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Abstract—This paper analyses the performance of filter bank
multicarrier (FBMC) signaling in conjunction with offset quadra-
ture amplitude modulation (OQAM) in multi-user (MU) massive
multiple-input multiple-output (MIMO) systems. Initially, closed
form expressions are derived for tight lower bounds correspond-
ing to the achievable uplink sum-rates for FBMC-based single-
cell MU massive MIMO systems relying on maximum ratio
combining (MRC), zero forcing (ZF) and minimum mean square
error (MMSE) receiver processing with/without perfect channel
state information (CSI) at the base station (BS). This is achieved
by exploiting the statistical properties of the intrinsic interference
that is characteristic of FBMC systems. Analytical results are
also developed for power scaling in the uplink of MU massive
MIMO-FBMC systems. The above analysis of the achievable
sum-rates and corresponding power scaling laws is subsequently
extended to multi-cell scenarios considering both perfect as
well as imperfect CSI, and the effect of pilot contamination.
The delay-spread-induced performance erosion imposed on the
linear processing aided BS receiver is numerically quantified
by simulations. Numerical results are presented to demonstrate
the close match between our analysis and simulations, and to
illustrate and compare the performance of FBMC and traditional
orthogonal frequency division multiplexing (OFDM)-based MU
massive MIMO systems.

Index Terms—FBMC, massive MIMO, OFDM, SINR, sum-
rate, MRC, ZF, MMSE, power scaling, single-cell, multi-cell.

I. INTRODUCTION

IN recent years, massive multiple-input multiple-output
(MIMO) technology [1] has gained significant popularity

due to its higher throughput and ability to simultaneously
support a large number of users. Employing a large number
of antennas (few hundred) enables the base station (BS)
in such systems to suppress the co-channel interference us-
ing low-complexity linear receivers such as maximum ratio
combining (MRC), zero forcing (ZF) and minimum mean
square error (MMSE), which leads to a significant spectral
efficiency improvement. Orthogonal frequency division multi-
plexing (OFDM), which circumvents the degradation resulting
from the frequency selective nature of wireless channels, has
recently been applied in massive MIMO systems [2], [3].
However, the rectangular time-domain pulse of OFDM leads
to a sinc-shaped out-of-band (OOB) emission. Furthermore,
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the ability of OFDM to partition the wideband spectrum
into multiple sub-bands of orthogonal subcarriers requires
accurate frequency- and timing-synchronization of the multiple
users within the cyclic prefix (CP) duration. OFDM systems
are thus sensitive to synchronization errors such as carrier
frequency offset (CFO) [4], especially in the uplink, where it
is challenging to track the Doppler shifts of different users [5].

The OFDM systems relying on offset quadrature amplitude
modulation (OQAM) (popularly known as OQAM based filter
bank multicarrier (FBMC) systems) [6], [7], which allow
the introduction of an efficient sharp pulse shaping filter,
exhibit a lower OOB radiation than classic CP-OFDM. These
beneficial pulse shaping filters alleviate the stringent uplink
synchronization requirements of FBMC-OQAM systems and
eliminate the need for CP that is required to combat inter-
symbol-interference (ISI) in classic OFDM systems [8], [9].
This leads to an improved spectral efficiency in FBMC-OQAM
systems. The advantages of FBMC over OFDM in the context
of cognitive radios and the uplink of multi-user (MU) networks
have recently been studied in [10] and [11], respectively.
In light of the aforementioned advantages, FBMC-OQAM
systems are being considered as potential waveform candidates
to replace OFDM in next-generation wireless cellular systems
[12]–[14]. Recently, the use of FBMC-OQAM transmission
has been extended to both MIMO [15] and massive MIMO
systems [16]. The focus of this paper is therefore to design and
analyse the performance of MU massive MIMO systems based
on FBMC-OQAM signaling. For brevity, FBMC-OQAM is
simply referred to as FBMC in the sequel.

A. Review of Existing Works

In contrast to OFDM, the OQAM based FBMC adopts real
OQAM symbols since the orthogonality holds in the real field
only [9]. The resulting intrinsic interference renders amalga-
mation of FBMC with massive MIMO systems challenging
[17]. Hence, it is not always possible to extend the existing
analysis of OFDM-based massive MIMO systems to that of
the massive MIMO-FBMC systems. Thus, the performance
analysis of FBMC-based massive MIMO techniques warrants
meticulous investigation. There are some studies in the existing
literature that have investigated the application of FBMC in the
context of massive MIMO systems. For instance, the authors
of [18] demonstrate that the signal to noise-plus-interference
ratio (SINR) of frequency selective single-cell massive MIMO-
FBMC systems is limited by a deterministic value governed
by the correlation between the multi-antenna combine tap
weights and the channel impulse responses. An equalizer is
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designed in [19] that removes the correlation induced SINR-
limitation described in [18]. References [16], [20] theoretically
characterize the mean squared error (MSE) of the estimated
symbols in the uplink of a single-cell massive MIMO-FBMC
system relying on linear receivers such as ZF, MMSE and
matched filtering. The authors of [21], [22] have compared
FBMC and CP-OFDM schemes in the context of single-cell
massive MIMO systems, indicating several benefits over the
latter such as reduced complexity, lower sensitivity to CFO,
reduction of peak-to-average power ratio, reduced latency and
increased bandwidth efficiency. The above studies reflect that
FBMC has indeed attracted significant research interests and
it is a compelling signalling technique in combination with
massive MIMO for next generation wireless systems. All the
works reviewed above are restricted to single-cell massive
MIMO-FBMC systems. Furthermore, they rely on the ideal-
ized simplifying assumption of having perfect channel state
information (CSI) at the BS. To the best of our knowledge, the
achievable uplink sum-rates of single- and multi-cell massive
MIMO systems using FBMC signaling for transmission over
quasi-static channels in the presence of both perfect and
imperfect CSI at the BS have not been disseminated in the
open literature. This paper aims to fill this void in the existing
literature on FBMC-based MU massive MIMO systems.

B. Contributions of Present Work

The analysis of the uplink of FBMC-based MU massive
MIMO systems is quite challenging due to the following
constraints imposed on FBMC signaling in contrast to its
OFDM counterpart. i) The virtual FBMC symbols obtained at
the output of the FBMC receive filter bank comprise both the
original OQAM symbol and the resultant intrinsic interference.
Thus, the statistical properties of the intrinsic interference have
to be shown for deriving the analytical results for the uplink of
FBMC-based massive MIMO systems. ii) The preprocessing
step invoked for facilitating the OQAM to QAM conversion at
the BS poses significant challenges in terms of determining the
statistical characteristics of the noise pulse interference at the
output of linear receivers. iii) Channel estimation in massive
MIMO-FBMC systems requires the insertion of zero symbols
between the adjacent training symbols to avoid ISI that arises
due to the overlapping nature of the time domain FBMC
symbols. This, in turn, requires separate analysis for the
resultant intrinsic interference to compute the virtual training
symbols for purpose of channel estimation. Furthermore, the
OQAM training symbols have to be precoded at the transmitter
for ensuring that the virtual training matrix at the receiver
becomes orthogonal [23]. Given the above challenges, our key
contributions can be briefly summarized as follows:
• The analysis begins by determining the second-order

statistical properties of the intrinsic interference, followed
by the achievable ergodic uplink sum-rates for single-cell
MU massive MIMO-FBMC systems relying on MRC, ZF
and MMSE processing at the BS in the presence of both
perfect as well as imperfect CSI.

• Closed-form expressions are derived for the lower bounds
on the achievable uplink rates for single-cell MU massive

MIMO-FBMC systems relying on linear receiver pro-
cessing at the BS both with perfect and imperfect CSI,
followed by the corresponding power scaling laws.

• The above sum-rate analysis is then extended to FBMC-
based multi-cell MU massive MIMO systems, incorpo-
rating also the effect of imperfect CSI. The pertinent
power scaling laws of this scenario are also determined.
Reference [24] presents an excellent analysis of the
sum-rate and power scaling properties for the uplink
of an OFDM-based multi-user massive MIMO system
in Ricean fading channels. However, their analysis is
focused on the MRC and ZF receivers in a single-cell
scenario. By contrast, this work analyses the sum-rate and
power scaling laws for the uplink of FBMC-based single-
as well as multi-cell multi-user massive MIMO systems
in Rayleigh fading channels, considering also the MMSE
receiver in addition to the MRC and ZF receivers.

• The real field orthogonality of FBMC systems progres-
sively degrades upon increasing the channel’s dispersion.
To study this effect, the impact of the channel’s de-
lay spread on the uplink performance of FBMC-based
massive MIMO systems is quantified numerically. Fur-
thermore, the effect of practical impairments such as
carrier frequency offset (CFO) on the uplink of FBMC
and OFDM-based single- and multi-cell massive MIMO
systems is also analysed.

• Simulation results validate the analytical expressions and
also compare the performance of FBMC and OFDM-
based massive MIMO systems.

C. Organization and Notation of Paper

The remainder of this paper is organized as follows. The
next section presents the equivalent baseband model of our
MU massive MIMO-FBMC system operating in a multipath
fading channel. Section-III presents our analytical results for
the FBMC-based single-cell MU massive MIMO systems
both in the presence of perfect and imperfect receive CSI.
Section-IV extends the analysis to FBMC-based multi-cell MU
massive MIMO systems with/ without perfect CSI at the BS.
Our simulation results are provided in Section-V and Section-
VI concludes the paper.

Notation: Upper and lower case bold face letters A and
a denote matrices and vectors respectively. The superscripts
(·)∗, (·)T and (·)H represent the complex conjugate, trans-
pose and Hermitian operators, respectively. The operators E[·]
and Var[·] denote the expectation and variance, respectively,
while Tr(·) and ∗ represent trace and convolution operators,
respectively. Further, j ,

√
−1, <{·} and ={·} represent real

and imaginary parts, and IM represents the M ×M identity
matrix. Furthermore, diag(ā) represents a diagonal matrix with
ā on its principal diagonal and the notation X ∼ CN (0, σ2)
describes a zero-mean circularly symmetric complex Gaussian
random variable X with mean zero and variance σ2.

II. MU MASSIVE MIMO-FBMC SYSTEM

We consider the uplink of an FBMC-based MU massive
MIMO system having M subcarriers, with U single-antenna
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users transmitting their signals in same time-frequency re-
sources to a BS equipped with an array of N antennas.
Let dum,k denote a real OQAM symbol of the uth user at
subcarrier index m and symbol instant k, which is generated
by extracting the real and imaginary parts of the complex
QAM symbol cum,k according to the rules described in [25, Eq.
(2), (3)]. Let T represent the duration of the QAM symbol cum,k
with T

2 denoting the duration of an OQAM symbol dum,k. The
real and imaginary parts of the QAM symbol cum,k are assumed
to be spatially and temporally independent and identically dis-
tributed (i.i.d) with power Pd such that E

[
dum,k(dum,k)∗

]
= Pd.

