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Abstract—This paper studies the mean and mean-square be-
haviors of the M-estimate based normalized subband adaptive fil-
ter algorithm (M-NSAF) with robustness against impulsive noise.
Based on the contaminated-Gaussian noise model, the stability
condition, transient and steady-state results for the algorithm are
formulated analytically. The analysis results help us to better
understand the M-NSAF performance in impulsive noise. To
further obtain fast convergence and low steady-state estimation
error, we derive a variable step size (VSS) M-NSAF algorithm.
This VSS scheme is also generalized to proportionate M-NSAF
variant for sparse systems. Computer simulations on system
identification in impulsive noise and acoustic echo cancellation
with double-talk are performed to demonstrate our theoretical
analysis and the effectiveness of the proposed algorithms.

Index Terms—Acoustic echo cancellation, impulsive noise, M-
estimate, subband adaptive filter, variable step size

I. INTRODUCTION

ADAPTIVE filter has been found in a variety of applica-
tions such as system identification, channel equalization,

active noise control, and acoustic/network echo cancellation
[1]–[4]. One of the most popular adaptive algorithms is the
normalized least mean squares (NLMS) because of its low
computational complexity per input sample and stability on
the power of input signals. The shortcoming of the NLMS
algorithm is slow convergence when the input signal is highly
correlated (e.g., autoregressive and speech signals). The family
of affine projection (AP) algorithms can speed up the con-
vergence by using the recent multiple input vectors at each
update of the filter weight vector [5]–[7], while at the cost of

This work was partially supported by the National Science Foundation of
China (NSFC) (Nos. 61901400, 61771411, and 61901285), and the Doctoral
Research Fund of Southwest University of Science and Technology in China
(No. 19zx7122). The work of H. He was supported in part by the NSFC (No.
61571376), in part by the NSFC key program (No. 61831019), in part by
the NSFCISF joint research program (No. 61761146001), and in part by the
NSFC Distinguished Young Scientists Fund (No. 61425005). The work of J. Li
was partially supported by the European Unions Horizon 2020 research and
innovation pro-gramme under the grant agreement number 654462 (STEMM-
CCS).

Y. Yu and H. He are with the School of Information Engineering,
Robot Technology Used for Special Environment Key Laboratory of Sichuan
Province, Southwest University of Science and Technology, Mianyang,
621010, China (e-mail: yuyi xyuan@163.com, hongsenhe@gmail.com).

B. Chen is School of Electronic and Information Engineering, Xi’an
Jiaotong University, Xian, China (e-mail: chenbd@mail.xjtu.edu.cn).

J. Li is with the institute of Sound and Vibration Research, University of
Southampton, Southampton SO17 1BJ, U.K. (e-mail: J.Li@soton.ac.uk).

Y. Zhang is with the Acoustic Science and Technology Laboratory and the
College of Underwater Acoustic Engineering, Harbin Engineering University,
Harbin, Heilongjiang, 150001, China (e-mail: zhangyouwen@hrbeu.edu.cn).

L. Lu is with School of Electronics and Information Engineering, Sichuan
University, Chengdu, China (e-mail: lulu19900303@126.com).

increasing computational complexity due to the matrix inverse.
A number of fast implementations of AP algorithm have been
developed. However, each fast implementation also brings
about own problem, e.g., poor numerical stability, degraded
convergence performance, or difficulty of selecting the number
of iterations, summarized in detail in [8]

Subband adaptive filter (SAF) is another efficient method to
improve the convergence rate [2]. The SAF divides both the
input and desired signals into multiple subbands through the
analysis filters, and then uses the decimated subband signals
to adjust its weight vector. Since the multiband structure of
SAF avoids the aliasing and band edge effects by updating
the fullband filter weight vector rather than multiple subfilters
in the conventional structure, which makes it more attractive
[2], [9], [10]. Based on this, Lee and Gan [10] developed
the normalized SAF (NSAF) algorithm from the principle of
minimum disturbance. The NSAF algorithm obtains significant
convergence improvement for correlated input signals in com-
parison with the NLMS algorithm. The increase of the NSAF
algorithm in the computational complexity is insignificant,
especially in a high-order adaptive filter application (e.g.,
echo cancellation). The NSAF algorithm is considered as a
generalization of the NLMS algorithm in the subband domain,
where for a special case of one subband, the NSAF algorithm
reduces to the NLMS algorithm. To avoid the signal delay
problem from the input to the output of adaptive system due
to the adopted analysis and synthesis filter banks, two delayless
configurations for the NSAF algorithm that use an auxiliary
loop to compute the output of adaptive system were developed
in [11], and thus they are more suited for practical applications.
The step size of the NSAF algorithm controls a compromise
between fast convergence speed and low steady-state esti-
mation error. To address this problem, various variable step
size (VSS) schemes [12]–[14] and combination schemes [15],
[16] have presented.

Regrettably, the performance of the NSAF algorithm from
the l2-norm minimization of subband errors is seriously de-
teriorated by the system output noise that includes impul-
sive noise. The impulsive noise has a typical feature that
is, its realizations have large amplitude and appear with a
small probability or a short duration. Such noise scenario
is also often encountered in practical applications such as
echo cancellation, underwater acoustics, audio processing,
communications, and prediction of time-series [17]–[21]. To
obtain the stable convergence in impulsive noise, the sign
algorithm was firstly proposed by minimizing the absolute
value of error signal, but with slow convergence rate [22].



2

The correntropy function can significantly compress the data
with large amplitude, the maximum correntropy criterion
(MCC) was frequently used for designing robust LMS-like
algorithms [23]–[25], while this requires properly choosing the
kernel width parameter. By inserting an upper bound on the
squared error into the weights update to suppress the impulsive
noise, the normalized least mean absolute third algorithm
and its improvements were proposed [26], [27]. Similar to
NLMS, these robust algorithms also have no decorrelation
capability for correlated input signals. Also considering the
decorrelation capability, reference [28] presented a sign SAF
algorithm robust against impulsive noise by incorporating the
sign strategy into the multiband-based SAF structure. By
taking full advantage of the decorrelation feature of SAF
for the input signal, the SSAF with individual-weighting-
factors (IWF-SSAF) algorithm presented in [29] exhibits faster
convergence than the SSAF algorithm. For both the SSAF and
IWF-SSAF algorithms, many VSS variants were also proposed
to improve the performance in terms of convergence rate and
steady-state estimation error [30]–[33]; however, these VSS
variants lose the tracking capability for abrupt changes of
unknown system.

