading terms for X̃t1 and X̃t2 are
‖µz0‖ · T and Sδ(z0), respectively, when T(z0 − h) 6 t 6 T(z0 + h). Clearly, the matrix on the right side
of (3.8) is singular with probability one. This outcome shows that use of the global (limit) transformation
matrix J = (µ̃, µ̃⊥) inadequately deals with the kernel signal matrix degeneracy even though the two
relevant directions µ̃ and µ̃⊥ figure prominently in the limit. Instead, the local rotator Q̃T (z0) and the
associated normalization matrix D̃T = diag

{
T
√
Th, (Th)Id−1

}
in place of D̃T∗ play key roles in achieving

14



a non-degenerate limit theory.

With Proposition 2 in hand, the limit theory for the kernel estimator β̂(z0) can now be obtained for
stochastic trend with drift regressors, as in (3.1). Let

∆̃(z0) =
[
δ̃(z0), ∆̃

′
⊥

]′
with

δ̃(z0) =
√

2‖µz0‖
∫ 1

−1
K(z)dB0

(z+ 1
2
)
,

∆̃⊥ = 2µ̃′⊥

[∫ 1

−1
K(z)B̃

(z+ 1
2
)
dB0

(z+ 1
2
)
+

1
2
Γ̃

]
,

where Γ̃ =
(
Γ′10, Γ′20

)′, and the one-sided long run covariance matrices Γ10 = lrcov+ (et1, et0) , Γ20 =

lrcov+ (et2, et0) are defined in Section 2.2. The following theorem gives the asymptotic distribution of β̂(z0).

THEOREM 2. Suppose Assumptions 1–3 are satisfied, µ 6= 0d, and d > 2. Then, as T →∞, we have

D̃TQ̃T (z0)
′
[
β̂(z0) − β(z0) +OP(h

δ1)
]
⇒ Λ̃

−1
(z0)∆̃(z0), (3.9)

for fixed z0 ∈ (0, 1).

REMARK 4. (a) Since the limit of the direction q̃⊥T (z0) is independent of z0, it is interesting to find that
both the random matrix Λ̃22 (the lower-right block matrix of Λ̃(z0)) and the random vector ∆̃⊥ are also
independent of z0. In the above theorem, in order to make the bias term asymptotically negligible, we
have to impose the strong restriction T 3h1+2δ1 = o(1), which contradicts the normal bandwidth condition
Th → ∞made in Assumption 3(ii) since δ1 ∈ (0.5, 1]. However, as discussed in Remark 2(d), if the time-
varying coefficient functions have continuous derivatives up to the second order, we can use the local linear
smoothing estimation and consequently relax the bandwidth restriction. For fixed 0 < z0 < 1, the following
local linear approximation holds when z is in a small neighborhood of z0:

β(z) ≈ β(z0) + β
(1)(z0)(z− z0),

where β(1)(z0) is the first-order derivative of β(·) at z0. Define the local linear loss function

LT (a,b) =
T∑
t=1

[
Yt − X

′
ta− X′tb

( t
T
− z0

)]2

K
(t− Tz0

Th

)
, (3.10)

where a = (a1, · · · ,ad)′ and b = (b1, · · · ,bd)′. Then, the local linear estimator of β(z0) is defined as
β̃(z0) = ã, where

(ã, b̃) = arg min
(a,b)

LT (a,b).

With some standard arguments, the asymptotic bias term of the local linear estimator has the order of O(h2),
leading to the replacement of the bandwidth requirement T 3h1+2δ1 = o(1) in Theorem 2 by the weaker
condition T 3h5 = o(1), which is compatible with Th→∞.

(b) Compared with Theorem 1 in Section 2.3, there is a single rotator matrix Q̃T (z0) involved in the limit
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theory. In consequence, we have two different convergence rates. In the direction q̃T (z0), we have

q̃T (z0)
′
[
β̂(z0) − β(z0)

]
= OP

(
1

T
√
Th

+ hδ1

)
, (3.11)

where 1/(T
√
Th) is the new super-consistency convergence rate for nonstationary kernel regression that

exceeds the rates in (2.15)–(2.17). This fast rate is mainly due to the strong signal from the linear trend of Xt
in the direction q̃T (z0). In contrast, in the direction of q̃⊥T (z0), from (3.9), we have

q̃⊥T (z0)
′
[
β̂(z0) − β(z0)

]
= OP

(
1
Th

+ hδ1

)
, (3.12)

which is the same rate as that for type 2 super-consistency in (2.17) if the bias term order is ignored
asymptotically. This rate is due to the relatively weaker signal that emerges in the direction q̃⊥T (z0) as the
linear trend cancels out through the transform q̃⊥T (z0).

3.2 Kernel cointegrating regression with deterministic trends

Next, we combine the structures (2.2) and (3.1) and assume that Xt satisfies

H′1Xt = et1, ∆
(
H′2Xt

)
= H′2 (∆Xt) = et2 + µ, (3.13)

whereH1,H2, et1 and et2 are defined as in Section 2.1 and µ is defined as in Section 3.1 (with the dimension d
replaced by d1 = d−d0). The following example shows that the structure (3.13) is satisfied for a cointegrated
VAR model with a deterministic drift component.

EXAMPLE 2. Consider the VAR model defined by

∆Xt = αγ
′Xt−1 + ν+ vt, (3.14)

where {vt} is a covariance stationary sequence of random vectors with mean zero, α and γ are d×d0 constant
matrices of rank d0, and ν is a d-dimensional parameter vector. Letting γ⊥ and α⊥ be d× (d− d0) matrices
of full rank satisfying γ′γ⊥ = Od0×d1 and α′α⊥ = Od0×d1 , and defining C = γ⊥(α

′
⊥γ⊥)

−1α′⊥, we have
the Granger representation

Xt = C

t∑
j=1

vj +Cνt+CX0 + Vt,

where Vt = α(γ′α)−1∑∞
i=0R

iγ′vt−i is a stationary linear process and the matrix R = Id0 + γ′α has
eigenvalues within the unit circle (Johansen, 1991; Cheng and Phillips, 2009). By choosingH1 andH2 as in
Example 1, it is clear that the cointegrated VAR model (3.14) satisfies the structure (3.13).

To derive the limit theory of β̂(z0) under the generating mechanism (3.13) for Xt, we first apply the
transformation matrix H = (H1,H2) on the covariate space as in Section 2.2 to separate out stationary
and nonstationary components as Xt1 = H′1Xt and Xt2 = H′2Xt. For the nonstationary elements Xt2, a
further local rotation using the matrix QT (z0) defined in (2.9) is applied to overcome kernel degeneracy.
Proposition 3 below shows that this double-rotation technique leads to a well defined limit theory for the
kernel-weighted signal matrix when Xt is generated by (3.13).
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Define the standardization matrix

D̊T = diag
{√
ThId0 , T

√
Th, (Th)Id1−1

}
, (3.15)

and the d× dmatrix

Λ̊(z0) = diag
{
Λ11, Λ̊2(z0)

}
with Λ̊2(z0) =

[
Λ̊22(z0) Λ̊23(z0)

Λ̊32(z0) Λ̊33

]
,

whereΛ11 is defined as in Section 2.2, Λ̊22(z0) = λ̊(z0) = ‖µz0‖2 is non-random and univariate,

Λ̊23(z0) = Λ̊32(z0)
′ =
√

2‖µz0‖

[∫ 1

−1
B2(

z+ 1
2

)′K(z)dz

]
µ̃⊥,

Λ̊33 = 2µ̃′⊥

[∫ 1

−1
B2
(z+ 1

2
)
B2
(z+ 1

2
)′
K(z)dz

]
µ̃⊥,

B2(·) is defined in (2.5) and µ̃⊥ is defined as in Section 3.1.