Hence, it follows that E
[
cum,k(cum,k)∗

]
= 2Pd. The equivalent

discrete-time baseband FBMC transmit signal su[l] of the uth
user is expressed as [9]

su[l] =

M−1∑
m=0

∑
k∈Z

dum,kχm,k[l], for 1 ≤ u ≤ U, (1)

where l denotes the sample index corresponding to the sam-
pling rate M/T and the basis function

χm,k[l] = p
[
l − kM/2

]
ej2πml/Mejφm,k . (2)

The phase factor φm,k above is defined as φm,k = π
2 (m +

k)− πmk [9]. The symmetric real-valued pulse p[l] of length
Lp represents the impulse response of the prototype filter
of the FBMC system. The key differences between OFDM
and FBMC systems lie i) in the fact that the latter adopts
OQAM symbols rather than QAM symbols; and ii) in the
specific choice of the prototype filter p[l]. The OFDM symbols
are shaped using a time-domain rectangular window that
has a sinc-shaped spectrum resulting in OOB emissions. In
order to overcome this impediment, the prototype pulse p[l]
in FBMC systems is well FT localised such that the basis
function χm,k[l] satisfies the real field orthogonality condition
<
{∑+∞

l=−∞ χm,k[l]χ∗
m̄,k̄

[l]
}

= δm,m̄δk,k̄ [9], where δm,m̄
denotes the Kronecker delta with δm,m̄ = 1 if m = m̄

and zero otherwise. Let the quantity ξm̄,k̄m,k be defined as
ξm̄,k̄m,k =

∑+∞
l=−∞ χm,k[l]χ∗

m̄,k̄
[l]. Thus, we have ξm̄,k̄m,k = 1 if

(m, k) = (m̄, k̄), and ξm̄,k̄m,k = j〈ξ〉m̄,k̄m,k if (m, k) 6= (m̄, k̄),
where the quantity 〈ξ〉m̄,k̄m,k = ={

∑+∞
l=−∞ χm,k[l]χ∗

m̄,k̄
[l]} de-

notes the imaginary part of the cross-correlation between two
basis functions [26].

Let gn,u[l], for 0 ≤ l ≤ L − 1, denote an L-tap dispersive
multipath fading channel between the uth user and the nth BS
antenna. The signal received at the nth BS antenna is

yn[l] =

U∑
u=1

(
su[l] ∗ gn,u[l]

)
+ ηn[l], for 1 ≤ n ≤ N, (3)

where ηn[l] represents the zero mean additive white Gaussian
noise with power σ2

η . The demodulated signal yn
m̄,k̄

on the nth
BS antenna at subcarrier m̄ and symbol time k̄ is obtained via
matched filtering with the FBMC basis function χm̄,k̄[l] as
yn
m̄,k̄

=
∑+∞
l=−∞ yn[l]χ∗

m̄,k̄
[l]. Since the typical duration of the

prototype filter in FBMC systems is a multiple of the symbol
duration T , which is significantly longer than the delay spread.

Thus, similar to several works such as [23], [26], [27], one can
rely on the assumption

P [l − i− kM/2] ≈ P [l − kM/2] for i ∈ [0, L]. (4)

By substituting the expressions for χm̄,k̄[l] and yn[l] from (2)
and (3) respectively, and utilizing (4), the expression for the
demodulated signal yn

m̄,k̄
can be written similar to [28], [29] as

ynm̄,k̄ =

U∑
u=1

Gn,um̄ bum̄,k̄ + ηnm̄,k̄, (5)

where Gn,um̄ =
∑L−1
l=0 gn,u[l]e−j2πm̄l/M denotes the CFR

of the linear spanning from the uth user to the nth BS
antenna at the m̄th subcarrier, and is assumed to be quasi-
static and frequency flat at subcarrier level. The demodulated
noise ηn

m̄,k̄
at the nth BS antenna is expressed as ηn

m̄,k̄
=∑+∞

l=−∞ ηn[l]χ∗
m̄,k̄

[l], and is also distributed as CN (0, σ2
η) due

to the linear demodulation operation. The quantity bu
m̄,k̄

=
du
m̄,k̄

+jIu
m̄,k̄

given by the addition of the OQAM symbol du
m̄,k̄

and the imaginary intrinsic interference component Iu
m̄,k̄

can
be considered to be the virtual symbol at the FT index (m̄, k̄).
Thus, it is necessary to determine the statistical properties of
the term Iu

m̄,k̄
in order to obtain the SINR, the achievable rate

and the lower bound expressions for the FBMC-based massive
MIMO system. The interference Iu

m̄,k̄
is expressed as

Ium̄,k̄ =
∑

(m,k)∈Ωm̄,k̄

dum,k〈ξ〉
m̄,k̄
m,k, (6)

where Ωm̄,k̄ denotes the neighbourhood of the desired FT point
(m̄, k̄) that does not include the point (m̄, k̄)1. The term Iu

m̄,k̄
comprises both the ISI and the inter-carrier-interference (ICI)
imposed by the symbols in the neighbourhood of the desired
symbol at the index (m̄, k̄). This is different from OFDM
systems wherein the ISI is suppressed by using the CP, while
the ICI is nulled due to the orthogonality of the subcarriers
[30]. The term Iu

m̄,k̄
has a mean of zero and

E[|Ium̄,k̄|
2] ≈ Pd. (7)

A detailed proof of the above result is given in Appendix-
A. Exploiting the above result and the property that the
desired symbol du

m̄,k̄
and the interference Iu

m̄,k̄
are zero-

mean independent variables, the variance of the virtual symbol
bu
m̄,k̄

= du
m̄,k̄

+ jIu
m̄,k̄

can now be computed as E[|bu
m̄,k̄
|2] =

E[|du
m̄,k̄
|2] + E[|Iu

m̄,k̄
|2] ≈ 2Pd. For convenience, (5) can be

written in vector form as

ym̄,k̄ = Gm̄bm̄,k̄ + ηm̄,k̄, (8)

where ym̄,k̄ = [y1
m̄,k̄

, y2
m̄,k̄

, . . . , yN
m̄,k̄

]T ∈ CN×1 is the vector
of received symbols at the BS across the N antennas and
ηm̄,k̄ = [η1

m̄,k̄
, η2
m̄,k̄

, . . . , ηN
m̄,k̄

]T ∈ CN×1 is the noise vec-
tor with the covariance matrix E[ηm̄,k̄η

H
m̄,k̄

] = σ2
ηIN . The

vector bm̄,k̄ = [b1
m̄,k̄

, b2
m̄,k̄

, . . . , bU
m̄,k̄

]T ∈ CU×1 comprises

1For well FT localized filters such as isotropic orthogonal transform
algorithm (IOTA), a significant portion of the interference can be at-
tributed to the first order neighbourhood of (m̄, k̄), denoted by Ωm̄,k̄ ={

(m̄± 1, k̄ ± 1), (m̄, k̄ ± 1), (m̄± 1, k̄)
}

.
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the virtual symbols for all the U users with the covari-
ance matrix E[bm̄,k̄b

H
m̄,k̄

] ≈ 2PdIU . The matrix Gm̄ =

[g1
m̄,g

2
m̄, . . . ,g

U
m̄] ∈ CN×U is the CFR matrix on the m̄th

subcarrier between the BS and the U users in the MU massive
MIMO setup. The matrix Gm̄ is typically modelled as [31]

Gm̄ = Hm̄

[
diag(β1, β2, . . . , βU )

]1/2
= Hm̄D1/2, (9)

where βu denotes the large-scale fading coefficient for user u
and the diagonal matrix D = diag(β1, β2, . . . , βU ) ∈ RU×U .
The quantity βu, which is constant over many coherence
time intervals, is assumed to be independent over the BS
antenna index n and the subcarrier index m̄, and known
a priori. The matrix Hm̄ = [h1

m̄,h
2
m̄, . . . ,h

U
m̄] ∈ CN×U

comprises the fading coefficients at the m̄th subcarrier be-
tween the BS and the U users. The elements of the matrix
Hm̄ are modeled as i.i.d. CN (0, 1). Thus, for simplicity of
analysis, the channel matrix Gm̄ = Hm̄D1/2 is assumed to
be spatially uncorrelated similar to the contributions such as
[18], [19]. After receiver processing at the BS, the estimate
ĉm̄,k̄ = [ĉ1

m̄,k̄
, . . . , ĉU

m̄,k̄
]T ∈ CU×1 of the transmitted QAM

symbol vector is obtained form the estimated OQAM symbol
vector d̂m̄,k̄ = [d̂1

m̄,k̄
, . . . , d̂U

m̄,k̄
]T ∈ CU×1 as [25, Eq. (7)]

ĉm̄,k̄ =

{
d̂m̄,2k̄ + jd̂m̄,2k̄+1, m̄ even
d̂m̄,2k̄+1 + jd̂m̄,2k̄, m̄ odd.

(10)

III. SINGLE-CELL MU MASSIVE MIMO-FBMC SYSTEM

Let Am̄ ∈ CN×U denote the combiner matrix employed at
the BS. The estimate of the U×1 OQAM symbol vector at the
output of the combiner is obtained as d̂m̄,k̄ = <

{
AH
m̄ym̄,k̄

}
.

The combiner matrix Am̄ for the MRC, ZF and MMSE
receivers, which are frequently employed in literature due to
their linear nature and low complexity, is expressed as

Am̄ =


Gm̄ for MRC
Gm̄

(
GH
m̄Gm̄

)−1
for ZF(

Gm̄GH
m̄ +

σ2
η

2Pd
IN

)−1

Gm̄ for MMSE.
(11)

In subsequent sections, we derive the ergodic uplink sum-
rates and the corresponding lower bounds, and the power
scaling laws for the aforementioned receivers considering the
operating regime where 1 � U � N [31]. The following
results will be used in the ensuing analysis.

Let a = [a1, . . . , aN ]T and b = [b1, . . . , bN ]T be the N ×1
mutually independent random vectors, which consist of zero
mean i.i.d. elements with variance σ2

a and σ2
b , respectively.

Then, from law of large numbers, it can be shown that [32]

1

N
aHa

a.s.−−−−→
N→∞

σ2
a and

1

N
aHb

a.s.−−−−→
N→∞

0, (12)

where a.s.−−−−→
N→∞

denotes almost sure convergence as N → ∞.
Furthermore,

1√
N

aHb
d−−−−→

N→∞
CN (0, σ2

aσ
2
b ), (13)

Fig. 1: Frame structure for the uth user. The symbols, , © and
⊗

represent the training, zero and data symbols, respectively.

where d−−−−→
N→∞

denotes convergence in distribution as N →
∞. Finally, the result below holds for two complex random
matrices X and Y [33]

E
[
<{X}<{Y}

]
=

1

2
<
{
E[XY + XY∗]

}
. (14)

The next subsection presents the sum-rate analysis for a single-
cell MU massive MIMO-FBMC systems with imperfect CSI
at the BS. The corresponding results for the perfect CSI are
subsequently derived as a special case.