In some applications, the unknown system is usually sparse,
i.e., only a fraction of entries in its impulse response are signif-
icantly different from zero; for instance, most of echo channels
for both network/acoustic echo cancellation scenarios [34],
[35]. It has been reported in the literature [6], [36]–[38] that
the proportionate algorithms can improve the convergence in
contrast with the non-proportionate counterparts for sparse
systems, without the steady-state performance loss. To favor
the sparsity of the unknown system, alternative approach is
to add a penalty function based on the lp-norm of the filter
weights to the original cost function, where p = 0, 1, or
0 < p < 1. This approach was firstly used in improving
the LMS performance when identifying sparse systems [39],
and now has been extended to various adaptive algorithms
(see [40], [41] and references therein). Recently, these two
sparse approaches were also combined to improve the algo-
rithm’s performance, e.g., the proportionate NLMS algorithm
with the l1-norm penalty [42] and the proportionate normalized
MCC algorithm with the lp-norm penalty [43]. In comparison,
the main drawback of the second sparse approach is that
appropriately sets the intensity parameter associated with the
penalty term. Also because how to exploit the sparsity is
not main issue of this paper, we only focus on the pro-
portionate algorithm. Aiming at such systems in impulsive
noise environments, the proportionate SSAF and IWF-SSAF
algorithms were developed in [44] and [29], respectively.
In [44], Ni et al. also proposed the AP-SSAF algorithm by
extending the AP concept to the SSAF, further accelerating the
convergence. The M-estimator can remove outliers with large
amplitude from dataset and it has been used to develop robust
adaptive algorithms against impulsive interferences [45]–[47].
On the M-estimate based algorithms, the AP M-estimate
SAF (APM-SAF) algorithm was recently proposed [47] by
introducing the Hampel’s three-part redescending (HTPR) M-
estimate function and the AP concept to the NSAF. The
APM-SAF algorithm shows better convergence than the the

AP-SSAF algorithm, while it has also higher computational
complexity. Additionally, the proportionate APM-SAF [47]
was also proposed for sparse systems.

In this paper, we study the M-estimate based NSAF (M-
NSAF) algorithm by using the modified Huber (MH) function.
From the perspective of the algorithm framework, the M-
NSAF algorithm is a special case of the APM-SAF algorithm
with the AP order L being 1. Although the APM-SAF algo-
rithm for L > 1 introduces the decorrelation property of AP
in the time domain to accelerate the convergence for highly
correlated input signals, it also loses the low-complexity merit
of SAF. Naturally, its complexity is higher than that of the AP
algorithm [48]. In addition, even for the M-NSAF algorithm,
the theoretical analysis has been not reported yet. Therefore,
studying the M-NSAF algorithm is still interesting in detail.
The main contributions of this paper are as follows:

1) We analyze the stability condition, transient and steady-
state behaviors of the M-NSAF algorithm in impulsive noise
in detail, based on the vectorization and Kronecker product
operations. The analysis results are supported by simulations.

2) To improve the M-NSAF performance in both the conver-
gence rate and the steady-state estimation error, a VSS scheme
is developed by minimizing the squared a posteriori subband
errors. This VSS is also applied into the proportionate-type
M-NSAF algorithm to improve the performance on estimating
sparse systems.

3) The proposed algorithms are verified on system identifi-
cation in α-stable noise and acoustic echo cancellation (AEC)
with double-talk scenarios. In AEC, we apply the proposed
algorithms into a delayless SAF structure.

The remaining part of this paper is organized as follows.
Section II introduces the delayless SAF model and the M-
NSAF algorithm. In Section III, we analyze the mean and
mean-square theoretical models of the M-NSAF algorithm
in impulsive noise. In Section IV, we design a VSS for
improving both the M-NSAF algorithm and its proportionate
variant. Extensive simulations are presented in Section V. In
Section VI, conclusions are drawn.

II. A DELAYLESS SAF STRUCTURE AND M-NSAF
ALGORITHM

At time index n, the available desired signal d(n) and the
input signal u(n) follow the linear relation:

d(n) = uT(n)wo + ν(n) (1)

where an L × 1 vector wo is the impulse response of the
unknown system that be estimated, u(n) = [u(n), u(n −
1), ..., u(n − L + 1)]T is the L × 1 input vector, v(n) is
the additive noise independent of u(n), and (·)T denotes the
transpose. In practice, in addition to Gaussian noise, ν(n) may
also contain the impulsive noise with large amplitude.

A delayless multiband-structured SAF with N subbands is
shown in Fig. 1 [11], [33]. By decomposing the desired signal
d(n) and the input signal u(n) through the analysis filters
Hi(z), i = 0, ..., N − 1, we obtain band-dependent signals
di(n) and ui(n), respectively. Feeding ui(n) into an adaptive
filter with the weight vector w(k) yields the subband output
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Fig. 1. Delayless multiband-structured SAF.

signal yi(n). For each subband i, di(n) and yi(n) are criti-
cally decimated to lower sampled rate sequences di,D(k) and
yi,D(k), respectively, i.e., di,D(k) = di(kN) and yi,D(k) =
uT
i (k)w(k), where ui(k) = [ui(kN), ui(kN), ..., ui(kN −

L+ 1)]T. Note that the original sequences are denoted by the
variable n and the decimated sequences are denoted by the
variable k. The decimated subband error signals are given by

ei,D(k) = di,D(k)− yi,D(k)

= di,D(k)− uT
i (k)w(k),

(2)

for i = 0, ..., N − 1 and they are used to update the weight
vector w(k) as an estimate of wo at iteration k. This is the
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Fig. 2. A simple block diagram of AEC.

system identification problem.
However, when using the SAF in some applications, one

finally hope to cancel the output error e(n) in the original
domain n. For instance, the AEC in the hands-free telephone
system is shown in Fig. 2 [49], where wo denotes the acoustic
echo channel between loudspeaker and microphone. The far-
end speech u(n) played at the loudspeaker goes through wo to
produce the signal d̄(n) = uT(n)wo, and then the microphone
pick up it and send to the far-end. Thus, the signal d̄(n) is
unwanted echo for speaker at the far-end, which needs to be
canceled. The adaptive filter by adjusting w(n) is to estimate
wo, and its output y(n) = uT(n)w(n) by filtering the far-end
speech u(n) is the replica of the echo. Since w(n)→ wo so
that y(n) → d̄(n), the output error e(n) by subtracting y(n)
from d(n) will be free of echo and sent to the far-end, thereby
improving the call quality. In the SAF structure [10], the output
error e(n) can be reconstructed from the decimated subband

error signals {ei,D(k)}N−1
i=0 by means of the synthesis filters

and the interpolation operator. However, this gives rise to an
inherent signal path delay. To avoid such delay, in Fig. 1 we
copyw(k) tow(n) once for every N input samples (i.e., when
n = kN ), then eliminating the echo by performing e(n) =
d(n)− y(n) in an auxiliary loop.

For estimating wo in the decimated domain, the M-NSAF
algorithm is formulated as

w(k + 1) = w(k) + µ

N−1∑
i=0

ϕ′(ei,D(k))ui(k)

||ui(k)||22 + δ
(3)

where µ > 0 is the step size, and || · ||2 denotes the l2-norm
of a vector. The score function ϕ′(x) = ∂ϕ(x)/∂x in (3)
originates from the M-estimator ϕ(x), with robustness against
outliers. It should be stressed that δ is man-made regularization
parameter, to avert the numerical divergence problem of (3)
when ||ui(k)||22 is zero such as during the mute period of the
far-end speech signal u(n) in echo cancellation; usually, it is
a small positive constant.