PROPOSITION 3. Suppose Assumptions 1 and 3 are satisfied, µ 6= 0d, d > 3 with 1 6 d0 6 d − 2 and
2 6 d1 6 d− d0. Then

D̊
−1
T QT (z0)

′H′ΛT (z0)HQT (z0)D̊
−1
T ⇒ Λ̊(z0) > 0 a.s. (3.16)

for fixed 0 < z0 < 1.

REMARK 5. The limit result is similar to that in Proposition 1, with two differences. First, the normalization
rate (T

√
h) in DT is replaced by the rate (T

√
Th) in D̊T , which is due to the fact that the stochastic trend

is asymptotically dominated by the linear trend in the direction ofH2. Second, the limits of the directions
qT2(z0) and q⊥T2(z0) in the above proposition are non-random and independent of the point z0 (i.e., µ̃ and
µ̃⊥), whereas the corresponding limits in Proposition 1 are random and depend on z0.

To provide the limit distribution of the kernel estimator under (3.13), we introduce further notation,
defining D̊T2 = diag

{
T
√
Th, (Th)Id1−1

}
and ∆̊2(z0) =

[
δ̊(z0), ∆̊

′
⊥
]′, with

δ̊(z0) =
√

2‖µz0‖
∫ 1

−1
K(z)dB0

(z+ 1
2
)
,

∆̊⊥ = 2µ̃′⊥

[∫ 1

−1
K(z)B2

(z+ 1
2
)
dB0

(z+ 1
2
)
+

1
2
Γ20

]
.

The limit theory for β̂(z0) is as follows.

THEOREM 3. Suppose that Assumptions 1–3 are satisfied, µ 6= 0d, d > 3 with 1 6 d0 6 d − 2 and
2 6 d1 6 d− d0, and Λ̊(z0) is non-singular with probability one. For s > t, E[es0et1] = 0d0 .

(i) If, in addition, Th1+2δ1 = o(1), then (2.12) holds as T →∞.

(ii) For fixed z0 ∈ (0, 1),

D̊T2QT2(z0)
′H′2

[
β̂(z0) − β(z0) +OP(h

δ1)
]
⇒ Λ̊

−1
2 (z0)∆̊2(z0) (3.17)
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as T →∞.

REMARK 6. Theorem 3 combines parts of Theorems 1 and 2, showing that application of the rotation
matricesH andQT (z0) resolves the degeneracy issue in kernel-weighted signal matrices in a similar way to
the transformations in Section 2. However, due to the presence of deterministic trends, the standardization
matrix needs modification and leads to a faster convergence rate in the directionH2qT2(z0), viz.,

qT2(z0)
′H′2

[
β̂(z0) − β(z0)

]
= OP

(
1

T
√
Th

+ hδ1

)
, (3.18)

analogous to that in (3.9). Furthermore, as noted in Remark 2(b), under the additional Assumption 1∗, the
limit distributions in Theorem 3(i) and (ii) are mutually independent.

4 FM-kernel estimation

As is apparent in the limit distributions obtained earlier, second-order bias effects are present in the
asymptotics whenever the regressors are endogenous. Just as in linear cointegration regression asymptotics,
endogeneity may be addressed by using modified estimation methods, such as those in Phillips and Hansen
(1990). This section provides a kernel modification of the Phillips-Hansen approach that is called FM-kernel
estimation. This method effectively removes second-order bias effects in the limit distribution associated
with the nonstationary directionH2. To save space, we mainly focus on the case of cointegrated regressors
studied in Section 2, and the development of FM-kernel regression is entirely analogous for the cases
of mixed stochastic and deterministic trend regressors and cointegrated regressors with deterministic
trends considered in Section 3. Methods other than FM-kernel regression may also be designed to resolve
endogeneity and serial correlation induced bias issues, just as they are in linear cointegrated regression
models. But these are not pursued here. From Theorem 1(ii), the presence of the one-sided long run
covariance Γ20 between et0 and et2, induces a second-order bias effect in the limit distribution in the direction
H2q

⊥
T2(z0). In addition, there is endogeneity arising from correlation between the limit Brownian motions

B0(·) and B2(·). These bias effects relate directly to those that are present in linear cointegrating regression
limit theory as discussed originally in Park and Phillips (1988, 1989) and Phillips and Hansen (1990).
Although the existence of this bias does not affect the super-consistency rates of kernel estimation, centering
is affected, with consequential impact on statistical inference concerning the coefficient functions. The need
to remove these sources of bias and to provide valid inferential machinery motivates the development of an
FM-kernel estimator.

FM least squares estimation was introduced by Phillips and Hansen (1990) in the context of traditional
linear cointegrating models, and was recently generalized by Phillips, Li and Gao (2017) to nonparametric
kernel-based estimation in models with full rank integrated regressors. When nonstationary regressors are
cointegrated, they are necessarily of deficient rank asymptotically, therefore complicating the development
of FM-kernel estimation methodology. To present the required modifications more clearly, we start the devel-
opment under the assumption (which is later relaxed) that the cointegration rank d0 and the transformation
matrix H are known a priori, together with the long-run covariance matrices Ω02, Ω20, Ω22, Γ20 and Γ22.
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Correction for endogeneity is achieved by removing the following term in kernel estimation

B?
T1(z0) =

T∑
t=1

K
(t− Tz0

Th

)
Xt �

[
0′d0

,
(
Ω02Ω

+
22∆Xt21d1

)′]′ , (4.1)

where 1d1 is a d1-dimensional column vector of ones and � denotes component-wise product. Correction
for serial correlation is achieved by removing the term

B?
T2(z0) = HQT (z0)DT

{
0′d0+1,

[
q⊥T2(z0)

′ (Γ20 − Γ22Ω
+
22Ω20

)]′}′
. (4.2)

Combining (4.1) and (4.2), the (infeasible) FM-kernel estimator is constructed as

β̂?(z0) = Λ
+
T (z0)∆

?
T (z0), with ∆?

T (z0) = ∆T (z0) − B
?
T1(z0) − B

?
T2(z0), (4.3)

where ΛT (z0) and ∆T (z0) are defined in (2.1). Since the quantities d0, H, Ω02, Ω20, Ω22, Γ20 and Γ22 are
generally unknown, the estimator (4.3) is infeasible in practice. But estimation of these unknown elements
has been extensively studied in the literature and similar methods may be utilized in the present context, as
we now overview, to produce consistent estimators d̂, Ĥ, Ω̂02, Ω̂20, Ω̂22, Γ̂20 and Γ̂22, that may be used to
construct a feasible version of the FM-kernel estimator.

To simplify, it is convenient to consider the case where the integrated regressors are generated from the
cointegrated VAR process (2.3) discussed in Example 1. Then, as in Cheng and Phillips (2009), we may use
the Bayesian information criterion to consistently estimate the cointegrating rank d0 and use reduced rank
regression to consistently estimate (under normalizing restrictions) the matrices α and γ in (2.3), and thus
obtain a consistent estimator ofH that applies in a general semiparametric setting. Denote the corresponding
estimates d̂ and Ĥ = (Ĥ1, Ĥ2). Feasible FM-kernel estimation further requires estimation of the various long
run covariance matrices that appear in (4.1) and (4.2). We illustrate by estimatingΩ20. The remaining long
run covariance matrix estimates may be constructed in a similar manner. Let

êt0 = Yt − X
′
tβ̂(t/T) = Yt − X

′
tβ̂t

be the estimated equation errors from kernel regression of (1.1). Let

êt2 = X̂t2 − X̂t−1,2 = ∆(Ĥ
′
2Xt)

with X̂t2 = Ĥ
′
2Xt, and construct estimates of the component autocovariancesΩ20(j) = E