A. Imperfect CSI

1) Training-based linear MMSE Channel Estimation: Con-
sider L0 OQAM symbols to be transmitted by the uth user on
each subcarrier as per the frame structure illustrated in Fig. 1.
Let each frame comprises K(K ≥ U) training symbols to
be employed for channel estimation, followed by Nd data-
bearing symbols. Since the adjacent FBMC symbols interfere
with each other in the time domain due to the overlapping
nature of the pulse-shaping filters, a zero symbol is inserted
between the adjacent training symbols for reducing ISI to an
acceptable level [23], [26], [34], [35], as shown in Fig. 1. In
view of the inter-frame time gap commonly used in wireless
communication, insertion of a zero symbol at the beginning
of the frame is in general unnecessary [23]. Thus, MIMO-
FBMC pilot sequences with guard (zero) symbols require 2K
OQAM symbols on each subcarrier, which is equivalent to
K complex QAM symbols [23]. Hence, the training overhead
required for channel estimation in MIMO-FBMC is similar to
that of MIMO-OFDM [36] and does not incur any additional
loss in spectral efficiency.

Evaluating (8) at the training symbol locations k = 2i for
0 ≤ i ≤ K−1 and stacking the resulting outputs, one obtains

Ym̄ = Gm̄BT
m̄ + Wm̄ =

U∑
j=1

gjm̄(bjm̄)T + Wm̄, (15)

where Ym̄ = [ym̄,0,ym̄,2, . . . ,ym̄,2(K−1)] ∈ CN×K is the
matrix of concatenated receive training vectors and Wm̄ =
[ηm̄,0,ηm̄,2, . . . ,ηm̄,2(K−1)] ∈ CN×K is the corresponding
noise matrix. Each element of the noise matrix Wm̄ is
distributed as CN (0, σ2

η). The virtual training matrix Bm̄ =
[b1
m̄,b

2
m̄, . . . ,b

U
m̄] ∈ CK×U is obtained by concatenation of

the virtual training vectors, where the training vector for the
uth user is bum̄ = [bum̄,0, b

u
m̄,2, . . . , b

u
m̄,2(K−1)]

T ∈ CK×1.
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The ith element of bum̄ at the FT index (m̄, 2i) is given as
bum̄,2i = dum̄,2i + jIum̄,2i. The intrinsic interference Ium̄,2i, for
0 ≤ i ≤ K − 1 and user u, can be expressed as

Ium̄,2i =
∑
m6=m̄

dum,2i=
{ +∞∑
l=−∞

p2[l]ej(φm,0−φm̄,0)

ej2π(m−m̄)l/M

}
=
∑
m 6=m̄

dum,2i〈ξ〉
m̄,0
m,0. (16)

A detailed proof of the above result is given in Appendix-
B. Similar to [37], the training symbols are generated by
extracting the real and imaginary parts of the random complex
QAM symbols. Thus, for an orthogonal training matrix Bm̄

[23], constructed as per the procedure in Appendix-C, it
follows from (7) that BH

m̄Bm̄ = PpIU , where Pp = 2PdK
represents the pilot power. The N ×1 received training vector
for the uth user can be obtained using (15) as

yum̄ = Ym̄(bum̄)∗ = Ppg
u
m̄ + wu

m̄. (17)

Here we have exploited the property that (bjm̄)T (bum̄)∗ = Pp
for j = u and zero otherwise. The noise vector obeys wu

m̄ =
Wm̄(bum̄)∗. Utilizing (7), E[wu

m̄(wu
m̄)H ] = Ppσ

2
ηIN . From

(17), the estimate of the channel vector at the m̄th subcarrier
between the BS and the uth user is

ĝum̄ =
βu

Ppβu + σ2
η

yum̄.

It can be verified that the covariance matrix of ĝum̄ and the
error vector eum̄ = gum̄ − ĝum̄ are

E[ĝum̄(ĝum̄)H ] =
Pp(β

u)2

Ppβu + σ2
η

IN , and (18)

E[eum̄(eum̄)H ] =
βuσ2

η

Ppβu + σ2
η

IN . (19)

2) MRC Receiver: Employing gum̄ = ĝum̄ + eum̄ in (8), the
estimate of the OQAM symbol at the MRC receiver output
for the uth user at the FT index (m̄, k̄) can be formulated as

d̂um̄,k̄ = <
{

(ĝum̄)Hym̄,k̄
}

= ‖ĝum̄‖
2
dum̄,k̄ + vu,mrc

m̄,k̄
, (20)

where the real noise-plus-interference term vu,mrc
m̄,k̄

is ex-
pressed as

vu,mrc
m̄,k̄

= <
{ U∑
j=1,j 6=u

(ĝum̄)H ĝjm̄b
j

m̄,k̄
+

U∑
j=1

(ĝum̄)Hejm̄b
j

m̄,k̄

+ (ĝum̄)Hηm̄,k̄

}
. (21)

Recall that the virtual symbol bj
m̄,k̄

= dj
m̄,k̄

+ jIj
m̄,k̄

. Thus, the
impact of intrinsic interference Ij

m̄,k̄
on vu,mrc

m̄,k̄
in (21) can be

significant since the power of Ij
m̄,k̄

approximately equals the
data power, i.e. E[|Ij

m̄,k̄
|2] ≈ Pd, as shown in equation (7).

Furthermore, for deriving the pertinent uplink performance
metrics such as the SINR and sum-rate for the MRC, ZF
and MMSE receivers in the massive MIMO-FBMC system,
it is essential to obtain the statistical characteristics of the
intrinsic interference, which we have derived in Appendix-A.

Exploiting (19), (14) and (7), the variance of the term vu,mrc
m̄,k̄

can be formulated as

Var
[
vu,mrc
m̄,k̄

]
= Pd

U∑
j=1,j 6=u

∣∣(ĝum̄)H ĝjm̄
∣∣2 +

σ2
η

2
‖ĝum̄‖

2

+ Pd

U∑
j=1

βjσ2
η

Ppβj + σ2
η

‖ĝum̄‖
2
. (22)

From (10), the MRC estimate of the symbol after OQAM to
QAM conversion becomes:

ĉum̄,k̄ = ‖ĝum̄‖
2
cum̄,k̄ + ṽu,mrc

m̄,k̄
, (23)

where cu
m̄,k̄

= du
m̄,2k̄

+ jdu
m̄,2k̄+1

and ṽu,mrc
m̄,k̄

= vu,mrc
m̄,2k̄

+

jvu,mrc
m̄,2k̄+1

when m̄ is even, and for odd m̄, cu
m̄,k̄

= du
m̄,2k̄+1

+

jdu
m̄,2k̄

and ṽu,mrc
m̄,k̄

= vu,mrc
m̄,2k̄+1

+jvu,mrc
m̄,2k̄

. Since the interference-
plus-noise terms vu,mrc

m̄,2k̄
and vu,mrc

m̄,2k̄+1
are zero-mean indepen-

dent with equal variances, the term ṽu,mrc
m̄,k̄

after OQAM to
QAM conversion has a variance of Var[ṽu,mrc

m̄,k̄
] = 2Var[vu,mrc

m̄,k̄
].

Thus, the SINR at the m̄th subcarrier of the uth user with
imperfect CSI can be expressed as

Υu,mrc
m̄,IP =

2Pd ‖ĝum̄‖
2

2Pd

( U∑
j=1,j 6=u

∣∣g̃jm̄∣∣2 +

U∑
j=1

βjσ2
η

Ppβj + σ2
η

)
+ σ2

η

, (24)

where the random variable g̃jm̄ obeys g̃jm̄ = (ĝum̄)H ĝjm̄/ ‖ĝum̄‖.
It follows from (12) and (18) that g̃jm̄ ∼ CN

(
0,

Pp(βj)2

Ppβj+σ2
η

)
.

Furthermore, conditioned on ĝum̄, the random variable g̃jm̄ is
independent from ĝum̄. For a fixed Eu, let the power of the
uth user be scaled as 2Pd = Eu/

√
N , and N grows large.

Then, by exploiting (12) and (18), the SINR Υu,mrc
m̄,IP

N→∞−−−−→
K(βuEu)2/σ4

η . The ergodic achievable uplink rate at the m̄th
subcarrier of the uth user can now be obtained as

Ru,mrc
m̄,IP = E

[
log2(1 + Υu,mrc

m̄,IP )
]
. (25)

Exploiting the convexity of log(1+ 1
x ) and Jensen’s inequality

of E[f(x)] ≥ f(E[x]), the lower bound on the achievable
uplink rate is obtained as Ru,mrc

m̄,IP ≥ R̃u,mrc
m̄,IP = log2

(
1 +(

E
[
1/Υu,mrc

m̄,IP

])−1)
. The term E

[
1/Υu,mrc

m̄,IP

]
can be evaluated as

E
[

1

Υu,mrc
m̄,IP

]
=

( U∑
j=1,j 6=u

E
[∣∣g̃jm̄∣∣2]+

U∑
j=1

βjσ2
η

Ppβj + σ2
η

+
σ2
η

2Pd

)
E
[

1

‖ĝum̄‖
2

]
. (26)

The identity E[Tr(W−1)] = k/(k−m) for an m×m central
complex Wishart distributed matrix W with k (k > m) degree
of freedom [38] yields E

[
1/‖ĝum̄‖

2]
=

(βuPp+σ2
η)

Pp(βu)2(N−1) for N ≥
2. Thus, the achievable uplink rate of the MRC receiver is
lower bounded as

Ru,mrc
m̄,IP ≥ R̃

u,mrc
m̄,IP = (27)

log2

1 +
Pp(N − 1)(βu)2

(Ppβu + σ2
η)

(∑U
j=1,j 6=u β

j +
σ2
η

2Pd

)
+ βuσ2

η

 .
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By setting 2Pd = Eu/
√
N for a fixed Eu, and N → ∞,

R̃u,mrc
m̄,IP → log2

(
1 +K(Euβu)2/σ4

η

)
.

3) ZF Receiver: Employing ZF combining in (8), the
estimate of the OQAM symbol vector at the FT index (m̄, k̄)
in the presence of imperfect CSI can be formulated as

d̂m̄,k̄ = <
{
Ĝ†m̄ym̄,k̄

}
= dm̄,k̄ + vzf

m̄,k̄,

where Ĝ†m̄ =
(
GH
m̄Gm̄

)−1
GH
m̄ and the noise-plus-

interference vector vzf
m̄,k̄

= <
{
Ĝ†m̄

∑U
j=1 e

j
m̄b

j

m̄,k̄
+

Ĝ†m̄ηm̄,k̄
}

. Using (14), (19) and the statistical properties of
the intrinsic interference from (7), the covariance matrix of
the vector vzf

m̄,k̄
is

E
[
vzf
m̄,k̄(vzf

m̄,k̄)H
]

=

( U∑
j=1

Pdβ
jσ2
η

Ppβj + σ2
η

+
σ2
η

2

)(
ĜH
m̄Ĝm̄

)−1

.