Different from the Hampel’s three-part redescending
(HTPR) function presented in [47], here we employ the
modified Huber (MH) function for ϕ(x):

ϕ(ei,D(k)) =

{
e2
i,D(k)/2, if |ei,D(k)| < ξ

ξ2/2, if |ei,D(k)| ≥ ξ,
(4)

which corresponds to the score function:

ϕ′(ei,D(k)) =

{
ei,D(k), if |ei,D(k)| < ξ

0, if |ei,D(k)| ≥ ξ,
(5)

where ξ is a threshold parameter. The main reason for choosing
the MH function is the simplicity, which conveniently analyzes
the performance of the M-NSAF algorithm in the sequel.
Moreover, as can be seen in Fig. 7, the M-NSAF algorithm
using the MH function has very close performance to that
using the HTPR function in impulsive noise environments.

It can be seen from (3) and (5) that the M-NSAF algorithm
is identical to the conventional NSAF algorithm when values
of ei,D(k) are smaller than ξ. When |ei,D(k)| ≥ ξ, ϕ′(ei,D(k))
equals to zero and the M-NSAF algorithm stops the adaptation
to avoid impulsive interferences. In an ideal case, |ei,D(k)| ≥
ξ is only required occurring for the appearance of impulsive
interferences. To this end, the threshold ξ for each subband i
is chosen automatically by ξi = κσe,i(k), where σ2

e,i(k) is the
variance of ei,D(k) excluding impulsive noises and it can be
estimated in a recursion way:

σ̂2
e,i(k) = τ σ̂2

e,i(k − 1) + cσ(1− τ)med(ae,i). (6)

In (6), 0 < τ < 1 is the weighting factor and usually
chosen by τ = 1 − N/(θτL) with θτ ≥ 1 (but τ = 0 for
the starting point of iterations), med(·) denotes the median
operator whose role is to remove the outliers in the error data
set ae,i = [e2

i,D(k), e2
i,D(k − 1), ..., e2

i,D(k − Nw + 1)] with
length of Nw, and cσ = 1.483(1+5/(Nw−1)) is the correction
factor [51, p.44]. It is noticed that the value of κ should not be
too small and large to guarantee fast convergence and robust
performance in resisting impulsive noise, respectively. For this
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purpose, we choose the typical value κ = 2.576 [52]. This
value means that, assuming that ei,D(k) is Gaussian distributed
except when being contaminated accidentally by impulsive
noise, the confidence level of halting the weights update (3)
when |ei,D(k)| ≥ ξi is 99%. In Appendix A, it is seen how
cσ and κ affect the performance of the M-NSAF algorithm.

III. PERFORMANCE ANALYSIS

In this section, we will discuss the convergence behavior of
the M-NSAF algorithm in the presence of impulsive noise.

Subtracting both sides of (3) from wo, we have

w̃(k + 1) = w̃(k)− µ
N−1∑
i=0

ϕ′(ei,D(k))ui(k)

||ui(k)||22
(7)

where w̃(k) , wo −w(k) denotes the weights error vector.
For convenience of analysis, here we also neglect the regular-
ization δ in (3) as its value is small.

Let us define the probability of the event |ei,D(k)| < ξi at
iteration k as

Pe,i(k) = P{|ei,D(k)| < ξi}. (8)

Accordingly, we can equivalently express (5) in the statistical
sense as

ϕ′(ei,D(k)) = Pe,i(k)ei,D(k), (9)

which further changes (7) to

w̃(k + 1) = w̃(k)− µ
N−1∑
i=0

Pe,i(k)ei,D(k)ui(k)

||ui(k)||22
. (10)

Equation (10) overcomes the nonlinearity of the score function
ϕ′(x) in (7), which contributes to the analysis simplification1.
Before proceeding any further, we require the following as-
sumptions.

Assumption 1: The input signal u(n) is a zero-mean sta-
tionary random process with positive definite autocorrelation
matrix Ru = E{u(n)uT(n)}.

Assumption 2: The additive noise ν(n) is modeled by the
contaminated-Gaussian (CG) process. This is a frequently used
model in studying adaptive algorithms robust against impulsive
noise [45], [46], [53]. In detail, it includes the background
noise νg(n) plus the impulsive noise νim(n), i.e., ν(n) =
νg(n)+νim(n). The background noise νg(n) is drawn from a
zero-mean white Gaussian random process with variance σ2

g .
For the impulsive noise, νim(n) = b(n)η(n), where b(n) is
a Bernoulli random process with the probability distribution
function being P{b(n) = 1} = pr and P{b(n) = 0} = 1−pr,
and η(n) is also a zero-mean white Gaussian random process
but variance σ2

η = ~σ2
g , ~ � 1. It is clear that ν(n) is non-

Gaussian except special cases of pr = 0 or 1 [54].
Assumption 3: w̃(k) is statistically independent of ui(k)

for i = 0, ..., N − 1.
Note that Assumption 3 is the widely used independence

assumption in the performance analysis of adaptive algorithms,
e.g., references [55]–[57] for analyzing the NSAF algorithm.

1Similar operation can also be used to simplify the existing analyses in [45],
[46] for the MH-based LMS/NLMS algorithms.

Rewrite the decimated subband desired signals as

di,D(k) = uT
i (k)wo + νi,D(k), (11)

where νi,D(k), i = 0, ..., N−1 denote the decimated subband
noises. Giving that hi is the impulse response of the i-th
analysis filter with length of J , we have the relations:

ui(k) = [u(kN), ...u(kN − J + 1)]hi

νi,D(k) = hT
i [ν(kN), ..., ν(kN − J + 1)]T.

(12)

Thus, based on the use of Pe,i(k) and Assumption 2, we
can change ei,D(k) in (10) to

ei,D(k) = uT
i (k)w̃(k) + νg,i,D(k), (13)

where νg,i,D(k) is obtained from νg(n) according to the
same operation as νi,D(k) in (12). Since hi is deterministic,
νg,i,D(k) is zero-mean white Gaussian with variance σ2

g,i =

||hi||22σ2
g

2.
Plugging (13) into (10), we obtain

w̃(k + 1) =

(
IL − µ

N−1∑
i=0

Pe,i(k)Ai(k)

)
w̃(k)−

µ

N−1∑
i=0

Pe,i(k)νg,i,D(k)qi(k),

(14)

where Ai(k) =
ui(k)uT

i(k)

||ui(k)||22
, qi(k) = ui(k)

||ui(k)||22
, and IL is the

identity matrix of size L×L. Equation (14) is the starting point
to study the mean and mean-square behaviors of the M-NSAF
algorithm in the sequel.

A. Mean behavior

Taking the expectation of both sides of (14) under Assump-
tion 2, it is established that

E{w̃(k + 1)} =

(
IL − µ

N−1∑
i=0

Pe,i(k)E{Ai(k)}

)
E{w̃(k)},

(15)
To ensure the convergence of E{w̃(k)} over iterations, the

spectral radius of the matrix
(
IL − µ

N−1∑
i=0

Pe,i(k)E{Ai(k)}
)

is required to be less than 1. Consequently, we obtain the step
size range for the mean stability of the algorithm:

0 < µ <
2

Pmax(k)
N−1∑
i=0

λmax(E{Ai(k)})
,

(16)

where Pmax(k) = max{Pe,i(k), i = 0, ..., N−1}, and λmax(·)
denotes the maximum eigenvalue of the matrix.