[
e02ej0

]
using

Ω̂20(j) =
1

b(1 − τ)Tc− bτTc

b(1−τ)Tc∑
t=bτTc+1

êt−j,2êt0, j = −lT , · · · , 0, · · · , lT , (4.4)

in which 0 < τ < 1/2 is usually close to zero and lT � T is the lag truncation number which tends to
infinity as T →∞. Unlike the existing literature in parametric linear cointegration models where the cross
product êt−j,2êt0 is summed over the full domain of t (i.e., 1 6 t, t− j 6 T ) to estimate the covariance, our
method uses only information over the subinterval from bτTc+ 1 to b(1 − τ)Tc to avoid possible boundary
effects when applying kernel estimation. Although such construction of covariance estimates may lose
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some useful information by taking τ close to zero, consistency of the covariance estimate is unaffected. The
corresponding long run covariance estimate based on the components (4.4) is

Ω̂20 =

lT∑
j=−lT

k (j/lT ) Ω̂20(j), (4.5)

where k(·) is a lag kernel function. Using the known uniform consistency of the kernel estimates such as
Theorem 4.1 in Li, Phillips and Gao (2016) and following similar arguments to those in the proof of Theorem
4.2 in Phillips, Li and Gao (2017), consistency of Ω̂20 can be established under mild conditions on the lag
kernel function k(·) and the truncation number lT (c.f., Phillips, 1995). The proof is standard and details are
omitted to save the space.

With consistent estimates of these parameters in hand, we can construct a feasible version of the FM-
kernel estimator of the coefficient functions. Define a feasible version of the endogeneity correction as

B#
T1(z0) =

T∑
t=1

K
(t− Tz0

Th

)
Xt �

[
0′
d̂

,
(
Ω̂02Ω̂

+

22∆X̂t21
d−d̂

)′]′
, (4.6)

and a feasible version of the serial correlation correction as

B#
T2(z0) = ĤQ

#
T (z0)DT

{
0′
d̂+1

,
[
q⊥#
T2 (z0)

′
(
Γ̂20 − Γ̂22Ω̂

+

22Ω̂20

)]′}′
, (4.7)

where q⊥#
T2 (z0) andQ

#
T (z0) are defined similarly to q⊥T2(z0) andQT (z0) but with Xt2 replaced by X̂t2. Using

the corrections (4.6) and (4.7), we propose the feasible FM-kernel estimator

β̂#(z0) = Λ
+
T (z0)∆

#
T (z0), ∆#

T (z0) = ∆T (z0) − B
#
T1(z0) − B

#
T2(z0), (4.8)

and proceed to analyze its asymptotic behavior.

Because of the removal of the endogeneity bias via the correction in ∆#
T (z0), the stochastic integral in the

limit distribution ∆2(z0) is modified accordingly. We define

∆#
2(z0) =

[
δ#(z0),∆#

⊥(z0)
′]′

with

δ#(z0) =
[
2B2(z0)

′B2(z0)
]1/2
∫ 1

−1
K(z)dB#

0
(z+ 1

2
)
,

∆#
⊥(z0) = 2q⊥2 (z0)

′
∫ 1

−1
K(z)B∗2

(z+ 1
2
)
dB#

0
(z+ 1

2
)
,

where the univariate Brownian motion B#
0(·) has (conditional) varianceω0|2 = ω−Ω02Ω

+
22Ω20 following the

endogeneity correction and is independent of the d1-dimensional Brownian motions B2(·) and B∗2(·). Hence,
the component ∆#

2(z0) has a mixed normal distribution which facilitates inference on the time-varying
coefficient functions in the same way as the usual FM corrections do in linear cointegrating regression.
Noting that the bias correction occurs in the directionH2, the component transformH′1β̂#(z0) has the same
asymptotic distribution asH′1β̂(z0). Hence, we only examine the asymptotic distribution of β̂#(z0) in the
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direction H2. The following result gives the limit theory in this direction. The asymptotic distribution is
mixed normal, giving a nonparametric generalization to the kernel regression case of the original finding in
Phillips and Hansen (1990). The asymptotic mixed normality in this direction, coupled with the asymptotic
normality in the stationary direction open the way to inference using the FM-kernel estimator.

THEOREM 4. Suppose the conditions of Theorem 1 hold, T 2h1+2δ1 = o(1), and(
d̂0, Ĥ, Ω̂02, Ω̂20, Ω̂22, Γ̂20, Γ̂22

)
→p (d0,H,Ω02,Ω20,Ω22, Γ20, Γ22) . (4.9)

Then, as T →∞
DT2QT2(z0)

′H′2

[
β̂#(z0) − β(z0)

]
⇒ Λ−1

2 (z0)∆
#
2(z0) (4.10)

for fixed z0 ∈ (0, 1).

5 Nonparametric statistical inference

In practical work interest often focuses on whether time-varying coefficients are well approximated by
constant coefficients. To provide an apparatus for formal consideration of such hypotheses this section
develops an inferential framework of tests for the coefficient functions in model (1.1) and derives asymptotics
that enable formal testing.

5.1 Testing the global null hypothesis

As in Section 4, we concentrate on the case of cointegrated regressors. The methodology and theory are
similar for the other cases studied in Section 3, and so the details are omitted here. Specifically, we consider
testing the following null hypothesis

H0 : R
[
β(z) − β0

]
= 0r

holds for any 0 < z < 1, where R is an r×d restriction matrix of rank r < d and β0 is a d-dimensional vector
of unknown parameters. As R does not rely on z, we refer to H0 as a global null hypothesis.

Before developing a statistic for testing the hypothesis H0, we derive a useful result from the limit
distributions given in Theorem 1. From (2.12) and (2.13) and as in Remark 2(e), we note that

√
Th
[
β̂(z0) − β(z0)

]
⇒ H1ξ, (5.1)

under the assumptions of Theorem 1, where ξ is the Gaussian vector defined in Theorem 1(i). Further, under
Assumption 1∗, the vector ξ is a d0-dimensional centred normal vector with covariance matrix ν0σ

2
eΛ

+
11,

where σ2
e is defined in Assumption 1∗. The covariance matrix ofH1ξ is therefore ν0σ

2
eH1Λ

+
11H
′
1, which has

degenerate rank.

Construction of a test statistic based on (5.1) requires consistent estimation of the unknown elements σ2
e

andH1Λ
+
11H
′
1 in the covariance structure. From Phillips (1988) and using Proposition 1 in Section 2, we may
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use the matrix
[

1
Th

∑T
t=1 XtX

′
tK
(
t−Tz
Th

)]+
as an estimate ofH1Λ

+
11H
′
1 in view of the fact that

[
1
Th

T∑
t=1

XtX
′
tK
(t− Tz
Th

)]+
= H1Λ

+
11H
′
1 + oP(1), h 6 z 6 1 − h. (5.2)

The above convergence holds uniformly over h 6 z 6 1 − h. Let the residual êt0 be defined as in Section 4,
and construct the equation error variance estimate

σ̂2
e =

1
b(1 − τ)Tc− bτTc

b(1−τ)Tc∑
t=bτTc+1

ê2
t0,

where τ is defined as in Section 4, which gives a consistent estimate of σ2
e in view of Theorem 4.1 in Li,

Phillips and Gao (2016), so that
σ̂2
e = σ

2
e + oP(1). (5.3)

Next let {zk}
m
k=1 be an equidistant grid of points that satisfy 0 < h = z1 < z2 < · · · < zm−1 < zm = 1 − h

and are chosen from the interval (0, 1), where the number m is a fixed positive integer. The extension
to divergent m will be discussed later in Remark 7. Using (5.1)–(5.3), we construct point-wise Wald test
statistics of H0 as

WT (zk) = (Th)
{
R
[
β̂(zk) − β̂

]}′σ̂2
eν0R

[
1
Th

T∑
t=1

XtX
′
tK
(t− Tzk

Th

)]+
R′


+ {
R
[
β̂(zk) − β̂

]}
, (5.4)

where β̂ is a conventional parametric estimate of β0 under the global null hypothesis H0. Assume that

rank
(
RH1Λ

+
11H
′
1R
′) = r (5.5)

and that under the null
β̂− β0 = oP(1/

√
Th). (5.6)

It is natural to propose a generalized Wald test statistic by summing the component statisticsWT (zk) over
k = 1, · · · ,m giving

WT =

m∑
k=1

WT (zk). (5.7)

The following theorem gives the limit distribution of the generalized Wald test statistic.