Using (10), the ZF estimate of the QAM symbol vector cm̄,k̄
can now be computed as

ĉm̄,k̄ = cm̄,k̄ + ṽzf
m̄,k̄. (28)

Using the fact that E
[
ṽzf
m̄,k̄

(ṽzf
m̄,k̄

)H
]

= 2E
[
vzf
m̄,k̄

(vzf
m̄,k̄

)H
]
,

the SINR at the m̄th subcarrier of the uth user is derived as

Υu,zf
m̄,IP =

2Pd(
2Pd

∑U
j=1

βjσ2
η

Ppβj+σ2
η

+ σ2
η

)[(
ĜH
m̄Ĝm̄

)−1
]
u,u

, (29)

where
[(
ĜH
m̄Ĝm̄

)−1]
u,u

denotes the uth diagonal element of

the matrix
(
ĜH
m̄Ĝm̄

)−1
. By choosing 2Pd = Eu/

√
N and us-

ing (12), as N →∞, it follows that Υu,zf
m̄,IP → K(βuEu)2/σ4

η .
Consequently, the achievable uplink rate

Ru,zf
m̄,IP = E

[
log2(1 + Υu,zf

m̄,IP)
]
→ log2

(
1 +

K(βuEu)2

σ4
η

)
.

(30)

Upon employing (18), it follows from [38] that
E
[{(

ĜH
m̄Ĝm̄

)−1}
u,u

]
=

Ppβ
u+σ2

η

Pp(βu)2(N−U) . Thus, the lower
bound on the achievable uplink rate is determined as

Ru,zf
m̄,IP ≥ R̃

u,zf
m̄,IP =

log2

1 +
Pp(N − U)(βu)2

(Ppβu + σ2
η)
(∑U

j=1

βjσ2
η

Ppβj+σ2
η

+
σ2
η

2Pd

)
 .

Note that for 2Pd = Eu/
√
N and N →∞, R̃u,zf

m̄,IP → R
u,zf
m̄,IP.

This shows that the power scaling laws, similar to the OFDM-
based MU massive MIMO systems [31], also hold for their
FBMC counterparts.

4) MMSE Receiver: Substituting gum̄ = ĝum̄ + eum̄ in
(8), one obtains ym̄,k̄ = ĝum̄b

u
m̄,k̄

+
∑U
j=1,j 6=u ĝ

j
m̄b

j

m̄,k̄
+∑U

j=1 e
j
m̄b

j

m̄,k̄
+ ηm̄,k̄. Let the noise-plus-error vector be

η̃m̄,k̄ =
∑U
j=1 e

j
m̄b

j

m̄,k̄
+ ηm̄,k̄. Using (19) and the vari-

ance of the intrinsic interference derived in (7), the covari-
ance of the vector η̃m̄,k̄ is determined as E[η̃m̄,k̄η̃

H
m̄,k̄] =

2Pd
∑U
j=1

βjσ2
η

Ppβj+σ2
η
IN + σ2

ηIN . Thus, in the presence of the

channel estimation error, the uth column âum̄ of the MMSE
combiner matrix Âm̄ is

âum̄ =
(
R̂−1
m̄ + ĝum̄ (ĝum̄)

H
)−1

ĝum̄
(a)
=

R̂m̄ĝum̄

1 + (ĝum̄)
H
Rm̄ĝum̄

,

where the matrix R̂−1
m̄ obeys R̂−1

m̄ =
∑U
j=1,j 6=u ĝ

j
m̄(ĝjm̄)H +∑U

j=1

βjσ2
η

Ppβj+σ2
η
IN +

σ2
η

2Pd
IN . The equality (a) follows from the

matrix inversion lemma
(
A+uvT

)−1
= A−1− A−1uvTA−1

1+vTA−1u
.

The estimate of the OQAM symbol at the MMSE combiner
output can now be determined as

d̂um̄,k̄ = <
{

(âum̄)
H
ym̄,k̄

}
= αum̄d

u
m̄,k̄ + vu,mmse

m̄,k̄
, (31)

where vu,mmse
m̄,k̄

= <
{∑U

j=1,j 6=u (âum̄)
H
ĝjm̄b

j

m̄,k̄
+∑U

j=1 (âum̄)
H
ejm̄b

j

m̄,k̄
+ (âum̄)

H
ηm̄,k̄

}
is the noise-plus-

interference term and the scalar αum̄ = (âum̄)
H
ĝum̄. Since

the matrix R̂m̄ is positive definite in nature, αum̄ is a real
and positive quantity. Using (14), (19) and the property of
the intrinsic interference from (7), the variance of the term
vu,mmse
m̄,k̄

can be expressed as

Var
[
vu,mmse
m̄,k̄

]
= Pd

U∑
j=1,j 6=u

∣∣ (âum̄)
H
ĝjm̄
∣∣2 +

σ2
η

2
‖âum̄‖

2

+ Pd

U∑
j=1

βjσ2
η

Ppβj + σ2
η

‖âum̄‖
2

= Pd (âum̄)
H
R̂−1
m̄ âum̄. (32)

Employing the rules given in (10), the MMSE estimate of the
QAM symbol is

ĉum̄,k̄ = αum̄c
u
m̄,k̄ + ṽu,mmse

m̄,k̄
. (33)

Using the fact that the term ṽu,mmse
m̄,k̄

has a variance of
Var[ṽu,mmse

m̄,k̄
] = 2Var[vu,mmse

m̄,k̄
], the SINR for the uth user at

the MMSE combiner output becomes:

Υu,mmse
m̄,IP =

(αum̄)2

(âum̄)
H
R̂−1
m̄ âum̄

≤ (âum̄)
H
R̂m̄âum̄. (34)

The achievable ergodic uplink rate of the uth user is
Ru,mmse
m̄,IP = E

[
log2

(
1 + (âum̄)

H
R̂m̄âum̄

)]
. Using the identity

1 + (âum̄)
H
R̂m̄âum̄ = 1/

[
(IU + c0Ĝ

H
m̄Ĝm̄)−1

]
u,u

[31], one
obtains

Ru,mmse
m̄,IP = E

[
log2

(
1[

(IU + c0ĜH
m̄Ĝm̄)−1

]
u,u

)]
, (35)

where the constant c0 =
(∑U

j=1

βjσ2
η

Ppβj+σ2
η

+
σ2
η

2Pd

)−1
. The up-

link rate is lower bounded as Ru,mmse
m̄,IP ≥ R̃u,mmse

m̄,IP = log2

(
1 +

(π̂u − 1)θ̂u
)
, where the parameters π̂u = (N−U+1+(U−1)µ̂)2

N−U+1+(U−1)κ̂

and θ̂u = N−U+1+(U−1)κ̂
N−U+1+(U−1)µ̂

Pp(βu)2

c0(Ppβu+σ2
η) . The constants µ̂ and

κ̂ are computed using the rules in [31, eq. (50)].

B. Perfect CSI

Using similar steps as in Section-III-A, the achievable
uplink rate for the MRC, ZF and MMSE combining at the
BS with perfect CSI can be determined as follows.
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1) MRC Receiver: The SINR at m̄th subcarrier of the uth
user can be shown to be:

Υu,mrc
m̄,P =

2Pd ‖gum̄‖
4

2Pd
∑U
i=1,i6=u

∣∣(gum̄)Hgim̄
∣∣2 + σ2

η ‖gum̄‖
2
. (36)

The asymptotic SINR and uplink rate are determined as
Υu,mrc
m̄,P

∣∣
2Pd=Eu/N

N→∞−−−−→ βuEu/σ2
η and Ru,mrc

m̄,P = E
[
log2(1+

Υu,mrc
m̄,P )

] N→∞−−−−→ log2

(
1+ βuEu

σ2
η

)
. The achievable rate is lower-

bounded as

Ru,mrc
m̄,P ≥ R̃

u,mrc
m̄,P = log2

(
1 +

2Pd(N − 1)βu

2Pd
∑U
i=1,i6=u β

i + σ2
η

)
.

It can also be verified that for 2Pd = Eu/N and N → ∞,
the lower-bound R̃u,mrc

m̄,P → R
u,mrc
m̄,P .

2) ZF Receiver: The SINR at the m̄th subcarrier of the uth
user is obtained as

Υu,zf
m̄,P =

2Pd

σ2
η

{(
GH
m̄Gm̄

)−1
}
u,u

. (37)

The corresponding lower-bound on the achievable rateRu,zf
m̄,P =

E
[
log2(1 + Υu,zf

m̄,P)
]

is

Ru,zf
m̄,P ≥ R̃

u,zf
m̄,P = log2

(
1 +

2Pdβ
u(N − U)

σ2
η

)
. (38)

Setting 2Pd = Eu/N , as N grows large, we have
R̃u,zf
m̄,P

N→∞−−−−→ log2

(
1 + Euβu/σ2

η

)
.

3) MMSE Receiver: Similarly, for the MMSE receiver, the
achievable ergodic uplink rate is

Ru,mmse
m̄,P = E

[
log2

(
1[

(IU + 2Pd
σ2
η
GH
m̄Gm̄)−1

]
u,u

)]
. (39)

The achievable uplink rate is lower-bounded as Ru,mmse
m̄,P ≥

R̃u,mmse
m̄,P = log2

(
1 + (πu − 1)θu

)
, where the parameters obey

πu = (N−U+1+(U−1)µ)2

N−U+1+(U−1)κ and θu = N−U+1+(U−1)κ
N−U+1+(U−1)µ

2Pd
σ2
η
βu.

The constants µ and κ are computed using the rules given in
[31, eq. (28)].

IV. MULTI-CELL MU MASSIVE MIMO-FBMC SYSTEM

Let us now consider the uplink of a multi-cell MU MIMO-
FBMC system with Nc cells sharing the same frequency band.
Each of the cells consists of a single BS equipped with N
antennas and U single-antenna users. From (8), the N × 1
receive vector at subcarrier index m̄ and symbol time index k̄
at the nth BS can be expressed as

ym̄,k̄,n =

Nc∑
i=1

Gm̄,n,ibm̄,k̄,i + ηm̄,k̄,n, (40)

where Gm̄,n,i = [g1
m̄,n,i,g

2
m̄,n,i, . . . ,g

U
m̄,n,i] ∈ CN×U denotes

the CFR matrix at the m̄th subcarrier between the nth BS and
the U users in the ith cell, bm̄,k̄,i ∈ CU×1 is the virtual symbol
vector of the U users in the ith cell and ηm̄,k̄,n ∈ CN×1 is the
noise vector at the nth BS. Similar to the single-cell scenario

in (9), the CFR matrix Gm̄,n,i for the multi-cell scenario is
modelled as

Gm̄,n,i = Hm̄,n,iD
1/2
n,i , (41)

where the matrix Hm̄,n,i comprises the fading coefficients at
the m̄th subcarrier between the nth BS station and the U users
in the ith cell. The U×U diagonal matrix D

1/2
n,i comprises the

large-scale fading and the shadowing factors between the nth
BS station and U users in the ith cell such that [Dn,i](u,u) =
βun,i for i 6= n and [Dn,n](u,u) = βun,n = 1. The elements of
the matrix Hm̄,n,i are modelled as i.i.d. CN (0, 1).