When the algorithm reaches the steady-state, i.e., k → ∞,
from (15) we will obtain:

E{w̃(∞)} = 0. (17)

This relation reveals that the M-NSAF algorithm is unbiased
for estimating wo.

2If the analysis filter bank is assume to be identical and paraunitary, we
have ||hi||22 = 1/N , which is commonly used in the performance analysis
of NSAF-type algorithm [55], [57].
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B. Mean-square behavior

Post-multiplying both sides of (14) by w̃T(k+ 1), and then
taking the expectation of its both sides, the following recursion
can be found:

W̃(k + 1) = IL − µ
N−1∑
i=0

Pe,i(k)E{Ai(k)}W̃(k)−

µW̃(k)

N−1∑
i=0

Pe,i(k)E{Ai(k)}+

µ2E

{
N−1∑
i=0

Pe,i(k)Ai(k)W̃(k)

N−1∑
i=0

Pe,i(k)Ai(k)

}
+

µ2
N−1∑
i=0

P 2
e,i(k)σ2

g,iE{qi(k)qT
i (k)},

(18)
where W̃(k) , E{w̃(k)w̃T(k)} defines the autocorrelation
matrix of the weights error vector. Note that, we apply
Assumptions 2 and 3 for deriving (18) which makes that the
expectation of the cross-terms involving ui(k) and νg,i,D(k) is
zero. We also use E{Ai(k)} = E{AT

i (k)} due to its symmetry.
To mainly separate W̃(k) from the third term at the right

side of (18), we will resort to the vectorization operation
and the Kronecker product [58]. Let vec(·) represent a trans-
formation from an L × L matrix to an L2 × 1 vector,
formed by successively stacking the columns of the matrix,
and vec−1(·) be the inverse operation. Giving three matrices
X, Y , and Σ with compatible sizes, there is vec(XΣY ) =
(Y T ⊗X)vec(Σ), where ⊗ denotes the Kronecker product.
Therefore, by imposing the vectorization operation on both
sides of the recursion (18), we arrive at:

vec(W̃(k + 1)) = Fkvec(W̃(k))+

µ2
N−1∑
i=0

P 2
e,i(k)σ2

g,ivec(E{qi(k)qT
i (k)}),

(19)

where

Fk = IL2 − µIL ⊗
N−1∑
i=0

Pe,i(k)E{Ai(k)}−

µ

N−1∑
i=0

Pe,i(k)E{Ai(k)} ⊗ IL+

µ2 E

{
N−1∑
i=0

Pe,i(k)Ai(k)⊗
N−1∑
i=0

Pe,i(k)Ai(k)

}
︸ ︷︷ ︸

(a)

.

(20)

Furthermore, to simplify the term (a) in (20), we may make
a reasonable approximation:

E

{
N−1∑
i=0

Pe,i(k)Ai(k)⊗
N−1∑
i=0

Pe,i(k)Ai(k)

}
≈

(
1

N

N−1∑
i=0

Pe,i(k)

)2

E

{
N−1∑
i=0

Ai(k)⊗
N−1∑
i=0

Ai(k)

}
,

(21)

due to the fact that the difference between Pe,i(k) at different
subbands is small as can be seen in Appendix B.

In the light of the definition of the mean square deviation
(MSD), i.e., MSD(k) , E{w̃T(k)w̃(k)} = Tr(W̃(k)), we
can use (19) to describe the transient MSD behavior of the
M-NSAF algorithm, where Tr(·) indicates the trace of a
matrix. Moreover, the excess mean-square error (EMSE) of the
algorithm can also be computed as EMSE(n) = Tr(W̃(n)Ru).

By assuming the existence of (IL2 −F∞)−1 in the steady-
state, it is derived from (19) that

vec(W̃(∞)) = µ2(IL2 −F∞)−1×
N−1∑
i=0

P 2
e,i(∞)σ2

g,ivec(E{qi(k)qT
i (k)}).

(22)

Based on the property Tr(XY ) = vecT(XT)vec(Y ), the
steady-state MSD of the M-NSAF algorithm is obtained as

MSD(∞) = µ2vecT(IL)(IL2 −F∞)−1×
N−1∑
i=0

P 2
e,i(∞)σ2

g,ivec(E{qi(k)qT
i (k)}).

(23)

Analogy to the Appendix A in [59], we can establish
from (19) that the M-NSAF algorithm will be mean-square
stable when all the eigenvalues of Fk are in (−1, 1). Never-
theless, the resulting convergence condition is slightly compli-
cated. Hence, an alternative method will be given. By taking
the squared l2-norm and the expectation for both sides of (14)
leads to

E{||w̃(k + 1)||22} = E{||w̃(k)||2Ξk}︸ ︷︷ ︸
(b)

+

µ2
N−1∑
i=0

P 2
e,i(k)σ2

g,iE
{

1

||ui(k)||22

}
,

(24)

where

Ξk = IL −
N−1∑
i=0

µ(2− µPe,i(k))Pe,i(k)E{Ai(k)}, (25)

and ||w̃(k)||2Ξk , w̃T(k)Ξkw̃(k). For deriving (24), we
also employ the fact that the decimated input vectors at
different subbands are orthogonal, i.e., uT

i (k)uj(k) = 0 when
i 6= j [10].

Based on Assumption 1, we take advantage of Lemma 1
in [55] to yield

0 �λmin(E{Ai(k)})IL � E{Ai(k)}
�λmax(E{Ai(k)})IL,

(26)

where λmin(·) is the minimum eigenvalue of the matrix, and
X � Y denotes the matrix (Y −X) is semi-positive definite.
Thus, assuming 0 < µ < 2/Pe,i(k) (which will be given
in (30) below), we can get

β1IL � Ξk � β2IL, (27)

where

β1 = 1−
N−1∑
i=0

µ(2− µPe,i(k))Pe,i(k)λmax(E{Ai(k)},

β2 = 1−
N−1∑
i=0

µ(2− µPe,i(k))Pe,i(k)λmin(E{Ai(k)}.

(28)
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Based on (27), the term (b) in (24) fulfills the following
inequality:

0 < β1E{||w̃(k)||22} ≤ E{||w̃(k)||2Ξk}
≤ β2E{||w̃(k)||22}.

(29)

It is concluded from (24) and (29) that the algorithm is
mean-square stable if and only if 0 < β1 < β2 < 1, which
further results in the step size range:

0 < µ < 2/Pmax(k). (30)

Remark 1: Combing (16) and (30), we unify the step size
conditions to guarantee the stability of the M-NSAF algorithm:

0 < µ <
1

Pmax(k)
min

 2
N−1∑
i=0

λmax(E{Ai(k)})
, 2

 .