THEOREM 5. Suppose the conditions of Theorem 1, Assumption 1∗, (5.5), (5.6), and Th1+2δ1 = o(1) hold.
Letting the positive integerm be fixed, we haveWT ⇒ χ2

mr under the null hypothesis H0, where χ2
mr is a

central chi-square distribution with (mr) degrees of freedom. In addition, if (4.9) holds,W#
T ⇒ χ2

mr under
the null hypothesis H0, whereW#

T is constructed in the same manner asWT but using FM-kernel estimates
of the time-varying coefficients.

REMARK 7. (a) The methodology and theory developed above are applicable if we generalize the global null
hypothesis H0 to

H?
0 : R

[
β(z) − β(z, ζ)

]
= 0r
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holds for any 0 < z < 1, where β(·, ζ) =
[
β1(·, ζ1), · · · ,βd(·, ζd)

]′, βi(·, ζi), i = 1, · · · ,d, are pre-specified
nonlinear functional coefficients with ζi being an unknown parameter vector, ζ =

(
ζ′1, · · · , ζ′d

)′. We let ζ̂ be
the conventional nonlinear least squares estimator of the parameter vector ζ and correspondingly construct
the generalized Wald test statistic as ŴT =

∑m
k=1 ŴT (zk), where

ŴT (zk) = R̂β(zk, ζ̂)′

σ̂2
eν0R

[
1
Th

T∑
t=1

XtX
′
tK
(t− Tzk

Th

)]+
R′


+

R̂β(zk, ζ̂) (5.8)

with
R̂β(zk, ζ̂) = (Th)1/2R

[
β̂(zk) − β(zk, ζ̂)

]
.

By replacing (5.6) by ζ̂ − ζ = oP(1/
√
Th) and imposing appropriate smoothness condition on the pre-

specified functional coefficients β(·, ·), we may show the limit distribution of ŴT is similar to those given in
Theorem 5.

(b) We next briefly discuss the case thatm diverges to infinity as T →∞. Using (5.2) and (5.3), we may
prove that

WT (zk) = (Th)
[
β̂(zk) − β0

]′
R′
[
σ2
eν0RH1Λ

+
11H
′
1R
′]+R[β̂(zk) − β0

]
(1 + oP(1)). (5.9)

Following the proof of Theorem 1 in Appendix A and noting that the kernel function K(·) has the compact
support [0, 1], β̂(zk) −β0 is asymptotically determined by (et0, et1), T(zk − h) 6 t 6 T(zk + h). By (5.9) and
Assumption 1 in Section 2.1, we may show that {WT (zk)}

m
k=1 is a sequence of asymptotically independent

random elements when zk+1 − zk > 2h. So the generalized Wald test statisticWT can be viewed as a sum
of asymptotically independent random variables. By appropriately centralizing WT and using standard
central limit arguments, it is clear that the generalized Wald statistic is asymptotically normal whenm→∞.

5.2 Testing the local null hypothesis

We next turn to the more challenging case where the rank condition (5.5) fails. Our approach follows Phillips
(1995) in the application of FM regression to models with cointegrated variates where Wald test statistics
suffer from rank condition failure asymptotically. As will become apparent, kernel FM regression tests
involve further complications under rank condition failure in (5.5).

To proceed, we consider the localized version of the null hypothesis:

H�0 : R(z)
[
β(z) − β0

]
= 0r (5.10)

holds for any 0 < z < 1, where R(z) is an r × d time-varying restriction matrix. As discussed in Phillips
(1995) rank condition failure occurs when the restriction matrix isolates some of the nonstationary variable
coefficients, thereby necessarily involving estimates of these coefficients in the limit theory of Wald-type
test statistics. Motivated by Phillips (1995), under such rank condition failure, the restriction matrix can be
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written in the following form

R(z)′ =
[
R1(z)

... R2(z)
]
= (H1,H2)

 S1 Sh1
... Od0×r2

Od1×r0 QT2(z)Sh2
... QT2(z)S2


=

[
H1S1,H1Sh1 +H2QT2(z)Sh2

...H2QT2(z)S2
]
, (5.11)

which in the present case involves the localized structure where R1(z) and R2(z) are d × r1 and d × r2

matrices with r1 + r2 = r, S1, Sh1, Sh2 and S2 are the matrices with sizes d0× r0, d0× (r1 − r0), d1× (r1 − r0)

and d1 × r2, respectively, Sh1 has full column rank. From (5.11), we have that (5.5) reduces as follows

R(z)H1Λ
+
11H
′
1R(z)

′ =

[
R1(z)H1Λ

+
11H
′
1R1(z)

′ Or1×r2

Or2×r1 Or2×r2

]
(5.12)

whose rank is smaller than r.

The rank deficiency in (5.12) implies that the arguments used above to prove Theorem 5 no longer apply
to the generalized Wald statistic for testing the H�0 and different methods are required. Instead of using
Theorem 1 in Section 2, we make use of Theorem 4 in Section 4. In the remainder of this section, we apply
the test statistic constructed from the FM-kernel estimates for which the mixed normal distribution derived
in Theorem 4 plays an important role in achieving the limit theory. Further, to simplify derivations, we use
the uniform kernel K(u) = I(−1 6 u 6 1) where I(·) denotes the indicator function. We remark that µ0 = 2
in this case, which differs from the unit normalization condition used in Assumption 3(ii).

Again, we start by defining the following point-wise Wald statistics based on FM-kernel estimation

W�T (zk) = R̂#(zk)
′

σ̂2
eν0R(zk)

[
1
Th

T∑
t=1

XtX
′
tK
(t− Tzk

Th

)]+
R(zk)

′


+

R̂#(zk), (5.13)

where
R̂#(zk) = (Th)1/2R(zk)

[
β̂#(zk) − β̂

]
,

and ν0 = 2 since K(u) = I(−1 6 u 6 1). As in (5.7), we construct the generalized Wald test statistic by
summingW�T (zk) over k = 1, · · · ,m, i.e.,

W�T =

m∑
k=1

W�T (zk). (5.14)

Define
D
�
T = diag

{
Id0 ,
√
T , (
√
Th)Id1−1

}
and assume √

ThD
�
TH
′(β̂− β0) = oP(1). (5.15)

The following limit theorem provides the asymptotic distribution ofW�T defined in (5.14) under the local
null hypothesis, which differs from the earlier limit distribution given in (5.10) and can be viewed as a
nonparametric kernel-FM test generalization of Theorem 4.5 in Phillips (1995).
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THEOREM 6. Suppose that the conditions of Theorem 1, Assumption 1∗, (5.15) and T 2h1+2δ1 = o(1) are all
satisfied. Letting the positive integerm be fixed, we have

W�T ⇒ χ2
mr1

+
ω0|2

σ2
e

χ2
mr2,∗, (5.16)

under the null hypothesis H�0 with (5.11), where χ2
mr1

and χ2
mr2,∗ are two independent chi-square distribu-

tions with degrees of freedommr1 andmr2, respectively, andω0|2 = ω−Ω02Ω
+
22Ω20.

REMARK 8. Note thatω0|2 = ω−Ω02Ω
+
22Ω20 6 ω so that the ratio in (5.16) can be written in the form

ω0|2

σ2
e

=
ω−Ω02Ω

+
22Ω20

ω
· ω
σ2
e

6
ω

σ2
e

.