A. Perfect CSI

1) MRC Receiver: The OQAM symbol estimate at the
output of the MRC receiver at the nth BS for the uth user
at the FT index (m̄, k̄) is

d̂um̄,k̄,n = <
{

(gum̄,n,n)Hym̄,k̄,n
}

=
∥∥gum̄,n,n∥∥2

dum̄,k̄,n + wu,mrc
m̄,k̄,n

,

where du
m̄,k̄,n

= <
{
bu
m̄,k̄,n

}
denotes the OQAM symbol trans-

mitted by the uth user in the nth cell at the FT index (m̄, k̄)
and the noise-plus-interference term wu

m̄,k̄,n
is expressed as

wu,mrc
m̄,k̄,n

= <

{
Nc∑

i=1,i6=n

U∑
j=1

(gum̄,n,n)Hgjm̄,n,ib
j

m̄,k̄,i

+

U∑
j=1,j 6=u

(gum̄,n,n)Hgjm̄,n,nb
j

m̄,k̄,n
+ (gum̄,n,n)Hηm̄,k̄,n

}
.

The first and second terms in the above equation represent the
inter-cell-interference and intra-cell-interference, respectively.
Using (14) and the statistical characteristics of the intrinsic in-
terference from (7), the variance of the noise-plus interference
term wu,mrc

m̄,k̄,n
can be formulated as

Var[wu,mrc
m̄,k̄,n

] = Pd

Nc∑
i=1,i6=n

U∑
j=1

∣∣(gum̄,n,n)Hgjm̄,n,i
∣∣2

+ Pd

U∑
j=1,j 6=u

∣∣(gum̄,n,n)Hgjm̄,n,n
∣∣2 +

σ2
η

2

∥∥gum̄,n,n∥∥2
.

The estimated QAM symbol after OQAM to QAM conver-
sion is

ĉum̄,k̄,n =
∥∥gum̄,n,n∥∥2

cum̄,k̄,n + w̃u,mrc
m̄,k̄,n

. (42)

Here cu
m̄,k̄,n

= du
m̄,2k̄,n

+jdu
m̄,2k̄+1,n

and w̃u,mrc
m̄,k̄,n

= wu,mrc
m̄,2k̄,n

+

jwu,mrc
m̄,2k̄+1,n

if subcarrier index m̄ is even, and for odd m̄,
cu
m̄,k̄,n

= du
m̄,2k̄+1,n

+ jdu
m̄,2k̄,n

and w̃u,mrc
m̄,k̄,n

= wu,mrc
m̄,2k̄+1,n

+

jwu,mrc
m̄,2k̄,n

. Since the terms wu,mrc
m̄,2k̄,n

and wu,mrc
m̄,2k̄+1,n

are zero-
mean independent with equal variances, we get Var[w̃u,mrc

m̄,k̄,n
] =

2Var[wu,mrc
m̄,k̄,n

]. Using (42), the SINR at the nth BS for the uth
user is obtained as

Υu,mrc
m̄,n,P =

2Pd
∣∣∣∣gum̄,n,n∣∣∣∣4

2Var[wu,mrc
m̄,k̄,n

]
. (43)

It can be verified that by setting 2Pd = Eu/N and N →
∞, we have Υu,mrc

m̄,n,P → βun,nE
u/σ2

η . Thus, similar to single-
cell MU massive MIMO-FBMC systems, the power scaling
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law also holds in the case of multi-cell MU massive MIMO-
FBMC systems. Next, the achievable uplink rate of Ru,mrc

m̄,n,P =

E
[
log2

(
1+Υu,mrc

m̄,n,P

)] N→∞−−−−→ log2

(
1+βun,nE

u/σ2
η

)
. Using the

identity that E[1/||gum̄,n,n||2] = 1/[βun,n(N − 1)], the lower
bound on the achievable uplink rate is

Ru,mrc
m̄,n,P ≥ R̃

u,mrc
m̄,n,P = (44)

log2

1 +
2Pd(M − 1)βun,n

2Pd

( Nc∑
i=1,i6=n

U∑
j=1

βjn,i +

U∑
j=1,j 6=u

βjn,n

)
+ σ2

η

 .

2) ZF Receiver: Following similar lines, the SINR can be
expressed as

Υu,zf
m̄,n,P = (45)

2Pd(
2Pd

∑Nc
i=1,i6=n

∑U
j=1 β

j
n,i + σ2

η

){(
GH
m̄,n,nGm̄,n,n

)−1}
u,u

.

The lower-bound on the achievable uplink rate is

R̃u,zf
m̄,n,P = log2

(
1 +

2Pd(M − U)βun,n

2Pd
∑Nc
i=1,i6=n

∑U
j=1 β

j
n,i + σ2

η

)
2Pd=Eu/N−−−−−−−→
N→∞

log2

(
1 + βun,nE

u/σ2
η

)
. (46)

B. Imperfect CSI

1) Training-based linear MMSE Channel Estimation: Let
the users in each cell transmit the same set of training symbols
according to the frame structure in Fig. 1. Evaluating (40) at
the instants k = 2i for 0 ≤ i ≤ K − 1 and stacking the
resultant outputs, the received training symbol matrix Ym̄,n =
[ym̄,0,n,ym̄,2,n, . . . ,ym̄,2(K−1),n] ∈ CN×K at the nth BS is
expressed as

Ym̄,n =

Nc∑
i=1

Gm̄,n,iB
T
m̄ + Wm̄,n, (47)

where Wm̄,n = [ηm̄,0,n,ηm̄,2,n, . . . ,ηm̄,2(K−1),n] ∈ CN×K
is the corresponding noise matrix. Each element of the noise
matrix Wm̄,n is distributed as CN (0, σ2

η). Upon exploiting
the orthogonality among columns of the virtual training matrix
Bm̄, the received training vector at the nth BS for the uth user
in the nth cell can be evaluated as

yum̄,n,n = Ym̄,n

(
bum̄
)∗

= Ppg
u
m̄,n,n +

Nc∑
i=1,i6=n

Ppg
u
m̄,n,i

+ Wm̄,n

(
bum̄
)∗

= Ppg
u
m̄,n,n + wu

m̄,n,n, (48)

where the noise-plus-interference vector wu
m̄,n,n =∑Nc

i=1,i6=n Ppg
u
m̄,n,i + Wm̄,n

(
bum̄
)∗

. Note that the
term

∑Nc
i=1,i6=n Ppg

u
m̄,n,i represents the inter-cell

interference arising due to the pilot contamination.
This term appears because of the pilot reuse among
different cells. Exploiting the result from (7), it can be
readily verified that the noise vector Wm̄,n

(
bum̄
)∗

is

distributed as CN (0, Ppσ
2
ηIN ). The covariance matrix

Cgum̄,n,n = E[gum̄,n,n(gum̄,n,n)H ] = IN . Furthermore, the
covariance matrix Cwum̄,n,n of the vector wu

m̄,n,n can be
determined as Cwum̄,n,n = (P 2

p (γu − 1) + Ppσ
2
η)IN , where

γu =
∑Nc
i=1,i6=n β

u
n,i + 1. Upon using the above results,

the MMSE estimate of the CFR vector gum̄,n,n at the m̄th
subcarrier between nth BS and uth user in the nth cell is
now obtained as

ĝum̄,n,n =
1

Ppγu + σ2
η

yum̄,n,n. (49)

Upon using the expression for the variance of the intrinsic
interference evaluated in (7), the covariance matrices of the
estimate ĝum̄,n,n and the error vector eum̄,n,n = gum̄,n,n−ĝum̄,n,n
are obtained as

Cĝum̄,n,n = E
[
ĝum̄,n,n(ĝum̄,n,n)H

]
=

Pp
Ppγu + σ2

η

IN , (50)

Ceum̄,n,n = E
[
eum̄,n,n(eum̄,n,n)H

]
=
Pp(γ

u − 1) + σ2
η

Ppγu + σ2
η

IN .

(51)

Similar to (48), the received training vector at the nth BS for
the uth user in the jth cell is

yum̄,n,j = Ym̄,n

(
bum̄
)∗

= Ppg
u
m̄,n,j + wu

m̄,n,j , (52)

where the noise-plus-interference vector wu
m̄,n,j at the nth BS

for the uth user in the jth cell is expressed as wu
m̄,n,j =

Ppg
u
m̄,n,n +

∑Nc
i=1,i6=(j,n) Ppg

u
m̄,n,i + Wm̄,n

(
bum̄
)∗

. Since
Cgum̄,n,j

= βun,jIN , it can be verified using (7) that Cwum̄,n,j
=

(P 2
p γ

u − P 2
p β

u
n,j + Ppσ

2
η)IN . From (52), the estimate of the

CFR vector at the m̄th subcarrier between the nth BS and the
uth user in the jth cell is

ĝum̄,n,j =
βun,j

Ppγu + σ2
η

yum̄,n,j = βun,j ĝ
u
m̄,n,n, (53)

where the last equality above follows from (49). The co-
variance matrices of the vector ĝum̄,n,j and the corresponding
estimation error vector eum̄,n,j = gum̄,n,j − ĝum̄,n,j are

Cĝum̄,n,j
= (βun,j)

2E[ĝum̄,n,n(ĝum̄,n,n)H ] =
Pp(β

u
n,j)

2

Ppγu + σ2
η

IN ,

(54)

Ceum̄,n,j
=
βun,j(Ppγ

u − Ppβun,j + σ2
η)

Ppγu + σ2
η

IN . (55)

2) MRC Receiver: Employing gum̄,n,i = ĝum̄,n,i + eum̄,n,i in
(40), the MRC estimate of the OQAM symbol at the nth BS
for the uth user at the FT index (m̄, k̄) can be formulated as

d̂um̄,k̄,n = <
{

(ĝum̄,n,n)Hym̄,k̄,n
}

=
∥∥ĝum̄,n,n∥∥2

dum̄,k̄,n + vu,mrc
m̄,k̄,n

, (56)
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where the noise-plus-interference term vu,mrc
m̄,k̄,n

is expressed as

vu,mrc
m̄,k̄,n

= <

{
U∑

j=1,j 6=u

(ĝum̄,n,n)H ĝjm̄,n,nb
j

m̄,k̄,n
+

Nc∑
i=1,i6=n

U∑
j=1

(ĝum̄,n,n)Hejm̄,n,ib
j

m̄,k̄,i
+

Nc∑
i=1,i6=n

U∑
j=1

(ĝum̄,n,n)H ĝjm̄,n,ib
j

m̄,k̄,i

+

U∑
j=1

(ĝum̄,n,n)Hejm̄,n,nb
j

m̄,k̄,n
+ (ĝum̄,n,n)Hηm̄,k̄,n

}
. (57)