(31)
Assuming Pmax(k) = 1, (31) is the convergence condition of
the NSAF algorithm. In comparison, the M-NSAF algorithm
has a slightly wider convergence condition due to Pmax(k) <
1 (see the following subsection C or Appendix B).

Remark 2: As can be seen in (24), the term (b) is deter-
mining the convergence behavior of the M-NSAF algorithm.
Further the matrixΞk influences the convergence rate, because
it is positive definite under the convergence condition (30).
According to (27) and (29), the fast convergence speed occurs
when the quadratic functions β1 and β2 on the step size µ
are minimum. Taking the derivative of β1 and β2 with respect
to µ, we further obtain the optimal µ for the fast convergence:

µfast =

N−1∑
i=0

Pe,i(k)

N−1∑
i=0

P 2
e,i(k)

6
1

Pmax(k)
. (32)

That means that, the M-NSAF algorithm with larger step
size achieves faster convergence speed for µ ∈ (0, µfast].
After µ is larger than µfast, increasing the step size will
lead to slow convergence of the M-NSAF algorithm. For
the case of Pmax(k) = 1, µfast = 1 is the optimal step
size for the convergence of the NSAF algorithm [2]. Since
also Pmax(k) < 1 and close to 1, the optimal step size of
the M-NSAF algorithm is slightly larger than 1 for the best
convergence. It follows that a practical range on the step size
is from 0 to 1 for the M-NSAF algorithm. In addition, the
second term at the right side of (24) controls the steady-state
performance of the algorithm. Obviously, the smallest steady-
state estimation error will be obtained when the step size µ is
zero.

C. Calculation of Pe,i(k)

Now we continue to derive the probability Pe,i(k) for
implementing the theoretical models (15) and (19). Under

Assumption 2, we use the law of total probability to recast (8)
as

Pe,i(k) =P{b(k) = 1}P{|eν,i,D(k)| < ξi}+
P{b(k) = 0}P{|eg,i,D(k)| < ξi},

=prP{|eν,i,D(k)| < ξi}+
(1− pr)P{|eg,i,D(k)| < ξi},

(33)

where eν,i,D(k) = uT
i (k)w̃(k) + νg,i,D(k) + νη,i,D(k),

eg,i,D(k) = uT
i (k)w̃(k)+νg,i,D(k), and νη,i,D(k) comes from

η(n) by the subband decomposition.
Since both νg,i,D(k) and νη,i,D(k) are Gaussian random

variables, eν,i,D(k) and eg,i,D(k) can be assumed to be
zero mean Gaussian variables for a long adaptive filter [59];
accordingly, we obtain

P{|eν | < ξ} , 1√
2πσe,ν

∫ ξ

−ξ
exp(− e2

ν

2σ2
e,ν

)deν

= erf(ξ/
√

2σe,ν),

(34)

where erf(x) , 2√
π

∫ x
0

exp(−t2)dt, and σ2
e,ν is the variance

of eν . In (34), we omit the notations i, k and D for conve-
nience. Then, plugging (34) into (33) to yield

Pe,i(k) =prerf

(
ξi√

2σeν,i(k)

)
+ (1− pr)erf

(
ξi√

2σeg,i(k)

)
,

(35)
where σ2

eν,i(k) = Tr(W̃(k)Ru,i)+(1+})||hi||22σ2
g , σ2

eg,i(k) =

Tr(W̃(k)Ru,i) + ||hi||22σ2
g , and Ru,i = E{ui(k)uT

i (k)}.
Moreover, ξi is given by

ξi = κσeg,i(k). (36)

It is noticed that because σ2
eg,i(k) � σ2

eν,i(k), Pe,i(k) com-
puted by (35) is less than 1. In the steady-state, by assuming
that Tr(W̃(k)Ru,i) is negligible in contrast with ||hi||22σ2

g ,
then Pe,i(∞) can be approximated by

Pe,i(∞) =prerf

 ξi√
2(1 + })||hi||22σ2

g

+

(1− pr)erf

 ξi√
2||hi||22σ2

g

 ,

(37)

where ξi = κ
√
||hi||22σ2

g .

IV. PERFORMANCE IMPROVEMENTS

A. VSS Design

As claimed in Remark 2, in the M-NSAF algorithm there
is a trade-off between fast convergence and low steady-state
estimation error on choosing the step size3. To overcome
such issue, the VSS [12], the convex combination of two
independently run filters [15], and the combined step sizes [16]
are three types of efficient techniques. In this section, we
design a VSS scheme to improve the M-NSAF performance.

3It is a common issue in the step size based adaptive algorithms.
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For moving forward, we replace the fixed step size µ in (10)
with the time-dependent step sizes µi(k), i = 1, ..., N :

w̃(k + 1) = w̃(k)−
N−1∑
i=0

µi(k)
Pe,i(k)ei,D(k)ui(k)

||ui(k)||22
.

(38)
Recalling the orthogonality of decimated input vectors at
different subbands [10] and pre-multiplying uT

i (k) both sides
of (38), we arrive at

ei,p(k) = ei,a(k)− µi(k)Pe,i(k)ei,D(k)

(11)
= [1− µi(k)Pe,i(k)]ei,a(k) + µi(k)Pe,i(k)νg,i,D(k),

(39)
where ei,p(k) , uT

i (k)w̃(k + 1) and ei,a(k) , uT
i (k)w̃(k)

denote the a posteriori and the a priori decimated subband
errors, respectively.

Under Assumption 3, we enforce the expectation to the
square of both sides of (39),

E{e2
i,p(k)} =[1− µi(k)Pe,i(k)]2E{e2

i,a(k)}+
µ2
i (k)P 2

e,i(k)σ2
g,i.

(40)

At each iteration k, the optimum step size µi(k) will be
obtained when E{e2

i,p(k)} is minimum. Consequently, setting
the derivative of E{e2

i,p(k)} with respect to µi(k) to zero, we
obtain µi(k) for each subband i:

µi(k) =
1

Pe,i(k)

E{e2
i,a(k)}

E{e2
i,a(k)}+ σ2

g,i

. (41)

According to the definition of Pe,i(k) and its property that
Pmax(k) < 1 and close to 1, an efficient VSS scheme can be
expressed as

µi(k) =


E{e2

i,a(k)}
E{e2

i,a(k)}+ σ2
g,i

, if |ei,D(k)| < ξi

0, if |ei,D(k)| ≥ ξi.
(42)

The equation above illustrates that the adaptation of the step
size is frozen when |ei,D(k)| ≥ ξi, providing the robustness
against impulsive noise.