It follows that

P (W�T > w)→ P
(
χ2
mr1

+
ω0|2

σ2
e

χ2
mr2,∗ > w

)
6 P

(
χ2
mr1

+
ω

σ2
e

χ2
mr2,∗ > w

)
,

so that a test of H�0 based on critical values of the distribution of χ2
mr1

+ ω
σ2
e
χ2
mr2,∗ would be an asymptotically

conservative test if r1 and r2 were known and consistent estimates ofω = lrvar (et0) and σ2
e were employed

in calculating critical values. Further, under Assumption 1∗, we have ω0|2 = σ2
e −Ω02Ω

+
22Ω20 6 σ2

e and
then

χ2
mr1

+
ω

σ2
e

χ2
mr2,∗ 6 χ

2
mr1

+ χ2
mr2,∗ =d χ

2
mr,

so that a conservative test can be computed directly by using critical values from a χ2
mr distribution.

6 Monte-Carlo simulations

This section reports Monte-Carlo simulations designed to examine the finite sample performance of the
proposed methods and illustrate the kernel estimation and inferential limit theory given in Sections 2–5. It is
well known that the numerical performance of kernel-based local regression estimation relies on the choice of
bandwidth. In the classic nonparametric regression setting with independent or stationary regressors, cross-
validation (CV) is probably the most commonly-used method to select the bandwidth and its asymptotic
optimality property has been extensively studied in the literature. However, bandwidth selection is a
challenging issue in the time-varying coefficient cointegrating regression framework of the present paper.
From the asymptotic theory developed in Sections 2 and 3 the kernel estimators of the coefficient functions
have different convergence rates in different directions, indicating that optimal bandwidth orders vary in
these different directions. In consequence use of a universal optimal bandwidth determined by a method
such as cross validation may not perform well in finite samples. In the following simulation studies we
therefore employ different rules to select bandwidths in different settings, which helps to ensure reliable
numerical performance of the kernel estimation procedure in the present setting.

EXAMPLE 6.1. (i) Let d = 3 and consider the data generating process:

Yt = β
′
tXt + et0, t = 1, · · · , T , (6.1)
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where Xt =
(
Xt1,X′t2

)′, Xt1 = et1, ∆Xt2 = (et2, et3)′, the process et = (et1, et2, et3)′ is independently
generated from a three-dimensional normal distribution with mean zero and variance matrix

Ω1 =

 1 ρ ρ

ρ 1 ρ

ρ ρ 1

 , ρ = 0, 0.2 or 0.4,

The error term et0 is independently generated from N(0, 0.52) and is independent of et, and the following
coefficient functions βt = β(t/T) = (βt1,βt2,βt3)

′ are defined as

βt1 = β1(t/T) = 1 + t/T , βt2 = β2(t/T) =
√

1 + t/T , βt3 = β3(t/T) = 1 + (t/T)2. (6.2)

are employed giving linear, square root and quadratic specifications. When ρ = 0.2 or 0.4, the stationary
component Xt1 is correlated with the nonstationary component Xt2. We use the local kernel estimation

technique β̂(z) =
[
β̂1(z), β̂2(z), β̂3(z)

]′
to estimate the coefficient functions β(z), where the Epanechnikov

kernel K(u) = 3
4(1 − u2)I (−1 6 u 6 1) is used and the bandwidth is h = 0.8hcv with hcv determined

by the CV selection criterion. The reason for slightly scaling down the CV selected bandwidth hcv in
the kernel estimation procedure is partly due to the bandwidth restriction in Theorem 1, which requires
undersmoothing to make the kernel estimation bias asymptotically negligible.

This simulation design serves to illustrate the kernel estimation theory in Section 2. From the above
data generating scheme, the global rotation matrix is H = I3 and the local rotation matrix is QT (z) =

diag {1,QT2(z)}, whereQT2(z) =
[
qT2(z),q⊥T2(z)

]
with

qT2(z) = XbT(z−h)c,2/‖XbT(z−h)c,2‖ =: [p1(z),p2(z)]
′ ,

q⊥T2(z) = [p2(z),−p1(z)]
′ .

From the definition of the rotation matrices, the kernel estimates in the three different directions (as discussed
in Section 2) can be expressed as

β̂1(z), p1(z)β̂2(z) + p2(z)β̂3(z), p2(z)β̂2(z) − p1(z)β̂3(z),

respectively. Their corresponding rates of convergence are given in (2.15)–(2.17), respectively. In the
simulation, we consider three interior points in the kernel estimation (z = 0.25, 0.5, 0.75). For the point-wise
kernel estimates at these points, we calculate the respective estimated standard errors over 1000 replications
of the following transformed and centered quantities:

g1
T1(z) = β̂1(z) − β1(z),

g1
T2(z) = p1(z)

[
β̂2(z) − β2(z)

]
+ p2(z)

[
β̂3(z) − β3(z)

]
,

g1
T3(z) = p2(z)

[
β̂2(z) − β2(z)

]
− p1(z)

[
β̂3(z) − β3(z)

]
.

In what follows, the affix j in the notation gjT1(z) indicates the relevant experiment; and in the present case
j = 1 with corresponding results given in Table 1.

We observe from Table 1 that all estimated standard errors decrease as the sample size T increases.
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Table 1: Standard errors of kernel estimates in three different directions for setting (i)

z ρ = 0 ρ = 0.2 ρ = 0.4

T 200 600 1000 200 600 1000 200 600 1000

g1
T1(z)

0.25 0.1554 0.1248 0.1134 0.1592 0.1234 0.1083 0.1675 0.1246 0.1147
0.50 0.1571 0.1322 0.1183 0.1681 0.1331 0.1201 0.1626 0.1290 0.1187
0.75 0.1822 0.1423 0.1189 0.1792 0.1443 0.1247 0.1839 0.1390 0.1228

g1
T2(z)

0.25 0.0376 0.0189 0.0132 0.0430 0.0179 0.0147 0.0402 0.0191 0.0133
0.50 0.0245 0.0120 0.0095 0.0284 0.0142 0.0102 0.0269 0.0147 0.0102
0.75 0.0206 0.0101 0.0074 0.0234 0.0114 0.0079 0.0270 0.0120 0.0081

g1
T3(z)

0.25 0.1294 0.0888 0.0763 0.1324 0.0984 0.0767 0.1590 0.1150 0.0947
0.50 0.1158 0.0819 0.0689 0.1179 0.0743 0.0727 0.1246 0.0900 0.0706
0.75 0.1638 0.1067 0.0865 0.1523 0.1113 0.0837 0.1664 0.1152 0.0864

Broadly speaking, the standard errors of g1
T2(·) are much smaller than those of g1

T3(·), and the standard errors
of g1

T1 (in the stationary direction) have the largest values. These results generally support the limit theory
and relative convergence rates obtained in Section 2 where g1

T1(z) = OP(
1√
Th

), g1
T2(z) = OP(

1
T
√
h
), and

g1
T3(z) = OP(

1
Th) for fixed z ∈ (0, 1). Also, we observe that correlation between the stationary component

Xt1 and the nonstationary component Xt2 does not noticeably impact the finite sample estimation results.

(ii) We next let d = 2 and consider mixed stochastic and deterministic trends in generating the nonsta-
tionary regressors. Define

Yt = β
′
tXt + et0, t = 1, · · · , T , (6.3)

where Xt = Xt−1+µ+ut, µ = (0.1, 0.2)′, the initial value X0 = 02, ut is independently generated as bivariate
normal with mean zero and

Ω2 =

(
1 ρ

ρ 1

)
, ρ = 0, 0.2 or 0.5,

the error term et0 is defined as in setting (i), and the coefficient functions βt = β(t/T) = (βt1,βt2)
′ are

defined by the linear and quadratic functions

βt1 = β1(t/T) = 1 + t/T , βt2 = β2(t/T) = 1 + (t/T)2. (6.4)

The aim of this design is to assess the asymptotic theory of Section 3.1 when the nonstationary regressors
have a mixture of stochastic and deterministic trends. From the data generating scheme, we have the local
rotation matrix Q̃T (z) =

[
q̃T (z), q̃⊥T (z)

]
with

q̃T (z) = XbT(z−h)c/‖XbT(z−h)c‖ =: [p̃1(z), p̃2(z)]
′

q̃⊥T (z) = [p̃2(z),−p̃1(z)]
′ .