Using (14), (51) and (55) along with the statistical properties
of the intrinsic interference evaluated in (7), the variance of
the term vu,mrc

m̄,k̄,n
above can be derived as

Var
[
vu,mrc
m̄,k̄,n

]
= Pd

Nc∑
i=1,i6=n

U∑
j=1,j 6=u

∣∣(ĝum̄,n,n)H ĝjm̄,n,i
∣∣2

+ Pd

(
µn +

σ2
η

2Pd
+

Nc∑
i=1,i6=n

(βun,i)
2
∥∥ĝum̄,n,n∥∥2

)∥∥ĝum̄,n,n∥∥2

+ Pd

U∑
j=1,j 6=u

∣∣(ĝum̄,n,n)H ĝjm̄,n,n
∣∣2, (58)

where the quantity µn is defined as

µn =

Nc∑
i=1,i6=n

U∑
j=1

βjn,i(Ppγ
j − Ppβjn,i + σ2

η)

Ppγj + σ2
η

+

U∑
j=1

Pp(γ
j − 1) + σ2

η

Ppγj + σ2
η

. (59)

A detailed proof for the expression of the variance Var
[
vu,mrc
m̄,k̄,n

]
is given in Appendix-D. Using the rules given in (10), the
estimate of the QAM symbol is obtained from (56) as

ĉum̄,k̄,n =
∥∥ĝum̄,n,n∥∥2

cum̄,k̄,n + ṽu,mrc
m̄,k̄,n

. (60)

The variance of the noise-plus-interference ṽu,mrc
m̄,k̄,n

is deter-
mined as Var[ṽu,mrc

m̄,k̄,n
] = 2Var

[
vu,mrc
m̄,k̄,n

]
. The SINR at the

m̄th subcarrier of the uth user at the nth BS can now be
expressed as

Υu,mrc
m̄,n,IP =

2Pd||ĝum̄,n,n||4

2Var[vu,mrc
m̄,k̄,n

]
. (61)

The ergodic uplink rate and the corresponding lower-bound at
the nth BS for the uth user are

Ru,mrc
m̄,n,IP = E

[
log2

(
1 + Υu,mrc

m̄,n,IP

)]
≥ R̃u,mrc

m̄,n,IP

= log2

(
1 +

{
E
[
1/Υu,mrc

m̄,n,IP

]}−1)
. (62)

The inverse SINR quantity 1/Υu,mrc
m̄,n,IP is obtained as

1

Υu,mrc
m̄,n,IP

=

(
µn +

σ2
η

2Pd
+

Nc∑
i=1,i6=n

U∑
j=1,j 6=u

∣∣g̃jm̄,n,i∣∣2
+

U∑
j=1,j 6=u

∣∣g̃jm̄,n,n∣∣2
)

1

||ĝum̄,n,n||2
+

Nc∑
i=1,i6=n

(βun,i)
2,

where g̃jm̄,n,n = (ĝum̄,n,n)H ĝjm̄,n,n/||ĝum̄,n,n|| and g̃jm̄,n,i =

(ĝum̄,n,n)H ĝjm̄,n,i/||ĝum̄,n,n||. Applying the result from (13),
and using (50) as well as (54), it follows that g̃jm̄,n,n
and g̃jm̄,n,i are zero mean Gaussian random variables with
variances Pp/(Ppγ

j + σ2
η) and Pp(β

j
n,i)

2/(Ppγ
j + σ2

η), re-
spectively, and are independent of ĝum̄,n,n. Furthermore,
since each element of the vector ĝum̄,n,n has a variance
Pp/(Ppγ

u + σ2
η), it follows from [38] that E

[
1/||ĝum̄,n,n||2

]
=

(Ppγ
u + σ2

η)/Pp(N − 1). Upon exploiting the above proper-
ties, one obtains

E
[

1

Υu,mrc
m̄,n,IP

]
=

(
µn +

σ2
η

2Pd
+

Nc∑
i=1,i6=n

U∑
j=1,j 6=u

Pp(β
j
n,i)

2

Ppγj + σ2
η

+

U∑
j=1,j 6=u

Pp
Ppγj + σ2

η

)
(Ppγ

u + σ2
η)

Pp(N − 1)
+

Nc∑
i=1,i6=n

(βun,i)
2.

(63)

On substituting
{
E
[
1/Υu,mrc

m̄,n,IP

]}−1
from above in (62), the

lower bound on the achievable uplink rate at subcarrier m̄ of
the uth user at the nth BS for the multi-cell MU Massive
MIMO-FBMC system in the presence of imperfect CSI can
be determined as given in (64) (on the top of the next page).

3) ZF Receiver: The received OQAM symbol vector after
ZF combining at the nth BS for the U users in the nth cell
can be formulated as

d̂m̄,k̄,n = <
{
Ĝ†m̄,n,nym̄,k̄,n

}
= dm̄,k̄,n + vzf

m̄,k̄,n, (65)

where Ĝ†m̄,n,n = (ĜH
m̄,n,nĜm̄,n,n)−1ĜH

m̄,n,n with Ĝm̄,n,n =
[ĝ1
m̄,n,n, ĝ

2
m̄,n,n, . . . , ĝ

U
m̄,n,n], and the noise-plus-interference

vector vzf
m̄,k̄,n

is expressed as

vzf
m̄,k̄,n = <

{
Ĝ†m̄,n,n

(
Nc∑

i=1,i6=n

U∑
j=1

ĝjm̄,n,ib
j

m̄,k̄,i
+ ηm̄,k̄,n

+

U∑
j=1

ejm̄,n,nb
j

m̄,k̄,n
+

Nc∑
i=1,i6=n

U∑
j=1

ejm̄,n,ib
j

m̄,k̄,i

)}
.

By employing the results derived in (7), (14), (50), (51), (54)
and (55), the covariance matrix of the noise-plus-interference
term vzf

m̄,k̄,n
is determined as

E
[
vzf
m̄,k̄,n

(
vzf
m̄,k̄,n

)H]
= Pd

(
µn +

Nc∑
i=1,i6=n

U∑
j=1,j 6=u

Pp(β
j
n,i)

2

Ppγj + σ2
η

+

N∑
i=1,i6=n

Pp(β
u
n,i)

2

Ppγu + σ2
η

+
σ2
η

2Pd

)(
ĜH
m̄,n,nĜm̄,n,n

)−1

. (66)

After OQAM to QAM conversion, the ZF estimate of the
QAM symbol vector becomes:

ĉm̄,k̄,n = cm̄,k̄,n + ṽzf
m̄,k̄,n, (67)

where ṽzf
m̄,k̄,n

= vzf
m̄,2k̄,n

+ jvzf
m̄,2k̄+1,n

when the subcarrier
index m̄ is even, and ṽzf

m̄,k̄,n
= vzf

m̄,2k̄+1,n
+ jvzf

m̄,2k̄,n

otherwise. It can be verified that E
[
ṽzf
m̄,k̄,n

(
ṽzf
m̄,k̄,n

)H]
=
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R̃u,mrc
m̄,n,IP = log2

1 +
2PdPP (N − 1)

(Ppγu + σ2
η)
(
2PdU + 2Pd

Nc∑
i=1,i6=n

U∑
j=1

βjn,i + σ2
η

)
+ 2PdPp

(
(N − 2)

Nc∑
i=1,i6=n

(βun,i)
2 − 1

)
 . (64)

TABLE I: Simulation Parameters

Parameter Specification
Number of subcarrier (M ) 128
Constellation 4-QAM
Channel Model between a user and BS antenna pair Complex Gaussian with L = 6 equal power taps
Symbol duration (T ) 71.4µs
Subcarrier spacing 15kHz
Useful symbol duration 66.7µs
Channel coherence time (Tc) 1ms = 196 symbols [31]
Number of users per cell (U ) 8
Number of training symbols per subcarrier (K) 8
Prototype filter IOTA with duration 4T ⇒ Lp = 4M
Noise variance (σ2

η) 1

2E
[
vzf
m̄,k̄,n

(
vzf
m̄,k̄,n

)H]
. The SINR at the nth BS for the m̄th

subcarrier of uth user can now be obtained from (67) as

Υu,zf
m̄,n,IP =

2Pd{
E
[
ṽzf
m̄,k̄,n

(
ṽzf
m̄,k̄,n

)H]}
u,u

. (68)

Consequently, the achievable ergodic uplink rate for
the uth user at the m̄th subcarrier is Ru,zf

m̄,n,IP =

E
[
log2

(
1 + Υu,zf

m̄,n,IP

)]
. Using (50), it follows from [38] that

E
[{(

ĜH
m̄,n,nĜm̄,n,n

)−1}
u,u

]
=

Ppγ
u+σ2

η

Pp(N−U) . Upon using the
above properties, the lower-bound R̃u,zf

m̄,n,IP on the achievable
uplink rate at the m̄th subcarrier of the uth user is given by
as in (69) (on the top of the next page).

V. NUMERICAL RESULTS

Numerical examples are now presented to validate the vari-
ous analytical results derived for the FBMC-based single- and
multi-cell MU massive MIMO systems. The simulation pa-
rameters as summerized in Table-I unless stated otherwise. The
legend entries in the various plots are marked by the acronyms
ZF-FBMC, MRC-FBMC, MMSE-FBMC, ZF-OFDM, MRC-
OFDM that are self-explanatory. Furthermore, the perfect CSI,
imperfect CSI, simulation and lower bound are denoted using
the acronyms P-CSI, I-CSI, Sim and LB, respectively.

A. Single-Cell Uplink Scenario

The large-scale fading matrix D =
diag[0.749 0.045 0.246 0.121 0.125 0.142 0.635 0.256] [39]
unless stated otherwise. The achievable uplink sum-rates at
the m̄th subcarrier for perfect and imperfect CSI at the BS are
defined as

∑U
u=1R

u,A
m̄,P and T0−K

T0

∑U
u=1R

u,A
m̄,IP, respectively

with the corresponding expressions for the lower bounds given
as
∑U
u=1 R̃

u,A
m̄,P and T0−K

T0

∑U
u=1 R̃

u,A
m̄,IP, respectively [31],

where T0 = 196, A ∈ (mrc, zf, mmse) and the quantities
Ru,Am̄,P, Ru,Am̄,IP, R̃u,Am̄,P and R̃u,Am̄,IP are described in Section-III.