We have E{e2
i,D(k)} = E{e2

i,a(k)} + σ2
g,i under Assump-

tion 3, thus (42) is further changed as

µi(k) =


E{e2

i,a(k)}
E{e2

i,D(k)}
, if |ei,D(k)| < ξi

0, if |ei,D(k)| ≥ ξi.
(43)

One can see that the implementation of (43) depends on the
second-order moments E{e2

i,D(k)} and E{e2
i,a(k)}. Generally,

the exponential window method [12], [49] is a simple and
efficient method to estimate them. Specifically, E{e2

i,D(k)} is
estimated by σ̂2

e,i(k),

σ̂2
e,i(k) = χσ2

e,i(k − 1) + (1− χ)e2
i,D(k), (44)

where χ is a forgetting factor and chosen via χ = 1−1/(θχL)
with θχ ≥ 1. As in [12], E{e2

i,a(k)} is estimated by σ̂2
e,a,i(k),

σ̂2
e,a,i(k) =

||r̂i(k)||22
σ̂2
u,i(k) + ε1

(45)

where

σ̂2
u,i(k) =χσ2

u,i(k − 1) + (1− χ)u2
i (kN),

r̂i(k) =χr̂i(k − 1) + (1− χ)ui(k)ei,D(k),
(46)

and ε1 is a small positive number to avoid the division by zero.
It is worth mentioning that both (44) and (46) are performed
only when |ei,D(k)| < ξi to prevent the step sizes from
impulsive interferences.

Considering the fact that the estimates σ̂2
e,i(k) and σ̂2

e,a,i(k)
at the early stage of performing the algorithm have relatively
large error compared to their true values, as such we set
the step size to 1 when k ≤ L, to guarantee fast initial
convergence of the algorithm. Accordingly, for each subband i
we reformulate (43) as

if |ei,D(k)| < ξi

if k ≤ L
µi(k) = 1

else

µi(k) =
||r̂i(k)||22

σ̂2
e,i(k)(σ̂2

u,i(k) + ε1)

end
end

(47)

Equation (43) shows that the VSS cannot exceed 1 so that
the proposed VSS-M-NSAF algorithm is stable. However,
the implementation (47) of VSS may be larger than 1 or
even 2 at some iterations due to replacing the second-order
moments in (43) with their estimates. According to Remark 2,
therefore, we impose a limitation on the step size that µi(k) =
min{µi(k), 1} for ensuring good convergence performance.
Following (47), the VSS-M-NSAF algorithm performs the
weights update:

w(k + 1) = w(k) +

N−1∑
i=0

µi(k)
ϕ′(ei,D(k))ui(k)

uT
i (k)ui(k)

. (48)

B. M-PNSAF Algorithm

Motivated by the proportionate rule [6], [36]–[38], the
proportionate M-NSAF (M-PNSAF) algorithm for updating
the filter’s weights is obtained in a straightforward way as

w(k + 1) = w(k) + µ

N−1∑
i=0

ϕ′(ei,D(k))G(k)ui(k)

uT
i (k)G(k)ui(k)

, (49)

where G(k) is a diagonal matrix of size L × L, whose
diagonal elements gm(k), m = 1, ..., L−1 are individual gain
coefficients assigned to every weight wm(k) in w(k). Also,
gm(k) is in proportion to the amplitude of wm(k), thereby
making use of the underlying sparsity of the unknown system.
By comparing (3) and (49), it concludes that the M-PNSAF
update will reduce to the M-NSAF update when G(k) is the
identity matrix. In the existing literature, several strategies of
computingG(k) have been developed, summarized in [60] and
references therein. Among them, one of the most attractive
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rules for computing gm(k), m = 1, ..., L − 1 is formulated
as [37]

gm(k) =
1− ζ
2L

+ (1 + ζ)
|wm(k)|

2
L∑

m=1
|wm(k)|+ ε2

,
(50)

which is robust to the unknown systems with different levels
of sparsity. For most applications such as echo cancellation,
good choices of ζ are 0 or −0.5 [37].

Analogously, we apply the VSS (47) to further improve the
M-PNSAF performance in both convergence rate and steady-
state estimation error and propose the VSS-M-PNSAF algo-
rithm. Actually, this VSS (47) can also be derived from (49) by
following the same procedures as in the previous subsection.
The difference is that we use another orthogonal assumption
uT
i (k)G(k)uj(k) = 0 at different subbands i, j due mainly to

slow variation of G(k) and Tr{G(k)} = 1 [61].

C. Computational complexity

Table I summarizes the computational complexity of the
NSAF, IWF-SSAF, BDVSS (i.e., IWF-SSAF with band-
dependent VSS developed in [33]), M-NSAF, M-PNSAF,
VSS-M-NSAF, and VSS-M-PNSAF algorithms in the con-
text of system identification, in terms of the total number
of additions, multiplications, divisions, and square-roots per
input sample index n. These SAF algorithms have inherent
complexity for partitioning the input signal u(n) and the
desired signal d(n), which requires 2(J − 1)N additions and
2JN multiplications. For larger N (number of subbands), the
length J of the analysis filter is larger, thereby the SAF’s
complexity is also higher. In AEC applications, L would be
larger than the product JN in most cases; as such, the NSAF
algorithm has only slight increase in the complexity relative to
the fullband NLMS algorithm [10]. Compared with the NSAF
algorithm, the additional complexity of the M-NSAF algorithm
stems mainly from (6), i.e., Nw log2Nw + 1 additions, 4
multiplications, and 1 square-root, where the comparisons
required in the algorithm are counted as additions. Due to
the proposed VSS formulas (44), (46), and (47), the VSS-M-
NSAF (or VSS-M-PNSAF) algorithm needs more L+5 addi-
tions, 2L+7 multiplications, and 1 division than the M-NSAF
(or M-PNSAF) algorithm. As we shall see, the increase in the
complexity leads to the algorithm’s performance improvement.

V. SIMULATION RESULTS

In this section, we present several simulations to evaluate
the previous theoretical results and the proposed algorithms.
Both the adaptive filter and the unknown system have the
same length. Cosine modulated analysis filter banks with N
subbands are used for the subband structure. All curves are
obtained by averaging the results over 200 independent trials,
unless otherwise specified.

A. Verification of Analysis Results

The unknown system wo with L = 32 taps is generated
from a uniform distribution of [−0.5, 0.5] and then normalized

by ||wo||2 = 1. The input signal u(n) is obtained by filtering
a zero-mean white Gaussian noise with unit variance through
the first-order autoregressive system with a pole at 0.9; thus,
the input vector u(n) is highly correlated with the eigenvalue
spread of 263 as compared to the white signal with the
eigenvalue spread of 1. As stated in Assumption 2, the additive
noise ν(n) added to the unknown system output is drawn
from a CG process. The variance σ2

g of the background
noise component corresponds to a signal-to-noise ratio (SNR)
defined as 10 log10(σ2

d̄
/σ2

g), where σ2
d̄

= E{d̄2(n)} is the
power of the output signal of the unknown system. We set the
impulsive noise parameters to ~ = 300000 and pr = 0.001.
Correspondingly, the ratio rim−g = σ2

im/σ
2
g = pr~ [45]

measuring the impulsive characteristic of the CG noise equals
to 300. The expectations on subband inputs in the theoretical
expressions are obtained by the ensemble average.