Let β̂(z) =
[
β̂1(z), β̂2(z)

]′
be the kernel regression estimator of β(z). The kernel estimates in the two

different directions (as discussed in Section 3.1) are

p̃1(z)β̂1(z) + p̃2(z)β̂2(z) and p̃2(z)β̂1(z) − p̃1(z)β̂2(z),

respectively. They have the convergence rates given in (3.11) and (3.12). We use the same interior points
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Table 2: Standard errors of kernel estimates in two different directions for setting (ii)

z ρ = 0 ρ = 0.2 ρ = 0.5

n 200 600 1000 200 600 1000 200 600 1000

g2
T1(z)

0.25 0.0509 0.0091 0.0047 0.0568 0.0110 0.0052 0.0529 0.0125 0.0053
0.50 0.0270 0.0045 0.0026 0.0237 0.0046 0.0026 0.0244 0.0054 0.0027
0.75 0.0136 0.0034 0.0020 0.0167 0.0033 0.0021 0.0165 0.0035 0.0020

g2
T2(z)

0.25 0.3628 0.2612 0.2495 0.4173 0.2912 0.2650 0.4803 0.3501 0.2925
0.50 0.4046 0.3460 0.3186 0.4456 0.3602 0.3258 0.5399 0.4396 0.4333
0.75 0.5627 0.4743 0.4673 0.5719 0.5444 0.5221 0.7106 0.6611 0.6197

(z = 0.25, 0.5, 0.75) as in setting (i) and calculate the estimated standard errors over 1000 replications of the
following quantities:

g2
T1(z) = p̃1(z)

[
β̂1(z) − β1(z)

]
+ p̃2(z)

[
β̂2(z) − β2(z)

]
,

g2
T2(z) = p̃2(z)

[
β̂1(z) − β1(z)

]
− p̃1(z)

[
β̂2(z) − β2(z)

]
.

In this simulation, we find that the choice of the bandwidth h has only a small impact on the kernel
estimation results in the direction of q̃T (z), but affects those in the direction of q̃⊥T (z) quite a lot. We use
the bandwidth h = chT

−0.8 with ch = 1.05 in the kernel estimation. Such a bandwidth selection may
seem somewhat arbitrary, but it leads to sensible results for the kernel estimation standard errors in Table
2. In particular, it is clear from the table that the values in both directions approach zero as the sample
size increases, and g2

T1(z) evidently converges at a rate much faster than g2
T2(z), as indicated in Section 3.1

where g2
T1(z) = OP(

1
T
√
Th

+ hγ) and g2
T2(z) = OP(

1
Th + hγ) for fixed z ∈ (0, 1). In addition, the choice of

bandwidth also slows down the rate of convergence in the direction of q̃⊥T (z). As in setting (i), Table 2 shows
that correlation within the nonstationary regressors Xt has little impact on the results.

(iii) Following (i) we let d = 3 and consider the data generating process (6.1) with Xt =
(
Xt1,X′t2

)′, where

∆Xt1 = et1 and Xt2 =

(
0.05
0.15

)
+

(
0.5 0.3
0 1

)
Xt−1,2 +

(
et2

et3

)
.

It can be shown that Xt2 is cointegrated with a linear deterministic trend. The processes et = (et1, et2, et3)′

and et0 are defined as in setting (i), and the coefficient functions βt = β(t/T) = (βt1,βt2,βt3)
′ are defined

in the same way as (i) with three different functions.

This design is intended to assess the limit theory in Section 3.2 where the nonstationary regressors are
cointegrated with deterministic trends. The global rotation matrix isH = (H1,H2), where

H1 =
(

0, 5/
√

34,−3/
√

34
)′

and H2 =
(

0 3/
√

34 5/
√

34
1 0 0

)′
.

The local rotation matrix QT (z) is the same as that in setting (i) with H′2Xt replacing Xt2. The kernel
estimates in three different directions (as discussed in Section 3.2) are

H′1β̂(z), qT2(z)
′H′2β̂(z) and q⊥T2(z)

′H′2β̂(z),
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Table 3: Standard errors of kernel estimates in three different directions for setting (iii)

z ρ = 0 ρ = 0.2 ρ = 0.5

n 200 600 1000 200 600 1000 200 600 1000

g3
T1(z)

0.25 0.3452 0.2706 0.2401 0.4086 0.3085 0.2739 0.4813 0.3704 0.3264
0.50 0.3672 0.2993 0.2665 0.4107 0.3288 0.2977 0.5561 0.3925 0.3416
0.75 0.4130 0.3910 0.3541 0.4755 0.4171 0.3699 0.6056 0.4907 0.4578

g3
T2(z)

0.25 0.0518 0.0158 0.0084 0.0555 0.0135 0.0068 0.0522 0.0141 0.0062
0.50 0.0243 0.0063 0.0035 0.0244 0.0075 0.0034 0.0273 0.0061 0.0033
0.75 0.0191 0.0052 0.0026 0.0173 0.0047 0.0027 0.0212 0.0047 0.0027

g3
T3(z)

0.25 0.1629 0.0945 0.0613 0.1853 0.0853 0.0718 0.2071 0.0993 0.0682
0.50 0.2933 0.2324 0.2204 0.3012 0.2419 0.2189 0.3607 0.2602 0.2314
0.75 0.3999 0.3573 0.3385 0.3965 0.3660 0.3605 0.4570 0.4000 0.3904

respectively. As in settings (i) and (ii), we consider three interior points: z = 0.25, 0.5, 0.75, and then calculate
the standard errors over 1000 replications of the following quantities:

g3
T1(z) = 5/

√
34
(
β̂2(z) − β2(z)

)
− 3/
√

34
(
β̂3(z) − β3(z)

)
,

g3
T2(z) = p1(z)

[
3/
√

34
(
β̂2(z) − β2(z)

)
+ 5/
√

34
(
β̂3(z) − β3(z)

)]
+ p2(z)

[
β̂1(z) − β1(z)

]
,

g3
3T (z) = p2(z)

[
3/
√

34
(
β̂2(z) − β2(z)

)
+ 5/
√

34
(
β̂3(z) − β3(z)

)]
− p1(z)

[
β̂1(z) − β1(z)

]
.

Unlike settings (i) and (ii), we use different bandwidths when computing the kernel estimation standard
errors in different directions. From Table 3, all estimated standard errors decrease as the sample size
increases. Broadly speaking, the values of g3

T2(z) converge to zero much faster than g3
T1(z) and g3

T3(z), and
g3
T1(z) looks to have the largest value, supporting the limit results in Section 3.2. In addition, the presence of

the correlation between the stationary component Xt1 and the nonstationary component Xt2 still has no
impact on the kernel estimation results.

(iv) In the above three settings, the error et0 is independent of the nonstationary regressors, excluding
the existence of endogeneity. We now relax this restriction when generating the simulated data. As shown in
Section 2.3, the correlation between et0 and the stationary regressors often leads to estimation inconsistency.
We now consider the setting (i) with the only difference that et0 and (et2, et3)′ are jointly determined by a
three-dimensional normal distribution with mean zero and the covariance matrix:

Ω3 =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 ,

and et1 is independent of (et0, et2, et3)′.