Fig. 2a compares the achievable uplink sum-rates of the
MRC, ZF and MMSE receivers to their corresponding lower

bounds derived in Sections III-A and III-B for scenarios with
imperfect and perfect receive CSI, respectively. In other words,
this study validates the analytical results derived in Sections
III-A and III-B for the FBMC-based massive MIMO system
described in Section-II for the transmission over a quasi-
static channel with frequency flat response at subcarrier level.
Clearly, for all the combiners, the simulated uplink sum-rates
can be seen to precisely agree with their respective lower-
bounds. It is also observed that the uplink sum-rate perfor-
mance of the FBMC-based massive MIMO system relying
on the MRC, ZF and MMSE receivers coincides with its
counterpart in the CP-OFDM-based massive MIMO system.

Fig. 2b shows the uplink sum-rate versus transmit power per
user for the different number of BS antennas in the presence
of imperfect CSI for both the FBMC and CP-OFDM-based
MU massive MIMO systems relying on the ZF and MRC
receivers. Similar to the previous figure, the uplink sum-rates
of both the receivers can be seen to match their respective
analytical lower-bounds derived in Section-III-A. Furthermore,
both the combiners in the FBMC-based MU massive MIMO
system have a performance similar to the corresponding CP-
OFDM system. Since the ZF combiner suppresses the multi-
user-interference (MUI), it can be seen to outperform the MRC
receiver in the high-power regime, where the effect of noise
becomes negligible. On the other hand, the MRC receiver that
maximises the received signal to noise ratio (SNR) suffers
from the MUI. Thus, its performance saturates when the
transmit power per user increases. In the low power-regime
where noise begins to dominate, the MRC receiver performs
similar to that of the ZF receiver.

Fig. 3a verifies the power scaling laws, which are derived
in Sections III-A and III-B for the single-cell MU massive
MIMO-FBMC system employing the MMSE, ZF and MRC
combining at the BS with/ without perfect CSI. The reference
power Eu per user is fixed at 5 dB. It is observed that when
each of the users scales down its power as 2Pd = Eu/N
in the presence of perfect CSI at the BS, the uplink sum-
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R̃u,zf
m̄,n,IP = log2

1 +
2PdPP (N − U)

(Ppγu + σ2
η)
(

2PdU + 2Pd

Nc∑
i=1,i6=n

U∑
j=1

βjn,i −
U∑

j=1,j 6=u

2PdPp
Ppγj + σ2

η

+ σ2
η

)
− 2PdPp

 . (69)
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Fig. 2: Uplink sum-rate versus a) number of BS antennas for perfect and imperfect CSI with the transmit power per user 2Pd = 10 dB; and b) transmit
power per user for different number of BS antennas with imperfect CSI.
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Fig. 3: Uplink sum-rate versus a) number of BS antennas with perfect and imperfect CSI, the reference transmit power per user Eu = 5 dB; and b) the
channel length in the presence of imperfect CSI with N = 128 and M = 64.

rate of all the receivers can be seen to approach a non-
zero value. However, for the case of imperfect CSI associated
with 2Pd = Eu/N , the uplink sum-rate of all the receivers
approaches zero, as the number of BS antennas increases. On
the other hand, with 2Pd = Eu/

√
N , the sum-rate increases

without bound with the number of BS antennas for the perfect
CSI case. However, for imperfect CSI, the sum-rate converges

to a non-zero value. This study confirms that power scaling
laws, similar to OFDM [31], also hold for MU massive
MIMO-FBMC systems. Typically, MRC performs better than
ZF at low SNR and vice-versa at high SNR, whereas MMSE
performs best across the entire SNR range. The same can be
observed from Fig. 3a, wherein the MRC performs close to
the ZF and MMSE receivers for large N , because in both the
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Fig. 4: Uplink sum-rate per cell versus a) number of BS antennas for perfect and imperfect CSI with the transmit power per user 2Pd = 10 dB; and b)
transmit power per user for different number of BS antennas in the presence of imperfect CSI.
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Fig. 5: Uplink sum-rate versus a) number of BS antennas with perfect and imperfect CSI, the reference transmit power Eu = 5 dB; and b) the number of
users per cell U in the presence of imperfect CSI with N = 128 BS antennas.

cases the effect of MUI is progressively hidden by the noise
since the power is proportional to 1/N or 1/

√
N .

As described in Section-II, the duration of the FBMC pulse
shaping filter is typically much longer than the delay spread
of the channel, which leads to the assumption in (4). It can be
seen that the impact of this approximation error on the sum-
rate increases with the channel length L, as shown in Fig. 3b.
Interestingly, it can be observed that the uplink sum-rate of
both the MRC and ZF receivers degrades with an increase
of the channel impulse response (CIR) length L when the
transmit power per user is high, while its impact is negligible
in a low transmit power scenario. This arises due to the fact
that the residual interference [40, eq. (10)] imposed by the
increasing CIR length is negligible in comparison to the noise
power in the low-power regime, which otherwise dominates

in the high transmit power regime.

B. Multi-Cell Uplink Scenario

A system having Nc = 7 cells is considered with the radius
of each cell set as r = 1000 meters. It is assumed that U = 8
single-antenna users are located uniformly at random in each
cell with a radius ranging from rh = 100 to 1000 meters. The
large-scale fading coefficients obey βun,n = 1, and for i 6= n,
they are modelled as βun,i = zui /(r

u
i /rh)ν . Here zui is a log-

normal random variable for the uth user in the ith cell with a
standard deviation σz , rui is the distance between the uth user
in the ith cell and the BS and ν is the path loss exponent.
The parameters σz and ν are assumed to be 8 dB and 3.8,
respectively. The achievable uplink sum-rates per cell at the
m̄th subcarrier for perfect and imperfect CSI at the BS are de-
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fined as
∑U
u=1R

u,A
m̄,n,P and T0−K

T0

∑U
u=1R

u,A
m̄,n,IP, respectively

with the corresponding expressions for the lower bounds as∑U
u=1 R̃

u,A
m̄,n,P and T0−K

T0

∑U
u=1 R̃

u,A
m̄,n,IP, respectively, where

T0 = 196, A ∈ (mrc, zf) and the quantities Ru,Am̄,n,P, Ru,Am̄,n,IP,
R̃u,Am̄,n,P and R̃u,Am̄,n,IP are described in Section-IV.

Fig. 4a shows the uplink sum-rate per cell versus the
number of BS antennas performance in the presence perfect
as well as imperfect CSI. For both the MRC and ZF receivers
with perfect and imperfect CSI, the lower-bounds derived in
Sections IV-A and IV-B can be seen to closely match the plots
obtained via simulation, thus validating the analytical results.
It can also be observed that the FBMC-based multi-cell MU
massive MIMO system using both the MRC and ZF receivers
performs similar its OFDM counterparts.

Fig. 4b shows the uplink sum-rate per cell versus transmit
power per user in the presence of imperfect CSI. The lower-
bounds proposed in Sections IV-A and IV-B can again be
seen in conformance with their respective simulated plots.
Since the ZF receiver cancels the interference from the users
within the desired cell, it can be seen to outperform the MRC
receiver in the high power regime, where the effect of noise is
negligible. In contrast to the single-cell case, the interference
from the users in other cells saturates the performance of
the ZF receiver. In the low power regime where the noise
dominates, the MRC receiver maximizing the SNR performs
similar to that of the ZF receiver.

Fig. 5a confirms the power scaling laws obtained in Section-
IV for the multi-cell MU massive MIMO-FBMC systems in
the presence of both the perfect and imperfect CSI. It is
observed that when the power of each user is proportional to
1/
√
N , the uplink sum-rates per cell in the presence of perfect

CSI grow without bound, whereas in the presence of imperfect
CSI, they approach a non-zero value. On the other hand, when
the transmit power per user is proportional to 1/N , the sum-
rates per cell with perfect CSI converge to a non-zero value,
whereas they approach zero in the case of imperfect CSI.

Fig. 5b portrays uplink sum-rate per cell versus the number
of users per cell with imperfect CSI for 128 BS antennas.
In this study, a total power of 5 dB per cell is divided
equally among the users within that cell. This experiment
is subsequently repeated for a total power value of 0 dB.
As the number of users per cell increases, the power per
user decreases. As a result, the intra-cell as well as inter-cell
interference decreases and the noise effect starts to dominate.
Consequently, the performance of the ZF receiver degrades
as the number of users increases, and eventually the MRC
receiver starts to perform better than the ZF receiver.

C. Analysis of FBMC and OFDM-based Massive MIMO
Systems with Synchronization Impairments

Fig. 2 and Fig. 4 showed that with perfect synchroniza-
tion, MU massive MIMO-FBMC systems have an uplink
performance similar to their OFDM counterparts, thus not
compromising the performance. However, the aim of this
subsection is to analyse performance improvement of FBMC-
based massive MIMO systems over their OFDM counterparts
in the presence of practical impairments such as the CFO.

In the presence of CFO and perfect CSI with ZF processing
at the BS, the SIR for user u in a single-cell MU massive
MIMO-FBMC system at FT index (m̄, k̄) is expressed as
shown in (70) (on the top of the next page), where εu denote
the normalized CFO for the uth user in cell, the discrete
ambiguity function Ap(M,ν0) is defined as Ap (M,ν0) =∑∞
q=−∞ p

[
q+ M

2

]
p∗
[
q− M

2

]
ej2πν0q/M [13] and the notation

(m
(0)
0 , k

(0)
0 ) represents all the points (m0, k0) ∈ Ωm̄,k̄ exclud-

ing (m0, k0) = (0, 0). The corresponding SIR expression for
an OFDM system is [11], [41]

SIR
u

m̄ =
2Pd

2Pd sin2(π(m̄+ εu))

M

M−1∑
m=0,m 6=m̄

1

sin2
(
π(m+εu)

M

) .
(71)

The detailed proofs for (70) and (71) have been relegated to
the technical report in [42].

In practical scenarios associated with synchronization im-
pairments such as CFO, the performance of an OFDM-based
massive MIMO system degrades severely in comparison to
its FBMC counterpart, as shown in Fig. 6a and Fig. 6b.
Fig. 6a shows the SIR versus normalized CFO (normalized to
subcarrier spacing) performance for the user u derived in (70)
and (71) for the FBMC- and OFDM-based massive MIMO
systems, respectively. It can be observed that as the CFO
increases, the FBMC waveform significantly outperforms the
OFDM waveform in terms of SIR, since the latter experiences
significant ICI due to the poor frequency localization of the
rectangular time-domain pulse. On the other hand, FBMC
systems experience significantly lower ICI due to their well-
localized frequency-time pulse shapes, which makes FBMC-
based systems robust against synchronization impairments
such as CFO. Fig. 6b compares the SER performance of
FBMC- and OFDM-based single- as well as multi-cell massive
MIMO systems in the presence of CFO. This once again shows
a trend similar to Fig. 6a, where the FBMC-based system is
seen to significantly outperform its OFDM counterpart.