Fig. 3 shows the MSD results of the NSAF algorithm and
the M-NSAF algorithm using different step sizes µ in CG
noise. It is clear to see, the convergence of the NSAF algorithm
is poor in the presence of impulsive noise, while the M-NSAF
algorithm is stable for step sizes in the range of (0, 2). Also,
there is an optimal step size, approximately µ = 1, so that
the M-NSAF algorithm obtains the fastest convergence. These
results are in agreement with the statements in Remarks 1 and
2.
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M−NSAF(µ=1)

M−NSAF(µ=1.3)

M−NSAF(µ=1.9)

M−NSAF(µ=2)

Fig. 3. MSD curves of the NSAF and M-NSAF algorithms in the presence of
impulsive noise. [SNR=30 dB, N = 4]. Parameters of the M-NSAF algorithm
are set to Nw = 20 and θτ = 1.

Figs. 4 and 5 show the transient MSD curves of the M-
NSAF algorithm versus number of subbands and step sizes in
impulsive noise, respectively. As can be seen, the theoretical
results calculated by (19) match well with the simulation
results. In Fig. 4, increasing the number of subbands N can
speed up the convergence of the M-NSAF algorithm, with
only slight loss in the steady-state performance, due to the fact
that the decimated subband input signals are closer to white.
However, for input signals with specified eigenvalue spread,
after N is larger than a certain value (e.g., N = 4 in this case),
the convergence improvement will not be obvious. It is to see
from Fig. 5 that large step size accelerates the convergence of
the algorithm but increases the steady-state MSD; conversely,
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TABLE I
NUMBER OF OF ARITHMETICAL OPERATIONS PER INPUT SAMPLE.

Algorithms Additions Multiplications Divisions Square-roots
NLMS 2L+ 2 2L+ 3 1 0
NSAF 2L+ 2N + 2(J − 1)N 2L+ 2N + 2JN + 1 1 0
IWF-SSAF 2L+ 2N + 2(J − 1)N + 1 2L+ 2N + 2JN 1 1
BDVSS 2L+ 2N + 2(J − 1)N + 7 2L+ 2N + 2JN + 2 3 1
M-NSAF 2L+ 2N + 2(J − 1)N +Nw log2Nw + 1 2L+ 2N + 2JN + 5 1 1
VSS-M-NSAF 3L+ 2N + 2(J − 1)N +Nw log2Nw + 6 4L+ 2N + 2JN + 12 2 1
M-PNSAF 3L+ 2L/N + 2(J − 1)N +Nw log2Nw + 1 4L+ (L+ 1)/N + 2JN + 5 1 + 1/N 1
VSS-M-PNSAF 4L+ 2L/N + 2(J − 1)N +Nw log2Nw + 6 6L+ (L+ 1)/N + 2JN + 12 2 + 1/N 1

small step size makes the algorithm keeping good steady-state
performance but slows the convergence rate. It follows that the
step size should be properly chosen when using the M-NSAF
algorithm.
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Fig. 4. MSD curves of the M-NSAF algorithm with N = 2, 4, and 8
subbands. [SNR=30 dB, µ = 0.5].

In Fig. 6, the theoretical steady-state MSDs obtained
from (23) are compared with the simulated MSD, where the
step size µ is from 0.1 to 1. The simulation results are obtained
by averaging the last 300 MSDs in the steady-state. It is seen
in the figure that the theoretical and simulation MSDs have a
good match in the steady-state.

In Fig. 7, we examine the performance of different M-
estimate functions (i.e., Huber, MH, and HTPR) for the M-
NSAF algorithm. It is observed that the M-NSAF algorithm
using the MH has very close performance to that using the
HTPR, and it outperforms that using the Huber. However, the
MH function is simpler than the HTPR function.

B. Comparison of Algorithms

In this subsection, the unknown vector wo is a sparse acous-
tic echo channel with L=512 taps, shown in Fig. 8. Tracking
performance is also important for adaptive algorithms, thus an
abrupt change of the echo channel is introduced at the input
sample index n = 80001 by shifting the impulse response to
the right by 12 taps [6].

Scenario 1: System Identification
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Fig. 5. MSD curves of the M-NSAF algorithm versus step sizes. (a) SNR=30
dB, (b) SNR=20 dB. [N = 4].

The additive noise with impulsive behavior, vn, is generated
from the (symmetric) α-stable process, i.e., the α-stable noise.
Its characteristic function is given by [17], [62]

φ(t) = exp(−γ|t|α), (51)

where α ∈ (0, 2] is the characteristic exponent which controls
the impulsiveness of the noise (for lower values of α, the noise
has more impulsive behavior), and γ > 0 represents the disper-
sion degree of the noise. The performance measure is the nor-
malized MSD, i.e., NMSD(n) = 10 log10(MSD(n)/||wo||22).
The α-stable distribution includes two special cases: the Gaus-
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Fig. 6. Steady-state MSDs of the M-NSAF algorithm versus step sizes. [N =
4].
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Fig. 7. Performance of the M-NSAF algorithm on different M-estimate
functions. [N = 4, µ = 0.5].

sian distribution and the Cauchy distribution for α = 2 and
α = 1 respectively. This scenario sets α = 1.2 and γ = 1/30.

Fig. 9 compares the performance of the NSAF and BDVSS
algorithms with that of the proposed algorithms. It is seen
that the NSAF among these algorithms is sensitive to α-
stable noise. By using the proposed VSS, the VSS-M-NSAF
algorithm obtains fast convergence of the M-NSAF with a
large step size and low steady-state NMSD of that with a small
step size. The BDVSS algorithm converges slowly relative to
the VSS-M-NSAF algorithm. By decreasing the lower bound
µL of the step size, the BDVSS algorithm can show have lower
steady-state NMSD than the VSS-M-NSAF algorithm, but the
tracking capability of the BDVSS algorithm from Fig. 9(b)
is poor. Benefited from the proportionate rule, the VSS-M-
PNSAF algorithm has faster convergence for reaching the
same NMSD (e.g., −25 dB) than the VSS-M-NSAF algorithm
when identifying a sparse system.

Scenario 2: AEC
In AEC, all SAF algorithms use the delayless structure

shown in Fig. 1. All curves are obtained from the single trial.
The far-end input signal u(n) is a speech. Fig. 10 plots the

50 100 150 200 250 300 350 400 450 500
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Fig. 8. Sparse acoustic echo channel.

NMSD curves of the algorithms (with N = 4 and N = 8
subbands respectively) for an AEC application in the α-stable
noise with α = 1.5. The results from Fig. 10 are similar
to those in Fig. 9, which illustrates that the VSS-M-PNSAF
among these algorithms is the best for AEC with sparse case.

In Fig. 11, the NMSD performances of the algorithms are
also examined in an AEC with double-talk scenario, where
the near-end speech signals happen in the periods with input
sample indexes [4, 5] × 104 and [12, 13] × 104. In such a
scenario, the near-end speech can be considered as an impul-
sive component νim(n) with clusters of impulses rather than
random impulses, all the NSAF-type algorithms are equipped
with a double-talk detector (DTD). Existing literature has
reported numerous DTD methods [63]–[67], which have the
common principle that stops updating the filter weights once
the double-talk is detected. Among them, the Geigel DTD [63]
is simple and has been widely used, namely, the double-talk
is declared if

di(k) ≥ Tc max(|ui(kN)|, |ui(kN − 1)|, ...
|ui(kN − L+ 1)|),

(52)

where Tc is the detector threshold, and its typical value is
0.5 for the hybrid attenuation of 6 dB. In addition, there is a
hangover time including Thold samples that keeps prohibiting
the weights adaptation after the double-talk is declared. Here,
for the M-estimate based algorithms, we only employ the DTD
to amend the vector ae,i in (6) rather than stopping the weights
adaptation, i.e., at each iteration k:

if the double-talk is detected and during Thold
ri(k) = 0;

else

ri(k) = e2
i,D(k);

end
ae,i = [ri(k), ri(k − 1), ..., ri(k −Nw + 1)].