We compare finite sample performance between the conventional kernel estimates and the FM kernel
estimates proposed in Section 4. We use the same interior points (z = 0.25, 0.5, 0.75) and calculate averages
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Table 4: Averages of g#
Ti(z) and g4

Ti(z) over 1000 replications for setting (iv)

z FM-kernel z Kernel

T 200 600 1000 200 600 1000

g#
T1(z)

0.25 0.01368 0.00401 0.00002
g4
T1(z)

0.25 0.01229 0.00198 -0.00009
0.50 0.00687 0.00477 0.00443 0.50 0.00803 0.00550 0.00429
0.75 -0.01006 -0.00884 0.00536 0.75 -0.01451 -0.00938 0.00507

g#
T2(z)

0.25 0.00188 0.00073 0.00065
g4
T2(z)

0.25 -0.00053 0.00037 0.00085
0.50 0.00042 0.00070 0.00056 0.50 0.00024 0.00062 -0.00060
0.75 0.00044 0.00033 0.00037 0.75 -0.00051 0.00036 -0.00044

g#
T3(z)

0.25 -0.00573 -0.00343 -0.00184
g4
T3(z)

0.25 -0.00526 -0.00523 0.00298
0.50 -0.00345 -0.00198 0.00050 0.50 -0.00132 -0.00323 0.00173
0.75 0.00116 0.00302 0.00051 0.75 -0.00180 0.00358 0.00092

of the following quantities over 1000 replications

g#
T1(z) = β̂#

1(z) − β1(z),

g#
T2(z) = p1(z)

[
β̂#

2(z) − β2(z)
]
+ p2(z)

[
β̂#

3(z) − β3(z)
]

,

g#
T3(z) = p2(z)

[
β̂#

2(z) − β2(z)
]
− p1(z)

[
β̂#

3(z) − β3(z)
]

,

where β̂#(z) =
[
β̂#

1(z), β̂
#
2(z), β̂

#
3(z)

]′
is defined in (4.8). The estimate of the long run covariance matrix is

constructed under lT = bT 1/4c, τ = 1/4, and k(x) = I(−1 6 x 6 1). Accordingly, we define g4
Ti(z) in a

similar way as g#
Ti(z), with β̂#

i(z) being replaced by the conventional kernel estimate β̂i(z) for i = 1, 2, 3.

The simulation results are reported in Table 4 for both the FM and conventional kernel methods. The
methods exhibit similar finite sample performance in the three directions. The results show that the FM-
kernel method improves estimation well when T = 1000, but has similar performance to the conventional
kernel estimation when the sample size is small or moderate. Broadly speaking, the simulation shows that
reasonably large samples are needed to realize gains from the use of FM kernel methods in the present
setting. These findings generally support the limit theory in Section 4.

EXAMPLE 6.2. We use the data generating process

Yt = β
′
tXt + et0, βt ≡ β0 = (2, 2, 4)′, t = 1, · · · , T , (6.5)

where Xt =
(
X′t1,Xt2

)′, Xt1 = (et1, et2)′, ∆Xt2 = et3, et = (et1, et2, et3)′ and et0 are defined as in setting (i)
with ρ = 0 or 0.2. This simulation is designed to examine the size performance of the nonparametric test
statistics proposed in Section 5.

Consider the global null hypothesis:

H0 : R (βt − β0) = 02, R =

(
1 0 0
0 1 0

)
,

which is equivalent to testing βt1 = βt2 ≡ 2, given the true value β0. In this case, it is easy to verify the rank
condition (5.5) with r = 2. So we can use the generalized Wald test statistic constructed in (5.4) and (5.7),
and examine test size performance in finite samples.
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Table 5: Empirical size performance under the global null hypothesis

T
ρ = 0 ρ = 0.2

1% 5% 10% 1% 5% 10%
200 0.0178 0.0588 0.0936 0.0188 0.0568 0.0922
400 0.0134 0.0520 0.0957 0.0141 0.0527 0.0935

1000 0.0108 0.0510 0.0982 0.0101 0.0504 0.0976

Table 6: Empirical size performance under the local null hypothesis

T
ρ = 0 ρ = 0.2

1% 5% 10% 1% 5% 10%
200 0.0149 0.0523 0.0946 0.0168 0.0584 0.0946
400 0.0118 0.0514 0.0949 0.0148 0.0549 0.0978

1000 0.0105 0.0504 0.0989 0.0100 0.0507 0.0987

As in (5.10), we also construct the following local null hypothesis:

H�0 : R(z) (βt − β0) = 02, R(z) =

(
1 −1 0
0 0 qT (z)

)
, qT (z) = XbT(z−h)c,2/|XbT(z−h)c,2|.

In this case, the rank condition (5.5) fails, so we adopt the generalized Wald test statistic defined in (5.13)
and (5.14) and examine its size performance.

A bootstrap scheme is used to generate the critical values l∗α where α = 1%, 5%, and 10%, as it is well
known that bootstrap critical values usually outperform the asymptotic critical values in finite samples.
A detailed description of the bootstrap procedure is provided in Appendix C of the Online Supplement
(Li, Phillips and Gao, 2019). The sample sizes considered are T = 200, 400, and 1000, and the number of
Monte-Carlo replications isM = 1000. The size function is defined by

α∗T = P(WT > l∗α | H0) or α∗T = P(W�T > l∗α | H�0 ), (6.6)

where WT is defined in (5.7) and W�T is defined in (5.14). As the size function defined in (6.6) is also a
function of the significance level α, different bandwidths {hi : i = 1, 2, 3} are used in simulations with respect
to α = 1%, 5%, and 10%, respectively. We use a grid search method to find appropriate bandwidths that
lead to good size performance.

The simulation results of the empirical size for both the global and local null hypothesis tests are
summarized in Tables 5 and 6. We observe that almost all the calculated sizes fluctuate around the given
significance level. They appear to be oversized at the 1% and 5% significance level and undersized at 10%
for both hypothesis tests, but these size distortions decrease as the sample size increases. The presence of
the correlation between the stationary component Xt1 and the nonstationary component Xt2 again has no
noticeable impact on size performance. In addition, we study the finite-sample performance of the proposed
test under an alternative hypothesis and the power results are found to be satisfactory for small-moderate
departures even for sample sizes T = 200, 400. The details are reported in Appendix C of the Online
Supplement.
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Figure 1: Aggregate US data on consumption, income and nominal interest rate over 1960–2009.

7 Empirics: time-varying consumption behaviour

We next apply the time-varying coefficient model and kernel estimation methodology to aggregate US
data on consumption, income, and nominal interest rate obtained from Federal Reserve Economic Data
(FRED). We consider a quarterly data set over the first quarter of 1960 to the last quarter of 2009 with 200
observations: ct is log-transformed consumption expenditure, it is log-transformed disposable income,
and nrt is the nominal interest rate expressed as a percentage. All the three series are plotted in Figure 1,
which shows that ct and it have co-moving trend components. Unit root tests confirm nonstationarity for
all variables.1

Set Yt = ct and Xt = (it, it−1,nrt)′, where it and it−1 are cointegrated regressors, and nrt follows a unit
root process. Noting that it − it−1 is stationary, as in Section 2.1 we may apply the global transformation
matrixH = (H1,H2) with

H1 =
(√

2/2,−
√

2/2, 0
)′

and H2 =

(√
2/2

√
2/2 0

0 0 1

)′
,

on the covariate space to separate out stationary and nonstationary components as Xt1 = H′1Xt and
Xt2 = H′2Xt, respectively. We first fit the following time-varying coefficient model:

Yt = β
′
tXt + et, βt = β(t/T), t = 1, · · · , T , (7.1)

where Xt = H′Xt = (Xt1,X′t2)
′ and T = 200. For given 0 < τ < 1, the coefficient function β(τ) =

1The PP tests (Phillips and Perron, 1988) with fitted mean and linear trend were conducted for ct and it, giving p-values of
0.7248 and 0.7603. The PP test with fitted mean for nrt gave a p-value of 0.2661.
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Figure 2: Nonparametric function estimate β̂1 with confidence intervals (β̂1a, β̂1b) together with the 4th

order parametric polynomial ĝ1 estimate of β1.