VI. CONCLUSIONS

This paper analysed the performance of FBMC signaling in
single- and multi-cell MU massive MIMO systems. The lower-
bounds and asymptotic expressions derived for the uplink sum-
rate with the MRC, ZF and MMSE combining in single-
and multi-cell systems with/ without prefect CSI at the BS
were seen to coincide with the corresponding simulated sum-
rates. It was also demonstrated that the MU massive MIMO-
FBMC systems have a performance similar to that of the CP-
OFDM systems. However, in practical scenarios associated
with synchronization impairments such as CFO, FBMC-based
massive MIMO systems were seen to significantly outperform
their OFDM counterparts. The power scaling laws, similar to
CP-OFDM systems, were seen to hold for the FBMC signaling
in the uplink. Future research may present a similar analysis
for characterising the performance of FBMC-based massive
MIMO systems in time-selective channels. Future research
may also analyse the sum-rate of the downlink of FBMC-based
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SIRum̄,k̄ =
2PdA

2
p(0, εu)∑

(m
(0)
0 ,k

(0)
0 )∈Ωm̄,k̄

2Pd cos2
(π

2
(m0 + n0 −m0n0 + εun0)

)
A2
p

(
−k0M

2
,m0 + εu

) . (70)
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Fig. 6: a) SIR comparison of OFDM and FBMC-based single-cell massive MIMO systems with the ZF receiver processing at the BS in presence of CFO and
perfect CSI, and N = 64, U = 8 and L = 2. b) SER versus normalized CFO performance of the OFDM and FBMC-based single- and multi-cell massive
MIMO systems for BPSK symbols with ZF receiver processing at the base station in the presence of CFO and perfect CSI. Power per user 2Pd = −5 dB,
N = 64, U = 8, L = 2. For single-cell: βu = 1 for 1 ≤ u ≤ U . For multi-cell: the large scale fading coefficients βun,n = 1 ∀ 1 ≤ u ≤ U , and for i 6= n
βun,i = 0.1 ∀ 1 ≤ u ≤ U .

massive MIMO systems considering the effect of multi-user
precoding, which poses additional challenges.

APPENDIX A
VARIANCE OF INTRINSIC INTERFERENCE

Since the OQAM symbols are i.i.d. zero mean with power
Pd, from (6), one obtains

E[|Ium̄,k̄|
2] = Pd

∑
(m,k)∈Ωm̄,k̄

∣∣〈ξ〉m̄,k̄m,k

∣∣2. (72)

Using (2), the quantity
∑M−1
m=0

∑
k∈Z

∣∣ξm̄,k̄
m̄+m,k̄+k

∣∣2 can be
evaluated as
M−1∑
m=0

∑
k∈Z

∣∣ξm̄,k̄
m̄+m,k̄+k

∣∣2 =

+∞∑
n=−∞

+∞∑
l=−∞

p[n]p[l]
∑
k∈Z

p[n− kM/2]

p[l − kM/2]

M−1∑
m=0

exp{j2πm(n− l)/M}.

For n − l 6= α0M with α0 ∈ Z, the quantity∑M−1
m=0 exp{j2πm(n− l)/M} = 0, and it is equal to M when

n− l = α0M . Upon employing the above results, one obtains
M−1∑
m=0

∑
k∈Z

∣∣ξm̄,k̄
m̄+m,k̄+k

∣∣2 = M

+∞∑
l=−∞

∑
α0∈Z

p[l]p[l − α0M ]

∑
k∈Z

p[l − kM/2]p[l − (k + 2α0)M/2].

Since the prototype pulse p[l] is symmetrical, it follows that for
all l the summation

∑
k∈Z p[l−nM/2]p[l−(k+2α0)M/2] = 0

when α0 6= 0, and for α0 = 0, we get
∑
k∈Z p

2[l −
nM/2] = 2/M for all l [9, Eq. (81)]. Hence the expression∑M−1
m=0

∑
k∈Z

∣∣ξm̄,k̄
m̄+m,k̄+k

∣∣2 simplifies as

M−1∑
m=0

∑
k∈Z

∣∣ξm̄,k̄
m̄+m,k̄+k

∣∣2 (a)
=

2M

M

+∞∑
l=−∞

p2[l] = 2, (73)

where (a) above follows from the fact that the pulse p[l] has
unit energy, i.e.,

∑+∞
l=−∞ p2[l] = 1. Since FBMC systems

comprise well localized FT pulse shaping filters, we have

∑
(m,k)∈Ωm̄,k̄

∣∣〈ξ〉m̄,k̄m,k

∣∣2 ≈ M−1∑
m=0

∑
k∈Z

∣∣ξm̄,k̄
m̄+m,k̄+k

∣∣2 − ∣∣ξm̄,k̄
m̄,k̄

∣∣2 = 1.

Upon substituting the above result in (72), we get the desired
result in (7).

APPENDIX B
INTRINISC INTERFERENCE ANALYSIS FOR CHANNEL

ESTIMATION

In order to generalize the analysis, let z zeros are inserted
between the adjacent training symbols in Fig. 1 to suppress
the ISI. Thus, the training symbols are located at the symbol
indices k = i(1 + z) for 0 ≤ i ≤ K − 1. From (6), the
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intrinsic interference for the uth user at these indices can be
calculated as

Ium̄,i(1+z) =
∑

(m,k)∈Ωm̄,i(1+z)

dum,k=
{ +∞∑
l=−∞

p
[
l − kM

2

]
p
[
l − i(1 + z)

M

2

]
ej2π(m−m̄)l/Mej(φm,k−φm̄,i(1+z))

}
. (74)

The summation over (m, k) ∈ Ωm̄,i(1+z) in the above ex-
pression can be separated into the following three cases. 1)
m 6= m̄ and k 6= i(1+z); 2) m = m̄ and k 6= i(1+z); and 3)
m 6= m̄ and k = i(1 + z). For the first two cases, dum,k = 0 in
the neighbourhood Ωm̄,i(1+z) of the FT point (m̄, i(1 + z)).
Furthermore, as we move away from this neighbourhood, the
quantity p[l − kM/2]p[l − i(1 + z)M/2] ≈ 0 due to the
well FT localization of the prototype filter p[l]. Therefore,
Ium̄,i(1+z)

∼= 0 for the first two cases, and only the third case
survives where m 6= m̄ and k = i(1 + z). Since the training
symbols locations are k = i(1 + z) for 0 ≤ i ≤ K − 1, the
neighbourhood Ωm̄,i(1+z) for the third case comprises the non-
zero training symbols dum,k. Thus, the intrinsic interference in
(74) can be computed as

Ium̄,i(1+z) =
∑
m 6=m̄

dum,i(1+z)=
{ +∞∑
l=−∞

p2
[
l − i(1 + z)

M

2

]
ej2π(m−m̄)l/Mej(φm,i(1+z)−φm̄,i(1+z))

}
. (75)

Substituting l − i(1 + z)M/2 = l and φm,k = (π/2)(m +
k)−πmk in (75) yields Ium̄,i(1+z) =

∑
m 6=m̄ d

u
m,i(1+z)〈ξ〉

m̄,0
m,0.

Typically, z = 1 is sufficient to suppress the ISI between
the adjacent training symbols due to the well localized FT
pulse p[l] in FBMC systems [23]. Thus, with z = 1, we get
Ium̄,2i =

∑
m6=m̄ d

u
m,2i〈ξ〉

m̄,0
m,0.

APPENDIX C
CONSTRUCTION OF ORTHOGONAL Bm̄

As shown in the frame structure in Fig. 1, each user
transmits K (K ≥ U ) training symbols on each subcarrier
for channel estimation. The construction of the orthogonal
Bm̄ can be explained using an example with K = U = 2.
Let the first user transmits the OQAM training symbol dm at
the training symbol indices 0 and 2 on the mth subcarrier, the
second user on the other hand uses the same preamble, but with
reversed signs at the symbol instant 2. Using this precoding
at the users end and the relation Itm̄,2i =

∑
m6=m̄ d

t
m,2i〈ξ〉

m̄,0
m,0

from Appendix-B, it can be readily verified that the virtual
symbols obey b1m̄,0 = b1m̄,2 = b2m̄,0 = −b2m̄,2 = bm̄. Thus, the
virtual training matrix Bm̄ at the receiver can be obtained as

Bm̄ =

[
bm̄ bm̄
bm̄ −bm̄

]
= bm̄

[
1 1
1 −1

]
= bm̄A2.

It can be seen that A2 is an orthogonal matrix and so is the
virtual training matrix Bm̄.

APPENDIX D
VARIANCE OF NOISE PLUS INTERFERENCE

Expanding (57) using ĝum̄,n,j = βun,j ĝ
u
m̄,n,n leads to

vu,mrc
m̄,k̄,n

= <

{
U∑

j=1,j 6=u

(ĝum̄,n,n)H ĝjm̄,n,nb
j

m̄,k̄,n
+

U∑
j=1

(ĝum̄,n,n)Hejm̄,n,nb
j

m̄,k̄,n
+

Nc∑
i=1,i6=n

βun,i
∥∥ĝum̄,n,n∥∥2

bum̄,k̄,i

+

Nc∑
i=1,i6=n

U∑
j=1,j 6=u

(ĝum̄,n,n)H ĝjm̄,n,ib
j

m̄,k̄,i
+

Nc∑
i=1,i6=n

U∑
j=1

(ĝum̄,n,n)Hejm̄,n,ib
j

m̄,k̄,i
+ (ĝum̄,n,n)Hηm̄,k̄,n

}
.

Since the virtual symbol bj
m̄,k̄,i

, noise vector ηm̄,k̄,n and the
error vector ejm̄,n,i are zero mean independent, the variance
of the noise-plus-interference term vu,mrc

m̄,k̄,n
is equal to the

sum of the variances of the individual terms. Employing
(14), the property E

[(
(ĝum̄,n,n)H ĝjm̄,n,nb

j

m̄,k̄,n

)2]
= 0

and the second-order statistical properties of the intrinsic
interference from (7), the variance of the first term in
the above equation is Pd

∑U
j=1,j 6=u

∣∣(ĝum̄,n,n)H ĝjm̄,n,n
∣∣2.

Exploiting the same set of properties as above, the
variances of the third, fourth and sixth terms in the above
equation are evaluated as Pd

∣∣∣∣ĝum̄,n,n∣∣∣∣4∑Nc
i=1,i6=n(βun,i)

2,
Pd
∑Nc
i=1,i6=n

∑U
j=1,j 6=u

∣∣(ĝum̄,n,n)H ĝjm̄,n,i
∣∣2 and

σ2
η

2

∣∣∣∣ĝum̄,n,n∣∣∣∣2, respectively. Employing the same set of
properties again along with (51) and (55), the variances of
the second and fifth terms in the above equation can be
computed as

Pd
∥∥ĝum̄,n,n∥∥2

U∑
j=1

Pp(γ
j − 1) + σ2

η

Ppγj + σ2
η

and

Pd
∥∥ĝum̄,n,n∥∥2

Nc∑
i=1,i6=n

U∑
j=1

βjn,i(Ppγ
j − Ppβjn,i + σ2

η)

Ppγj + σ2
η

,

respectively. The addition of all the above computed variances
yields the desired result in (58).
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