(53)

The SNR for the background Gaussian noise is 30 dB.
Moreover, the echo return loss enhancement (ERLE) is also a
performance measure which is defined as [61], [68]

ERLE(n) = 10 log10(avg{d2(n)}/avg{e2(n)}), (54)
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Fig. 9. NMSD curves of various SAF algorithms in α-stable noise. (a) before
a sudden change of wo, (b) after a sudden change of wo. [N = 4]. Parameters
of the algorithms are set to: µi(0) = µU = 0.1, δ = 0, κ = 1 for the
BDVSS; using the previous values for the M-estimate parameters; θχ = 5,
ε1 = 10−6 for the VSS parameters; ζ = 0, ε2 = 10−4 for the proportionate
parameters.

where avg(·) is a smooth processing as the form in (44) with
χ = 0.999. The ERLE results are shown in Fig. 12. As can be
seen from Figs. 11 and 12, by incorporating the Geigel DTD,
the NSAF algorithm can also work in double-talk but with
a slow convergence, since its adaptation is frozen when the
double-talk is detected. In comparison, the M-NSAF algorithm
converges faster, due to the fact that the weights adaptation
is not stopped in the period of double-talk. Although the
BDVSS algorithm does not require the double-talk detector,
but its steady-state and tracking performance are worse than
the VSS-M-NSAF algorithm. For a sparse echo channel, the
the VSS-M-PNSAF algorithm outperforms the VSS-M-NSAF
algorithm in both NMSD and ERLR performance.

Under the above double-talk scenario, we also investigate
the performance of the VSS-M-NSAF algorithm (without
DTD, with Geigel DTD, and with the signal envelope (SE)
based DTD [65]), and compare with that of the published
fullband VSS NLMS algorithms including the new nonpara-
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Fig. 10. NMSD curves of various SAF algorithms for speech input. (a)
N = 4, (b) N = 8. Using the same values as Fig. 9 for parameters of the
algorithms, except that δ = 0.1, κ = 2 for the BDVSS. In addition, to avoid
the numerical divergence of the algorithms caused by the mute period of the
far-end speech signal, we add an addend δ = (20/N)σ2

u in the denominator
of the weights update for the NSAF, M-NSAF and VSS-M-NSAF algorithms,
like the form (3), and δ = (20/L)σ2

u [50] for the VSS-M-PNSAF algorithm.

metric VSS NLMS (NEW-NPVSS-NLMS) [69] and the joint-
optimized NLMS (JO-NLMS) [70]. The VSS-M-NLMS algo-
rithm4 is the fullband version of the VSS-M-NSAF algorithm
when N = 1. The NMSD results of these algorithms are
drawn in Fig. 13. The NEW-NPVSS-NLMS and JO-NLMS
algorithms exploit the same approach to estimate the power of
near-end signal plus background noise, so the DTD is unneces-
sary for them. The notation “JO-NLMS with Geigel DTD” is
to run the standard JO-NLMS algorithm with the known
background noise power. As expected, the SAF structure based
algorithm acquires a vast improvement of convergence over the
NLMS-type when working the AEC application, thanks to the

4It is also a novel VSS modification of the normalized least mean M-etimate
algorithm in [46].
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Fig. 11. NMSD curves of various SAF algorithms in double-talk. [N = 4].
Using the same values as Fig. 10 for parameters of the algorithms, except
θτ = 6 for the M-estimate. Also, we set the Geigel DTD parameter Thold =
50 used in the NSAF and M-NSAF algorithms, and Thold = 3 in the VSS-M-
NSAF and VSS-M-PNSAF algorithms. Herein both the NSAF and M-NSAF
algorithms use the large step size µ = 1 rather than the small or diminishing
step size, thus they require a relatively large hangover time Thold to achieve
good immunity during the double-talk. That is to say, when the algorithm
uses the small step size, the corresponding Thold can also be decreased.
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Fig. 12. ERLE curves of various SAF algorithms in double-talk.

fact that the input speech is highly correlated. The VSS-M-
NSAF algorithm is not robust enough for double-talk, since
the near-end speech signal bursts continuously unlike the α-
stable noise with randomness. By equipping with the DTD
method, the VSS-M-NSAF algorithm can work well in double-
talk. Moreover, the algorithm performance with the SE DTD
is better than that with the Geigel DTD.

VI. CONCLUSION

In this work, we have made a detailed analysis on the mean
and mean-square behaviors of the M-NSAF algorithm by using
the probability event to simplify the MH-based nonlinearity
operation in the weights update. The theoretical expressions
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Fig. 13. Performance comparison of the VSS-M-NSAF and the fullband VSS
NLMS algorithms. Parameters setting of the algorithms is as follows: using
the same values as Fig. 11 for the VSS-M-NSAF; α = 0.99, γ = 0.05 and
β = 0.25 for the SE DTD; λ = 0.9996 and ε = 0.25 for the NEW-NPVSS-
NLMS; λ = 0.999 and ε = 10 for the JO-NLMS; Thold = 50 for the
JO-NLMS with Geigel DTD.

have been given to characterize the stability condition, tran-
sient and steady-state results of the M-NSAF algorithm in the
CG-based impulsive noise and verified using simulations. We
also developed a VSS scheme to further improve the M-NSAF
performance in terms of convergence rate and steady-state
estimation error. Moreover, this VSS scheme is also suitable
for improving the M-PNSAF performance in sparse systems.
Simulation results in both the system identification in the α-
stable noise and the AEC with double-talk scenarios have
demonstrated that the proposed algorithms outperform some
previously reported algorithms.

APPENDIX A

Based on the simulation setting in Section V. A, Fig. 14(a)
and (b) check the M-NSAF performance with respect to
different values of cσ and κ, respectively. Sure enough, using
the typical values cσ = 1.483(1 + 5/(Nw− 1)) [51, p.44] and
κ = 2.576 [52], the M-NSAF algorithm has good balance in
terms of convergence rate, steady-state MSD, and stability.

APPENDIX B
VERIFICATION OF (21)

Setting the same parameters as Fig. 5(b) for the M-NSAF
algorithm, Fig. 15 depicts the probability of every subband
participating in the weights update. The theoretical values of
Pe,i(k), i = 1, 2, 3, 4 are calculated by (35). As one can see,
at every iteration k, values of Pe,i(k) for different subbands
are close to each other. As such, we can make the replacement

of every Pe,i(k) with 1
N

N−1∑
i=0

Pe,i(k) to obtain (21).
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