[β1(τ),β2(τ),β3(τ)]
′ is estimated by the local level regression as

β̂(τ) =
[
β̂1(τ), β̂2(τ), β̂3(τ)

]′
=

[
T∑
t=1

XtX
′
tK

(
t− Tτ

Th

)]+ [ T∑
t=1

XtYtK

(
t− Tτ

Th

)]
, (7.2)

where K(u) = 3
4(1 − u2)I(−1 6 u 6 1) and the bandwidth h = c · hcv = 15× hcv = 0.4990 with hcv being

the CV selected bandwidth. The three nonparametrically estimated curves β̂i(·) with their 95% confidence
intervals are exhibited in Figures 2–4, where the confidence intervals are computed using the bootstrap
approach.

For comparison, we also consider a traditional linear consumption function of the following form

Yt = β
′
?Xt + vt, β? = (β?

1 ,β?
2 ,β?

3)
′ , (7.3)

whose constant coefficients are estimated as β̂? = (−0.4099, 0.7019,−0.0065)′. The constant coefficient
specification (7.3) fails to capture any time-varying components in the coefficients, whereas plots of the
fitted functions β̂1(·), β̂2(·) and β̂3(·) in Figures 2–4 strongly support the presence of nonlinear functional
forms for these coefficients. Based on the observed patterns of β̂j(·), a high-order polynomial function
might be a good parametric candidate for approximating the estimated time-varying coefficient functions.
Accordingly, we fitted 4th order polynomial functions for each of the coefficient functions. The plots of
these fitted polynomial functions2 are shown in Figures 2–4. Standard t-tests were used to select the chosen
specifications of the polynomial functions and, although not detailed here, the coefficients in the selected
specifications were significant with p-values close to zero. Figures 2–4 show that the nonparametric fits

2The fitted functions are ĝ1(τ) = 0.2968 + 0.5368τ− 9.8343τ2 + 19.8220τ3 − 10.8344τ4, ĝ2(τ) = 0.6983 − 0.0120τ+ 0.0715τ2 −
0.0858τ3 + 0.0303τ4, ĝ3(τ) = −0.0028 + 0.0150τ− 0.0763τ2 + 0.0762τ3 − 0.0159τ4.
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Figure 3: Nonparametric function estimate β̂2 with confidence intervals (β̂2a, β̂2b) together with the 4th

order parametric polynomial ĝ2 estimate of β2.
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Figure 4: Nonparametric function estimate β̂3 with confidence intervals (β̂3a, β̂3b) together with the 4th

order parametric polynomial ĝ3 estimate of β3.
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Table 7: Unit root tests for the residuals

ADF DF-GLS PP KPSS
êt -3.85∗∗∗ -2.82∗∗∗ -4.03∗∗∗ 0.33
v̂t -2.99∗∗ -2.74∗∗∗ -2.85∗ 1.36∗∗∗

∗, ∗∗, and ∗∗∗ imply rejection of the null hypothesis at 10%, 5%, and 1% level.

are well captured by the 4th order parametric polynomial approximations with no need for higher order
specifications.

Proceeding further, we analyzed residuals from the time-varying coefficient model (7.1) and the linear
model (7.3), which are plotted in Figure S.1 available in Appendix C of the supplementary document. The
residuals v̂t from the linear consumption function show a clear upward drift when compared with the
residuals êt of the time-varying coefficient model. Standard residual based unit root tests3, shown in Table
7, indicate stronger evidence for stationarity in êt than v̂t. For example, when the PP test is applied, the
null hypothesis is rejected at the 1% level for êt but the null fails to be rejected at the 5% level for v̂t. In
addition, the KPSS test suggests that v̂t may have a unit root at the 1% level. Based on these results, we
conclude that êt is stationary, but v̂t is nonstationary, indicating that a time-varying coefficient consumption
function is more appropriate in capturing cointegrating links between the variables than a linear model for
consumption behavior.

In order to capture the drift presented in v̂t, we fitted a fixed design nonparametric specification
v̂t = m(t/T) + ut, t = 1, · · · , T , to the residuals using local level kernel estimation

m̂(τ) =

(
T∑
t=1

K
(t− Tτ
Th

)
v̂t

)
/

(
T∑
t=1

K
(t− Tτ
Th

))
, 0 < τ < 1.

to estimate the trend functionm(·). The estimated trend is shown in Figure 5, which is strongly indicative
of a nonlinear trend in v̂t. The detrended residuals ût := v̂t − m̂(t/T) from this nonparametric regression
are plotted in Figure S.2 (available in Appendix C of the supplementary document) against the residuals
êt from the time varying coefficient consumption function. The close correspondence of these residuals
provides further confirmation of the presence of time variation in the consumption function.

8 Conclusions

Nonparametric methods offer empirical researchers considerable flexibility in model specifications, allowing
for time dependent formulations that are useful when models with constant coefficients prove inadequate.
In time series regressions, this flexibility is particularly useful when series move together over time but
fail cointegration tests because of evolving coefficients. The kernel estimation approach studied in the
present paper allows empirical research with time-varying coefficient cointegrating models when the
regressors are multivariate and embody a mixture of stochastic and deterministic trends combined with
potential co-movement among themselves. This structure is sufficiently rich to accommodate many empirical

3Formal residual based unit root tests (e.g., Phillips and Ouliaris, 1990) are unavailable for specifically testing residuals from time
varying coefficient cointegrating regressions and are presently under development by the authors in a separate project. Standard
unit root tests are used here instead.
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Figure 5: The estimated nonlinear trend of the residuals v̂t from the linear model

applications with co-moving nonstationary time series. Standard local level kernel regression forms the
basis of the approach and the FM-kernel methodology extends to nonparametric regression the FM-OLS
method of estimating linear cointegrating regressions with endogenous regressors and serially dependent
error processes.

The methods are straightforward to implement and have the advantage that conventional limit theory
can be used in a way that facilitates inference, even though the model complexities imply signal matrix
degeneracies that lead to multiple convergence rates in different directions of the parameter space. In
particular, the usual kernel convergence rate (

√
Th) applies in the stationary direction, a type 1 super-

consistency rate (T
√
h) and a type 2 super-consistency rate (Th) apply in nonstationary directions, and a

type 3 rate (T
√
Th) applies in the direction of the deterministic linear trends. The local and global rotation

techniques used in the paper to address these challenges are a technical device only. While they produce
new asymptotic theory for kernel estimation techniques that differs considerably from standard kernel limit
theory, the rotation methods are not needed in empirical research with these kernel estimators or with the
test statistics that are based on them.

In addition to the estimation methodology and new limit theory for time-varying parameter cointegrating
regression, a generalized Wald-type statistic is introduced to provide a statistical test of whether the time-
varying coefficients can be approximated by constant coefficients. That methodology also allows for testing
the adequacy of specific functional forms such as polynomial time-varying parameter specifications. These
specification tests enable researchers to evaluate whether greater flexibility is needed in the formulation of
cointegration regression models to allow for the coefficients in these models to evolve over time. Empirical
application of these methods to aggregate consumption behavior in the US is strongly indicative of the need
for such flexibility. In addition, the comprehensive simulation results support the limit results established in
Sections 2–5.

The present work suggests future research on related matters of importance for practical implementation
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of the methods of this study. For example, as is apparent in the numerical simulations, it will be useful
to develop a fully data-driven approach to bandwidth selection for time-varying cointegrating coefficient
estimation by kernel methods and to establish its asymptotic validity. Another topic of importance is the
development of residual based unit root and KPSS tests for time-varying coefficient cointegrating regressions
and derive their asymptotic properties under null and alternative hypotheses.
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